

FUNDAMENTALS OF

Database
Systems
SEVENTH EDITION

This page intentionally left blank

FUNDAMENTALS OF

Database
Systems
SEVENTH EDITION

Ramez Elmasri
Department of Computer Science and Engineering
The University of Texas at Arlington

Shamkant B. Navathe
College of Computing
Georgia Institute of Technology

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS:
 Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Marketing Managers: Bram Van Kempen, Demetrius Hall
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing
 and Procurement: Diane Hynes
Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia
Cover Designer: Black Horse Designs
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:
 Timothy Nicholls
Full-Service Project Management: Rashmi Tickyani,
 iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Printer/Binder: Edwards Brothers Malloy
Cover Printer: Phoenix Color/Hagerstown
Cover Image: Micha Pawlitzki/Terra/Corbis
Typeface: 10.5/12 Minion Pro

ISBN-10: 0-13-397077-9
ISBN-13: 978-0-13-397077-7

Copyright © 2016, 2011, 2007 by Ramez Elmasri and Shamkant B. Navathe. All rights reserved. Manufactured
in the United States of America. This publication is protected by Copyright and permissions should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use materials from this work, please submit a written request to Pearson Higher Education, Permissions
Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective
suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties
and conditions of merchantability. Whether express, implied or statutory, fitness for a particular purpose, title
and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether
in an action of contract. Negligence or other tortious action, arising out of or in connection with the use or
performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1

To Amalia
and

to Ramy, Riyad, Katrina, and Thomas

R. E.

To my wife Aruna for her love, support, and understanding
and

to Rohan, Maya, and Ayush for bringing so much joy into our lives

S.B.N.

This page intentionally left blank

This book introduces the fundamental concepts
necessary for designing, using, and implementing

database systems and database applications. Our presentation stresses the funda-
mentals of database modeling and design, the languages and models provided by the
database management systems, and database system implementation techniques.
The book is meant to be used as a textbook for a one- or two-semester course in
database systems at the junior, senior, or graduate level, and as a reference book. Our
goal is to provide an in-depth and up-to-date presentation of the most important
aspects of database systems and applications, and related technologies. We assume
that readers are familiar with elementary programming and data-structuring con-
cepts and that they have had some exposure to the basics of computer organization.

New to This Edition
The following key features have been added in the seventh edition:

 ■ A reorganization of the chapter ordering (this was based on a survey of the
instructors who use the textbook); however, the book is still organized so
that the individual instructor can choose to follow the new chapter ordering
or choose a different ordering of chapters (for example, follow the chapter
order from the sixth edition) when presenting the materials.

 ■ There are two new chapters on recent advances in database systems and big
data processing; one new chapter (Chapter 24) covers an introduction to the
newer class of database systems known as NOSQL databases, and the other
new chapter (Chapter 25) covers technologies for processing big data,
including MapReduce and Hadoop.

 ■ The chapter on query processing and optimization has been expanded and
reorganized into two chapters; Chapter 18 focuses on strategies and algo-
rithms for query processing whereas Chapter 19 focuses on query optimiza-
tion techniques.

 ■ A second UNIVERSITY database example has been added to the early chap-
ters (Chapters 3 through 8) in addition to our COMPANY database example
from the previous editions.

 ■ Many of the individual chapters have been updated to varying degrees to include
newer techniques and methods; rather than discuss these enhancements here,

Preface

vii

viii Preface

we will describe them later in the preface when we discuss the organization of
the seventh edition.

The following are key features of the book:

 ■ A self-contained, flexible organization that can be tailored to individual
needs; in particular, the chapters can be used in different orders depending
on the instructor’s preference.

 ■ A companion website (http://www.pearsonhighered.com/cs-resources)
includes data to be loaded into various types of relational databases for more
realistic student laboratory exercises.

 ■ A dependency chart (shown later in this preface) to show which chapters
depend on other earlier chapters; this can guide the instructor who wants to
tailor the order of presentation of the chapters.

 ■ A collection of supplements, including a robust set of materials for instruc-
tors and students such as PowerPoint slides, figures from the text, and an
instructor’s guide with solutions.

Organization and Contents of the Seventh Edition
There are some organizational changes in the seventh edition as well as improve-
ment to the individual chapters. The book is now divided into 12 parts as follows:

 ■ Part 1 (Chapters 1 and 2) describes the basic introductory concepts neces-
sary for a good understanding of database models, systems, and languages.
Chapters 1 and 2 introduce databases, typical users, and DBMS concepts,
terminology, and architecture, as well as a discussion of the progression of
database technologies over time and a brief history of data models. These
chapters have been updated to introduce some of the newer technologies
such as NOSQL systems.

 ■ Part 2 (Chapters 3 and 4) includes the presentation on entity-relationship
modeling and database design; however, it is important to note that instruc-
tors can cover the relational model chapters (Chapters 5 through 8) before
Chapters 3 and 4 if that is their preferred order of presenting the course
materials. In Chapter 3, the concepts of the Entity-Relationship (ER) model
and ER diagrams are presented and used to illustrate conceptual database
design. Chapter 4 shows how the basic ER model can be extended to incorpo-
rate additional modeling concepts such as subclasses, specialization, gener-
alization, union types (categories) and inheritance, leading to the
enhanced-ER (EER) data model and EER diagrams. The notation for the class
diagrams of UML are also introduced in Chapters 7 and 8 as an alternative
model and diagrammatic notation for ER/EER diagrams.

 ■ Part 3 (Chapters 5 through 8) includes a detailed presentation on relational
databases and SQL with some additional new material in the SQL chapters
to cover a few SQL constructs that were not in the previous edition. Chapter 5

 Preface ix

describes the basic relational model, its integrity constraints, and update
operations. Chapter 6 describes some of the basic parts of the SQL standard
for relational databases, including data definition, data modification opera-
tions, and simple SQL queries. Chapter 7 presents more complex SQL que-
ries, as well as the SQL concepts of triggers, assertions, views, and schema
modification. Chapter 8 describes the formal operations of the relational
algebra and introduces the relational calculus. The material on SQL (Chap-
ters 6 and 7) is presented before our presentation on relational algebra and
calculus in Chapter 8 to allow instructors to start SQL projects early in a
course if they wish (it is possible to cover Chapter 8 before Chapters 6 and 7
if the instructor desires this order). The final chapter in Part 2, Chapter 9,
covers ER- and EER-to-relational mapping, which are algorithms that can be
used for designing a relational database schema from a conceptual ER/EER
schema design.

 ■ Part 4 (Chapters 10 and 11) are the chapters on database programming tech-
niques; these chapters can be assigned as reading materials and augmented
with materials on the particular language used in the course for program-
ming projects (much of this documentation is readily available on the Web).
Chapter 10 covers traditional SQL programming topics, such as embedded
SQL, dynamic SQL, ODBC, SQLJ, JDBC, and SQL/CLI. Chapter 11 introduces
Web database programming, using the PHP scripting language in our exam-
ples, and includes new material that discusses Java technologies for Web
database programming.

 ■ Part 5 (Chapters 12 and 13) covers the updated material on object-relational
and object-oriented databases (Chapter 12) and XML (Chapter 13); both of
these chapters now include a presentation of how the SQL standard incorpo-
rates object concepts and XML concepts into more recent versions of the
SQL standard. Chapter 12 first introduces the concepts for object databases,
and then shows how they have been incorporated into the SQL standard in
order to add object capabilities to relational database systems. It then covers
the ODMG object model standard, and its object definition and query lan-
guages. Chapter 13 covers the XML (eXtensible Markup Language) model
and languages, and discusses how XML is related to database systems. It
presents XML concepts and languages, and compares the XML model to
traditional database models. We also show how data can be converted
between the XML and relational representations, and the SQL commands
for extracting XML documents from relational tables.

 ■ Part 6 (Chapters 14 and 15) are the normalization and relational design
theory chapters (we moved all the formal aspects of normalization algo-
rithms to Chapter 15). Chapter 14 defines functional dependencies, and
the normal forms that are based on functional dependencies. Chapter 14
also develops a step-by-step intuitive normalization approach, and includes
the definitions of multivalued dependencies and join dependencies.
Chapter 15 covers normalization theory, and the formalisms, theories,

x Preface

and algorithms developed for relational database design by normaliza-
tion, including the relational decomposition algorithms and the relational
synthesis algorithms.

 ■ Part 7 (Chapters 16 and 17) contains the chapters on file organizations on
disk (Chapter 16) and indexing of database files (Chapter 17). Chapter 16
describes primary methods of organizing files of records on disk, including
ordered (sorted), unordered (heap), and hashed files; both static and
dynamic hashing techniques for disk files are covered. Chapter 16 has been
updated to include materials on buffer management strategies for DBMSs as
well as an overview of new storage devices and standards for files and mod-
ern storage architectures. Chapter 17 describes indexing techniques for files,
including B-tree and B+-tree data structures and grid files, and has been
updated with new examples and an enhanced discussion on indexing,
including how to choose appropriate indexes and index creation during
physical design.

 ■ Part 8 (Chapters 18 and 19) includes the chapters on query processing algo-
rithms (Chapter 18) and optimization techniques (Chapter 19); these two
chapters have been updated and reorganized from the single chapter that
covered both topics in the previous editions and include some of the newer
techniques that are used in commercial DBMSs. Chapter 18 presents algo-
rithms for searching for records on disk files, and for joining records from
two files (tables), as well as for other relational operations. Chapter 18 con-
tains new material, including a discussion of the semi-join and anti-join
operations with examples of how they are used in query processing, as well
as a discussion of techniques for selectivity estimation. Chapter 19 covers
techniques for query optimization using cost estimation and heuristic rules;
it includes new material on nested subquery optimization, use of histograms,
physical optimization, and join ordering methods and optimization of
typical queries in data warehouses.

 ■ Part 9 (Chapters 20, 21, and 22) covers transaction processing concepts;
concurrency control; and database recovery from failures. These chapters
have been updated to include some of the newer techniques that are used
in some commercial and open source DBMSs. Chapter 20 introduces the
techniques needed for transaction processing systems, and defines the
concepts of recoverability and serializability of schedules; it has a new sec-
tion on buffer replacement policies for DBMSs and a new discussion on
the concept of snapshot isolation. Chapter 21 gives an overview of the var-
ious types of concurrency control protocols, with a focus on two-phase
locking. We also discuss timestamp ordering and optimistic concurrency
control techniques, as well as multiple-granularity locking. Chapter 21
includes a new presentation of concurrency control methods that are based
on the snapshot isolation concept. Finally, Chapter 23 focuses on database
recovery protocols, and gives an overview of the concepts and techniques
that are used in recovery.

 ■ Part 10 (Chapters 23, 24, and 25) includes the chapter on distributed data-
bases (Chapter 23), plus the two new chapters on NOSQL storage systems
for big data (Chapter 24) and big data technologies based on Hadoop and
MapReduce (Chapter 25). Chapter 23 introduces distributed database
concepts, including availability and scalability, replication and fragmenta-
tion of data, maintaining data consistency among replicas, and many other
concepts and techniques. In Chapter 24, NOSQL systems are categorized
into four general categories with an example system in each category used
for our examples, and the data models, operations, as well as the replica-
tion/distribution/scalability strategies of each type of NOSQL system are
discussed and compared. In Chapter 25, the MapReduce programming
model for distributed processing of big data is introduced, and then we
have presentations of the Hadoop system and HDFS (Hadoop Distributed
File System), as well as the Pig and Hive high-level interfaces, and the
YARN architecture.

 ■ Part 11 (Chapters 26 through 29) is entitled Advanced Database Models,
Systems, and Applications and includes the following materials: Chapter 26
introduces several advanced data models including active data-
bases/triggers (Section 26.1), temporal databases (Section 26.2), spatial data-
bases (Section 26.3), multimedia databases (Section 26.4), and deductive
databases (Section 26.5). Chapter 27 discusses information retrieval (IR)
and Web search, and includes topics such as IR and keyword-based search,
comparing DB with IR, retrieval models, search evaluation, and ranking
algorithms. Chapter 28 is an introduction to data mining including over-
views of various data mining methods such as associate rule mining, cluster-
ing, classification, and sequential pattern discovery. Chapter 29 is an
overview of data warehousing including topics such as data warehousing
models and operations, and the process of building a data warehouse.

 ■ Part 12 (Chapter 30) includes one chapter on database security, which
includes a discussion of SQL commands for discretionary access control
(GRANT, REVOKE), as well as mandatory security levels and models for
including mandatory access control in relational databases, and a discussion
of threats such as SQL injection attacks, as well as other techniques and
methods related to data security and privacy.

Appendix A gives a number of alternative diagrammatic notations for displaying a
conceptual ER or EER schema. These may be substituted for the notation we use, if
the instructor prefers. Appendix B gives some important physical parameters of
disks. Appendix C gives an overview of the QBE graphical query language, and
Appendixes D and E (available on the book’s Companion Website located at
http://www.pearsonhighered.com/elmasri) cover legacy database systems, based on
the hierarchical and network database models. They have been used for more than
thirty years as a basis for many commercial database applications and transaction-
processing systems.

 Preface xi

Guidelines for Using This Book
There are many different ways to teach a database course. The chapters in Parts 1
through 7 can be used in an introductory course on database systems in the order
that they are given or in the preferred order of individual instructors. Selected chap-
ters and sections may be left out and the instructor can add other chapters from the
rest of the book, depending on the emphasis of the course. At the end of the open-
ing section of some of the book’s chapters, we list sections that are candidates for
being left out whenever a less-detailed discussion of the topic is desired. We suggest
covering up to Chapter 15 in an introductory database course and including selected
parts of other chapters, depending on the background of the students and the
desired coverage. For an emphasis on system implementation techniques, chapters
from Parts 7, 8, and 9 should replace some of the earlier chapters.

Chapters 3 and 4, which cover conceptual modeling using the ER and EER models,
are important for a good conceptual understanding of databases. However, they
may be partially covered, covered later in a course, or even left out if the emphasis
is on DBMS implementation. Chapters 16 and 17 on file organizations and indexing
may also be covered early, later, or even left out if the emphasis is on database mod-
els and languages. For students who have completed a course on file organization,
parts of these chapters can be assigned as reading material or some exercises can be
assigned as a review for these concepts.

If the emphasis of a course is on database design, then the instructor should cover
Chapters 3 and 4 early on, followed by the presentation of relational databases. A
total life-cycle database design and implementation project would cover conceptual
design (Chapters 3 and 4), relational databases (Chapters 5, 6, and 7), data model
mapping (Chapter 9), normalization (Chapter 14), and application programs
implementation with SQL (Chapter 10). Chapter 11 also should be covered if the
emphasis is on Web database programming and applications. Additional documen-
tation on the specific programming languages and RDBMS used would be required.
The book is written so that it is possible to cover topics in various sequences. The
following chapter dependency chart shows the major dependencies among chap-
ters. As the diagram illustrates, it is possible to start with several different topics
following the first two introductory chapters. Although the chart may seem com-
plex, it is important to note that if the chapters are covered in order, the dependen-
cies are not lost. The chart can be consulted by instructors wishing to use an
alternative order of presentation.

For a one-semester course based on this book, selected chapters can be assigned as
reading material. The book also can be used for a two-semester course sequence.
The first course, Introduction to Database Design and Database Systems, at the
sophomore, junior, or senior level, can cover most of Chapters 1 through 15. The
second course, Database Models and Implementation Techniques, at the senior or
first-year graduate level, can cover most of Chapters 16 through 30. The two-
semester sequence can also be designed in various other ways, depending on the
preferences of the instructors.

xii Preface

Supplemental Materials
Support material is available to qualified instructors at Pearson’s instructor
resource center (http://www.pearsonhighered.com/irc). For access, contact your
local Pearson representative.

 ■ PowerPoint lecture notes and figures.

 ■ A solutions manual.

Acknowledgments
It is a great pleasure to acknowledge the assistance and contributions of many indi-
viduals to this effort. First, we would like to thank our editor, Matt Goldstein, for
his guidance, encouragement, and support. We would like to acknowledge the
excellent work of Rose Kernan for production management, Patricia Daly for a

1, 2
Introductory

3, 4
ER, EER
Models

5
Relational

Model

8
Relational
Algebra

9
ER-, EER-to-

Relational

16, 17
File Organization,

Indexing

28, 29
Data Mining,
Warehousing

10, 11
DB, Web

Programming

30
DB

Security

14, 15
FD, MVD,

Normalization

23, 24, 25
DDB, NOSQL,

Big Data

20, 21, 22
Transactions,
CC, Recovery

12, 13
ODB, ORDB,

XML

26, 27
Advanced
Models, IR

6, 7
SQL

18, 19
Query Processing,

Optimization

 Preface xiii

thorough copy editing of the book, Martha McMaster for her diligence in proofing
the pages, and Scott Disanno, Managing Editor of the production team. We also
wish to thank Kelsey Loanes from Pearson for her continued help with the project,
and reviewers Michael Doherty, Deborah Dunn, Imad Rahal, Karen Davis, Gilliean
Lee, Leo Mark, Monisha Pulimood, Hassan Reza, Susan Vrbsky, Li Da Xu, Weining
Zhang and Vincent Oria.

Ramez Elmasri would like to thank Kulsawasd Jitkajornwanich, Vivek Sharma, and
Surya Swaminathan for their help with preparing some of the material in Chap-
ter 24. Sham Navathe would like to acknowledge the following individuals who
helped in critically reviewing and revising various topics. Dan Forsythe and Satish
Damle for discussion of storage systems; Rafi Ahmed for detailed re-organization
of the material on query processing and optimization; Harish Butani, Balaji
Palanisamy, and Prajakta Kalmegh for their help with the Hadoop and MapReduce
technology material; Vic Ghorpadey and Nenad Jukic for revision of the Data
Warehousing material; and finally, Frank Rietta for newer techniques in database
security, Kunal Malhotra for various discussions, and Saurav Sahay for advances in
information retrieval systems.

We would like to repeat our thanks to those who have reviewed and contributed to
previous editions of Fundamentals of Database Systems.

 ■ First edition. Alan Apt (editor), Don Batory, Scott Downing, Dennis
Heimbinger, Julia Hodges, Yannis Ioannidis, Jim Larson, Per-Ake Larson,
Dennis McLeod, Rahul Patel, Nicholas Roussopoulos, David Stemple,
Michael Stonebraker, Frank Tompa, and Kyu-Young Whang.

 ■ Second edition. Dan Joraanstad (editor), Rafi Ahmed, Antonio Albano, David
Beech, Jose Blakeley, Panos Chrysanthis, Suzanne Dietrich, Vic Ghorpadey,
Goetz Graefe, Eric Hanson, Junguk L. Kim, Roger King, Vram Kouramajian,
Vijay Kumar, John Lowther, Sanjay Manchanda, Toshimi Minoura, Inderpal
Mumick, Ed Omiecinski, Girish Pathak, Raghu Ramakrishnan, Ed Robertson,
Eugene Sheng, David Stotts, Marianne Winslett, and Stan Zdonick.

 ■ Third edition. Maite Suarez-Rivas and Katherine Harutunian (editors);
Suzanne Dietrich, Ed Omiecinski, Rafi Ahmed, Francois Bancilhon, Jose
Blakeley, Rick Cattell, Ann Chervenak, David W. Embley, Henry A. Etlinger,
Leonidas Fegaras, Dan Forsyth, Farshad Fotouhi, Michael Franklin, Sreejith
Gopinath, Goetz Craefe, Richard Hull, Sushil Jajodia, Ramesh K. Karne,
Harish Kotbagi, Vijay Kumar, Tarcisio Lima, Ramon A. Mata-Toledo, Jack
McCaw, Dennis McLeod, Rokia Missaoui, Magdi Morsi, M. Narayanaswamy,
Carlos Ordonez, Joan Peckham, Betty Salzberg, Ming-Chien Shan, Junping
Sun, Rajshekhar Sunderraman, Aravindan Veerasamy, and Emilia E. Villareal.

 ■ Fourth edition. Maite Suarez-Rivas, Katherine Harutunian, Daniel Rausch,
and Juliet Silveri (editors); Phil Bernhard, Zhengxin Chen, Jan Chomicki,
Hakan Ferhatosmanoglu, Len Fisk, William Hankley, Ali R. Hurson, Vijay
Kumar, Peretz Shoval, Jason T. L. Wang (reviewers); Ed Omiecinski (who
contributed to Chapter 27). Contributors from the University of Texas at

xiv Preface

Arlington are Jack Fu, Hyoil Han, Babak Hojabri, Charley Li, Ande Swathi,
and Steven Wu; Contributors from Georgia Tech are Weimin Feng, Dan For-
sythe, Angshuman Guin, Abrar Ul-Haque, Bin Liu, Ying Liu, Wanxia Xie,
and Waigen Yee.

 ■ Fifth edition. Matt Goldstein and Katherine Harutunian (editors); Michelle
Brown, Gillian Hall, Patty Mahtani, Maite Suarez-Rivas, Bethany Tidd, and
Joyce Cosentino Wells (from Addison-Wesley); Hani Abu-Salem, Jamal R.
Alsabbagh, Ramzi Bualuan, Soon Chung, Sumali Conlon, Hasan Davulcu,
James Geller, Le Gruenwald, Latifur Khan, Herman Lam, Byung S. Lee,
Donald Sanderson, Jamil Saquer, Costas Tsatsoulis, and Jack C. Wileden
(reviewers); Raj Sunderraman (who contributed the laboratory projects);
Salman Azar (who contributed some new exercises); Gaurav Bhatia, Fari-
borz Farahmand, Ying Liu, Ed Omiecinski, Nalini Polavarapu, Liora Sahar,
Saurav Sahay, and Wanxia Xie (from Georgia Tech).

 ■ Sixth edition. Matt Goldstein (editor); Gillian Hall (production manage-
ment); Rebecca Greenberg (copy editing); Jeff Holcomb, Marilyn Lloyd,
Margaret Waples, and Chelsea Bell (from Pearson); Rafi Ahmed, Venu
Dasigi, Neha Deodhar, Fariborz Farahmand, Hariprasad Kumar, Leo Mark,
Ed Omiecinski, Balaji Palanisamy, Nalini Polavarapu, Parimala R. Pranesh,
Bharath Rengarajan, Liora Sahar, Saurav Sahay, Narsi Srinivasan, and
Wanxia Xie.

Last, but not least, we gratefully acknowledge the support, encouragement, and
patience of our families.

R. E.

S.B.N.

 Preface xv

This page intentionally left blank

Contents

Preface vii
About the Authors xxx

■ part 1
Introduction to Databases ■

chapter 1 Databases and Database Users 3
1.1 Introduction 4
1.2 An Example 6
1.3 Characteristics of the Database Approach 10
1.4 Actors on the Scene 15
1.5 Workers behind the Scene 17
1.6 Advantages of Using the DBMS Approach 17
1.7 A Brief History of Database Applications 23
1.8 When Not to Use a DBMS 27
1.9 Summary 27
Review Questions 28
Exercises 28
Selected Bibliography 29

chapter 2 Database System Concepts
and Architecture 31

2.1 Data Models, Schemas, and Instances 32
2.2 Three-Schema Architecture and Data Independence 36
2.3 Database Languages and Interfaces 38
2.4 The Database System Environment 42
2.5 Centralized and Client/Server Architectures for DBMSs 46
2.6 Classification of Database Management Systems 51
2.7 Summary 54
Review Questions 55
Exercises 55
Selected Bibliography 56

xvii

xviii Contents

■ part 2
Conceptual Data Modeling and Database Design ■

chapter 3 Data Modeling Using the Entity–Relationship (ER)
Model 59

3.1 Using High-Level Conceptual Data Models
for Database Design 60

3.2 A Sample Database Application 62
3.3 Entity Types, Entity Sets, Attributes, and Keys 63
3.4 Relationship Types, Relationship Sets, Roles, and Structural

Constraints 72
3.5 Weak Entity Types 79
3.6 Refining the ER Design for the COMPANY Database 80
3.7 ER Diagrams, Naming Conventions, and Design Issues 81
3.8 Example of Other Notation: UML Class Diagrams 85
3.9 Relationship Types of Degree Higher than Two 88
3.10 Another Example: A UNIVERSITY Database 92
3.11 Summary 94
Review Questions 96
Exercises 96
Laboratory Exercises 103
Selected Bibliography 104

chapter 4 The Enhanced Entity–Relationship (EER)
Model 107

4.1 Subclasses, Superclasses, and Inheritance 108
4.2 Specialization and Generalization 110
4.3 Constraints and Characteristics of Specialization and Generalization

Hierarchies 113
4.4 Modeling of UNION Types Using Categories 120
4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal

Definitions 122
4.6 Example of Other Notation: Representing Specialization and

Generalization in UML Class Diagrams 127
4.7 Data Abstraction, Knowledge Representation, and Ontology

Concepts 128
4.8 Summary 135
Review Questions 135
Exercises 136
Laboratory Exercises 143
Selected Bibliography 146

 Contents xix

■ part 3
The Relational Data Model and SQL ■

chapter 5 The Relational Data Model and Relational
Database Constraints 149

5.1 Relational Model Concepts 150
5.2 Relational Model Constraints and Relational Database Schemas 157
5.3 Update Operations, Transactions, and Dealing with Constraint

Violations 165
5.4 Summary 169
Review Questions 170
Exercises 170
Selected Bibliography 175

chapter 6 Basic SQL 177
6.1 SQL Data Definition and Data Types 179
6.2 Specifying Constraints in SQL 184
6.3 Basic Retrieval Queries in SQL 187
6.4 INSERT, DELETE, and UPDATE Statements in SQL 198
6.5 Additional Features of SQL 201
6.6 Summary 202
Review Questions 203
Exercises 203
Selected Bibliography 205

chapter 7 More SQL: Complex Queries, Triggers, Views,
and Schema Modification 207

7.1 More Complex SQL Retrieval Queries 207
7.2 Specifying Constraints as Assertions and Actions as Triggers 225
7.3 Views (Virtual Tables) in SQL 228
7.4 Schema Change Statements in SQL 232
7.5 Summary 234
Review Questions 236
Exercises 236
Selected Bibliography 238

chapter 8 The Relational Algebra and Relational Calculus 239
8.1 Unary Relational Operations: SELECT and PROJECT 241
8.2 Relational Algebra Operations from Set Theory 246

8.3 Binary Relational Operations: JOIN and DIVISION 251
8.4 Additional Relational Operations 259
8.5 Examples of Queries in Relational Algebra 265
8.6 The Tuple Relational Calculus 268
8.7 The Domain Relational Calculus 277
8.8 Summary 279
Review Questions 280
Exercises 281
Laboratory Exercises 286
Selected Bibliography 288

chapter 9 Relational Database Design by ER- and
EER-to-Relational Mapping 289

9.1 Relational Database Design Using ER-to-Relational Mapping 290
9.2 Mapping EER Model Constructs to Relations 298
9.3 Summary 303
Review Questions 303
Exercises 303
Laboratory Exercises 305
Selected Bibliography 306

■ part 4
Database Programming Techniques ■

chapter 10 Introduction to SQL Programming
Techniques 309

10.1 Overview of Database Programming Techniques and Issues 310
10.2 Embedded SQL, Dynamic SQL, and SQLJ 314
10.3 Database Programming with Function Calls and Class

Libraries: SQL/CLI and JDBC 326
10.4 Database Stored Procedures and SQL/PSM 335
10.5 Comparing the Three Approaches 338
10.6 Summary 339
Review Questions 340
Exercises 340
Selected Bibliography 341

chapter 11 Web Database Programming Using PHP 343
11.1 A Simple PHP Example 344
11.2 Overview of Basic Features of PHP 346

xx Contents

11.3 Overview of PHP Database Programming 353
11.4 Brief Overview of Java Technologies for Database Web

Programming 358
11.5 Summary 358
Review Questions 359
Exercises 359
Selected Bibliography 359

■ part 5
Object, Object-Relational, and XML: Concepts, Models,
Languages, and Standards ■

chapter 12 Object and Object-Relational
Databases 363

12.1 Overview of Object Database Concepts 365
12.2 Object Database Extensions to SQL 379
12.3 The ODMG Object Model and the Object Definition Language

ODL 386
12.4 Object Database Conceptual Design 405
12.5 The Object Query Language OQL 408
12.6 Overview of the C++ Language Binding in the ODMG

Standard 417
12.7 Summary 418
Review Questions 420
Exercises 421
Selected Bibliography 422

chapter 13 XML: Extensible Markup Language 425
13.1 Structured, Semistructured, and Unstructured Data 426
13.2 XML Hierarchical (Tree) Data Model 430
13.3 XML Documents, DTD, and XML Schema 433
13.4 Storing and Extracting XML Documents

from Databases 442
13.5 XML Languages 443
13.6 Extracting XML Documents from Relational Databases 447
13.7 XML/SQL: SQL Functions for Creating XML Data 453
13.8 Summary 455
Review Questions 456
Exercises 456
Selected Bibliography 456

 Contents xxi

■ part 6
Database Design Theory and Normalization ■

chapter 14 Basics of Functional Dependencies
and Normalization for Relational
Databases 459

14.1 Informal Design Guidelines for Relation
Schemas 461

14.2 Functional Dependencies 471
14.3 Normal Forms Based on Primary Keys 474
14.4 General Definitions of Second and Third Normal

Forms 483
14.5 Boyce-Codd Normal Form 487
14.6 Multivalued Dependency and Fourth

Normal Form 491
14.7 Join Dependencies and Fifth Normal Form 494
14.8 Summary 495
Review Questions 496
Exercises 497
Laboratory Exercises 501
Selected Bibliography 502

chapter 15 Relational Database Design Algorithms
and Further Dependencies 503

15.1 Further Topics in Functional Dependencies: Inference Rules,
Equivalence, and Minimal Cover 505

15.2 Properties of Relational Decompositions 513
15.3 Algorithms for Relational Database Schema

Design 519
15.4 About Nulls, Dangling Tuples, and Alternative Relational

Designs 523
15.5 Further Discussion of Multivalued Dependencies

and 4NF 527
15.6 Other Dependencies and Normal Forms 530
15.7 Summary 533
Review Questions 534
Exercises 535
Laboratory Exercises 536
Selected Bibliography 537

xxii Contents

■ part 7
File Structures, Hashing, Indexing, and Physical
Database Design ■

chapter 16 Disk Storage, Basic File Structures,
Hashing, and Modern Storage
Architectures 541

16.1 Introduction 542
16.2 Secondary Storage Devices 547
16.3 Buffering of Blocks 556
16.4 Placing File Records on Disk 560
16.5 Operations on Files 564
16.6 Files of Unordered Records (Heap Files) 567
16.7 Files of Ordered Records (Sorted Files) 568
16.8 Hashing Techniques 572
16.9 Other Primary File Organizations 582
16.10 Parallelizing Disk Access Using RAID

Technology 584
16.11 Modern Storage Architectures 588
16.12 Summary 592
Review Questions 593
Exercises 595
Selected Bibliography 598

chapter 17 Indexing Structures for Files and Physical
Database Design 601

17.1 Types of Single-Level Ordered Indexes 602
17.2 Multilevel Indexes 613
17.3 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees 617
17.4 Indexes on Multiple Keys 631
17.5 Other Types of Indexes 633
17.6 Some General Issues Concerning Indexing 638
17.7 Physical Database Design in Relational

Databases 643
17.8 Summary 646
Review Questions 647
Exercises 648
Selected Bibliography 650

 Contents xxiii

■ part 8
Query Processing and Optimization ■

chapter 18 Strategies for Query Processing 655
18.1 Translating SQL Queries into Relational Algebra

and Other Operators 657
18.2 Algorithms for External Sorting 660
18.3 Algorithms for SELECT Operation 663
18.4 Implementing the JOIN Operation 668
18.5 Algorithms for PROJECT and Set Operations 676
18.6 Implementing Aggregate Operations and Different

Types of JOINs 678
18.7 Combining Operations Using Pipelining 681
18.8 Parallel Algorithms for Query Processing 683
18.9 Summary 688
Review Questions 688
Exercises 689
Selected Bibliography 689

chapter 19 Query Optimization 691
19.1 Query Trees and Heuristics for Query

Optimization 692
19.2 Choice of Query Execution Plans 701
19.3 Use of Selectivities in Cost-Based

Optimization 710
19.4 Cost Functions for SELECT Operation 714
19.5 Cost Functions for the JOIN Operation 717
19.6 Example to Illustrate Cost-Based Query

Optimization 726
19.7 Additional Issues Related to Query

Optimization 728
19.8 An Example of Query Optimization in Data

Warehouses 731
19.9 Overview of Query Optimization in Oracle 733
19.10 Semantic Query Optimization 737
19.11 Summary 738
Review Questions 739
Exercises 740
Selected Bibliography 740

xxiv Contents

■ part 9
Transaction Processing, Concurrency Control,
and Recovery ■

chapter 20 Introduction to Transaction Processing
Concepts and Theory 745

20.1 Introduction to Transaction Processing 746
20.2 Transaction and System Concepts 753
20.3 Desirable Properties of Transactions 757
20.4 Characterizing Schedules Based on Recoverability 759
20.5 Characterizing Schedules Based on Serializability 763
20.6 Transaction Support in SQL 773
20.7 Summary 776
Review Questions 777
Exercises 777
Selected Bibliography 779

chapter 21 Concurrency Control Techniques 781
21.1 Two-Phase Locking Techniques for Concurrency

Control 782
21.2 Concurrency Control Based on Timestamp Ordering 792
21.3 Multiversion Concurrency Control Techniques 795
21.4 Validation (Optimistic) Techniques and Snapshot Isolation

Concurrency Control 798
21.5 Granularity of Data Items and Multiple Granularity

Locking 800
21.6 Using Locks for Concurrency Control in Indexes 805
21.7 Other Concurrency Control Issues 806
21.8 Summary 807
Review Questions 808
Exercises 809
Selected Bibliography 810

chapter 22 Database Recovery Techniques 813
22.1 Recovery Concepts 814
22.2 NO-UNDO/REDO Recovery Based on Deferred

Update 821
22.3 Recovery Techniques Based on Immediate Update 823

 Contents xxv

22.4 Shadow Paging 826
22.5 The ARIES Recovery Algorithm 827
22.6 Recovery in Multidatabase Systems 831
22.7 Database Backup and Recovery from Catastrophic Failures 832
22.8 Summary 833
Review Questions 834
Exercises 835
Selected Bibliography 838

■ part 10
Distributed Databases, NOSQL Systems,
and Big Data ■

chapter 23 Distributed Database Concepts 841
23.1 Distributed Database Concepts 842
23.2 Data Fragmentation, Replication, and Allocation Techniques for

Distributed Database Design 847
23.3 Overview of Concurrency Control and Recovery in Distributed

Databases 854
23.4 Overview of Transaction Management in Distributed Databases 857
23.5 Query Processing and Optimization in Distributed Databases 859
23.6 Types of Distributed Database Systems 865
23.7 Distributed Database Architectures 868
23.8 Distributed Catalog Management 875
23.9 Summary 876
Review Questions 877
Exercises 878
Selected Bibliography 880

chapter 24 NOSQL Databases and Big Data Storage
Systems 883

24.1 Introduction to NOSQL Systems 884
24.2 The CAP Theorem 888
24.3 Document-Based NOSQL Systems and MongoDB 890
24.4 NOSQL Key-Value Stores 895
24.5 Column-Based or Wide Column NOSQL Systems 900
24.6 NOSQL Graph Databases and Neo4j 903
24.7 Summary 909
Review Questions 909
Selected Bibliography 910

xxvi Contents

chapter 25 Big Data Technologies Based on MapReduce
and Hadoop 911

25.1 What Is Big Data? 914
25.2 Introduction to MapReduce and Hadoop 916
25.3 Hadoop Distributed File System (HDFS) 921
25.4 MapReduce: Additional Details 926
25.5 Hadoop v2 alias YARN 936
25.6 General Discussion 944
25.7 Summary 953
Review Questions 954
Selected Bibliography 956

■ part 11
Advanced Database Models, Systems, and
Applications ■

chapter 26 Enhanced Data Models: Introduction to Active,
Temporal, Spatial, Multimedia, and Deductive
Databases 961

26.1 Active Database Concepts and Triggers 963
26.2 Temporal Database Concepts 974
26.3 Spatial Database Concepts 987
26.4 Multimedia Database Concepts 994
26.5 Introduction to Deductive Databases 999
26.6 Summary 1012
Review Questions 1014
Exercises 1015
Selected Bibliography 1018

chapter 27 Introduction to Information Retrieval
and Web Search 1021

27.1 Information Retrieval (IR) Concepts 1022
27.2 Retrieval Models 1029
27.3 Types of Queries in IR Systems 1035
27.4 Text Preprocessing 1037
27.5 Inverted Indexing 1040
27.6 Evaluation Measures of Search Relevance 1044
27.7 Web Search and Analysis 1047

 Contents xxvii

27.8 Trends in Information Retrieval 1057
27.9 Summary 1063
Review Questions 1064
Selected Bibliography 1066

chapter 28 Data Mining Concepts 1069
28.1 Overview of Data Mining Technology 1070
28.2 Association Rules 1073
28.3 Classification 1085
28.4 Clustering 1088
28.5 Approaches to Other Data Mining Problems 1091
28.6 Applications of Data Mining 1094
28.7 Commercial Data Mining Tools 1094
28.8 Summary 1097
Review Questions 1097
Exercises 1098
Selected Bibliography 1099

chapter 29 Overview of Data Warehousing
and OLAP 1101

29.1 Introduction, Definitions, and Terminology 1102
29.2 Characteristics of Data Warehouses 1103
29.3 Data Modeling for Data Warehouses 1105
29.4 Building a Data Warehouse 1111
29.5 Typical Functionality of a Data Warehouse 1114
29.6 Data Warehouse versus Views 1115
29.7 Difficulties of Implementing Data Warehouses 1116
29.8 Summary 1117
Review Questions 1117
Selected Bibliography 1118

■ part 12
Additional Database Topics: Security ■

chapter 30 Database Security 1121
30.1 Introduction to Database Security Issues 1122
30.2 Discretionary Access Control Based on Granting and Revoking

Privileges 1129
30.3 Mandatory Access Control and Role-Based Access Control for

Multilevel Security 1134

xxviii Contents

30.4 SQL Injection 1143
30.5 Introduction to Statistical Database Security 1146
30.6 Introduction to Flow Control 1147
30.7 Encryption and Public Key Infrastructures 1149
30.8 Privacy Issues and Preservation 1153
30.9 Challenges to Maintaining Database Security 1154
30.10 Oracle Label-Based Security 1155
30.11 Summary 1158
Review Questions 1159
Exercises 1160
Selected Bibliography 1161

appendix A Alternative Diagrammatic Notations for ER
Models 1163

appendix B Parameters of Disks 1167

appendix C Overview of the QBE Language 1171
C.1 Basic Retrievals in QBE 1171
C.2 Grouping, Aggregation, and Database Modification in QBE 1175

appendix D Overview of the Hierarchical Data Model
(located on the Companion Website at
http://www.pearsonhighered.com/elmasri)

appendix E Overview of the Network Data Model
(located on the Companion Website at
http://www.pearsonhighered.com/elmasri)

Selected Bibliography 1179

Index 1215

 Contents xxix

About the Authors

Ramez Elmasri is a professor and the associate chairperson of the Department of
Computer Science and Engineering at the University of Texas at Arlington. He has
over 140 refereed research publications, and has supervised 16 PhD students and
over 100 MS students. His research has covered many areas of database manage-
ment and big data, including conceptual modeling and data integration, query
languages and indexing techniques, temporal and spatio-temporal databases, bio-
informatics databases, data collection from sensor networks, and mining/analysis
of spatial and spatio-temporal data. He has worked as a consultant to various com-
panies, including Digital, Honeywell, Hewlett Packard, and Action Technologies,
as well as consulting with law firms on patents. He was the Program Chair of the
1993 International Conference on Conceptual Modeling (ER conference) and pro-
gram vice-chair of the 1994 IEEE International Conference on Data Engineering.
He has served on the ER conference steering committee and has been on the pro-
gram committees of many conferences. He has given several tutorials at the VLDB,
ICDE, and ER conferences. He also co-authored the book “Operating Systems: A
Spiral Approach” (McGraw-Hill, 2009) with Gil Carrick and David Levine. Elmasri
is a recipient of the UTA College of Engineering Outstanding Teaching Award in
1999. He holds a BS degree in Engineering from Alexandria University, and MS
and PhD degrees in Computer Science from Stanford University.

Shamkant B. Navathe is a professor and the founder of the database research group
at the College of Computing, Georgia Institute of Technology, Atlanta. He has
worked with IBM and Siemens in their research divisions and has been a consultant
to various companies including Digital, Computer Corporation of America,
Hewlett Packard, Equifax, and Persistent Systems. He was the General Co-chairman
of the 1996 International VLDB (Very Large Data Base) conference in Bombay,
India. He was also program co-chair of ACM SIGMOD 1985 International Confer-
ence and General Co-chair of the IFIP WG 2.6 Data Semantics Workshop in 1995.
He has served on the VLDB foundation and has been on the steering committees of
several conferences. He has been an associate editor of a number of journals
including ACM Computing Surveys, and IEEE Transactions on Knowledge and
Data Engineering. He also co-authored the book “Conceptual Design: An Entity
Relationship Approach” (Addison Wesley, 1992) with Carlo Batini and Stefano
Ceri. Navathe is a fellow of the Association for Computing Machinery (ACM) and
recipient of the IEEE TCDE Computer Science, Engineering and Education Impact
award in 2015. Navathe holds a PhD from the University of Michigan and has over
150 refereed publications in journals and conferences.

xxx

part 1
Introduction

to Databases

This page intentionally left blank

3

1chapter 1
Databases and

Database Users

Databases and database systems are an essential
component of life in modern society: most of us

encounter several activities every day that involve some interaction with a database.
For example, if we go to the bank to deposit or withdraw funds, if we make a hotel
or airline reservation, if we access a computerized library catalog to search for a
bibliographic item, or if we purchase something online—such as a book, toy, or
computer—chances are that our activities will involve someone or some computer
program accessing a database. Even purchasing items at a supermarket often auto-
matically updates the database that holds the inventory of grocery items.

These interactions are examples of what we may call traditional database
 applications, in which most of the information that is stored and accessed is either
textual or numeric. In the past few years, advances in technology have led to exciting
new applications of database systems. The proliferation of social media Web sites,
such as Facebook, Twitter, and Flickr, among many others, has required the cre-
ation of huge databases that store nontraditional data, such as posts, tweets,
images, and video clips. New types of database systems, often referred to as big data
storage systems, or NOSQL systems, have been created to manage data for social
media applications. These types of systems are also used by companies such as
Google, Amazon, and Yahoo, to manage the data required in their Web search
engines, as well as to provide cloud storage, whereby users are provided with stor-
age capabilities on the Web for managing all types of data including documents,
programs, images, videos and emails. We will give an overview of these new types
of database systems in Chapter 24.

We now mention some other applications of databases. The wide availability of
photo and video technology on cellphones and other devices has made it possible to

4 Chapter 1 Databases and Database Users

store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information
systems (GISs) can store and analyze maps, weather data, and satellite images.
Data warehouses and online analytical processing (OLAP) systems are used in
many companies to extract and analyze useful business information from very large
databases to support decision making. Real-time and active database technology
is used to control industrial and manufacturing processes. And database search
techniques are being applied to the World Wide Web to improve the search for
information that is needed by users browsing the Internet.

To understand the fundamentals of database technology, however, we must start
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a
simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4
and 1.5 categorize the types of personnel whose jobs involve using and interacting
with database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion
of the various capabilities provided by database systems and discuss some typical
database applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems can study
 Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and
go on to Chapter 2.

1.1 Introduction
Databases and database technology have had a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, social media, engi-
neering, medicine, genetics, law, education, and library science. The word database
is so commonly used that we must begin by defining what a database is. Our initial
definition is quite general.

A database is a collection of related data.1 By data, we mean known facts that can
be recorded and that have implicit meaning. For example, consider the names,
telephone numbers, and addresses of the people you know. Nowadays, this data is
typically stored in mobile phones, which have their own simple database software.
This data can also be recorded in an indexed address book or stored on a hard
drive, using a personal computer and software such as Microsoft Access or Excel.
This collection of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to

1We will use the word data as both singular and plural, as is common in database literature; the context
will determine whether it is singular or plural. In standard English, data is used for plural and datum for
singular.

 1.1 Introduction 5

constitute a database. However, the common use of the term database is usually
more restricted. A database has the following implicit properties:

■ A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld
are reflected in the database.

■ A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

■ A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in
which these users are interested.

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively inter-
ested in its contents. The end users of a database may perform business transactions
(for example, a customer buys a camera) or events may happen (for example, an
employee has a baby) that cause the information in the database to change. In order
for a database to be accurate and reliable at all times, it must be a true reflection of
the miniworld that it represents; therefore, changes must be reflected in the data-
base as soon as possible.

A database can be of any size and complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a
simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized
alphabetically. A database of even greater size and complexity would be maintained
by a social media company such as Facebook, which has more than a billion users.
The database has to maintain information on which users are related to one another
as friends, the postings of each user, which users are allowed to see each posting,
and a vast amount of other types of information needed for the correct operation of
their Web site. For such Web sites, a large number of databases are needed to keep
track of the constantly changing information required by the social media Web site.

An example of a large commercial database is Amazon.com. It contains data for
over 60 million active users, and millions of books, CDs, videos, DVDs, games,
electronics, apparel, and other items. The database occupies over 42 terabytes
(a terabyte is 1012 bytes worth of storage) and is stored on hundreds of computers
(called servers). Millions of visitors access Amazon.com each day and use the
database to make purchases. The database is continually updated as new books
and other items are added to the inventory, and stock quantities are updated as
purchases are transacted.

A database may be generated and maintained manually or it may be computer-
ized. For example, a library card catalog is a database that may be created and
maintained manually. A computerized database may be created and maintained
either by a group of application programs written specifically for that task or by a

6 Chapter 1 Databases and Database Users

database management system. Of course, we are only concerned with computer-
ized databases in this text.

A database management system (DBMS) is a computerized system that enables
users to create and maintain a database. The DBMS is a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications. Defining a database
involves specifying the data types, structures, and constraints of the data to be
stored in the database. The database definition or descriptive information is also
stored by the DBMS in the form of a database catalog or dictionary; it is called
meta-data. Constructing the database is the process of storing the data on some
storage medium that is controlled by the DBMS. Manipulating a database includes
functions such as querying the database to retrieve specific data, updating the data-
base to reflect changes in the miniworld, and generating reports from the data.
Sharing a database allows multiple users and programs to access the database
simultaneously.

An application program accesses the database by sending queries or requests for
data to the DBMS. A query2 typically causes some data to be retrieved; a transaction
may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes system protec-
tion against hardware or software malfunction (or crashes) and security protection
against unauthorized or malicious access. A typical large database may have a life
cycle of many years, so the DBMS must be able to maintain the database system by
allowing the system to evolve as requirements change over time.

It is not absolutely necessary to use general-purpose DBMS software to implement
a computerized database. It is possible to write a customized set of programs to cre-
ate and maintain the database, in effect creating a special-purpose DBMS software
for a specific application, such as airlines reservations. In either case—whether we
use a general-purpose DBMS or not—a considerable amount of complex software
is deployed. In fact, most DBMSs are very complex software systems.

To complete our initial definitions, we will call the database and DBMS software
together a database system. Figure 1.1 illustrates some of the concepts we have
discussed so far.

1.2 An Example
Let us consider a simple example that most readers may be familiar with: a
 UNIVERSITY database for maintaining information concerning students, courses,
and grades in a university environment. Figure 1.2 shows the database structure
and a few sample data records. The database is organized as five files, each of which

2The term query, originally meaning a question or an inquiry, is sometimes loosely used for all types of
interactions with databases, including modifying the data.

 1.2 An Example 7

stores data records of the same type.3 The STUDENT file stores data on each stu-
dent, the COURSE file stores data on each course, the SECTION file stores data on
each section of a course, the GRADE_REPORT file stores the grades that students
receive in the various sections they have completed, and the PREREQUISITE file
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by
specifying the different types of data elements to be stored in each record. In
Figure 1.2, each STUDENT record includes data to represent the student’s Name,
Student_number, Class (such as freshman or ‘1’, sophomore or ‘2’, and so forth),
and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each
COURSE record includes data to represent the Course_name, Course_number,
Credit_hours, and Department (the department that offers the course), and so
on. We must also specify a data type for each data element within a record. For
example, we can specify that Name of STUDENT is a string of alphabetic characters,
Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a

3We use the term file informally here. At a conceptual level, a file is a collection of records that may or
may not be ordered.

Database
System

Users/Programmers

Application Programs/Queries

Software to Process
Queries/Programs

Software to Access
Stored Data

Stored Database
Stored Database

Definition
(Meta-Data)

DBMS
Software

Figure 1.1
A simplified database
system environment.

8 Chapter 1 Databases and Database Users

Name Student_number Class Major

Smith 17 1 CS

Brown 8 2 CS

STUDENT

Course_name Course_number Credit_hours Department

Intro to Computer Science CS1310 4 CS

Data Structures CS3320 4 CS

Discrete Mathematics MATH2410 3 MATH

Database CS3380 3 CS

COURSE

Section_identifier Course_number Semester Year Instructor

85 MATH2410 Fall 07 King

92 CS1310 Fall 07 Anderson

102 CS3320 Spring 08 Knuth

112 MATH2410 Fall 08 Chang

119 CS1310 Fall 08 Anderson

135 CS3380 Fall 08 Stone

SECTION

Student_number Section_identifier Grade

17 112 B

17 119 C

8 85 A

8 92 A

8 102 B

8 135 A

GRADE_REPORT

Course_number Prerequisite_number

CS3380 CS3320

CS3380 MATH2410

CS3320 CS1310

PREREQUISITE

Figure 1.2
A database that stores
student and course
information.

 1.2 An Example 9

single character from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’}. We may also use a coding
scheme to represent the values of a data item. For example, in Figure 1.2 we rep-
resent the Class of a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior,
4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student,
course, section, grade report, and prerequisite as a record in the appropriate file.
Notice that records in the various files may be related. For example, the record for
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of
records and have many relationships among the records.

Database manipulation involves querying and updating. Examples of queries are as
follows:

■ Retrieve the transcript—a list of all courses and grades—of ‘Smith’

■ List the names of students who took the section of the ‘Database’ course
offered in fall 2008 and their grades in that section

■ List the prerequisites of the ‘Database’ course

Examples of updates include the following:

■ Change the class of ‘Smith’ to sophomore

■ Create a new section for the ‘Database’ course for this semester

■ Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as part of a larger undertaking
known as an information system within an organization. The Information Tech-
nology (IT) department within an organization designs and maintains an informa-
tion system consisting of various computers, storage systems, application software,
and databases. Design of a new application for an existing database or design of a
brand new database starts off with a phase called requirements specification and
analysis. These requirements are documented in detail and transformed into a
 conceptual design that can be represented and manipulated using some comput-
erized tools so that it can be easily maintained, modified, and transformed into a
database implementation. (We will introduce a model called the Entity-Relation-
ship model in Chapter 3 that is used for this purpose.) The design is then translated
to a logical design that can be expressed in a data model implemented in a com-
mercial DBMS. (Various types of DBMSs are discussed throughout the text, with an
emphasis on relational DBMSs in Chapters 5 through 9.)

The final stage is physical design, during which further specifications are provided for
storing and accessing the database. The database design is implemented, populated
with actual data, and continuously maintained to reflect the state of the miniworld.

10 Chapter 1 Databases and Database Users

1.3 Characteristics of the Database Approach
A number of characteristics distinguish the database approach from the much
older approach of writing customized programs to access data stored in files. In
traditional file processing, each user defines and implements the files needed for a
specific software application as part of programming the application. For example,
one user, the grade reporting office, may keep files on students and their grades.
Programs to print a student’s transcript and to enter new grades are implemented
as part of the application. A second user, the accounting office, may keep track of
students’ fees and their payments. Although both users are interested in data about
students, each user maintains separate files—and programs to manipulate these
files—because each requires some data not available from the other user’s files.
This redundancy in defining and storing data results in wasted storage space and
in redundant efforts to maintain common up-to-date data.

In the database approach, a single repository maintains data that is defined once
and then accessed by various users repeatedly through queries, transactions, and
application programs. The main characteristics of the database approach versus the
file-processing approach are the following:

■ Self-describing nature of a database system

■ Insulation between programs and data, and data abstraction

■ Support of multiple views of the data

■ Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System
A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1). It is important to note that some newer types of data-
base systems, known as NOSQL systems, do not require meta-data. Rather the data
is stored as self-describing data that includes the data item names and data values
together in one structure (see Chapter 24).

The catalog is used by the DBMS software and also by database users who need
information about the database structure. A general-purpose DBMS software
package is not written for a specific database application. Therefore, it must refer
to the catalog to know the structure of the files in a specific database, such as the
type and format of data it will access. The DBMS software must work equally well
with any number of database applications—for example, a university database, a

 1.3 Characteristics of the Database Approach 11

banking database, or a company database—as long as the database definition is
stored in the catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For
example, an application program written in C++ may have struct or class declara-
tions. Whereas file-processing software can access only specific databases, DBMS
software can access diverse databases by extracting the database definitions from
the catalog and using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of
all the files shown. Figure 1.3 shows some entries in a database catalog. Whenever a
request is made to access, say, the Name of a STUDENT record, the DBMS software
refers to the catalog to determine the structure of the STUDENT file and the position
and size of the Name data item within a STUDENT record. By contrast, in a typical
file-processing application, the file structure and, in the extreme case, the exact
location of Name within a STUDENT record are already coded within each program
that accesses this data item.

Figure 1.3
An example of a
 database catalog for
the database in
 Figure 1.2.

Relation_name No_of_columns

STUDENT 4

COURSE 4

SECTION 5

GRADE_REPORT 3

PREREQUISITE 2

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT

Student_number Character (4) STUDENT

Class Integer (1) STUDENT

Major Major_type STUDENT

Course_name Character (10) COURSE

Course_number XXXXNNNN COURSE

…. …. …..

…. …. …..

…. …. …..

Prerequisite_number XXXXNNNN PREREQUISITE

RELATIONS

COLUMNS

Note: Major_type is defined as an enumerated type with all known majors.
XXXXNNNN is used to define a type with four alphabetic characters followed by four numeric digits.

12 Chapter 1 Databases and Database Users

1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all
programs that access that file. By contrast, DBMS access programs do not require
such changes in most cases. The structure of data files is stored in the DBMS cata-
log separately from the access programs. We call this property program-data
independence.

For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure shown in Figure 1.4. If we want to add
another piece of data to each STUDENT record, say the Birth_date, such a program
will no longer work and must be changed. By contrast, in a DBMS environment, we
only need to change the description of STUDENT records in the catalog (Figure 1.3)
to reflect the inclusion of the new data item Birth_date; no programs are changed.
The next time a DBMS program refers to the catalog, the new structure of
STUDENT records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapter 12), users can define operations on data as part of the database
definitions. An operation (also called a function or method) is specified in two
parts. The interface (or signature) of an operation includes the operation name and
the data types of its arguments (or parameters). The implementation (or method) of
the operation is specified separately and can be changed without affecting the inter-
face. User application programs can operate on the data by invoking these opera-
tions through their names and arguments, regardless of how the operations are
implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation. The data
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage
concepts. Hence, the data model hides storage and implementation details that are
not of interest to most database users.

Looking at the example in Figures 1.2 and 1.3, the internal implementation of the
STUDENT file may be defined by its record length—the number of characters
(bytes) in each record—and each data item may be specified by its starting byte
within a record and its length in bytes. The STUDENT record would thus be repre-
sented as shown in Figure 1.4. But a typical database user is not concerned with the
location of each data item within a record or its length; rather, the user is concerned
that when a reference is made to Name of STUDENT, the correct value is returned.
A conceptual representation of the STUDENT records is shown in Figure 1.2. Many
other details of file storage organization—such as the access paths specified on a

 1.3 Characteristics of the Database Approach 13

file—can be hidden from database users by the DBMS; we discuss storage details in
Chapters 16 and 17.

In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage
from the catalog when these are needed by the DBMS file access modules. Many
data models can be used to provide this data abstraction to database users. A major
part of this text is devoted to presenting various data models and the concepts they
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users.
For example, an operation CALCULATE_GPA can be applied to a STUDENT object
to calculate the grade point average. Such operations can be invoked by the user
queries or application programs without having to know the details of how the
operations are implemented.

1.3.3 Support of Multiple Views of the Data
A database typically has many types of users, each of whom may require a different
perspective or view of the database. A view may be a subset of the database or it may
contain virtual data that is derived from the database files but is not explicitly stored.
Some users may not need to be aware of whether the data they refer to is stored or
derived. A multiuser DBMS whose users have a variety of distinct applications must
provide facilities for defining multiple views. For example, one user of the database
of Figure 1.2 may be interested only in accessing and printing the transcript of each
student; the view for this user is shown in Figure 1.5(a). A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course
for which the student registers, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing
A multiuser DBMS, as its name implies, must allow multiple users to access the
database at the same time. This is essential if data for multiple applications is to be
integrated and maintained in a single database. The DBMS must include concurrency
control software to ensure that several users trying to update the same data

Data Item Name Starting Position in Record Length in Characters (bytes)

Name 1 30

Student_number 31 4

Class 35 1

Major 36 4

Figure 1.4
Internal storage format
for a STUDENT record,
based on the database
catalog in Figure 1.3.

14 Chapter 1 Databases and Database Users

do so in a controlled manner so that the result of the updates is correct. For exam-
ple, when several reservation agents try to assign a seat on an airline flight, the
DBMS should ensure that each seat can be accessed by only one agent at a time for
assignment to a passenger. These types of applications are generally called online
transaction processing (OLTP) applications. A fundamental role of multiuser
DBMS software is to ensure that concurrent transactions operate correctly and
efficiently.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety with-
out interference from other transactions. The DBMS must enforce several
transaction properties. The isolation property ensures that each transaction
appears to execute in isolation from other transactions, even though hundreds of
transactions may be executing concurrently. The atomicity property ensures that
either all the database operations in a transaction are executed or none are. We dis-
cuss transactions in detail in Part 9.

The preceding characteristics are important in distinguishing a DBMS from tradi-
tional file-processing software. In Section 1.6 we discuss additional features that
characterize a DBMS. First, however, we categorize the different types of people
who work in a database system environment.

Student_name
Student_transcript

Course_number Grade Semester Year Section_id

Smith
CS1310 C Fall 08 119

MATH2410 B Fall 08 112

Brown

MATH2410 A Fall 07 85

CS1310 A Fall 07 92

CS3320 B Spring 08 102

CS3380 A Fall 08 135

TRANSCRIPT

Course_name Course_number Prerequisites

Database CS3380
CS3320

MATH2410

Data Structures CS3320 CS1310

COURSE_PREREQUISITES

(a)

(b)

Figure 1.5
Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.
(b) The COURSE_PREREQUISITES view.

 1.4 Actors on the Scene 15

1.4 Actors on the Scene
For a small personal database, such as the list of addresses discussed in Section 1.1,
one person typically defines, constructs, and manipulates the database, and there is
no sharing. However, in large organizations, many people are involved in the
design, use, and maintenance of a large database with hundreds or thousands of
users. In this section we identify the people whose jobs involve the day-to-day use
of a large database; we call them the actors on the scene. In Section 1.5 we consider
people who may be called workers behind the scene—those who work to maintain
the database system environment but who are not actively interested in the data-
base contents as part of their daily job.

1.4.1 Database Administrators
In any organization where many people use the same resources, there is a need for
a chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the
DBMS and related software. Administering these resources is the responsibility of
the database administrator (DBA). The DBA is responsible for authorizing access
to the database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed. The DBA is accountable for problems such as secu-
rity breaches and poor system response time. In large organizations, the DBA is
assisted by a staff that carries out these functions.

1.4.2 Database Designers
Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database
design is completed. Database designers typically interact with each potential group
of users and develop views of the database that meet the data and processing
requirements of these groups. Each view is then analyzed and integrated with the
views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

1.4.3 End Users
End users are the people whose jobs require access to the database for querying,
updating, and generating reports; the database primarily exists for their use. There
are several categories of end users:

■ Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query interface

16 Chapter 1 Databases and Database Users

to specify their requests and are typically middle- or high-level managers or
other occasional browsers.

■ Naive or parametric end users make up a sizable portion of database
end users. Their main job function revolves around constantly querying
and updating the database, using standard types of queries and updates—
called canned transactions—that have been carefully programmed and
tested. Many of these tasks are now available as mobile apps for use with
mobile devices. The tasks that such users perform are varied. A few
examples are:

� Bank customers and tellers check account balances and post withdrawals
and deposits.

� Reservation agents or customers for airlines, hotels, and car rental com-
panies check availability for a given request and make reservations.

� Employees at receiving stations for shipping companies enter package
identifications via bar codes and descriptive information through buttons
to update a central database of received and in-transit packages.

� Social media users post and read items on social media Web sites.

■ Sophisticated end users include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the DBMS
in order to implement their own applications to meet their complex require-
ments.

■ Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based
interfaces. An example is the user of a financial software package that stores
a variety of personal financial data.

A typical DBMS provides multiple facilities to access a database. Naive end users
need to learn very little about the facilities provided by the DBMS; they simply have
to understand the user interfaces of the mobile apps or standard transactions
designed and implemented for their use. Casual users learn only a few facilities that
they may use repeatedly. Sophisticated users try to learn most of the DBMS facilities
in order to achieve their complex requirements. Standalone users typically become
very proficient in using a specific software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for standard canned transactions
that meet these requirements. Application programmers implement these specifi-
cations as programs; then they test, debug, document, and maintain these canned
transactions. Such analysts and programmers—commonly referred to as software
developers or software engineers—should be familiar with the full range of capa-
bilities provided by the DBMS to accomplish their tasks.

 1.6 Advantages of Using the DBMS Approach 17

1.5 Workers behind the Scene
In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system
environment. These persons are typically not interested in the database content
itself. We call them the workers behind the scene, and they include the following
categories:

■ DBMS system designers and implementers design and implement the
DBMS modules and interfaces as a software package. A DBMS is a very
complex software system that consists of many components, or modules,
including modules for implementing the catalog, query language process-
ing, interface processing, accessing and buffering data, controlling concur-
rency, and handling data recovery and security. The DBMS must interface
with other system software, such as the operating system and compilers for
various programming languages.

■ Tool developers design and implement tools—the software packages that
facilitate database modeling and design, database system design, and
improved performance. Tools are optional packages that are often pur-
chased separately. They include packages for database design, performance
monitoring, natural language or graphical interfaces, prototyping, simula-
tion, and test data generation. In many cases, independent software vendors
develop and market these tools.

■ Operators and maintenance personnel (system administration personnel)
are responsible for the actual running and maintenance of the hardware and
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database
contents for their own purposes.

1.6 Advantages of Using the DBMS Approach
In this section we discuss some additional advantages of using a DBMS and the
capabilities that a good DBMS should possess. These capabilities are in addition to
the four main characteristics discussed in Section 1.3. The DBA must utilize these
capabilities to accomplish a variety of objectives related to the design, administra-
tion, and use of a large multiuser database.

1.6.1 Controlling Redundancy
In traditional software development utilizing file processing, every user group
maintains its own files for handling its data-processing applications. For example,
consider the UNIVERSITY database example of Section 1.2; here, two groups of
users might be the course registration personnel and the accounting office. In the
traditional approach, each group independently keeps files on students. The

18 Chapter 1 Databases and Database Users

accounting office keeps data on registration and related billing information,
whereas the registration office keeps track of student courses and grades. Other
groups may further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update—such as entering data on
a new student—multiple times: once for each file where student data is recorded.
This leads to duplication of effort. Second, storage space is wasted when the same
data is stored repeatedly, and this problem may be serious for large databases.
Third, files that represent the same data may become inconsistent. This may happen
because an update is applied to some of the files but not to others. Even if an
update—such as adding a new student—is applied to all the appropriate files, the
data concerning the student may still be inconsistent because the updates are applied
independently by each user group. For example, one user group may enter a stu-
dent’s birth date erroneously as ‘JAN-19-1988’, whereas the other user groups may
enter the correct value of ‘JAN-29-1988’.

In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical
data item—such as a student’s name or birth date—in only one place in the data-
base. This is known as data normalization, and it ensures consistency and saves
storage space (data normalization is described in Part 6 of the text).

However, in practice, it is sometimes necessary to use controlled redundancy to
improve the performance of queries. For example, we may store Student_name and
Course_number redundantly in a GRADE_REPORT file (Figure 1.6(a)) because
whenever we retrieve a GRADE_REPORT record, we want to retrieve the student
name and course number along with the grade, student number, and section identi-
fier. By placing all the data together, we do not have to search multiple files to col-
lect this data. This is known as denormalization. In such cases, the DBMS should

Student_number Student_name Section_identifier Course_number Grade

17 Smith 112 MATH2410 B

17 Smith 119 CS1310 C

8 Brown 85 MATH2410 A

8 Brown 92 CS1310 A

8 Brown 102 CS3320 B

8 Brown 135 CS3380 A

GRADE_REPORT

Student_number Student_name Section_identifier Course_number Grade

17 Brown 112 MATH2410 B

GRADE_REPORT

(a)

(b)

Figure 1.6
Redundant storage
of Student_name
and Course_name in
GRADE_REPORT.
(a) Consistent data.
(b) Inconsistent
record.

 1.6 Advantages of Using the DBMS Approach 19

have the capability to control this redundancy in order to prohibit inconsisten-
cies among the files. This may be done by automatically checking that the
 Student_name–Student_number values in any GRADE_REPORT record in Fig-
ure 1.6(a) match one of the Name–Student_number values of a STUDENT record (Fig-
ure 1.2). Similarly, the Section_identifier–Course_number values in GRADE_REPORT
can be checked against SECTION records. Such checks can be specified to the DBMS
during database design and automatically enforced by the DBMS whenever the
GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that
is inconsistent with the STUDENT file in Figure 1.2; this kind of error may be entered
if the redundancy is not controlled. Can you tell which part is inconsistent?

1.6.2 Restricting Unauthorized Access
When multiple users share a large database, it is likely that most users will not be
authorized to access all information in the database. For example, financial data
such as salaries and bonuses is often considered confidential, and only autho-
rized persons are allowed to access such data. In addition, some users may only
be permitted to retrieve data, whereas others are allowed to retrieve and update.
Hence, the type of access operation—retrieval or update—must also be con-
trolled. Typically, users or user groups are given account numbers protected by
passwords, which they can use to gain access to the database. A DBMS should
provide a security and authorization subsystem, which the DBA uses to create
accounts and to specify account restrictions. Then, the DBMS should enforce
these restrictions automatically. Notice that we can apply similar controls to the
DBMS software. For example, only the DBA’s staff may be allowed to use certain
privileged software, such as the software for creating new accounts. Similarly,
parametric users may be allowed to access the database only through the pre-
defined apps or canned transactions developed for their use. We discuss data-
base security and authorization in Chapter 30.

1.6.3 Providing Persistent Storage for Program Objects
Databases can be used to provide persistent storage for program objects and data
structures. This is one of the main reasons for object-oriented database systems
(see Chapter 12). Programming languages typically have complex data structures,
such as structs or class definitions in C++ or Java. The values of program variables
or objects are discarded once a program terminates, unless the programmer explic-
itly stores them in permanent files, which often involves converting these complex
structures into a format suitable for file storage. When the need arises to read this
data once more, the programmer must convert from the file format to the program
variable or object structure. Object-oriented database systems are compatible with
programming languages such as C++ and Java, and the DBMS software auto-
matically performs any necessary conversions. Hence, a complex object in C++
can be stored permanently in an object-oriented DBMS. Such an object is said to
be persistent, since it survives the termination of program execution and can
later be directly retrieved by another program.

20 Chapter 1 Databases and Database Users

The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the
DBMS were incompatible with the programming language’s data structures.
Object-oriented database systems typically offer data structure compatibility with
one or more object-oriented programming languages.

1.6.4 Providing Storage Structures and Search
Techniques for Efficient Query Processing

Database systems must provide capabilities for efficiently executing queries and
updates. Because the database is typically stored on disk, the DBMS must provide
specialized data structures and search techniques to speed up disk search for the
desired records. Auxiliary files called indexes are often used for this purpose.
Indexes are typically based on tree data structures or hash data structures that are
suitably modified for disk search. In order to process the database records needed
by a particular query, those records must be copied from disk to main memory.
Therefore, the DBMS often has a buffering or caching module that maintains parts
of the database in main memory buffers. In general, the operating system is respon-
sible for disk-to-memory buffering. However, because data buffering is crucial to
the DBMS performance, most DBMSs do their own data buffering.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing
storage structures. The choice of which indexes to create and maintain is part of
physical database design and tuning, which is one of the responsibilities of the DBA
staff. We discuss query processing and optimization in Part 8 of the text.

1.6.5 Providing Backup and Recovery
A DBMS must provide facilities for recovering from hardware or software failures.
The backup and recovery subsystem of the DBMS is responsible for recovery. For
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is
restored to the state it was in before the transaction started executing. Disk backup
is also necessary in case of a catastrophic disk failure. We discuss recovery and
backup in Chapter 22.

1.6.6 Providing Multiple User Interfaces
Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include apps for
mobile users, query languages for casual users, programming language interfaces
for application programmers, forms and command codes for parametric users,
and menu-driven interfaces and natural language interfaces for standalone users.
Both forms-style interfaces and menu-driven interfaces are commonly known as

 1.6 Advantages of Using the DBMS Approach 21

graphical user interfaces (GUIs). Many specialized languages and environments
exist for specifying GUIs. Capabilities for providing Web GUI interfaces to a
database—or Web-enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data
A database may include numerous varieties of data that are interrelated in many
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the
STUDENT file is related to four records in the GRADE_REPORT file. Similarly,
each section record is related to one course record and to a number of
GRADE_REPORT records—one for each student who completed that section. A
DBMS must have the capability to represent a variety of complex relationships
among the data, to define new relationships as they arise, and to retrieve and
update related data easily and efficiently.

1.6.8 Enforcing Integrity Constraints
Most database applications have certain integrity constraints that must hold for
the data. A DBMS should provide capabilities for defining and enforcing these
constraints. The simplest type of integrity constraint involves specifying a data
type for each data item. For example, in Figure 1.3, we specified that the value of
the Class data item within each STUDENT record must be a one-digit integer and
that the value of Name must be a string of no more than 30 alphabetic characters.
To restrict the value of Class between 1 and 5 would be an additional constraint
that is not shown in the current catalog. A more complex type of constraint that
frequently occurs involves specifying that a record in one file must be related to
records in other files. For example, in Figure 1.2, we can specify that every section
record must be related to a course record. This is known as a referential integrity
constraint. Another type of constraint specifies uniqueness on data item values,
such as every course record must have a unique value for Course_number. This is
known as a key or uniqueness constraint. These constraints are derived from the
meaning or semantics of the data and of the miniworld it represents. It is the
responsibility of the database designers to identify integrity constraints during
database design. Some constraints can be specified to the DBMS and automatically
enforced. Other constraints may have to be checked by update programs or at the
time of data entry. For typical large applications, it is customary to call such con-
straints business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered
in the database, the DBMS cannot discover this error automatically because ‘C’ is a
valid value for the Grade data type. Such data entry errors can only be discovered
manually (when the student receives the grade and complains) and corrected later
by updating the database. However, a grade of ‘Z’ would be rejected automatically
by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to

22 Chapter 1 Databases and Database Users

that model implicitly. For example, in the Entity-Relationship model in Chapter 3,
a relationship must involve at least two entities. Rules that pertain to a specific data
model are called inherent rules of the data model.

1.6.9 Permitting Inferencing and Actions
Using Rules and Triggers

Some database systems provide capabilities for defining deduction rules for infer-
encing new information from the stored database facts. Such systems are called
deductive database systems. For example, there may be complex rules in the mini-
world application for determining when a student is on probation. These can be
specified declaratively as rules, which when compiled and maintained by the DBMS
can determine all students on probation. In a traditional DBMS, an explicit proce-
dural program code would have to be written to support such applications. But if
the miniworld rules change, it is generally more convenient to change the declared
deduction rules than to recode procedural programs. In today’s relational database
systems, it is possible to associate triggers with tables. A trigger is a form of a rule
activated by updates to the table, which results in performing some additional oper-
ations to some other tables, sending messages, and so on. More involved proce-
dures to enforce rules are popularly called stored procedures; they become a part of
the overall database definition and are invoked appropriately when certain condi-
tions are met. More powerful functionality is provided by active database systems,
which provide active rules that can automatically initiate actions when certain
events and conditions occur (see Chapter 26 for introductions to active databases in
Section 26.1 and deductive databases in Section 26.5).

1.6.10 Additional Implications of Using
the Database Approach

This section discusses a few additional implications of using the database approach
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This facil-
itates communication and cooperation among various departments, projects, and
users within the organization. Standards can be defined for names and formats of
data elements, display formats, report structures, terminology, and so on. The DBA
can enforce standards in a centralized database environment more easily than in an
environment where each user group has control of its own data files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain
data from the database for printing a new report—takes very little time. Designing
and implementing a large multiuser database from scratch may take more time
than writing a single specialized file application. However, once a database is up
and running, substantially less time is generally required to create new applications

 1.7 A Brief History of Database Applications 23

using DBMS facilities. Development time using a DBMS is estimated to be one-
sixth to one-fourth of that for a file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information
not currently in the database. In response, it may be necessary to add a file to the
database or to extend the data elements in an existing file. Modern DBMSs allow
certain types of evolutionary changes to the structure of the database without affect-
ing the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available
to all users. As soon as one user’s update is applied to the database, all other users
can immediately see this update. This availability of up-to-date information is
essential for many transaction-processing applications, such as reservation systems
or banking databases, and it is made possible by the concurrency control and recov-
ery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of
data-processing personnel in different projects or departments as well as redundan-
cies among applications. This enables the whole organization to invest in more
powerful processors, storage devices, or networking gear, rather than having each
department purchase its own (lower performance) equipment. This reduces overall
costs of operation and management.

1.7 A Brief History of Database Applications
We now give a brief historical overview of the applications that use DBMSs and
how these applications provided the impetus for new types of database systems.

1.7.1 Early Database Applications Using Hierarchical
and Network Systems

Many early database applications maintained records in large organizations such as
corporations, universities, hospitals, and banks. In many of these applications,
there were large numbers of records of similar structure. For example, in a univer-
sity application, similar information would be kept for each student, each course,
each grade record, and so on. There were also many types of records and many
interrelationships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk.
Hence, these systems did not provide sufficient data abstraction and program-data
independence capabilities. For example, the grade records of a particular student
could be physically stored next to the student record. Although this provided very

24 Chapter 1 Databases and Database Users

efficient access for the original queries and transactions that the database was
designed to handle, it did not provide enough flexibility to access records efficiently
when new queries and transactions were identified. In particular, new queries that
required a different storage organization for efficient processing were quite difficult
to implement efficiently. It was also laborious to reorganize the database when
changes were made to the application’s requirements.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement
new queries and transactions, since new programs had to be written, tested, and
debugged. Most of these database systems were implemented on large and
expensive mainframe computers starting in the mid-1960s and continuing
through the 1970s and 1980s. The main types of early systems were based on
three main paradigms: hierarchical systems, network model–based systems, and
inverted file systems.

1.7.2 Providing Data Abstraction and Application Flexibility
with Relational Databases

Relational databases were originally proposed to separate the physical storage of
data from its conceptual representation and to provide a mathematical foundation
for data representation and querying. The relational data model also introduced
high-level query languages that provided an alternative to programming language
interfaces, making it much faster to write new queries. Relational representation of
data somewhat resembles the example we presented in Figure 1.2. Relational sys-
tems were initially targeted to the same applications as earlier systems, and pro-
vided flexibility to develop new queries quickly and to reorganize the database as
requirements changed. Hence, data abstraction and program-data independence
were much improved when compared to earlier systems.

Early experimental relational systems developed in the late 1970s and the com-
mercial relational database management systems (RDBMS) introduced in the
early 1980s were quite slow, since they did not use physical storage pointers or
record placement to access related data records. With the development of new
storage and indexing techniques and better query processing and optimization,
their performance improved. Eventually, relational databases became the domi-
nant type of database system for traditional database applications. Relational data-
bases now exist on almost all types of computers, from small personal computers
to large servers.

1.7.3 Object-Oriented Applications and the Need
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the
need to store and share complex, structured objects led to the development of
object-oriented databases (OODBs). Initially, OODBs were considered a competitor

 1.7 A Brief History of Database Applications 25

to relational databases, since they provided more general data structures. They also
incorporated many of the useful object-oriented paradigms, such as abstract data
types, encapsulation of operations, inheritance, and object identity. However, the
complexity of the model and the lack of an early standard contributed to their lim-
ited use. They are now mainly used in specialized applications, such as engineering
design, multimedia publishing, and manufacturing systems. Despite expectations
that they will make a big impact, their overall penetration into the database prod-
ucts market remains low. In addition, many object-oriented concepts were incor-
porated into the newer versions of relational DBMSs, leading to object-relational
database management systems, known as ORDBMSs.

1.7.4 Interchanging Data on the Web
for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers.
Users can create static Web pages using a Web publishing language, such as Hyper-
Text Markup Language (HTML), and store these documents on Web servers where
other users (clients) can access them and view them through Web browsers. Docu-
ments can be linked through hyperlinks, which are pointers to other documents.
Starting in the 1990s, electronic commerce (e-commerce) emerged as a major
application on the Web. Much of the critical information on e-commerce Web
pages is dynamically extracted data from DBMSs, such as flight information, prod-
uct prices, and product availability. A variety of techniques were developed to allow
the interchange of dynamically extracted data on the Web for display on Web
pages. The eXtended Markup Language (XML) is one standard for interchanging
data among various types of databases and Web pages. XML combines concepts
from the models used in document systems with database modeling concepts.
Chapter 13 is devoted to an overview of XML.

1.7.5 Extending Database Capabilities
for New Applications

The success of database systems in traditional applications encouraged devel-
opers of other types of applications to attempt to use them. Such applications
traditionally used their own specialized software and file and data structures.
Database systems now offer extensions to better support the specialized require-
ments for some of these applications. The following are some examples of these
applications:

■ Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics, the mapping of the
human genome, and the discovery of protein structures

■ Storage and retrieval of images, including scanned news or personal photo-
graphs, satellite photographic images, and images from medical procedures
such as x-rays and MRI (magnetic resonance imaging) tests

26 Chapter 1 Databases and Database Users

■ Storage and retrieval of videos, such as movies, and video clips from news
or personal digital cameras

■ Data mining applications that analyze large amounts of data to search for
the occurrences of specific patterns or relationships, and for identifying
unusual patterns in areas such as credit card fraud detection

■ Spatial applications that store and analyze spatial locations of data, such as
weather information, maps used in geographical information systems, and
automobile navigational systems

■ Time series applications that store information such as economic data at
regular points in time, such as daily sales and monthly gross national
product figures

It was quickly apparent that basic relational systems were not very suitable for many
of these applications, usually for one or more of the following reasons:

■ More complex data structures were needed for modeling the application
than the simple relational representation.

■ New data types were needed in addition to the basic numeric and character
string types.

■ New operations and query language constructs were necessary to manipu-
late the new data types.

■ New storage and indexing structures were needed for efficient searching on
the new data types.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form
of optional modules that could be used for specific applications. For example, users
could buy a time series module to use with their relational DBMS for their time
series application.

1.7.6 Emergence of Big Data Storage Systems
and NOSQL Databases

In the first decade of the twenty-first century, the proliferation of applications and
platforms such as social media Web sites, large e-commerce companies, Web search
indexes, and cloud storage/backup led to a surge in the amount of data stored on
large databases and massive servers. New types of database systems were necessary
to manage these huge databases—systems that would provide fast search and
retrieval as well as reliable and safe storage of nontraditional types of data, such as
social media posts and tweets. Some of the requirements of these new systems were
not compatible with SQL relational DBMSs (SQL is the standard data model and
language for relational databases). The term NOSQL is generally interpreted as Not
Only SQL, meaning that in systems than manage large amounts of data, some of the
data is stored using SQL systems, whereas other data would be stored using NOSQL,
depending on the application requirements.

 1.9 Summary 27

1.8 When Not to Use a DBMS
In spite of the advantages of using a DBMS, there are a few situations in which a
DBMS may involve unnecessary overhead costs that would not be incurred in
traditional file processing. The overhead costs of using a DBMS are due to the
following:

■ High initial investment in hardware, software, and training

■ The generality that a DBMS provides for defining and processing data

■ Overhead for providing security, concurrency control, recovery, and integ-
rity functions

Therefore, it may be more desirable to develop customized database applications
under the following circumstances:

■ Simple, well-defined database applications that are not expected to change
at all

■ Stringent, real-time requirements for some application programs that may
not be met because of DBMS overhead

■ Embedded systems with limited storage capacity, where a general-purpose
DBMS would not fit

■ No multiple-user access to data

Certain industries and applications have elected not to use general-purpose
DBMSs. For example, many computer-aided design (CAD) tools used by mechan-
ical and civil engineers have proprietary file and data management software that
is geared for the internal manipulations of drawings and 3D objects. Similarly,
communication and switching systems designed by companies like AT&T were
early manifestations of database software that was made to run very fast with
hierarchically organized data for quick access and routing of calls. GIS imple-
mentations often implement their own data organization schemes for efficiently
implementing functions related to processing maps, physical contours, lines,
polygons, and so on.

1.9 Summary
In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or more groups of users. A DBMS is a
generalized software package for implementing and maintaining a computerized
database. The database and software together form a database system. We identi-
fied several characteristics that distinguish the database approach from traditional
file-processing applications, and we discussed the main categories of database
users, or the actors on the scene. We noted that in addition to database users, there
are several categories of support personnel, or workers behind the scene, in a data-
base environment.

28 Chapter 1 Databases and Database Users

We presented a list of capabilities that should be provided by the DBMS software to
the DBA, database designers, and end users to help them design, administer, and
use a database. Then we gave a brief historical perspective on the evolution of data-
base applications. We pointed out the recent rapid growth of the amounts and types
of data that must be stored in databases, and we discussed the emergence of new
systems for handling “big data” applications. Finally, we discussed the overhead
costs of using a DBMS and discussed some situations in which it may not be advan-
tageous to use one.

Review Questions
 1.1. Define the following terms: data, database, DBMS, database system, data-

base catalog, program-data independence, user view, DBA, end user, canned
transaction, deductive database system, persistent object, meta-data, and
transaction-processing application.

 1.2. What four main types of actions involve databases? Briefly discuss each.

 1.3. Discuss the main characteristics of the database approach and how it differs
from traditional file systems.

 1.4. What are the responsibilities of the DBA and the database designers?

 1.5. What are the different types of database end users? Discuss the main activi-
ties of each.

 1.6. Discuss the capabilities that should be provided by a DBMS.

 1.7. Discuss the differences between database systems and information retrieval
systems.

Exercises
 1.8. Identify some informal queries and update operations that you would expect

to apply to the database shown in Figure 1.2.

 1.9. What is the difference between controlled and uncontrolled redundancy?
Illustrate with examples.

 1.10. Specify all the relationships among the records of the database shown in
Figure 1.2.

 1.11. Give some additional views that may be needed by other user groups for the
database shown in Figure 1.2.

 1.12. Cite some examples of integrity constraints that you think can apply to the
database shown in Figure 1.2.

 1.13. Give examples of systems in which it may make sense to use traditional file
processing instead of a database approach.

 Selected Bibliography 29

 1.14. Consider Figure 1.2.

 a. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’
(Computer Science and Software Engineering) Department and the cor-
responding prefix for the course number also changes, identify the col-
umns in the database that would need to be updated.

 b. Can you restructure the columns in the COURSE, SECTION, and
PREREQUISITE tables so that only one column will need to be updated?

Selected Bibliography
The October 1991 issue of Communications of the ACM and Kim (1995) include
several articles describing next-generation DBMSs; many of the database features
discussed in the former are now commercially available. The March 1976 issue of
ACM Computing Surveys offers an early introduction to database systems and may
provide a historical perspective for the interested reader. We will include references
to other concepts, systems, and applications introduced in this chapter in the later
text chapters that discuss each topic in more detail.

This page intentionally left blank

31

2chapter 2
Database System Concepts

and Architecture

The architecture of DBMS packages has evolved
from the early monolithic systems, where the whole

DBMS software package was one tightly integrated system, to the modern DBMS
packages that are modular in design, with a client/server system architecture. The
recent growth in the amount of data requiring storage has led to database systems
with distributed architectures comprised of thousands of computers that manage
the data stores. This evolution mirrors the trends in computing, where large cen-
tralized mainframe computers are replaced by hundreds of distributed worksta-
tions and personal computers connected via communications networks to various
types of server machines—Web servers, database servers, file servers, application
servers, and so on. The current cloud computing environments consist of thou-
sands of large servers managing so-called big data for users on the Web.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules.1 A client module is typically designed so that it
will run on a mobile device, user workstation, or personal computer (PC). Typi-
cally, application programs and user interfaces that access the database run in the
client module. Hence, the client module handles user interaction and provides
the user-friendly interfaces such as apps for mobile devices, or forms- or menu-
based GUIs (graphical user interfaces) for PCs. The other kind of module, called
a server module, typically handles data storage, access, search, and other func-
tions. We discuss client/server architectures in more detail in Section 2.5. First,
we must study more basic concepts that will give us a better understanding of
modern database architectures.

1As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.

32 Chapter 2 Database System Concepts and Architecture

In this chapter we present the terminology and basic concepts that will be used
throughout the text. Section 2.1 discusses data models and defines the concepts
of schemas and instances, which are fundamental to the study of database sys-
tems. We discuss the three-schema DBMS architecture and data independence
in Section 2.2; this provides a user’s perspective on what a DBMS is supposed to
do. In Section 2.3 we describe the types of interfaces and languages that are typi-
cally provided by a DBMS. Section 2.4 discusses the database system software
environment. Section 2.5 gives an overview of various types of client/server
architectures. Finally, Section 2.6 presents a classification of the types of DBMS
packages. Section 2.7 summarizes the chapter.

The material in Sections 2.4 through 2.6 provides detailed concepts that may be
considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances
One fundamental characteristic of the database approach is that it provides some
level of data abstraction. Data abstraction generally refers to the suppression of
details of data organization and storage, and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the
database approach is to support data abstraction so that different users can perceive
data at their preferred level of detail. A data model—a collection of concepts that
can be used to describe the structure of a database—provides the necessary means
to achieve this abstraction.2 By structure of a database we mean the data types, rela-
tionships, and constraints that apply to the data. Most data models also include a
set of basic operations for specifying retrievals and updates on the database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specify the dynamic aspect or
behavior of a database application. This allows the database designer to specify a set
of valid user-defined operations that are allowed on the database objects.3 An
example of a user-defined operation could be COMPUTE_GPA, which can be
applied to a STUDENT object. On the other hand, generic operations to insert,
delete, modify, or retrieve any kind of object are often included in the basic data
model operations. Concepts to specify behavior are fundamental to object-oriented
data models (see Chapter 12) but are also being incorporated in more traditional
data models. For example, object-relational models (see Chapter 12) extend the basic
relational model to include such concepts, among others. In the basic relational data
model, there is a provision to attach behavior to the relations in the form of persis-
tent stored modules, popularly known as stored procedures (see Chapter 10).

2Sometimes the word model is used to denote a specific database description, or schema—for example,
the marketing data model. We will not use this interpretation.
3The inclusion of concepts to describe behavior reflects a trend whereby database design and software
design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is
associated with software design.

 2.1 Data Models, Schemas, and Instances 33

2.1.1 Categories of Data Models
Many data models have been proposed, which we can categorize according to
the types of concepts they use to describe the database structure. High-level or
 conceptual data models provide concepts that are close to the way many users per-
ceive data, whereas low-level or physical data models provide concepts that describe
the details of how data is stored on the computer storage media, typically magnetic
disks. Concepts provided by physical data models are generally meant for computer
specialists, not for end users. Between these two extremes is a class of representational
(or implementation) data models,4 which provide concepts that may be easily
understood by end users but that are not too far removed from the way data is orga-
nized in computer storage. Representational data models hide many details of data
storage on disk but can be implemented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a project
from the miniworld that is described in the database. An attribute represents some
property of interest that further describes an entity, such as the employee’s name or
salary. A relationship among two or more entities represents an association among
the entities, for example, a works-on relationship between an employee and a
project. Chapter 3 presents the entity–relationship model—a popular high-level
conceptual data model. Chapter 4 describes additional abstractions used for advanced
modeling, such as generalization, specialization, and categories (union types).

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational
data model, as well as the so-called legacy data models—the network and
 hierarchical models—that have been widely used in the past. Part 3 of the text is
devoted to the relational data model, and its constraints, operations, and languages.5
The SQL standard for relational databases is described in Chapters 6 and 7. Repre-
sentational data models represent data by using record structures and hence are
sometimes called record-based data models.

We can regard the object data model as an example of a new family of higher-level
implementation data models that are closer to conceptual data models. A standard
for object databases called the ODMG object model has been proposed by the
Object Data Management Group (ODMG). We describe the general characteristics
of object databases and the object model proposed standard in Chapter 12. Object
data models are also frequently utilized as high-level conceptual models, particu-
larly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An

4The term implementation data model is not a standard term; we have introduced it to refer to the avail-
able data models in commercial database systems.

5A summary of the hierarchical and network data models is included in Appendices D and E. They are
accessible from the book’s Web site.

34 Chapter 2 Database System Concepts and Architecture

access path is a search structure that makes the search for particular database
records efficient, such as indexing or hashing. We discuss physical storage tech-
niques and access structures in Chapters 16 and 17. An index is an example of an
access path that allows direct access to data using an index term or a keyword. It is
similar to the index at the end of this text, except that it may be organized in a lin-
ear, hierarchical (tree-structured), or some other fashion.

Another class of data models is known as self-describing data models. The data
storage in systems based on these models combines the description of the data with
the data values themselves. In traditional DBMSs, the description (schema) is sepa-
rated from the data. These models include XML (see Chapter 12) as well as many of
the key-value stores and NOSQL systems (see Chapter 24) that were recently cre-
ated for managing big data.

2.1.2 Schemas, Instances, and Database State
In a data model, it is important to distinguish between the description of the
database and the database itself. The description of a database is called the
 database schema, which is specified during database design and is not expected
to change frequently.6 Most data models have certain conventions for displaying
schemas as diagrams.7 A displayed schema is called a schema diagram. Figure 2.1
shows a schema diagram for the database shown in Figure 1.2; the diagram dis-
plays the structure of each record type but not the actual instances of records.

6Schema changes are usually needed as the requirements of the database applications change. Most
database systems include operations for allowing schema changes.

7It is customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is also sometimes used to refer to a schema.

Section_identifier SemesterCourse_number InstructorYear

SECTION

Course_name Course_number Credit_hours Department

COURSE

Name Student_number Class Major

STUDENT

Course_number Prerequisite_number
PREREQUISITE

Student_number GradeSection_identifier

GRADE_REPORT

Figure 2.1
Schema diagram for
the database in
Figure 1.2.

 2.1 Data Models, Schemas, and Instances 35

We call each object in the schema—such as STUDENT or COURSE—a schema
construct.

A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; for example, Figure 2.1 shows neither the data
type of each data item nor the relationships among the various files. Many types of
constraints are not represented in schema diagrams. A constraint such as students
majoring in computer science must take CS1310 before the end of their sophomore
year is quite difficult to represent diagrammatically.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a new student or enter a new
grade. The data in the database at a particular moment in time is called a database
state or snapshot. It is also called the current set of occurrences or instances in
the database. In a given database state, each schema construct has its own current
set of instances; for example, the STUDENT construct will contain the set of indi-
vidual student entities (records) as its instances. Many database states can be con-
structed to correspond to a particular database schema. Every time we insert or
delete a record or change the value of a data item in a record, we change one state
of the database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the
DBMS. At this point, the corresponding database state is the empty state with
no data. We get the initial state of the database when the database is first
 populated or loaded with the initial data. From then on, every time an update
operation is applied to the database, we get another database state. At any point
in time, the database has a current state.8 The DBMS is partly responsible for
ensuring that every state of the database is a valid state—that is, a state that
satisfies the structure and constraints specified in the schema. Hence, specify-
ing a correct schema to the DBMS is extremely important and the schema must
be designed with utmost care. The DBMS stores the descriptions of the schema
constructs and constraints—also called the meta-data—in the DBMS catalog so
that DBMS software can refer to the schema whenever it needs to. The schema
is sometimes called the intension, and a database state is called an extension of
the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently,
it is not uncommon that changes occasionally need to be applied to the schema as
the application requirements change. For example, we may decide that another
data item needs to be stored for each record in a file, such as adding the Date_of_birth
to the STUDENT schema in Figure 2.1. This is known as schema evolution. Most
modern DBMSs include some operations for schema evolution that can be applied
while the database is operational.

8The current state is also called the current snapshot of the database. It has also been called a database

instance, but we prefer to use the term instance to refer to individual records.

36 Chapter 2 Database System Concepts and Architecture

2.2 Three-Schema Architecture
and Data Independence

Three of the four important characteristics of the database approach, listed in
Section 1.3, are (1) use of a catalog to store the database description (schema) so
as to make it self-describing, (2) insulation of programs and data (program-data
and program-operation independence), and (3) support of multiple user views.
In this section we specify an architecture for database systems, called the
 three-schema architecture,9 that was proposed to help achieve and visualize
these characteristics. Then we discuss further the concept of data independence.

2.2.1 The Three-Schema Architecture
The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate
the user applications from the physical database. In this architecture, schemas can
be defined at the following three levels:

 1. The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data
model and describes the complete details of data storage and access paths for
the database.

9This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning
And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).

External
View

Conceptual Schema

Internal Schema

Stored Database

External
View

Internal Level

Conceptual/Internal
Mapping

Conceptual Level

External/Conceptual
Mapping

External Level

End Users

. . .

Figure 2.2
The three-schema
architecture.

 2.2 Three-Schema Architecture and Data Independence 37

 2. The conceptual level has a conceptual schema, which describes the structure
of the whole database for a community of users. The conceptual schema hides
the details of physical storage structures and concentrates on describing enti-
ties, data types, relationships, user operations, and constraints. Usually, a rep-
resentational data model is used to describe the conceptual schema when a
database system is implemented. This implementation conceptual schema is
often based on a conceptual schema design in a high-level data model.

 3. The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that
user group. As in the previous level, each external schema is typically imple-
mented using a representational data model, possibly based on an external
schema design in a high-level conceptual data model.

The three-schema architecture is a convenient tool with which the user can visual-
ize the schema levels in a database system. Most DBMSs do not separate the three
levels completely and explicitly, but they support the three-schema architecture to
some extent. Some older DBMSs may include physical-level details in the concep-
tual schema. The three-level ANSI architecture has an important place in database
technology development because it clearly separates the users’ external level, the
database’s conceptual level, and the internal storage level for designing a database.
It is very much applicable in the design of DBMSs, even today. In most DBMSs that
support user views, external schemas are specified in the same data model that
describes the conceptual-level information (for example, a relational DBMS like
Oracle or SQLServer uses SQL for this).

Notice that the three schemas are only descriptions of data; the actual data is stored
at the physical level only. In the three-schema architecture, each user group refers
to its own external schema. Hence, the DBMS must transform a request specified
on an external schema into a request against the conceptual schema, and then into
a request on the internal schema for processing over the stored database. If the
request is a database retrieval, the data extracted from the stored database must be
reformatted to match the user’s external view. The processes of transforming
requests and results between levels are called mappings. These mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, it is nec-
essary to transform requests between the conceptual and internal levels.

2.2.2 Data Independence
The three-schema architecture can be used to further explain the concept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

 1. Logical data independence is the capacity to change the conceptual schema
without having to change external schemas or application programs. We

38 Chapter 2 Database System Concepts and Architecture

may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example,
the external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one
shown in Figure 1.6(a). Only the view definition and the mappings need to
be changed in a DBMS that supports logical data independence. After the
conceptual schema undergoes a logical reorganization, application pro-
grams that reference the external schema constructs must work as before.
Changes to constraints can be applied to the conceptual schema without
affecting the external schemas or application programs.

 2. Physical data independence is the capacity to change the internal schema
without having to change the conceptual schema. Hence, the external sche-
mas need not be changed as well. Changes to the internal schema may be
needed because some physical files were reorganized—for example, by cre-
ating additional access structures—to improve the performance of retrieval
or update. If the same data as before remains in the database, we should not
have to change the conceptual schema. For example, providing an access
path to improve retrieval speed of SECTION records (Figure 1.2) by semes-
ter and year should not require a query such as list all sections offered in fall
2008 to be changed, although the query would be executed more efficiently
by the DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments where physical details, such as the exact location of data on disk, and hard-
ware details of storage encoding, placement, compression, splitting, merging of
records, and so on are hidden from the user. Applications remain unaware of these
details. On the other hand, logical data independence is harder to achieve because it
allows structural and constraint changes without affecting application programs—a
much stricter requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS
uses additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

2.3 Database Languages and Interfaces
In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS
must provide appropriate languages and interfaces for each category of users. In
this section we discuss the types of languages and interfaces provided by a DBMS
and the user categories targeted by each interface.

 2.3 Database Languages and Interfaces 39

2.3.1 DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implement the
database, the first step is to specify conceptual and internal schemas for the data-
base and any mappings between the two. In many DBMSs where no strict separa-
tion of levels is maintained, one language, called the data definition language
(DDL), is used by the DBA and by database designers to define both schemas. The
DBMS will have a DDL compiler whose function is to process DDL statements in
order to identify descriptions of the schema constructs and to store the schema
description in the DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and
internal levels, the DDL is used to specify the conceptual schema only. Another
language, the storage definition language (SDL), is used to specify the internal
schema. The mappings between the two schemas may be specified in either one of
these languages. In most relational DBMSs today, there is no specific language that
performs the role of SDL. Instead, the internal schema is specified by a combination
of functions, parameters, and specifications related to storage of files. These permit
the DBA staff to control indexing choices and mapping of data to storage. For a true
three-schema architecture, we would need a third language, the view definition
language (VDL), to specify user views and their mappings to the conceptual
schema, but in most DBMSs the DDL is used to define both conceptual and external
schemas. In relational DBMSs, SQL is used in the role of VDL to define user or
application views as results of predefined queries (see Chapters 6 and 7).

Once the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language
(DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 6 and 7), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evolution, and many other features. The SDL was a compo-
nent in early versions of SQL but has been removed from the language to keep it at
the conceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specify complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so

40 Chapter 2 Database System Concepts and Architecture

that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each separately. Therefore, it needs to use programming
language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are also called record-at-a-time DMLs because of this
property. High-level DMLs, such as SQL, can specify and retrieve many records in
a single DML statement; therefore, they are called set-at-a-time or set-oriented
DMLs. A query in a high-level DML often specifies which data to retrieve rather
than how to retrieve it; therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language
and the DML is called the data sublanguage.10 On the other hand, a high-level
DML used in a standalone interactive manner is called a query language. In gen-
eral, both retrieval and update commands of a high-level DML may be used inter-
actively and are hence considered part of the query language.11

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing. These interfaces pres-
ent the user with lists of options (called menus) that lead the user through the for-
mulation of a request. Menus do away with the need to memorize the specific
commands and syntax of a query language; rather, the query is composed step-by-
step by picking options from a menu that is displayed by the system. Pull-down
menus are a very popular technique in Web-based user interfaces. They are also
often used in browsing interfaces, which allow a user to look through the contents
of a database in an exploratory and unstructured manner.

Apps for Mobile Devices. These interfaces present mobile users with access to
their data. For example, banking, reservations, and insurance companies, among
many others, provide apps that allow users to access their data through a mobile
phone or mobile device. The apps have built-in programmed interfaces that typically

10In object databases, the host and data sublanguages typically form one integrated language—for
example, C++ with some extensions to support database functionality. Some relational systems also
provide integrated languages—for example, Oracle’s PL/SQL.

11According to the English meaning of the word query, it should really be used to describe retrievals
only, not updates.

 2.3 Database Languages and Interfaces 41

allow users to login using their account name and password; the apps then provide
a limited menu of options for mobile access to the user data, as well as options such
as paying bills (for banks) or making reservations (for reservation Web sites).

Forms-based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they can fill out only
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages,
which are special languages that help programmers specify such forms. SQL*Forms
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the Ora-
cle product suite that provides an extensive set of features to design and build
applications using forms. Some systems have utilities that define a form by letting
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram.
In many cases, GUIs utilize both menus and forms.

Natural Language Interfaces. These interfaces accept requests written in Eng-
lish or some other language and attempt to understand them. A natural language
interface usually has its own schema, which is similar to the database conceptual
schema, as well as a dictionary of important words. The natural language interface
refers to the words in its schema, as well as to the set of standard words in its dic-
tionary, that are used to interpret the request. If the interpretation is successful, the
interface generates a high-level query corresponding to the natural language request
and submits it to the DBMS for processing; otherwise, a dialogue is started with the
user to clarify the request.

Keyword-based Database Search. These are somewhat similar to Web search
engines, which accept strings of natural language (like English or Spanish) words
and match them with documents at specific sites (for local search engines) or Web
pages on the Web at large (for engines like Google or Ask). They use predefined
indexes on words and use ranking functions to retrieve and present resulting docu-
ments in a decreasing degree of match. Such “free form” textual query interfaces are
not yet common in structured relational databases, although a research area called
keyword-based querying has emerged recently for relational databases.

Speech Input and Output. Limited use of speech as an input query and speech
as an answer to a question or result of a request is becoming commonplace. Appli-
cations with limited vocabularies, such as inquiries for telephone directory, flight
arrival/departure, and credit card account information, are allowing speech for
input and output to enable customers to access this information. The speech input
is detected using a library of predefined words and used to set up the parameters
that are supplied to the queries. For output, a similar conversion from text or num-
bers into speech takes place.

42 Chapter 2 Database System Concepts and Architecture

Interfaces for Parametric Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. For example, a
teller is able to use single function keys to invoke routine and repetitive transactions
such as account deposits or withdrawals, or balance inquiries. Systems analysts and
programmers design and implement a special interface for each known class of
naive users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request.

Interfaces for the DBA. Most database systems contain privileged commands
that can be used only by the DBA staff. These include commands for creating
accounts, setting system parameters, granting account authorization, changing a
schema, and reorganizing the storage structures of a database.

2.4 The Database System Environment
A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules
Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The
figure is divided into two parts. The top part of the figure refers to the various
users of the database environment and their interfaces. The lower part shows the
internal modules of the DBMS responsible for storage of data and processing of
transactions.

The database and the DBMS catalog are usually stored on disk. Access to the
disk is controlled primarily by the operating system (OS), which schedules disk
read/write. Many DBMSs have their own buffer management module to sched-
ule disk read/write, because management of buffer storage has a considerable
effect on performance. Reducing disk read/write improves performance consid-
erably. A higher-level stored data manager module of the DBMS controls access
to DBMS information that is stored on disk, whether it is part of the database or
the catalog.

Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, application
programmers who create programs using some host programming languages, and
parametric users who do data entry work by supplying parameters to predefined
transactions. The DBA staff works on defining the database and tuning it by mak-
ing changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints.

 2.4 The Database System Environment 43

In addition, the catalog stores many other types of information that are needed by
the DBMS modules, which can then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database
interact using the interactive query interface in Figure 2.3. We have not explicitly
shown any menu-based or form-based or mobile interactions that are typically used
to generate the interactive query automatically or to access canned transactions.
These queries are parsed and validated for correctness of the query syntax, the
names of files and data elements, and so on by a query compiler that compiles

Query
Compiler

Runtime
Database
Processor

Precompiler

System
Catalog/

Data
Dictionary

Query
Optimizer

DML
Compiler

Host
Language
Compiler

Concurrency Control/
Backup/Recovery

Subsystems

Stored
Data

Manager

Compiled
Transactions

Stored Database

DBA Commands,
Queries, and Transactions

Input/Output
from DatabaseQuery and Transaction

Execution:

DDL
Compiler

DDL
Statements

Privileged
Commands

Interactive
Query

Application
Programs

DBA Staff Casual Users Application
Programmers

Parametric UsersUsers:

Figure 2.3
Component modules of a DBMS and their interactions.

44 Chapter 2 Database System Concepts and Architecture

them into an internal form. This internal query is subjected to query optimization
(discussed in Chapters 18 and 19). Among other things, the query optimizer is
concerned with the rearrangement and possible reordering of operations, elimina-
tion of redundancies, and use of efficient search algorithms during execution. It
consults the system catalog for statistical and other physical information about the
stored data and generates executable code that performs the necessary operations
for the query and makes calls on the runtime processor.

Application programmers write programs in host languages such as Java, C, or C++
that are submitted to a precompiler. The precompiler extracts DML commands
from an application program written in a host programming language. These com-
mands are sent to the DML compiler for compilation into object code for database
access. The rest of the program is sent to the host language compiler. The object
codes for the DML commands and the rest of the program are linked, forming a
canned transaction whose executable code includes calls to the runtime database
processor. It is also becoming increasingly common to use scripting languages such
as PHP and Python to write database programs. Canned transactions are executed
repeatedly by parametric users via PCs or mobile apps; these users simply supply
the parameters to the transactions. Each execution is considered to be a separate
transaction. An example is a bank payment transaction where the account number,
payee, and amount may be supplied as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the
privileged commands, (2) the executable query plans, and (3) the canned transac-
tions with runtime parameters. It works with the system catalog and may update it
with statistics. It also works with the stored data manager, which in turn uses basic
operating system services for carrying out low-level input/output (read/write)
operations between the disk and main memory. The runtime database processor
handles other aspects of data transfer, such as management of buffers in the main
memory. Some DBMSs have their own buffer management module whereas others
depend on the OS for buffer management. We have shown concurrency control
and backup and recovery systems separately as a module in this figure. They are
integrated into the working of the runtime database processor for purposes of
transaction management.

It is common to have the client program that accesses the DBMS running on a
separate computer or device from the computer on which the database resides. The
former is called the client computer running DBMS client software and the latter is
called the database server. In many cases, the client accesses a middle computer,
called the application server, which in turn accesses the database server. We elabo-
rate on this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical
DBMS modules. The DBMS interacts with the operating system when disk accesses—
to the database or to the catalog—are needed. If the computer system is shared by
many users, the OS will schedule DBMS disk access requests and DBMS processing
along with other processes. On the other hand, if the computer system is mainly
dedicated to running the database server, the DBMS will control main memory

 2.4 The Database System Environment 45

 buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and with application servers and client pro-
grams running on separate machines through the system network interface.

2.4.2 Database System Utilities
In addition to possessing the software modules just described, most DBMSs have
database utilities that help the DBA manage the database system. Common utili-
ties have the following types of functions:

■ Loading. A loading utility is used to load existing data files—such as text
files or sequential files—into the database. Usually, the current (source) for-
mat of the data file and the desired (target) database file structure are speci-
fied to the utility, which then automatically reformats the data and stores it
in the database. With the proliferation of DBMSs, transferring data from
one DBMS to another is becoming common in many organizations. Some
vendors offer conversion tools that generate the appropriate loading pro-
grams, given the existing source and target database storage descriptions
(internal schemas).

■ Backup. A backup utility creates a backup copy of the database, usually by
dumping the entire database onto tape or other mass storage medium. The
backup copy can be used to restore the database in case of catastrophic disk
failure. Incremental backups are also often used, where only changes since
the previous backup are recorded. Incremental backup is more complex, but
saves storage space.

■ Database storage reorganization. This utility can be used to reorganize a
set of database files into different file organizations and create new access
paths to improve performance.

■ Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions
such as whether or not to reorganize files or whether to add or drop indexes
to improve performance.

Other utilities may be available for sorting files, handling data compression,
monitoring access by users, interfacing with the network, and performing other
functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and the DBMS. CASE
tools12 are used in the design phase of database systems. Another tool that can be
quite useful in large organizations is an expanded data dictionary (or data repository)

12Although CASE stands for computer-aided software engineering, many CASE tools are used primarily
for database design.

46 Chapter 2 Database System Concepts and Architecture

system. In addition to storing catalog information about schemas and constraints,
the data dictionary stores other information, such as design decisions, usage stan-
dards, application program descriptions, and user information. Such a system is
also called an information repository. This information can be accessed directly by
users or the DBA when needed. A data dictionary utility is similar to the DBMS
catalog, but it includes a wider variety of information and is accessed mainly by
users rather than by the DBMS software.

Application development environments, such as PowerBuilder (Sybase)
or JBuilder (Borland), have been quite popular. These systems provide an environ-
ment for developing database applications and include facilities that help in many
facets of database systems, including database design, GUI development, querying
and updating, and application program development.

The DBMS also needs to interface with communications software, whose function
is to allow users at locations remote from the database system site to access the
database through computer terminals, workstations, or personal computers. These
are connected to the database site through data communications hardware such as
Internet routers, phone lines, long-haul networks, local networks, or satellite com-
munication devices. Many commercial database systems have communication
packages that work with the DBMS. The integrated DBMS and data communica-
tions system is called a DB/DC system. In addition, some distributed DBMSs are
physically distributed over multiple machines. In this case, communications net-
works are needed to connect the machines. These are often local area networks
(LANs), but they can also be other types of networks.

2.5 Centralized and Client/Server
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture
Architectures for DBMSs have followed trends similar to those for general com-
puter system architectures. Older architectures used mainframe computers to pro-
vide the main processing for all system functions, including user application
programs and user interface programs, as well as all the DBMS functionality. The
reason was that in older systems, most users accessed the DBMS via computer ter-
minals that did not have processing power and only provided display capabilities.
Therefore, all processing was performed remotely on the computer system housing
the DBMS, and only display information and controls were sent from the computer
to the display terminals, which were connected to the central computer via various
types of communications networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations, and more recently with mobile devices. At first, database systems
used these computers similarly to how they had used display terminals, so that the
DBMS itself was still a centralized DBMS in which all the DBMS functionality,

 2.5 Centralized and Client/Server Architectures for DBMSs 47

application program execution, and user interface processing were carried out on
one machine. Figure 2.4 illustrates the physical components in a centralized archi-
tecture. Gradually, DBMS systems started to exploit the available processing power
at the user side, which led to client/server DBMS architectures.

2.5.2 Basic Client/Server Architectures
First, we discuss client/server architecture in general; then we discuss how it is
applied to DBMSs. The client/server architecture was developed to deal with com-
puting environments in which a large number of PCs, workstations, file servers,
printers, database servers, Web servers, e-mail servers, and other software and
equipment are connected via a network. The idea is to define specialized servers
with specific functionalities. For example, it is possible to connect a number of PCs
or small workstations as clients to a file server that maintains the files of the client
machines. Another machine can be designated as a printer server by being con-
nected to various printers; all print requests by the clients are forwarded to this
machine. Web servers or e-mail servers also fall into the specialized server cate-
gory. The resources provided by specialized servers can be accessed by many client
machines. The client machines provide the user with the appropriate interfaces to
utilize these servers, as well as with local processing power to run local applications.
This concept can be carried over to other software packages, with specialized pro-
grams—such as a CAD (computer-aided design) package—being stored on specific
server machines and being made accessible to multiple clients. Figure 2.5 illustrates

Display
Monitor

Display
Monitor

Network

Software

Hardware/Firmware

Operating System

Display
Monitor

Application
Programs

DBMS

Controller

CPU

Controller

. . .

. . .

. . .

Controller

Memory Disk
I/O Devices

(Printers,
Tape Drives, . . .)

Compilers

Text
Editors

Terminal
Display Control

System Bus

Terminals . . .

. . .

Figure 2.4
A physical centralized
architecture.

48 Chapter 2 Database System Concepts and Architecture

client/server architecture at the logical level; Figure 2.6 is a simplified diagram that
shows the physical architecture. Some machines would be client sites only (for
example, mobile devices or workstations/PCs that have only client software
installed). Other machines would be dedicated servers, and others would have both
client and server functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs/workstations and mobile devices as well as a smaller number
of server machines, connected via wireless networks or LANs and other types of
computer networks. A client in this framework is typically a user machine that pro-
vides user interface capabilities and local processing. When a client requires access
to additional functionality—such as database access—that does not exist at the cli-
ent, it connects to a server that provides the needed functionality. A server is a sys-
tem containing both hardware and software that can provide services to the client
machines, such as file access, printing, archiving, or database access. In general,
some machines install only client software, others only server software, and still
others may include both client and server software, as illustrated in Figure 2.6.
However, it is more common that client and server software usually run on separate

Client Client Client

Print
Server

DBMS
Server

File
Server

. . .

. . .

Network
Figure 2.5
Logical two-tier
client/server
architecture.

Client CLIENT

Site 2

Client
with Disk

Client

Site 1

Diskless
Client

Server

Site 3

Server

Communication
Network

Site n

Server
and Client

. . .

Client

Server

Figure 2.6
Physical two-tier
 client/server
 architecture.

 2.5 Centralized and Client/Server Architectures for DBMSs 49

machines. Two main types of basic DBMS architectures were created on this under-
lying client/server framework: two-tier and three-tier.13 We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs
In relational database management systems (RDBMSs), many of which started
as centralized systems, the system components that were first moved to the
 client side were the user interface and application programs. Because SQL (see
Chapters 6 and 7) provided a standard language for RDBMSs, this created a
logical dividing point between client and server. Hence, the query and transac-
tion functionality related to SQL processing remained on the server side. In
such an architecture, the server is often called a query server or transaction
server because it provides these two functionalities. In an RDBMS, the server is
also often called an SQL server.

The user interface programs and application programs can run on the client side.
When DBMS access is required, the program establishes a connection to the
DBMS (which is on the server side); once the connection is created, the client
program can communicate with the DBMS. A standard called Open Database
Connectivity (ODBC) provides an application programming interface (API),
which allows client-side programs to call the DBMS, as long as both client and
server machines have the necessary software installed. Most DBMS vendors pro-
vide ODBC drivers for their systems. A client program can actually connect to
several RDBMSs and send query and transaction requests using the ODBC API,
which are then processed at the server sites. Any query results are sent back to the
client program, which can process and display the results as needed. A related
standard for the Java programming language, called JDBC, has also been defined.
This allows Java client programs to access one or more DBMSs through a stan-
dard interface.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and servers, leading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures
for Web Applications

Many Web applications use an architecture called the three-tier architecture,
which adds an intermediate layer between the client and the database server, as
illustrated in Figure 2.7(a).

13There are many other variations of client/server architectures. We discuss the two most basic ones
here.

50 Chapter 2 Database System Concepts and Architecture

This intermediate layer or middle tier is called the application server or the Web
server, depending on the application. This server plays an intermediary role by
running application programs and storing business rules (procedures or con-
straints) that are used to access data from the database server. It can also improve
database security by checking a client’s credentials before forwarding a request to
the database server. Clients contain user interfaces and Web browsers. The inter-
mediate server accepts requests from the client, processes the request and sends
database queries and commands to the database server, and then acts as a conduit
for passing (partially) processed data from the database server to the clients, where
it may be processed further and filtered to be presented to the users. Thus, the user
interface, application rules, and data access act as the three tiers. Figure 2.7(b) shows
another view of the three-tier architecture used by database and other application
package vendors. The presentation layer displays information to the user and allows
data entry. The business logic layer handles intermediate rules and constraints before
data is passed up to the user or down to the DBMS. The bottom layer includes all
data management services. The middle layer can also act as a Web server, which
retrieves query results from the database server and formats them into dynamic
Web pages that are viewed by the Web browser at the client side. The client machine
is typically a PC or mobile device connected to the Web.

Other architectures have also been proposed. It is possible to divide the layers
between the user and the stored data further into finer components, thereby giving
rise to n-tier architectures, where n may be four or five tiers. Typically, the business
logic layer is divided into multiple layers. Besides distributing programming and
data throughout a network, n-tier applications afford the advantage that any one
tier can run on an appropriate processor or operating system platform and can be
handled independently. Vendors of ERP (enterprise resource planning) and CRM
(customer relationship management) packages often use a middleware layer, which

GUI,
Web Interface

Client

Application Server
or

Web Server

Database
Server

Application
Programs,

Web Pages

Database
Management

System

Presentation
Layer

Business
Logic Layer

Database
Services

Layer

(a) (b)

Figure 2.7
Logical three-tier
 client/server
 architecture, with a
couple of commonly
used nomenclatures.

 2.6 Classification of Database Management Systems 51

accounts for the front-end modules (clients) communicating with a number of
back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The
latter can be done by the hardware or by advanced software. This technology gives
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts
of data from servers to clients over wired and wireless networks.

2.6 Classification of Database
Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on
which the DBMS is based. The main data model used in many current commercial
DBMSs is the relational data model, and the systems based on this model are
known as SQL systems. The object data model has been implemented in some
commercial systems but has not had widespread use. Recently, so-called big data
systems, also known as key-value storage systems and NOSQL systems, use vari-
ous data models: document-based, graph-based, column-based, and key-value
data models. Many legacy applications still run on database systems based on the
hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been
incorporating many of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can catego-
rize DBMSs based on the data model: relational, object, object-relational, NOSQL,
key-value, hierarchical, network, and other.

Some experimental DBMSs are based on the XML (eXtended Markup Language)
model, which is a tree-structured data model. These have been called native XML
DBMSs. Several commercial relational DBMSs have added XML interfaces and
storage to their products.

The second criterion used to classify DBMSs is the number of users supported by
the system. Single-user systems support only one user at a time and are mostly
used with PCs. Multiuser systems, which include the majority of DBMSs, support
concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support multiple users, but the DBMS and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS software distributed over many sites connected by a computer network.
Big data systems are often massively distributed, with hundreds of sites. The data is
often replicated on multiple sites so that failure of a site will not make some data
unavailable.

52 Chapter 2 Database System Concepts and Architecture

Homogeneous DDBMSs use the same DBMS software at all the sites, whereas
heterogeneous DDBMSs can use different DBMS software at each site. It is also
possible to develop middleware software to access several autonomous preexisting
databases stored under heterogeneous DBMSs. This leads to a federated DBMS (or
multidatabase system), in which the participating DBMSs are loosely coupled and
have a degree of local autonomy. Many DDBMSs use client-server architecture, as
we described in Section 2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs
based on cost. Today we have open source (free) DBMS products like MySQL and
PostgreSQL that are supported by third-party vendors with additional services.
The main RDBMS products are available as free examination 30-day copy versions
as well as personal versions, which may cost under $100 and allow a fair amount of
functionality. The giant systems are being sold in modular form with components
to handle distribution, replication, parallel processing, mobile capability, and so
on, and with a large number of parameters that must be defined for the configura-
tion. Furthermore, they are sold in the form of licenses—site licenses allow unlim-
ited use of the database system with any number of copies running at the customer
site. Another type of license limits the number of concurrent users or the number
of user seats at a location. Standalone single-user versions of some systems like
Microsoft Access are sold per copy or included in the overall configuration of a
desktop or laptop. In addition, data warehousing and mining features, as well as
support for additional data types, are made available at extra cost. It is possible to
pay millions of dollars for the installation and maintenance of large database sys-
tems annually.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures.
Finally, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-purpose DBMS can be designed and built for a
specific application; such a system cannot be used for other applications without
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special-purpose DBMSs. These fall into the category of online
transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data
model. The relational data model represents a database as a collection of tables,
where each table can be stored as a separate file. The database in Figure 1.2 resem-
bles a basic relational representation. Most relational databases use the high-level
query language called SQL and support a limited form of user views. We discuss
the relational model and its languages and operations in Chapters 5 through 8, and
techniques for programming relational applications in Chapters 10 and 11.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class,
and classes are organized into hierarchies (or acyclic graphs). The operations of

 2.6 Classification of Database Management Systems 53

each class are specified in terms of predefined procedures called methods. Rela-
tional DBMSs have been extending their models to incorporate object database
concepts and other capabilities; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and object-relational
systems in Chapter 12.

Big data systems are based on various data models, with the following four data
models most common. The key-value data model associates a unique key with
each value (which can be a record or object) and provides very fast access to a
value given its key. The document data model is based on JSON (Java Script
Object Notation) and stores the data as documents, which somewhat resemble
complex objects. The graph data model stores objects as graph nodes and rela-
tionships among objects as directed graph edges. Finally, the column-based data
models store the columns of rows clustered on disk pages for fast access and
allow multiple versions of the data. We will discuss some of these in more detail
in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and
has been used as a basis for implementing several prototype native XML systems.
XML uses hierarchical tree structures. It combines database concepts with concepts
from document representation models. Data is represented as elements; with the
use of tags, data can be nested to create complex tree structures. This model con-
ceptually resembles the object model but uses different terminology. XML capabili-
ties have been added to many commercial DBMS products. We present an overview
of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models,
are the network and hierarchical models. The network model represents data as
record types and also represents a limited type of 1:N relationship, called a set type.
A 1:N, or one-to-many, relationship relates one instance of a record to many record
instances using some pointer linking mechanism in these models. The network
model, also known as the CODASYL DBTG model,14 has an associated record-at-
a-time language that must be embedded in a host programming language. The net-
work DML was proposed in the 1971 Database Task Group (DBTG) Report as an
extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierar-
chy represents a number of related records. There is no standard language for the
hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dom-
inated the DBMS market for over 20 years between 1965 and 1985. Its DML, called
DL/1, was a de facto industry standard for a long time.15

14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is
the committee that specified the network model and its language.

15The full chapters on the network and hierarchical models from the second edition of this book are
available from this book’s Companion Web site at http://www.aw.com/elmasri.

54 Chapter 2 Database System Concepts and Architecture

2.7 Summary
In this chapter we introduced the main concepts used in database systems. We
defined a data model and we distinguished three main categories:

■ High-level or conceptual data models (based on entities and relationships)

■ Low-level or physical data models

■ Representational or implementation data models (record-based, object-
oriented)

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
DBMS architecture, which allows three schema levels:

■ An internal schema describes the physical storage structure of the database.

■ A conceptual schema is a high-level description of the whole database.

■ External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings among
the schemas to transform requests and query results from one level to the
next. Most DBMSs do not separate the three levels completely. We used the
three-schema architecture to define the concepts of logical and physical data
independence.

Then we discussed the main types of languages and interfaces that DBMSs support.
A data definition language (DDL) is used to define the database conceptual schema.
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages or functions exist for specifying storage
structures. This distinction is fading away in today’s relational implementations,
with SQL serving as a catchall language to perform multiple roles, including view
definition. The storage definition part (SDL) was included in SQL’s early versions,
but is now typically implemented as special commands for the DBA in relational
DBMSs. The DBMS compiles all schema definitions and stores their descriptions in
the DBMS catalog.

A data manipulation language (DML) is used for specifying database retrievals and
updates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-
oriented, procedural). A high-level DML can be embedded in a host programming
language, or it can be used as a standalone language; in the latter case it is often
called a query language.

We discussed different types of interfaces provided by DBMSs and the types of
DBMS users with which each interface is associated. Then we discussed the
database system environment, typical DBMS software modules, and DBMS
utilities for helping users and the DBA staff perform their tasks. We continued
with an overview of the two-tier and three-tier architectures for database
 applications.

 Exercises 55

Finally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and cost. We discussed the availabil-
ity of DBMSs and additional modules—from no cost in the form of open source
software to configurations that annually cost millions to maintain. We also
pointed out the variety of licensing arrangements for DBMS and related prod-
ucts. The main classification of DBMSs is based on the data model. We briefly
discussed the main data models used in current commercial DBMSs.

Review Questions
 2.1. Define the following terms: data model, database schema, database state,

internal schema, conceptual schema, external schema, data independence,
DDL, DML, SDL, VDL, query language, host language, data sublanguage,
database utility, catalog, client/server architecture, three-tier architecture,
and n-tier architecture.

 2.2. Discuss the main categories of data models. What are the basic differences
among the relational model, the object model, and the XML model?

 2.3. What is the difference between a database schema and a database state?

 2.4. Describe the three-schema architecture. Why do we need mappings among
schema levels? How do different schema definition languages support this
architecture?

 2.5. What is the difference between logical data independence and physical data
independence? Which one is harder to achieve? Why?

 2.6. What is the difference between procedural and nonprocedural DMLs?

 2.7. Discuss the different types of user-friendly interfaces and the types of users
who typically use each.

 2.8. With what other computer system software does a DBMS interact?

 2.9. What is the difference between the two-tier and three-tier client/server
architectures?

 2.10. Discuss some types of database utilities and tools and their functions.

 2.11. What is the additional functionality incorporated in n-tier architecture
(n . 3)?

Exercises
 2.12. Think of different users for the database shown in Figure 1.2. What types of

applications would each user need? To which user category would each
belong, and what type of interface would each need?

56 Chapter 2 Database System Concepts and Architecture

 2.13. Choose a database application with which you are familiar. Design a schema
and show a sample database for that application, using the notation of Fig-
ures 1.2 and 2.1. What types of additional information and constraints
would you like to represent in the schema? Think of several users of your
database, and design a view for each.

 2.14. If you were designing a Web-based system to make airline reservations and sell
airline tickets, which DBMS architecture would you choose from Section 2.5?
Why? Why would the other architectures not be a good choice?

 2.15. Consider Figure 2.1. In addition to constraints relating the values of col-
umns in one table to columns in another table, there are also constraints that
impose restrictions on values in a column or a combination of columns
within a table. One such constraint dictates that a column or a group of col-
umns must be unique across all rows in the table. For example, in the
 STUDENT table, the Student_number column must be unique (to prevent two
different students from having the same Student_number). Identify the col-
umn or the group of columns in the other tables that must be unique across
all rows in the table.

Selected Bibliography
Many database textbooks, including Date (2004), Silberschatz et al. (2011), Ramak-
rishnan and Gehrke (2003), Garcia-Molina et al. (2002, 2009), and Abiteboul et al.
(1995), provide a discussion of the various database concepts presented here.
 Tsichritzis and Lochovsky (1982) is an early textbook on data models. Tsichritzis
and Klug (1978) and Jardine (1977) present the three-schema architecture, which
was first suggested in the DBTG CODASYL report (1971) and later in an American
National Standards Institute (ANSI) report (1975). An in-depth analysis of the rela-
tional data model and some of its possible extensions is given in Codd (1990). The
proposed standard for object-oriented databases is described in Cattell et al. (2000).
Many documents describing XML are available on the Web, such as XML (2005).

Examples of database utilities are the ETI Connect, Analyze and Transform tools
(http://www.eti.com) and the database administration tool, DBArtisan, from
Embarcadero Technologies (http://www.embarcadero.com).

part 2
Conceptual Data Modeling and

Database Design

This page intentionally left blank

59

 Data Modeling Using the Entity–
Relationship (ER) Model

Conceptual modeling is a very important phase in
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the
bank customers or bank tellers in this example. In addition, it is now common to
provide interfaces to these programs to BANK customers via mobile devices using
mobile apps. Hence, a major part of the database application will require the
design, implementation, and testing of these application programs. Traditionally,
the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present
the modeling concepts of the entity–relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

3chapter 3

60 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams1—is similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 3.1.
We present some of the UML notation and concepts for class diagrams that are
particularly relevant to database design in Section 3.8, and we briefly compare these
to ER notation and concepts. Additional UML notation and concepts are presented
in Section 4.6.

This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER
model. This sample database is used throughout the text. In Section 3.3 we present
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5
introduces weak entity types. Section 3.6 shows how a schema design is refined to
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses
how to choose the names for database schema constructs such as entity types and
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec -
tion 3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 4, where we describe extensions to
the ER model that lead to the enhanced–ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories).

3.1 Using High-Level Conceptual Data Models
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

1A class is similar to an entity type in many ways.

 3.1 Using High-Level Conceptual Data Models for Database Design 61

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.

Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This

Functional Requirements

REQUIREMENTS
COLLECTION AND

ANALYSIS

Miniworld

Data Requirements

CONCEPTUAL DESIGN

Conceptual Schema
(In a high-level data model)

LOGICAL DESIGN
(DATA MODEL MAPPING)

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

PHYSICAL DESIGN

Internal Schema

Application Programs

TRANSACTION
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

DBMS-specific

DBMS-independent

High-Level Transaction
Specification

FUNCTIONAL ANALYSIS

Figure 3.1
A simplified diagram to illustrate the main phases of database design.

62 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during
functional analysis. This also serves to confirm that the conceptual schema meets
all the identified functional requirements. Modifications to the conceptual schema
can be introduced if some functional requirements cannot be specified using the
initial schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational (SQL) model—so the conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called logical design or data model mapping; its result is a database
schema in the implementation data model of the DBMS. Data model mapping is
often automated or semiautomated within the database design tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the
high-level transaction specifications.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application
In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and
projects. Suppose that after the requirements collection and analysis phase, the
database designers provide the following description of the miniworld—the part of
the company that will be represented in the database.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 63

■ The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing
the department. A department may have several locations.

■ A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

■ The database will store each employee’s name, Social Security number,2
address, salary, sex (gender), and birth date. An employee is assigned to one
department, but may work on several projects, which are not necessarily
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as
well as the direct supervisor of each employee (who is another employee).

■ The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic concept that the ER model represents is
an entity, which is a thing or object in the real world with an independent existence.
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for
instance, a company, a job, or a university course). Each entity has attributes—the
particular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity

2The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.

64 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e1 has four attributes: Name, Address, Age, and Home_phone; their values
are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’,
respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION1 N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 65

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the
values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its

Name = John Smith Name = Sunco Oil

Headquarters = Houston

President = John Smith

Address = 2311 Kirby
Houston, Texas 77001

Age = 55

e1 c1

Home_phone = 713-749-2630

Figure 3.3
Two entities,
EMPLOYEE e1, and
COMPANY c1, and
their attributes.

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Address

CityStreet_address

Number Street Apartment_number

State Zip

Figure 3.4
A hierarchy of
composite attributes.

66 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have any
college degrees, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for the
College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values allowed
for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from related
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity
can be derived by counting the number of employees related to (working for) that
department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have
NULL for College_degrees. NULL can also be used if we do not know the value of an
attribute for a particular entity—for example, if we do not know the home phone
number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is
not applicable, whereas the meaning of the latter is unknown. The unknown category
of NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping

 3.3 Entity Types, Entity Sets, Attributes, and Keys 67

components of a composite attribute between parentheses () and separating
the components with commas, and by displaying multivalued attributes between
braces { }. Such attributes are called complex attributes. For example, if a person
can have more than one residence and each residence can have a single address and
multiple phones, an attribute Address_phone for a person can be specified as shown
in Figure 3.5.4 Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 3.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the
values of their attributes. The collection of all entities of a particular entity type in the

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 13).

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

Figure 3.5
A complex attribute:
Address_phone.

Entity Type Name:

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary

(John Smith, 55, 80k)

(Fred Brown, 40, 30K)

(Judy Clark, 25, 20K)

e1 c1

c2e2

e3

(Sunco Oil, Houston, John Smith)

(Fast Computer, Dallas, Bob King)

Figure 3.6
Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.

68 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

database at any point in time is called an entity set or entity collection; the entity set
is usually referred to using the same name as the entity type, even though they are
two separate concepts. For example, EMPLOYEE refers to both a type of entity as
well as the current collection of all employee entities in the database. It is now more
common to give separate names to the entity type and entity collection; for example
in object and object-relational data models (see Chapter 12).

An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually
has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 3.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute
of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in

5We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams, and some additional diagrammatic notations are given in Appendix A.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 69

its own right. The Registration attribute is an example of a composite key formed
from two simple component attributes, State and Number, neither of which is a key
on its own. An entity type may also have no key, in which case it is called a weak
entity type (see Section 3.5).

In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not typically displayed in basic ER diagrams and are similar to the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. However, data types of attributes can

Model

Make

Vehicle_id

Year

Color

Registration

State(a)

(b)

Number

CAR

CAR1
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

Figure 3.7
The CAR entity type
with two key attributes,
Registration and
Vehicle_id. (a) ER
diagram notation.
(b) Entity set with
three entities.

70 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

be specified in UML class diagrams (see Section 3.8) and in other diagrammatic
notations used in database design tools. Additional data types to represent common
database types, such as date, time, and other concepts, are also employed.

Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set6 P(V) of V:

A : E → P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value
is represented by the empty set. For single-valued attributes, A(e) is restricted to
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.7 For a composite attribute A, the value set V is the power set of
the Cartesian product of P(V1), P(V2), . . . , P(Vn), where V1, V2, . . . , Vn are the
value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld and correspond to the data as it actually exists in
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and
 Controlling_department. Both Name and Number are (separate) key attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

6The power set P(V) of a set V is the set of all subsets of V.
7A singleton set is a set with only one element (value).

 3.3 Entity Types, Entity Sets, Attributes, and Keys 71

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the
database has to store the number of hours per week an employee works on each
project. This requirement is listed as part of the third requirement in Section 3.2,
and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it
can be represented as a multivalued composite attribute of PROJECT called
Workers with the simple components (Employee, Hours). We choose the first

Address

Sex

Birth_date

Project Hours

Works_on

Fname Minit Lname

Department

Salary

Supervisor

Name

EMPLOYEE

Ssn

Sex

Relationship

Employee

Dependent_name
DEPENDENT

Birth_date

Location

Number

Controlling_department

Name

PROJECT

Manager_start_date

Number

ManagerDEPARTMENT

Name

Locations

Figure 3.8
Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.

72 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 alternative in Figure 3.8; we shall see in the next section that this will be refined into
a many-to-many relationship, once we introduce the concepts of relationships.

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to
an employee who manages the department; the attribute Controlling_department
of PROJECT refers to the department that controls the project; the attribute
Supervisor of EMPLOYEE refers to another employee (the one who supervises this
employee); the attribute Department of EMPLOYEE refers to the department for
which the employee works; and so on. In the ER model, these references should not
be represented as attributes but as relationships. The initial COMPANY database
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances ri, where each ri associates n
individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej,
1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . , En;
 alternatively, it can be defined as a subset of the Cartesian product of the entity sets
E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the
relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to
participate in the relationship instance ri = (e1, e2, . . . , en).

Informally, each relationship instance ri in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance ri represents the fact that the entities participating in ri
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 73

EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT
entity. Figure 3.9 illustrates this example, where each relationship instance ri is
shown connected to the EMPLOYEE and DEPARTMENT entities that participate
in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work
for department d1; the employees e2 and e4 work for department d2; and the employ-
ees e5 and e7 work for department d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box
(see Figure 3.2).

3.4.2 Relationship Degree, Role Names, and Recursive
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree
two. A relationship type of degree two is called binary, and one of degree three is
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance ri associates three entities—a supplier s, a
part p, and a project j—whenever s supplies part p to project j. Relationships can

EMPLOYEE WORKS_FOR DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

Figure 3.9
Some instances in
the WORKS_FOR
relationship set,
which represents a
relationship type
WORKS_FOR
between EMPLOYEE
and DEPARTMENT.

74 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships;
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type, where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attribute,
we always have two options or two points of view. In this example, the alternative point
of view is to think of a multivalued attribute Employees of the entity type
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power
set of the EMPLOYEE entity set. Either of these two attributes—Department of
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.8

SUPPLIER

PART

SUPPLY PROJECT

p1

p2

p3

r1

r2

r3

r4

r5

r6

r7

j1

j2

j3

s1

s2

Figure 3.10
Some relationship
instances in the
 SUPPLY ternary
 relationship set.

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 12), relationships can be represented by
 reference attributes, either in one direction or in both directions as inverses. In relational databases
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 75

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker
and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used
as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes
essential for distinguishing the meaning of the role that each participating entity
plays. Such relationship types are called recursive relationships or self-referencing
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type
participates twice in SUPERVISION: once in the role of supervisor (or boss), and
once in the role of supervisee (or subordinate). Each relationship instance ri in
SUPERVISION associates two different employee entities ej and ek, one of which
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the
lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the
supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 super-
vises e1 and e4. In this example, each relationship instance must be connected with
two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

EMPLOYEE

2

2

2

SUPERVISION

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

2

2

2

1

1

1

1

1

1

Figure 3.11
A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (2).

76 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.4.3 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees (N),9 but an employee
can be related to (work for) at most one department (1). This means that for
this particular relationship type WORKS_FOR, a particular department entity can
be related to any number of employees (N indicates there is no maximum number).
On the other hand, an employee can be related to a maximum of one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,
and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage at

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is
used instead of N.

EMPLOYEE MANAGES DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

d1

d2

d3

r1

r2

r3

Figure 3.12
A 1:1 relationship,
MANAGES.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 77

most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the
miniworld rule is that an employee can work on several projects and a project can
have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every
employee to manage a department, so the participation of EMPLOYEE in the

EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

p4

Figure 3.13
An M:N relationship,
WORKS_ON.

78 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

MANAGES relationship type is partial, meaning that some or part of the set of
employee entities are related to some department entity via MANAGES, but not
 necessarily all. We will refer to the cardinality ratio and participation constraints,
taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,
we can either specify no minimum (partial participation) or a minimum of one (total
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that a particular employee works
on a particular project, we can include an attribute Hours for the WORKS_ON
relationship type in Figure 3.13. Another example is to include the date on which
a manager started managing a department via an attribute Start_date for the
MANAGES relationship type in Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT,
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1
relationship, so every department or employee entity participates in at most one
relationship instance. Hence, the value of the Start_date attribute can be determined
separately, either by the participating department entity or by the participating
employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for at most one
department, and hence participates in at most one relationship instance in
WORKS_FOR, but a department can have many employees, each with a different start date.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.

For M:N (many-to-many) relationship types, some attributes may be determined
by the combination of participating entities in a relationship instance, not by any
single entity. Such attributes must be specified as relationship attributes. An example
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number
of hours per week an employee currently works on a project is determined by an
employee-project combination and not separately by either entity.

 3.5 Weak Entity Types 79

3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying
or owner entity type,10 and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type.11 A weak entity type
always has a total participation constraint (existence dependency) with respect to its
identifying relationship because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,
even though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.12 In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a multivalued composite attribute with the
component attributes Name, Birth_date, Sex, and Relationship. The choice of which
representation to use is made by the database designer. One criterion that may be
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

10The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11The weak entity type is also sometimes called the child entity type or the subordinate entity type.
12The partial key is sometimes called the discriminator.

80 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.6 Refining the ER Design for
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.

In our example, we specify the following relationship types:

■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.13 The attribute Start_date is assigned to this relationship type.

■ WORKS_FOR, a 1:N (one-to-many) relationship type between
DEPARTMENT and EMPLOYEE. Both participations are total.

■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some
departments may control no projects.

■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

■ WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
employees working on it. Both participations are determined to be total.

■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from
DEPENDENT. It is important to have the least possible redundancy when we design the
conceptual schema of a database. If some redundancy is desired at the storage level or at
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.

 3.7 ER Diagrams, Naming Conventions, and Design Issues 81

3.7 ER Diagrams, Naming Conventions,
and Design Issues

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in
relationship types by displaying their entity sets and relationship sets (or
 extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity
sets may change frequently. In addition, the schema is obviously easier to display,
because it is much smaller.

Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Regular (strong) entity types such as
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are
shown in diamond-shaped boxes attached to the participating entity types with
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.
The partial key of the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified
by attaching a 1, M, or N on each participating edge. The cardinality ratio
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double
lines for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because
each employee in the role of supervisee has at most one direct supervisor, whereas
an employee in the role of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 3.7.4 and
Appendix A).

82 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to
the different constructs in the schema. We choose to use singular names for entity
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters,
attribute names have their initial letter capitalized, and role names are in lowercase
letters. We have used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements,
the nouns appearing in the narrative tend to give rise to entity type names, and the
verbs tend to indicate names of relationship types. Attribute names generally arise
from additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To
change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
 section, we give some brief guidelines as to which construct should be chosen in
particular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

■ A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses of
one another are refined into a binary relationship. We discussed this type of
refinement in detail in Section 3.6. It is important to note that in our notation,

 3.7 ER Diagrams, Naming Conventions, and Design Issues 83

MeaningSymbol

Entity

Weak Entity

Indentifying Relationship

Relationship

Composite Attribute

. . .

Key Attribute

Attribute

Derived Attribute

Multivalued Attribute

Total Participation of E2 in RRE1 E2

Cardinality Ratio 1: N for E1 : E2 in RRE1 E2
N1

Structural Constraint (min, max)
on Participation of E in RR E

(min, max)

Figure 3.14
Summary of the
notation for ER
diagrams.

84 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

once an attribute is replaced by a relationship, the attribute itself should be
removed from the entity type to avoid duplication and redundancy.

■ Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that each
of several entity types in a UNIVERSITY database, such as STUDENT,
INSTRUCTOR, and COURSE, has an attribute Department in the
initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute Dept_name and relate it to the three
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

■ An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In
this case, DEPARTMENT may be reduced or demoted to an attribute of
STUDENT.

■ Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams
There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double-line notation for participation constraints. This notation
involves associating a pair of integer numbers (min, max) with each participation
of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1. The
numbers mean that for each entity e in E, e must participate in at least min and at
most max relationship instances in R at any point in time. In this method,
min = 0 implies partial participation, whereas min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.14 Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we
can use it to specify some structural constraints for relationship types of higher
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.

Figure 3.15 also displays all the role names for the COMPANY database schema.

14In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

 3.8 Example of Other Notation: UML Class Diagrams 85

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here and compare them with ER diagrams. In some

EMPLOYEE

Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor
(0,N) (0,1)

(1,1)
Employee

(1,1)

(1,N)

(1,1)

(0,N)Department
Managed

(4,N)

Department

(0,1)
Manager

Supervisee

SUPERVISION

Hours

WORKS_ON

CONTROLS

DEPENDENTS_OF

Name
Location

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR

DEPENDENT

Sex Birth_date RelationshipName

Controlling
Department

Controlled
Project

Project

(1,N)
Worker

(0,N)
Employee

(1,1) Dependent

Fname

Figure 3.15
ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

86 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16
shows how the COMPANY ER database schema in Figure 3.15 can be displayed
using UML class diagram notation. The entity types in Figure 3.15 are modeled as
classes in Figure 3.16. An entity in ER corresponds to an object in UML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or
data type) of an attribute if desired, by placing a colon (:) followed by the domain
name or description, as illustrated by the Name, Sex, and Bdate attributes
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the
LOCATION class in Figure 3.16.

supervisee

Name: Name_dom
Fname
Minit
Lname

Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

4..*

1..*

1..* *

*

1..1

1..1

1..1

1..1

1..*

0..1

0..*

0..*

age
change_department
change_projects
. . .

Sex: {M,F}
Birth_date: Date
Relationship

DEPENDENT

. . .

0..1
supervisor

Dependent_name

EMPLOYEE

Name
Number

add_employee
number_of_employees
change_manager
. . .

DEPARTMENT

Name
Number

add_employee
add_project
change_manager
. . .

PROJECT

Start_date

MANAGES

CONTROLS

Hours

WORKS_ON Name

LOCATION

1..1
0..*
0..1

Multiplicity
Notation in OMT:

Aggregation
Notation in UML:

Whole Part

WORKS_FOR

Figure 3.16
The COMPANY conceptual schema in UML class diagram notation.

 3.8 Example of Other Notation: UML Class Diagrams 87

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig -
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)
is called a reflexive association in UML, and the role names—like the multiplicities—
are placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation.
 Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled
the locations of a department and the single location of a project as aggregations.
However, aggregation and association do not have different structural properties, and
the choice as to which type of relationship to use—aggregation or association—is
somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to
EMPLOYEE. In addition, relationship instances may be specified to be ordered.
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by
their Start_date attribute value. Association (relationship) names are optional in
UML, and relationship attributes are displayed in a box attached with a dashed
line to the line representing the association/aggregation (see Start_date and Hours
in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion.

88 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Weak entities can be modeled using the UML construct called qualified association
(or qualified aggregation); this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called
the discriminator, because its value distinguishes the objects associated with
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to
modeling weak entities, and they can be used to model other situations in UML.

This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

3.9 Relationship Types of Degree
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree
relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at the
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently
supplying a PART p to a PROJECT j. In general, a relationship type R of degree n will
have n edges in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY,
USES, and SUPPLIES. In general, a ternary relationship type represents different
information than do three binary relationship types. Consider the three binary
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p),
(j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY,
because the meaning is different. It is often tricky to decide whether a particular
relationship should be represented as a relationship type of degree n or should be

 3.9 Relationship Types of Degree Higher than Two 89

broken down into several relationship types of smaller degrees. The designer must
base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are
needed by the application.

(a) SUPPLY

Sname

Part_no

SUPPLIER

Quantity

PROJECT

PART

Proj_name

(b)

(c)

Part_no

PART

N

Sname

SUPPLIER

Proj_name

PROJECT

N

Quantity

SUPPLY
N1

Part_no

M N

CAN_SUPPLY

N

M

Sname

SUPPLIER

Proj_name

PROJECT

USES

PART

M

N

SUPPLIES

SP

SPJSS
1

1

Figure 3.17
Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

90 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its
three owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to each of the three participating
entity types.

Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers
COURSE c during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors
who taught some course during that semester, and OFFERED_DURING relates a
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance
(i, c) exists in CAN_TEACH. However, the reverse is not always true;
we may have instances (i, s), (s, c), and (i, c) in the three binary relationship types
with no corresponding instance (i, s, c) in OFFERS. Note that in this example,
based on the meanings of the relationships, we can infer the instances of
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but

Cnumber
CAN_TEACH

Lname

INSTRUCTOR

Sem_year

YearSemester

SEMESTER

OFFERED_DURING

COURSE

OFFERS

TAUGHT_DURING

Figure 3.18
Another example of
ternary versus binary
relationship types.

 3.9 Relationship Types of Degree Higher than Two 91

we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and
OFFERED_DURING are redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a
course can be taught by only one instructor), then the ternary relationship OFFERS
can be left out because it can be inferred from the three binary relationships
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer
must analyze the meaning of each specific situation to decide which of the binary
and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19. This example shows part of a
database that keeps track of candidates interviewing for jobs at various companies,
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on
one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

Dept_date

DateDepartment

RESULTS_IN

Name

CANDIDATE

Cname

COMPANY

INTERVIEW JOB_OFFER

CCI

Figure 3.19
A weak entity type
INTERVIEW with a
 ternary identifying
 relationship type.

92 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 participation arc (both M and N symbols stand for many or any number).15 Let us
 illustrate this constraint using the SUPPLY relationship in Figure 3.17.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.16 If all three cardinalities are M or N, then the key will
be the combination of all three participants.

The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,17 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database
We now present another example, a UNIVERSITY database, to illustrate the ER
modeling concepts. Suppose that a database is needed to keep track of student
enrollments in classes and students’ final grades. After analyzing the miniworld
rules and the users’ needs, the requirements for this database were determined to be
as follows (for brevity, we show the chosen entity type names and attribute names
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

■ The university is organized into colleges (COLLEGE), and each college has a
unique name (CName), a main office (COffice) and phone (CPhone), and a
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a
unique name (DName), a unique code number (DCode), a main office
(DOffice) and phone (DPhone), and a particular faculty member who chairs
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.
17The (min, max) constraints can determine the keys for binary relationships.

 3.10 Another Example: A UNIVERSITY Database 93

■ A department offers a number of courses (COURSE), each of which has a
unique course name (CoName), a unique code number (CCode), a course
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit
hours (Credits), and a course description (CDesc). The database also keeps
track of instructors (INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank);
in addition, each instructor works for one primary academic department.

■ The database will keep student data (STUDENT) and stores each student’s
name (SName, composed of first name (FName), middle name (MName),
last name (LName)), student id (Sid, unique for every student), address
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep
track of the student’s grades in each section the student has completed.

■ Courses are offered as sections (SECTION). Each section is related to a single
course and a single instructor and has a unique section identifier (SecId). A
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year
(Year), classroom (CRoom: this is coded as a combination of building code
(Bldg) and room number (RoomNo) within the building), and days/times
(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep
track of all the sections offered for the past several years, in addition to the
current offerings. The SecId is unique for all sections, not just the sections for
a particular semester.) The database keeps track of the students in each section,
and the grade is recorded when available (this is a many-to-many relationship
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER
diagrammatic notation. Notice that for the SECTION entity type, we only showed
SecID as an underlined key, but because of the miniworld constraints, several other
combinations of values have to be unique for each section entity. For example, each of
the following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This
specifies that the section numbers of a particular course must be different
during each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester
and year, a classroom cannot be used by two different sections at the same
days/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):
This specifies that in a particular semester and year, an instructor cannot
teach two sections at the same days/time. Note that this rule will not apply if
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?

94 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

COLLEGE

DEPT

COURSE SECTION SecNoSECS

Grade

TAKES

Sem
Year

INSTRUCTOR

COffice

TEACHES

ADMINS

DEAN

MName

SName
Addr

Phone

Major

DOB

FName

STUDENT

LName

CHAIR

CStartDate

EMPLOYS

HAS

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,1)

(0,1)

(0,1)

(5,N)

CName

DName

CCode SecId

IOffice

IName

Rank

CPhone

DCode

DOffice

CoName

Credits

CDesc

Level

DPhone

IPhoneId

SId

OFFERS

CRoom

Bldg RoomNo

DaysTime

Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary
In this chapter we presented the modeling concepts of a high-level conceptual data
model, the entity–relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the

 3.11 Summary 95

examples that is used throughout this text. We defined the basic ER model concepts
of entities and their attributes. Then we discussed NULL values and presented the
various types of attributes, which can be nested arbitrarily to produce complex
attributes:

■ Simple or atomic

■ Composite

■ Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the
ER model concepts at the schema or “intension” level:

■ Entity types and their corresponding entity sets

■ Key attributes of entity types

■ Value sets (domains) of attributes

■ Relationship types and their corresponding relationship sets

■ Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

■ Cardinality ratios (1:1, 1:N, M:N for binary relationships)

■ Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types and partial key
attributes.

Entity–relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they
relate to ER modeling concepts. We also described ternary and higher-degree
relationship types in more detail, and we discussed the circumstances under which
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the
ER schema design.

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.

96 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Review Questions
 3.1. Discuss the role of a high-level data model in the database design process.

 3.2. List the various cases where use of a NULL value would be appropriate.

 3.3. Define the following terms: entity, attribute, attribute value, relationship
instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.

 3.6. What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

 3.7. What is a participation role? When is it necessary to use role names in the
description of relationship types?

 3.8. Describe the two alternatives for specifying structural constraints on rela-
tionship types. What are the advantages and disadvantages of each?

 3.9. Under what conditions can an attribute of a binary relationship type be
migrated to become an attribute of one of the participating entity types?

 3.10. When we think of relationships as attributes, what are the value sets of these
attributes? What class of data models is based on this concept?

 3.11. What is meant by a recursive relationship type? Give some examples of
recursive relationship types.

 3.12. When is the concept of a weak entity used in data modeling? Define the
terms owner entity type, weak entity type, identifying relationship type, and
partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.

 3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
 3.16. Which combinations of attributes have to be unique for each individual

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce
each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.

 Exercises 97

 b. During a particular semester and year, an instructor can teach only one
section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sections
offered for the same course must all be different.

 Can you think of any other similar constraints?

 3.17. Composite and multivalued attributes can be nested to any number of lev-
els. Suppose we want to design an attribute for a STUDENT entity type to
keep track of previous college education. Such an attribute will have one
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and
year the degree was awarded, and each transcript entry contains a course
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that
uses only entity types (including weak entity types, if needed) and relation-
ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as
possible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE’s Name
(e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state
(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}).
Each CONGRESS_PERSON in the House of Representatives is described by
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,
‘Other’}). The database keeps track of each BILL (i.e., proposed law),
including the Bill_name, the Date_of_vote on the bill, whether the bill
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain

98 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Restrictions

M

N

N

1

N

N

1

1N

AIRPORT

City State

AIRPLANE_
TYPE

Dep_time

Arr_time

Name

Scheduled_dep_time

INSTANCE_OF

Weekdays

Airline

Instances

N

1

1 N

Airport_code

Number

Scheduled_arr_time

CAN_
LAND

TYPE

N

1

DEPARTS

N

1

ARRIVES

N1
ASSIGNED

ARRIVAL_
AIRPORT

DEPARTURE_
AIRPORT N1

SEAT

Max_seatsType_name

Code

AIRPLANE

Airplane_id Total_no_of_seats

LEGS

FLIGHT

FLIGHT_LEG

Leg_no

FARES

FARE

Amount

CphoneCustomer_name

Date

No_of_avail_seats

RESERVATION
Seat_no

Company

LEG_INSTANCE

Notes:
A LEG (segment) is a nonstop portion of a flight.
A LEG_INSTANCE is a particular occurrence
 of a LEG on a particular date.

1

Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema
diagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of

 Exercises 99

the game. Design an ER schema diagram for this application, stating any
assumptions you make. Choose your favorite sport (e.g., soccer, baseball,
football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.
Each bank can have multiple branches, and each branch can have multiple
accounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.

 b. Is there a weak entity type? If so, give its name, partial key, and identify-
ing relationship.

 c. What constraints do the partial key and the identifying relationship of the
weak entity type specify in this diagram?

 d. List the names of all relationship types, and specify the (min, max)
 constraint on each participation of an entity type in a relationship type.
Justify your choices.

BANK

LOAN

Balance

Type

AmountLoan_no

1

N

1

N

N
N

M M

NameCode

1 N BANK_BRANCH

L_CA_C

ACCTS LOANS

BRANCHES

ACCOUNT

CUSTOMER

Acct_no

Name

AddrPhone

Type

Addr Branch_noAddr

Ssn

Figure 3.22
An ER diagram for a BANK database schema.

100 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. List concisely the user requirements that led to this ER schema design.

 f. Suppose that every customer must have at least one account but is
restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may
work in up to two departments or may not be assigned to any department.
Assume that each department must have one and may have up to three
phone numbers. Supply (min, max) constraints on this diagram. State clearly
any additional assumptions you make. Under what conditions would the
relationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from
two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

EMPLOYEE DEPARTMENT

CONTAINSHAS_PHONE

WORKS_IN

PHONE

Figure 3.23
Part of an ER diagram
for a COMPANY
 database.

INSTRUCTOR COURSE

USES

TEACHES

TEXT

Figure 3.24
Part of an ER diagram
for a COURSES
 database.

 Exercises 101

 3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes
the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible
time periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50
a.m.’, . . . , ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during
a particular semester, its section offerings are numbered 1, 2, 3, and so
on). There are several composite keys for section, and some attributes
are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2

1. STUDENT ______________ SOCIAL_SECURITY_CARD

2. STUDENT ______________ TEACHER

3. CLASSROOM ______________ WALL

4. COUNTRY ______________ CURRENT_PRESIDENT

5. COURSE ______________ TEXTBOOK

6. ITEM (that can be found
in an order)

______________ ORDER

7. STUDENT ______________ CLASS

8. CLASS ______________ INSTRUCTOR

9. INSTRUCTOR ______________ OFFICE

10. EBAY_AUCTION_ITEM ______________ EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.

 Assume that MOVIES is a populated database. ACTOR is used as a generic term
and includes actresses. Given the constraints shown in the ER schema, respond
to the following statements with True, False, or Maybe. Assign a response of
Maybe to statements that, although not explicitly shown to be True, cannot be
proven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.

 b. There are some actors who have acted in more than ten movies.

 c. Some actors have done a lead role in multiple movies.

 d. A movie can have only a maximum of two lead actors.

102 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. Every director has been an actor in some movie.

 f. No producer has ever been an actor.

 g. A producer cannot be an actor in some other movie.

 h. There are movies with more than a dozen actors.

 i. Some producers have been a director as well.

 j. Most movies have one director and one producer.

 k. Some movies have one director but several producers.

 l. There are some actors who have done a lead role, directed a movie, and
produced a movie.

 m. No movie has a director who also acted in that movie.

 3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an
instance diagram using three movies that have been released recently.
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,
DIRECTORS involved; make up instances of the relationships as they exist in
reality for those movies.

ACTOR
MOVIE

LEAD_ROLE

PERFORMS_IN

DIRECTSDIRECTOR

ALSO_A_
DIRECTOR

PRODUCESPRODUCER

ACTOR_
PRODUCER

1

1

1

1
1

M

M

2 N

N

N

N

Figure 3.25
An ER diagram for a MOVIES database schema.

 Laboratory Exercises 103

 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should
observe the following requirements:

 a. A student should have the ability to compute his/her GPA and add or
drop majors and minors.

 b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

 c. Each instructor should be able to assign or change a student’s grade for a
course.

 Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises
 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER

schema for this database using a data modeling tool such as ERwin or
Rational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:

■ The mail order company has employees, each identified by a unique em-
ployee number, first and last name, and Zip Code.

■ Each customer of the company is identified by a unique customer number,
first and last name, and Zip Code.

■ Each part sold by the company is identified by a unique part number, a
part name, price, and quantity in stock.

■ Each order placed by a customer is taken by an employee and is given a
unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

 Design an entity–relationship diagram for the mail order database and build
the design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie
industry. The data requirements are summarized as follows:

■ Each movie is identified by title and year of release. Each movie has a
length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in it.
Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

■ Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.

104 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

■ Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

■ Production companies are identified by name and each has an address. A
production company produces one or more movies.

 Design an entity–relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject
the paper. The data requirements are summarized as follows:

■ Authors of papers are uniquely identified by e-mail id. First and last names
are also recorded.

■ Each paper is assigned a unique identifier by the system and is described
by a title, abstract, and the name of the electronic file containing the paper.

■ A paper may have multiple authors, but one of the authors is designated as
the contact author.

■ Reviewers of papers are uniquely identified by e-mail address. Each re-
viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

■ Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

■ Each review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

 Design an entity–relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21.
Build this design using a data modeling tool such as ERwin or Rational Rose.

Selected Bibliography
The entity–relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and
Senko (1975). Since then, numerous modifications to the ER model have been
 suggested. We have incorporated some of these in our presentation. Structural

 Selected Bibliography 105

 constraints on relationships are discussed in Abrial (1974), Elmasri and Wieder-
hold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attri-
butes are incorporated in the ER model in Elmasri et al. (1985). Although we did
not discuss languages for the ER model and its extensions, there have been several
proposals for such languages. Elmasri and Wiederhold (1981) proposed the
GORDAS query language for the ER model. Another ER query language was pro-
posed by Markowitz and Raz (1983). Senko (1980) presented a query language for
Senko’s DIAM model. A formal set of operations called the ER algebra was
 presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-
sented another formal language for the ER model. Campbell et al. (1985) presented
a set of ER operations and showed that they are relationally complete. A conference
for the dissemination of research results related to the ER model has been held reg-
ularly since 1979. The conference, now known as the International Conference on
Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997),
Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New
York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland
(ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992),
Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia
(ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER
1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Fin-
land (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagen-
furt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER
2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009).
The 2010 conference was held in Vancouver, British Columbia, Canada (ER2010),
2011 in Brussels, Belgium (ER2011), 2012 in Florence, Italy (ER2012) , 2013 in
Hong Kong, China (ER2013), and the 2014 conference was held in Atlanta, Georgia
(ER 2014). The 2015 conference is to be held in Stockholm, Sweden.

This page intentionally left blank

107

4
The Enhanced Entity–Relationship

(EER) Model

The ER modeling concepts discussed in Chapter 3
are sufficient for representing many database sche-

mas for traditional database applications, which include many data-processing
applications in business and industry. Since the late 1970s, however, designers of
database applications have tried to design more accurate database schemas that
reflect the data properties and constraints more precisely. This was particularly
important for newer applications of database technology, such as databases for
engineering design and manufacturing (CAD/CAM),1 telecommunications, com-
plex software systems, and geographic information systems (GISs), among many
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently
in related areas of computer science, such as the knowledge representation area of
artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data
models and show how the ER model can be enhanced to include these concepts,
which leads to the enhanced ER (EER) model.2 We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER
model. Then, in Section 4.2, we add the concepts of specialization and generalization.
Section 4.3 discusses the various types of constraints on specialization/generalization,
and Section 4.4 shows how the UNION construct can be modeled by including the

chapter 4

1CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2EER has also been used to stand for extended ER model.

108 Chapter 4 The Enhanced Entity–Relationship (EER) Model

concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY
database schema in the EER model and summarizes the EER model concepts by
giving formal definitions. We will use the terms object and entity interchangeably
in this chapter, because many of these concepts are commonly used in object-
oriented models.

We present the UML class diagram notation for representing specialization and
generalization in Section 4.6, and we briefly compare these with EER notation and
concepts. This serves as an example of alternative notation, and is a continuation
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance
The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass
and the related concepts of specialization and generalization (see Sections 4.2
and 4.3). Another concept included in the EER model is that of a category or union
type (see Section 4.4), which is used to represent a collection of objects (entities)
that is the union of objects of different entity types. Associated with these concepts
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a
diagrammatic technique for displaying these concepts when they arise in an EER
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.

The first enhanced ER (EER) model concept we take up is that of a subtype or
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is
used to represent both a type of entity and the entity set or collection of entities of that
type that exist in the database. For example, the entity type EMPLOYEE describes the
type (that is, the attributes and relationships) of each employee entity, and also refers
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an
entity type has numerous subgroupings or subtypes of its entities that are meaningful
and need to be represented explicitly because of their significance to the database
application. For example, the entities that are members of the EMPLOYEE entity
type may be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or
collection of entities in each of the latter groupings is a subset of the entities that
belong to the EMPLOYEE entity set, meaning that every entity that is a member of
one of these subgroupings is also an employee. We call each of these subgroupings a

 4.1 Subclasses, Superclasses, and Inheritance 109

subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how
to represent these concepts diagramatically in EER diagrams. (The circle notation in
Figure 4.1 will be explained in Section 4.2.)

We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or supertype/subtype or simply class/subclass relationship.3

In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN
are two class/subclass relationships. Notice that a member entity of the subclass
represents the same real-world entity as some member of the superclass; for
example, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’
Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in
the database system, however, we may represent a member of the subclass as a
distinct database object—say, a distinct record that is related via the key attribute
to its superclass entity. In Section 9.2, we discuss various options for representing
superclass/subclass relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally

3A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and
so on.

MANAGES

d

Minit Lname

Name Birth_date AddressSsn

Fname

Eng_typeTgradeTyping_speed Pay_scale

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

Salary

PROJECT

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

TRADE_UNION

BELONGS_TO

d

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1
EER diagram
notation to represent
subclasses and
specialization.

110 Chapter 4 The Enhanced Entity–Relationship (EER) Model

as a member of any number of subclasses. For example, a salaried employee who is
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE
of the EMPLOYEE entity type. However, it is not necessary that every entity in a
superclass is a member of some subclass.

An important concept associated with subclasses (subtypes) is that of type
inheritance. Recall that the type of an entity is defined by the attributes it possesses
and the relationship types in which it participates. Because an entity in the subclass
represents the same real-world entity from the superclass, it should possess values
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of
the entity as a member of the superclass. The entity also inherits all the relationships
in which the superclass participates. Notice that a subclass, with its own specific (or
local) attributes and relationships together with all the attributes and relationships it
inherits from the superclass, can be considered an entity type in its own right.4

4.2 Specialization and Generalization

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.
We may have several specializations of the same entity type based on different
distinguishing characteristics. For example, another specialization of the
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on
the method of pay.

Figure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle
that represents the specialization, which is connected in turn to the superclass. The
subset symbol on each line connecting a subclass to the circle indicates the direction
of the superclass/subclass relationship.5 Attributes that apply only to entities of a
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of
the subclass. Similarly, a subclass can participate in specific relationship types,
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

4In some object-oriented programming languages, a common restriction is that an entity (or object) has
only one type. This is generally too restrictive for conceptual database modeling.
5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and
other proposed notations in Appendix A.

 4.2 Specialization and Generalization 111

relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1
and additional EER diagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY,
ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to
a subclass represents the same real-world entity as the entity connected to it in the
EMPLOYEE superclass, even though the same entity is shown twice; for example, e1
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as
the entity in the superclass but is playing a specialized role—for example, an
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in
the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of

EMPLOYEE

SECRETARY

ENGINEER

TECHNICIAN

e1

e2

e3

e4

e5

e6

e7

e8

e1

e2

e3

e4

e5

e7

e8

Figure 4.2
Instances of a specialization.

112 Chapter 4 The Enhanced Entity–Relationship (EER) Model

the superclass entity type. A subclass is defined in order to group the entities to
which these attributes apply. The members of the subclass may still share the
majority of their attributes with the other members of the superclass. For example,
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed,
whereas the ENGINEER subclass has the specific attribute Eng_type, but
SECRETARY and ENGINEER share their other inherited attributes from the
EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization
We can think of a reverse process of abstraction in which we suppress the differences
among several entity types, identify their common features, and generalize them
into a single superclass of which the original entity types are special subclasses. For
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because
they have several common attributes, they can be generalized into the entity type
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the

(a)

(b)

Max_speed

Vehicle_id

No_of_passengers

License_plate_no

CAR Price Price

License_plate_no

No_of_axles

Vehicle_id

Tonnage

TRUCK

Vehicle_id Price License_plate_no

VEHICLE

No_of_passengers

Max_speed

CAR TRUCK

No_of_axles

Tonnage

d

Figure 4.3
Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 113

generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A
diagrammatic notation to distinguish between generalization and specialization is
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation
because the decision as to which process was followed in a particular situation is
often subjective.

So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a
superclass or subclass represents a collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are all shown in
rectangles in EER diagrams, like entity types.

4.3 Constraints and Characteristics
of Specialization and Generalization
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it
applies to both specialization and generalization. Then, we discuss differences
between specialization/generalization lattices (multiple inheritance) and hierarchies
(single inheritance), and we elaborate on the differences between the specialization
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization
In general, we may have several specializations defined on the same entity type (or
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses
in each of the specializations. A specialization may also consist of a single subclass
only, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do not
use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of
the superclass. Such subclasses are called predicate-defined (or condition-defined)
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 4.4, we can specify the condition of membership in the
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the
defining predicate of the subclass. This condition is a constraint specifying that
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type

114 Chapter 4 The Enhanced Entity–Relationship (EER) Model

is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by
writing the predicate condition next to the line that connects the subclass to the
specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the special-
ization.6 In this case, all the entities with the same value for the attribute belong to
the same subclass. We display an attribute-defined specialization by placing the
defining attribute name next to the arc from the circle to the superclass, as shown
in Figure 4.4.

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint
sets. This means that an entity can be a member of at most one of the subclasses of
the specialization. A specialization that is attribute-defined implies the disjointness
constraint (if the attribute used to define the membership predicate is single-
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The
d notation also applies to user-defined subclasses of a specialization that must be
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.

d

Minit Lname

Name Birth_date Address Job_typeSsn

Fname

Eng_typeTgrade ‘Technician’

Job_type

‘Secretary’ ‘Engineer’

Typing_speed

SECRETARY TECHNICIAN ENGINEER

EMPLOYEE

Figure 4.4
EER diagram notation
for an attribute-defined
specialization on
Job_type.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 115

may be overlapping; that is, the same (real-world) entity may be a member of more
than one subclass of the specialization. This case, which is the default, is displayed
by placing an o in the circle, as shown in Figure 4.5.

The second constraint on specialization is called the completeness (or totalness)
constraint, which may be total or partial. A total specialization constraint specifies
that every entity in the superclass must be a member of at least one subclass
in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect
the superclass to the circle. A single line is used to display a partial specialization,
which allows an entity not to belong to any of the subclasses. For example, if some
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER,
TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.7

Notice that the disjointness and completeness constraints are independent. Hence,
we have the following four possible constraints on a specialization:

 ■ Disjoint, total

 ■ Disjoint, partial

 ■ Overlapping, total

 ■ Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that
applies to each specialization. In general, a superclass that was identified through
the generalization process usually is total, because the superclass is derived from the
subclasses and hence contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

 ■ Deleting an entity from a superclass implies that it is automatically deleted
from all the subclasses to which it belongs.

7The notation of using single or double lines is similar to that for partial or total participation of an entity
type in a relationship type, as described in Chapter 3.

Part_no Description

PARTManufacture_date

Drawing_no

PURCHASED_PART

Supplier_name
Batch_no

List_price

o

MANUFACTURED_PART

Figure 4.5
EER diagram notation
for an overlapping
(nondisjoint)
specialization.

116 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ Inserting an entity in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclasses for which
the entity satisfies the defining predicate.

 ■ Inserting an entity in a superclass of a total specialization implies that
the entity is mandatorily inserted in at least one of the subclasses of the
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2 Specialization and Generalization Hierarchies
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the
real-world constraint that every engineering manager is required to be an engineer.
A specialization hierarchy has the constraint that every subclass participates as a
subclass in only one class/subclass relationship; that is, each subclass has only one
parent, which results in a tree structure or strict hierarchy. In contrast, for a
specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may
be part of a conceptual schema for a UNIVERSITY database. Notice that this
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT
subclass, which is a subclass in two distinct class/subclass relationships.

d

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

ENGINEERING_MANAGER

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

d

Figure 4.6
A specialization lattice with shared subclass
ENGINEERING_MANAGER.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 117

The requirements for the part of the UNIVERSITY database shown in Figure 4.7
are the following:

 1. The database keeps track of three types of persons: employees, alumni, and
students. A person can belong to one, two, or all three of these types. Each
person has a name, SSN, sex, address, and birth date.

 2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one
of these types. For each alumnus, a record of the degree or degrees that
he or she earned at the university is kept, including the name of the
degree, the year granted, and the major department. Each student has a
major department.

 3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching
assistants, and the percent of time that they work is recorded in the database.
Research assistants have their research project stored, whereas teaching
assistants have the current course they work on.

STAFF

Percent_time

FACULTY

Name Sex Address

PERSON

Salary

EMPLOYEE

Major_dept

Birth_date

ALUMNUS

d

o

STUDENT_
ASSISTANT

STUDENT

Degrees

DegreeYear Major

GRADUATE_
STUDENT

d

UNDERGRADUATE_
STUDENT

RESEARCH_ASSISTANT

d

TEACHING_ASSISTANT

Position Rank Degree_program Class

CourseProject

Ssn

Figure 4.7
A specialization lattice
with multiple inheritance
for a UNIVERSITY
database.

118 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4. Students are further classified as either graduate or undergraduate, with
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on)
for graduate students and class (freshman, sophomore, and so on) for
undergraduates.

In Figure 4.7, all person entities represented in the database are members of
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE,
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the
specialization {STUDENT_ASSISTANT, FACULTY, STAFF} . Notice that
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT
is the superclass for the specialization into {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not
only of its direct superclass, but also of all its predecessor superclasses all the way to
the root of the hierarchy or lattice if necessary. For example, an entity in
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy,
where a leaf node is a class that has no subclasses of its own. For example, a member
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as
multiple inheritance, where the shared subclass ENGINEERING_MANAGER
directly inherits attributes and relationships from multiple superclasses. Notice
that the existence of at least one shared subclass leads to a lattice (and hence to
multiple inheritance); if no shared subclasses existed, we would have a hierarchy
rather than a lattice and only single inheritance would exist. An important rule
related to multiple inheritance can be illustrated by the example of the shared
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.

It is important to note here that some models and languages are limited to single
inheritance and do not allow multiple inheritance (shared subclasses). It is also
important to note that some models do not allow an entity to have multiple
types, and hence an entity can be a member of only one leaf class.8 In such a
model, it is necessary to create additional subclasses as leaf nodes to cover all

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 119

possible combinations of classes that may have some entity that belongs to all
these classes simultaneously. For example, in the overlapping specialization of
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would
be necessary to create seven subclasses of PERSON in order to cover all possible
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to
extra complexity.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section.
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization in
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization
processes and how they are used to refine conceptual schemas during conceptual
database design. In the specialization process, the database designers typically start
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity
type. For example, when designing the specialization lattice in Figure 4.7, we may
first specify an entity type PERSON for a university database. Then we discover
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS,
STUDENT}. The overlapping constraint is chosen because a person may belong
to more than one of the subclasses. We specialize EMPLOYEE further into
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is
also a subclass of STUDENT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS,
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,
STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT}
into PERSON.

The final design of hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were created during the design process. In practice, it
is likely that a combination of the two processes is employed. Notice that the

120 Chapter 4 The Enhanced Entity–Relationship (EER) Model

notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques.
For example, frame-based knowledge representation schemes closely resemble
class hierarchies. Specialization is also common in software engineering design
methodologies that are based on the object-oriented paradigm.

4.4 Modeling of UNION Types
Using Categories

It is sometimes necessary to represent a collection of entities from different entity
types. In this case, a subclass will represent a collection of entities that is a subset of
the UNION of entities from distinct entity types; we call such a subclass a union type
or a category.9

For example, suppose that we have three entity types: PERSON, BANK, and
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can
be a person, a bank (holding a lien on a vehicle), or a company. We need to create
a class (collection of entities) that includes entities of all three types to play the
role of vehicle owner. A category (union type) OWNER that is a subclass of the
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created
for this purpose. We display categories in an EER diagram as shown in Figure 4.8.
The superclasses COMPANY, BANK, and PERSON are connected to the circle with
the ∪ symbol, which stands for the set union operation. An arc with the subset
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we
have two categories: OWNER, which is a subclass (subset) of the union of PERSON,
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of
the union of CAR and TRUCK.

A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships
always have a single superclass. To better understand the difference,
we can compare a category, such as OWNER in Figure 4.8, with the
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE,
so an entity that is a member of ENGINEERING_MANAGER must exist in all
three collections. This represents the constraint that an engineering manager must
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the
ENGINEERING_MANAGER entity set is a subset of the intersection of the three
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the
superclasses. This represents the constraint that an OWNER may be a COMPANY,
a BANK, or a PERSON in Figure 4.8.

9Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al.,
1985).

 4.4 Modeling of UNION Types Using Categories 121

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a
PERSON, or a BANK, depending on the superclass to which the entity belongs. On
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6)
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER,
and MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig-
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily

Name Address

Driver_license_no

Ssn

License_plate_no

Lien_or_regular

Purchase_date

Bname Baddress

Cname Caddress

BANK

PERSON

OWNER

OWNS

M

N

U

REGISTERED_VEHICLE

COMPANY

U

Cstyle

Cyear

Vehicle_id

Cmake

Cmodel

CAR

Tonnage

Tyear

Vehicle_id

Tmake

Tmodel

TRUCK

Figure 4.8
Two categories (union
types): OWNER and
REGISTERED_VEHICLE.

122 Chapter 4 The Enhanced Entity–Relationship (EER) Model

all of them (for example, some cars or trucks may not be registered). In general,
a specialization or generalization such as that in Figure 4.3(b), if it were partial,
would not preclude VEHICLE from containing other types of entities, such as
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8
implies that only cars and trucks, but not other types of entities, can be members
of REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total
category is represented diagrammatically by a double line connecting the category
and the circle, whereas a partial category is indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated
by the OWNER category in Figure 4.8, or they may have the same key attribute, as
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is
total (not partial), it may be represented alternatively as a total specialization (or a
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.

It is important to note that some modeling methodologies do not have union
types. In these models, a union type must be represented in a roundabout way
(see Section 9.2).

4.5 A Sample UNIVERSITY EER Schema,
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we
discuss design choices for conceptual schemas, and finally we summarize the EER
model concepts and define them formally in the same manner in which we formally
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example
Consider a UNIVERSITY database that has different requirements from the UNIVERSITY
database presented in Section 3.10. This database keeps track of students and their
majors, transcripts, and registration as well as of the university’s course offerings.
The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.

For each person, the database maintains information on the person’s Name [Name],
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate].
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT.
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research,

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 123

Foffice
Salary

Rank

Fphone

FACULTY

d

College Degree Year
1 N

M N

M

Degrees

Class

1

M

1

N

N

M

1

N

N

Qtr = Current_qtr and
Year = Current_year

N

N

1

M

N
N

1

Cname

CdescC#

1 N

1

Office

Dphone

Dname

N

1

1

N

Class=5

Fname LnameMinit

Name

BdateSsn Sex No Street Apt_no City State Zip

Address

U

ADVISOR

COMMITTEE

CHAIRS

BELONGS

MINOR

MAJOR

DCCD

Agency

St_date

NoTitle

Start

Time

End

CURRENT_SECTION

Grade

Sec# Year
Qtr

CofficeCname

Dean

PERSON

GRAD_STUDENT

STUDENT

GRANT

SUPPORT

REGISTERED

TRANSCRIPT

SECTION

TEACH

DEPARTMENT

COURSECOLLEGE

CS

INSTRUCTOR_RESEARCHER

PI

Figure 4.9
An EER conceptual schema
for a different UNIVERSITY
database.

124 Chapter 4 The Enhanced Entity–Relationship (EER) Model

visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated
[BELONGS] (a faculty member can be associated with several departments, so the
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to his
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course
sections he or she is currently attending [REGISTERED], and to the courses completed
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received
[Grade] in a section of a course.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.

An academic department has the attributes name [Dname], telephone [Dphone], and
office number [Office] and is related to the faculty member who is its chairperson
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cname], office number [Coffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course
description [Cdesc]. Several sections of each course are offered, with each section
having the attributes section number [Sec#] and the year and quarter in which the
section was offered ([Year] and [Qtr]).10 Section numbers uniquely identify each
section. The sections being offered during the current quarter are in a subclass
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_qtr and
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research
grants and contracts awarded to the university. Each grant has attributes grant title
[Title], grant number [No], the awarding agency [Agency], and the starting date
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it
supports [SUPPORT]. Each instance of support has as attributes the starting date of
support [Start], the ending date of the support (if known) [End], and the percentage of
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization
It is not always easy to choose the most appropriate conceptual design for a
database application. In Section 3.7.3, we presented some of the typical issues
that confront a database designer when choosing among the concepts of entity

10We assume that the quarter system rather than the semester system is used in this university.

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 125

types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and
choices for the EER concepts of specialization/generalization and categories
(union types).

As we mentioned in Section 3.7.3, conceptual database design should be considered
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

 ■ In general, many specializations and subclasses can be defined to make
the conceptual model accurate. However, the drawback is that the
design becomes quite cluttered. It is important to represent only those
subclasses that are deemed necessary to avoid extreme cluttering of the
conceptual schema.

 ■ If a subclass has few specific (local) attributes and no specific relationships,
it can be merged into the superclass. The specific attributes would hold NULL
values for entities that are not members of the subclass. A type attribute
could specify whether an entity is a member of the subclass.

 ■ Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the
superclass and replaced with one or more type attributes that specify the
subclass or subclasses that each entity belongs to (see Section 9.2 for how
this criterion applies to relational databases).

 ■ Union types and categories should generally be avoided unless the situation
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

 ■ The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE
entity type and add the following attributes to EMPLOYEE:

 ■ An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’}
would indicate which subclass in the first specialization each employee
belongs to.

 ■ An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would
indicate which subclass in the second specialization each employee
belongs to.

126 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts
We now summarize the EER model concepts and give formal definitions. A class11

defines a type of entity and represents a set or collection of entities of that type; this
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a
class whose entities must always be a subset of the entities in another class, called
the superclass C of the superclass/subclass (or IS-A) relationship. We denote
such a relationship by C/S. For such a superclass/subclass relationship, we must
always have

S ⊆ C

A specialization Z = {S1, S2, … , Sn} is a set of subclasses that have the same super-
class G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, … , n. G is called
a generalized entity type (or the superclass of the specialization, or a generalization
of the subclasses {S1, S2, … , Sn}). Z is said to be total if we always (at any point in
time) have

∪
n

i=1
 Si = G

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have

Si ∩ Sj = ∅ (empty set) for i ≠ j

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of
C is used to specify which entities in C are members of S; that is, S = C[p], where
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a
predicate is called user-defined.

A specialization Z (or generalization G) is said to be attribute-defined if a
predicate (A = ci), where A is an attribute of G and ci is a constant value from
the domain of A, is used to specify membership in each subclass Si in Z. Notice
that if ci ≠ cj for i ≠ j, and A is a single-valued attribute, then the specialization
will be disjoint.

A category T is a class that is a subset of the union of n defining superclasses D1, D2,
… , Dn, n > 1 and is formally specified as follows:

T ⊆ (D1 ∪ D2 ... ∪ Dn)

11The use of the word class here refers to a collection (set) of entities, which differs from its more
common use in object-oriented programming languages such as C++. In C++, a class is a structured
type definition along with its applicable functions (operations).

 4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams 127

A predicate pi on the attributes of Di can be used to specify the members of each Di
that are members of T. If a predicate is specified on every Di, we get

T = (D1[p1] ∪ D2[p2] ... ∪ Dn[pn])

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class—not only any entity type—to participate in a relationship.
Hence, we should replace the words entity type with class in that definition. The
graphical notation of EER is consistent with ER because all classes are represented
by rectangles.

4.6 Example of Other Notation: Representing
Specialization and Generalization in UML
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal
line, which has a triangle connecting the horizontal line through another vertical
line to the superclass. A blank triangle indicates a specialization/generalization
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes)
are called leaf classes.

The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology.
We focused on the concepts that are relevant to ER and EER database modeling
rather than on those concepts that are more relevant to software engineering. In
UML, there are many details that we have not discussed because they are outside
the scope of this text and are mainly relevant to software engineering. For example,
classes can be of various types:

 ■ Abstract classes define attributes and operations but do not have objects
corresponding to those classes. These are mainly used to specify a set of
attributes and operations that can be inherited.

 ■ Concrete classes can have objects (entities) instantiated to belong to the
class.

 ■ Template classes specify a template that can be further used to define
other classes.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that
describe complete details of UML.

128 Chapter 4 The Enhanced Entity–Relationship (EER) Model

Project

change_project
. . .

RESEARCH_
ASSISTANT

Course

assign_to_course
. . .

TEACHING_
ASSISTANT

Degree_program

change_degree_program
. . .

GRADUATE_
STUDENT

Class

change_classification
. . .

UNDERGRADUATE_
STUDENT

Position

hire_staff
. . .

STAFF

Rank

promote
. . .

FACULTY

Percent_time

hire_student
. . .

STUDENT_ASSISTANT

Year
Degree
Major

DEGREE

. . .

Salary

hire_emp
. . .

EMPLOYEE

new_alumnus
1 *

. . .

ALUMNUS

Major_dept

change_major
. . .

STUDENT

Name
Ssn
Birth_date
Sex
Address

age
. . .

PERSON

Figure 4.10
A UML class diagram corresponding to the EER diagram in Figure 4.7,
illustrating UML notation for specialization/generalization.

4.7 Data Abstraction, Knowledge
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 129

data modeling but also in artificial intelligence literature when discussing
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces
some of the alternative terminology and a few additional concepts.

The goal of KR techniques is to develop concepts for accurately modeling some domain
of knowledge by creating an ontology12 that describes the concepts of the domain
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions.
The goals of KR are similar to those of semantic data models, but there are some
important similarities and differences between the two disciplines:

 ■ Both disciplines use an abstraction process to identify common properties and
important aspects of objects in the miniworld (also known as domain of discourse
in KR) while suppressing insignificant differences and unimportant details.

 ■ Both disciplines provide concepts, relationships, constraints, operations,
and languages for defining data and representing knowledge.

 ■ KR is generally broader in scope than semantic data models. Different forms
of knowledge, such as rules (used in inference, deduction, and search),
incomplete and default knowledge, and temporal and spatial knowledge, are
represented in KR schemes. Database models are being expanded to include
some of these concepts (see Chapter 26).

 ■ KR schemes include reasoning mechanisms that deduce additional facts
from the facts stored in a database. Hence, whereas most current database
systems are limited to answering direct queries, knowledge-based systems
using KR schemes can answer queries that involve inferences over the
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

 ■ Whereas most data models concentrate on the representation of database
schemas, or meta-knowledge, KR schemes often mix up the schemas with
the instances themselves in order to provide flexibility in representing
exceptions. This often results in inefficiencies when these KR schemes are
implemented, especially when compared with databases and when a large
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models,
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation
and association. The paired concepts of classification and instantiation are inverses
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their
relation to the concrete representations used in the EER model to clarify the data
abstraction process and to improve our understanding of the related process of
conceptual schema design. We close the section with a brief discussion of ontology,
which is being used widely in recent knowledge representation research.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.

130 Chapter 4 The Enhanced Entity–Relationship (EER) Model

4.7.1 Classification and Instantiation
The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in
KR) the classes rather than the individual objects. Collections of objects that share
the same types of attributes, relationships, and constraints are classified into classes
in order to simplify the process of discovering their properties. Instantiation is the
inverse of classification and refers to the generation and specific examination of
distinct objects of a class. An object instance is related to its object class by the
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by
permitting the display of individual objects. We did not describe this feature in our
introduction to UML class diagrams.

In general, the objects of a class should have a similar type structure. However,
some objects may display properties that differ in some respects from the other
objects of the class; these exception objects also need to be modeled, and KR
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR
schemes allow such class properties. UML diagrams also allow specification of
class properties.

In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them.
Relationship instances are classified into relationship types. Hence, entity types,
subclasses, categories, and relationship types are the different concepts that are
used for classification in the EER model. The EER model does not provide
explicitly for class properties, but it may be extended to do so. In UML, objects
are classified into classes, and it is possible to display both class properties and
individual objects.

Knowledge representation models allow multiple classification schemes in
which one class is an instance of another class (called a meta-class). Notice that
this cannot be represented directly in the EER model, because we have only two
levels—classes and instances. The only relationship among classes in the EER
model is a superclass/subclass relationship, whereas in some KR schemes an
additional class/instance relationship can be represented directly in a class
hierarchy. An instance may itself be another class, allowing multiple-level
classification schemes.

4.7.2 Identification
Identification is the abstraction process whereby classes and objects are made
uniquely identifiable by means of some identifier. For example, a class name uniquely
identifies a whole class within a schema. An additional mechanism is necessary for
telling distinct object instances apart by means of object identifiers. Moreover, it is
necessary to identify multiple manifestations in the database of the same real-world

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 131

object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> in
a PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify
the fact that these two database objects (tuples) represent the same real-world
entity unless we make a provision at design time for appropriate cross-referencing to
supply this identification. Hence, identification is needed at two levels:

 ■ To distinguish among database objects and classes

 ■ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of
unique names for the constructs in a schema. For example, every class in an EER
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a
combination of their own partial key values and the entities they are related to in
the owner entity type(s). Relationship instances are identified by some combination
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization
Specialization is the process of classifying a class of objects into more specialized
subclasses. Generalization is the inverse process of generalizing several classes into
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization.
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association
Aggregation is an abstraction concept for building composite objects from their
component objects. There are three cases where this concept can be related to the
EER model. The first case is the situation in which we aggregate attribute values of
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER
model does not provide for explicitly, involves the possibility of combining objects
that are related by a particular relationship instance into a higher-level aggregate
object. This is sometimes useful when the higher-level aggregate object is itself to be
related to another object. We call the relationship between the primitive objects and
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF.
UML provides for all three types of aggregation.

132 Chapter 4 The Enhanced Entity–Relationship (EER) Model

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This
abstract relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 4.11(a), which stores information about interviews by
job applicants to various companies. The class COMPANY is an aggregation of
the attributes (or component objects) Cname (company name) and Caddress
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name,
Address, and Phone. The relationship attributes Contact_name and Contact_phone
represent the name and phone number of the person in the company who is
responsible for the interview. Suppose that some interviews result in job offers,
whereas others do not. We would like to treat INTERVIEW as a class to associate it
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it
requires each interview relationship instance to have a job offer. The schema
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.

One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in
this book does not have this facility, some semantic data models do allow it and call
the resulting object a composite or molecular object. Other models treat entity
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to
JOB_OFFER. Hence, we can always represent these situations correctly in the ER
model by creating additional entity types, although it may be conceptually more
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to
allow relationships among relationships, as in Figure 4.11(c).

The main structural distinction between aggregation and association is that when
an association instance is deleted, the participating objects may continue to exist.
However, if we support the notion of an aggregate object—for example, a CAR that
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web
In recent years, the amount of computerized data and information available on
the Web has spiraled out of control. Many different models and formats are used.
In addition to the database models that we present in this text, much information
is stored in the form of documents, which have considerably less structure than

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 133

(a)

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phoneContact_name

Date

INTERVIEW

(c)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(b)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

(d)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(e)

JOB_OFFER

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phone

Contact_name

RESULTS_IN

CJI

INTERVIEWDate

Figure 4.11
Aggregation. (a) The
relationship type INTERVIEW.
(b) Including JOB_OFFER in a
ternary relationship type
(incorrect). (c) Having the
RESULTS_IN relationship
participate in other relationships
(not allowed in ER). (d) Using
aggregation and a composite
(molecular) object (generally
not allowed in ER but allowed
by some modeling tools).
(e) Correct representation
in ER.

134 Chapter 4 The Enhanced Entity–Relationship (EER) Model

database information does. One ongoing project that is attempting to allow
information exchange among computers on the Web is called the Semantic
Web, which attempts to create knowledge representation models that are quite
general in order to allow meaningful information exchange and search among
machines. The concept of ontology is considered to be the most promising basis
for achieving the goals of the Semantic Web and is closely related to knowledge
representation. In this section, we give a brief introduction to what ontology is
and how it can be used as a basis to automate information understanding, search,
and exchange.

The study of ontologies attempts to describe the concepts and relationships that are
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality.
Ontology originated in the fields of philosophy and metaphysics. One commonly
used definition of ontology is a specification of a conceptualization.13

In this definition, a conceptualization is the set of concepts and relationships that
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are
used to specify the conceptualization. The ontology includes both specification and
conceptualization. For example, the same conceptualization may be specified in two
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to
describe ontologies are as follows:

 ■ A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

 ■ A taxonomy describes how concepts of a particular area of knowledge
are related using structures similar to those used in a specialization or
generalization.

 ■ A detailed database schema is considered by some to be an ontology that
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

 ■ A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a
domain of interest (for example, medical terms, electronic-commerce applications,
sports, and so on) as completely as possible.

13This definition is given in Gruber (1995).

 Review Questions 135

4.8 Summary
In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER
model. We presented the concept of a subclass and its superclass and the related
mechanism of attribute/relationship inheritance. We saw how it is sometimes
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main
processes for defining superclass/subclass hierarchies and lattices: specialization
and generalization.

Next, we showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We
discussed the concept of a category or union type, which is a subset of the union of
two or more classes, and we gave formal definitions of all the concepts presented.

We introduced some of the notation and terminology of UML for representing
specialization and generalization. In Section 4.7, we briefly discussed the discipline
of knowledge representation and how it is related to semantic data modeling. We
also gave an overview and summary of the types of abstract data representation
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts
are related to each of these.

Review Questions
 4.1. What is a subclass? When is a subclass needed in data modeling?

 4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-
tionship, IS-A relationship, specialization, generalization, category, specific
(local) attributes, and specific relationships.

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the
differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.

 4.7. What is the difference between a specialization hierarchy and a specializa-
tion lattice?

 4.8. What is the difference between specialization and generalization? Why do
we not display this difference in schema diagrams?

136 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4.9. How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

 4.11. Discuss the main differences between the notation for EER schema dia-
grams and UML class diagrams by comparing how common concepts are
represented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling
concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER
model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database
modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database
schema.

Exercises
 4.16. Design an EER schema for a database application that you are interested in.

Specify all constraints that should hold on the database. Make sure that the
schema has at least five entity types, four relationship types, a weak entity
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that it
is necessary to keep track of different types of ACCOUNTS
(SAVINGS_ACCTS, CHECKING_ACCTS, …) and LOANS (CAR_LOANS,
HOME_LOANS, …). Suppose that it is also desirable to keep track of
each ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, …)
and each LOAN’s PAYMENTS; both of these include the amount, date,
and time. Modify the BANK schema, using ER and EER concepts of
specialization and generalization. State any assumptions you make
about the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram
that shows the entity types, attributes, relationships, and specializations for
this application. State any assumptions you make. The Olympic facilities are
divided into sports complexes. Sports complexes are divided into one-sport
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so

 Exercises 137

on). A complex has a location, chief organizing individual, total occupied
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date,
duration, number of participants, number of officials, and so on. A roster of
all officials will be maintained together with the list of events each official
will be involved in. Different equipment is needed for the events (e.g., goal
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

 4.19. Identify all the important concepts represented in the library database case
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and
specialization/generalization. Specify (min, max) cardinality constraints
whenever possible. List details that will affect the eventual design but that
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how
many copies of each book are in the library or out on loan at any given time.
A catalog of books is available online that lists books by author, title, and
subject area. For each title in the library, a book description is kept in the
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members
request information about a book. Library staff includes chief librarian,
departmental associate librarians, reference librarians, check-out staff, and
library assistants.

Books can be checked out for 21 days. Members are allowed to have only
five books out at a time. Members usually return books within three to four
weeks. Most members know that they have one week of grace before a
notice is sent to them, so they try to return books before the grace period
ends. About 5% of the members have to be sent reminders to return books.
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most
active members of the library are defined as those who borrow books at
least ten times during the year. The top 1% of membership does 15% of the
borrowing, and the top 10% of the membership does 40% of the borrowing.
About 20% of the members are totally inactive in that they are members
who never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librari-

138 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ans issue a numbered, machine-readable card with the member’s photo on it.
This card is good for four years. A month before a card expires, a notice is
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her
information is pulled from the employee records and a library card is mailed
to his or her campus address. Professors are allowed to check out books for
three-month intervals and have a two-week grace period. Renewal notices to
professors are sent to their campus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent
and those that cannot be lent. In addition, the librarians have a list of some
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been
replaced. The librarians must have a system that keeps track of books that
cannot be lent as well as books that they are interested in acquiring. Some
books may have the same title; therefore, the title cannot be used as a means
of identification. Every book is identified by its International Standard Book
Number (ISBN), a unique international code assigned to all books. Two
books with the same title can have different ISBNs if they are in different
languages or have different bindings (hardcover or softcover). Editions of
the same book have different ISBNs.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

 4.20. Design a database to keep track of information for an art museum. Assume
that the following requirements were collected:

 ■ The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a
unique Id_no, an Artist (if known), a Year (when it was created, if known),
a Title, and a Description. The art objects are categorized in several ways, as
discussed below.

 ■ ART_OBJECTS are categorized based on their type. There are three main
types—PAINTING, SCULPTURE, and STATUE—plus another type called
OTHER to accommodate objects that do not fall into one of the three main
types.

 ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on which
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern,
abstract, etc.).

 ■ A SCULPTURE or a statue has a Material from which it was created (wood,
stone, etc.), Height, Weight, and Style.

 ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style.

 ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION
(objects that are owned by the museum) and BORROWED. Information
captured about objects in the PERMANENT_COLLECTION includes
Date_acquired, Status (on display, on loan, or stored), and Cost. Information

 Exercises 139

captured about BORROWED objects includes the Collection from which it
was borrowed, Date_borrowed, and Date_returned.

 ■ Information describing the country or culture of Origin (Italian, Egyptian,
American, Indian, and so forth) and Epoch (Renaissance, Modern,
Ancient, and so forth) is captured for each ART_OBJECT.

 ■ The museum keeps track of ARTIST information, if known: Name,
DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch,
Main_style, and Description. The Name is assumed to be unique.

 ■ Different EXHIBITIONS occur, each having a Name, Start_date, and End_date.
EXHIBITIONS are related to all the art objects that were on display during
the exhibition.

 ■ Information is kept on other COLLECTIONS with which the museum
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions
you make, and then justify your EER design choices.

 4.21. Figure 4.12 shows an example of an EER diagram for a small-private-airport
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number
[Number], a capacity [Capacity], and a location [Location]. The database also
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate].
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service
record [SERVICE]. Each plane undergoes service many times; hence, it is
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE
record includes as attributes the date of maintenance [Date], the number of
hours spent on the work [Hours], and the type of work done [Work_code]. We
use a weak entity type [SERVICE] to represent airplane service, because the
airplane registration number is used to identify a service record. An OWNER
is either a person or a corporation. Hence, we use a union type (category)
[OWNER] that is a subset of the union of corporation [CORPORATION] and
person [PERSON] entity types. Both pilots [PILOT] and employees
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in
the database have data kept on their Social Security number [Ssn], name
[Name], address [Address], and telephone number [Phone]. For CORPORATION
entities, the data kept includes name [Name], address [Address], and
telephone number [Phone]. The database also keeps track of the types of

140 Chapter 4 The Enhanced Entity–Relationship (EER) Model

planes each pilot is authorized to fly [FLIES] and the types of planes each
employee can do maintenance work on [WORKS_ON]. Show how the
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML
notation. (Note: We have not discussed how to represent categories (union
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

 4.22. Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in
UML notation.

Number Location

Capacity

Name Phone

Address

Name

Ssn

Phone

Address

Lic_numRestr

Date/workcode

1

N

N

1

N

1

PLANE_TYPE

Model Capacity

Pdate

Weight

MAINTAIN

M
M

N

OF_TYPE

STORED_IN
NM

OWNS

FLIES

WORKS_ON
N

N

M

Reg#

Date

Hours

HANGAR

PILOT

EMPLOYEE

Salary

PLANE_SERVICE

SERVICE

Workcode

AIRPLANE

Shift

U

CORPORATION PERSON

OWNER

Figure 4.12
EER schema for a SMALL_AIRPORT database.

 Exercises 141

 4.23. Consider the entity sets and attributes shown in the following table. Place a
checkmark in one column in each row to indicate the relationship between
the far left and far right columns.

a. The left side has a relationship with the right side.

b. The right side is an attribute of the left side.

c. The left side is a specialization of the right side.

d. The left side is a generalization of the right side.

Entity Set

(a) Has a
Relationship

with

(b) Has an
Attribute

that is

(c) Is a
Specialization

of

(d) Is a
Generalization

of
Entity Set

or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age

10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database.
You may look at http://www.chessgames.com for an application similar to
what you are designing. State clearly any assumptions you make in your
UML diagram. A sample of assumptions you can make about the scope is
as follows:

1. The game of chess is played between two players.

2. The game is played on an 8 × 8 board like the one shown below:

142 Chapter 4 The Enhanced Entity–Relationship (EER) Model

3. The players are assigned a color of black or white at the start of the game.

4. Each player starts with the following pieces (traditionally called
chessmen):

a. king
b. queen
c. 2 rooks
d. 2 bishops
e. 2 knights
f. 8 pawns

5. Every piece has its own initial position.

6. Every piece has its own set of legal moves based on the state of the game.
You do not need to worry about which moves are or are not legal except
for the following issues:

a. A piece may move to an empty square or capture an opposing piece.
b. If a piece is captured, it is removed from the board.
c. If a pawn moves to the last row, it is “promoted” by converting it to

another piece (queen, rook, bishop, or knight).

Note: Some of these functions may be spread over multiple classes.

 4.25. Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus
on persistent storage aspects of the system. For example, the system would
need to retrieve all the moves of every game played in sequential order.

 4.26. Which of the following EER diagrams is/are incorrect and why? State clearly
any assumptions you make.

a.

b.

E d

E1

E2

R

1

1

E

E1

E2

R

1

E3
No

 Laboratory Exercises 143

 4.27. Consider the following EER diagram that describes the computer systems at
a company. Provide your own attributes and key for each entity type. Supply
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

c.

E1

R

E3

N

o

M

MEMORY VIDEO_CARD

d

LAPTOP DESKTOP

INSTALLED

d

COMPUTER

SOFTWARE

OPERATING_
SYSTEM

INSTALLED_OS

SUPPORTS

COMPONENT
OPTIONS

SOUND_CARD

MEM_OPTIONS

KEYBOARD MOUSE

d

ACCESSORY

MONITOR

SOLD_WITH

Laboratory Exercises
 4.28. Consider a GRADE_BOOK database in which instructors within an academic

department record points earned by individual students in their classes. The
data requirements are summarized as follows:

 ■ Each student is identified by a unique identifier, first and last name, and
an e-mail address.

 ■ Each instructor teaches certain courses each term. Each course is identified
by a course number, a section number, and the term in which it is taught. For

144 Chapter 4 The Enhanced Entity–Relationship (EER) Model

each course he or she teaches, the instructor specifies the minimum number
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

 ■ Students are enrolled in each course taught by the instructor.

 ■ Each course has a number of grading components (such as midterm
exam, final exam, project, and so forth). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

 ■ Finally, the instructor records the points earned by each student in each of
the grading components in each of the courses. For example, student 1234
earns 84 points for the midterm exam grading component of the section 2
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a
weight of 20% of the course grade.

 Design an enhanced entity–relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.29. Consider an ONLINE_AUCTION database system in which members (buyers
and sellers) participate in the sale of items. The data requirements for this
system are summarized as follows:

 ■ The online site has members, each of whom is identified by a unique
member number and is described by an e-mail address, name, password,
home address, and phone number.

 ■ A member may be a buyer or a seller. A buyer has a shipping address
recorded in the database. A seller has a bank account number and routing
number recorded in the database.

 ■ Items are placed by a seller for sale and are identified by a unique item
number assigned by the system. Items are also described by an item title,
a description, starting bid price, bidding increment, the start date of the
auction, and the end date of the auction.

 ■ Items are also categorized based on a fixed classification hierarchy (for
example, a modem may be classified as COMPUTER → HARDWARE →
MODEM).

 ■ Buyers make bids for items they are interested in. Bid price and time of
bid are recorded. The bidder at the end of the auction with the highest bid
price is declared the winner, and a transaction between buyer and seller
may then proceed.

 ■ The buyer and seller may record feedback regarding their completed
transactions. Feedback contains a rating of the other party participating
in the transaction (1–10) and a comment.

 Laboratory Exercises 145

 Design an enhanced entity–relationship diagram for the ONLINE_AUCTION
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.30. Consider a database system for a baseball organization such as the major
leagues. The data requirements are summarized as follows:

 ■ The personnel involved in the league include players, coaches, managers,
and umpires. Each is identified by a unique personnel id. They are also
described by their first and last names along with the date and place of
birth.

 ■ Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

 ■ Within the players group is a subset of players called pitchers. Pitchers
have a lifetime ERA (earned run average) associated with them.

 ■ Teams are uniquely identified by their names. Teams are also described by
the city in which they are located and the division and league in which
they play (such as Central division of the American League).

 ■ Teams have one manager, a number of coaches, and a number of players.

 ■ Games are played between two teams, with one designated as the home
team and the other the visiting team on a particular date. The score (runs,
hits, and errors) is recorded for each team. The team with the most runs is
declared the winner of the game.

 ■ With each finished game, a winning pitcher and a losing pitcher are
recorded. In case there is a save awarded, the save pitcher is also recorded.

 ■ With each finished game, the number of hits (singles, doubles, triples, and
home runs) obtained by each player is also recorded.

 Design an enhanced entity–relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or
Rational Rose.

 4.31. Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9.
Enter this design using a data modeling tool such as ERwin or Rational Rose.
Make a list of the differences in notation between the diagram in the text
and the corresponding equivalent diagrammatic notation you end up using
with the tool.

 4.32. Consider the EER diagram for the small AIRPORT database shown in Fig-
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational
Rose. Be careful how you model the category OWNER in this diagram. (Hint:
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as
two distinct relationship types.)

 4.33. Consider the UNIVERSITY database described in Exercise 3.16. You already
developed an ER schema for this database using a data modeling tool such as

146 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS.
Include appropriate attributes for these new entity types. Then establish
relationships indicating that junior instructors teach undergraduate courses
whereas senior instructors teach graduate courses.

Selected Bibliography
Many papers have proposed conceptual or semantic data models. We give a repre-
sentative list here. One group of papers, including Abrial (1974), Senko’s DIAM
model (1975), the NIAM method (Verheijen and VanBekkum 1982), and Bracchi
et al. (1976), presents semantic models that are based on the concept of binary rela-
tionships. Another group of early papers discusses methods for extending the rela-
tional model to enhance its modeling capabilities. This includes the papers by
Schmid and Swenson (1975), Navathe and Schkolnick (1978), Codd’s RM/T model
(1979), Furtado (1978), and the structural model of Wiederhold and Elmasri (1979).

The ER model was proposed originally by Chen (1976) and is formalized in Ng
(1981). Since then, numerous extensions of its modeling capabilities have been pro-
posed, as in Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986),
Gogolla and Hohenstein (1991), and the entity–category–relationship (ECR) model
of Elmasri et al. (1985). Smith and Smith (1977) present the concepts of generaliza-
tion and aggregation. The semantic data model of Hammer and McLeod (1981)
introduces the concepts of class/subclass lattices, as well as other advanced model-
ing concepts.

A survey of semantic data modeling appears in Hull and King (1987). Eick (1991)
discusses design and transformations of conceptual schemas. Analysis of con-
straints for n-ary relationships is given in Soutou (1998). UML is described in detail
in Booch, Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevens
and Pooley (2000) give concise introductions to UML concepts.

Fensel (2000, 2003) discusses the Semantic Web and application of ontologies.
Uschold and Gruninger (1996) and Gruber (1995) discuss ontologies. The June
2002 issue of Communications of the ACM is devoted to ontology concepts and
applications. Fensel (2003) discusses ontologies and e-commerce.

The Relational Data
Model and SQL

part 3

This page intentionally left blank

149

5
The Relational Data Model and

Relational Database Constraints

This chapter opens Part 3 of the book, which covers
relational databases. The relational data model was

first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd,
1970), and it attracted immediate attention due to its simplicity and mathematical
foundation. The model uses the concept of a mathematical relation—which looks
somewhat like a table of values—as its basic building block, and has its theoretical
basis in set theory and first-order predicate logic. In this chapter we discuss the
basic characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems, as well as a number of open source systems. Current
popular commercial relational DBMSs (RDBMSs) include DB2 (from IBM), Oracle
(from Oracle), Sybase DBMS (now from SAP), and SQLServer and Microsoft
Access (from Microsoft). In addition, several open source systems, such as MySQL
and PostgreSQL, are available.

Because of the importance of the relational model, all of Part 2 is devoted to this
model and some of the languages associated with it. In Chapters 6 and 7, we describe
some aspects of SQL, which is a comprehensive model and language that is the
standard for commercial relational DBMSs. (Additional aspects of SQL will be cov-
ered in other chapters.) Chapter 8 covers the operations of the relational algebra and
introduces the relational calculus—these are two formal languages associated with
the relational model. The relational calculus is considered to be the basis for the
SQL language, and the relational algebra is used in the internals of many database
implementations for query processing and optimization (see Part 8 of the book).

chapter 5

150 Chapter 5 The Relational Data Model and Relational Database Constraints

Other features of the relational model are presented in subsequent parts of the
book. Chapter 9 relates the relational model data structures to the constructs of the
ER and EER models (presented in Chapters 3 and 4), and presents algorithms for
designing a relational database schema by mapping a conceptual schema in the ER
or EER model into a relational representation. These mappings are incorporated
into many database design and CASE1 tools. Chapters 10 and 11 in Part 4 discuss
the programming techniques used to access database systems and the notion of
connecting to relational databases via ODBC and JDBC standard protocols. We
also introduce the topic of Web database programming in Chapter 11. Chapters 14
and 15 in Part 6 present another aspect of the relational model, namely the formal
constraints of functional and multivalued dependencies; these dependencies are
used to develop a relational database design theory based on the concept known as
normalization.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are considered an important part of the relational model and are
automatically enforced in most relational DBMSs. Section 5.3 defines the update
operations of the relational model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction. Section 5.4 summarizes
the chapter.

This chapter and Chapter 8 focus on the formal foundations of the relational model,
whereas Chapters 6 and 7 focus on the SQL practical relational model, which is the
basis of most commercial and open source relational DBMSs. Many concepts are
common between the formal and practical models, but a few differences exist that
we shall point out.

5.1 Relational Model Concepts
The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent, a flat file of records. It is
called a flat file because each record has a simple linear or flat structure. For exam-
ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-
tional model representation. However, there are important differences between
relations and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. A row represents a fact that typically corresponds
to a real-world entity or relationship. The table name and column names are used
to help to interpret the meaning of the values in each row. For example, the
first table of Figure 1.2 is called STUDENT because each row represents facts
about a particular student entity. The column names—Name, Student_number,

1CASE stands for computer-aided software engineering.

 5.1 Relational Model Concepts 151

Class, and Major—specify how to interpret the data values in each row, based on the
column each value is in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column
header is called an attribute, and the table is called a relation. The data type
describing the types of values that can appear in each column is represented by a
domain of possible values. We now define these terms—domain, tuple, attribute,
and relation—formally.

5.1.1 Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the
domain is indivisible as far as the formal relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data values
forming the domain are drawn. It is also useful to specify a name for the domain, to
help in interpreting its values. Some examples of domains follow:

 ■ Usa_phone_numbers. The set of ten-digit phone numbers valid in the United
States.

 ■ Local_phone_numbers. The set of seven-digit phone numbers valid within a
particular area code in the United States. The use of local phone numbers is
quickly becoming obsolete, being replaced by standard ten-digit numbers.

 ■ Social_security_numbers. The set of valid nine-digit Social Security numbers.
(This is a unique identifier assigned to each person in the United States for
employment, tax, and benefits purposes.)

 ■ Names: The set of character strings that represent names of persons.

 ■ Grade_point_averages. Possible values of computed grade point averages;
each must be a real (floating-point) number between 0 and 4.

 ■ Employee_ages. Possible ages of employees in a company; each must be an
integer value between 15 and 80.

 ■ Academic_department_names. The set of academic department names in a
university, such as Computer Science, Economics, and Physics.

 ■ Academic_department_codes. The set of academic department codes, such as
‘CS’, ‘ECON’, and ‘PHYS’.

The preceding are called logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-dddd,
where each d is a numeric (decimal) digit and the first three digits form a valid
telephone area code. The data type for Employee_ages is an integer number between
15 and 80. For Academic_department_names, the data type is the set of all character
strings that represent valid department names. A domain is thus given a name, data
type, and format. Additional information for interpreting the values of a domain
can also be given; for example, a numeric domain such as Person_weights should
have the units of measurement, such as pounds or kilograms.

152 Chapter 5 The Relational Data Model and Relational Database Constraints

A relation schema2 R, denoted by R(A1, A2, … , An), is made up of a relation name
R and a list of attributes, A1, A2, … , An. Each attribute Ai is the name of a role
played by some domain D in the relation schema R. D is called the domain of Ai
and is denoted by dom(Ai). A relation schema is used to describe a relation; R is
called the name of this relation. The degree (or arity) of a relation is the number of
attributes n of its relation schema.

A relation of degree seven, which stores information about university students,
would contain seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the preceding definition, we showed assignment of generic types such
as string or integer to the attributes. More precisely, we can specify the following
previously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) =
USA_phone_numbers3, dom(Office_phone) = USA_phone_numbers, and dom(Gpa) =
Grade_point_averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)4 r of the relation schema R(A1, A2, … , An), also denoted
by r(R), is a set of n-tuples r = {t1, t2, … , tm}. Each n-tuple t is an ordered list of n
values t =<v1, v2, … , vn>, where each value vi, 1 ≤ i ≤ n, is an element of dom (Ai) or is
a special NULL value. (NULL values are discussed further below and in Section 5.1.2.)
The ith value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or
t.Ai (or t[i] if we use the positional notation). The terms relation intension for the
schema R and relation extension for a relation state r(R) are also commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity (or object). We display the relation as a table, where each tuple is
shown as a row and each attribute corresponds to a column header indicating a role
or interpretation of the values in that column. NULL values represent attributes
whose values are unknown or do not exist for some individual STUDENT tuple.

2A relation schema is sometimes called a relation scheme.
3With the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-
itan areas in the United States now have multiple area codes, so seven-digit local dialing has been
 discontinued in most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_
numbers, which would be a more general choice. This illustrates how database requirements can change
over time.
4This has also been called a relation instance. We will not use this term because instance is also used
to refer to a single tuple or row.

 5.1 Relational Model Concepts 153

The earlier definition of a relation can be restated more formally using set theory
concepts as follows. A relation (or relation state) r(R) is a mathematical relation of
degree n on the domains dom(A1), dom(A2), … , dom(An), which is a subset of the
Cartesian product (denoted by ×) of the domains that define R:

r(R) ⊆ (dom(A1) × dom(A2) × . . . × (dom(An))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a
domain D by |D| (assuming that all domains are finite), the total number of tuples
in the Cartesian product is

|dom(A1)| × |dom(A2)| × . . . × |dom(An)|

This product of cardinalities of all domains represents the total number of possible
instances or tuples that can ever exist in any relation state r(R). Of all these possible
combinations, a relation state at a given time—the current relation state—reflects
only the valid tuples that represent a particular state of the real world. In general, as
the state of the real world changes, so does the relation state, by being transformed
into another relation state. However, the schema R is relatively static and changes
very infrequently—for example, as a result of adding an attribute to represent new
information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attribute names indi-
cate different roles, or interpretations, for the domain. For example, in the STUDENT
relation, the same domain USA_phone_numbers plays the role of Home_phone, referring
to the home phone of a student, and the role of Office_phone, referring to the office
phone of the student. A third possible attribute (not shown) with the same domain
could be Mobile_phone.

5.1.2 Characteristics of Relations
The earlier definition of relations implies certain characteristics that make a rela-
tion different from a file or a table. We now discuss some of these characteristics.

Relation Name

Tuples

STUDENT

Name

Benjamin Bayer

Chung-cha Kim

Dick Davidson

Rohan Panchal

Barbara Benson

Ssn

305-61-2435

381-62-1245

422-11-2320

489-22-1100

533-69-1238

Home_phone

(817)373-1616

(817)375-4409

NULL

(817)376-9821

(817)839-8461

Address

2918 Bluebonnet Lane

125 Kirby Road

3452 Elgin Road

265 Lark Lane

7384 Fontana Lane

Office_phone

NULL

NULL

(817)749-1253

(817)749-6492

NULL

Age

19

18

25

28

19

3.21

2.89

3.53

3.93

3.25

Gpa

Attributes

Figure 5.1
The attributes and tuples of a relation STUDENT.

154 Chapter 5 The Relational Data Model and Relational Database Constraints

Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Math-
ematically, elements of a set have no order among them; hence, tuples in a relation
do not have any particular order. In other words, a relation is not sensitive to the
ordering of tuples. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates
first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many tuple orders can be specified on the
same relation. For example, tuples in the STUDENT relation in Figure 5.1 could be
ordered by values of Name, Ssn, Age, or some other attribute. The definition of a rela-
tion does not specify any order: There is no preference for one ordering over another.
Hence, the relation displayed in Figure 5.2 is considered identical to the one shown in
Figure 5.1. When a relation is implemented as a file or displayed as a table, a particular
ordering may be specified on the records of the file or the rows of the table.

Ordering of Values within a Tuple and an Alternative Definition of a Relation.
According to the preceding definition of a relation, an n-tuple is an ordered list of n
values, so the ordering of values in a tuple—and hence of attributes in a relation
schema—is important. However, at a more abstract level, the order of attributes
and their values is not that important as long as the correspondence between attri-
butes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values
in a tuple unnecessary. In this definition, a relation schema R = {A1, A2, … , An} is a
set of attributes (instead of an ordered list of attributes), and a relation state r(R) is
a finite set of mappings r = {t1, t2, … , tm}, where each tuple ti is a mapping from R
to D, and D is the union (denoted by ∪) of the attribute domains; that is, D =
dom(A1) ∪ dom(A2) ∪ … ∪ dom(An). In this definition, t[Ai] must be in dom(Ai)
for 1 ≤ i ≤ n for each mapping t in r. Each mapping ti is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a
set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping
from an attribute Ai to a value vi from dom(Ai). The ordering of attributes is not
important, because the attribute name appears with its value. By this definition, the

Dick Davidson

Barbara Benson

Rohan Panchal

Chung-cha Kim

422-11-2320

533-69-1238

489-22-1100

381-62-1245

NULL

(817)839-8461

(817)376-9821

(817)375-4409

3452 Elgin Road

7384 Fontana Lane

265 Lark Lane

125 Kirby Road

(817)749-1253

NULL

(817)749-6492

NULL

25

19

28

18

3.53

3.25

3.93

2.89

Benjamin Bayer 305-61-2435 (817)373-1616 2918 Bluebonnet Lane NULL 19 3.21

STUDENT
Name Ssn Home_phone Address Office_phone Age Gpa

Figure 5.2
The relation STUDENT from Figure 5.1 with a different order of tuples.

 5.1 Relational Model Concepts 155

two tuples shown in Figure 5.3 are identical. This makes sense at an abstract level,
since there really is no reason to prefer having one attribute value appear before
another in a tuple. When the attribute name and value are included together in a
tuple, it is known as self-describing data, because the description of each value
(attribute name) is included in the tuple.

We will mostly use the first definition of relation, where the attributes are ordered
in the relation schema and the values within tuples are similarly ordered, because it
simplifies much of the notation. However, the alternative definition given here is
more general.5

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that
is, it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes (see Chapter 3) are not
allowed. This model is sometimes called the flat relational model. Much of the
theory behind the relational model was developed with this assumption in mind,
which is called the first normal form assumption.6 Hence, multivalued attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.7

An important concept is that of NULL values, which are used to represent the values of
attributes that may be unknown or may not apply to a tuple. A special value, called
NULL, is used in these cases. For example, in Figure 5.1, some STUDENT tuples have
NULL for their office phones because they do not have an office (that is, office phone
does not apply to these students). Another student has a NULL for home phone, presum-
ably because either he does not have a home phone or he has one but we do not know it
(value is unknown). In general, we can have several meanings for NULL values, such as
value unknown, value exists but is not available, or attribute does not apply to this tuple
(also known as value undefined). An example of the last type of NULL will occur if we
add an attribute Visa_status to the STUDENT relation that applies only to tuples repre-
senting foreign students. It is possible to devise different codes for different meanings of

5We will use the alternative definition of relation when we discuss query processing and optimization in
Chapter 18.
6We discuss this assumption in more detail in Chapter 14.
7Extensions of the relational model remove these restrictions. For example, object-relational systems
(Chapter 12) allow complex-structured attributes, as do the non-first normal form or nested relational
models.

t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),
 (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
 (Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>

Figure 5.3
Two identical tuples when the order of attributes and values is not part of relation definition.

156 Chapter 5 The Relational Data Model and Relational Database Constraints

NULL values. Incorporating different types of NULL values into relational model opera-
tions has proven difficult and is outside the scope of our presentation.

The exact meaning of a NULL value governs how it fares during arithmetic aggrega-
tions or comparisons with other values. For example, a comparison of two NULL
values leads to ambiguities—if both Customer A and B have NULL addresses, it does
not mean they have the same address. During database design, it is best to avoid
NULL values as much as possible. We will discuss this further in Chapters 7 and 8 in
the context of operations and queries, and in Chapter 14 in the context of database
design and normalization.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT
relation of Figure 5.1 asserts that, in general, a student entity has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema
MAJORS (Student_ssn, Department_code) asserts that students major in academic
disciplines. A tuple in this relation relates a student to his or her major discipline.
Hence, the relational model represents facts about both entities and relationships
uniformly as relations. This sometimes compromises understandability because
one has to guess whether a relation represents an entity type or a relationship type.
We introduced the entity–relationship (ER) model in detail in Chapter 3, where the
entity and relationship concepts were described in detail. The mapping procedures
in Chapter 9 show how different constructs of the ER/EER conceptual data models
(see Part 2) get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn, …) is true for the five tuples in relation STUDENT
of Figure 5.1. These tuples represent five different propositions or facts in the
real world. This interpretation is quite useful in the context of logical programming
languages, such as Prolog, because it allows the relational model to be used within
these languages (see Section 26.5). An assumption called the closed world assumption
states that the only true facts in the universe are those present within the extension
(state) of the relation(s). Any other combination of values makes the predicate false.
This interpretation is useful when we consider queries on relations based on
 relational calculus in Section 8.6.

5.1.3 Relational Model Notation
We will use the following notation in our presentation:

 ■ A relation schema R of degree n is denoted by R(A1, A2, … , An).

 5.2 Relational Model Constraints and Relational Database Schemas 157

 ■ The uppercase letters Q, R, S denote relation names.

 ■ The lowercase letters q, r, s denote relation states.

 ■ The letters t, u, v denote tuples.

 ■ In general, the name of a relation schema such as STUDENT also indicates
the current set of tuples in that relation—the current relation state—whereas
STUDENT(Name, Ssn, …) refers only to the relation schema.

 ■ An attribute A can be qualified with the relation name R to which it belongs
by using the dot notation R.A—for example, STUDENT.Name or
STUDENT.Age. This is because the same name may be used for two attri-
butes in different relations. However, all attribute names in a particular
relation must be distinct.

 ■ An n-tuple t in a relation r(R) is denoted by t = <v1, v2, … , vn>, where vi is
the value corresponding to attribute Ai. The following notation refers to
component values of tuples:

 � Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t for attri-
bute Ai.

 � Both t[Au, Aw, … , Az] and t.(Au, Aw, … , Az), where Au, Aw, … , Az is a list
of attributes from R, refer to the subtuple of values <vu, vw, … , vz> from t
corresponding to the attributes specified in the list.

As an example, consider the tuple t = <’Barbara Benson’, ‘533-69-1238’,
‘(817)839-8461’, ‘7384 Fontana Lane’, NULL, 19, 3.25> from the STUDENT relation in Fig-
ure 5.1; we have t[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <‘533-69-1238’,
3.25, 19>.

5.2 Relational Model Constraints
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are
usually related in various ways. The state of the whole database will correspond to
the states of all its relations at a particular point in time. There are generally many
restrictions or constraints on the actual values in a database state. These constraints
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can gener-
ally be divided into three main categories:

 1. Constraints that are inherent in the data model. We call these inherent
model-based constraints or implicit constraints.

 2. Constraints that can be directly expressed in the schemas of the data model, typi-
cally by specifying them in the DDL (data definition language, see Section 2.3.1).
We call these schema-based constraints or explicit constraints.

158 Chapter 5 The Relational Data Model and Relational Database Constraints

 3. Constraints that cannot be directly expressed in the schemas of the data
model, and hence must be expressed and enforced by the application pro-
grams or in some other way. We call these application-based or semantic
constraints or business rules.

The characteristics of relations that we discussed in Section 5.1.2 are the inherent
constraints of the relational model and belong to the first category. For example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints
that can be expressed in the schema of the relational model via the DDL. Constraints
in the third category are more general, relate to the meaning as well as behavior of
attributes, and are difficult to express and enforce within the data model, so they are
usually checked within the application programs that perform database updates. In
some cases, these constraints can be specified as assertions in SQL (see Chapter 7).

Another important category of constraints is data dependencies, which include
functional dependencies and multivalued dependencies. They are used mainly for
testing the “goodness” of the design of a relational database and are utilized in a
process called normalization, which is discussed in Chapters 14 and 15.

The schema-based constraints include domain constraints, key constraints, con-
straints on NULLs, entity integrity constraints, and referential integrity constraints.

5.2.1 Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must
be an atomic value from the domain dom(A). We have already discussed the ways in
which domains can be specified in Section 5.1.1. The data types associated with
domains typically include standard numeric data types for integers (such as short
integer, integer, and long integer) and real numbers (float and double-precision float).
Characters, Booleans, fixed-length strings, and variable-length strings are also avail-
able, as are date, time, timestamp, and other special data types. Domains can also be
described by a subrange of values from a data type or as an enumerated data type in
which all possible values are explicitly listed. Rather than describe these in detail here,
we discuss the data types offered by the SQL relational standard in Section 6.1.

5.2.2 Key Constraints and Constraints on NULL Values
In the formal relational model, a relation is defined as a set of tuples. By definition,
all elements of a set are distinct; hence, all tuples in a relation must also be distinct.
This means that no two tuples can have the same combination of values for all their
attributes. Usually, there are other subsets of attributes of a relation schema R with
the property that no two tuples in any relation state r of R should have the same
combination of values for these attributes. Suppose that we denote one such subset
of attributes by SK; then for any two distinct tuples t1 and t2 in a relation state r of R,
we have the constraint that:

t1[SK] ≠ t2[SK]

 5.2 Relational Model Constraints and Relational Database Schemas 159

Any such set of attributes SK is called a superkey of the relation schema R. A super-
key SK specifies a uniqueness constraint that no two distinct tuples in any state r of
R can have the same value for SK. Every relation has at least one default superkey—
the set of all its attributes. A superkey can have redundant attributes, however, so a
more useful concept is that of a key, which has no redundancy. A key k of a relation
schema R is a superkey of R with the additional property that removing any attri-
bute A from K leaves a set of attributes K′ that is not a superkey of R any more.
Hence, a key satisfies two properties:

 1. Two distinct tuples in any state of the relation cannot have identical values
for (all) the attributes in the key. This uniqueness property also applies to a
superkey.

 2. It is a minimal superkey—that is, a superkey from which we cannot remove
any attributes and still have the uniqueness constraint hold. This minimality
property is required for a key but is optional for a superkey.

Hence, a key is a superkey but not vice versa. A superkey may be a key (if it is mini-
mal) or may not be a key (if it is not minimal). Consider the STUDENT relation of
Figure 5.1. The attribute set {Ssn} is a key of STUDENT because no two student
tuples can have the same value for Ssn.8 Any set of attributes that includes Ssn—for
example, {Ssn, Name, Age}—is a superkey. However, the superkey {Ssn, Name, Age}
is not a key of STUDENT because removing Name or Age or both from the set still
leaves us with a superkey. In general, any superkey formed from a single attribute is
also a key. A key with multiple attributes must require all its attributes together to
have the uniqueness property.

The value of a key attribute can be used to identify uniquely each tuple in the rela-
tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-
sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes
constituting a key is a property of the relation schema; it is a constraint that should
hold on every valid relation state of the schema. A key is determined from the mean-
ing of the attributes, and the property is time-invariant: It must continue to hold
when we insert new tuples in the relation. For example, we cannot and should not
designate the Name attribute of the STUDENT relation in Figure 5.1 as a key because
it is possible that two students with identical names will exist at some point in a
valid state.9

In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two
candidate keys: License_number and Engine_serial_number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the convention
that the attributes that form the primary key of a relation schema are underlined, as
shown in Figure 5.4. Notice that when a relation schema has several candidate keys,

8Note that Ssn is also a superkey.
9Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—must
be used to distinguish between persons with identical names.

160 Chapter 5 The Relational Data Model and Relational Database Constraints

the choice of one to become the primary key is somewhat arbitrary; however, it is
usually better to choose a primary key with a single attribute or a small number
of attributes. The other candidate keys are designated as unique keys and are
not underlined.

Another constraint on attributes specifies whether NULL values are or are not per-
mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

5.2.3 Relational Databases and Relational
Database Schemas
The definitions and constraints we have discussed so far apply to single relations
and their attributes. A relational database usually contains many relations, with
tuples in relations that are related in various ways. In this section, we define a rela-
tional database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R1, R2, … , Rm} and
a set of integrity constraints IC. A relational database state10 DB of S is a set of
relation states DB = {r1, r2, … , rm} such that each ri is a state of Ri and such that the
ri relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. In each relation schema,
the underlined attribute represents the primary key. Figure 5.6 shows a relational
database state corresponding to the COMPANY schema. We will use this schema
and database state in this chapter and in Chapters 4 through 6 for developing
sample queries in different relational languages. (The data shown here is
expanded and available for loading as a populated database from the Compan-
ion Website for the text, and can be used for the hands-on project exercises at
the end of the chapters.)

When we refer to a relational database, we implicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is

CAR

License_number Engine_serial_number Make Model Year

Texas ABC-739

Florida TVP-347

New York MPO-22

California 432-TFY

California RSK-629

Texas RSK-629

A69352

B43696

X83554

C43742

Y82935

U028365

Ford

Oldsmobile

Oldsmobile

Mercedes

Toyota

Jaguar

Mustang

Cutlass

Delta

190-D

Camry

XJS

02

05

01

99

04

04

Figure 5.4
The CAR relation, with
two candidate keys:
License_number and
Engine_serial_number.

10A relational database state is sometimes called a relational database snapshot or instance. However,
as we mentioned earlier, we will not use the term instance since it also applies to single tuples.

 5.2 Relational Model Constraints and Relational Database Schemas 161

called not valid, and a state that satisfies all the constraints in the defined set of
integrity constraints IC is called a valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS
stands for the same real-world concept—the number given to a department. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have
the same name in different relations. For example, we could have used the attribute
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case, we
would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems when the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security number appears twice in the EMPLOYEE relation of
Figure 5.5: once in the role of the employee’s SSN, and once in the role of the
supervisor’s SSN. We are required to give them distinct attribute names—Ssn and
Super_ssn, respectively—because they appear in the same relation and in order to
distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for
this purpose. We present the SQL DDL in Sections 6.1 and 6.2.

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.5
Schema diagram for the
COMPANY relational
database schema.

162 Chapter 5 The Relational Data Model and Relational Database Constraints

DEPT_LOCATIONS

Dnumber

Houston

Stafford

Bellaire

Sugarland

Dlocation

DEPARTMENT

Dname

Research

Administration

Headquarters 1

5

4

888665555

333445555

987654321

1981-06-19

1988-05-22

1995-01-01

Dnumber Mgr_ssn Mgr_start_date

WORKS_ON

Essn

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

Pno Hours

PROJECT

Pname

ProductX

ProductY

ProductZ

Computerization

Reorganization

Newbenefits

3

1

2

30

10

20

5

5

5

4

4

1

Houston

Bellaire

Sugarland

Stafford

Stafford

Houston

Pnumber Plocation Dnum

DEPENDENT

333445555

333445555

333445555

987654321

123456789

123456789

123456789

Joy

Alice F

M

F

M

M

F

F

1986-04-05

1983-10-25

1958-05-03

1942-02-28

1988-01-04

1988-12-30

1967-05-05

Theodore

Alice

Elizabeth

Abner

Michael

Spouse

Daughter

Son

Daughter

Spouse

Spouse

Son

Dependent_name Sex Bdate Relationship

EMPLOYEE

Fname

John

Franklin

Jennifer

Alicia

Ramesh

Joyce

James

Ahmad

Narayan

English

Borg

Jabbar

666884444

453453453

888665555

987987987

F

F

M

M

M

M

M

F

4

4

5

5

4

1

5

5

25000

43000

30000

40000

25000

55000

38000

25000

987654321

888665555

333445555

888665555

987654321

NULL

333445555

333445555

Zelaya

Wallace

Smith

Wong

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1968-01-19

1941-06-20

1965-01-09

1955-12-08

1969-03-29

1937-11-10

1962-09-15

1972-07-31

980 Dallas, Houston, TX

450 Stone, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

999887777

987654321

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

B

T

J

S

K

A

V

E

Houston

1

4

5

5

Essn

5

Figure 5.6
One possible database state for the COMPANY relational database schema.

 5.2 Relational Model Constraints and Relational Database Schemas 163

Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the relational
model: entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys
The entity integrity constraint states that no primary key value can be NULL. This is
because the primary key value is used to identify individual tuples in a relation. Hav-
ing NULL values for the primary key implies that we cannot identify some tuples. For
example, if two or more tuples had NULL for their primary keys, we may not be able
to distinguish them if we try to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations.
The referential integrity constraint is specified between two relations and is used to
maintain the consistency among tuples in the two relations. Informally, the referen-
tial integrity constraint states that a tuple in one relation that refers to another rela-
tion must refer to an existing tuple in that relation. For example, in Figure 5.6, the
attribute Dno of EMPLOYEE gives the department number for which each employee
works; hence, its value in every EMPLOYEE tuple must match the Dnumber value of
some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity
constraint between the two relation schemas R1 and R2. A set of attributes FK in
relation schema R1 is a foreign key of R1 that references relation R2 if it satisfies the
following rules:

 1. The attributes in FK have the same domain(s) as the primary key attributes
PK of R2; the attributes FK are said to reference or refer to the relation R2.

 2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value
of PK for some tuple t2 in the current state r2(R2) or is NULL. In the former
case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or
refers to the tuple t2.

In this definition, R1 is called the referencing relation and R2 is the referenced
relation. If these two conditions hold, a referential integrity constraint from R1 to
R2 is said to hold. In a database of many relations, there are usually many referential
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each attribute or set of attributes plays in the various relation sche-
mas of the database. Referential integrity constraints typically arise from the
relationships among the entities represented by the relation schemas. For example,
consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute
Dno refers to the department for which an employee works; hence, we designate Dno
to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This means
that a value of Dno in any tuple t1 of the EMPLOYEE relation must match a value of

164 Chapter 5 The Relational Data Model and Relational Database Constraints

the primary key of DEPARTMENT—the Dnumber attribute—in some tuple t2 of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or will be assigned to a department later. For example, in
Figure 5.6 the tuple for employee ‘John Smith’ references the tuple for the ‘Research’
department, indicating that ‘John Smith’ works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a
foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for
employee ‘John Smith’ references the tuple for employee ‘Franklin Wong,’ indicat-
ing that ‘Franklin Wong’ is the supervisor of ‘John Smith’.

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (that is,
specified as part of its definition) if we want the DBMS to enforce these constraints on

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations 165

the database states. Hence, the DDL includes provisions for specifying the various
types of constraints so that the DBMS can automatically enforce them. In SQL, the
CREATE TABLE statement of the SQL DDL allows the definition of primary key,
unique key, NOT NULL, entity integrity, and referential integrity constraints, among
other constraints (see Sections 6.1 and 6.2) .

5.2.5 Other Types of Constraints
The preceding integrity constraints are included in the data definition language
because they occur in most database applications. Another class of general con-
straints, sometimes called semantic integrity constraints, are not part of the DDL
and have to be specified and enforced in a different way. Examples of such con-
straints are the salary of an employee should not exceed the salary of the employee’s
supervisor and the maximum number of hours an employee can work on all projects
per week is 56. Such constraints can be specified and enforced within the applica-
tion programs that update the database, or by using a general-purpose constraint
specification language. Mechanisms called triggers and assertions can be used in
SQL, through the CREATE ASSERTION and CREATE TRIGGER statements, to specify
some of these constraints (see Chapter 7). It is more common to check for these
types of constraints within the application programs than to use constraint specifi-
cation languages because the latter are sometimes difficult and complex to use, as
we discuss in Section 26.1.

The types of constraints we discussed so far may be called state constraints
because they define the constraints that a valid state of the database must satisfy.
Another type of constraint, called transition constraints, can be defined to deal
with state changes in the database.11 An example of a transition constraint is: “the
salary of an employee can only increase.” Such constraints are typically enforced
by the application programs or specified using active rules and triggers, as we dis-
cuss in Section 26.1.

5.3 Update Operations, Transactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 8. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database to retrieve information. The user for-
mulates a query that specifies the data of interest, and a new relation is formed by
applying relational operators to retrieve this data. The result relation becomes the
answer to (or result of) the user’s query. Chapter 8 also introduces the language

11State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.

166 Chapter 5 The Relational Data Model and Relational Database Constraints

called relational calculus, which is used to define a query declaratively without giv-
ing a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic operations that can change the states of relations in the data-
base: Insert, Delete, and Update (or Modify). They insert new data, delete old data,
or modify existing data records, respectively. Insert is used to insert one or more
new tuples in a relation, Delete is used to delete tuples, and Update (or Modify) is
used to change the values of some attributes in existing tuples. Whenever these
operations are applied, the integrity constraints specified on the relational database
schema should not be violated. In this section we discuss the types of constraints
that may be violated by each of these operations and the types of actions that may
be taken if an operation causes a violation. We use the database shown in Figure 5.6
for examples and discuss only domain constraints, key constraints, entity integrity
constraints, and the referential integrity constraints shown in Figure 5.7. For each
type of operation, we give some examples and discuss any constraints that each
operation may violate.

5.3.1 The Insert Operation
The Insert operation provides a list of attribute values for a new tuple t that is to be
inserted into a relation R. Insert can violate any of the four types of constraints.
Domain constraints can be violated if an attribute value is given that does not
appear in the corresponding domain or is not of the appropriate data type. Key
constraints can be violated if a key value in the new tuple t already exists in another
tuple in the relation r(R). Entity integrity can be violated if any part of the primary
key of the new tuple t is NULL. Referential integrity can be violated if the value of
any foreign key in t refers to a tuple that does not exist in the referenced relation.
Here are some examples to illustrate this discussion.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion violates the entity integrity constraint (NULL for the
primary key Ssn), so it is rejected.

 ■ Operation:
Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.
Result: This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relation, and so it is
rejected.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windswept,
Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.
Result: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding referenced tuple exists in
DEPARTMENT with Dnumber = 7.

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations 167

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy Lane,
Katy, TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be useful if the DBMS could provide a reason to the
user as to why the insertion was rejected. Another option is to attempt to correct the
reason for rejecting the insertion, but this is typically not used for violations caused by
Insert; rather, it is used more often in correcting violations for Delete and Update.
In the first operation, the DBMS could ask the user to provide a value for Ssn, and
could then accept the insertion if a valid Ssn value is provided. In operation 3, the
DBMS could either ask the user to change the value of Dno to some valid value
(or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with
Dnumber = 7 and could accept the original insertion only after such an operation
was accepted. Notice that in the latter case the insertion violation can cascade back
to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with
a value for Mgr_ssn that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation
The Delete operation can violate only referential integrity. This occurs if the tuple
being deleted is referenced by foreign keys from other tuples in the database. To
specify deletion, a condition on the attributes of the relation selects the tuple (or
tuples) to be deleted. Here are some examples.

 ■ Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777’ and Pno = 10.
Result: This deletion is acceptable and deletes exactly one tuple.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘999887777’.
Result: This deletion is not acceptable, because there are tuples in
WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is
deleted, referential integrity violations will result.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘333445555’.
Result: This deletion will result in even worse referential integrity violations,
because the tuple involved is referenced by tuples from the EMPLOYEE,
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first
option, called restrict, is to reject the deletion. The second option, called cascade, is
to attempt to cascade (or propagate) the deletion by deleting tuples that reference the
tuple that is being deleted. For example, in operation 2, the DBMS could automati-
cally delete the offending tuples from WORKS_ON with Essn = ‘999887777’. A
third option, called set null or set default, is to modify the referencing attribute
values that cause the violation; each such value is either set to NULL or changed to

168 Chapter 5 The Relational Data Model and Relational Database Constraints

reference another default valid tuple. Notice that if a referencing attribute that
causes a violation is part of the primary key, it cannot be set to NULL; otherwise, it
would violate entity integrity.

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn = ‘333445555’. Tuples in EMPLOYEE with
Super_ssn = ‘333445555’ and the tuple in DEPARTMENT with Mgr_ssn = ‘333445555’
can have their Super_ssn and Mgr_ssn values changed to other valid values or to
NULL. Although it may make sense to delete automatically the WORKS_ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to delete
other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the database designer to specify which of the options applies in case of a
violation of the constraint. We discuss how to specify these options in the SQL DDL
in Chapter 6.

5.3.3 The Update Operation
The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified.
Here are some examples.

 ■ Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 1.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 7.
Result: Unacceptable, because it violates referential integrity.

 ■ Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to ‘987654321’.
Result: Unacceptable, because it violates primary key constraint by repeating
a value that already exists as a primary key in another tuple; it violates refer-
ential integrity constraints because there are other relations that refer to the
existing value of Ssn.

Updating an attribute that is neither part of a primary key nor part of a foreign key
usually causes no problems; the DBMS need only check to confirm that the new
value is of the correct data type and domain. Modifying a primary key value is simi-
lar to deleting one tuple and inserting another in its place because we use the pri-
mary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1
(Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the

 5.4 Summary 169

DBMS must make sure that the new value refers to an existing tuple in the refer-
enced relation (or is set to NULL). Similar options exist to deal with referential integ-
rity violations caused by Update as those options discussed for the Delete operation.
In fact, when a referential integrity constraint is specified in the DDL, the DBMS will
allow the user to choose separate options to deal with a violation caused by Delete
and a violation caused by Update (see Section 6.2).

5.3.4 The Transaction Concept
A database application program running against a relational database typically exe-
cutes one or more transactions. A transaction is an executing program that includes
some database operations, such as reading from the database, or applying inser-
tions, deletions, or updates to the database. At the end of the transaction, it must
leave the database in a valid or consistent state that satisfies all the constraints spec-
ified on the database schema. A single transaction may involve any number of
retrieval operations (to be discussed as part of relational algebra and calculus in
Chapter 8, and as a part of the language SQL in Chapters 6 and 7) and any number
of update operations. These retrievals and updates will together form an atomic
unit of work against the database. For example, a transaction to apply a bank with-
drawal will typically read the user account record, check if there is a sufficient bal-
ance, and then update the record by the withdrawal amount.

A large number of commercial applications running against relational databases in
online transaction processing (OLTP) systems are executing transactions at rates
that reach several hundred per second. Transaction processing concepts, concur-
rent execution of transactions, and recovery from failures will be discussed in
Chapters 20 to 22.

5.4 Summary
In this chapter we presented the modeling concepts, data structures, and constraints
provided by the relational model of data. We started by introducing the concepts of
domains, attributes, and tuples. Then, we defined a relation schema as a list of attri-
butes that describe the structure of a relation. A relation, or relation state, is a set of
tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first
is that a relation is not sensitive to the ordering of tuples. The second involves the
ordering of attributes in a relation schema and the corresponding ordering of val-
ues within a tuple. We gave an alternative definition of relation that does not require
ordering of attributes, but we continued to use the first definition, which requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL values should be avoided as much as possible.

We classified database constraints into inherent model-based constraints, explicit
schema-based constraints, and semantic constraints or business rules. Then, we

170 Chapter 5 The Relational Data Model and Relational Database Constraints

discussed the schema constraints pertaining to the relational model, starting with
domain constraints, then key constraints (including the concepts of superkey,
key, and primary key), and the NOT NULL constraint on attributes. We defined
relational databases and relational database schemas. Additional relational con-
straints include the entity integrity constraint, which prohibits primary key attri-
butes from being NULL. We described the interrelation referential integrity
constraint, which is used to maintain consistency of references among tuples
from various relations.

The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints (refer to Section 5.3). When-
ever an operation is applied, the resulting database state must be a valid state.
Finally, we introduced the concept of a transaction, which is important in relational
DBMSs because it allows the grouping of several database operations into a single
atomic action on the database.

Review Questions
 5.1. Define the following terms as they apply to the relational model of data:

domain, attribute, n-tuple, relation schema, relation state, degree of a rela-
tion, relational database schema, and relational database state.

 5.2. Why are tuples in a relation not ordered?

 5.3. Why are duplicate tuples not allowed in a relation?

 5.4. What is the difference between a key and a superkey?

 5.5. Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

 5.6. Discuss the characteristics of relations that make them different from ordi-
nary tables and files.

 5.7. Discuss the various reasons that lead to the occurrence of NULL values in
relations.

 5.8. Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

 5.9. Define foreign key. What is this concept used for?

 5.10. What is a transaction? How does it differ from an Update operation?

Exercises
 5.11. Suppose that each of the following Update operations is applied directly to

the database state shown in Figure 5.6. Discuss all integrity constraints

 Exercises 171

violated by each operation, if any, and the different ways of enforcing
these constraints.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1972-06-21’, ‘2365 Newcastle
Rd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.

b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.

c. Insert <‘Production’, 4, ‘943775543’, ‘2007-10-01’> into DEPARTMENT.

d. Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

e. Insert <‘453453453’, ‘John’, ‘M’, ‘1990-12-12’, ‘spouse’> into DEPENDENT.

f. Delete the WORKS_ON tuples with Essn = ‘333445555’.

g. Delete the EMPLOYEE tuple with Ssn = ‘987654321’.

h. Delete the PROJECT tuple with Pname = ‘ProductX’.

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with
Dnumber = 5 to ‘123456789’ and ‘2007-10-01’, respectively.

j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn =
‘999887777’ to ‘943775543’.

k. Modify the Hours attribute of the WORKS_ON tuple with Essn =
‘999887777’ and Pno = 10 to ‘5.0’.

 5.12. Consider the AIRLINE relational database schema shown in Figure 5.8,
which describes a database for airline flight information. Each FLIGHT is
identified by a Flight_number, and consists of one or more FLIGHT_LEGs
with Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduled
arrival and departure times, airports, and one or more LEG_INSTANCEs—
one for each Date on which the flight travels. FAREs are kept for each
FLIGHT. For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, as
are the AIRPLANE used on the leg and the actual arrival and departure times
and airports. An AIRPLANE is identified by an Airplane_id and is of a particu-
lar AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs
at which they can land. An AIRPORT is identified by an Airport_code. Con-
sider an update for the AIRLINE database to enter a reservation on a particu-
lar flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integ-
rity constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema
shown in Figure 5.8.

 5.13. Consider the relation CLASS(Course#, Univ_Section#, Instructor_name,
Semester, Building_code, Room#, Time_period, Weekdays, Credit_hours). This rep-
resents classes taught in a university, with unique Univ_section#s. Identify what
you think should be various candidate keys, and write in your own words the
conditions or assumptions under which each candidate key would be valid.

172 Chapter 5 The Relational Data Model and Relational Database Constraints

AIRPORT
Airport_code Name City State

Flight_number Airline Weekdays

FLIGHT

FLIGHT_LEG
Flight_number Leg_number Departure_airport_code Scheduled_departure_time

Scheduled_arrival_timeArrival_airport_code

LEG_INSTANCE

Flight_number Leg_number Date Number_of_available_seats Airplane_id

FARE

Flight_number Fare_code Amount Restrictions

AIRPLANE_TYPE
Airplane_type_name Max_seats Company

CAN_LAND
Airplane_type_name Airport_code

AIRPLANE
Airplane_id Total_number_of_seats Airplane_type

SEAT_RESERVATION
Leg_number Date Seat_number Customer_name Customer_phoneFlight_number

Arrival_timeArrival_airport_codeDeparture_timeDeparture_airport_code

Figure 5.8
The AIRLINE relational database schema.

 5.14. Consider the following six relations for an order-processing database appli-
cation in a company:

CUSTOMER(Cust#, Cname, City)

ORDER(Order#, Odate, Cust#, Ord_amt)

ORDER_ITEM(Order#, Item#, Qty)

 Exercises 173

ITEM(Item#, Unit_price)

SHIPMENT(Order#, Warehouse#, Ship_date)

WAREHOUSE(Warehouse#, City)

 Here, Ord_amt refers to total dollar amount of an order; Odate is the date the
order was placed; and Ship_date is the date an order (or part of an order) is
shipped from the warehouse. Assume that an order can be shipped from several
warehouses. Specify the foreign keys for this schema, stating any assumptions
you make. What other constraints can you think of for this database?

 5.15. Consider the following relations for a database that keeps track of business
trips of salespersons in a sales office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)

TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

EXPENSE(Trip_id, Account#, Amount)

 A trip can be charged to one or more accounts. Specify the foreign keys for
this schema, stating any assumptions you make.

 5.16. Consider the following relations for a database that keeps track of student
enrollment in courses and the books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_isbn)

TEXT(Book_isbn, Book_title, Publisher, Author)

 Specify the foreign keys for this schema, stating any assumptions you make.

 5.17. Consider the following relations for a database that keeps track of automo-
bile sales in a car dealership (OPTION refers to some optional equipment
installed on an automobile):

CAR(Serial_no, Model, Manufacturer, Price)

OPTION(Serial_no, Option_name, Price)

SALE(Salesperson_id, Serial_no, Date, Sale_price)

SALESPERSON(Salesperson_id, Name, Phone)

 First, specify the foreign keys for this schema, stating any assumptions you
make. Next, populate the relations with a few sample tuples, and then give
an example of an insertion in the SALE and SALESPERSON relations that
violates the referential integrity constraints and of another insertion that
does not.

 5.18. Database design often involves decisions about the storage of attributes. For
example, a Social Security number can be stored as one attribute or split into
three attributes (one for each of the three hyphen-delineated groups of

174 Chapter 5 The Relational Data Model and Relational Database Constraints

numbers in a Social Security number—XXX-XX-XXXX). However, Social
Security numbers are usually represented as just one attribute. The decision
is based on how the database will be used. This exercise asks you to think
about specific situations where dividing the SSN is useful.

 5.19. Consider a STUDENT relation in a UNIVERSITY database with the following
attributes (Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that
the cell phone may be from a different city and state (or province) from the
local phone. A possible tuple of the relation is shown below:

Name Ssn Local_phone Address Cell_phone Age Gpa
George Shaw 123-45-6789 555-1234 123 Main St., 555-4321 19 3.75
William Edwards Anytown, CA 94539

a. Identify the critical missing information from the Local_phone and
Cell_phone attributes. (Hint: How do you call someone who lives in a dif-
ferent state or province?)

b. Would you store this additional information in the Local_phone and
Cell_phone attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute. What are the advantages and disadvantages
of splitting this field from one attribute into three attributes (first name,
middle name, and last name)?

d. What general guideline would you recommend for deciding when to
store information in a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two dif-
ferent designs that allow this type of information.

 5.20. Recent changes in privacy laws have disallowed organizations from using
Social Security numbers to identify individuals unless certain restrictions
are satisfied. As a result, most U.S. universities cannot use SSNs as primary
keys (except for financial data). In practice, Student_id, a unique identifier
assigned to every student, is likely to be used as the primary key rather than
SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known
as surrogate keys) for primary keys (such as Student_id) because they are
artificial. Can you propose any natural choices of keys that can be used to
identify the student record in a UNIVERSITY database?

b. Suppose that you are able to guarantee uniqueness of a natural key that
includes last name. Are you guaranteed that the last name will not change
during the lifetime of the database? If last name can change, what solu-
tions can you propose for creating a primary key that still includes last
name but remains unique?

c. What are the advantages and disadvantages of using generated (surro-
gate) keys?

 Selected Bibliography 175

Selected Bibliography
The relational model was introduced by Codd (1970) in a classic paper. Codd also
introduced relational algebra and laid the theoretical foundations for the relational
model in a series of papers (Codd, 1971, 1972, 1972a, 1974); he was later given the
Turing Award, the highest honor of the ACM (Association for Computing Machin-
ery) for his work on the relational model. In a later paper, Codd (1979) discussed
extending the relational model to incorporate more meta-data and semantics about
the relations; he also proposed a three-valued logic to deal with uncertainty in rela-
tions and incorporating NULLs in the relational algebra. The resulting model is
known as RM/T. Childs (1968) had earlier used set theory to model databases.
Later, Codd (1990) published a book examining over 300 features of the relational
data model and database systems. Date (2001) provides a retrospective review and
analysis of the relational data model.

Since Codd’s pioneering work, much research has been conducted on various
aspects of the relational model. Todd (1976) describes an experimental DBMS
called PRTV that directly implements the relational algebra operations. Schmidt
and Swenson (1975) introduce additional semantics into the relational model by
classifying different types of relations. Chen’s (1976) entity–relationship model,
which is discussed in Chapter 3, is a means to communicate the real-world seman-
tics of a relational database at the conceptual level. Wiederhold and Elmasri (1979)
introduce various types of connections between relations to enhance its constraints.
Extensions of the relational model are discussed in Chapters 11 and 26. Additional
bibliographic notes for other aspects of the relational model and its languages, sys-
tems, extensions, and theory are given in Chapters 6 to 9, 14, 15, 23, and 30. Maier
(1983) and Atzeni and De Antonellis (1993) provide an extensive theoretical treat-
ment of the relational data model.

This page intentionally left blank

177

6
Basic SQL

The SQL language may be considered one of the
major reasons for the commercial success of rela-

tional databases. Because it became a standard for relational databases, users were
less concerned about migrating their database applications from other types of
database systems—for example, older network or hierarchical systems—to rela-
tional systems. This is because even if the users became dissatisfied with the partic-
ular relational DBMS product they were using, converting to another relational
DBMS product was not expected to be too expensive and time-consuming because
both systems followed the same language standards. In practice, of course, there
are differences among various commercial relational DBMS packages. However,
if the user is diligent in using only those features that are part of the standard,
and if two relational DBMSs faithfully support the standard, then conversion
between two systems should be simplified. Another advantage of having such a
standard is that users may write statements in a database application program
that can access data stored in two or more relational DBMSs without having to
change the database sublanguage (SQL), as long as both/all of the relational
DBMSs support standard SQL.

This chapter presents the practical relational model, which is based on the SQL
standard for commercial relational DBMSs, whereas Chapter 5 presented the most
important concepts underlying the formal relational data model. In Chapter 8 (Sec-
tions 8.1 through 8.5), we shall discuss the relational algebra operations, which are
very important for understanding the types of requests that may be specified on a
relational database. They are also important for query processing and optimization
in a relational DBMS, as we shall see in Chapters 18 and 19. However, the relational
algebra operations are too low-level for most commercial DBMS users because a
query in relational algebra is written as a sequence of operations that, when exe-
cuted, produces the required result. Hence, the user must specify how—that is, in
what order—to execute the query operations. On the other hand, the SQL language

chapter 6

178 Chapter 6 Basic SQL

provides a higher-level declarative language interface, so the user only specifies
what the result is to be, leaving the actual optimization and decisions on how to
execute the query to the DBMS. Although SQL includes some features from rela-
tional algebra, it is based to a greater extent on the tuple relational calculus, which
we describe in Section 8.6. However, the SQL syntax is more user-friendly than
either of the two formal languages.

The name SQL is presently expanded as Structured Query Language. Originally,
SQL was called SEQUEL (Structured English QUEry Language) and was designed
and implemented at IBM Research as the interface for an experimental relational
database system called SYSTEM R. SQL is now the standard language for com-
mercial relational DBMSs. The standardization of SQL is a joint effort by the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO), and the first SQL standard is called SQL-86 or SQL1. A
revised and much expanded standard called SQL-92 (also referred to as SQL2)
was subsequently developed. The next standard that is well-recognized is
SQL:1999, which started out as SQL3. Additional updates to the standard are
SQL:2003 and SQL:2006, which added XML features (see Chapter 13) among
other updates to the language. Another update in 2008 incorporated more object
database features into SQL (see Chapter 12), and a further update is SQL:2011.
We will try to cover the latest version of SQL as much as possible, but some of the
newer features are discussed in later chapters. It is also not possible to cover the
language in its entirety in this text. It is important to note that when new features
are added to SQL, it usually takes a few years for some of these features to make it
into the commercial SQL DBMSs.

SQL is a comprehensive database language: It has statements for data definitions,
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization,
for defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming lan-
guage such as Java or C/C++.1

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all
RDBMS vendors that are SQL compliant. The extensions can be implemented as
optional modules to be purchased independently for specific database applications
such as data mining, spatial data, temporal data, data warehousing, online analyti-
cal processing (OLAP), multimedia data, and so on.

Because the subject of SQL is both important and extensive, we devote two chap-
ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-
mands for creating schemas and tables, and gives an overview of the basic data
types in SQL. Section 6.2 presents how basic constraints such as key and referen-
tial integrity are specified. Section 6.3 describes the basic SQL constructs for

1Originally, SQL had statements for creating and dropping indexes on the files that represent relations,
but these have been dropped from the SQL standard for some time.

 6.1 SQL Data Definition and Data Types 179

specifying retrieval queries, and Section 6.4 describes the SQL commands for
insertion, deletion, and update.

In Chapter 7, we will describe more complex SQL retrieval queries, as well as the
ALTER commands for changing the schema. We will also describe the CREATE
ASSERTION statement, which allows the specification of more general constraints
on the database, and the concept of triggers, which is presented in more detail in
Chapter 26. We discuss the SQL facility for defining views on the database in Chap-
ter 7. Views are also called virtual or derived tables because they present the user
with what appear to be tables; however, the information in those tables is derived
from previously defined tables.

Section 6.5 lists some SQL features that are presented in other chapters of the book;
these include object-oriented features in Chapter 12, XML in Chapter 13, transac-
tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-
cal processing (OLAP) features in Chapter 29, and security/authorization in
Chapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss the
various database programming techniques for programming with SQL.

6.1 SQL Data Definition and Data Types
SQL uses the terms table, row, and column for the formal relational model terms
relation, tuple, and attribute, respectively. We will use the corresponding terms
interchangeably. The main SQL command for data definition is the CREATE state-
ment, which can be used to create schemas, tables (relations), types, and domains,
as well as other constructs such as views, assertions, and triggers. Before we describe
the relevant CREATE statements, we discuss schema and catalog concepts in Sec-
tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tables
are created, and Section 6.1.3 describes the most important data types available for
attribute specification. Because the SQL specification is very large, we give a descrip-
tion of the most important features. Further details can be found in the various SQL
standards documents (see end-of-chapter bibliographic notes).

6.1.1 Schema and Catalog Concepts in SQL
Early versions of SQL did not include the concept of a relational database schema;
all tables (relations) were considered part of the same schema. The concept of an
SQL schema was incorporated starting with SQL2 in order to group together tables
and other constructs that belong to the same database application (in some systems,
a schema is called a database). An SQL schema is identified by a schema name and
includes an authorization identifier to indicate the user or account who owns the
schema, as well as descriptors for each element in the schema. Schema elements
include tables, types, constraints, views, domains, and other constructs (such as
authorization grants) that describe the schema. A schema is created via the CREATE
SCHEMA statement, which can include all the schema elements’ definitions. Alter-
natively, the schema can be assigned a name and authorization identifier, and the

180 Chapter 6 Basic SQL

elements can be defined later. For example, the following statement creates a
schema called COMPANY owned by the user with authorization identifier ‘Jsmith’.
Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted
to the relevant user accounts by the system administrator or DBA.

In addition to the concept of a schema, SQL uses the concept of a catalog—a named
collection of schemas.2 Database installations typically have a default environment
and schema, so when a user connects and logs in to that database installation, the
user can refer directly to tables and other constructs within that schema without
having to specify a particular schema name. A catalog always contains a special
schema called INFORMATION_SCHEMA, which provides information on all the
schemas in the catalog and all the element descriptors in these schemas. Integrity
constraints such as referential integrity can be defined between relations only if
they exist in schemas within the same catalog. Schemas within the same catalog can
also share certain elements, such as type and domain definitions.

6.1.2 The CREATE TABLE Command in SQL
The CREATE TABLE command is used to specify a new relation by giving it a name
and specifying its attributes and initial constraints. The attributes are specified first,
and each attribute is given a name, a data type to specify its domain of values, and
possibly attribute constraints, such as NOT NULL. The key, entity integrity, and ref-
erential integrity constraints can be specified within the CREATE TABLE statement
after the attributes are declared, or they can be added later using the ALTER TABLE
command (see Chapter 7). Figure 6.1 shows sample data definition statements in
SQL for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified
in the environment in which the CREATE TABLE statements are executed. Alterna-
tively, we can explicitly attach the schema name to the relation name, separated by
a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE table
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables
(or base relations); this means that the table and its rows are actually created

2SQL also includes the concept of a cluster of catalogs.

 6.1 SQL Data Definition and Data Types 181

CREATE TABLE EMPLOYEE
(Fname
 Minit
 Lname
 Ssn
 Bdate
 Address
 Sex
 Salary
 Super_ssn
 Dno

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)
DATE,
VARCHAR(30),
CHAR,
DECIMAL(10,2),
CHAR(9),
INT

NOT NULL,

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Ssn),

CREATE TABLE DEPARTMENT
(Dname
 Dnumber
 Mgr_ssn
 Mgr_start_date

VARCHAR(15)
INT
CHAR(9)
DATE,

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

CREATE TABLE DEPT_LOCATIONS
(Dnumber
 Dlocation

INT
VARCHAR(15)

NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE PROJECT
(Pname
 Pnumber
 Plocation
 Dnum

VARCHAR(15)
INT
VARCHAR(15),
INT

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON
(Essn
 Pno
 Hours

CHAR(9)
INT
DECIMAL(3,1)

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
(Essn
 Dependent_name
 Sex
 Bdate
 Relationship

CHAR(9)
VARCHAR(15)
CHAR,
DATE,
VARCHAR(8),

NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));

Figure 6.1
SQL CREATE
TABLE data
definition statements
for defining the
COMPANY schema
from Figure 5.7.

182 Chapter 6 Basic SQL

and stored as a file by the DBMS. Base relations are distinguished from virtual
relations, created through the CREATE VIEW statement (see Chapter 7), which
may or may not correspond to an actual physical file. In SQL, the attributes in a
base table are considered to be ordered in the sequence in which they are speci-
fied in the CREATE TABLE statement. However, rows (tuples) are not considered
to be ordered within a table (relation).

It is important to note that in Figure 6.1, there are some foreign keys that may cause
errors because they are specified either via circular references or because they refer
to a table that has not yet been created. For example, the foreign key Super_ssn in
the EMPLOYEE table is a circular reference because it refers to the EMPLOYEE table
itself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table,
which has not been created yet. To deal with this type of problem, these constraints
can be left out of the initial CREATE TABLE statement, and then added later using
the ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys in
Figure 6.1 to show the complete COMPANY schema in one place.

6.1.3 Attribute Data Types and Domains in SQL
The basic data types available for attributes include numeric, character string, bit
string, Boolean, date, and time.

 ■ Numeric data types include integer numbers of various sizes (INTEGER or
INT, and SMALLINT) and floating-point (real) numbers of various precision
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be
declared by using DECIMAL(i, j)—or DEC(i, j) or NUMERIC(i, j)—where i, the
precision, is the total number of decimal digits and j, the scale, is the number
of digits after the decimal point. The default for scale is zero, and the default
for precision is implementation-defined.

 ■ Character-string data types are either fixed length—CHAR(n) or
CHARACTER(n), where n is the number of characters—or varying length—
VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), where n is
the maximum number of characters. When specifying a literal string value,
it is placed between single quotation marks (apostrophes), and it is case sen-
sitive (a distinction is made between uppercase and lowercase).3 For fixed-
length strings, a shorter string is padded with blank characters to the right.
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is
padded with five blank characters to become ‘Smith’ if needed. Padded
blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str1 appears before another string str2 in alphabetic order,
then str1 is considered to be less than str2.4 There is also a concatenation
operator denoted by || (double vertical bar) that can concatenate two strings

3This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-

sitive, meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.
4For nonalphabetic characters, there is a defined order.

 6.1 SQL Data Definition and Data Types 183

in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ’.
Another variable-length string data type called CHARACTER LARGE OBJECT
or CLOB is also available to specify columns that have large text values, such
as documents. The CLOB maximum length can be specified in kilobytes
(K), megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a
maximum length of 20 megabytes.

 ■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—
BIT VARYING(n), where n is the maximum number of bits. The default for n,
the length of a character string or bit string, is 1. Literal bit strings are placed
between single quotes but preceded by a B to distinguish them from character
strings; for example, B‘10101’.5 Another variable-length bitstring data type
called BINARY LARGE OBJECT or BLOB is also available to specify columns
that have large binary values, such as images. As for CLOB, the maximum
length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).
For example, BLOB(30G) specifies a maximum length of 30 gigabits.

 ■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL,
because of the presence of NULL values, a three-valued logic is used, so a
third possible value for a Boolean data type is UNKNOWN. We discuss the
need for UNKNOWN and the three-valued logic in Chapter 7.

 ■ The DATE data type has ten positions, and its components are YEAR, MONTH,
and DAY in the form YYYY-MM-DD. The TIME data type has at least eight
positions, with the components HOUR, MINUTE, and SECOND in the form
HH:MM:SS. Only valid dates and times should be allowed by the SQL imple-
mentation. This implies that months should be between 1 and 12 and days
must be between 01 and 31; furthermore, a day should be a valid day for the
corresponding month. The < (less than) comparison can be used with dates
or times—an earlier date is considered to be smaller than a later date, and
similarly with time. Literal values are represented by single-quoted strings
preceded by the keyword DATE or TIME; for example, DATE ‘2014-09-27’ or
TIME ‘09:12:47’. In addition, a data type TIME(i), where i is called time frac-
tional seconds precision, specifies i + 1 additional positions for TIME—one
position for an additional period (.) separator character, and i positions for
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the
standard universal time zone, which is in the range +13:00 to –12:59 in units
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is
not exhaustive; different implementations have added more data types to SQL.

 ■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus
a minimum of six positions for decimal fractions of seconds and an optional
WITH TIME ZONE qualifier. Literal values are represented by single-quoted

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal
string is preceded by X and each hexadecimal character represents 4 bits.

184 Chapter 6 Basic SQL

strings preceded by the keyword TIMESTAMP, with a blank space between
data and time; for example, TIMESTAMP ‘2014-09-27 09:12:47.648302’.

 ■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data
type. This specifies an interval—a relative value that can be used to increment
or decrement an absolute value of a date, time, or timestamp. Intervals are
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-
natively, a domain can be declared, and the domain name can be used with the
attribute specification. This makes it easier to change the data type for a domain
that is used by numerous attributes in a schema, and improves schema readability.
For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 6.1 for the attributes Ssn and
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn
of DEPENDENT. A domain can also have an optional default specification via a
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be
available in some implementations of SQL.

In SQL, there is also a CREATE TYPE command, which can be used to create user
defined types or UDTs. These can then be used either as data types for attributes, or
as the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-
ter 12, because it is often used in conjunction with specifying object database features
that have been incorporated into more recent versions of SQL.

6.2 Specifying Constraints in SQL
This section describes the basic constraints that can be specified in SQL as part of
table creation. These include key and referential integrity constraints, restrictions
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion using the CHECK clause. We discuss the specification of more general con-
straints, called assertions, in Chapter 7.

6.2.1 Specifying Attribute Constraints and Attribute Defaults
Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified
if NULL is not permitted for a particular attribute. This is always implicitly specified for
the attributes that are part of the primary key of each relation, but it can be specified for
any other attributes whose values are required not to be NULL, as shown in Figure 6.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any

 6.2 Specifying Constraints in SQL 185

new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustrates
an example of specifying a default manager for a new department and a default
department for a new employee. If no default clause is specified, the default default
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK
clause following an attribute or domain definition.6 For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we
can change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-
ure 6.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM > 0 AND D_NUM < 21);

6The CHECK clause can also be used for other purposes, as we shall see.

CREATE TABLE EMPLOYEE
 (… ,
 Dno INT NOT NULL DEFAULT 1,
 CONSTRAINT EMPPK
 PRIMARY KEY (Ssn),
 CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET NULL ON UPDATE CASCADE,
 CONSTRAINT EMPDEPTFK
 FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
 (… ,
 Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’,
 … ,
 CONSTRAINT DEPTPK
 PRIMARY KEY(Dnumber),
 CONSTRAINT DEPTSK
 UNIQUE (Dname),
 CONSTRAINT DEPTMGRFK
 FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
 (… ,
 PRIMARY KEY (Dnumber, Dlocation),
 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE CASCADE ON UPDATE CASCADE);

Figure 6.2
Example illustrating
how default attribute
values and referential
integrity triggered
actions are specified
in SQL.

186 Chapter 6 Basic SQL

We can then use the created domain D_NUM as the attribute type for all attributes
that refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT,
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

6.2.2 Specifying Key and Referential Integrity Constraints
Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to
illustrate the specification of keys and referential integrity are shown in Figure 6.1.7
The PRIMARY KEY clause specifies one or more attributes that make up the primary
key of a relation. If a primary key has a single attribute, the clause can follow the
attribute directly. For example, the primary key of DEPARTMENT can be specified as
follows (instead of the way it is specified in Figure 6.1):

Dnumber INT PRIMARY KEY,

The UNIQUE clause specifies alternate (unique) keys, also known as candidate keys
as illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1.
The UNIQUE clause can also be specified directly for a unique key if it is a single
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig-
ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can be
violated when tuples are inserted or deleted, or when a foreign key or primary key
attribute value is updated. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as
the RESTRICT option. However, the schema designer can specify an alternative
action to be taken by attaching a referential triggered action clause to any foreign
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this
with the examples shown in Figure 6.2. Here, the database designer chooses ON
DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the
value of Super_ssn is automatically set to NULL for all employee tuples that were
referencing the deleted employee tuple. On the other hand, if the Ssn value for a
supervising employee is updated (say, because it was entered incorrectly), the new
value is cascaded to Super_ssn for all employee tuples referencing the updated
employee tuple.8

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the
same for both ON DELETE and ON UPDATE: The value of the affected referencing
attributes is changed to NULL for SET NULL and to the specified default value of the

7Key and referential integrity constraints were not included in early versions of SQL.
8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at
the end of Section 6.1.2.

 6.3 Basic Retrieval Queries in SQL 187

referencing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to
delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to
change the value of the referencing foreign key attribute(s) to the updated (new)
primary key value for all the referencing tuples. It is the responsibility of the data-
base designer to choose the appropriate action and to specify it in the database
schema. As a general rule, the CASCADE option is suitable for “relationship” rela-
tions (see Section 9.1) , such as WORKS_ON; for relations that represent multival-
ued attributes, such as DEPT_LOCATIONS; and for relations that represent weak
entity types, such as DEPENDENT.

6.2.3 Giving Names to Constraints
Figure 6.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular
schema must be unique. A constraint name is used to identify a particular con-
straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is also
possible to temporarily defer a constraint until the end of a transaction, as we shall
discuss in Chapter 20 when we present transaction concepts.

6.2.4 Specifying Constraints on Tuples Using CHECK
In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK
clauses at the end of a CREATE TABLE statement. These can be called row-based
constraints because they apply to each row individually and are checked whenever
a row is inserted or modified. For example, suppose that the DEPARTMENT table in
Figure 6.1 had an additional attribute Dept_create_date, which stores the date when
the department was created. Then we could add the following CHECK clause at the
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using
the CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 because
it requires the full power of queries, which are discussed in Sections 6.3
and 7.1.

6.3 Basic Retrieval Queries in SQL
SQL has one basic statement for retrieving information from a database: the
SELECT statement. The SELECT statement is not the same as the SELECT operation
of relational algebra, which we shall discuss in Chapter 8. There are many options
and flavors to the SELECT statement in SQL, so we will introduce its features grad-
ually. We will use example queries specified on the schema of Figure 5.5 and will

188 Chapter 6 Basic SQL

refer to the sample database state shown in Figure 5.6 to show the results of some
of these queries. In this section, we present the features of SQL for simple retrieval
queries. Features of SQL for specifying more complex retrieval queries are pre-
sented in Section 7.1.

Before proceeding, we must point out an important distinction between the practical
SQL model and the formal relational model discussed in Chapter 5: SQL allows a
table (relation) to have two or more tuples that are identical in all their attribute
values. Hence, in general, an SQL table is not a set of tuples, because a set does not
allow two identical members; rather, it is a multiset (sometimes called a bag) of
tuples. Some SQL relations are constrained to be sets because a key constraint has
been declared or because the DISTINCT option has been used with the SELECT state-
ment (described later in this section). We should be aware of this distinction as we
discuss the examples.

6.3.1 The SELECT-FROM-WHERE Structure
of Basic SQL Queries

Queries in SQL can be very complex. We will start with simple queries, and then
progress to more complex ones in a step-by-step manner. The basic form of the
SELECT statement, sometimes called a mapping or a select-from-where block, is
formed of the three clauses SELECT, FROM, and WHERE and has the following form:9

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

 ■ <attribute list> is a list of attribute names whose values are to be retrieved by
the query.

 ■ <table list> is a list of the relation names required to process the query.

 ■ <condition> is a conditional (Boolean) expression that identifies the tuples
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond
to the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively, and to the
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntactic
difference is the not equal operator. SQL has additional comparison operators that
we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The
queries are labeled here with the same query numbers used in Chapter 8 for easy
cross-reference.

9The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec-
tion 6.3.3).

 6.3 Basic Retrieval Queries in SQL 189

Query 0. Retrieve the birth date and address of the employee(s) whose name is
‘John B. Smith’.

Q0: SELECT Bdate, Address
 FROM EMPLOYEE
 WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The
query selects the individual EMPLOYEE tuples that satisfy the condition of the
WHERE clause, then projects the result on the Bdate and Address attributes listed in
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes in relational algebra (see Chapter 8) and
the WHERE clause specifies the Boolean condition that must be true for any
retrieved tuple, which is known as the selection condition in relational algebra.
Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is,
those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: SELECT Fname, Lname, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condition
that chooses the particular tuple of interest in the DEPARTMENT table, because Dname
is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,
whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in
EMPLOYEE. The result of query Q1 is shown in Figure 6.3(b). In general, any number
of selection and join conditions may be specified in a single SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND

Plocation = ‘Stafford’

190 Chapter 6 Basic SQL

(a) Bdate

1965-01-09 731Fondren, Houston, TX

Address (b) Fname

John

Franklin

Ramesh

Joyce

Smith

Wong

Narayan

English

731 Fondren, Houston, TX

638 Voss, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Lname Address

(d) E.Fname

John

Franklin

Alicia Zelaya

Joyce

Ramesh

Jennifer Wallace

Ahmad Jabbar

Smith

Wong

Narayan

English

Jennifer

James

Jennifer

Franklin

James

Franklin

Franklin

Wallace

Borg

Wallace

Wong

Borg

Wong

Wong

E.Lname S.Fname S.Lname

Fname

John

Franklin

K

Joyce

Ramesh

A

B

T

M

F

M

M

5

5

5

5

38000

25000

30000

40000

333445555

333445555

333445555

888665555

Narayan

English

Smith

Wong

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1962-09-15

1972-07-31

1965-09-01

1955-12-08

666884444

453453453

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

(g)

(e) E.Fname

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

(c) Pnumber

10

30

1941-06-20

1941-06-20

4

4

Wallace 291Berry, Bellaire, TX

291Berry, Bellaire, TXWallace

Dnum Lname BdateAddress (f) Ssn

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

Research

Research

Research

Research

Research

Research

Research

Research

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Dname

Figure 6.3
Results of SQL queries when applied to the COMPANY database state shown
in Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

 6.3 Basic Retrieval Queries in SQL 191

The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department (that controls the proj-
ect), and one employee (that manages the department). The projection attributes
are used to choose the attributes to be displayed from each combined tuple. The
result of query Q2 is shown in Figure 6.3(c).

6.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the
attributes are in different tables. If this is the case, and a multitable query refers to
two or more attributes with the same name, we must qualify the attribute name
with the relation name to prevent ambiguity. This is done by prefixing the rela-
tion name to the attribute name and separating the two by a period. To illustrate
this, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the
EMPLOYEE relation were called Dnumber and Name, and the Dname attribute of
DEPARTMENT was also called Name; then, to prevent ambiguity, query Q1 would
be rephrased as shown in Q1A. We must prefix the attributes Name and Dnumber
in Q1A to specify which ones we are referring to, because the same attribute
names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE DEPARTMENT.Name = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambi-
guity in attribute names. Q1 can be rewritten as Q1′ below with fully qualified
attribute names. We can also rename the table names to shorter names by creat-
ing an alias for each table name to avoid repeated typing of long table names
(see Q8 below).

Q1′: SELECT EMPLOYEE.Fname, EMPLOYEE.LName,
EMPLOYEE.Address

 FROM EMPLOYEE, DEPARTMENT
 WHERE DEPARTMENT.DName = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

192 Chapter 6 Basic SQL

In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and
so on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join
condition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recur-
sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was not
possible to specify a general recursive query, with an unknown number of levels, in
a single SQL statement. A construct for specifying recursive queries has been incor-
porated into SQL:1999 (see Chapter 7).

The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliases
are given to a relation, we can use these names to represent different references
to that same relation. This permits multiple references to the same relation
within a query.

We can use this alias-naming or renaming mechanism in any SQL query to specify
tuple variables for every table in the WHERE clause, whether or not the same rela-
tion needs to be referenced more than once. In fact, this practice is recommended
since it results in queries that are easier to comprehend. For example, we could
specify query Q1 as in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address
 FROM EMPLOYEE AS E, DEPARTMENT AS D
 WHERE D.DName = ‘Research’ AND D.Dnumber = E.Dno;

6.3.3 Unspecified WHERE Clause and Use of the Asterisk
We discuss two more features of SQL here. A missing WHERE clause indicates
no condition on tuple selection; hence, all tuples of the relation specified in the
FROM clause qualify and are selected for the query result. If more than one rela-
tion is specified in the FROM clause and there is no WHERE clause, then the
CROSS PRODUCT—all possible tuple combinations—of these relations is
selected. For example, Query 9 selects all EMPLOYEE Ssns (Figure 6.3(e)), and
Query 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT
Dname, regardless of whether the employee works for the department or not
(Figure 6.3(f)).

 6.3 Basic Retrieval Queries in SQL 193

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn
 FROM EMPLOYEE;

Q10: SELECT Ssn, Dname
 FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the WHERE
clause; if any such condition is overlooked, incorrect and very large relations may
result. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a
PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-
butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT
(except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all
the attributes. The * can also be prefixed by the relation name or alias; for example,
EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

Query Q1C retrieves all the attribute values of any EMPLOYEE who works in
DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for
every employee of the ‘Research’ department, and Q10A specifies the CROSS
PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C: SELECT *
 FROM EMPLOYEE
 WHERE Dno = 5;

Q1D: SELECT *
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q10A: SELECT *
 FROM EMPLOYEE, DEPARTMENT;

6.3.4 Tables as Sets in SQL
As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset;
duplicate tuples can appear more than once in a table, and in the result of a query.
SQL does not automatically eliminate duplicate tuples in the results of queries, for
the following reasons:

 ■ Duplicate elimination is an expensive operation. One way to implement it is
to sort the tuples first and then eliminate duplicates.

 ■ The user may want to see duplicate tuples in the result of a query.

 ■ When an aggregate function (see Section 7.1.7) is applied to tuples, in most
cases we do not want to eliminate duplicates.

194 Chapter 6 Basic SQL

An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.10 If we do want to eliminate duplicate tuples from the result of
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that
only distinct tuples should remain in the result. In general, a query with SELECT
DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-
fying SELECT with neither ALL nor DISTINCT—as in our previous examples—is
equivalent to SELECT ALL. For example, Q11 retrieves the salary of every employee;
if several employees have the same salary, that salary value will appear as many
times in the result of the query, as shown in Figure 6.4(a). If we are interested only
in distinct salary values, we want each value to appear only once, regardless of how
many employees earn that salary. By using the keyword DISTINCT as in Q11A, we
accomplish this, as shown in Figure 6.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

Q11: SELECT ALL Salary
 FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary
 FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set
theory, which are also part of relational algebra (see Chapter 8). There are set union
(UNION), set difference (EXCEPT),11 and set intersection (INTERSECT) operations.
The relations resulting from these set operations are sets of tuples; that is, duplicate
tuples are eliminated from the result. These set operations apply only to type-
compatible relations, so we must make sure that the two relations on which we apply
the operation have the same attributes and that the attributes appear in the same
order in both relations. The next example illustrates the use of UNION.

(b)Salary

30000

40000

25000

43000

38000

25000

25000

55000

(c)(a) Salary

30000

40000

25000

43000

38000

55000

Fname Lname

(d) Fname Lname

James Borg

Figure 6.4
Results of additional
SQL queries when
applied to the
COMPANY database
state shown in
Figure 5.6. (a) Q11.
(b) Q11A. (c) Q16.
(d) Q18.

10In general, an SQL table is not required to have a key, although in most cases there will be one.
11In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.

 6.3 Basic Retrieval Queries in SQL 195

Query 4. Make a list of all project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.

Q4A: (SELECT DISTINCT Pnumber
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
 AND Lname = ‘Smith’)
 UNION
 (SELECT DISTINCT Pnumber
 FROM PROJECT, WORKS_ON, EMPLOYEE
 WHERE Pnumber = Pno AND Essn = Ssn
 AND Lname = ‘Smith’);

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of
the department that controls the project, and the second retrieves the projects that
involve a ‘Smith’ as a worker on the project. Notice that if several employees have
the last name ‘Smith’, the project names involving any of them will be retrieved.
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the key-
word ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets
(duplicates are not eliminated). The behavior of these operations is illustrated by
the examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—
is considered as a different tuple when applying these operations.

6.3.5 Substring Pattern Matching and Arithmetic Operators
In this section we discuss several more features of SQL. The first feature allows
comparison conditions on only parts of a character string, using the LIKE compari-
son operator. This can be used for string pattern matching. Partial strings are spec-
ified using two reserved characters: % replaces an arbitrary number of zero or more
characters, and the underscore (_) replaces a single character. For example, con-
sider the following query.

T(b)

A

a1

a1

a2

a2

a2

a3

a4

a5

T(c)

A

a2

a3

T(d)

A

a1

a2

R(a)

A

a1

a2

a2

a3

S

A

a1

a2

a4

a5

Figure 6.5
The results of SQL multiset
operations. (a) Two tables,
R(A) and S(A).
(b) R(A)UNION ALL S(A).
(c) R(A) EXCEPT ALL S(A).
(d) R(A) INTERSECT ALL
S(A).

196 Chapter 6 Basic SQL

Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Address LIKE ‘%Houston,TX%’;

To retrieve all employees who were born during the 1970s, we can use Query Q12A.
Here, ‘7’ must be the third character of the string (according to our format for date),
so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore serving as a place-
holder for an arbitrary character.

Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Bdate LIKE ‘_ _ 7 _ _ _ _ _ _ _’;

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using
the keyword ESCAPE. For example, ‘AB_CD\%EF’ ESCAPE ‘\’ represents the lit-
eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-
ter not used in the string can be chosen as the escape character. Also, we need a rule
to specify apostrophes or single quotation marks (‘ ’) if they are to be included in a
string because they are used to begin and end strings. If an apostrophe (’) is needed,
it is represented as two consecutive apostrophes (”) so that it will not be interpreted
as ending the string. Notice that substring comparison implies that attribute values
are not atomic (indivisible) values, as we had assumed in the formal relational
model (see Section 5.1) .

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (−), multiplication (*), and division (/) can
be applied to numeric values or attributes with numeric domains. For example,
suppose that we want to see the effect of giving all employees who work on the
‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salaries
would become. This example also shows how we can rename an attribute in the
query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the
‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
 FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
 WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND

P.Pname = ‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators
include incrementing (+) or decrementing (−) a date, time, or timestamp by an
interval. In addition, an interval value is the result of the difference between two
date, time, or timestamp values. Another comparison operator, which can be used
for convenience, is BETWEEN, which is illustrated in Query 14.

 6.3 Basic Retrieval Queries in SQL 197

Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Q14: SELECT *
 FROM EMPLOYEE
 WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

6.3.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one
or more of the attributes that appear in the query result, by using the ORDER BY
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on,
ordered by department and, within each department, ordered alphabetically by
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname
 FROM DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W,

PROJECT AS P
 WHERE D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =

P.Pnumber
 ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values. We can specify the keyword DESC
if we want to see the result in a descending order of values. The keyword ASC can be
used to specify ascending order explicitly. For example, if we want descending
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

6.3.7 Discussion and Summary of
Basic SQL Retrieval Queries
A simple retrieval query in SQL can consist of up to four clauses, but only the first
two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets […] being optional:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[ORDER BY <attribute list>];

The SELECT clause lists the attributes to be retrieved, and the FROM clause
specifies all relations (tables) needed in the simple query. The WHERE clause
identifies the conditions for selecting the tuples from these relations, including

198 Chapter 6 Basic SQL

join conditions if needed. ORDER BY specifies an order for displaying the results
of a query. Two additional clauses GROUP BY and HAVING will be described in
Section 7.1.8.

In Chapter 7, we will present more complex features of SQL retrieval queries. These
include the following: nested queries that allow one query to be included as part of
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be
used to provide additional power to aggregate functions; and various types of joins
that can combine records from various tables in different ways.

6.4 INSERT, DELETE, and UPDATE
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

6.4.1 The INSERT Command
In its simplest form, INSERT is used to add a single tuple (row) to a relation (table).
We must specify the relation name and a list of values for the tuple. The values
should be listed in the same order in which the corresponding attributes were speci-
fied in the CREATE TABLE command. For example, to add a new tuple to the
EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLE
EMPLOYEE … command in Figure 6.1, we can use U1:

U1: INSERT INTO EMPLOYEE
 VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98

Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned
values in the new tuple. However, the values must include all attributes with NOT
NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out. For example, to enter a tuple for a new
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we
can use U1A:

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
 VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself.
It is also possible to insert into a relation multiple tuples separated by commas in a
single INSERT command. The attribute values forming each tuple are enclosed in
parentheses.

 6.4 INSERT, DELETE, and UPDATE Statements in SQL 199

A DBMS that fully implements SQL should support and enforce all the integrity
constraints that can be specified in the DDL. For example, if we issue the command
in U2 on the database shown in Figure 5.6, the DBMS should reject the operation
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly,
U2A would be rejected because no Ssn value is provided and it is the primary key,
which cannot be NULL.

U2: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)
 VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);
 (U2 is rejected if referential integrity checking is provided by DBMS.)

U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)
 VALUES (‘Robert’, ‘Hatcher’, 5);
 (U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the employee last name, project name,
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO
 (Emp_name VARCHAR(15),
 Proj_name VARCHAR(15),
 Hours_per_week DECIMAL(3,1));

U3B: INSERT INTO WORKS_ON_INFO (Emp_name, Proj_name,
Hours_per_week)

 SELECT E.Lname, P.Pname, W.Hours
 FROM PROJECT P, WORKS_ON W, EMPLOYEE E
 WHERE P.Pnumber = W.Pno AND W.Essn = E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query
WORKS_ON_INFO as we would any other relation; when we do not need it anymore,
we can remove it by using the DROP TABLE command (see Chapter 7). Notice that
the WORKS_ON_INFO table may not be up to date; that is, if we update any of the
PROJECT,WORKS_ON, or EMPLOYEE relations after issuing U3B, the information
in WORKS_ON_INFO may become outdated. We have to create a view (see Chap-
ter 7) to keep such a table up to date.

Most DBMSs have bulk loading tools that allow a user to load formatted data from
a file into a table without having to write a large number of INSERT commands.
The user can also write a program to read each record in the file, format it as a row
in the table, and insert it using the looping constructs of a programming language
(see Chapters 10 and 11, where we discuss database programming techniques).

Another variation for loading data is to create a new table TNEW that has the
same attributes as an existing table T, and load some of the data currently in T
into TNEW. The syntax for doing this uses the LIKE clause. For example, if we

200 Chapter 6 Basic SQL

want to create a table D5EMPS with a similar structure to the EMPLOYEE table
and load it with the rows of employees who work in department 5, we can write
the following SQL:

CREATE TABLE D5EMPS LIKE EMPLOYEE
(SELECT E.*
FROM EMPLOYEE AS E
WHERE E.Dno = 5) WITH DATA;

The clause WITH DATA specifies that the table will be created and loaded with
the data specified in the query, although in some implementations it may be
left out.

6.4.2 The DELETE Command
The DELETE command removes tuples from a relation. It includes a WHERE
clause, similar to that used in an SQL query, to select the tuples to be deleted.
Tuples are explicitly deleted from only one table at a time. However, the deletion
may propagate to tuples in other relations if referential triggered actions are spec-
ified in the referential integrity constraints of the DDL (see Section 6.2.2).12
Depending on the number of tuples selected by the condition in the WHERE
clause, zero, one, or several tuples can be deleted by a single DELETE command. A
missing WHERE clause specifies that all tuples in the relation are to be deleted;
however, the table remains in the database as an empty table. We must use the
DROP TABLE command to remove the table definition (see Chapter 7). The
DELETE commands in U4A to U4D, if applied independently to the database state
shown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, from
the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE
 WHERE Lname = ‘Brown’;
U4B: DELETE FROM EMPLOYEE
 WHERE Ssn = ‘123456789’;
U4C: DELETE FROM EMPLOYEE
 WHERE Dno = 5;
U4D: DELETE FROM EMPLOYEE;

6.4.3 The UPDATE Command
The UPDATE command is used to modify attribute values of one or more selected
tuples. As in the DELETE command, a WHERE clause in the UPDATE command
selects the tuples to be modified from a single relation. However, updating a pri-
mary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity

12Other actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.

 6.5 Additional Features of SQL 201

constraints of the DDL (see Section 6.2.2). An additional SET clause in the
UPDATE command specifies the attributes to be modified and their new values.
For example, to change the location and controlling department number of proj-
ect number 10 to ‘Bellaire’ and 5, respectively, we use U5:

U5: UPDATE PROJECT
 SET Plocation = ‘Bellaire’, Dnum = 5
 WHERE Pnumber = 10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the ‘Research’ department a 10% raise in salary, as shown in
U6. In this request, the modified Salary value depends on the original Salary value
in each tuple, so two references to the Salary attribute are needed. In the SET
clause, the reference to the Salary attribute on the right refers to the old Salary
value before modification, and the one on the left refers to the new Salary value
after modification:

U6: UPDATE EMPLOYEE
 SET Salary = Salary * 1.1
 WHERE Dno = 5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multi-
ple relations, we must issue several UPDATE commands.

6.5 Additional Features of SQL
SQL has a number of additional features that we have not described in this chapter
but that we discuss elsewhere in the book. These are as follows:

 ■ In Chapter 7, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval
queries, including nested queries, aggregate functions, grouping, joined
tables, outer joins, case statements, and recursive queries; SQL views, trig-
gers, and assertions; and commands for schema modification.

 ■ SQL has various techniques for writing programs in various programming
languages that include SQL statements to access one or more databases.
These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface)
and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM
(Persistent Stored Modules). We discuss these techniques in Chapter 10. We
also describe how to access SQL databases through the Java programming
language using JDBC and SQLJ.

 ■ Each commercial RDBMS will have, in addition to the SQL commands, a set
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of
SQL had commands for creating indexes, but these were removed from the

202 Chapter 6 Basic SQL

language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands; but they require a special
privilege. We describe this in Chapter 17.

 ■ SQL has transaction control commands. These are used to specify units of
database processing for concurrency control and recovery purposes. We
discuss these commands in Chapter 20 after we discuss the concept of trans-
actions in more detail.

 ■ SQL has language constructs for specifying the granting and revoking of
privileges to users. Privileges typically correspond to the right to use certain
SQL commands to access certain relations. Each relation is assigned an
owner, and either the owner or the DBA staff can grant to selected users the
privilege to use an SQL statement—such as SELECT, INSERT, DELETE, or
UPDATE—to access the relation. In addition, the DBA staff can grant the
privileges to create schemas, tables, or views to certain users. These SQL
commands—called GRANT and REVOKE—are discussed in Chapter 20,
where we discuss database security and authorization.

 ■ SQL has language constructs for creating triggers. These are generally
referred to as active database techniques, since they specify actions that are
automatically triggered by events such as database updates. We discuss these
features in Section 26.1, where we discuss active database concepts.

 ■ SQL has incorporated many features from object-oriented models to have
more powerful capabilities, leading to enhanced relational systems known
as object-relational. Capabilities such as creating complex-structured attri-
butes, specifying abstract data types (called UDTs or user-defined types) for
attributes and tables, creating object identifiers for referencing tuples, and
specifying operations on types are discussed in Chapter 12.

 ■ SQL and relational databases can interact with new technologies such as
XML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

6.6 Summary
In this chapter, we introduced the SQL database language. This language and its
variations have been implemented as interfaces to many commercial relational
DBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and many
other systems including Sybase and INGRES. Some open source systems also provide
SQL, such as MySQL and PostgreSQL. The original version of SQL was imple-
mented in the experimental DBMS called SYSTEM R, which was developed at IBM
Research. SQL is designed to be a comprehensive language that includes statements
for data definition, queries, updates, constraint specification, and view definition.
We discussed the following features of SQL in this chapter: the data definition com-
mands for creating tables, SQL basic data types, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter,
we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.

 Exercises 203

Review Questions
 6.1. How do the relations (tables) in SQL differ from the relations defined for-

mally in Chapter 3? Discuss the other differences in terminology. Why does
SQL allow duplicate tuples in a table or in a query result?

 6.2. List the data types that are allowed for SQL attributes.

 6.3. How does SQL allow implementation of the entity integrity and referential
integrity constraints described in Chapter 3? What about referential trig-
gered actions?

 6.4. Describe the four clauses in the syntax of a simple SQL retrieval query. Show
what type of constructs can be specified in each of the clauses. Which are
required and which are optional?

Exercises
 6.5. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. What are the referential integrity constraints that should hold on the
schema? Write appropriate SQL DDL statements to define the database.

 6.6. Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

 6.7. Consider the LIBRARY relational database schema shown in Figure 6.6.
Choose the appropriate action (reject, cascade, set to NULL, set to default) for
each referential integrity constraint, both for the deletion of a referenced
tuple and for the update of a primary key attribute value in a referenced
tuple. Justify your choices.

 6.8. Write appropriate SQL DDL statements for declaring the LIBRARY relational
database schema of Figure 6.6. Specify the keys and referential triggered
actions.

 6.9. How can the key and foreign key constraints be enforced by the DBMS? Is
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

 6.10. Specify the following queries in SQL on the COMPANY relational database
schema shown in Figure 5.5. Show the result of each query if it is applied to
the COMPANY database in Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong’.

204 Chapter 6 Basic SQL

 6.11. Specify the updates of Exercise 3.11 using the SQL update commands.

 6.12. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘cs’ (computer
science).

b. Retrieve the names of all courses taught by Professor King in 2007 and
2008.

c. For each section taught by Professor King, retrieve the course number,
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4)
majoring in CS. A transcript includes course name, course number,
credit hours, semester, year, and grade for each course completed by
the student.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES
Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH
Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER
Card_no Name Address Phone

Figure 6.6
A relational database
schema for a
LIBRARY database.

 Selected Bibliography 205

 6.13. Write SQL update statements to do the following on the database schema
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>.

d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.

 6.14. Design a relational database schema for a database application of your
choice.

a. Declare your relations using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database
application.

c. Based on your expected use of the database, choose some attributes that
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

 6.15. Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in
Figure 6.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:

a. What happens when the following command is run on the database state
shown in Figure 5.6?

DELETE EMPLOYEE WHERE Lname = ‘Borg’

b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint
ON DELETE?

 6.16. Write SQL statements to create a table EMPLOYEE_BACKUP to back up the
EMPLOYEE table shown in Figure 5.6.

Selected Bibliography
The SQL language, originally named SEQUEL, was based on the language SQUARE
(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). The
syntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) and
then into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The original
implementation of SEQUEL was done at IBM Research, San Jose, California. We
will give additional references to various aspects of SQL at the end of Chapter 7.

This page intentionally left blank

207

7
More SQL: Complex Queries,

Triggers, Views, and
Schema Modification

This chapter describes more advanced features of
the SQL language for relational databases. We start

in Section 7.1 by presenting more complex features of SQL retrieval queries, such as
nested queries, joined tables, outer joins, aggregate functions, and grouping, and
case statements. In Section 7.2, we describe the CREATE ASSERTION statement,
which allows the specification of more general constraints on the database. We also
introduce the concept of triggers and the CREATE TRIGGER statement, which will
be presented in more detail in Section 26.1 when we present the principles of active
databases. Then, in Section 7.3, we describe the SQL facility for defining views on
the database. Views are also called virtual or derived tables because they present the
user with what appear to be tables; however, the information in those tables is
derived from previously defined tables. Section 7.4 introduces the SQL ALTER
TABLE statement, which is used for modifying the database tables and constraints.
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries
In Section 6.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We
discuss several of these features in this section.

chapter 7

208 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.1.1 Comparisons Involving NULL and Three-Valued Logic
SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that
NULL is used to represent a missing value, but that it usually has one of three differ-
ent interpretations—value unknown (value exists but is not known, or it is not
known whether or not the value exists), value not available (value exists but is pur-
posely withheld), or value not applicable (the attribute does not apply to this tuple
or is undefined for this tuple). Consider the following examples to illustrate each of
the meanings of NULL.

 1. Unknown value. A person’s date of birth is not known, so it is represented
by NULL in the database. An example of the other case of unknown would be
NULL for a person’s home phone because it is not known whether or not the
person has a home phone.

 2. Unavailable or withheld value. A person has a home phone but does not
want it to be listed, so it is withheld and represented as NULL in the database.

 3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a
person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for exam-
ple, a NULL for the home phone of a person can have any of the three meanings.
Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other
NULL value in the various database records. When a record with NULL in one of its
attributes is involved in a comparison operation, the result is considered to be
UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued
logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued
(Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the
results (or truth values) of three-valued logical expressions when the logical con-
nectives AND, OR, and NOT are used. Table 7.1 shows the resulting values.

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

(b) OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

(c) NOT

TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

 7.1 More Complex SQL Retrieval Queries 209

In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the results
of comparison conditions, which would typically appear in the WHERE clause of an
SQL query. Each expression result would have a value of TRUE, FALSE, or
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of using
the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is
FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 7.1(c)
shows the result of the NOT logical operation. Notice that in standard Boolean logic,
only TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression in the WHERE clause of the query to TRUE
are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not
selected. However, there are exceptions to that rule for certain operations, such as
outer joins, as we shall see in Section 7.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or <> to compare an attribute value to NULL, SQL uses the comparison operators IS or
IS NOT. This is because SQL considers each NULL value as being distinct from every
other NULL value, so equality comparison is not appropriate. It follows that when a join
condition is specified, tuples with NULL values for the join attributes are not included in
the result (unless it is an OUTER JOIN; see Section 7.1.6). Query 18 illustrates NULL com-
parison by retrieving any employees who do not have a supervisor.

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Super_ssn IS NULL;

7.1.2 Nested Queries, Tuples,
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used
in a comparison condition. Such queries can be conveniently formulated by using
nested queries, which are complete select-from-where blocks within another SQL
query. That other query is called the outer query. These nested queries can also
appear in the WHERE clause or the FROM clause or the SELECT clause or other
SQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but it
can be rephrased to use nested queries as shown in Q4A. Q4A introduces the com-
parison operator IN, which compares a value v with a set (or multiset) of values V
and evaluates to TRUE if v is one of the elements in V.

In Q4A, the first nested query selects the project numbers of projects that have an
employee with last name ‘Smith’ involved as manager, whereas the second nested query
selects the project numbers of projects that have an employee with last name ‘Smith’
involved as worker. In the outer query, we use the OR logical connective to retrieve a
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.

210 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q4A: SELECT DISTINCT Pnumber
 FROM PROJECT
 WHERE Pnumber IN
 (SELECT Pnumber
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE Dnum = Dnumber AND
 Mgr_ssn = Ssn AND Lname = ‘Smith’)
 OR
 Pnumber IN
 (SELECT Pno
 FROM WORKS_ON, EMPLOYEE
 WHERE Essn = Ssn AND Lname = ‘Smith’);

If a nested query returns a single attribute and a single tuple, the query result will be
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation),
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN (SELECT Pno, Hours
 FROM WORKS_ON
 WHERE Essn = ‘123456789’);

This query will select the Essns of all employees who work the same (project, hours)
combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’)
works on. In this example, the IN operator compares the subtuple of values in paren-
theses (Pno, Hours) within each tuple in WORKS_ON with the set of type-compatible
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used
to compare a single value v (typically an attribute name) to a set or multiset v (typi-
cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v
is equal to some value in the set V and is hence equivalent to IN. The two keywords
ANY and SOME have the same effect. Other operators that can be combined with
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL V)
returns TRUE if the value v is greater than all the values in the set (or multiset) V.
An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ALL (SELECT Salary
 FROM EMPLOYEE
 WHERE Dno = 5);

 7.1 More Complex SQL Retrieval Queries 211

Notice that this query can also be specified using the MAX aggregate function (see
Section 7.1.7).

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an
unqualified attribute refers to the relation declared in the innermost nested query.
For example, in the SELECT clause and WHERE clause of the first nested query of
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the
PROJECT relation specified in the FROM clause of the nested query. To refer to an
attribute of the PROJECT relation specified in the outer query, we specify and refer
to an alias (tuple variable) for that relation. These rules are similar to scope rules for
program variables in most programming languages that allow nested procedures
and functions. To illustrate the potential ambiguity of attribute names in nested
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E
 WHERE E.Ssn IN (SELECT D.Essn
 FROM DEPENDENT AS D
 WHERE E.Fname = D.Dependent_name
 AND E.Sex = D.Sex);

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attri-
bute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute
called Sex. If there were any unqualified references to Sex in the nested query, they
would refer to the Sex attribute of DEPENDENT. However, we would not have to
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested
query because the DEPENDENT relation does not have attributes called Fname and
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q16.

7.1.3 Correlated Nested Queries
Whenever a condition in the WHERE clause of a nested query references some attri-
bute of a relation declared in the outer query, the two queries are said to be correlated.
We can understand a correlated query better by considering that the nested query is
evaluated once for each tuple (or combination of tuples) in the outer query. For
example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the
nested query, which retrieves the Essn values for all DEPENDENT tuples with the
same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple
is in the result of the nested query, then select that EMPLOYEE tuple.

212 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E, DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex
 AND E.Fname = D.Dependent_name;

7.1.4 The EXISTS and UNIQUE Functions in SQL
EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence,
they can be used in a WHERE clause condition. The EXISTS function in SQL is used
to check whether the result of a nested query is empty (contains no tuples) or not.
The result of EXISTS is a Boolean value TRUE if the nested query result contains at
least one tuple, or FALSE if the nested query result contains no tuples. We illustrate
the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate
Query 16 in an alternative form that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E
 WHERE EXISTS (SELECT *
 FROM DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex
 AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of
the EMPLOYEE relation from the outer query. We can think of Q16B as follows: For
each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT
tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at
least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE
tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested
query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS(Q) returns
TRUE if there are no tuples in the result of nested query Q, and returns FALSE other-
wise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Q6: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE NOT EXISTS (SELECT *
 FROM DEPENDENT
 WHERE Ssn = Essn);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a
particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because
the WHERE-clause condition will evaluate to TRUE in this case. We can explain
Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all

 7.1 More Complex SQL Retrieval Queries 213

DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is
empty, no dependents are related to the employee, so we select that EMPLOYEE
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE EXISTS (SELECT *
 FROM DEPENDENT
 WHERE Ssn = Essn)
 AND
 EXISTS (SELECT *
 FROM DEPARTMENT
 WHERE Ssn = Mgr_ssn);

One way to write this query is shown in Q7, where we specify two nested cor-
related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE,
and the second selects all DEPARTMENT tuples managed by the EMPLOYEE. If at
least one of the first and at least one of the second exists, we select the EMPLOYEE
tuple. Can you rewrite this query using only a single nested query or no nested
queries?

The query Q3: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in
SQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and
Q3B. This is an example of certain types of queries that require universal quantifica-
tion, as we will discuss in Section 8.6.7. One way to write this query is to use the
construct (S2 EXCEPT S1) as explained next, and checking whether the result is
empty.1 This option is shown as Q3A.

Q3A: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE NOT EXISTS ((SELECT Pnumber
 FROM PROJECT
 WHERE Dnum = 5)
 EXCEPT (SELECT Pno
 FROM WORKS_ON
 WHERE Ssn = Essn));

In Q3A, the first subquery (which is not correlated with the outer query) selects all
projects controlled by department 5, and the second subquery (which is corre-
lated) selects all projects that the particular employee being considered works on.
If the set difference of the first subquery result MINUS (EXCEPT) the second sub-
query result is empty, it means that the employee works on all the projects and is
therefore selected.

1Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for
example, in Oracle.

214 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3A.

Q3B: SELECT Lname, Fname
 FROM EMPLOYEE
 WHERE NOT EXISTS (SELECT *
 FROM WORKS_ON B
 WHERE (B.Pno IN (SELECT Pnumber
 FROM PROJECT
 WHERE Dnum = 5)
 AND
 NOT EXISTS (SELECT *
 FROM WORKS_ON C
 WHERE C.Essn = Ssn
 AND C.Pno = B.Pno)));

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of
Q3B matches the following rephrasing of Query 3: Select each employee such that
there does not exist a project controlled by department 5 that the employee does
not work on. It corresponds to the way we will write this query in tuple relation
calculus (see Section 8.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be
used to test whether the result of a nested query is a set (no duplicates) or a multiset
(duplicates exist).

7.1.5 Explicit Sets and Renaming in SQL
We have seen several queries with a nested query in the WHERE clause. It is also
possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on
project numbers 1, 2, or 3.

Q17: SELECT DISTINCT Essn
 FROM WORKS_ON
 WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query
by adding the qualifier AS followed by the desired new name. Hence, the AS con-
struct can be used to alias both attribute and relation names in general, and it can
be used in appropriate parts of a query. For example, Q8A shows how query Q8
from Section 4.3.2 can be slightly changed to retrieve the last name of each
employee and his or her supervisor while renaming the resulting attribute names

 7.1 More Complex SQL Retrieval Queries 215

as Employee_name and Supervisor_name. The new names will appear as column
headers for the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

7.1.6 Joined Tables in SQL and Outer Joins
The concept of a joined table (or joined relation) was incorporated into SQL to
permit users to specify a table resulting from a join operation in the FROM clause of
a query. This construct may be easier to comprehend than mixing together all the
select and join conditions in the WHERE clause. For example, consider query Q1,
which retrieves the name and address of every employee who works for the
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and
DEPARTMENT relations in the WHERE clause, and then to select the desired tuples
and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address
 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
 WHERE Dname = ‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of
the second table, DEPARTMENT. The concept of a joined table also allows the user to
specify different types of join, such as NATURAL JOIN and various types of OUTER
JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an
implicit EQUIJOIN condition for each pair of attributes with the same name from R
and S is created. Each such pair of attributes is included only once in the resulting
relation (see Sections 8.3.2 and 8.4.4 for more details on the various types of join
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possible
to rename the attributes so that they match, and then to apply NATURAL JOIN. In
this case, the AS construct can be used to rename a relation and all its attributes in
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno,
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address
 FROM (EMPLOYEE NATURAL JOIN
 (DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))
 WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result;

216 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user
requires that all employees be included, a different type of join called OUTER JOIN
must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-
tional algebra). There are several variations of OUTER JOIN, as we shall see. In the
SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a
joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,
 S.Lname AS Supervisor_name
 FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
 ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN (only
pairs of tuples that match the join condition are retrieved, same as JOIN), LEFT
OUTER JOIN (every tuple in the left table must appear in the result; if it does not have
a matching tuple, it is padded with NULL values for the attributes of the right table),
RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it does
not have a matching tuple, it is padded with NULL values for the attributes of the left
table), and FULL OUTER JOIN. In the latter three options, the keyword OUTER may be
omitted. If the join attributes have the same name, one can also specify the natural
join variation of outer joins by using the keyword NATURAL before the operation (for
example, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specify
the CARTESIAN PRODUCT operation (see Section 8.2.2), although this should be
used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This allows the specification of the join of three or more tables
as a single joined table, which is called a multiway join. For example, Q2A is a differ-
ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate
 FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)
 JOIN EMPLOYEE ON Mgr_ssn = Ssn)
 WHERE Plocation = ‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In
some systems, a different syntax was used to specify outer joins by using the compari-
son operators + =, = +, and + = + for left, right, and full outer join, respectively, when
specifying the join condition. For example, this syntax is available in Oracle. To specify
the left outer join in Q8B using this syntax, we could write the query Q8C as follows:

Q8C: SELECT E.Lname, S.Lname
 FROM EMPLOYEE E, EMPLOYEE S
 WHERE E.Super_ssn + = S.Ssn;

7.1.7 Aggregate Functions in SQL
Aggregate functions are used to summarize information from multiple tuples
into a single-tuple summary. Grouping is used to create subgroups of tuples
before summarization. Grouping and aggregation are required in many database

 7.1 More Complex SQL Retrieval Queries 217

applications, and we will introduce their use in SQL through examples. A number
of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.2 The
COUNT function returns the number of tuples or values as specified in a query.
The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of
numeric values and return, respectively, the sum, maximum value, minimum
value, and average (mean) of those values. These functions can be used in the
SELECT clause or in a HAVING clause (which we introduce later). The functions
MAX and MIN can also be used with attributes that have nonnumeric domains if
the domain values have a total ordering among one another.3 We illustrate the use
of these functions with several queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
 FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table.
We could use AS to rename the column names in the resulting single-row table; for
example, as in Q19A.

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,
 MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal
 FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specific
department—say, the ‘Research’ department—we can write Query 20, where the
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-
ment, as well as the maximum salary, the minimum salary, and the average
salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
 WHERE Dname = ‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (*)
 FROM EMPLOYEE;

Q22: SELECT COUNT (*)
 FROM EMPLOYEE, DEPARTMENT
 WHERE DNO = DNUMBER AND DNAME = ‘Research’;

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.
3Total order means that for any two values in the domain, it can be determined that one appears before
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings
on their values, as do alphabetic strings.

218 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of
rows in the result of the query. We may also use the COUNT function to count val-
ues in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)
 FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY
will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute); the only exception is for
COUNT(*) because tuples instead of values are counted. In the previous examples,
any Salary values that are NULL are not included in the aggregate function calcula-
tion. The general rule is as follows: when an aggregate function is applied to a col-
lection of values, NULLs are removed from the collection before the calculation; if
the collection becomes empty because all values are NULL, the aggregate function
will return NULL (except in the case of COUNT, where it will return 0 for an empty
collection of values).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce a table with a single row or a
single value. They illustrate how functions are applied to retrieve a summary value
or summary tuple from a table. These functions can also be used in selection condi-
tions involving nested queries. We can specify a correlated nested query with an
aggregate function, and then use the nested query in the WHERE clause of an outer
query. For example, to retrieve the names of all employees who have two or more
dependents (Query 5), we can write the following:

Q5: SELECT Lname, Fname
 FROM EMPLOYEE
 WHERE (SELECT COUNT (*)
 FROM DEPENDENT
 WHERE Ssn = Essn) > = 2;

The correlated nested query counts the number of dependents that each employee
has; if this is greater than or equal to two, the employee tuple is selected.

SQL also has aggregate functions SOME and ALL that can be applied to a col-
lection of Boolean values; SOME returns TRUE if at least one element in the
collection is TRUE, whereas ALL returns TRUE if all elements in the collection
are TRUE.

7.1.8 Grouping: The GROUP BY and HAVING Clauses
In many cases we want to apply the aggregate functions to subgroups of tuples in a
relation, where the subgroups are based on some attribute values. For example, we
may want to find the average salary of employees in each department or the number

 7.1 More Complex SQL Retrieval Queries 219

of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will
consist of the tuples that have the same value of some attribute(s), called the
grouping attribute(s). We can then apply the function to each such group indepen-
dently to produce summary information about each group. SQL has a GROUP BY
clause for this purpose. The GROUP BY clause specifies the grouping attributes,
which should also appear in the SELECT clause, so that the value resulting from
applying each aggregate function to a group of tuples appears along with the value
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)
 FROM EMPLOYEE
 GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having
the same value for the GROUP BY attribute Dno. Hence, each group contains the
employees who work in the same department. The COUNT and AVG functions
are applied to each such group of tuples. Notice that the SELECT clause includes
only the grouping attribute and the aggregate functions to be applied on each
group of tuples. Figure 7.1(a) illustrates how grouping works and shows the
result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had some tuples that had NULL for the grouping attribute Dno, there would be
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON
 WHERE Pnumber = Pno
 GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations in
the WHERE clause.

Sometimes we want to retrieve the values of these functions only for groups that
satisfy certain conditions. For example, suppose that we want to modify Query 25 so
that only projects with more than two employees appear in the result. SQL provides
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this
purpose. HAVING provides a condition on the summary information regarding the
group of tuples associated with each value of the grouping attributes. Only the
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.

220 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Dno

5

4

1

4

3

1

33250

31000

55000

Count (*) Avg (Salary)

Result of Q24

Pname

ProductY

Computerization

Reorganization

Newbenefits

3

3

3

3

Count (*)

Result of Q26

These groups are not selected by
the HAVING condition of Q26.

Grouping EMPLOYEE tuples by the value of Dno

After applying the WHERE clause but before applying HAVING

After applying the HAVING clause condition

Fname

John

Franklin

Ramesh K

Jennifer

Alicia

Joyce A

Ahmad

James

V

E

T

B

J

S

Narayan

English

Jabbar
Bong

Smith

Wong

Zelaya

Wallace

666884444

453453453

987987987

888665555

123456789

333445555

999887777

987654321

Minit Lname

5

5

4

1

5

5

4

4

Dno

333445555

333445555

987654321

NULL

333445555

888665555

987654321

888665555

Super_ssn

38000

25000

25000

55000

30000

40000

25000

43000

Salary

. . .

Pname

ProductX

ProductX

ProductY

ProductZ
ProductY

ProductY

ProductZ

Computerization

Computerization

Computerization

Reorganization

Newbenefits

Reorganization
Reorganization

Newbenefits

Newbenefits

123456789

453453453

123456789

666884444
333445555

453453453

333445555

333445555

999887777

987987987

333445555

987987987

888665555

987654321

987654321

999887777

1

1

2
2

2
3

3

10

10

10

20

20
20

30

30

30

1

1

2
2

2
3

3

10

10

10

20
20

20

30

30

30

32.5

20.0

 7.5
20.0

10.0
40.0

10.0

10.0

10.0

35.0

10.0
15.0

NULL

5.0

20.0

30.0

Pnumber Hours

. . .

Pname

ProductY

ProductY

ProductY

Computerization
Computerization

Computerization

Reorganization

Reorganization

Reorganization

Newbenefits

Newbenefits
Newbenefits

123456789

453453453

333445555

987987987
999887777

333445555

333445555

987654321

888665555

987987987

987654321
999887777

2

2

2
10

10
10

20

20

20

30

30
30

2

2

2
10

10
10

20

20

20

30

30
30

7.5

20.0

 10.0
10.0

10.0
35.0

10.0

15.0

NULL

5.0

20.0
30.0

Pnumber Essn Pno Hours

. . .
(Pnumber not shown)

Ssn . . .(a)

(b) PnoEssn. . .

. . .

Figure 7.1
Results of GROUP BY and HAVING. (a) Q24. (b) Q26.

 7.1 More Complex SQL Retrieval Queries 221

Query 26. For each project on which more than two employees work, retrieve the
project number, the project name, and the number of employees who work on
the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON
 WHERE Pnumber = Pno
 GROUP BY Pnumber, Pname
 HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to
which functions are applied, the HAVING clause serves to choose whole groups. Fig-
ure 7.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and
the number of employees from department 5 who work on the project.

Q27: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON, EMPLOYEE
 WHERE Pnumber = Pno AND Ssn = Essn AND Dno = 5
 GROUP BY Pnumber, Pname;

In Q27, we restrict the tuples in the relation (and hence the tuples in each group)
to those that satisfy the condition specified in the WHERE clause—namely, that
they work in department number 5. Notice that we must be extra careful when
two different conditions apply (one to the aggregate function in the SELECT
clause and another to the function in the HAVING clause). For example, suppose
that we want to count the total number of employees whose salaries exceed
$40,000 in each department, but only for departments where more than five
employees work. Here, the condition (SALARY > 40000) applies only to the
COUNT function in the SELECT clause. Suppose that we write the following
incorrect query:

SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000
GROUP BY Dno
HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees who each earn more than $40,000. The rule is that the WHERE clause is
executed first, to select individual tuples or joined tuples; the HAVING clause is
applied later, to select individual groups of tuples. In the incorrect query, the tuples
are already restricted to employees who earn more than $40,000 before the function
in the HAVING clause is applied. One way to write this query correctly is to use a
nested query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve the
department number and the number of its employees who are making more
than $40,000.

222 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

Q28: SELECT Dno, COUNT (*)
 FROM EMPLOYEE
 WHERE Salary>40000 AND Dno IN
 (SELECT Dno
 FROM EMPLOYEE
 GROUP BY Dno
 HAVING COUNT (*) > 5)
 GROUP BY Dno;

7.1.9 Other SQL Constructs: WITH and CASE
In this section, we illustrate two additional SQL constructs. The WITH clause
allows a user to define a table that will only be used in a particular query; it is some-
what similar to creating a view (see Section 7.3) that will be used only in one query
and then dropped. This construct was introduced as a convenience in SQL:99 and
may not be available in all SQL based DBMSs. Queries using WITH can generally
be written using other SQL constructs. For example, we can rewrite Q28 as Q28′:

Q28′: WITH BIGDEPTS (Dno) AS
 (SELECT Dno
 FROM EMPLOYEE
 GROUP BY Dno
 HAVING COUNT (*) > 5)
 SELECT Dno, COUNT (*)
 FROM EMPLOYEE
 WHERE Salary>40000 AND Dno IN BIGDEPTS
 GROUP BY Dno;

In Q28′, we defined in the WITH clause a temporary table BIG_DEPTS whose
result holds the Dno’s of departments with more than five employees, then used
this table in the subsequent query. Once this query is executed, the temporary table
BIGDEPTS is discarded.

SQL also has a CASE construct, which can be used when a value can be different
based on certain conditions. This can be used in any part of an SQL query where a
value is expected, including when querying, inserting or updating tuples. We illus-
trate this with an example. Suppose we want to give employees different raise
amounts depending on which department they work for; for example, employees in
department 5 get a $2,000 raise, those in department 4 get $1,500 and those in
department 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we could
re-write the update operation U6 from Section 6.4.3 as U6′:

U6′: UPDATE EMPLOYEE
 SET Salary =
 CASE WHEN Dno = 5 THEN Salary + 2000
 WHEN Dno = 4 THEN Salary + 1500
 WHEN Dno = 1 THEN Salary + 3000
 ELSE Salary + 0 ;

 7.1 More Complex SQL Retrieval Queries 223

In U6′, the salary raise value is determined through the CASE construct based on
the department number for which each employee works. The CASE construct can
also be used when inserting tuples that can have different attributes being NULL
depending on the type of record being inserted into a table, as when a specialization
(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union type
is mapped into relations.

7.1.10 Recursive Queries in SQL
In this section, we illustrate how to write a recursive query in SQL. This syntax was
added in SQL:99 to allow users the capability to specify a recursive query in a
declarative manner. An example of a recursive relationship between tuples of the
same type is the relationship between an employee and a supervisor. This relation-
ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig-
ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) to
another employee tuple (in the role of supervisor). An example of a recursive oper-
ation is to retrieve all supervisees of a supervisory employee e at all levels—that is,
all employees e′ directly supervised by e, all employees e′ directly supervised by each
employee e′, all employees e″′ directly supervised by each employee e″, and so on.
In SQL:99, this query can be written as follows:

Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS
 (SELECT SupervisorSsn, Ssn
 FROM EMPLOYEE
 UNION
 SELECT E.Ssn, S.SupSsn
 FROM EMPLOYEE AS E, SUP_EMP AS S
 WHERE E.SupervisorSsn = S.EmpSsn)
 SELECT*
 FROM SUP_EMP;

In Q29, we are defining a view SUP_EMP that will hold the result of the recursive
query. The view is initially empty. It is first loaded with the first level (supervisor,
supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM
EMPLOYEE), which is called the base query. This will be combined via UNION
with each successive level of supervisees through the second part, where the view
contents are joined again with the base values to get the second level combinations,
which are UNIONed with the first level. This is repeated with successive levels until
a fixed point is reached, where no more tuples are added to the view. At this point,
the result of the recursive query is in the view SUP_EMP.

7.1.11 Discussion and Summary of SQL Queries
A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is
ended by a semicolon. Query terms are separated by spaces, and parentheses can
be used to group relevant parts of a query in the standard way. The clauses are

224 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

specified in the following order, with the clauses between square brackets […]
being optional:

SELECT <attribute and function list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but
not those in nested queries. The WHERE clause specifies the conditions for selecting
the tuples from these relations, including join conditions if needed. GROUP BY
specifies grouping attributes, whereas HAVING specifies a condition on the groups
being selected rather than on the individual tuples. The built-in aggregate functions
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they
can also be applied to all the selected tuples in a query without a GROUP BY clause.
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define
the meaning or semantics of each query. A query is evaluated conceptually4 by first
applying the FROM clause (to identify all tables involved in the query or to materialize
any joined tables), followed by the WHERE clause to select and join tuples, and then by
GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query
result. If none of the last three clauses (GROUP BY, HAVING, and ORDER BY) are speci-
fied, we can think conceptually of a query as being executed as follows: For each combi-
nation of tuples—one from each of the relations specified in the FROM clause—evaluate
the WHERE clause; if it evaluates to TRUE, place the values of the attributes specified in
the SELECT clause from this tuple combination in the result of the query. Of course, this
is not an efficient way to implement the query in a real system, and each DBMS has
special query optimization routines to decide on an execution plan that is efficient to
execute. We discuss query processing and optimization in Chapters 18 and 19.

In general, there are numerous ways to specify the same query in SQL. This flexibility
in specifying queries has advantages and disadvantages. The main advantage is that
users can choose the technique with which they are most comfortable when specifying
a query. For example, many queries may be specified with join conditions in the
WHERE clause, or by using joined relations in the FROM clause, or with some form of
nested queries and the IN comparison operator. Some users may be more comfortable
with one approach, whereas others may be more comfortable with another. From the
programmer’s and the system’s point of view regarding query optimization, it is gener-
ally preferable to write a query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that
this may confuse the user, who may not know which technique to use to specify

4The actual order of query evaluation is implementation dependent; this is just a way to conceptually
view a query in order to correctly formulate it.

 7.2 Specifying Constraints as Assertions and Actions as Triggers 225

particular types of queries. Another problem is that it may be more efficient to
execute a query specified in one way than the same query specified in an alterna-
tive way. Ideally, this should not be the case: The DBMS should process the same
query in the same way regardless of how the query is specified. But this is quite
difficult in practice, since each DBMS has different methods for processing queries
specified in different ways. Thus, an additional burden on the user is to determine
which of the alternative specifications is the most efficient to execute. Ideally, the
user should worry only about specifying the query correctly, whereas the DBMS
would determine how to execute the query efficiently. In practice, however, it
helps if the user is aware of which types of constructs in a query are more expen-
sive to process than others.

7.2 Specifying Constraints as Assertions
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSERTION
statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATE
ASSERTION, which can be used to specify additional types of constraints that are
outside the scope of the built-in relational model constraints (primary and unique
keys, entity integrity, and referential integrity) that we presented in Section 5.2.
These built-in constraints can be specified within the CREATE TABLE statement of
SQL (see Sections 6.1 and 6.2).

In Section 7.2.2 we introduce CREATE TRIGGER, which can be used to specify auto-
matic actions that the database system will perform when certain events and condi-
tions occur. This type of functionality is generally referred to as active databases.
We only introduce the basics of triggers in this chapter, and present a more com-
plete discussion of active databases in Section 26.1.

7.2.1 Specifying General Constraints as Assertions in SQL
In SQL, users can specify general constraints—those that do not fall into any of the
categories described in Sections 6.1 and 6.2— via declarative assertions, using the
CREATE ASSERTION statement. Each assertion is given a constraint name and is
specified via a condition similar to the WHERE clause of an SQL query. For exam-
ple, to specify the constraint that the salary of an employee must not be greater than
the salary of the manager of the department that the employee works for in SQL, we
can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT *
 FROM EMPLOYEE E, EMPLOYEE M,
 DEPARTMENT D
 WHERE E.Salary>M.Salary
 AND E.Dno = D.Dnumber
 AND D.Mgr_ssn = M.Ssn));

226 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to
disable the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used,
but many constraints can be specified using the EXISTS and NOT EXISTS style of
SQL conditions. Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS
clause, the assertion will specify that the result of this query must be empty so that
the condition will always be TRUE. Thus, the assertion is violated if the result of the
query is not empty. In the preceding example, the query selects all employees whose
salaries are greater than the salary of the manager of their department. If the result
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on individual attributes and domains (see Section 6.2.1) and on indi-
vidual tuples (see Section 6.2.4). A major difference between CREATE
ASSERTION and the individual domain constraints and tuple constraints is that
the CHECK clauses on individual attributes, domains, and tuples are checked in
SQL only when tuples are inserted or updated in a specific table. Hence, con-
straint checking can be implemented more efficiently by the DBMS in these
cases. The schema designer should use CHECK on attributes, domains, and tuples
only when he or she is sure that the constraint can only be violated by insertion or
updating of tuples. On the other hand, the schema designer should use CREATE
ASSERTION only in cases where it is not possible to use CHECK on attributes,
domains, or tuples, so that simple checks are implemented more efficiently by
the DBMS.

7.2.2 Introduction to Triggers in SQL
Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and
when certain conditions are satisfied. For example, it may be useful to specify a
condition that, if violated, causes some user to be informed of the violation. A man-
ager may want to be informed if an employee’s travel expenses exceed a certain
limit by receiving a message whenever this occurs. The action that the DBMS must
take in this case is to send an appropriate message to that user. The condition is
thus used to monitor the database. Other actions may be specified, such as execut-
ing a specific stored procedure or triggering other updates. The CREATE TRIGGER
statement is used to implement such actions in SQL. We discuss triggers in detail in
Section 26.1 when we describe active databases. Here we just give a simple example
of how triggers may be used.

 7.2 Specifying Constraints as Assertions and Actions as Triggers 227

Suppose we want to check whenever an employee’s salary is greater than the salary
of his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6).
Several events can trigger this rule: inserting a new employee record, changing an
employee’s salary, or changing an employee’s supervisor. Suppose that the action to
take would be to call an external stored procedure SALARY_VIOLATION,5 which will
notify the supervisor. The trigger could then be written as in R5 below. Here we are
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION
 BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
 ON EMPLOYEE
 FOR EACH ROW
 WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE
 WHERE SSN = NEW.SUPERVISOR_SSN))
 INFORM_SUPERVISOR(NEW.Supervisor_ssn,
 NEW.Ssn);

The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later. A typical trigger which is regarded as an ECA (Event,
Condition, Action) rule has three components:

 1. The event(s): These are usually database update operations that are explic-
itly applied to the database. In this example the events are: inserting a new
employee record, changing an employee’s salary, or changing an employee’s
supervisor. The person who writes the trigger must make sure that all pos-
sible events are accounted for. In some cases, it may be necessary to write
more than one trigger to cover all possible cases. These events are specified
after the keyword BEFORE in our example, which means that the trigger
should be executed before the triggering operation is executed. An alterna-
tive is to use the keyword AFTER, which specifies that the trigger should be
executed after the operation specified in the event is completed.

 2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed. The condition is specified in the
WHEN clause of the trigger.

 3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed. In this example, the action is to execute the stored
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A
complete discussion is given in Section 26.1.

5Assuming that an appropriate external procedure has been declared. We discuss stored procedures in
Chapter 10.

228 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

7.3 Views (Virtual Tables) in SQL
In this section we introduce the concept of a view in SQL. We show how views are
specified, and then we discuss the problem of updating views and how views can be
implemented by the DBMS.

7.3.1 Concept of a View in SQL
A view in SQL terminology is a single table that is derived from other tables.6 These
other tables can be base tables or previously defined views. A view does not neces-
sarily exist in physical form; it is considered to be a virtual table, in contrast to base
tables, whose tuples are always physically stored in the database. This limits the
possible update operations that can be applied to views, but it does not provide any
limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference
frequently, even though it may not exist physically. For example, referring to the
COMPANY database in Figure 5.5, we may frequently issue queries that retrieve the
employee name and the project names that the employee works on. Rather than
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT
every time we issue this query, we can define a view that is specified as the result of
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

7.3.2 Specification of Views in SQL
In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the
contents of the view. If none of the view attributes results from applying functions
or arithmetic operations, we do not have to specify new attribute names for the
view, since they would be the same as the names of the attributes of the defining
tables in the default case. The views in V1 and V2 create virtual tables whose sche-
mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

V1: CREATE VIEW WORKS_ON1
 AS SELECT Fname, Lname, Pname, Hours
 FROM EMPLOYEE, PROJECT, WORKS_ON
 WHERE Ssn = Essn AND Pno = Pnumber;

V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
 AS SELECT Dname, COUNT (*), SUM (Salary)
 FROM DEPARTMENT, EMPLOYEE
 WHERE Dnumber = Dno
 GROUP BY Dname;

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,
since a user view would possibly include many relations.

 7.3 Views (Virtual Tables) in SQL 229

In V1, we did not specify any new attribute names for the view WORKS_ON1
(although we could have); in this case, WORKS_ON1 inherits the names of the
view attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON.
View V2 explicitly specifies new attribute names for the view DEPT_INFO, using
a one-to-one correspondence between the attributes specified in the CREATE
VIEW clause and those specified in the SELECT clause of the query that defines
the view.

We can now specify SQL queries on a view—or virtual table—in the same way we
specify queries involving base tables. For example, to retrieve the last name and first
name of all employees who work on the ‘ProductX’ project, we can utilize the
WORKS_ON1 view and specify the query as in QV1:

QV1: SELECT Fname, Lname
 FROM WORKS_ON1
 WHERE Pname = ‘ProductX’;

The same query would require the specification of two joins if specified on the base
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Section 7.3.4 and Chapter 30).

A view is supposed to be always up-to-date; if we modify the tuples in the base
tables on which the view is defined, the view must automatically reflect these
changes. Hence, the view does not have to be realized or materialized at the time of
view definition but rather at the time when we specify a query on the view. It is the
responsibility of the DBMS and not the user to make sure that the view is kept up-
to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-
date in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ON1;

7.3.3 View Implementation, View Update, and Inline Views
The problem of how a DBMS can efficiently implement a view for efficient querying
is complex. Two main approaches have been suggested. One strategy, called query
modification, involves modifying or transforming the view query (submitted by the

DEPT_INFO

Dept_name No_of_emps Total_sal

WORKS_ON1

Fname Lname Pname Hours

Figure 7.2
Two views specified on
the database schema of
Figure 5.5.

230 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

user) into a query on the underlying base tables. For example, the query QV1 would
be automatically modified to the following query by the DBMS:

SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn = Essn AND Pno = Pnumber
 AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple view queries
are going to be applied to the same view within a short period of time. The second
strategy, called view materialization, involves physically creating a temporary or
permanent view table when the view is first queried or created and keeping that
table on the assumption that other queries on the view will follow. In this case, an
efficient strategy for automatically updating the view table when the base tables are
updated must be developed in order to keep the view up-to-date. Techniques using
the concept of incremental update have been developed for this purpose, where
the DBMS can determine what new tuples must be inserted, deleted, or modified in
a materialized view table when a database update is applied to one of the defining
base tables. The view is generally kept as a materialized (physically stored) table as
long as it is being queried. If the view is not queried for a certain period of time, the
system may then automatically remove the physical table and recompute it from
scratch when future queries reference the view.

Different strategies as to when a materialized view is updated are possible. The
immediate update strategy updates a view as soon as the base tables are changed;
the lazy update strategy updates the view when needed by a view query; and the
periodic update strategy updates the view periodically (in the latter strategy, a view
query may get a result that is not up-to-date).

A user can always issue a retrieval query against any view. However, issuing an
INSERT, DELETE, or UPDATE command on a view table is in many cases not pos-
sible. In general, an update on a view defined on a single table without any aggregate
functions can be mapped to an update on the underlying base table under certain
conditions. For a view involving joins, an update operation may be mapped to
update operations on the underlying base relations in multiple ways. Hence, it is
often not possible for the DBMS to determine which of the updates is intended. To
illustrate potential problems with updating a view defined on multiple tables, con-
sider the WORKS_ON1 view, and suppose that we issue the command to update the
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is
shown in UV1:

UV1: UPDATE WORKS_ON1
 SET Pname = ‘ProductY’
 WHERE Lname = ‘Smith’ AND Fname = ‘John’
 AND Pname = ‘ProductX’;

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. In addition, some of these updates will create

 7.3 Views (Virtual Tables) in SQL 231

additional side effects that affect the result of other queries. For example, here are
two possible updates, (a) and (b), on the base relations corresponding to the view
update operation in UV1:

(a): UPDATE WORKS_ON
 SET Pno = (SELECT Pnumber
 FROM PROJECT
 WHERE Pname = ‘ProductY’)
 WHERE Essn IN (SELECT Ssn
 FROM EMPLOYEE
 WHERE Lname = ‘Smith’ AND Fname = ‘John’)
 AND
 Pno = (SELECT Pnumber
 FROM PROJECT
 WHERE Pname = ‘ProductX’);

(b): UPDATE PROJECT SET Pname = ‘ProductY’
 WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) would
also give the desired update effect on the view, but it accomplishes this by changing
the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quite
unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples
with Pname = ‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to be
the sum of the individual employee salaries. This incorrect request is shown as UV2:

UV2: UPDATE DEPT_INFO
 SET Total_sal = 100000
 WHERE Dname = ‘Research’;

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update operation on the view. Whenever an
update on the view can be mapped to more than one update on the underlying base
relations, it is usually not permitted. Some researchers have suggested that the
DBMS have a certain procedure for choosing one of the possible updates as the
most likely one. Some researchers have developed methods for choosing the most
likely update, whereas other researchers prefer to have the user choose the desired
update mapping during view definition. But these options are generally not avail-
able in most commercial DBMSs.

In summary, we can make the following observations:

 ■ A view with a single defining table is updatable if the view attributes contain
the primary key of the base relation, as well as all attributes with the NOT
NULL constraint that do not have default values specified.

232 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 ■ Views defined on multiple tables using joins are generally not updatable.

 ■ Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION should be added at the end of the view
definition if a view is to be updated by INSERT, DELETE, or UPDATE statements.
This allows the system to reject operations that violate the SQL rules for view
updates. The full set of SQL rules for when a view may be modified by the user are
more complex than the rules stated earlier.

It is also possible to define a view table in the FROM clause of an SQL query. This is
known as an in-line view. In this case, the view is defined within the query itself.

7.3.4 Views as Authorization Mechanisms
We describe SQL query authorization statements (GRANT and REVOKE) in detail
in Chapter 30, when we present database security and authorization mechanisms.
Here, we will just give a couple of simple examples to illustrate how views can be
used to hide certain attributes or tuples from unauthorized users. Suppose a certain
user is only allowed to see employee information for employees who work for
department 5; then we can create the following view DEPT5EMP and grant the user
the privilege to query the view but not the base table EMPLOYEE itself. This user
will only be able to retrieve employee information for employee tuples whose
Dno = 5, and will not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS
SELECT *
FROM EMPLOYEE
WHERE Dno = 5;

In a similar manner, a view can restrict a user to only see certain columns; for
example, only the first name, last name, and address of an employee may be visible
as follows:

CREATE VIEW BASIC_EMP_DATA AS
SELECT Fname, Lname, Address
FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view
and not the base tables, they would be restricted to retrieving only the data specified
in the view. Chapter 30 discusses security and authorization in detail, including the
GRANT and REVOKE statements of SQL.

7.4 Schema Change Statements in SQL
In this section, we give an overview of the schema evolution commands available
in SQL, which can be used to alter a schema by adding or dropping tables, attri-
butes, constraints, and other schema elements. This can be done while the database
is operational and does not require recompilation of the database schema. Certain

 7.4 Schema Change Statements in SQL 233

checks must be done by the DBMS to ensure that the changes do not affect the rest
of the database and make it inconsistent.

7.4.1 The DROP Command
The DROP command can be used to drop named schema elements, such as tables,
domains, types, or constraints. One can also drop a whole schema if it is no longer
needed by using the DROP SCHEMA command. There are two drop behavior
options: CASCADE and RESTRICT. For example, to remove the COMPANY database
schema and all its tables, domains, and other elements, the CASCADE option is used
as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only
if it has no elements in it; otherwise, the DROP command will not be executed. To
use the RESTRICT option, the user must first individually drop each element in the
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition
can be deleted by using the DROP TABLE command. For example, if we no longer
wish to keep track of dependents of employees in the COMPANY database of Fig-
ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is
not referenced in any constraints (for example, by foreign key definitions in another
relation) or views (see Section 7.3) or by any other elements. With the CASCADE
option, all such constraints, views, and other elements that reference the table being
dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table
if successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command (see Section 6.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

7.4.2 The ALTER Command
The definition of a base table or of other named schema elements can be changed
by using the ALTER command. For base tables, the possible alter table actions
include adding or dropping a column (attribute), changing a column definition,
and adding or dropping table constraints. For example, to add an attribute for
keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY
schema (see Figure 6.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

234 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

We must still enter a value for the new attribute Job for each individual EMPLOYEE
tuple. This can be done either by specifying a default clause or by using the UPDATE
command individually on each tuple (see Section 6.4.3). If no default clause is speci-
fied, the new attribute will have NULLs in all the tuples of the relation immediately after
the command is executed; hence, the NOT NULL constraint is not allowed in this case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are
dropped automatically from the schema, along with the column. If RESTRICT is
chosen, the command is successful only if no views or constraints (or other schema
elements) reference the column. For example, the following command removes the
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
 DROP DEFAULT;
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
 SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a
named constraint. To be dropped, a constraint must have been given a name when
it was specified. For example, to drop the constraint named EMPSUPERFK in Fig-
ure 6.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD CONSTRAINT
keyword in the ALTER TABLE statement followed by the new constraint, which can
be named or unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. It is also possible to create new tables and views within a database schema
using the appropriate commands. There are many other details and options; we
refer the interested reader to the SQL documents listed in the Selected Bibliography
at the end of this chapter.

7.5 Summary
In this chapter we presented additional features of the SQL database language. We
started in Section 7.1 by presenting more complex features of SQL retrieval queries,
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 7.2, we described the CREATE ASSERTION statement, which allows
the specification of more general constraints on the database, and introduced the

 7.5 Summary 235

Table 7.2 Summary of SQL Syntax

CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]
{ , <column name> <column type> [<attribute constraint>] }
[<table constraint> { , <table constraint> }])

DROP TABLE <table name>
ALTER TABLE <table name> ADD <column name> <column type>

SELECT [DISTINCT] <attribute list>
FROM (<table name> { <alias> } | <joined table>) { , (<table name> { <alias> } | <joined table>) }
[WHERE <condition>]
[GROUP BY <grouping attributes> [HAVING <group selection condition>]]
[ORDER BY <column name> [<order>] { , <column name> [<order>] }]

<attribute list> ::= (* | (<column name> | <function> (([DISTINCT] <column name> | *)))
{ , (<column name> | <function> (([DISTINCT] <column name> | *)) }))

<grouping attributes> ::= <column name> { , <column name> }

<order> ::= (ASC | DESC)

INSERT INTO <table name> [(<column name> { , <column name> })]
(VALUES (<constant value> , { <constant value> }) { , (<constant value> { , <constant value> }) }
| <select statement>)

DELETE FROM <table name>
[WHERE <selection condition>]

UPDATE <table name>
SET <column name> = <value expression> { , <column name> = <value expression> }
[WHERE <selection condition>]

CREATE [UNIQUE] INDEX <index name>
ON <table name> (<column name> [<order>] { , <column name> [<order>] })
[CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [(<column name> { , <column name> })]
AS <select statement>

DROP VIEW <view name>
NOTE: The commands for creating and dropping indexes are not part of standard SQL.

concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, we
described the SQL facility for defining views on the database. Views are also called
virtual or derived tables because they present the user with what appear to be tables;
however, the information in those tables is derived from previously defined tables.
Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 7.2 summarizes the syntax (or structure) of various SQL statements. This
summary is not meant to be comprehensive or to describe every possible SQL
construct; rather, it is meant to serve as a quick reference to the major types of
constructs available in SQL. We use BNF notation, where nonterminal symbols

236 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

are shown in angled brackets < … >, optional parts are shown in square brac-
kets […], repetitions are shown in braces { … }, and alternatives are shown in
parentheses (… | … | …).7

Review Questions
 7.1. Describe the six clauses in the syntax of an SQL retrieval query. Show what

type of constructs can be specified in each of the six clauses. Which of the six
clauses are required and which are optional?

 7.2. Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

 7.3. Discuss how NULLs are treated in comparison operators in SQL. How are
NULLs treated when aggregate functions are applied in an SQL query? How
are NULLs treated if they exist in grouping attributes?

 7.4. Discuss how each of the following constructs is used in SQL, and discuss
the various options for each construct. Specify what each construct is
useful for.

a. Nested queries

b. Joined tables and outer joins

c. Aggregate functions and grouping

d. Triggers

e. Assertions and how they differ from triggers

f. The SQL WITH clause

g. SQL CASE construct

h. Views and their updatability

i. Schema change commands

Exercises
 7.5. Specify the following queries on the database in Figure 5.5 in SQL. Show the

query results if each query is applied to the database state in Figure 5.6.

a. For each department whose average employee salary is more than
$30,000, retrieve the department name and the number of employees
working for that department.

b. Suppose that we want the number of male employees in each department
making more than $30,000, rather than all employees (as in Exer-
cise 7.5a). Can we specify this query in SQL? Why or why not?

7The full syntax of SQL is described in many voluminous documents of hundreds of pages.

 Exercises 237

 7.6. Specify the following queries in SQL on the database schema in Figure 1.2.

a. Retrieve the names and major departments of all straight-A students
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not
have a grade of A in any of their courses.

 7.7. In SQL, specify the following queries on the database in Figure 5.5 using the
concept of nested queries and other concepts described in this chapter.

a. Retrieve the names of all employees who work in the department that has
the employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has
‘888665555’ for Ssn.

c. Retrieve the names of employees who make at least $10,000 more than
the employee who is paid the least in the company.

 7.8. Specify the following views in SQL on the COMPANY database schema
shown in Figure 5.5.

a. A view that has the department name, manager name, and manager sal-
ary for every department

b. A view that has the employee name, supervisor name, and employee sal-
ary for each employee who works in the ‘Research’ department

c. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project

d. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project with more than one employee working on it

 7.9. Consider the following view, DEPT_SUMMARY, defined on the COMPANY
database in Figure 5.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)
AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

State which of the following queries and updates would be allowed on the
view. If a query or update would be allowed, show what the correspond-
ing query or update on the base relations would look like, and give its
result when applied to the database in Figure 5.6.

a. SELECT *
FROM DEPT_SUMMARY;

b. SELECT D, C
FROM DEPT_SUMMARY
WHERE TOTAL_S > 100000;

238 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

c. SELECT D, AVERAGE_S
FROM DEPT_SUMMARY
WHERE C > (SELECT C FROM DEPT_SUMMARY WHERE D = 4);

d. UPDATE DEPT_SUMMARY
SET D = 3
WHERE D = 4;

e. DELETE FROM DEPT_SUMMARY
WHERE C > 4;

Selected Bibliography
Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor of
SQL, in which she found that users have some difficulty with specifying join condi-
tions and grouping correctly. Date (1984) contains a critique of the SQL language
that points out its strengths and shortcomings. Date and Darwen (1993) describes
SQL2. ANSI (1986) outlines the original SQL standard. Various vendor manuals
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle,
INGRES, Informix, and other commercial DBMS products. Melton and Simon
(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2.
Horowitz (1992) discusses some of the problems related to referential integrity and
propagation of updates in SQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller
(1982), and Langerak (1990), among others. View implementation is discussed in
Blakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

There are many books that describe various aspects of SQL. For example, two refer-
ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-
ther SQL standards—SQL 2006 and SQL 2008—are described in a variety of
technical reports; but no standard references exist.

239

8
The Relational Algebra and

Relational Calculus

In this chapter we discuss the two formal languages for
the relational model: the relational algebra and the

relational calculus. In contrast, Chapters 6 and 7 described the practical language
for the relational model, namely the SQL standard. Historically, the relational alge-
bra and calculus were developed before the SQL language. SQL is primarily based
on concepts from relational calculus and has been extended to incorporate some
concepts from relational algebra as well. Because most relational DBMSs use SQL
as their language, we presented the SQL language first.

Recall from Chapter 2 that a data model must include a set of operations to
manipulate the database, in addition to the data model’s concepts for defining the
database’s structure and constraints. We presented the structures and constraints
of the formal relational model in Chapter 5. The basic set of operations for the
formal relational model is the relational algebra. These operations enable a user
to specify basic retrieval requests as relational algebra expressions. The result of a
retrieval query is a new relation. The algebra operations thus produce new rela-
tions, which can be further manipulated using operations of the same algebra. A
sequence of relational algebra operations forms a relational algebra expression,
whose result will also be a relation that represents the result of a database query
(or retrieval request).

The relational algebra is very important for several reasons. First, it provides a
formal foundation for relational model operations. Second, and perhaps more
important, it is used as a basis for implementing and optimizing queries in the
query processing and optimization modules that are integral parts of relational
database management systems (RDBMSs), as we shall discuss in Chapters 18
and 19. Third, some of its concepts are incorporated into the SQL standard

chapter 8

240 Chapter 8 The Relational Algebra and Relational Calculus

query language for RDBMSs. Although most commercial RDBMSs in use today
do not provide user interfaces for relational algebra queries, the core operations
and functions in the internal modules of most relational systems are based on
relational algebra operations. We will define these operations in detail in Sec-
tions 8.1 through 8.4 of this chapter.

Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative language for specifying rela-
tional queries. In a relational calculus expression, there is no order of operations to
specify how to retrieve the query result—only what information the result should
contain. This is the main distinguishing feature between relational algebra and rela-
tional calculus. The relational calculus is important because it has a firm basis in
mathematical logic and because the standard query language (SQL) for RDBMSs
has some of its foundations in a variation of relational calculus known as the tuple
relational calculus.1

The relational algebra is often considered to be an integral part of the relational data
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model (see Section 5.1). Set
operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN
PRODUCT (also known as CROSS PRODUCT). The other group consists of opera-
tions developed specifically for relational databases—these include SELECT,
PROJECT, and JOIN, among others. First, we describe the SELECT and PROJECT
operations in Section 8.1 because they are unary operations that operate on single
relations. Then we discuss set operations in Section 8.2. In Section 8.3, we discuss
JOIN and other complex binary operations, which operate on two tables by com-
bining related tuples (records) based on join conditions. The COMPANY relational
database shown in Figure 5.6 is used for our examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can summarize data
from the tables, as well as additional types of JOIN and UNION operations, known as
OUTER JOINs and OUTER UNIONs. These operations, which were added to the origi-
nal relational algebra because of their importance to many database applications,
are described in Section 8.4. We give examples of specifying queries that use rela-
tional operations in Section 8.5. Some of these same queries were used in Chap-
ters 6 and 7. By using the same query numbers in this chapter, the reader can contrast
how the same queries are written in the various query languages.

In Sections 8.6 and 8.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relational calculus is described in Section 8.6 and the domain relational
calculus is described in Section 8.7. Some of the SQL constructs discussed in

1SQL is based on tuple relational calculus, but also incorporates some of the operations from the
relational algebra and its extensions, as illustrated in Chapters 6, 7, and 9.

 8.1 Unary Relational Operations: SELECT and PROJECT 241

Chapters 6 and 7 are based on the tuple relational calculus. The relational calculus
is a formal language, based on the branch of mathematical logic called predicate
calculus.2 In tuple relational calculus, variables range over tuples, whereas in
domain relational calculus, variables range over the domains (values) of attributes.
In Appendix C we give an overview of the Query-By-Example (QBE) language,
which is a graphical user-friendly relational language based on domain relational
calculus. Section 8.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 8.4, 8.6, and 8.7 may be skipped.

8.1 Unary Relational Operations:
SELECT and PROJECT

8.1.1 The SELECT Operation
The SELECT operation is used to choose a subset of the tuples from a relation that
satisfies a selection condition.3 We can consider the SELECT operation to be a filter
that keeps only those tuples that satisfy a qualifying condition. Alternatively, we can
consider the SELECT operation to restrict the tuples in a relation to only those tuples
that satisfy the condition. The SELECT operation can also be visualized as a horizon-
tal partition of the relation into two sets of tuples—those tuples that satisfy the con-
dition and are selected, and those tuples that do not satisfy the condition and are
filtered out. For example, to select the EMPLOYEE tuples whose department is 4, or
those whose salary is greater than $30,000, we can individually specify each of these
two conditions with a SELECT operation as follows:

σDno=4(EMPLOYEE)
σSalary>30000(EMPLOYEE)

In general, the SELECT operation is denoted by

σ<selection condition>(R)

where the symbol σ (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression (condition) specified on the attributes of
relation R. Notice that R is generally a relational algebra expression whose result is a
relation—the simplest such expression is just the name of a database relation. The
relation resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made up of a number
of clauses of the form

<attribute name> <comparison op> <constant value>

2In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.
3The SELECT operation is different from the SELECT clause of SQL. The SELECT operation chooses
tuples from a table, and is sometimes called a RESTRICT or FILTER operation.

242 Chapter 8 The Relational Algebra and Relational Calculus

or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, ≤, >, ≥, ≠}, and <constant value> is a constant
value from the attribute domain. Clauses can be connected by the standard Boolean
operators and, or, and not to form a general selection condition. For example, to
select the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000, we can specify
the following SELECT operation:

σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result is shown in Figure 8.1(a).

Notice that all the comparison operators in the set {=, <, ≤, >, ≥, ≠} can apply to
attributes whose domains are ordered values, such as numeric or date domains.
Domains of strings of characters are also considered to be ordered based on the col-
lating sequence of the characters. If the domain of an attribute is a set of unordered
values, then only the comparison operators in the set {=, ≠} can be used. An exam-
ple of an unordered domain is the domain Color = { ‘red’, ‘blue’, ‘green’, ‘white’,
‘yellow’, …}, where no order is specified among the various colors. Some domains
allow additional types of comparison operators; for example, a domain of character
strings may allow the comparison operator SUBSTRING_OF.

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

Franklin

Jennifer

Ramesh

T Wong

Wallace

Narayan

333445555

987654321

666884444

1955-12-08

1941-06-20

1962-09-15

638 Voss, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

M

F

M

40000

43000

38000

888665555

888665555

333445555

5

4

5

Lname Fname Salary

Smith

Wong

Zelaya

Wallace

Narayan

English

Jabbar

Borg

John

Franklin

Alicia

Jennifer

Ramesh

Joyce

Ahmad

James

30000

40000

25000

43000

38000

25000

25000

30000

40000

25000

43000

38000

25000

55000

55000

Sex Salary

M

M

F

F

M

M

M

(c)(b)

(a)

S

K

Figure 8.1
Results of SELECT and PROJECT operations. (a) σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(b) πLname, Fname, Salary(EMPLOYEE). (c) πSex, Salary(EMPLOYEE).

 8.1 Unary Relational Operations: SELECT and PROJECT 243

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each individual tuple t in R. This
is done by substituting each occurrence of an attribute Ai in the selection condition
with its value in the tuple t[Ai]. If the condition evaluates to TRUE, then tuple t is
selected. All the selected tuples appear in the result of the SELECT operation. The
Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

 ■ (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; other-
wise, it is FALSE.

 ■ (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE;
otherwise, it is FALSE.

 ■ (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from
a SELECT operation—its number of attributes—is the same as the degree of R. The
number of tuples in the resulting relation is always less than or equal to the number
of tuples in R. That is, |σc (R)| ≤ |R| for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

σ<cond1>(σ<cond2>(R)) = σ<cond2>(σ<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade (or sequence) of SELECT operations into a single SELECT
operation with a conjunctive (AND) condition; that is,

σ<cond1>(σ<cond2>(... (σ<condn>(R)) ...)) = σ<cond1> AND<cond2> AND...AND <condn>(R)

In SQL, the SELECT condition is typically specified in the WHERE clause of a query.
For example, the following operation:

σDno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE
WHERE Dno=4 AND Salary>25000;

8.1.2 The PROJECT Operation
If we think of a relation as a table, the SELECT operation chooses some of the rows
from the table while discarding other rows. The PROJECT operation, on the other
hand, selects certain columns from the table and discards the other columns. If we
are interested in only certain attributes of a relation, we use the PROJECT operation
to project the relation over these attributes only. Therefore, the result of the PROJECT
operation can be visualized as a vertical partition of the relation into two relations:

244 Chapter 8 The Relational Algebra and Relational Calculus

one has the needed columns (attributes) and contains the result of the operation,
and the other contains the discarded columns. For example, to list each employee’s
first and last name and salary, we can use the PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

The resulting relation is shown in Figure 8.1(b). The general form of the PROJECT
operation is

π<attribute list>(R)

where π (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desired sublist of attributes from the attributes of relation R. Again,
notice that R is, in general, a relational algebra expression whose result is a relation,
which in the simplest case is just the name of a database relation. The result of the
PROJECT operation has only the attributes specified in <attribute list> in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are
likely to occur. The PROJECT operation removes any duplicate tuples, so the
result of the PROJECT operation is a set of distinct tuples, and hence a valid
relation. This is known as duplicate elimination. For example, consider the
following PROJECT operation:

πSex, Salary(EMPLOYEE)

The result is shown in Figure 8.1(c). Notice that the tuple <‘F’, 25000> appears only
once in Figure 8.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting or some other technique to
detect duplicates and thus adds more processing. If duplicates are not eliminated, the
result would be a multiset or bag of tuples rather than a set. This was not permitted in
the formal relational model but is allowed in SQL (see Section 6.3).

The number of tuples in a relation resulting from a PROJECT operation is always
less than or equal to the number of tuples in R. If the projection list is a superkey of
R—that is, it includes some key of R—the resulting relation has the same number of
tuples as R. Moreover,

π<list1> (π<list2>(R)) = π<list1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that commutativity does not hold
on PROJECT.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

πSex, Salary(EMPLOYEE)

would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary
FROM EMPLOYEE

 8.1 Unary Relational Operations: SELECT and PROJECT 245

Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-
cates will not be eliminated. This option is not available in the formal relational
algebra, but the algebra can be extended to include this operation and allow rela-
tions to be multisets; we do not discuss these extensions here.

8.1.3 Sequences of Operations and the RENAME Operation
The relations shown in Figure 8.1 that depict operation results do not have any
names. In general, for most queries, we need to apply several relational algebra
operations one after the other. Either we can write the operations as a single
relational algebra expression by nesting the operations, or we can apply one operation
at a time and create intermediate result relations. In the latter case, we must give
names to the relations that hold the intermediate results. For example, to retrieve
the first name, last name, and salary of all employees who work in department
number 5, we must apply a SELECT and a PROJECT operation. We can write a sin-
gle relational algebra expression, also known as an in-line expression, as follows:

πFname, Lname, Salary(σDno=5(EMPLOYEE))

Figure 8.2(a) shows the result of this in-line relational algebra expression. Alterna-
tively, we can explicitly show the sequence of operations, giving a name to each
intermediate relation, and using the assignment operation, denoted by ← (left
arrow), as follows:

DEP5_EMPS ← σDno=5(EMPLOYEE)
RESULT ← πFname, Lname, Salary(DEP5_EMPS)

It is sometimes simpler to break down a complex sequence of operations by specify-
ing intermediate result relations than to write a single relational algebra expression.
We can also use this technique to rename the attributes in the intermediate and
result relations. This can be useful in connection with more complex operations
such as UNION and JOIN, as we shall see. To rename the attributes in a relation, we
simply list the new attribute names in parentheses, as in the following example:

TEMP ← σDno=5(EMPLOYEE)
R(First_name, Last_name, Salary) ← πFname, Lname, Salary(TEMP)

These two operations are illustrated in Figure 8.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a
SELECT operation are the same as those in the original relation and in the same
order. For a PROJECT operation with no renaming, the resulting relation has the
same attribute names as those in the projection list and in the same order in which
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general
RENAME operation when applied to a relation R of degree n is denoted by any of the
following three forms:

ρS(B1, B2, ... , Bn)(R) or ρS(R) or ρ(B1, B2, ... , Bn)(R)

246 Chapter 8 The Relational Algebra and Relational Calculus

where the symbol ρ (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and B1, B2, … , Bn are the new attribute names. The first expression
renames both the relation and its attributes, the second renames the relation only,
and the third renames the attributes only. If the attributes of R are (A1, A2, … , An)
in that order, then each Ai is renamed as Bi.

In SQL, a single query typically represents a complex relational algebra expression.
Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

8.2 Relational Algebra Operations
from Set Theory

8.2.1 The UNION, INTERSECTION, and MINUS Operations
The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security numbers of all

(b)

(a)

TEMP

Fname
John
Franklin

Ramesh
Joyce

Minit
B
T

K
A

Lname
Smith
Wong

Narayan
English

Ssn
123456789
333445555

666884444
453453453

Bdate
1965-01-09
1955-12-08

1962-09-15
1972-07-31

Address
731 Fondren, Houston,TX
638 Voss, Houston,TX

975 Fire Oak, Humble,TX
5631 Rice, Houston, TX

Sex
M
M

M
F

Salary
30000
40000

38000
25000

Dno
5
5
5
5

Super_ssn
333445555
888665555

333445555
333445555

Smith
Wong

Narayan
English

30000
40000

38000
25000

Fname Lname Salary
John
Franklin

Ramesh
Joyce

Smith
Wong

Narayan
English

30000
40000

38000
25000

First_name Last_name Salary
John
Franklin

Ramesh
Joyce

R

Figure 8.2
Results of a sequence of operations. (a) πFname, Lname, Salary (σDno=5(EMPLOYEE)).
(b) Using intermediate relations and renaming of attributes.

 8.2 Relational Algebra Operations from Set Theory 247

employees who either work in department 5 or directly supervise an employee who
works in department 5, we can use the UNION operation as follows:4

DEP5_EMPS ← σDno=5(EMPLOYEE)
RESULT1 ← πSsn(DEP5_EMPS)
RESULT2(Ssn) ← πSuper_ssn(DEP5_EMPS)
RESULT ← RESULT1 ∪ RESULT2

The relation RESULT1 has the Ssn of all employees who work in department 5,
whereas RESULT2 has the Ssn of all employees who directly supervise an employee
who works in department 5. The UNION operation produces the tuples that are in
either RESULT1 or RESULT2 or both (see Figure 8.3) while eliminating any dupli-
cates. Thus, the Ssn value ‘333445555’ appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS or EXCEPT). These are binary operations; that is, each is applied to two sets
(of tuples). When these operations are adapted to relational databases, the two rela-
tions on which any of these three operations are applied must have the same type of
tuples; this condition has been called union compatibility or type compatibility.
Two relations R(A1, A2, … , An) and S(B1, B2, … , Bn) are said to be union
compatible (or type compatible) if they have the same degree n and if dom(Ai) =
dom(Bi) for 1 ≤ i ≤ n. This means that the two relations have the same number of
attributes and each corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:

 ■ UNION: The result of this operation, denoted by R ∪ S, is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate
tuples are eliminated.

 ■ INTERSECTION: The result of this operation, denoted by R ∩ S, is a relation
that includes all tuples that are in both R and S.

 ■ SET DIFFERENCE (or MINUS): The result of this operation, denoted by R – S,
is a relation that includes all tuples that are in R but not in S.

4As a single relational algebra expression, this becomes Result ← πSsn (σDno=5 (EMPLOYEE)) ∪
πSuper_ssn (σDno=5 (EMPLOYEE)).

RESULT1

Ssn

123456789

333445555

666884444

453453453

RESULT

Ssn

123456789

333445555

666884444

453453453

888665555

RESULT2

Ssn

333445555

888665555

Figure 8.3
Result of the UNION operation
RESULT ← RESULT1 ∪ RESULT2.

248 Chapter 8 The Relational Algebra and Relational Calculus

We will adopt the convention that the resulting relation has the same attribute
names as the first relation R. It is always possible to rename the attributes in the
result using the rename operator.

Figure 8.4 illustrates the three operations. The relations STUDENT and INSTRUCTOR
in Figure 8.4(a) are union compatible and their tuples represent the names of stu-
dents and the names of instructors, respectively. The result of the UNION operation
in Figure 8.4(b) shows the names of all students and instructors. Note that duplicate
tuples appear only once in the result. The result of the INTERSECTION operation
(Figure 8.4(c)) includes only those who are both students and instructors.

Notice that both UNION and INTERSECTION are commutative operations; that is,

R ∪ S = S ∪ R and R ∩ S = S ∩ R

Both UNION and INTERSECTION can be treated as n-ary operations applicable to
any number of relations because both are also associative operations; that is,

R ∪ (S ∪ T) = (R ∪ S) ∪ T and (R ∩ S) ∩ T = R ∩ (S ∩ T)

STUDENT(a)

Fn

Susan

Ramesh

Johnny

Barbara

Amy

Jimmy

Ernest

Ln

Yao

Shah

Kohler

Jones

Ford

Wang

Gilbert

(b) Fn

Susan

Ramesh

Johnny

Barbara

Amy

Jimmy

Ernest

Ln

Yao

Shah

Kohler

Jones

Ford

Wang

Gilbert

John Smith

Ricardo Browne

Francis Johnson

(d) Fn

Johnny

Barbara

Amy

Jimmy

Ernest

Ln

Kohler

Jones

Ford

Wang

Gilbert

(c) Fn

Susan

Ramesh

Ln

Yao

Shah

INSTRUCTOR

Fname

John

Ricardo

Susan

Francis

Ramesh

Lname

Smith

Browne

Yao

Johnson

Shah

(e) Fname

John

Ricardo

Francis

Lname

Smith

Browne

Johnson

Figure 8.4
The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.
(b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT – INSTRUCTOR.
(e) INSTRUCTOR – STUDENT.

 8.2 Relational Algebra Operations from Set Theory 249

The MINUS operation is not commutative; that is, in general,

R − S ≠ S − R

Figure 8.4(d) shows the names of students who are not instructors, and Fig-
ure 8.4(e) shows the names of instructors who are not students.

Note that INTERSECTION can be expressed in terms of union and set difference as
follows:

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)

In SQL, there are three operations—UNION, INTERSECT, and EXCEPT—that corre-
spond to the set operations described here. In addition, there are multiset opera-
tions (UNION ALL, INTERSECT ALL, and EXCEPT ALL) that do not eliminate
duplicates (see Section 6.3.4).

8.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT)
Operation

Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSS
PRODUCT or CROSS JOIN—which is denoted by ×. This is also a binary set opera-
tion, but the relations on which it is applied do not have to be union compatible. In
its binary form, this set operation produces a new element by combining every
member (tuple) from one relation (set) with every member (tuple) from the other
relation (set). In general, the result of R(A1, A2, … , An) × S(B1, B2, … , Bm) is a rela-
tion Q with degree n + m attributes Q(A1, A2, … , An, B1, B2, … , Bm), in that order.
The resulting relation Q has one tuple for each combination of tuples—one from R
and one from S. Hence, if R has nR tuples (denoted as |R| = nR), and S has nS tuples,
then R × S will have nR * nS tuples.

The n-ary CARTESIAN PRODUCT operation is an extension of the above concept,
which produces new tuples by concatenating all possible combinations of tuples
from n underlying relations. The CARTESIAN PRODUCT operation applied by itself
is generally meaningless. It is mostly useful when followed by a selection that
matches values of attributes coming from the component relations. For example,
suppose that we want to retrieve a list of names of each female employee’s depen-
dents. We can do this as follows:

FEMALE_EMPS ← σSex=‘F’(EMPLOYEE)
EMPNAMES ← πFname, Lname, Ssn(FEMALE_EMPS)
EMP_DEPENDENTS ← EMPNAMES × DEPENDENT
ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS)
RESULT ← πFname, Lname, Dependent_name(ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 8.5.
The EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT
operation to EMPNAMES from Figure 8.5 with DEPENDENT from Figure 5.6. In
EMP_DEPENDENTS, every tuple from EMPNAMES is combined with every tuple
from DEPENDENT, giving a result that is not very meaningful (every dependent is

250 Chapter 8 The Relational Algebra and Relational Calculus

Fname

FEMALE_EMPS

Alicia

Jennifer

Joyce A

J

S

Minit

English

Zelaya

Wallace

Lname

453453453

999887777 3321Castle, Spring, TX

987654321

Ssn

1972-07-31

1968-07-19

1941-06-20

Bdate

5631 Rice, Houston, TX

291Berry, Bellaire, TX

F

F

F

Address Sex Dno
25000

25000

43000

4

5

4

Salary
987654321

333445555

888665555

Super_ssn

Fname

EMPNAMES

Alicia

Jennifer

Joyce English

Zelaya

Wallace

Lname

453453453

999887777

987654321

Ssn

Fname

EMP_DEPENDENTS

Alicia

Alicia

Alicia

Alicia

Alicia

Alicia

Alicia

Jennifer

Jennifer

Jennifer

Jennifer

Jennifer

Joyce

Jennifer

Jennifer

Joyce

Joyce

Zelaya

Zelaya

Zelaya

Zelaya

Zelaya

Zelaya

Wallace

Wallace

Wallace

Wallace

Wallace

Wallace

English

Zelaya

English

Wallace

English

Lname

999887777

999887777 Alice

999887777

Ssn

333445555

333445555

333445555

Essn

Abner

Theodore

Joy

F

F

M

Dependent_name Sex . . .
. . .

. . .

. . .

1986-04-05

1958-05-03

1983-10-25

999887777

999887777

Michael999887777

123456789

987654321

123456789

Elizabeth

Alice

M

F

M

. . .

. . .

. . .

1942-02-28

1988-12-30

1988-01-04

987654321

999887777

Alice987654321

333445555

123456789

333445555

Joy

Theodore

F

M

F

. . .

. . .

. . .

1967-05-05

1983-10-25

1986-04-05

987654321

987654321

Abner987654321

123456789

333445555

987654321

Alice

Michael

F

M

M

. . .

. . .

. . .

1958-05-03

1988-01-04

1942-02-28

453453453

987654321

Elizabeth987654321

333445555

123456789

123456789

Theodore

Alice

F

F

F

. . .

. . .

. . .

1988-12-30

1986-04-05

1967-05-05

453453453

Joy453453453

333445555

333445555

M

F

. . .

. . .

1983-10-25

1958-05-03

Bdate

Joyce

Joyce

Joyce

Joyce

English

English

English

English

453453453

Abner453453453

123456789

987654321

Alice

Michael M

M

. . .

. . .

1988-01-04

1942-02-28

453453453

Elizabeth453453453

123456789

123456789

F

F

. . .

. . .

1988-12-30

1967-05-05

Fname

ACTUAL_DEPENDENTS

Lname Ssn Essn Dependent_name Sex . . .Bdate
Jennifer Wallace Abner987654321 987654321 M . . .1942-02-28

Fname

RESULT

Lname Dependent_name
Jennifer Wallace Abner

Figure 8.5
The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

 8.3 Binary Relational Operations: JOIN and DIVISION 251

combined with every female employee). We want to combine a female employee
tuple only with her particular dependents—namely, the DEPENDENT tuples whose
Essn value match the Ssn value of the EMPLOYEE tuple. The ACTUAL_DEPENDENTS
relation accomplishes this. The EMP_DEPENDENTS relation is a good example of
the case where relational algebra can be correctly applied to yield results that make
no sense at all. It is the responsibility of the user to make sure to apply only mean-
ingful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-
tions. We can SELECT related tuples only from the two relations by specifying an
appropriate selection condition after the Cartesian product, as we did in the pre-
ceding example. Because this sequence of CARTESIAN PRODUCT followed by
SELECT is quite commonly used to combine related tuples from two relations, a
special operation, called JOIN, was created to specify this sequence as a single opera-
tion. We discuss the JOIN operation next.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in
joined tables (see Section 7.1.6). Alternatively, if there are two tables in the FROM
clause and there is no corresponding join condition in the WHERE clause of the
SQL query, the result will also be the CARTESIAN PRODUCT of the two tables (see
Q10 in Section 6.3.3).

8.3 Binary Relational Operations:
JOIN and DIVISION

8.3.1 The JOIN Operation
The JOIN operation, denoted by , is used to combine related tuples from two rela-
tions into single “longer” tuples. This operation is very important for any relational
database with more than a single relation because it allows us to process relation-
ships among relations. To illustrate JOIN, suppose that we want to retrieve the name
of the manager of each department. To get the manager’s name, we need to com-
bine each department tuple with the employee tuple whose Ssn value matches the
Mgr_ssn value in the department tuple. We do this by using the JOIN operation and
then projecting the result over the necessary attributes, as follows:

DEPT_MGR ← DEPARTMENT Mgr_ssn=Ssn EMPLOYEE
RESULT ← πDname, Lname, Fname(DEPT_MGR)

The first operation is illustrated in Figure 8.6. Note that Mgr_ssn is a foreign key of
the DEPARTMENT relation that references Ssn, the primary key of the EMPLOYEE
relation. This referential integrity constraint plays a role in having matching tuples
in the referenced relation EMPLOYEE.

The JOIN operation can be specified as a CARTESIAN PRODUCT operation fol-
lowed by a SELECT operation. However, JOIN is very important because it is
used frequently when specifying database queries. Consider the earlier example

252 Chapter 8 The Relational Algebra and Relational Calculus

illustrating CARTESIAN PRODUCT, which included the following sequence of
operations:

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT
ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS)

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_DEPENDENTS ← EMPNAMES Ssn=EssnDEPENDENT

The general form of a JOIN operation on two relations5 R(A1, A2, … , An) and
S(B1, B2, … , Bm) is

R <join condition>S

The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, … , An, B1, B2,
… , Bm) in that order; Q has one tuple for each combination of tuples—one from
R and one from S—whenever the combination satisfies the join condition. This is
the main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combi-
nations of tuples satisfying the join condition appear in the result, whereas in the
CARTESIAN PRODUCT all combinations of tuples are included in the result. The
join condition is specified on attributes from the two relations R and S and is
evaluated for each combination of tuples. Each tuple combination for which the
join condition evaluates to TRUE is included in the resulting relation Q as a single
combined tuple.

A general join condition is of the form

<condition> AND <condition> AND … AND <condition>

where each <condition> is of the form Ai θ Bj, Ai is an attribute of R, Bj is an attri-
bute of S, Ai and Bj have the same domain, and θ (theta) is one of the comparison
operators {=, <, ≤, >, ≥, ≠}. A JOIN operation with such a general join condition is
called a THETA JOIN. Tuples whose join attributes are NULL or for which the join
condition is FALSE do not appear in the result. In that sense, the JOIN operation
does not necessarily preserve all of the information in the participating relations,
because tuples that do not get combined with matching ones in the other relation
do not appear in the result.

DEPT_MGR

Dname Dnumber Mgr_ssn Fname Minit Lname Ssn

Research 5 333445555 Franklin T Wong 333445555

Administration 4 987654321 Jennifer S Wallace 987654321

Headquarters 1 888665555 James E Borg 888665555

.

. . .

. . .

. . .

. . .

. . .

. . .

Figure 8.6
Result of the JOIN operation DEPT_MGR ← DEPARTMENT Mgr_ssn=SsnEMPLOYEE.

5Again, notice that R and S can be any relations that result from general relational algebra expressions.

 8.3 Binary Relational Operations: JOIN and DIVISION 253

8.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN
The most common use of JOIN involves join conditions with equality comparisons
only. Such a JOIN, where the only comparison operator used is =, is called an
EQUIJOIN. Both previous examples were EQUIJOINs. Notice that in the result of an
EQUIJOIN we always have one or more pairs of attributes that have identical values
in every tuple. For example, in Figure 8.6, the values of the attributes Mgr_ssn and
Ssn are identical in every tuple of DEPT_MGR (the EQUIJOIN result) because the
equality join condition specified on these two attributes requires the values to be
identical in every tuple in the result. Because one of each pair of attributes with
identical values is superfluous, a new operation called NATURAL JOIN—denoted
by *—was created to get rid of the second (superfluous) attribute in an EQUIJOIN
condition.6 The standard definition of NATURAL JOIN requires that the two join
attributes (or each pair of join attributes) have the same name in both relations. If
this is not the case, a renaming operation is applied first.

Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that
controls the project. In the following example, first we rename the Dnumber attribute
of DEPARTMENT to Dnum—so that it has the same name as the Dnum attribute in
PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT ← PROJECT * ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT
as follows:

DEPT ← ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)
PROJ_DEPT ← PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation,
because it is the only attribute with the same name in both relations. The resulting
relation is illustrated in Figure 8.7(a). In the PROJ_DEPT relation, each tuple combines
a PROJECT tuple with the DEPARTMENT tuple for the department that controls the
project, but only one join attribute value is kept.

If the attributes on which the natural join is specified already have the same names
in both relations, renaming is unnecessary. For example, to apply a natural join
on the Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient
to write

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 8.7(b), which combines each department
with its locations and has one tuple for each location. In general, the join condition
for NATURAL JOIN is constructed by equating each pair of join attributes that have
the same name in the two relations and combining these conditions with AND.
There can be a list of join attributes from each relation, and each corresponding
pair must have the same name.

6NATURAL JOIN is basically an EQUIJOIN followed by the removal of the superfluous attributes.

254 Chapter 8 The Relational Algebra and Relational Calculus

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has nR tuples and S has
nS tuples, the result of a JOIN operation R <join condition> S will have between zero
and nR * nS tuples. The expected size of the join result divided by the maximum
size nR * nS leads to a ratio called join selectivity, which is a property of each join
condition. If there is no join condition, all combinations of tuples qualify and the
JOIN degenerates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or
CROSS JOIN.

As we can see, a single JOIN operation is used to combine data from two relations so
that related information can be presented in a single table. These operations are
also known as inner joins, to distinguish them from a different join variation called
outer joins (see Section 8.4.4). Informally, an inner join is a type of match-and-
combine operation defined formally as a combination of CARTESIAN PRODUCT
and SELECTION. Note that sometimes a join may be specified between a relation
and itself, as we will illustrate in Section 8.4.3. The NATURAL JOIN or EQUIJOIN
operation can also be specified among multiple tables, leading to an n-way join. For
example, consider the following three-way join:

((PROJECT Dnum=DnumberDEPARTMENT) Mgr_ssn=SsnEMPLOYEE)

Pname

PROJ_DEPT

(a)

ProductX

ProductY

ProductZ

Computerization

Reorganization

Newbenefits

3

1

2

30

10

20

Pnumber

Houston

Bellaire

Sugarland

Stafford

Stafford

Houston

Plocation

5

5 333445555

5

4

4

1

Dnum

Research

Research

Research

Administration

Administration

Headquarters

Dname

333445555

333445555

987654321

987654321

888665555

1988-05-22

1988-05-22

1988-05-22

1995-01-01

1995-01-01

1981-06-19

Mgr_ssn Mgr_start_date

Dname

DEPT_LOCS

(b)

5

1

4

5
5

Dnumber

333445555

888665555

987654321

333445555
333445555

Mgr_ssn

1988-05-22

1981-06-19

1995-01-01

Research

Research

Research

Administration

1988-05-22
1988-05-22

Headquarters Houston

Bellaire

Stafford

Sugarland
Houston

LocationMgr_start_date

Figure 8.7
Results of two natural join operations. (a) proj_dept ← project * dept.
(b) dept_locs ← department * dept_locations.

 8.3 Binary Relational Operations: JOIN and DIVISION 255

This combines each project tuple with its controlling department tuple into a single
tuple, and then combines that tuple with an employee tuple that is the department
manager. The net result is a consolidated relation in which each tuple contains this
project-department-manager combined information.

In SQL, JOIN can be realized in several different ways. The first method is to specify
the <join conditions> in the WHERE clause, along with any other selection condi-
tions. This is very common and is illustrated by queries Q1, Q1A, Q1B, Q2, and Q8
in Sections 6.3.1 and 6.3.2, as well as by many other query examples in Chapters 6
and 7. The second way is to use a nested relation, as illustrated by queries Q4A
and Q16 in Section 7.1.2. Another way is to use the concept of joined tables, as
illustrated by the queries Q1A, Q1B, Q8B, and Q2A in Section 7.1.6. The construct
of joined tables was added to SQL2 to allow the user to specify explicitly all the
various types of joins, because the other methods were more limited. It also allows
the user to clearly distinguish join conditions from the selection conditions in the
WHERE clause.

8.3.3 A Complete Set of Relational Algebra Operations
It has been shown that the set of relational algebra operations {σ, π, ∪, ρ, –, ×} is a
complete set; that is, any of the other original relational algebra operations can be
expressed as a sequence of operations from this set. For example, the INTERSECTION
operation can be expressed by using UNION and MINUS as follows:

R ∩ S ≡ (R ∪ S) – ((R – S) ∪ (S – R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to
specify this complex expression every time we wish to specify an intersection. As
another example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-
lowed by a SELECT operation, as we discussed:

R <condition>S ≡ σ<condition>(R × S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various
JOIN operations are also not strictly necessary for the expressive power of the rela-
tional algebra. However, they are important to include as separate operations
because they are convenient to use and are very commonly applied in database
applications. Other operations have been included in the basic relational algebra
for convenience rather than necessity. We discuss one of these—the DIVISION
operation—in the next section.

8.3.4 The DIVISION Operation
The DIVISION operation, denoted by ÷, is useful for a special kind of query that
sometimes occurs in database applications. An example is Retrieve the names of
employees who work on all the projects that ‘John Smith’ works on. To express
this query using the DIVISION operation, proceed as follows. First, retrieve the

256 Chapter 8 The Relational Algebra and Relational Calculus

list of project numbers that ‘John Smith’ works on in the intermediate relation
SMITH_PNOS:

SMITH ← σFname=‘John’ AND Lname=‘Smith’(EMPLOYEE)
SMITH_PNOS ← πPno(WORKS_ON Essn=SsnSMITH)

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee
whose Ssn is Essn works on the project whose number is Pno in the intermediate
relation SSN_PNOS:

SSN_PNOS ← πEssn, Pno(WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security numbers:

SSNS(Ssn) ← SSN_PNOS ÷ SMITH_PNOS
RESULT ← πFname, Lname(SSNS * EMPLOYEE)

The preceding operations are shown in Figure 8.8(a).

In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the
attributes of S are a subset of the attributes of R; that is, X ⊆ Z. Let Y be the set of
attributes of R that are not attributes of S; that is, Y = Z – X (and hence Z = X ∪ Y).

Essn

SSN_PNOS
(a)

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

Pno A

R
(b)

a1

a2

a3

a4

a1

a3

a2

a3

a4

a1

a2

a3

b1

b1

b1

b2

b1

b2

b4

b4

b4

b3

b3

b3

B

SMITH_PNOS

1

2

Pno

S

a1

a2

a3

A

T

b1

b4

B

SSNS

123456789

453453453

Ssn

Figure 8.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T ← R ÷ S.

 8.3 Binary Relational Operations: JOIN and DIVISION 257

The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR appear in
R with tR [Y] = t, and with tR [X] = tS for every tuple tS in S. This means that, for a
tuple t to appear in the result T of the DIVISION, the values in t must appear in R in
combination with every tuple in S. Note that in the formulation of the DIVISION
operation, the tuples in the denominator relation S restrict the numerator rela-
tion R by selecting those tuples in the result that match all values present in the
denominator. It is not necessary to know what those values are as they can be
computed by another operation, as illustrated in the SMITH_PNOS relation in
the previous example.

Figure 8.8(b) illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}.
Notice that the tuples (values) b1 and b4 appear in R in combination with all three
tuples in S; that is why they appear in the resulting relation T. All other values of B
in R do not appear with all the tuples in S and are not selected: b2 does not appear
with a2, and b3 does not appear with a1.

The DIVISION operation can be expressed as a sequence of π, ×, and – operations as
follows:

T1 ← πY(R)
T2 ← πY((S × T1) – R)
T ← T1 – T2

The DIVISION operation is defined for convenience for dealing with queries that
involve universal quantification (see Section 8.6.7) or the all condition. Most
RDBMS implementations with SQL as the primary query language do not directly
implement division. SQL has a roundabout way of dealing with the type of query
just illustrated (see Section 7.1.4, queries Q3A and Q3B). Table 8.1 lists the various
basic relational algebra operations we have discussed.

8.3.5 Notation for Query Trees
In this section we describe a notation typically used in relational DBMSs (RDBMSs)
to represent queries internally. The notation is called a query tree or sometimes it is
known as a query evaluation tree or query execution tree. It includes the relational
algebra operations being executed and is used as a possible data structure for the
internal representation of the query in an RDBMS.

A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
(represented by its child nodes) are available, and then replacing that internal node
by the relation that results from executing the operation. The execution terminates
when the root node is executed and produces the result relation for the query.

Figure 8.9 shows a query tree for Query 2 (see Section 6.3.1): For every project
located in ‘Stafford’, list the project number, the controlling department number, and
the department manager’s last name, address, and birth date. This query is specified

258 Chapter 8 The Relational Algebra and Relational Calculus

Table 8.1 Operations of Relational Algebra

OPERATION PURPOSE NOTATION

SELECT Selects all tuples that satisfy the selection
condition from a relation R.

σ<selection condition>(R)

PROJECT Produces a new relation with only some of the
attributes of R, and removes duplicate tuples.

π<attribute list>(R)

THETA JOIN Produces all combinations of tuples from R1
and R2 that satisfy the join condition.

R1 <join condition> R2

EQUIJOIN Produces all the combinations of tuples from
R1 and R2 that satisfy a join condition with
only equality comparisons.

R1 <join condition> R2, OR
R1 (<join attributes 1>),

(<join attributes 2>) R2

NATURAL JOIN Same as EQUIJOIN except that the join attributes
of R2 are not included in the resulting relation;
if the join attributes have the same names, they
do not have to be specified at all.

R1*<join condition> R2,
OR R1* (<join attributes 1>),

(<join attributes 2>)
R2 OR R1 * R2

UNION Produces a relation that includes all the tuples
in R1 or R2 or both R1 and R2; R1 and R2 must
be union compatible.

R1 ∪ R2

INTERSECTION Produces a relation that includes all the tuples
in both R1 and R2; R1 and R2 must be union
compatible.

R1 ∩ R2

DIFFERENCE Produces a relation that includes all the tuples
in R1 that are not in R2; R1 and R2 must be
union compatible.

R1 – R2

CARTESIAN PRODUCT Produces a relation that has the attributes of
R1 and R2 and includes as tuples all possible
combinations of tuples from R1 and R2.

R1 × R2

DIVISION Produces a relation R(X) that includes all tuples
t[X] in R1(Z) that appear in R1 in combination
with every tuple from R2(Y), where Z = X ∪ Y.

R1(Z) ÷ R2(Y)

on the relational schema of Figure 5.5 and corresponds to the following relational
algebra expression:

πPnumber, Dnum, Lname, Address, Bdate(((σPlocation=‘Stafford’(PROJECT))
 Dnum=Dnumber(DEPARTMENT)) Mgr_ssn=Ssn(EMPLOYEE))

In Figure 8.9, the three leaf nodes P, D, and E represent the three relations PROJECT,
DEPARTMENT, and EMPLOYEE. The relational algebra operations in the expression are
represented by internal tree nodes. The query tree signifies an explicit order of execu-
tion in the following sense. In order to execute Q2, the node marked (1) in Figure 8.9
must begin execution before node (2) because some resulting tuples of opera-
tion (1) must be available before we can begin to execute operation (2). Similarly,

 8.4 Additional Relational Operations 259

node (2) must begin to execute and produce results before node (3) can start execution,
and so on. In general, a query tree gives a good visual representation and understand-
ing of the query in terms of the relational operations it uses and is recommended as
an additional means for expressing queries in relational algebra. We will revisit query
trees when we discuss query processing and optimization in Chapters 18 and 19.

8.4 Additional Relational Operations
Some common database requests—which are needed in commercial applications
for RDBMSs—cannot be performed with the original relational algebra operations
described in Sections 8.1 through 8.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of
the original relational algebra.

8.4.1 Generalized Projection
The generalized projection operation extends the projection operation by allowing
functions of attributes to be included in the projection list. The generalized form
can be expressed as:

πF1, F2, ..., Fn (R)

where F1, F2, … , Fn are functions over the attributes in relation R and may involve
arithmetic operations and constant values. This operation is helpful when devel-
oping reports where computed values have to be produced in the columns of a
query result.

Figure 8.9
Query tree corresponding
to the relational algebra
expression for Q2.

(1)

(2)

(3)

P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdateπ

D.Mgr_ssn=E.Ssn

P.Dnum=D.Dnumber

σ P.Plocation= ‘Stafford’

E

D

P

EMPLOYEE

DEPARTMENT

PROJECT

260 Chapter 8 The Relational Algebra and Relational Calculus

As an example, consider the relation

EMPLOYEE (Ssn, Salary, Deduction, Years_service)

A report may be required to show

Net Salary = Salary – Deduction,
Bonus = 2000 * Years_service, and
Tax = 0.25 * Salary

Then a generalized projection combined with renaming may be used as follows:

REPORT ← ρ(Ssn, Net_salary, Bonus, Tax)(πSsn, Salary – Deduction, 2000 * Years_service,

0.25 * Salary(EMPLOYEE))

8.4.2 Aggregate Functions and Grouping
Another type of request that cannot be expressed in the basic relational algebra is
to specify mathematical aggregate functions on collections of values from the
database. Examples of such functions include retrieving the average or total salary
of all employees or the total number of employee tuples. These functions are used
in simple statistical queries that summarize information from the database
tuples. Common functions applied to collections of numeric values include SUM,
AVERAGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting
tuples or values.

Another common type of request involves grouping the tuples in a relation by the
value of some of their attributes and then applying an aggregate function indepen-
dently to each group. An example would be to group EMPLOYEE tuples by Dno, so
that each group includes the tuples for employees working in the same department.
We can then list each Dno value along with, say, the average salary of employees
within the department, or the number of employees who work in the department.

We can define an AGGREGATE FUNCTION operation, using the symbol I (pro-
nounced script F)7, to specify these types of requests as follows:

<grouping attributes> ℑ <function list> (R)

where <grouping attributes> is a list of attributes of the relation specified in R, and
<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function>
is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM, MINIMUM,
COUNT—and <attribute> is an attribute of the relation specified by R. The resulting
relation has the grouping attributes plus one attribute for each element in the function
list. For example, to retrieve each department number, the number of employees in
the department, and their average salary, while renaming the resulting attributes as
indicated below, we write:

ρR(Dno, No_of_employees, Average_sal) (Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE))

7There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A”
is used.

 8.4 Additional Relational Operations 261

The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown in
Figure 8.10(a).

In the preceding example, we specified a list of attribute names—between parenthe-
ses in the RENAME operation—for the resulting relation R. If no renaming is applied,
then the attributes of the resulting relation that correspond to the function list will
each be the concatenation of the function name with the attribute name in the form
<function>_<attribute>.8 For example, Figure 8.10(b) shows the result of the fol-
lowing operation:

Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE)

If no grouping attributes are specified, the functions are applied to all the tuples
in the relation, so the resulting relation has a single tuple only. For example, Fig-
ure 8.10(c) shows the result of the following operation:

ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE)

It is important to note that, in general, duplicates are not eliminated when an
aggregate function is applied; this way, the normal interpretation of functions such
as SUM and AVERAGE is computed.9 However, NULL values are not considered in
the aggregation, as we discussed in Section 7.1.7. It is worth emphasizing that the
result of applying an aggregate function is a relation, not a scalar number—even
if it has a single value. This makes the relational algebra a closed mathematical
system.

8Note that this is an arbitrary notation, consistent with what SQL would do.
9In SQL, the option of eliminating duplicates before applying the aggregate function is available by
including the keyword DISTINCT (see Section Section 4.4.4).

Count_ssn

8 35125

Dno Count_ssn

5

4

1

4

3

1

33250

31000

55000

Average_salary

Average_salary

(b)

(c)

4

3

1

33250

31000

55000

(a) Dno

5

4

1

No_of_employees Average_sal

R

Figure 8.10
The aggregate function operation.

a. ρR(Dno, No_of_employees, Average_sal)(Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)).

b. Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).

c. ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).

262 Chapter 8 The Relational Algebra and Relational Calculus

8.4.3 Recursive Closure Operations
Another type of operation that, in general, cannot be specified in the basic original
relational algebra is recursive closure. This operation is applied to a recursive
relationship between tuples of the same type, such as the relationship between an
employee and a supervisor. This relationship is described by the foreign key
Super_ssn of the EMPLOYEE relation in Figures 5.5 and 5.6, and it relates each
employee tuple (in the role of supervisee) to another employee tuple (in the role of
supervisor). An example of a recursive operation is to retrieve all supervisees of an
employee e at all levels—that is, all employees e′ directly supervised by e, all employ-
ees e′ℑ directly supervised by each employee e′, all employees e″′ directly super-
vised by each employee e″, and so on.

It is relatively straightforward in the relational algebra to specify all employees
supervised by e at a specific level by joining the table with itself one or more
times. However, it is difficult to specify all supervisees at all levels. For example,
to specify the Ssns of all employees e′ directly supervised—at level one—by the
employee e whose name is ‘James Borg’ (see Figure 5.6), we can apply the follow-
ing operation:

BORG_SSN ← πSsn(σFname=‘James’ AND Lname=‘Borg’(EMPLOYEE))
SUPERVISION(Ssn1, Ssn2) ← πSsn,Super_ssn(EMPLOYEE)
RESULT1(Ssn) ← πSsn1(SUPERVISION Ssn2=SsnBORG_SSN)

To retrieve all employees supervised by Borg at level 2—that is, all employees e″
supervised by some employee e′ who is directly supervised by Borg—we can apply
another JOIN to the result of the first query, as follows:

RESULT2(Ssn) ← πSsn1(SUPERVISION Ssn2=SsnRESULT1)

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we can
apply the UNION operation to the two results, as follows:

RESULT ← RESULT2 ∪ RESULT1

The results of these queries are illustrated in Figure 8.11. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, in general,
specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism unless we know the maximum number of levels.10

An operation called the transitive closure of relations has been proposed to com-
pute the recursive relationship as far as the recursion proceeds.

8.4.4 OUTER JOIN Operations
Next, we discuss some additional extensions to the JOIN operation that are nec-
essary to specify certain types of queries. The JOIN operations described earlier
match tuples that satisfy the join condition. For example, for a NATURAL JOIN

10The SQL3 standard includes syntax for recursive closure.

 8.4 Additional Relational Operations 263

operation R * S, only tuples from R that have matching tuples in S—and vice
versa—appear in the result. Hence, tuples without a matching (or related) tuple
are eliminated from the JOIN result. Tuples with NULL values in the join attri-
butes are also eliminated. This type of join, where tuples with no match are elim-
inated, is known as an inner join. The join operations we described earlier in
Section 8.3 are all inner joins. This amounts to the loss of information if the user
wants the result of the JOIN to include all the tuples in one or more of the com-
ponent relations.

A set of operations, called outer joins, were developed for the case where the user
wants to keep all the tuples in R, or all those in S, or all those in both relations in
the result of the JOIN, regardless of whether or not they have matching tuples in
the other relation. This satisfies the need of queries in which tuples from two
tables are to be combined by matching corresponding rows, but without losing
any tuples for lack of matching values. For example, suppose that we want a list of
all employee names as well as the name of the departments they manage if they
happen to manage a department; if they do not manage one, we can indicate it

SUPERVISION

Ssn1 Ssn2

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

333445555

888665555

987654321

888665555

333445555

333445555

987654321

null

(Borg’s Ssn is 888665555)
(Ssn) (Super_ssn)

RESULT1

Ssn

333445555

987654321

(Supervised by Borg)

RESULT

Ssn

123456789

999887777

666884444

453453453

987987987

333445555

987654321

(RESULT1 ∪ RESULT2)

RESULT2

Ssn

123456789

999887777

666884444

453453453

987987987

(Supervised by
Borg’s subordinates) Figure 8.11

A two-level recursive
query.

264 Chapter 8 The Relational Algebra and Relational Calculus

with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by , to
retrieve the result as follows:

TEMP ← (EMPLOYEE Ssn=Mgr_ssnDEPARTMENT)
RESULT ← πFname, Minit, Lname, Dname(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R S;
if no matching tuple is found in S, then the attributes of S in the join result are filled or
padded with NULL values. The result of these operations is shown in Figure 8.12.

A similar operation, RIGHT OUTER JOIN, denoted by , keeps every tuple in the
second, or right, relation S in the result of R S. A third operation, FULL OUTER
JOIN, denoted by , keeps all tuples in both the left and the right relations when no
matching tuples are found, padding them with NULL values as needed. The three
outer join operations are part of the SQL2 standard (see Section 7.1.6). These oper-
ations were provided later as an extension of relational algebra in response to the
typical need in business applications to show related information from multiple
tables exhaustively. Sometimes a complete reporting of data from multiple tables is
required whether or not there are matching values.

8.4.5 The OUTER UNION Operation
The OUTER UNION operation was developed to take the union of tuples from two
relations that have some common attributes, but are not union (type) compatible.
This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z)
that are partially compatible, meaning that only some of their attributes, say X, are
union compatible. The attributes that are union compatible are represented only
once in the result, and those attributes that are not union compatible from either
relation are also kept in the result relation T(X, Y, Z). It is therefore the same as a
FULL OUTER JOIN on the common attributes.

Two tuples t1 in R and t2 in S are said to match if t1[X] = t2[X]. These will be com-
bined (unioned) into a single tuple in t. Tuples in either relation that have no
matching tuple in the other relation are padded with NULL values. For example, an

RESULT

Fname Minit Lname Dname

John

Franklin

Alicia

Jennifer

Ramesh

Joyce

Ahmad

James

B

T

J

S

K

A

V

E

Smith

Wong

Zelaya

Wallace

Narayan

English

Jabbar

Borg

NULL

Research

NULL

Administration

NULL

NULL

NULL

Headquarters

Figure 8.12
The result of a LEFT
OUTER JOIN operation.

 8.5 Examples of Queries in Relational Algebra 265

OUTER UNION can be applied to two relations whose schemas are STUDENT(Name,
Ssn, Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples
from the two relations are matched based on having the same combination of
values of the shared attributes—Name, Ssn, Department. The resulting relation,
STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the
same (Name, Ssn, Department) combination will appear only once in the result.
Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereas
tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A
tuple that exists in both relations, which represent a student who is also an instruc-
tor, will have values for all its attributes.11

Notice that the same person may still appear twice in the result. For example, we
could have a graduate student in the Mathematics department who is an instructor
in the Computer Science department. Although the two tuples representing that
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they
will not agree on the Department value, and so will not be matched. This is because
Department has two different meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an
instructor). If we wanted to apply the OUTER UNION based on the same (Name, Ssn)
combination only, we should rename the Department attribute in each table to reflect
that they have different meanings and designate them as not being part of the
union-compatible attributes. For example, we could rename the attributes as
MajorDept in STUDENT and WorkDept in INSTRUCTOR.

8.5 Examples of Queries in Relational Algebra
The following are additional examples to illustrate the use of the relational alge-
bra operations. All examples refer to the database in Figure 5.6. In general, the
same query can be stated in numerous ways using the various operations. We will
state each query in one way and leave it to the reader to come up with equivalent
formulations.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

RESEARCH_DEPT ← σDname=‘Research’(DEPARTMENT)
RESEARCH_EMPS ← (RESEARCH_DEPT Dnumber=DnoEMPLOYEE)
RESULT ← πFname, Lname, Address(RESEARCH_EMPS)

As a single in-line expression, this query becomes:

πFname, Lname, Address (σDname=‘Research’(DEPARTMENT Dnumber=Dno(EMPLOYEE))

11Note that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the com-
mon attributes of the two relations.

266 Chapter 8 The Relational Algebra and Relational Calculus

This query could be specified in other ways; for example, the order of the JOIN
and SELECT operations could be reversed, or the JOIN could be replaced by a
NATURAL JOIN after renaming one of the join attributes to match the other join
attribute name.

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, address,
and birth date.

STAFFORD_PROJS ← σPlocation=‘Stafford’(PROJECT)
CONTR_DEPTS ← (STAFFORD_PROJS Dnum=DnumberDEPARTMENT)
PROJ_DEPT_MGRS ← (CONTR_DEPTS Mgr_ssn=SsnEMPLOYEE)
RESULT ← πPnumber, Dnum, Lname, Address, Bdate(PROJ_DEPT_MGRS)

In this example, we first select the projects located in Stafford, then join them with
their controlling departments, and then join the result with the department manag-
ers. Finally, we apply a project operation on the desired attributes.

Query 3. Find the names of employees who work on all the projects controlled
by department number 5.

DEPT5_PROJS ← ρ(Pno)(πPnumber(σDnum=5(PROJECT)))
EMP_PROJ ← ρ(Ssn, Pno)(πEssn, Pno(WORKS_ON))
RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPT5_PROJS
RESULT ← πLname, Fname(RESULT_EMP_SSNS * EMPLOYEE)

In this query, we first create a table DEPT5_PROJS that contains the project
numbers of all projects controlled by department 5. Then we create a table
EMP_PROJ that holds (Ssn, Pno) tuples, and apply the division operation. Notice
that we renamed the attributes so that they will be correctly used in the division
operation. Finally, we join the result of the division, which holds only Ssn val-
ues, with the EMPLOYEE table to retrieve the Fname, Lname attributes from
EMPLOYEE.

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.

SMITHS(Essn) ← πSsn (σLname=‘Smith’(EMPLOYEE))
SMITH_WORKER_PROJS ← πPno(WORKS_ON * SMITHS)
MGRS ← πLname, Dnumber(EMPLOYEE Ssn=Mgr_ssnDEPARTMENT)
SMITH_MANAGED_DEPTS(Dnum) ← πDnumber (σLname=‘Smith’(MGRS))
SMITH_MGR_PROJS(Pno) ← πPnumber(SMITH_MANAGED_DEPTS * PROJECT)
RESULT ← (SMITH_WORKER_PROJS ∪ SMITH_MGR_PROJS)

In this query, we retrieved the project numbers for projects that involve an employee
named Smith as a worker in SMITH_WORKER_PROJS. Then we retrieved the proj-
ect numbers for projects that involve an employee named Smith as manager of the
department that controls the project in SMITH_MGR_PROJS. Finally, we applied the

 8.5 Examples of Queries in Relational Algebra 267

UNION operation on SMITH_WORKER_PROJS and SMITH_MGR_PROJS. As a single
in-line expression, this query becomes:

πPno (WORKS_ON Essn=Ssn (πSsn (σLname=‘Smith’(EMPLOYEE))) ∪ πPno
((πDnumber (σLname=‘Smith’(πLname, Dnumber(EMPLOYEE)))

Ssn=Mgr_ssnDEPARTMENT)) Dnum-ber=DnumPROJECT)

Query 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational
algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT
aggregate function. We assume that dependents of the same employee have
distinct Dependent_name values.

T1(Ssn, No_of_dependents)← Essn ℑ COUNT Dependent_name(DEPENDENT)
T2 ← σNo_of_dependents>2(T1)
RESULT ← πLname, Fname(T2 * EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE)
operation.

ALL_EMPS ← πSsn(EMPLOYEE)
EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT)
EMPS_WITHOUT_DEPS ← (ALL_EMPS – EMPS_WITH_DEPS)
RESULT ← πLname, Fname(EMPS_WITHOUT_DEPS * EMPLOYEE)

We first retrieve a relation with all employee Ssns in ALL_EMPS. Then we create
a table with the Ssns of employees who have at least one dependent in
EMPS_WITH_DEPS. Then we apply the SET DIFFERENCE operation to retrieve
employees Ssns with no dependents in EMPS_WITHOUT_DEPS, and finally join
this with EMPLOYEE to retrieve the desired attributes. As a single in-line expres-
sion, this query becomes:

πLname, Fname((πSsn(EMPLOYEE) – ρSsn(πEssn(DEPENDENT))) * EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.

MGRS(Ssn) ← πMgr_ssn(DEPARTMENT)
EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT)
MGRS_WITH_DEPS ← (MGRS ∩ EMPS_WITH_DEPS)
RESULT ← πLname, Fname(MGRS_WITH_DEPS * EMPLOYEE)

In this query, we retrieve the Ssns of managers in MGRS, and the Ssns of employ-
ees with at least one dependent in EMPS_WITH_DEPS, then we apply the SET
INTERSECTION operation to get the Ssns of managers who have at least one
dependent.

As we mentioned earlier, the same query can be specified in many different ways in
relational algebra. In particular, the operations can often be applied in various
orders. In addition, some operations can be used to replace others; for example, the

268 Chapter 8 The Relational Algebra and Relational Calculus

INTERSECTION operation in Q7 can be replaced by a NATURAL JOIN. As an exercise,
try to do each of these sample queries using different operations.12 We showed how to
write queries as single relational algebra expressions for queries Q1, Q4, and Q6. Try
to write the remaining queries as single expressions. In Chapters 6 and 7 and in Sec-
tions 8.6 and 8.7, we show how these queries are written in other relational languages.

8.6 The Tuple Relational Calculus
In this and the next section, we introduce another formal query language for the
relational model called relational calculus. This section introduces the language
known as tuple relational calculus, and Section 8.7 introduces a variation called
domain relational calculus. In both variations of relational calculus, we write one
declarative expression to specify a retrieval request; hence, there is no description
of how, or in what order, to evaluate a query. A calculus expression specifies what is
to be retrieved rather than how to retrieve it. Therefore, the relational calculus is
considered to be a nonprocedural language. This differs from relational algebra,
where we must write a sequence of operations to specify a retrieval request in a par-
ticular order of applying the operations; thus, it can be considered as a procedural
way of stating a query. It is possible to nest algebra operations to form a single
expression; however, a certain order among the operations is always explicitly spec-
ified in a relational algebra expression. This order also influences the strategy for
evaluating the query. A calculus expression may be written in different ways, but
the way it is written has no bearing on how a query should be evaluated.

It has been shown that any retrieval that can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the languages is identical. This led to the definition of the con-
cept of a relationally complete language. A relational query language L is considered
relationally complete if we can express in L any query that can be expressed in
relational calculus. Relational completeness has become an important basis for
comparing the expressive power of high-level query languages. However, as we saw
in Section 8.4, certain frequently required queries in database applications cannot
be expressed in basic relational algebra or calculus. Most relational query languages
are relationally complete but have more expressive power than relational algebra or
relational calculus because of additional operations such as aggregate functions,
grouping, and ordering. As we mentioned in the introduction to this chapter, the
relational calculus is important for two reasons. First, it has a firm basis in mathe-
matical logic. Second, the standard query language (SQL) for RDBMSs has its basic
foundation in the tuple relational calculus.

Our examples refer to the database shown in Figures 5.6 and 5.7. We will use the
same queries that were used in Section 8.5. Sections 8.6.6, 8.6.7, and 8.6.8 discuss
dealing with universal quantifiers and safety of expression issues. Students inter-
ested in a basic introduction to tuple relational calculus may skip these sections.

12When queries are optimized (see Chapters 18 and 19), the system will choose a particular sequence
of operations that corresponds to an execution strategy that can be executed efficiently.

 8.6 The Tuple Relational Calculus 269

8.6.1 Tuple Variables and Range Relations
The tuple relational calculus is based on specifying a number of tuple variables.
Each tuple variable usually ranges over a particular database relation, meaning that
the variable may take as its value any individual tuple from that relation. A simple
tuple relational calculus query is of the form:

{t | COND(t)}

where t is a tuple variable and COND(t) is a conditional (Boolean) expression
involving t that evaluates to either TRUE or FALSE for different assignments of
tuples to the variable t. The result of such a query is the set of all tuples t that evalu-
ate COND(t) to TRUE. These tuples are said to satisfy COND(t). For example, to find
all employees whose salary is above $50,000, we can write the following tuple calcu-
lus expression:

{t | EMPLOYEE(t) AND t.Salary>50000}

The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is
EMPLOYEE. Each EMPLOYEE tuple t that satisfies the condition t.Salary>50000 will
be retrieved. Notice that t.Salary references attribute Salary of tuple variable t; this
notation resembles how attribute names are qualified with relation names or aliases
in SQL, as we saw in Chapter 6. In the notation of Chapter 5, t.Salary is the same as
writing t[Salary].

The previous query retrieves all attribute values for each selected EMPLOYEE tuple
t. To retrieve only some of the attributes—say, the first and last names—we write

t.Fname, t.Lname | EMPLOYEE(t) AND t.Salary>50000}

Informally, we need to specify the following information in a tuple relational calcu-
lus expression:

 ■ For each tuple variable t, the range relation R of t. This value is specified by
a condition of the form R(t). If we do not specify a range relation, then the
variable t will range over all possible tuples “in the universe” as it is not
restricted to any one relation.

 ■ A condition to select particular combinations of tuples. As tuple variables
range over their respective range relations, the condition is evaluated for
every possible combination of tuples to identify the selected combinations
for which the condition evaluates to TRUE.

 ■ A set of attributes to be retrieved, the requested attributes. The values of
these attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another query.

Query 0. Retrieve the birth date and address of the employee (or employees)
whose name is John B. Smith.

Q0: {t.Bdate, t.Address | EMPLOYEE(t) AND t.Fname=‘John’ AND t.Minit=‘B’
 AND t.Lname=‘Smith’}

270 Chapter 8 The Relational Algebra and Relational Calculus

In tuple relational calculus, we first specify the requested attributes t.Bdate and
t.Address for each selected tuple t. Then we specify the condition for selecting a tuple
following the bar (|)—namely, that t be a tuple of the EMPLOYEE relation whose
Fname, Minit, and Lname attribute values are ‘John’, ‘B’, and ‘Smith’, respectively.

8.6.2 Expressions and Formulas in Tuple Relational Calculus
A general expression of the tuple relational calculus is of the form

{t1.Aj, t2.Ak, ... , tn.Am | COND(t1, t2, ..., tn, tn+1, tn+2, ..., tn+m)}

where t1, t2, … , tn, tn+1, … , tn+m are tuple variables, each Ai is an attribute of the
relation on which ti ranges, and COND is a condition or formula13 of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one
of the following:

 1. An atom of the form R(ti), where R is a relation name and ti is a tuple vari-
able. This atom identifies the range of the tuple variable ti as the relation
whose name is R. It evaluates to TRUE if ti is a tuple in the relation R, and
evaluates to FALSE otherwise.

 2. An atom of the form ti.A op tj.B, where op is one of the comparison opera-
tors in the set {=, <, ≤, >, ≥, ≠}, ti and tj are tuple variables, A is an attribute
of the relation on which ti ranges, and B is an attribute of the relation on
which tj ranges.

 3. An atom of the form ti.A op c or c op tj.B, where op is one of the comparison
operators in the set {=, <, ≤, >, ≥, ≠}, ti and tj are tuple variables, A is an attri-
bute of the relation on which ti ranges, B is an attribute of the relation on
which tj ranges, and c is a constant value.

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-
nation of tuples; this is called the truth value of an atom. In general, a tuple variable
t ranges over all possible tuples in the universe. For atoms of the form R(t), if t is
assigned to a tuple that is a member of the specified relation R, the atom is TRUE;
otherwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned
to tuples such that the values of the specified attributes of the tuples satisfy the con-
dition, then the atom is TRUE.

A formula (Boolean condition) is made up of one or more atoms connected via
the logical operators AND, OR, and NOT and is defined recursively by Rules 1 and 2
as follows:

 ■ Rule 1: Every atom is a formula.

 ■ Rule 2: If F1 and F2 are formulas, then so are (F1 AND F2), (F1 OR F2), NOT
(F1), and NOT (F2). The truth values of these formulas are derived from their
component formulas F1 and F2 as follows:

13Also called a well-formed formula, or WFF, in mathematical logic.

 8.6 The Tuple Relational Calculus 271

a. (F1 AND F2) is TRUE if both F1 and F2 are TRUE; otherwise, it is FALSE.

b. (F1 OR F2) is FALSE if both F1 and F2 are FALSE; otherwise, it is TRUE.

c. NOT (F1) is TRUE if F1 is FALSE; it is FALSE if F1 is TRUE.

d. NOT (F2) is TRUE if F2 is FALSE; it is FALSE if F2 is TRUE.

8.6.3 The Existential and Universal Quantifiers
In addition, two special symbols called quantifiers can appear in formulas; these
are the universal quantifier (∀) and the existential quantifier (∃). Truth values for
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we
need to define the concepts of free and bound tuple variables in a formula. Infor-
mally, a tuple variable t is bound if it is quantified, meaning that it appears in an
(∃t) or (∀t) clause; otherwise, it is free. Formally, we define a tuple variable in a
formula as free or bound according to the following rules:

 ■ An occurrence of a tuple variable in a formula F that is an atom is free in F.

 ■ An occurrence of a tuple variable t is free or bound in a formula made up of
logical connectives—(F1 AND F2), (F1 OR F2), NOT(F1), and NOT(F2)—
depending on whether it is free or bound in F1 or F2 (if it occurs in either).
Notice that in a formula of the form F = (F1 AND F2) or F = (F1 OR F2), a
tuple variable may be free in F1 and bound in F2, or vice versa; in this case,
one occurrence of the tuple variable is bound and the other is free in F.

 ■ All free occurrences of a tuple variable t in F are bound in a formula F′ of the
form F′= (∃t)(F) or F′ = (∀t)(F). The tuple variable is bound to the quanti-
fier specified in F′. For example, consider the following formulas:

F1: d.Dname = ‘Research’
F2: (∃t)(d.Dnumber = t.Dno)
F3: (∀d)(d.Mgr_ssn = ‘333445555’)

The tuple variable d is free in both F1 and F2, whereas it is bound to the (∀) quanti-
fier in F3. Variable t is bound to the (∃) quantifier in F2.

We can now give Rules 3 and 4 for the definition of a formula we started earlier:

 ■ Rule 3: If F is a formula, then so is (∃t)(F), where t is a tuple variable. The
formula (∃t)(F) is TRUE if the formula F evaluates to TRUE for some (at least
one) tuple assigned to free occurrences of t in F; otherwise, (∃t)(F) is FALSE.

 ■ Rule 4: If F is a formula, then so is (∀t)(F), where t is a tuple variable. The for-
mula (∀t)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the
universe) assigned to free occurrences of t in F; otherwise, (∀t)(F) is FALSE.

The (∃) quantifier is called an existential quantifier because a formula (∃t)(F) is
TRUE if there exists some tuple that makes F TRUE. For the universal quantifier,
(∀t)(F) is TRUE if every possible tuple that can be assigned to free occurrences of
t in F is substituted for t, and F is TRUE for every such substitution. It is called the
universal or for all quantifier because every tuple in the universe of tuples must
make F TRUE to make the quantified formula TRUE.

272 Chapter 8 The Relational Algebra and Relational Calculus

8.6.4 Sample Queries in Tuple Relational Calculus
We will use some of the same queries from Section 8.5 to give a flavor of how the
same queries are specified in relational algebra and in relational calculus. Notice
that some queries are easier to specify in the relational algebra than in the relational
calculus, and vice versa.

Query 1. List the name and address of all employees who work for the ‘Research’
department.

Q1: {t.Fname, t.Lname, t.Address | EMPLOYEE(t) AND (∃d)(DEPARTMENT(d)
AND d.Dname=‘Research’ AND d.Dnumber=t.Dno)}

The only free tuple variables in a tuple relational calculus expression should be those
that appear to the left of the bar (|). In Q1, t is the only free variable; it is then bound
successively to each tuple. If a tuple satisfies the conditions specified after the bar in
Q1, the attributes Fname, Lname, and Address are retrieved for each such tuple. The
conditions EMPLOYEE(t) and DEPARTMENT(d) specify the range relations for t
and d. The condition d.Dname = ‘Research’ is a selection condition and corre-
sponds to a SELECT operation in the relational algebra, whereas the condition
d.Dnumber = t.Dno is a join condition and is similar in purpose to the (INNER) JOIN
operation (see Section 8.3).

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth
date, and address.

Q2: {p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND
EMPLOYEE(m) AND p.Plocation=‘Stafford’ AND ((∃d)(DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn))}

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of
tuples assigned to p and m, and out of all possible combinations of tuples to which
p and m are bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specify Q8—for each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor—we specify two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

Q8: {e.Fname, e.Lname, s.Fname, s.Lname | EMPLOYEE(e) AND EMPLOYEE(s)
AND e.Super_ssn=s.Ssn}

Query 3′. List the name of each employee who works on some project controlled
by department number 5. This is a variation of Q3 in which all is changed to
some. In this case we need two join conditions and two existential quantifiers.

Q0′: {e.Lname, e.Fname | EMPLOYEE(e) AND ((∃x)(∃w)(PROJECT(x) AND
WORKS_ON(w) AND x.Dnum=5 AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))}

 8.6 The Tuple Relational Calculus 273

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as manager of the controlling
department for the project.

Q4: { p.Pnumber | PROJECT(p) AND (((∃e)(∃w)(EMPLOYEE(e)
AND WORKS_ON(w) AND w.Pno=p.Pnumber
AND e.Lname=‘Smith’ AND e.Ssn=w.Essn))
OR
((∃m)(∃d)(EMPLOYEE(m) AND DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn
AND m.Lname=‘Smith’)))}

Compare this with the relational algebra version of this query in Section 8.5. The
UNION operation in relational algebra can usually be substituted with an OR con-
nective in relational calculus.

8.6.5 Notation for Query Graphs
In this section, we describe a notation that has been proposed to represent relational
calculus queries that do not involve complex quantification in a graphical form.
These types of queries are known as select-project-join queries because they only
involve these three relational algebra operations. The notation may be expanded to
more general queries, but we do not discuss these extensions here. This graphical
representation of a query is called a query graph. Figure 8.13 shows the query graph
for Q2. Relations in the query are represented by relation nodes, which are displayed
as single circles. Constant values, typically from the query selection conditions, are
represented by constant nodes, which are displayed as double circles or ovals. Selec-
tion and join conditions are represented by the graph edges (the lines that connect
the nodes), as shown in Figure 8.13. Finally, the attributes to be retrieved from each
relation are displayed in square brackets above each relation.

The query graph representation does not indicate a particular order to specify which
operations to perform first, and is hence a more neutral representation of a select-
project-join query than the query tree representation (see Section 8.3.5), where the
order of execution is implicitly specified. There is only a single query graph corre-
sponding to each query. Although some query optimization techniques were based
on query graphs, it is now generally accepted that query trees are preferable because,

[P.Pnumber,P.Dnum] [E.Lname,E.address,E.Bdate]

P.Dnum=D.Dnumber

P.Plocation=‘Stafford’

P D E

‘Stafford’

D.Mgr_ssn=E.Ssn

Figure 8.13
Query graph for Q2.

274 Chapter 8 The Relational Algebra and Relational Calculus

in practice, the query optimizer needs to show the order of operations for query
execution, which is not possible in query graphs.

In the next section we discuss the relationship between the universal and existential
quantifiers and show how one can be transformed into the other.

8.6.6 Transforming the Universal and Existential Quantifiers
We now introduce some well-known transformations from mathematical logic that
relate the universal and existential quantifiers. It is possible to transform a universal
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Trans-
form one type of quantifier into the other with negation (preceded by NOT); AND
and OR replace one another; a negated formula becomes unnegated; and an un-
negated formula becomes negated. Some special cases of this transformation can be
stated as follows, where the ≡ symbol stands for equivalent to:

(∀x) (P(x)) ≡ NOT (∃x) (NOT (P(x)))
(∃x) (P(x)) ≡ NOT (∀x) (NOT (P(x)))
(∀x) (P(x) AND Q(x)) ≡ NOT (∃x) (NOT (P(x)) OR NOT (Q(x)))
(∀x) (P(x) OR Q(x)) ≡ NOT (∃x) (NOT (P(x)) AND NOT (Q(x)))
(∃x) (P(x)) OR Q(x)) ≡ NOT (∀x) (NOT (P(x)) AND NOT (Q(x)))
(∃x) (P(x) AND Q(x)) ≡ NOT (∀x) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the ⇒ symbol stands for implies:

(∀x)(P(x)) ⇒ (∃x)(P(x))
NOT (∃x)(P(x)) ⇒ NOT (∀x)(P(x))

8.6.7 Using the Universal Quantifier in Queries
Whenever we use a universal quantifier, it is quite judicious to follow a few rules to
ensure that our expression makes sense. We discuss these rules with respect to the
query Q3.

Query 3. List the names of employees who work on all the projects controlled
by department number 5. One way to specify this query is to use the universal
quantifier as shown:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND ((∀x)(NOT(PROJECT(x)) OR NOT
(x.Dnum=5) OR ((∃w)(WORKS_ON(w) AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))))}

We can break up Q3 into its basic components as follows:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND F′}
F′ = ((∀x)(NOT(PROJECT(x)) OR F1))
F1 = NOT(x.Dnum=5) OR F2
F2 = ((∃w)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))

 8.6 The Tuple Relational Calculus 275

We want to make sure that a selected employee e works on all the projects con-
trolled by department 5, but the definition of universal quantifier says that to
make the quantified formula TRUE, the inner formula must be TRUE for all tuples
in the universe. The trick is to exclude from the universal quantification all tuples
that we are not interested in by making the condition TRUE for all such tuples.
This is necessary because a universally quantified tuple variable, such as x in Q3,
must evaluate to TRUE for every possible tuple assigned to it to make the quantified
formula TRUE.

The first tuples to exclude (by making them evaluate automatically to TRUE) are
those that are not in the relation R of interest. In Q3, using the expression
NOT(PROJECT(x)) inside the universally quantified formula evaluates to TRUE all
tuples x that are not in the PROJECT relation. Then we exclude the tuples we are not
interested in from R itself. In Q3, using the expression NOT(x.Dnum=5) evaluates to
TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-
ment 5. Finally, we specify a condition F2 that must hold on all the remaining tuples
in R. Hence, we can explain Q3 as follows:

 1. For the formula F′ = (∀x)(F) to be TRUE, we must have the formula F be
TRUE for all tuples in the universe that can be assigned to x. However, in Q3
we are only interested in F being TRUE for all tuples of the PROJECT relation
that are controlled by department 5. Hence, the formula F is of the form
(NOT(PROJECT(x)) OR F1). The ‘NOT (PROJECT(x)) OR …’ condition is
TRUE for all tuples not in the PROJECT relation and has the effect of elimi-
nating these tuples from consideration in the truth value of F1. For every
tuple in the PROJECT relation, F1 must be TRUE if F′ is to be TRUE.

 2. Using the same line of reasoning, we do not want to consider tuples in the
PROJECT relation that are not controlled by department number 5, since we
are only interested in PROJECT tuples whose Dnum=5. Therefore, we can
write:

IF (x.Dnum=5) THEN F2

which is equivalent to

(NOT (x.Dnum=5) OR F2)

 3. Formula F1, hence, is of the form NOT(x.Dnum=5) OR F2. In the context of
Q3, this means that, for a tuple x in the PROJECT relation, either its Dnum≠5
or it must satisfy F2.

 4. Finally, F2 gives the condition that we want to hold for a selected EMPLOYEE
tuple: that the employee works on every PROJECT tuple that has not been
excluded yet. Such employee tuples are selected by the query.

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e:
For every tuple x in the PROJECT relation with x.Dnum=5, there must exist a tuple
w in WORKS_ON such that w.Essn=e.Ssn and w.Pno=x.Pnumber. This is equivalent
to saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.
(Whew!)

276 Chapter 8 The Relational Algebra and Relational Calculus

Using the general transformation from universal to existential quantifiers given in
Section 8.6.6, we can rephrase the query in Q3 as shown in Q3A, which uses a
negated existential quantifier instead of the universal quantifier:

Q3A: {e.Lname, e.Fname | EMPLOYEE(e) AND (NOT (∃x) (PROJECT(x) AND
(x.Dnum=5) and (NOT (∃w)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))))}

We now give some additional examples of queries that use quantifiers.

Query 6. List the names of employees who have no dependents.

Q6: {e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (∃d)(DEPENDENT(d)
AND e.Ssn=d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

Q6A: {e.Fname, e.Lname | EMPLOYEE(e) AND ((∀d)(NOT(DEPENDENT(d))
OR NOT(e.Ssn=d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Q7: {e.Fname, e.Lname | EMPLOYEE(e) AND ((∃d)(∃ρ)(DEPARTMENT(d)
AND DEPENDENT(ρ) AND e.Ssn=d.Mgr_ssn AND ρ.Essn=e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as
managers for whom there exists some dependent.

8.6.8 Safe Expressions
Whenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we must make sure that the resulting expression
makes sense. A safe expression in relational calculus is one that is guaranteed to
yield a finite number of tuples as its result; otherwise, the expression is called unsafe.
For example, the expression

{t | NOT (EMPLOYEE(t))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,
which are infinitely numerous. If we follow the rules for Q3 discussed earlier, we
will get a safe expression when using universal quantifiers. We can define safe
expressions more precisely by introducing the concept of the domain of a tuple
relational calculus expression: This is the set of all values that either appear as
constant values in the expression or exist in any tuple in the relations referenced
in the expression. For example, the domain of {t | NOT(EMPLOYEE(t))} is the set
of all attribute values appearing in some tuple of the EMPLOYEE relation (for any
attribute). The domain of the expression Q3A would include all values appearing
in EMPLOYEE, PROJECT, and WORKS_ON (unioned with the value 5 appearing in
the query itself).

An expression is said to be safe if all values in its result are from the domain of the
expression. Notice that the result of {t | NOT(EMPLOYEE(t))} is unsafe, since it will,

 8.7 The Domain Relational Calculus 277

in general, include tuples (and hence values) from outside the EMPLOYEE relation;
such values are not in the domain of the expression. All of our other examples are
safe expressions.

8.7 The Domain Relational Calculus
There is another type of relational calculus called the domain relational calculus, or
simply domain calculus. Historically, while SQL (see Chapters 6 and 7), which was
based on tuple relational calculus, was being developed by IBM Research at San
Jose, California, another language called QBE (Query-By-Example), which is
related to domain calculus, was being developed almost concurrently at the IBM
T. J. Watson Research Center in Yorktown Heights, New York. The formal specifi-
cation of the domain calculus was proposed after the development of the QBE lan-
guage and system.

Domain calculus differs from tuple calculus in the type of variables used in formu-
las: Rather than having variables range over tuples, the variables range over single
values from domains of attributes. To form a relation of degree n for a query result,
we must have n of these domain variables—one for each attribute. An expression
of the domain calculus is of the form

{x1, x2, ..., xn | COND(x1, x2, ..., xn, xn+1, xn+2, ..., xn+m)}

where x1, x2, … , xn, xn+1, xn+2, … , xn+m are domain variables that range over
domains (of attributes), and COND is a condition or formula of the domain
relational calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from
those for the tuple calculus and can be one of the following:

 1. An atom of the form R(x1, x2, … , xj), where R is the name of a relation of
degree j and each xi, 1 ≤ i ≤ j, is a domain variable. This atom states that a list
of values of <x1, x2, … , xj> must be a tuple in the relation whose name is R,
where xi is the value of the ith attribute value of the tuple. To make a domain
calculus expression more concise, we can drop the commas in a list of vari-
ables; thus, we can write:

{x1, x2, ..., xn | R(x1 x2 x3) AND ...}

instead of:

{x1, x2, ... , xn | R(x1, x2, x3) AND ...}

 2. An atom of the form xi op xj, where op is one of the comparison operators in
the set {=, <, ≤, >, ≥, ≠}, and xi and xj are domain variables.

 3. An atom of the form xi op c or c op xj, where op is one of the comparison
operators in the set {=, <, ≤, >, ≥, ≠}, xi and xj are domain variables, and c is
a constant value.

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of
values, called the truth values of the atoms. In case 1, if the domain variables are

278 Chapter 8 The Relational Algebra and Relational Calculus

assigned values corresponding to a tuple of the specified relation R, then the atom is
TRUE. In cases 2 and 3, if the domain variables are assigned values that satisfy the
condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,
variables, and quantifiers, so we will not repeat the specifications for formulas here.
Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters l, m, n, … , x, y, z for domain variables.

Query 0. List the birth date and address of the employee whose name is ‘John
B. Smith’.

Q0: {u, v | (∃q) (∃r) (∃s) (∃t) (∃w) (∃x) (∃y) (∃z)
(EMPLOYEE(qrstuvwxyz) AND q=‘John’ AND r=‘B’ AND s=‘Smith’)}

We need ten variables for the EMPLOYEE relation, one to range over each of the
domains of attributes of EMPLOYEE in order. Of the ten variables q, r, s, … , z,
only u and v are free, because they appear to the left of the bar and hence should
not be bound to a quantifier. We first specify the requested attributes, Bdate and
Address, by the free domain variables u for BDATE and v for ADDRESS. Then we
specify the condition for selecting a tuple following the bar (|)—namely, that the
sequence of values assigned to the variables qrstuvwxyz be a tuple of the EMPLOYEE
relation and that the values for q (Fname), r (Minit), and s (Lname) be equal to
‘John’, ‘B’, and ‘Smith’, respectively. For convenience, we will quantify only those
variables actually appearing in a condition (these would be q, r, and s in Q0) in the
rest of our examples.14

An alternative shorthand notation, used in QBE, for writing this query is to assign
the constants ‘John’, ‘B’, and ‘Smith’ directly as shown in Q0A. Here, all variables
not appearing to the left of the bar are implicitly existentially quantified:15

Q0A: {u, v | EMPLOYEE(‘John’, ‘B’, ‘Smith’, t, u, v, w, x, y, z)}

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: {q, s, v | (∃z) (∃l) (∃m) (EMPLOYEE(qrstuvwxyz) AND
DEPARTMENT(lmno) AND l=‘Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in Q1, is a join condition, whereas a condition that relates a
domain variable to a constant, such as l = ‘Research’, is a selection condition.

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth
date, and address.

14Quantifying only the domain variables actually used in conditions and specifying a predicate such as
EMPLOYEE(qrstuvwxyz) without separating domain variables with commas is an abbreviated notation
used for convenience; it is not the correct formal notation.
15Again, this is not a formally accurate notation.

 8.8 Summary 279

Q2: {i, k, s, u, v | (∃j)(∃m)(∃n)(∃t)(PROJECT(hijk) AND
EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(lmno) AND k=m AND
n=t AND j=‘Stafford’)}

Query 6. List the names of employees who have no dependents.

Q6: {q, s | (∃t)(EMPLOYEE(qrstuvwxyz) AND
(NOT(∃l)(DEPENDENT(lmnop) AND t=l)))}

Q6 can be restated using universal quantifiers instead of the existential quantifiers,
as shown in Q6A:

Q6A: {q, s | (∃t)(EMPLOYEE(qrstuvwxyz) AND
((∀l)(NOT(DEPENDENT(lmnop)) OR NOT(t=l))))}

Query 7. List the names of managers who have at least one dependent.

Q7: {s, q | (∃t)(∃j)(∃l)(EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(hijk)
AND DEPENDENT(lmnop) AND t=j AND l=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in
the basic relational algebra can also be expressed in the domain or tuple relational
calculus. Also, any safe expression in the domain or tuple relational calculus can be
expressed in the basic relational algebra.

The QBE language was based on the domain relational calculus, although this was
realized later, after the domain calculus was formalized. QBE was one of the first
graphical query languages with minimum syntax developed for database systems. It
was developed at IBM Research and is available as an IBM commercial product as
part of the Query Management Facility (QMF) interface option to DB2. The basic
ideas used in QBE have been applied in several other commercial products. Because
of its important place in the history of relational languages, we have included an
overview of QBE in Appendix C.

8.8 Summary
In this chapter we presented two formal languages for the relational model of data.
They are used to manipulate relations and produce new relations as answers to que-
ries. We discussed the relational algebra and its operations, which are used to spec-
ify a sequence of operations to specify a query. Then we introduced two types of
relational calculi called tuple calculus and domain calculus.

In Sections 8.1 through 8.3, we introduced the basic relational algebra operations
and illustrated the types of queries for which each is used. First, we discussed the
unary relational operators SELECT and PROJECT, as well as the RENAME operation.
Then, we discussed binary set theoretic operations requiring that relations on
which they are applied be union (or type) compatible; these include UNION,
INTERSECTION, and SET DIFFERENCE. The CARTESIAN PRODUCT operation is a
set operation that can be used to combine tuples from two relations, producing
all possible combinations. It is rarely used in practice; however, we showed how

280 Chapter 8 The Relational Algebra and Relational Calculus

CARTESIAN PRODUCT followed by SELECT can be used to define matching tuples
from two relations and leads to the JOIN operation. Different JOIN operations called
THETA JOIN, EQUIJOIN, and NATURAL JOIN were introduced. Query trees were intro-
duced as a graphical representation of relational algebra queries, which can also be used
as the basis for internal data structures that the DBMS can use to represent a query.

We discussed some important types of queries that cannot be stated with the basic
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection
list and the AGGREGATE FUNCTION operation to deal with aggregate types of statis-
tical requests that summarize the information in the tables. We discussed recursive
queries, for which there is no direct support in the algebra but which can be han-
dled in a step-by-step approach, as we demonstrated. Then we presented the OUTER
JOIN and OUTER UNION operations, which extend JOIN and UNION and allow all
information in source relations to be preserved in the result.

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are
two types of relational calculi: (1) the tuple relational calculus, which uses tuple
variables that range over tuples (rows) of relations, and (2) the domain relational
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement,
without specifying any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level declarative language than the
relational algebra, because a relational calculus expression states what we want to
retrieve regardless of how the query may be executed.

We introduced query graphs as an internal representation for queries in relational
calculus. We also discussed the existential quantifier (∃) and the universal quanti-
fier (∀). We discussed the problem of specifying safe queries whose results are
finite. We also discussed rules for transforming universal into existential quantifi-
ers, and vice versa. It is the quantifiers that give expressive power to the relational
calculus, making it equivalent to the basic relational algebra. There is no analog to
grouping and aggregation functions in basic relational calculus, although some
extensions have been suggested.

Review Questions
 8.1. List the operations of relational algebra and the purpose of each.

 8.2. What is union compatibility? Why do the UNION, INTERSECTION, and
DIFFERENCE operations require that the relations on which they are
applied be union compatible?

 8.3. Discuss some types of queries for which renaming of attributes is necessary
in order to specify the query unambiguously.

 8.4. Discuss the various types of inner join operations. Why is theta join required?

 Exercises 281

 8.5. What role does the concept of foreign key play when specifying the most
common types of meaningful join operations?

 8.6. What is the FUNCTION operation? For what is it used?

 8.7. How are the OUTER JOIN operations different from the INNER JOIN opera-
tions? How is the OUTER UNION operation different from UNION?

 8.8. In what sense does relational calculus differ from relational algebra, and in
what sense are they similar?

 8.9. How does tuple relational calculus differ from domain relational calculus?

 8.10. Discuss the meanings of the existential quantifier (∃) and the universal
quantifier (∀).

 8.11. Define the following terms with respect to the tuple calculus: tuple variable,
range relation, atom, formula, and expression.

 8.12. Define the following terms with respect to the domain calculus: domain
variable, range relation, atom, formula, and expression.

 8.13. What is meant by a safe expression in relational calculus?

 8.14. When is a query language called relationally complete?

Exercises
 8.15. Show the result of each of the sample queries in Section 8.5 as it would apply

to the database state in Figure 5.6.

 8.16. Specify the following queries on the COMPANY relational database schema
shown in Figure 5.5 using the relational operators discussed in this chapter.
Also show the result of each query as it would apply to the database state in
Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong’.

d. For each project, list the project name and the total hours per week (by all
employees) spent on that project.

e. Retrieve the names of all employees who work on every project.

f. Retrieve the names of all employees who do not work on any project.

g. For each department, retrieve the department name and the average sal-
ary of all employees working in that department.

h. Retrieve the average salary of all female employees.

282 Chapter 8 The Relational Algebra and Relational Calculus

i. Find the names and addresses of all employees who work on at least one
project located in Houston but whose department has no location in
Houston.

j. List the last names of all department managers who have no dependents.

 8.17. Consider the AIRLINE relational database schema shown in Figure 5.8, which
was described in Exercise 5.12. Specify the following queries in relational
algebra:

a. For each flight, list the flight number, the departure airport for the first
leg of the flight, and the arrival airport for the last leg of the flight.

b. List the flight numbers and weekdays of all flights or flight legs that depart
from Houston Intercontinental Airport (airport code ‘iah’) and arrive in
Los Angeles International Airport (airport code ‘lax’).

c. List the flight number, departure airport code, scheduled departure time,
arrival airport code, scheduled arrival time, and weekdays of all flights or
flight legs that depart from some airport in the city of Houston and arrive
at some airport in the city of Los Angeles.

d. List all fare information for flight number ‘co197’.

e. Retrieve the number of available seats for flight number ‘co197’ on
‘2009-10-09’.

 8.18. Consider the LIBRARY relational database schema shown in Figure 8.14, which
is used to keep track of books, borrowers, and book loans. Referential integrity
constraints are shown as directed arcs in Figure 8.14, as in the notation of Fig-
ure 5.7. Write down relational expressions for the following queries:

a. How many copies of the book titled The Lost Tribe are owned by the
library branch whose name is ‘Sharpstown’?

b. How many copies of the book titled The Lost Tribe are owned by each
library branch?

c. Retrieve the names of all borrowers who do not have any books
checked out.

d. For each book that is loaned out from the Sharpstown branch and whose
Due_date is today, retrieve the book title, the borrower’s name, and the
borrower’s address.

e. For each library branch, retrieve the branch name and the total number
of books loaned out from that branch.

f. Retrieve the names, addresses, and number of books checked out for all
borrowers who have more than five books checked out.

g. For each book authored (or coauthored) by Stephen King, retrieve the
title and the number of copies owned by the library branch whose name
is Central.

 8.19. Specify the following queries in relational algebra on the database schema
given in Exercise 5.14:

 Exercises 283

a. List the Order# and Ship_date for all orders shipped from Warehouse# W2.

b. List the WAREHOUSE information from which the CUSTOMER
named Jose Lopez was supplied his orders. Produce a listing: Order#,
Warehouse#.

c. Produce a listing Cname, No_of_orders, Avg_order_amt, where the middle
column is the total number of orders by the customer and the last column
is the average order amount for that customer.

d. List the orders that were not shipped within 30 days of ordering.

e. List the Order# for orders that were shipped from all warehouses that the
company has in New York.

 8.20. Specify the following queries in relational algebra on the database schema
given in Exercise 5.15:

a. Give the details (all attributes of trip relation) for trips that exceeded
$2,000 in expenses.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES
Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH
Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER
Card_no Name Address Phone

Figure 8.14
A relational database
schema for a LIBRARY
database.

284 Chapter 8 The Relational Algebra and Relational Calculus

b. Print the Ssns of salespeople who took trips to Honolulu.

c. Print the total trip expenses incurred by the salesperson with SSN =
‘234-56-7890’.

 8.21. Specify the following queries in relational algebra on the database schema
given in Exercise 5.16:

a. List the number of courses taken by all students named John Smith in
Winter 2009 (i.e., Quarter=W09).

b. Produce a list of textbooks (include Course#, Book_isbn, Book_title) for
courses offered by the ‘CS’ department that have used more than two books.

c. List any department that has all its adopted books published by ‘Pearson
Publishing’.

 8.22. Consider the two tables T1 and T2 shown in Figure 8.15. Show the results of
the following operations:

a. T1 T1.P = T2.A T2

b. T1 T1.Q = T2.B T2

c. T1 T1.P = T2.A T2

d. T1 T1.Q = T2.B T2

e. T1 ∪ T2

f. T1 (T1.P = T2.A AND T1.R = T2.C) T2

 8.23. Specify the following queries in relational algebra on the database schema in
Exercise 5.17:

a. For the salesperson named ‘Jane Doe’, list the following information for
all the cars she sold: Serial#, Manufacturer, Sale_price.

b. List the Serial# and Model of cars that have no options.

c. Consider the NATURAL JOIN operation between SALESPERSON and
SALE. What is the meaning of a left outer join for these tables (do not
change the order of relations)? Explain with an example.

d. Write a query in relational algebra involving selection and one set opera-
tion and say in words what the query does.

 8.24. Specify queries a, b, c, e, f, i, and j of Exercise 8.16 in both tuple and domain
relational calculus.

 8.25. Specify queries a, b, c, and d of Exercise 8.17 in both tuple and domain rela-
tional calculus.

P Q R A B C

10

15

25

a

b

a

5

8

6

10

25

10

b

c

b

6

3

5

TABLE T1 TABLE T2 Figure 8.15
A database state for the
relations T1 and T2.

 Exercises 285

 8.26. Specify queries c, d, and f of Exercise 8.18 in both tuple and domain rela-
tional calculus.

 8.27. In a tuple relational calculus query with n tuple variables, what would be the
typical minimum number of join conditions? Why? What is the effect of
having a smaller number of join conditions?

 8.28. Rewrite the domain relational calculus queries that followed Q0 in Sec-
tion 8.7 in the style of the abbreviated notation of Q0A, where the objective
is to minimize the number of domain variables by writing constants in place
of variables wherever possible.

 8.29. Consider this query: Retrieve the Ssns of employees who work on at least
those projects on which the employee with Ssn=123456789 works. This may
be stated as (FORALL x) (IF P THEN Q), where

 ■ x is a tuple variable that ranges over the PROJECT relation.

 ■ P ≡ employee with Ssn=123456789 works on project x.

 ■ Q ≡ employee e works on project x.

Express the query in tuple relational calculus, using the rules

 ■ (∀ x)(P(x)) ≡ NOT(∃x)(NOT(P(x))).

 ■ (IF P THEN Q) ≡ (NOT(P) OR Q).

 8.30. Show how you can specify the following relational algebra operations in
both tuple and domain relational calculus.

a. σA=C(R(A, B, C))

b. π<A, B>(R(A, B, C))

c. R(A, B, C) * S(C, D, E)

d. R(A, B, C) ∪ S(A, B, C)

e. R(A, B, C) ∩ S(A, B, C)

f. R(A, B, C) = S(A, B, C)

g. R(A, B, C) × S(D, E, F)

h. R(A, B) ÷ S(A)

 8.31. Suggest extensions to the relational calculus so that it may express the fol-
lowing types of operations that were discussed in Section 8.4: (a) aggre-
gate functions and grouping; (b) OUTER JOIN operations; (c) recursive
closure queries.

 8.32. A nested query is a query within a query. More specifically, a nested query is
a parenthesized query whose result can be used as a value in a number of
places, such as instead of a relation. Specify the following queries on the
database specified in Figure 5.5 using the concept of nested queries and the
relational operators discussed in this chapter. Also show the result of each
query as it would apply to the database state in Figure 5.6.

a. List the names of all employees who work in the department that has the
employee with the highest salary among all employees.

286 Chapter 8 The Relational Algebra and Relational Calculus

b. List the names of all employees whose supervisor’s supervisor has
‘888665555’ for Ssn.

c. List the names of employees who make at least $10,000 more than the
employee who is paid the least in the company.

 8.33. State whether the following conclusions are true or false:

a. NOT (P(x) OR Q(x)) → (NOT (P(x)) AND (NOT (Q(x)))

b. NOT (∃x) (P(x)) → ∀ x (NOT (P(x))

c. (∃x) (P(x)) → ∀ x ((P(x))

Laboratory Exercises
 8.34. Specify and execute the following queries in relational algebra (RA) using

the RA interpreter on the COMPANY database schema in Figure 5.5.

a. List the names of all employees in department 5 who work more than 10
hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. List the names of employees who are directly supervised by Franklin Wong.

d. List the names of employees who work on every project.

e. List the names of employees who do not work on any project.

f. List the names and addresses of employees who work on at least one
project located in Houston but whose department has no location in
Houston.

g. List the names of department managers who have no dependents.

 8.35. Consider the following MAILORDER relational schema describing the data
for a mail order company.

PARTS(Pno, Pname, Qoh, Price, Olevel)
CUSTOMERS(Cno, Cname, Street, Zip, Phone)
EMPLOYEES(Eno, Ename, Zip, Hdate)
ZIP_CODES(Zip, City)
ORDERS(Ono, Cno, Eno, Received, Shipped)
ODETAILS(Ono, Pno, Qty)

 Qoh stands for quantity on hand: the other attribute names are self-
explanatory. Specify and execute the following queries using the RA
interpreter on the MAILORDER database schema.

a. Retrieve the names of parts that cost less than $20.00.

b. Retrieve the names and cities of employees who have taken orders for
parts costing more than $50.00.

c. Retrieve the pairs of customer number values of customers who live in
the same ZIP Code.

 Laboratory Exercises 287

d. Retrieve the names of customers who have ordered parts from employees
living in Wichita.

e. Retrieve the names of customers who have ordered parts costing less than
$20.00.

f. Retrieve the names of customers who have not placed an order.

g. Retrieve the names of customers who have placed exactly two orders.

 8.36. Consider the following GRADEBOOK relational schema describing the data
for a grade book of a particular instructor. (Note: The attributes A, B, C,
and D of COURSES store grade cutoffs.)

CATALOG(Cno, Ctitle)
STUDENTS(Sid, Fname, Lname, Minit)
COURSES(Term, Sec_no, Cno, A, B, C, D)
ENROLLS(Sid, Term, Sec_no)

 Specify and execute the following queries using the RA interpreter on the
GRADEBOOK database schema.

a. Retrieve the names of students enrolled in the Automata class during the
fall 2009 term.

b. Retrieve the Sid values of students who have enrolled in CSc226 and
CSc227.

c. Retrieve the Sid values of students who have enrolled in CSc226 or
CSc227.

d. Retrieve the names of students who have not enrolled in any class.

e. Retrieve the names of students who have enrolled in all courses in the
CATALOG table.

 8.37. Consider a database that consists of the following relations.

SUPPLIER(Sno, Sname)
PART(Pno, Pname)
PROJECT(Jno, Jname)
SUPPLY(Sno, Pno, Jno)

 The database records information about suppliers, parts, and projects and
includes a ternary relationship between suppliers, parts, and projects. This
relationship is a many-many-many relationship. Specify and execute the fol-
lowing queries using the RA interpreter.

a. Retrieve the part numbers that are supplied to exactly two projects.

b. Retrieve the names of suppliers who supply more than two parts to
project ‘J1’.

c. Retrieve the part numbers that are supplied by every supplier.

d. Retrieve the project names that are supplied by supplier ‘S1’ only.

e. Retrieve the names of suppliers who supply at least two different parts
each to at least two different projects.

288 Chapter 8 The Relational Algebra and Relational Calculus

 8.38. Specify and execute the following queries for the database in Exercise 5.16
using the RA interpreter.

a. Retrieve the names of students who have enrolled in a course that uses a
textbook published by Addison-Wesley-Longman.

b. Retrieve the names of courses in which the textbook has been changed at
least once.

c. Retrieve the names of departments that adopt textbooks published by
Addison-Wesley only.

d. Retrieve the names of departments that adopt textbooks written by
Navathe and published by Addison-Wesley.

e. Retrieve the names of students who have never used a book (in a course)
written by Navathe and published by Addison-Wesley.

 8.39. Repeat Laboratory Exercises 8.34 through 8.38 in domain relational calculus
(DRC) by using the DRC interpreter.

Selected Bibliography
Codd (1970) defined the basic relational algebra. Date (1983a) discusses outer joins.
Work on extending relational operations is discussed by Carlis (1986) and Ozsoyo-
glu et al. (1985). Cammarata et al. (1989) extends the relational model integrity
constraints and joins.

Codd (1971) introduced the language Alpha, which is based on concepts of tuple
relational calculus. Alpha also includes the notion of aggregate functions, which
goes beyond relational calculus. The original formal definition of relational calculus
was given by Codd (1972), which also provided an algorithm that transforms any
tuple relational calculus expression to relational algebra. The QUEL (Stonebraker et
al., 1976) is based on tuple relational calculus, with implicit existential quantifiers,
but no universal quantifiers, and was implemented in the INGRES system as a com-
mercially available language. Codd defined relational completeness of a query lan-
guage to mean at least as powerful as relational calculus. Ullman (1988) describes a
formal proof of the equivalence of relational algebra with the safe expressions of
tuple and domain relational calculus. Abiteboul et al. (1995) and Atzeni and deAn-
tonellis (1993) give a detailed treatment of formal relational languages.

Although ideas of domain relational calculus were initially proposed in the QBE
language (Zloof, 1975), the concept was formally defined by Lacroix and Pirotte
(1977a). The experimental version of the Query-By-Example system is described in
Zloof (1975). The ILL (Lacroix & Pirotte, 1977b) is based on domain relational cal-
culus. Whang et al. (1990) extends QBE with universal quantifiers. Visual query
languages, of which QBE is an example, are being proposed as a means of querying
databases; conferences such as the Visual Database Systems Working Conference
(e.g., Arisawa & Catarci (2000) or Zhou & Pu (2002)) present a number of propos-
als for such languages.

289

9
Relational Database

Design by ER- and
EER-to-Relational Mapping

This chapter discusses how to design a relational
database schema based on a conceptual schema

design. Figure 3.1 presented a high-level view of the database design process. In this
chapter we focus on the logical database design step of database design, which is
also known as data model mapping. We present the procedures to create a rela-
tional schema from an entity–relationship (ER) or an enhanced ER (EER) schema.
Our discussion relates the constructs of the ER and EER models, presented in
Chapters 3 and 4, to the constructs of the relational model, presented in Chapters 5
through 8. Many computer-aided software engineering (CASE) tools are based on
the ER or EER models, or other similar models, as we have discussed in Chapters 3
and 4. Many tools use ER or EER diagrams or variations to develop the schema
graphically and collect information about the data types and constraints, then con-
vert the ER/EER schema automatically into a relational database schema in the
DDL of a specific relational DBMS. The design tools employ algorithms similar to
the ones presented in this chapter.

We outline a seven-step algorithm in Section 9.1 to convert the basic ER model
constructs—entity types (strong and weak), binary relationships (with various
structural constraints), n-ary relationships, and attributes (simple, composite,
and multivalued)—into relations. Then, in Section 9.2, we continue the mapping
algorithm by describing how to map EER model constructs—specializa-
tion/generalization and union types (categories)—into relations. Section 9.3 sum-
marizes the chapter.

chapter 9

290 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

9.1 Relational Database Design Using
ER-to-Relational Mapping

9.1.1 ER-to-Relational Mapping Algorithm
In this section we describe the steps of an algorithm for ER-to-relational mapping.
We use the COMPANY database example to illustrate the mapping procedure.
The COMPANY ER schema is shown again in Figure 9.1, and the corresponding
COMPANY relational database schema is shown in Figure 9.2 to illustrate the

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION
1

N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

 9.1 Relational Database Design Using ER-to-Relational Mapping 291

mapping steps. We assume that the mapping will create tables with simple single-
valued attributes. The relational model constraints defined in Chapter 5, which
include primary keys, unique keys (if any), and referential integrity constraints on
the relations, will also be specified in the mapping results.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type
E in the ER schema, create a relation R that includes all the simple attributes of E.
Include only the simple component attributes of a composite attribute. Choose one
of the key attributes of E as the primary key for R. If the chosen key of E is a com-
posite, then the set of simple attributes that form it will together form the primary
key of R.

If multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify
additional (unique) keys of relation R. Knowledge about keys is also kept for index-
ing purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in
Figure 9.2 to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and
PROJECT from Figure 9.1. The foreign key and relationship attributes, if any,
are not included yet; they will be added during subsequent steps. These include

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 9.2
Result of mapping the
COMPANY ER schema
into a relational database
schema.

292 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and Mgr_start_date of
DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn, Dnumber, and
Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT,
respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are
unique keys is kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called
entity relations because each tuple represents an entity instance. The result after
this mapping step is shown in Figure 9.3(a).

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the
ER schema with owner entity type E, create a relation R and include all simple
attributes (or simple components of composite attributes) of W as attributes of
R. In addition, include as foreign key attributes of R, the primary key attribute(s)
of the relation(s) that correspond to the owner entity type(s); this takes care of
mapping the identifying relationship type of W. The primary key of R is the
combination of the primary key(s) of the owner(s) and the partial key of the
weak entity type W, if any. If there is a weak entity type E2 whose owner is also
a weak entity type E1, then E1 should be mapped before E2 to determine its
primary key first.

In our example, we create the relation DEPENDENT in this step to correspond to
the weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key
Ssn of the EMPLOYEE relation—which corresponds to the owner entity type—
as a foreign key attribute of DEPENDENT; we rename it Essn, although this is not

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary

EMPLOYEE

WORKS_ON

Essn Pno Hours

Dname Dnumber

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation

DEPENDENT

(a)

(c)

(d)

(b)

Essn Dependent_name Sex Bdate Relationship

Figure 9.3
Illustration of some
mapping steps.
(a) Entity relations
after step 1.
(b) Additional weak entity
relation after step 2.
(c) Relationship relations
after step 5.
(d) Relation representing
multivalued attribute
after step 6.

 9.1 Relational Database Design Using ER-to-Relational Mapping 293

necessary. The primary key of the DEPENDENT relation is the combination {Essn,
Dependent_name}, because Dependent_name (also renamed from Name in Figure 9.1)
is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential trig-
gered action (see Section 6.2) on the foreign key in the relation corresponding to
the weak entity type, since a weak entity has an existence dependency on its owner
entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-
tionship type R in the ER schema, identify the relations S and T that correspond
to the entity types participating in R. There are three possible approaches: (1) the
foreign key approach, (2) the merged relationship approach, and (3) the cross-
reference or relationship relation approach. The first approach is the most useful
and should be followed unless special conditions exist, as we discuss below.

 1. Foreign key approach: Choose one of the relations—S, say—and include as
a foreign key in S the primary key of T. It is better to choose an entity type
with total participation in R in the role of S. Include all the simple attributes
(or simple components of composite attributes) of the 1:1 relationship type
R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure 9.1
by choosing the participating entity type DEPARTMENT to serve in the role
of S because its participation in the MANAGES relationship type is total
(every department has a manager). We include the primary key of the
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename
it to Mgr_ssn. We also include the simple attribute Start_date of the MANAGES
relationship type in the DEPARTMENT relation and rename it Mgr_start_date
(see Figure 9.2).

Note that it is possible to include the primary key of S as a foreign key in T
instead. In our example, this amounts to having a foreign key attribute, say
Department_managed in the EMPLOYEE relation, but it will have a NULL value
for employee tuples who do not manage a department. This would be a bad
choice, because if only 2% of employees manage a department, then 98% of
the foreign keys would be NULL in this case. Another possibility is to have
foreign keys in both relations S and T redundantly, but this creates redun-
dancy and incurs a penalty for consistency maintenance.

 2. Merged relation approach: An alternative mapping of a 1:1 relationship
type is to merge the two entity types and the relationship into a single rela-
tion. This is possible when both participations are total, as this would indi-
cate that the two tables will have the exact same number of tuples at all times.

 3. Cross-reference or relationship relation approach: The third option is to
set up a third relation R for the purpose of cross-referencing the primary
keys of the two relations S and T representing the entity types. As we will see,
this approach is required for binary M:N relationships. The relation R is
called a relationship relation (or sometimes a lookup table), because each

294 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

tuple in R represents a relationship instance that relates one tuple from S
with one tuple from T. The relation R will include the primary key attributes
of S and T as foreign keys to S and T. The primary key of R will be one of the
two foreign keys, and the other foreign key will be a unique key of R. The
drawback is having an extra relation, and requiring extra join operations
when combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types. There are two possible
approaches: (1) the foreign key approach and (2) the cross-reference or relationship
relation approach. The first approach is generally preferred as it reduces the num-
ber of tables.

 1. The foreign key approach: For each regular binary 1:N relationship type R,
identify the relation S that represents the participating entity type at the
N-side of the relationship type. Include as foreign key in S the primary key of
the relation T that represents the other entity type participating in R; we do
this because each entity instance on the N-side is related to at most one
entity instance on the 1-side of the relationship type. Include any simple
attributes (or simple components of composite attributes) of the 1:N rela-
tionship type as attributes of S.

To apply this approach to our example, we map the 1:N relationship types
WORKS_FOR, CONTROLS, and SUPERVISION from Figure 9.1. For
WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relation
as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION we
include the primary key of the EMPLOYEE relation as foreign key in the
EMPLOYEE relation itself—because the relationship is recursive—and call it
Super_ssn. The CONTROLS relationship is mapped to the foreign key attri-
bute Dnum of PROJECT, which references the primary key Dnumber of the
DEPARTMENT relation. These foreign keys are shown in Figure 9.2.

 2. The relationship relation approach: An alternative approach is to use the
relationship relation (cross-reference) option as in the third option for
binary 1:1 relationships. We create a separate relation R whose attributes are
the primary keys of S and T, which will also be foreign keys to S and T. The
primary key of R is the same as the primary key of S. This option can be used
if few tuples in S participate in the relationship to avoid excessive NULL val-
ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. In the traditional rela-
tional model with no multivalued attributes, the only option for M:N relationships
is the relationship relation (cross-reference) option. For each binary M:N rela-
tionship type R, create a new relation S to represent R. Include as foreign key attri-
butes in S the primary keys of the relations that represent the participating entity
types; their combination will form the primary key of S. Also include any simple
attributes of the M:N relationship type (or simple components of composite attri-
butes) as attributes of S. Notice that we cannot represent an M:N relationship type
by a single foreign key attribute in one of the participating relations (as we did for

 9.1 Relational Database Design Using ER-to-Relational Mapping 295

1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must create a
separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 by
creating the relation WORKS_ON in Figure 9.2. We include the primary keys of the
PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename
them Pno and Essn, respectively (renaming is not required; it is a design choice).
We also include an attribute Hours in WORKS_ON to represent the Hours attribute
of the relationship type. The primary key of the WORKS_ON relation is the combi-
nation of the foreign key attributes {Essn, Pno}. This relationship relation is
shown in Figure 9.3(c).

The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 4.2) should be specified on the foreign keys in the relation corresponding to the
relationship R, since each relationship instance has an existence dependency on
each of the entities it relates. This can be used for both ON UPDATE and ON DELETE.

Although we can map 1:1 or 1:N relationships in a manner similar to M:N relation-
ships by using the cross-reference (relationship relation) approach, as we discussed
earlier, this is only recommended when few relationship instances exist, in order to
avoid NULL values in foreign keys. In this case, the primary key of the relationship
relation will be only one of the foreign keys that reference the participating entity
relations. For a 1:N relationship, the primary key of the relationship relation will be
the foreign key that references the entity relation on the N-side. For a 1:1 relation-
ship, either foreign key can be used as the primary key of the relationship relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A,
create a new relation R. This relation R will include an attribute corresponding to A,
plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The
primary key of R is the combination of A and K. If the multivalued attribute is com-
posite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)).
The attribute Dlocation represents the multivalued attribute LOCATIONS of
DEPARTMENT, whereas Dnumber—as foreign key—represents the primary key of the
DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of
{Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each loca-
tion that a department has. It is important to note that in more recent versions of
the relational model that allow array data types, the multivalued attribute can be
mapped to an array attribute rather than requiring a separate table.

The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 6.2) should be specified on the foreign key in the relation R corresponding to the
multivalued attribute for both ON UPDATE and ON DELETE. We should also note
that the key of R when mapping a composite, multivalued attribute requires some
analysis of the meaning of the component attributes. In some cases, when a multi-
valued attribute is composite, only some of the component attributes are required

296 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

to be part of the key of R; these attributes are similar to a partial key of a weak entity
type that corresponds to the multivalued attribute (see Section 3.5).

Figure 9.2 shows the COMPANY relational database schema obtained with steps 1
through 6, and Figure 5.6 shows a sample database state. Notice that we did not yet
discuss the mapping of n-ary relationship types (n > 2) because none exist in Fig-
ure 9.1 ; these are mapped in a similar way to M:N relationship types by including
the following additional step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. We use the relationship
relation option. For each n-ary relationship type R, where n > 2, create a new relation-
ship relation S to represent R. Include as foreign key attributes in S the primary keys
of the relations that represent the participating entity types. Also include any simple
attributes of the n-ary relationship type (or simple components of composite attri-
butes) as attributes of S. The primary key of S is usually a combination of all the
foreign keys that reference the relations representing the participating entity types.
However, if the cardinality constraints on any of the entity types E participating in
R is 1, then the primary key of S should not include the foreign key attribute that
references the relation E′ corresponding to E (see the discussion in Section 3.9.2
concerning constraints on n-ary relationships).

Consider the ternary relationship type SUPPLY in Figure 3.17, which relates a
SUPPLIER s, PART p, and PROJECT j whenever s is currently supplying p to j; this
can be mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is the
combination of the three foreign keys {Sname, Part_no, Proj_name}.

9.1.2 Discussion and Summary of Mapping
for ER Model Constructs

Table 9.1 summarizes the correspondences between ER and relational model con-
structs and constraints.

SUPPLIER

Sname

PROJECT

Proj_name

SUPPLY

Sname Proj_name Part_no Quantity

PART

Part_no

. . .

. . .

. . .

Figure 9.4
Mapping the n-ary
relationship type
SUPPLY from
Figure 3.17(a).

 9.1 Relational Database Design Using ER-to-Relational Mapping 297

Table 9.1 Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or relationship relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

One of the main points to note in a relational schema, in contrast to an ER
schema, is that relationship types are not represented explicitly; instead, they
are represented by having two attributes A and B, one a primary key and the
other a foreign key (over the same domain) included in two relations S and T.
Two tuples in S and T are related when they have the same value for A and B. By
using the EQUIJOIN operation (or NATURAL JOIN if the two join attributes have
the same name) over S.A and T.B, we can combine all pairs of related tuples
from S and T and materialize the relationship. When a binary 1:1 or 1:N rela-
tionship type is involved and the foreign key mapping is used, a single join
operation is usually needed. When the relationship relation approach is used,
such as for a binary M:N relationship type, two join operations are needed,
whereas for n-ary relationship types, n joins are needed to fully materialize the
relationship instances.

For example, to form a relation that includes the employee name, project name,
and hours that the employee works on each project, we need to connect
each EMPLOYEE tuple to the related PROJECT tuples via the WORKS_ON
relation in Figure 9.2. Hence, we must apply the EQUIJOIN operation to
the EMPLOYEE and WORKS_ON relations with the join condition
EMPLOYEE.Ssn = WORKS_ON.Essn, and then apply another EQUIJOIN opera-
tion to the resulting relation and the PROJECT relation with join condition
WORKS_ON.Pno = PROJECT.Pnumber. In general, when multiple relationships
need to be traversed, numerous join operations must be specified. The user
must always be aware of the foreign key attributes in order to use them cor-
rectly in combining related tuples from two or more relations. This is some-
times considered to be a drawback of the relational data model, because the
foreign key/primary key correspondences are not always obvious upon inspec-
tion of relational schemas. If an EQUIJOIN is performed among attributes of two
relations that do not represent a foreign key/primary key relationship, the result
can often be meaningless and may lead to spurious data. For example, the
reader can try joining the PROJECT and DEPT_LOCATIONS relations on the con-
dition Dlocation = Plocation and examine the result.

298 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

In the relational schema we create a separate relation for each multivalued attribute.
For a particular entity with a set of values for the multivalued attribute, the key
attribute value of the entity is repeated once for each value of the multivalued attri-
bute in a separate tuple because the basic relational model does not allow multiple
values (a list, or a set of values) for an attribute in a single tuple. For example,
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS
relation in Figure 3.6; each tuple specifies one of the locations. In our example, we
apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute to
get the values of all locations along with other DEPARTMENT attributes. In the result-
ing relation, the values of the other DEPARTMENT attributes are repeated in separate
tuples for every location that a department has.

The basic relational algebra does not have a NEST or COMPRESS operation that
would produce a set of tuples of the form {<‘1’, ‘Houston’>, <‘4’, ‘Stafford’>, <‘5’,
{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6.
This is a serious drawback of the basic normalized or flat version of the relational
model. The object data model and object-relational systems (see Chapter 12) do
allow multivalued attributes by using the array type for the attribute.

9.2 Mapping EER Model Constructs
to Relations

In this section, we discuss the mapping of EER model constructs to relations by
extending the ER-to-relational mapping algorithm that was presented in Sec-
tion 9.1.1.

9.2.1 Mapping of Specialization or Generalization
There are several options for mapping a number of subclasses that together form a
specialization (or alternatively, that are generalized into a superclass), such as the
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. The
two main options are to map the whole specialization into a single table, or to map
it into multiple tables. Within each option are variations that depend on the con-
straints on the specialization/generalization.

We can add a further step to our ER-to-relational mapping algorithm from Sec-
tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8,
which follows, gives the most common options; other mappings are also possible.
We discuss the conditions under which each option should be used. We use Attrs(R)
to denote the attributes of a relation R, and PK(R) to denote the primary key of R.
First we describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert
each specialization with m subclasses {S1, S2, … , Sm} and (generalized) super-
class C, where the attributes of C are {k, a1, … , an} and k is the (primary) key, into
relation schemas using one of the following options:

 9.2 Mapping EER Model Constructs to Relations 299

 ■ Option 8A: Multiple relations—superclass and subclasses. Create a
relation L for C with attributes Attrs(L) = {k, a1, … , an} and PK(L) = k.
Create a relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes
Attrs(Li) = {k} ∪ {attributes of Si} and PK(Li) = k. This option works for any
specialization (total or partial, disjoint or overlapping).

 ■ Option 8B: Multiple relations—subclass relations only. Create a
relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes
Attrs(Li) = {attributes of Si} ∪ {k, a1, … , an} and PK(Li) = k. This option only
works for a specialization whose subclasses are total (every entity in the
superclass must belong to (at least) one of the subclasses). Additionally, it is
only recommended if the specialization has the disjointedness constraint (see
Section 4.3.1). If the specialization is overlapping, the same entity may be
duplicated in several relations.

 ■ Option 8C: Single relation with one type attribute. Create a single relation
L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪ {attri-
butes of Sm} ∪ {t} and PK(L) = k. The attribute t is called a type (or
discriminating) attribute whose value indicates the subclass to which each
tuple belongs, if any. This option works only for a specialization whose sub-
classes are disjoint, and has the potential for generating many NULL values if
many specific (local) attributes exist in the subclasses.

 ■ Option 8D: Single relation with multiple type attributes. Create a single
relation schema L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes
of S1} ∪ … ∪ {attributes of Sm} ∪ {t1, t2, …, tm} and PK(L) = k. Each ti,
1 ≤ i ≤ m, is a Boolean type attribute indicating whether or not a tuple
belongs to subclass Si. This option is used for a specialization whose sub-
classes are overlapping (but will also work for a disjoint specialization).

Options 8A and 8B are the multiple-relation options, whereas options 8C and 8D are
the single-relation options. Option 8A creates a relation L for the superclass C and its
attributes, plus a relation Li for each subclass Si; each Li includes the specific (local)
attributes of Si, plus the primary key of the superclass C, which is propagated to Li and
becomes its primary key. It also becomes a foreign key to the superclass relation. An
EQUIJOIN operation on the primary key between any Li and L produces all the specific
and inherited attributes of the entities in Si. This option is illustrated in Figure 9.5(a)
for the EER schema in Figure 4.4. Option 8A works for any constraints on the special-
ization: disjoint or overlapping, total or partial. Notice that the constraint

π<k>(Li) ⊆ π<k>(L)

must hold for each Li. This specifies a foreign key from each Li to L.

In option 8B, the EQUIJOIN operation between each subclass and the superclass is
built into the schema and the superclass relation L is done away with, as illustrated
in Figure 9.5(b) for the EER specialization in Figure 4.3(b). This option works well
only when both the disjoint and total constraints hold. If the specialization is not
total, an entity that does not belong to any of the subclasses Si is lost. If the special-
ization is not disjoint, an entity belonging to more than one subclass will have its

300 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

inherited attributes from the superclass C stored redundantly in more than one table Li.
With option 8B, no relation holds all the entities in the superclass C; consequently, we
must apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to the Li
relations to retrieve all the entities in C. The result of the outer union will be similar to
the relations under options 8C and 8D except that the type fields will be missing. When-
ever we search for an arbitrary entity in C, we must search all the m relations Li.

Options 8C and 8D create a single relation to represent the superclass C and all its
subclasses. An entity that does not belong to some of the subclasses will have NULL
values for the specific (local) attributes of these subclasses. These options are not
recommended if many specific attributes are defined for the subclasses. If few local
subclass attributes exist, however, these mappings are preferable to options 8A
and 8B because they do away with the need to specify JOIN operations; therefore,
they can yield a more efficient implementation for queries.

Option 8C is used to handle disjoint subclasses by including a single type (or image
or discriminating) attribute t to indicate to which of the m subclasses each tuple
belongs; hence, the domain of t could be {1, 2, … , m}. If the specialization is partial, t
can have NULL values in tuples that do not belong to any subclass. If the specialization
is attribute-defined, that attribute itself serves the purpose of t and t is not needed; this
option is illustrated in Figure 9.5(c) for the EER specialization in Figure 4.4.

Option 8D is designed to handle overlapping subclasses by including m Boolean
type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses.

SECRETARY

Typing_speed

TECHNICIAN

Tgrade

ENGINEER

Eng_type

CAR

License_plate_no Price Max_speed No_of_passengers

TRUCK

License_plate_no Price No_of_axles Tonnage

EMPLOYEE

Ssn Fname Minit Lname Birth_date Address Typing_speed Tgrade Eng_typeJob_type

PART

Description Mflag Drawing_no Batch_no Pflag List_priceSupplier_nameManufacture_date

Fname Minit Lname Birth_date Address Job_type

EMPLOYEE(a)

(b)

(c)

(d)

Ssn

Ssn Ssn Ssn

Vehicle_id

Vehicle_id

Part_no

Figure 9.5
Options for mapping specialization or generalization. (a) Mapping the EER schema in Figure 4.4 using option 8A.
(b) Mapping the EER schema in Figure 4.3(b) using option 8B. (c) Mapping the EER schema in Figure 4.4 using
option 8C. (d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.

 9.2 Mapping EER Model Constructs to Relations 301

Each type field ti can have a domain {yes, no}, where a value of yes indicates that the
tuple is a member of subclass Si. If we use this option for the EER specialization in
Figure 4.4, we would include three type attributes—Is_a_secretary, Is_a_engineer, and
Is_a_technician—instead of the Job_type attribute in Figure 9.5(c). Figure 9.5(d)
shows the mapping of the specialization from Figure 4.5 using option 8D.

For a multilevel specialization (or generalization) hierarchy or lattice, we do not have
to follow the same mapping option for all the specializations. Instead, we can use one
mapping option for part of the hierarchy or lattice and other options for other parts.
Figure 9.6 shows one possible mapping into relations for the EER lattice in Figure 4.6.
Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS, STUDENT}, and option
8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT} by including the
type attribute Employee_type. We then used the single-table option 8D for
STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT} by including
the type attributes Ta_flag and Ra_flag in EMPLOYEE. We also used option 8D for
STUDENT/STUDENT_ASSISTANT by including the type attributes Student_assist_flag
in STUDENT, and for STUDENT/{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}
by including the type attributes Grad_flag and Undergrad_flag in STUDENT. In Figure 9.6,
all attributes whose names end with type or flag are type fields.

9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)
A shared subclass, such as ENGINEERING_MANAGER in Figure 4.6, is a subclass of
several superclasses, indicating multiple inheritance. These classes must all have the
same key attribute; otherwise, the shared subclass would be modeled as a category
(union type) as we discussed in Section 4.4. We can apply any of the options dis-
cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 of
the mapping algorithm. In Figure 9.6, options 8C and 8D are used for the shared
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation
(Employee_type attribute) and option 8D is used in the STUDENT relation
(Student_assist_flag attribute).

EMPLOYEE

Salary Employee_type Position Rank Percent_time Ra_flag Ta_flag Project Course

STUDENT

Major_dept Grad_flag Undergrad_flag Degree_program Class Student_assist_flag

Name Birth_date Sex Address

PERSON

Ssn

ALUMNUS ALUMNUS_DEGREES

Year MajorSsn

Ssn

Ssn

Ssn Degree

Figure 9.6
Mapping the EER specialization
lattice in Figure 4.8 using
multiple options.

302 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

9.2.3 Mapping of Categories (Union Types)
We add another step to the mapping procedure—step 9—to handle categories. A
category (or union type) is a subclass of the union of two or more superclasses
that can have different keys because they can be of different entity types (see Sec-
tion 4.4). An example is the OWNER category shown in Figure 4.8, which is a
subset of the union of three entity types PERSON, BANK, and COMPANY. The
other category in that figure, REGISTERED_VEHICLE, has two superclasses that
have the same key attribute.

Step 9: Mapping of Union Types (Categories). For mapping a category whose
defining superclasses have different keys, it is customary to specify a new key attri-
bute, called a surrogate key, when creating a relation to correspond to the union
type. The keys of the defining classes are different, so we cannot use any one of
them exclusively to identify all entities in the relation. In our example in Figure 4.8,
we create a relation OWNER to correspond to the OWNER category, as illustrated in
Figure 9.7, and include any attributes of the category in this relation. The primary
key of the OWNER relation is the surrogate key, which we called Owner_id. We also

Driver_license_no Name Address Owner_id

PERSON

Ssn

BANK

Baddress Owner_idBname

COMPANY

Caddress Owner_idCname

OWNER

Owner_id

REGISTERED_VEHICLE

License_plate_number Vehicle_id

CAR

Cstyle Cmake Cmodel CyearVehicle_id

TRUCK

Tmake Tmodel Tonnage TyearVehicle_id

OWNS

Purchase_date Lien_or_regularOwner_id Vehicle_id

Figure 9.7
Mapping the EER categories
(union types) in Figure 4.8 to
relations.

 Exercises 303

include the surrogate key attribute Owner_id as foreign key in each relation corre-
sponding to a superclass of the category, to specify the correspondence in values
between the surrogate key and the original key of each superclass. Notice that if a
particular PERSON (or BANK or COMPANY) entity is not a member of OWNER, it
would have a NULL value for its Owner_id attribute in its corresponding tuple in the
PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the
OWNER relation. It is also recommended to add a type attribute (not shown in Fig-
ure 9.7) to the OWNER relation to indicate the particular entity type to which each
tuple belongs (PERSON or BANK or COMPANY).

For a category whose superclasses have the same key, such as VEHICLE in Figure 4.8,
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE
category, which illustrates this case, is also shown in Figure 9.7.

9.3 Summary
In Section 9.1, we showed how a conceptual schema design in the ER model can
be mapped to a relational database schema. An algorithm for ER-to-relational
mapping was given and illustrated by examples from the COMPANY database.
Table 9.1 summarized the correspondences between the ER and relational
model constructs and constraints. Next, we added additional steps to the algo-
rithm in Section 9.2 for mapping the constructs from the EER model into the
relational model. Similar algorithms are incorporated into graphical database
design tools to create a relational schema from a conceptual schema design
automatically.

Review Questions
 9.1. (a) Discuss the correspondences between the ER model constructs and the

relational model constructs. Show how each ER model construct can be
mapped to the relational model and discuss any alternative mappings.
(b) Discuss the options for mapping EER model constructs to relations, and
the conditions under which each option could be used.

Exercises
 9.2. Map the UNIVERSITY database schema shown in Figure 3.20 into a rela-

tional database schema.

 9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is
part of a process known as reverse engineering, where a conceptual schema
is created for an existing implemented database. State any assumptions
you make.

304 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 9.4. Figure 9.8 shows an ER schema for a database that can be used to keep track of
transport ships and their locations for maritime authorities. Map this schema
into a relational schema and specify all primary keys and foreign keys.

 9.5. Map the BANK ER schema of Exercise 3.23 (shown in Figure 3.21) into a
relational schema. Specify all primary keys and foreign keys. Repeat for the
AIRLINE schema (Figure 3.20) of Exercise 3.19 and for the other schemas for
Exercises 3.16 through 3.24.

 9.6. Map the EER diagrams in Figures 4.9 and 4.12 into relational schemas.
Justify your choice of mapping options.

 9.7. Is it possible to successfully map a binary M:N relationship type without
requiring a new relation? Why or why not?

Time_stamp

Longitude

Latitude

Time

Sname

Owner

Date

Tonnage

Name

Name

Start_date End_date

HullType1

N

1

N

N 1

N 1

(0,*)

(0,*)

1

(1,1)

N

SHIP_MOVEMENT

HISTORY

SHIP TYPE SHIP_TYPE

HOME_PORT

PORT

PORT_VISIT

STATE/COUNTRY

SEA/OCEAN/LAKE

SHIP_AT
_PORT

Pname

Continent

IN

ON

Figure 9.8
An ER schema for a SHIP_TRACKING database.

 Laboratory Exercises 305

 9.8. Consider the EER diagram in Figure 9.9 for a car dealer.

 Map the EER schema into a set of relations. For the VEHICLE to CAR/TRUCK/SUV
generalization, consider the four options presented in Section 9.2.1 and show
the relational schema design under each of those options.

 9.9. Using the attributes you provided for the EER diagram in Exercise 4.27, map
the complete schema into a set of relations. Choose an appropriate option
out of 8A thru 8D from Section 9.2.1 in doing the mapping of generaliza-
tions and defend your choice.

Laboratory Exercises
 9.10. Consider the ER design for the UNIVERSITY database that was modeled using

a tool like ERwin or Rational Rose in Laboratory Exercise 3.31. Using the
SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

 9.11. Consider the ER design for the MAIL_ORDER database that was modeled
using a tool like ERwin or Rational Rose in Laboratory Exercise 3.32. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

 9.12. Consider the ER design for the CONFERENCE_REVIEW database that was
modeled using a tool like ERwin or Rational Rose in Laboratory Exer-
cise 3.34. Using the SQL schema generation feature of the modeling tool,
generate the SQL schema for an Oracle database.

Name Name

Model

VEHICLE

Price

Date

Engine_size

Tonnage

No_seats

CAR

TRUCK

SUV

d

SALESPERSON CUSTOMER

Vin

Sid Ssn State

Address City

Street

SALE

1 1

N

Figure 9.9
EER diagram for
a car dealer.

306 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 9.13. Consider the EER design for the GRADE_BOOK database that was modeled
using a tool like ERwin or Rational Rose in Laboratory Exercise 4.28. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

 9.14. Consider the EER design for the ONLINE_AUCTION database that was mod-
eled using a tool like ERwin or Rational Rose in Laboratory Exercise 4.29.
Using the SQL schema generation feature of the modeling tool, generate the
SQL schema for an Oracle database.

Selected Bibliography
The original ER-to-relational mapping algorithm was described in Chen’s classic
paper (Chen, 1976). Batini et al. (1992) discuss a variety of mapping algorithms
from ER and EER models to legacy models and vice versa.

Database Programming
Techniques

part 4

This page intentionally left blank

309

10
Introduction to SQL

Programming Techniques

In Chapters 6 and 7, we described several aspects of the
SQL language, which is the standard for relational

databases. We described the SQL statements for data definition, schema modifica-
tion, queries, views, and updates. We also described how various constraints on the
database contents, such as key and referential integrity constraints, are specified.

In this chapter and the next, we discuss some of the methods that have been devel-
oped for accessing databases from programs. Most database access in practical
applications is accomplished through software programs that implement database
applications. This software is usually developed in a general-purpose program-
ming language such as Java, C/C++/C#, COBOL (historically), or some other pro-
gramming language. In addition, many scripting languages, such as PHP, Python,
and JavaScript, are also being used for programming of database access within Web
applications. In this chapter, we focus on how databases can be accessed from the
traditional programming languages C/C++ and Java, whereas in the next chapter
we introduce how databases are accessed from scripting languages such as PHP.
Recall from Section 2.3.1 that when database statements are included in a program,
the general-purpose programming language is called the host language, whereas the
database language—SQL, in our case—is called the data sublanguage. In some
cases, special database programming languages are developed specifically for writ-
ing database applications. Although many of these were developed as research pro-
totypes, some notable database programming languages have widespread use, such
as Oracle’s PL/SQL (Programming Language/SQL).

It is important to note that database programming is a very broad topic. There are
whole textbooks devoted to each database programming technique and how that
technique is realized in a specific system. New techniques are developed all the

chapter 10

310 Chapter 10 Introduction to SQL Programming Techniques

time, and changes to existing techniques are incorporated into newer system ver-
sions and languages. An additional difficulty in presenting this topic is that although
there are SQL standards, these standards themselves are continually evolving, and
each DBMS vendor may have some variations from the standard. Because of this,
we have chosen to give an introduction to some of the main types of database pro-
gramming techniques and to compare these techniques, rather than study one par-
ticular method or system in detail. The examples we give serve to illustrate the main
differences that a programmer would face when using each of these database pro-
gramming techniques. We will try to use the SQL standards in our examples rather
than describe a specific system. When using a specific system, the materials in this
chapter can serve as an introduction, but should be augmented with the system
manuals or with books describing the specific system.

We start our presentation of database programming in Section 10.1 with an over-
view of the different techniques developed for accessing a database from programs.
Then, in Section 10.2, we discuss the rules for embedding SQL statements into a
general-purpose programming language, generally known as embedded SQL. This
section also briefly discusses dynamic SQL, in which queries can be dynamically
constructed at runtime, and presents the basics of the SQLJ variation of embedded
SQL that was developed specifically for the programming language Java. In Sec-
tion 10.3, we discuss the technique known as SQL/CLI (Call Level Interface), in which
a library of procedures and functions is provided for accessing the database. Various
sets of library functions have been proposed. The SQL/CLI set of functions is the
one given in the SQL standard. Another widely used library of functions is ODBC
(Open Data Base Connectivity), which has many similarities to SQL/CLI; in fact,
SQL/CLI can be thought of as the standardized version of ODBC. A third library of
classes—which we do describe—is JDBC; this was developed specifically for access-
ing databases from the Java object-oriented programming language (OOPL). In
OOPL, a library of classes is used instead of a library of functions and procedures,
and each class has its own operations and functions. In Section 10.4 we discuss
SQL/PSM (Persistent Stored Modules), which is a part of the SQL standard that
allows program modules—procedures and functions—to be stored by the DBMS
and accessed through SQL; this also specifies a procedural database programming
language for writing the persistent stored modules. We briefly compare the three
approaches to database programming in Section 10.5, and provide a chapter sum-
mary in Section 10.6.

10.1 Overview of Database Programming
Techniques and Issues

We now turn our attention to the techniques that have been developed for access-
ing databases from programs and, in particular, to the issue of how to access SQL
databases from application programs. Our presentation of SQL in Chapters 6 and 7
focused on the language constructs for various database operations—from schema
definition and constraint specification to querying, updating, and specifying views.

 10.1 Overview of Database Programming Techniques and Issues 311

Most database systems have an interactive interface where these SQL commands
can be typed directly into a monitor for execution by the database system.
For example, in a computer system where the Oracle RDBMS is installed, the com-
mand SQLPLUS starts the interactive interface. The user can type SQL commands
or queries directly over several lines, ended by a semicolon and the Enter key (that
is, ";<cr>"). Alternatively, a file of commands can be created and executed
through the interactive interface by typing @<filename>. The system will execute
the commands written in the file and display the results, if any.

The interactive interface is quite convenient for schema and constraint creation or
for occasional ad hoc queries. However, in practice, the majority of database inter-
actions are executed through programs that have been carefully designed and
tested. These programs are generally known as application programs or database
applications, and are used as canned transactions by the end users, as discussed in
Section 1.4.3. Another common use of database programming is to access a data-
base through an application program that implements a Web interface, for exam-
ple, when making airline reservations or online purchases. In fact, the vast majority
of Web electronic commerce applications include some database access commands.
Chapter 11 gives an overview of Web database programming using PHP, a script-
ing language that has recently become widely used.

In this section, first we give an overview of the main approaches to database pro-
gramming. Then we discuss some of the problems that occur when trying to access
a database from a general-purpose programming language, and the typical sequence
of commands for interacting with a database from a software program.

10.1.1 Approaches to Database Programming
Several techniques exist for including database interactions in application pro-
grams. The main approaches for database programming are the following:

 1. Embedding database commands in a general-purpose programming
language. In this approach, database statements are embedded into the host
programming language, but they are identified by a special prefix. For
example, the prefix for embedded SQL is the string EXEC SQL, which pre-
cedes all SQL commands in a host language program.1 A precompiler or
preproccessor scans the source program code to identify database state-
ments and extract them for processing by the DBMS. They are replaced in
the program by function calls to the DBMS-generated code. This technique
is generally referred to as embedded SQL.

 2. Using a library of database functions or classes. A library of functions is
made available to the host programming language for database calls. For
example, there could be functions to connect to a database, prepare a query,
execute a query, execute an update, loop over the query result on record at a
time, and so on. The actual database query and update commands and any

1Other prefixes are sometimes used, but this is the most common.

312 Chapter 10 Introduction to SQL Programming Techniques

other necessary information are included as parameters in the function calls.
This approach provides what is known as an application programming
interface (API) for accessing a database from application programs. For
object-oriented programming languages (OOPLs), a class library is used.
For example, Java has the JDBC class library, which can generate various
types of objects such as: connection objects to a particular database, query
objects, and query result objects. Each type of object has a set of operations
associated with the class corresponding to the object.

 3. Designing a brand-new language. A database programming language is
designed from scratch to be compatible with the database model and query
language. Additional programming structures such as loops and conditional
statements are added to the database language to convert it into a full-fledged
programming language. An example of this approach is Oracle’s PL/SQL. The
SQL standard has the SQL/PSM language for specifying stored procedures.

In practice, the first two approaches are more common, since many applications
are already written in general-purpose programming languages but require some
database access. The third approach is more appropriate for applications that have
intensive database interaction. One of the main problems with the first two
approaches is impedance mismatch, which does not occur in the third approach.

10.1.2 Impedance Mismatch
Impedance mismatch is the term used to refer to the problems that occur because
of differences between the database model and the programming language model.
For example, the practical relational model has three main constructs: columns
(attributes) and their data types, rows (also referred to as tuples or records), and
tables (sets or multisets of records). The first problem that may occur is that the
data types of the programming language differ from the attribute data types that are
available in the data model. Hence, it is necessary to have a binding for each host
programming language that specifies for each attribute type the compatible pro-
gramming language types. A different binding is needed for each programming lan-
guage because different languages have different data types. For example, the data
types available in C/C++ and Java are different, and both differ from the SQL data
types, which are the standard data types for relational databases.

Another problem occurs because the results of most queries are sets or multisets of
tuples (rows), and each tuple is formed of a sequence of attribute values. In the pro-
gram, it is often necessary to access the individual data values within individual
tuples for printing or processing. Hence, a binding is needed to map the query result
data structure, which is a table, to an appropriate data structure in the program-
ming language. A mechanism is needed to loop over the tuples in a query result in
order to access a single tuple at a time and to extract individual values from the
tuple. The extracted attribute values are typically copied to appropriate program
variables for further processing by the program. A cursor or iterator variable is
typically used to loop over the tuples in a query result. Individual values within each
tuple are then extracted into distinct program variables of the appropriate type.

 10.1 Overview of Database Programming Techniques and Issues 313

Impedance mismatch is less of a problem when a special database programming
language is designed that uses the same data model and data types as the database
model. One example of such a language is Oracle’s PL/SQL. The SQL standard also
has a proposal for such a database programming language, known as SQL/PSM. For
object databases, the object data model (see Chapter 12) is quite similar to the data
model of the Java programming language, so the impedance mismatch is greatly
reduced when Java is used as the host language for accessing a Java-compatible
object database. Several database programming languages have been implemented
as research prototypes (see the Selected Bibliography).

10.1.3 Typical Sequence of Interaction
in Database Programming

When a programmer or software engineer writes a program that requires access to
a database, it is quite common for the program to be running on one computer
system while the database is installed on another. Recall from Section 2.5 that a
common architecture for database access is the three-tier client/server model,
where a top-tier client program handles display of information on a laptop or
mobile device usually as a Web client or mobile app, a middle-tier application
program implements the logic of a business software application but includes some
calls to one or more database servers at the bottom tier to access or update the
data.2 When writing such an application program, a common sequence of interac-
tion is the following:

 1. When the application program requires access to a particular database, the
program must first establish or open a connection to the database server.
Typically, this involves specifying the Internet address (URL) of the machine
where the database server is located, plus providing a login account name
and password for database access.

 2. Once the connection is established, the program can interact with the database
by submitting queries, updates, and other database commands. In general,
most types of SQL statements can be included in an application program.

 3. When the program no longer needs access to a particular database, it should
terminate or close the connection to the database.

A program can access multiple databases if needed. In some database programming
approaches, only one connection can be active at a time, whereas in other
approaches multiple connections can be established simultaneously.

In the next three sections, we discuss examples of each of the three main approaches
to database programming. Section 10.2 describes how SQL is embedded into a pro-
gramming language. Section 10.3 discusses how function calls and class libraries are
used to access the database using SQL/CLI (similar to ODBC) and JDBC, and Sec-
tion 10.4 discusses an extension to SQL called SQL/PSM that allows general-purpose

2As we discussed in Section 2.5, there are two-tier and three-tier architectures; to keep our discussion
simple, we will assume a two-tier client/server architecture here.

314 Chapter 10 Introduction to SQL Programming Techniques

programming constructs for defining modules (procedures and functions) that are
stored within the database system.3 Section 10.5 compares these approaches.

10.2 Embedded SQL, Dynamic SQL, and SQL J
In this section, we give an overview of the techniques for embedding SQL state-
ments in a general-purpose programming language. We focus on two languages: C
and Java. The examples used with the C language, known as embedded SQL, are
presented in Sections 10.2.1 through 10.2.3, and can be adapted to other similar
programming languages. The examples using Java, known as SQLJ, are presented
in Sections 10.2.4 and 10.2.5. In this embedded approach, the programming lan-
guage is called the host language. Most SQL statements—including data or con-
straint definitions, queries, updates, or view definitions—can be embedded in a
host language program.

10.2.1 Retrieving Single Tuples with Embedded SQL
To illustrate the concepts of embedded SQL, we will use C as the host programming
language.4 In a C program, an embedded SQL statement is distinguished from pro-
gramming language statements by prefixing it with the keywords EXEC SQL so that
a preprocessor (or precompiler) can separate embedded SQL statements from the
host language source code. The SQL statements within a program are terminated
by a matching END-EXEC or by a semicolon (;). Similar rules apply to embedding
SQL in other programming languages.

Within an embedded SQL command, the programmer can refer to specially
declared C program variables; these are called shared variables because they are
used in both the C program and the embedded SQL statements. Shared variables
are prefixed by a colon (:) when they appear in an SQL statement. This distin-
guishes program variable names from the names of database schema constructs
such as attributes (column names) and relations (table names). It also allows pro-
gram variables to have the same names as attribute names, since they are distin-
guishable by the colon (:) prefix in the SQL statement. Names of database schema
constructs—such as attributes and relations—can only be used within the SQL
commands, but shared program variables can be used elsewhere in the C program
without the colon (:) prefix.

Suppose that we want to write C programs to process the COMPANY database in
Figure 5.5. We need to declare program variables to match the types of the database
attributes that the program will process. The programmer can choose the names of
the program variables; they may or may not have names that are identical to their

3SQL/PSM illustrates how typical general-purpose programming language constructs—such as loops
and conditional structures—can be incorporated into SQL.
4Our discussion here also applies to the C++ or C# programming languages, since we do not use any
of the object-oriented features, but focus on the database programming mechanism.

 10.2 Embedded SQL, Dynamic SQL, and SQL J 315

corresponding database attributes. We will use the C program variables declared
in Figure 10.1 for all our examples and show C program segments without vari-
able declarations. Shared variables are declared within a declare section in the
program, as shown in Figure 10.1 (lines 1 through 7).5 A few of the common
bindings of C types to SQL types are as follows. The SQL types INTEGER, SMALLINT,
REAL, and DOUBLE are mapped to the C data types long, short, float, and
double, respectively. Fixed-length and varying-length strings (CHAR [i],
VARCHAR [i]) in SQL can be mapped to arrays of characters (char [i+1],
varchar [i+1]) in C that are one character longer than the SQL type because
strings in C are terminated by a NULL character (\0), which is not part of the
character string itself.6 Although varchar is not a standard C data type, it is per-
mitted when C is used for SQL database programming.

Notice that the only embedded SQL commands in Figure 10.1 are lines 1 and 7,
which tell the precompiler to take note of the C variable names between BEGIN
DECLARE and END DECLARE because they can be included in embedded SQL state-
ments—as long as they are preceded by a colon (:). Lines 2 through 5 are regular C
program declarations. The C program variables declared in lines 2 through 5 cor-
respond to the attributes of the EMPLOYEE and DEPARTMENT tables from the
COMPANY database in Figure 5.5 that was declared by the SQL DDL in Figure 6.1.
The variables declared in line 6—SQLCODE and SQLSTATE—are called SQL
communication variables; they are used to communicate errors and exception
conditions between the database system and the executing program. Line 0 shows a
program variable loop that will not be used in any embedded SQL statement, so it is
declared outside the SQL declare section.

Connecting to the Database. The SQL command for establishing a connection
to a database has the following form:

CONNECT TO <server name>AS <connection name>
AUTHORIZATION <user account name and password> ;

In general, since a user or program can access several database servers, several con-
nections can be established, but only one connection can be active at any point in

5We use line numbers in our code segments for easy reference; these numbers are not part of the
actual code.
6SQL strings can also be mapped to char* types in C.

0) int loop ;
1) EXEC SQL BEGIN DECLARE SECTION ;
2) varchar dname [16], fname [16], lname [16], address [31] ;
3) char ssn [10], bdate [11], sex [2], minit [2] ;
4) float salary, raise ;
5) int dno, dnumber ;
6) int SQLCODE ; char SQLSTATE [6] ;
7) EXEC SQL END DECLARE SECTION ;

Figure 10.1
C program variables used in the
embedded SQL examples E1 and E2.

316 Chapter 10 Introduction to SQL Programming Techniques

time. The programmer or user can use the <connection name> to change from the
currently active connection to a different one by using the following command:

SET CONNECTION <connection name> ;

Once a connection is no longer needed, it can be terminated by the following
command:

DISCONNECT <connection name> ;

In the examples in this chapter, we assume that the appropriate connection has
already been established to the COMPANY database, and that it is the currently
active connection.

Communication variables SQLCODE and SQLSTATE. The two special
communication variables that are used by the DBMS to communicate exception
or error conditions to the program are SQLCODE and SQLSTATE. The SQLCODE
variable shown in Figure 10.1 is an integer variable. After each database command
is executed, the DBMS returns a value in SQLCODE. A value of 0 indicates that the
statement was executed successfully by the DBMS. If SQLCODE > 0 (or, more spe-
cifically, if SQLCODE = 100), this indicates that no more data (records) are available
in a query result. If SQLCODE < 0, this indicates some error has occurred. In some
systems—for example, in the Oracle RDBMS—SQLCODE is a field in a record
structure called SQLCA (SQL communication area), so it is referenced as
SQLCA.SQLCODE. In this case, the definition of SQLCA must be included in the C
program by including the following line:

EXEC SQL include SQLCA ;

In later versions of the SQL standard, a communication variable called SQLSTATE
was added, which is a string of five characters. A value of ‘00000’ in SQLSTATE indi-
cates no error or exception; other values indicate various errors or exceptions. For
example, ‘02000’ indicates ‘no more data’ when using SQLSTATE. Currently, both
SQLSTATE and SQLCODE are available in the SQL standard. Many of the error and
exception codes returned in SQLSTATE are supposed to be standardized for all SQL
vendors and platforms,7 whereas the codes returned in SQLCODE are not stan-
dardized but are defined by the DBMS vendor. Hence, it is generally better to use
SQLSTATE because this makes error handling in the application programs indepen-
dent of a particular DBMS. As an exercise, the reader should rewrite the examples
given later in this chapter using SQLSTATE instead of SQLCODE.

Example of Embedded SQL Programming. Our first example to illustrate
embedded SQL programming is a repeating program segment (loop) that takes as
input a Social Security number of an employee and prints some information from
the corresponding EMPLOYEE record in the database. The C program code is shown
as program segment E1 in Figure 10.2. The program reads (inputs) an Ssn value

7In particular, SQLSTATE codes starting with the characters 0 through 4 or A through H are supposed to
be standardized, whereas other values can be implementation-defined.

 10.2 Embedded SQL, Dynamic SQL, and SQL J 317

and then retrieves the EMPLOYEE tuple with that Ssn from the database via the
embedded SQL command. The INTO clause (line 5) specifies the program vari-
ables into which attribute values from the database record are retrieved. C program
variables in the INTO clause are prefixed with a colon (:), as we discussed earlier.
The INTO clause can be used in this manner only when the query result is a single
record; if multiple records are retrieved, an error will be generated. We will see how
multiple records are handled in Section 10.2.2.

Line 7 in E1 illustrates the communication between the database and the program
through the special variable SQLCODE. If the value returned by the DBMS in
SQLCODE is 0, the previous statement was executed without errors or exception
conditions. Line 7 checks this and assumes that if an error occurred, it was because
no EMPLOYEE tuple existed with the given Ssn; therefore it outputs a message to
that effect (line 8).

When a single record is retrieved as in example E1, the programmer can assign its
attribute values directly to C program variables in the INTO clause, as in line 5. In
general, an SQL query can retrieve many tuples. In that case, the C program will
typically loop through the retrieved tuples and process them one at a time. The con-
cept of a cursor is used to allow tuple-at-a-time processing of a query result by the
host language program. We describe cursors next.

10.2.2 Processing Query Results Using Cursors
A cursor is a variable that refers to a single tuple (row) from a query result that
retrieves a collection of tuples. It is used to loop over the query result, one record at
a time. The cursor is declared when the SQL query is declared. Later in the pro-
gram, an OPEN CURSOR command fetches the query result from the database and
sets the cursor to a position before the first row in the result of the query. This
becomes the current row for the cursor. Subsequently, FETCH commands are
issued in the program; each FETCH moves the cursor to the next row in the result of
the query, making it the current row and copying its attribute values into the C
(host language) program variables specified in the FETCH command by an INTO

 //Program Segment E1:
0) loop = 1 ;
1) while (loop) {
2) prompt("Enter a Social Security Number: ", ssn) ;
3) EXEC SQL
4) SELECT Fname, Minit, Lname, Address, Salary
5) INTO :fname, :minit, :lname, :address, :salary
6) FROM EMPLOYEE WHERE Ssn = :ssn ;
7) if (SQLCODE = = 0) printf(fname, minit, lname, address, salary)
8) else printf("Social Security Number does not exist: ", ssn) ;
9) prompt("More Social Security Numbers (enter 1 for Yes, 0 for No): ", loop) ;
10) }

Figure 10.2
Program segment E1,
a C program segment
with embedded SQL.

318 Chapter 10 Introduction to SQL Programming Techniques

clause. The cursor variable is basically an iterator that iterates (loops) over the
tuples in the query result—one tuple at a time.

To determine when all the tuples in the result of the query have been processed, the
communication variable SQLCODE (or, alternatively, SQLSTATE) is checked. If a
FETCH command is issued that results in moving the cursor past the last tuple in the
result of the query, a positive value (SQLCODE > 0) is returned in SQLCODE,
indicating that no data (tuple) was found (or the string ‘02000’ is returned in
SQLSTATE). The programmer uses this to terminate the loop over the tuples in the
query result. In general, numerous cursors can be opened at the same time. A
CLOSE CURSOR command is issued to indicate that we are done with processing
the result of the query associated with that cursor.

An example of using cursors to process a query result with multiple records is shown
in Figure 10.3, where a cursor called EMP is declared in line 4. The EMP cursor
is associated with the SQL query declared in lines 5 through 6, but the query
is not executed until the OPEN EMP command (line 8) is processed. The
OPEN <cursor name> command executes the query and fetches its result as a table
into the program workspace, where the program can loop through the individual
rows (tuples) by subsequent FETCH <cursor name> commands (line 9). We assume

 //Program Segment E2:
 0) prompt("Enter the Department Name: ", dname) ;
 1) EXEC SQL
 2) SELECT Dnumber INTO :dnumber
 3) FROM DEPARTMENT WHERE Dname = :dname ;
 4) EXEC SQL DECLARE EMP CURSOR FOR
 5) SELECT Ssn, Fname, Minit, Lname, Salary
 6) FROM EMPLOYEE WHERE Dno = :dnumber
 7) FOR UPDATE OF Salary ;
 8) EXEC SQL OPEN EMP ;
 9) EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
10) while (SQLCODE = = 0) {
11) printf("Employee name is:", Fname, Minit, Lname) ;
12) prompt("Enter the raise amount: ", raise) ;
13) EXEC SQL
14) UPDATE EMPLOYEE
15) SET Salary = Salary + :raise
16) WHERE CURRENT OF EMP ;
17) EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
18) }
19) EXEC SQL CLOSE EMP ;

Figure 10.3
Program segment E2, a C program segment that uses
cursors with embedded SQL for update purposes.

 10.2 Embedded SQL, Dynamic SQL, and SQL J 319

that appropriate C program variables have been declared as in Figure 10.1. The pro-
gram segment in E2 reads (inputs) a department name (line 0), retrieves the
matching department number from the database (lines 1 to 3), and then retrieves
the employees who work in that department via the declared EMP cursor. A loop
(lines 10 to 18) iterates over each record in the query result, one at a time, and
prints the employee name, then reads (inputs) a raise amount for that employee
(line 12) and updates the employee’s salary in the database by the raise amount
(lines 14 to 16).

This example also illustrates how the programmer can update database records.
When a cursor is defined for rows that are to be modified (updated), we must add
the clause FOR UPDATE OF in the cursor declaration and list the names of any attri-
butes that will be updated by the program. This is illustrated in line 7 of code seg-
ment E2. If rows are to be deleted, the keywords FOR UPDATE must be added
without specifying any attributes. In the embedded UPDATE (or DELETE) command,
the condition WHERE CURRENT OF <cursor name> specifies that the current tuple
referenced by the cursor is the one to be updated (or deleted), as in line 16 of E2.

There is no need to include the FOR UPDATE OF clause in line 7 of E2 if the results
of the query are to be used for retrieval purposes only (no update or delete).

General Options for a Cursor Declaration. Several options can be specified
when declaring a cursor. The general form of a cursor declaration is as follows:

DECLARE <cursor name> [INSENSITIVE] [SCROLL] CURSOR
[WITH HOLD] FOR <query specification>
[ORDER BY <ordering specification>]
[FOR READ ONLY | FOR UPDATE [OF <attribute list>]] ;

We already briefly discussed the options listed in the last line. The default is that the
query is for retrieval purposes (FOR READ ONLY). If some of the tuples in the query
result are to be updated, we need to specify FOR UPDATE OF <attribute list> and list
the attributes that may be updated. If some tuples are to be deleted, we need to
specify FOR UPDATE without any attributes listed.

When the optional keyword SCROLL is specified in a cursor declaration, it is pos-
sible to position the cursor in other ways than for purely sequential access. A fetch
orientation can be added to the FETCH command, whose value can be one of NEXT,
PRIOR, FIRST, LAST, ABSOLUTE i, and RELATIVE i. In the latter two commands, i
must evaluate to an integer value that specifies an absolute tuple position within the
query result (for ABSOLUTE i), or a tuple position relative to the current cursor
position (for RELATIVE i). The default fetch orientation, which we used in our
examples, is NEXT. The fetch orientation allows the programmer to move the cursor
around the tuples in the query result with greater flexibility, providing random
access by position or access in reverse order. When SCROLL is specified on the cur-
sor, the general form of a FETCH command is as follows, with the parts in square
brackets being optional:

FETCH [[<fetch orientation>] FROM] <cursor name> INTO <fetch target list>;

320 Chapter 10 Introduction to SQL Programming Techniques

The ORDER BY clause orders the tuples so that the FETCH command will fetch them
in the specified order. It is specified in a similar manner to the corresponding clause
for SQL queries (see Section 6.3.6). The last two options when declaring a cursor
(INSENSITIVE and WITH HOLD) refer to transaction characteristics of database pro-
grams, which we will discuss in Chapter 20.

10.2.3 Specifying Queries at Runtime Using Dynamic SQL
In the previous examples, the embedded SQL queries were written as part of the
host program source code. Hence, anytime we want to write a different query, we
must modify the program code and go through all the steps involved (compiling,
debugging, testing, and so on). In some cases, it is convenient to write a program
that can execute different SQL queries or updates (or other operations) dynamically
at runtime. For example, we may want to write a program that accepts an SQL
query typed from the monitor, executes it, and displays its result, such as the inter-
active interfaces available for most relational DBMSs. Another example is when a
user-friendly interface generates SQL queries dynamically for the user based on
user input through a Web interface or mobile App. In this section, we give a brief
overview of dynamic SQL, which is one technique for writing this type of database
program, by giving a simple example to illustrate how dynamic SQL can work. In
Section 10.3, we will describe another approach for dealing with dynamic queries
using function libraries or class libraries.

Program segment E3 in Figure 10.4 reads a string that is input by the user (that
string should be an SQL update command in this example) into the string program
variable sqlupdatestring in line 3. It then prepares this as an SQL command in
line 4 by associating it with the SQL variable sqlcommand. Line 5 then executes
the command. Notice that in this case no syntax check or other types of checks
on the command are possible at compile time, since the SQL command is not
available until runtime. This contrasts with our previous examples of embedded
SQL, where the query could be checked at compile time because its text was in
the program source code.

In E3, the reason for separating PREPARE and EXECUTE is that if the command is to
be executed multiple times in a program, it can be prepared only once. Preparing
the command generally involves syntax and other types of checks by the system, as

 //Program Segment E3:
0) EXEC SQL BEGIN DECLARE SECTION ;
1) varchar sqlupdatestring [256] ;
2) EXEC SQL END DECLARE SECTION ;
 ...
3) prompt("Enter the Update Command: ", sqlupdatestring) ;
4) EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring ;
5) EXEC SQL EXECUTE sqlcommand ;
 ...

Figure 10.4
Program segment E3, a C program segment
that uses dynamic SQL for updating a table.

 10.2 Embedded SQL, Dynamic SQL, and SQL J 321

well as generating the code for executing it. It is possible to combine the PREPARE
and EXECUTE commands (lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

This is useful if the command is to be executed only once. Alternatively, the pro-
grammer can separate the two statements to catch any errors after the PREPARE
statement as in E3.

Although including a dynamic update command is relatively straightforward in
dynamic SQL, a dynamic retrieval query is much more complicated. This is because
the programmer does not know the types or the number of attributes to be retrieved
by the SQL query when writing the program. A complex data structure is needed to
allow for different numbers and types of attributes in the query result if no prior
information is known about the dynamic query. Techniques similar to those that
we shall discuss in Section 10.3 can be used to assign retrieval query results (and
query parameters) to host program variables.

10.2.4 SQLJ: Embedding SQL Commands in Java
In the previous subsections, we gave an overview of how SQL commands can be
embedded in a traditional programming language, using the C language in our
examples. We now turn our attention to how SQL can be embedded in an object-
oriented programming language,8 in particular, the Java language. SQLJ is a stan-
dard that has been adopted by several vendors for embedding SQL in Java.
Historically, SQLJ was developed after JDBC, which is used for accessing SQL data-
bases from Java using class libraries and function calls. We discuss JDBC in Sec-
tion 10.3.2. In this section, we focus on SQLJ as it is used in the Oracle RDBMS. An
SQLJ translator will generally convert SQL statements into Java, which can then be
executed through the JDBC interface. Hence, it is necessary to install a JDBC driver
when using SQLJ.9 In this section, we focus on how to use SQLJ concepts to write
embedded SQL in a Java program.

Before being able to process SQLJ with Java in Oracle, it is necessary to import several
class libraries, shown in Figure 10.5. These include the JDBC and IO classes (lines 1
and 2), plus the additional classes listed in lines 3, 4, and 5. In addition, the program
must first connect to the desired database using the function call getConnection,
which is one of the methods of the oracle class in line 5 of Figure 10.5. The format of
this function call, which returns an object of type default context,10 is as follows:

public static DefaultContext
getConnection(String url, String user, String password,
 Boolean autoCommit)
throws SQLException ;

8This section assumes familiarity with object-oriented concepts (see Chapter 12) and basic Java concepts.
9We discuss JDBC drivers in Section 10.3.2.
10A default context, when set, applies to subsequent commands in the program until it is changed.

322 Chapter 10 Introduction to SQL Programming Techniques

For example, we can write the statements in lines 6 through 8 in Figure 10.5 to
connect to an Oracle database located at the url <url name> using the login of
<user name> and <password> with automatic commitment of each command,11

and then set this connection as the default context for subsequent commands.

In the following examples, we will not show complete Java classes or programs
since it is not our intention to teach Java. Rather, we will show program segments
that illustrate the use of SQLJ. Figure 10.6 shows the Java program variables used in
our examples. Program segment J1 in Figure 10.7 reads an employee’s Ssn and
prints some of the employee’s information from the database.

Notice that because Java already uses the concept of exceptions for error han-
dling, a special exception called SQLException is used to return errors or
exception conditions after executing an SQL database command. This plays a
similar role to SQLCODE and SQLSTATE in embedded SQL. Java has many types
of predefined exceptions. Each Java operation (function) must specify the
exceptions that can be thrown—that is, the exception conditions that may
occur while executing the Java code of that operation. If a defined exception
occurs, the system transfers control to the Java code specified for exception
handling. In J1, exception handling for an SQLException is specified in lines 7
and 8. In Java, the following structure

try {<operation>} catch (<exception>) {<exception handling
 code>} <continuation code>

1) import java.sql.* ;
2) import java.io.* ;
3) import sqlj.runtime.* ;
4) import sqlj.runtime.ref.* ;
5) import oracle.sqlj.runtime.* ;
 ...
6) DefaultContext cntxt =
7) oracle.getConnection("<url name>", "<user name>", "<password>", true) ;
8) DefaultContext.setDefaultContext(cntxt) ;
 ...

Figure 10.5
Importing classes needed for including
SQLJ in Java programs in Oracle, and
establishing a connection
and default context.

11Automatic commitment roughly means that each command is applied to the database after it is
executed. The alternative is that the programmer wants to execute several related database commands
and then commit them together. We discuss commit concepts in Chapter 20 when we describe database
transactions.

1) string dname, ssn , fname, fn, lname, ln,
bdate, address ;

2) char sex, minit, mi ;
3) double salary, sal ;
4) integer dno, dnumber ;

Figure 10.6
Java program variables
used in SQLJ examples
J1 and J2.

 10.2 Embedded SQL, Dynamic SQL, and SQL J 323

is used to deal with exceptions that occur during the execution of <operation>. If
no exception occurs, the <continuation code> is processed directly. Exceptions
that can be thrown by the code in a particular operation should be specified as part
of the operation declaration or interface—for example, in the following format:

<operation return type> <operation name> (<parameters>)
throws SQLException, IOException ;

In SQLJ, the embedded SQL commands within a Java program are preceded by
#sql, as illustrated in J1 line 3, so that they can be identified by the preprocessor.
The #sql is used instead of the keywords EXEC SQL that are used in embedded SQL
with the C programming language (see Section 10.2.1). SQLJ uses an INTO clause—
similar to that used in embedded SQL—to return the attribute values retrieved from
the database by an SQL query into Java program variables. The program variables
are preceded by colons (:) in the SQL statement, as in embedded SQL.

In J1 a single tuple is retrieved by the embedded SQLJ query; that is why we are able
to assign its attribute values directly to Java program variables in the INTO clause in
line 4 in Figure 10.7. For queries that retrieve many tuples, SQLJ uses the concept of
an iterator, which is similar to a cursor in embedded SQL.

10.2.5 Processing Query Results in SQLJ Using Iterators
In SQLJ, an iterator is a type of object associated with a collection (set or multiset)
of records in a query result.12 The iterator is associated with the tuples and attri-
butes that appear in a query result. There are two types of iterators:

 1. A named iterator is associated with a query result by listing the attribute names
and types that appear in the query result. The attribute names must correspond
to appropriately declared Java program variables, as shown in Figure 10.6.

 2. A positional iterator lists only the attribute types that appear in the query
result.

 //Program Segment J1:
 1) ssn = readEntry("Enter a Social Security Number: ") ;
 2) try {
 3) #sql { SELECT Fname, Minit, Lname, Address, Salary
 4) INTO :fname, :minit, :lname, :address, :salary
 5) FROM EMPLOYEE WHERE Ssn = :ssn} ;
 6) } catch (SQLException se) {
 7) System.out.println("Social Security Number does not exist: " + ssn) ;
 8) Return ;
 9) }
10) System.out.println(fname + " " + minit + " " + lname + " " + address

 + " " + salary)

Figure 10.7
Program segment J1,
a Java program
segment with SQLJ.

12We shall discuss iterators in more detail in Chapter 12 when we present object database concepts.

324 Chapter 10 Introduction to SQL Programming Techniques

In both cases, the list should be in the same order as the attributes that are listed in
the SELECT clause of the query. However, looping over a query result is different for
the two types of iterators. First, we show an example of using a named iterator in
Figure 10.8, program segment J2A. Line 9 in Figure 10.8 shows how a named itera-
tor type Emp is declared. Notice that the names of the attributes in a named iterator
type must match the names of the attributes in the SQL query result. Line 10 shows
how an iterator object e of type Emp is created in the program and then associated
with a query (lines 11 and 12).

When the iterator object is associated with a query (lines 11 and 12 in Figure 10.8),
the program fetches the query result from the database and sets the iterator to a
position before the first row in the result of the query. This becomes the current row
for the iterator. Subsequently, next operations are issued on the iterator object;
each next moves the iterator to the next row in the result of the query, making it the
current row. If the row exists, the operation retrieves the attribute values for that
row into the corresponding program variables. If no more rows exist, the next
operation returns NULL, and can thus be used to control the looping. Notice that the
named iterator does not need an INTO clause, because the program variables corre-
sponding to the retrieved attributes are already specified when the iterator type is
declared (line 9 in Figure 10.8).

In Figure 10.8, the command (e.next()) in line 13 performs two functions: It
gets the next tuple in the query result and controls the WHILE loop. Once the

Figure 10.8
Program segment J2A, a Java program segment that uses a named iterator to print employee information in a
particular department.

 //Program Segment J2A:
 0) dname = readEntry("Enter the Department Name: ") ;
 1) try {
 2) #sql { SELECT Dnumber INTO :dnumber
 3) FROM DEPARTMENT WHERE Dname = :dname} ;
 4) } catch (SQLException se) {
 5) System.out.println("Department does not exist: " + dname) ;
 6) Return ;
 7) }
 8) System.out.printline("Employee information for Department: " + dname) ;
 9) #sql iterator Emp(String ssn, String fname, String minit, String lname,
 double salary) ;
10) Emp e = null ;
11) #sql e = { SELECT ssn, fname, minit, lname, salary
12) FROM EMPLOYEE WHERE Dno = :dnumber} ;
13) while (e.next()) {
14) System.out.printline(e.ssn + " " + e.fname + " " + e.minit + " " +

 e.lname + " " + e.salary) ;
15) } ;
16) e.close() ;

 10.2 Embedded SQL, Dynamic SQL, and SQL J 325

program is done with processing the query result, the command e.close()
(line 16) closes the iterator.

Next, consider the same example using positional iterators as shown in Figure 10.9
(program segment J2B). Line 9 in Figure 10.9 shows how a positional iterator type
Emppos is declared. The main difference between this and the named iterator is that
there are no attribute names (corresponding to program variable names) in the
positional iterator—only attribute types. This can provide more flexibility, but it
makes the processing of the query result slightly more complex. The attribute types
must still be compatible with the attribute types in the SQL query result and in the
same order. Line 10 shows how a positional iterator object e of type Emppos is cre-
ated in the program and then associated with a query (lines 11 and 12).

The positional iterator behaves in a manner that is more similar to embedded SQL
(see Section 10.2.2). A FETCH <iterator variable> INTO <program variables> com-
mand is needed to get the next tuple in a query result. The first time fetch is exe-
cuted, it gets the first tuple (line 13 in Figure 10.9). Line 16 gets the next tuple until
no more tuples exist in the query result. To control the loop, a positional iterator
function e.endFetch() is used. This function is automatically set to a value of
TRUE when the iterator is initially associated with an SQL query (line 11), and is set
to FALSE each time a fetch command returns a valid tuple from the query result. It
is set to TRUE again when a fetch command does not find any more tuples. Line 14
shows how the looping is controlled by negation.

Figure 10.9
Program segment J2B, a Java program segment that uses a positional iterator to print employee information in a
particular department.

 //Program Segment J2B:
 0) dname = readEntry("Enter the Department Name: ") ;
 1) try {
 2) #sql { SELECT Dnumber INTO :dnumber
 3) FROM DEPARTMENT WHERE Dname = :dname} ;
 4) } catch (SQLException se) {
 5) System.out.println("Department does not exist: " + dname) ;
 6) Return ;
 7) }
 8) System.out.printline("Employee information for Department: " + dname) ;
 9) #sql iterator Emppos(String, String, String, String, double) ;
10) Emppos e = null ;
11) #sql e = { SELECT ssn, fname, minit, lname, salary
12) FROM EMPLOYEE WHERE Dno = :dnumber} ;
13) #sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;
14) while (!e.endFetch()) {
15) System.out.printline(ssn + " " + fn + " " + mi + " " + ln + " " + sal) ;
16) #sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;
17) } ;
18) e.close() ;

326 Chapter 10 Introduction to SQL Programming Techniques

10.3 Database Programming with Function
Calls and Class Libraries: SQL/CLI
and JDBC

Embedded SQL (see Section 10.2) is sometimes referred to as a static database pro-
gramming approach because the query text is written within the program source
code and cannot be changed without recompiling or reprocessing the source code.
The use of function calls is a more dynamic approach for database programming
than embedded SQL. We already saw one dynamic database programming technique—
dynamic SQL—in Section 10.2.3. The techniques discussed here provide another
approach to dynamic database programming. A library of functions, also known
as an application programming interface (API), is used to access the database.
Although this provides more flexibility because no preprocessor is needed, one
drawback is that syntax and other checks on SQL commands have to be done at
runtime. Another drawback is that it sometimes requires more complex program-
ming to access query results because the types and numbers of attributes in a query
result may not be known in advance.

In this section, we give an overview of two function call interfaces. We first discuss
the SQL Call Level Interface (SQL/CLI), which is part of the SQL standard. This
was developed as a standardization of the popular library of functions known as
ODBC (Open Database Connectivity). We use C as the host language in our
SQL/CLI examples. Then we give an overview of JDBC, which is the call function
interface for accessing databases from Java. Although it is commonly assumed that
JDBC stands for Java Database Connectivity, JDBC is just a registered trademark of
Sun Microsystems (now Oracle), not an acronym.

The main advantage of using a function call interface is that it makes it easier
to access multiple databases within the same application program, even if they
are stored under different DBMS packages. We discuss this further in Sec-
tion 10.3.2 when we discuss Java database programming with JDBC, although
this advantage also applies to database programming with SQL/CLI and ODBC
(see Section 10.3.1).

10.3.1 Database Programming with SQL/CLI Using C
as the Host Language

Before using the function calls in SQL/CLI, it is necessary to install the appropriate
library packages on the database server. These packages are obtained from the ven-
dor of the DBMS being used. We now give an overview of how SQL/CLI can be
used in a C program.13 We will illustrate our presentation with the sample program
segment CLI1 shown in Figure 10.10.

13Our discussion here also applies to the C++ and C# programming languages, since we do not use
any of the object-oriented features but focus on the database programming mechanism.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC 327

Handles to environment, connection, statement, and description
records. When using SQL/CLI, the SQL statements are dynamically created and
passed as string parameters in the function calls. Hence, it is necessary to keep track
of the information about host program interactions with the database in runtime
data structures because the database commands are processed at runtime. The
information is kept in four types of records, represented as structs in C data types.
An environment record is used as a container to keep track of one or more data-
base connections and to set environment information. A connection record keeps
track of the information needed for a particular database connection. A statement
record keeps track of the information needed for one SQL statement. A
description record keeps track of the information about tuples or parameters—for
example, the number of attributes and their types in a tuple, or the number and
types of parameters in a function call. This is needed when the programmer does
not know this information about the query when writing the program. In our
examples, we assume that the programmer knows the exact query, so we do not
show any description records.

 //Program CLI1:
 0) #include sqlcli.h ;
 1) void printSal() {
 2) SQLHSTMT stmt1 ;
 3) SQLHDBC con1 ;
 4) SQLHENV env1 ;
 5) SQLRETURN ret1, ret2, ret3, ret4 ;
 6) ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;
 7) if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;
 8) if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",
 SQL_NTS) else exit ;
 9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;
10) SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Ssn = ?",
 SQL_NTS) ;
11) prompt("Enter a Social Security Number: ", ssn) ;
12) SQLBindParameter(stmt1, 1, SQL_CHAR, &ssn, 9, &fetchlen1) ;
13) ret1 = SQLExecute(stmt1) ;
14) if (!ret1) {
15) SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;
16) SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17) ret2 = SQLFetch(stmt1) ;
18) if (!ret2) printf(ssn, lname, salary)
19) else printf("Social Security Number does not exist: ", ssn) ;
20) }
21) }

Figure 10.10
Program segment CLI1, a C program segment with SQL/CLI.

328 Chapter 10 Introduction to SQL Programming Techniques

Each record is accessible to the program through a C pointer variable—called a
handle to the record. The handle is returned when a record is first created. To cre-
ate a record and return its handle, the following SQL/CLI function is used:

SQLAllocHandle(<handle_type>, <handle_1>, <handle_2>)

In this function, the parameters are as follows:

 ■ <handle_type> indicates the type of record being created. The possible val-
ues for this parameter are the keywords SQL_HANDLE_ENV, SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC, for an environment, connec-
tion, statement, or description record, respectively.

 ■ <handle_1> indicates the container within which the new handle is being
created. For example, for a connection record this would be the environ-
ment within which the connection is being created, and for a statement
record this would be the connection for that statement.

 ■ <handle_2> is the pointer (handle) to the newly created record of type
<handle_type>.

Steps in a database program. When writing a C program that will include
database calls through SQL/CLI, the following are the typical steps that are taken.
We illustrate the steps by referring to the example CLI1 in Figure 10.10, which
reads a Social Security number of an employee and prints the employee’s last name
and salary.

 1. Including the library of functions. The library of functions comprising
SQL/CLI must be included in the C program. This is called sqlcli.h, and is
included using line 0 in Figure 10.10.

 2. Declaring handle variables. Declare handle variables of types SQLHSTMT,
SQLHDBC, SQLHENV, and SQLHDESC for the statements, connections, envi-
ronments, and descriptions needed in the program, respectively (lines 2
to 4).14 Also declare variables of type SQLRETURN (line 5) to hold the
return codes from the SQL/CLI function calls. A return code of 0 (zero)
indicates successful execution of the function call.

 3. Environment record. An environment record must be set up in the program
using SQLAllocHandle. The function to do this is shown in line 6. Because
an environment record is not contained in any other record, the parameter
<handle_1> is the NULL handle SQL_NULL_HANDLE (NULL pointer) when
creating an environment. The handle (pointer) to the newly created envi-
ronment record is returned in variable env1 in line 6.

 4. Connecting to the database. A connection record is set up in the program
using SQLAllocHandle. In line 7, the connection record created has the han-
dle con1 and is contained in the environment env1. A connection is then
established in con1 to a particular server database using the SQLConnect

14To keep our presentation simple, we will not show description records here.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC 329

function of SQL/CLI (line 8). In our example, the database server name we
are connecting to is dbs and the account name and password for login are js
and xyz, respectively.

 5. Statement record. A statement record is set up in the program using
SQLAllocHandle. In line 9, the statement record created has the handle
stmt1 and uses the connection con1.

 6. Preparing an SQL statement and statement parameters. The SQL state-
ment is prepared using the SQL/CLI function SQLPrepare. In line 10,
this assigns the SQL statement string (the query in our example) to the
statement handle stmt1. The question mark (?) symbol in line 10 repre-
sents a statement parameter, which is a value to be determined at run-
time—typically by binding it to a C program variable. In general, there
could be several parameters in a statement string. They are distinguished
by the order of appearance of the question marks in the statement string
(the first ? represents parameter 1, the second ? represents parameter 2,
and so on). The last parameter in SQLPrepare should give the length of
the SQL statement string in bytes, but if we enter the keyword SQL_NTS,
this indicates that the string holding the query is a NULL-terminated
string so that SQL can calculate the string length automatically. This use
of SQL_NTS also applies to other string parameters in the function calls in
our examples.

 7. Binding the statement parameters. Before executing the query, any param-
eters in the query string should be bound to program variables using the
SQL/CLI function SQLBindParameter. In Figure 10.10, the parameter
(indicated by ?) to the prepared query referenced by stmt1 is bound to the
C program variable ssn in line 12. If there are n parameters in the SQL state-
ment, we should have n SQLBindParameter function calls, each with a dif-
ferent parameter position (1, 2, … , n).

 8. Executing the statement. Following these preparations, we can now exe-
cute the SQL statement referenced by the handle stmt1 using the func-
tion SQLExecute (line 13). Notice that although the query will be
executed in line 13, the query results have not yet been assigned to any C
program variables.

 9. Processing the query result. In order to determine where the result of the
query is returned, one common technique is the bound columns approach.
Here, each column in a query result is bound to a C program variable using
the SQLBindCol function. The columns are distinguished by their order of
appearance in the SQL query. In Figure 10.10 lines 15 and 16, the two col-
umns in the query (Lname and Salary) are bound to the C program vari-
ables lname and salary, respectively.15

15An alternative technique known as unbound columns uses different SQL/CLI functions, namely
SQLGetCol or SQLGetData, to retrieve columns from the query result without previously binding them;
these are applied after the SQLFetch command in line 17.

330 Chapter 10 Introduction to SQL Programming Techniques

 10. Retrieving column values. Finally, in order to retrieve the column values into
the C program variables, the function SQLFetch is used (line 17). This func-
tion is similar to the FETCH command of embedded SQL. If a query result has
a collection of tuples, each SQLFetch call gets the next tuple and returns its
column values into the bound program variables. SQLFetch returns an excep-
tion (nonzero) code if there are no more tuples in the query result.16

As we can see, using dynamic function calls requires a lot of preparation to set up
the SQL statements and to bind statement parameters and query results to the
appropriate program variables.

In CLI1 a single tuple is selected by the SQL query. Figure 10.11 shows an example
of retrieving multiple tuples. We assume that appropriate C program variables have
been declared as in Figure 10.1. The program segment in CLI2 reads (inputs) a

16If unbound program variables are used, SQLFetch returns the tuple into a temporary program area.
Each subsequent SQLGetCol (or SQLGetData) returns one attribute value in order. Basically, for each
row in the query result, the program should iterate over the attribute values (columns) in that row. This is
useful if the number of columns in the query result is variable.

 //Program Segment CLI2:
 0) #include sqlcli.h ;
 1) void printDepartmentEmps() {
 2) SQLHSTMT stmt1 ;
 3) SQLHDBC con1 ;
 4) SQLHENV env1 ;
 5) SQLRETURN ret1, ret2, ret3, ret4 ;
 6) ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;
 7) if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;
 8) if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",
 SQL_NTS) else exit ;
 9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;
10) SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Dno = ?",
 SQL_NTS) ;
11) prompt("Enter the Department Number: ", dno) ;
12) SQLBindParameter(stmt1, 1, SQL_INTEGER, &dno, 4, &fetchlen1) ;
13) ret1 = SQLExecute(stmt1) ;
14) if (!ret1) {
15) SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;
16) SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17) ret2 = SQLFetch(stmt1) ;
18) while (!ret2) {
19) printf(lname, salary) ;
20) ret2 = SQLFetch(stmt1) ;
21) }
22) }
23) }

Figure 10.11
Program segment CLI2, a C program segment
that uses SQL/CLI for a query with a collection
of tuples in its result.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC 331

department number and then retrieves the employees who work in that depart-
ment. A loop then iterates over each employee record, one at a time, and prints the
employee’s last name and salary.

10.3.2 JDBC: SQL Class Library for Java Programming
We now turn our attention to how SQL can be called from the Java object-oriented
programming language.17 The class libraries and associated function calls for this
access are known as JDBC.18 The Java programming language was designed to be
platform independent—that is, a program should be able to run on any type of
computer system that has a Java interpreter installed. Because of this portability,
many RDBMS vendors provide JDBC drivers so that it is possible to access their
systems via Java programs.

JDBC drivers. A JDBC driver is basically an implementation of the classes and
associated objects and function calls specified in JDBC for a particular vendor’s
RDBMS. Hence, a Java program with JDBC objects and function calls can access
any RDBMS that has a JDBC driver available.

Because Java is object-oriented, its function libraries are implemented as classes.
Before being able to process JDBC function calls with Java, it is necessary to import
the JDBC class libraries, which are called java.sql.*. These can be downloaded
and installed via the Web.19

JDBC is designed to allow a single Java program to connect to several different
databases. These are sometimes called the data sources accessed by the Java pro-
gram, and could be stored using RDBMSs from different vendors residing on dif-
ferent machines. Hence, different data source accesses within the same Java
program may require JDBC drivers from different vendors. To achieve this flexibil-
ity, a special JDBC class called the driver manager class is employed, which keeps
track of the installed drivers. A driver should be registered with the driver manager
before it is used. The operations (methods) of the driver manager class include
getDriver, registerDriver, and deregisterDriver. These can be used to add
and remove drivers for different systems dynamically. Other functions set up and
close connections to data sources.

To load a JDBC driver explicitly, the generic Java function for loading a class can be
used. For example, to load the JDBC driver for the Oracle RDBMS, the following
command can be used:

Class.forName("oracle.jdbc.driver.OracleDriver")

17This section assumes familiarity with object-oriented concepts (see Chapter 11) and basic Java concepts.
18As we mentioned earlier, JDBC is a registered trademark of Sun Microsystems, although it is commonly
thought to be an acronym for Java Database Connectivity.
19These are available from several Web sites—for example, at http://industry.java.sun.com/products/
jdbc/drivers.

332 Chapter 10 Introduction to SQL Programming Techniques

This will register the driver with the driver manager and make it available to the
program. It is also possible to load and register the driver(s) needed in the com-
mand line that runs the program, for example, by including the following in the
command line:

-Djdbc.drivers = oracle.jdbc.driver

JDBC programming steps. The following are typical steps that are taken when
writing a Java application program with database access through JDBC function
calls. We illustrate the steps by referring to the example JDBC1 in Figure 10.12,
which reads a Social Security number of an employee and prints the employee’s last
name and salary.

 1. Import the JDBC class library. The JDBC library of classes must be
imported into the Java program. These classes are called java.sql.*, and
can be imported using line 1 in Figure 10.12. Any additional Java class
libraries needed by the program must also be imported.

 //Program JDBC1:
 0) import java.io.* ;
 1) import java.sql.*
 ...
 2) class getEmpInfo {
 3) public static void main (String args []) throws SQLException, IOException {
 4) try { Class.forName("oracle.jdbc.driver.OracleDriver")
 5) } catch (ClassNotFoundException x) {
 6) System.out.println ("Driver could not be loaded") ;
 7) }
 8) String dbacct, passwrd, ssn, lname ;
 9) Double salary ;
10) dbacct = readentry("Enter database account:") ;
11) passwrd = readentry("Enter password:") ;
12) Connection conn = DriverManager.getConnection
13) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
14) String stmt1 = "select Lname, Salary from EMPLOYEE where Ssn = ?" ;
15) PreparedStatement p = conn.prepareStatement(stmt1) ;
16) ssn = readentry("Enter a Social Security Number: ") ;
17) p.clearParameters() ;
18) p.setString(1, ssn) ;
19) ResultSet r = p.executeQuery() ;
20) while (r.next()) {
21) lname = r.getString(1) ;
22) salary = r.getDouble(2) ;
23) system.out.printline(lname + salary) ;
24) } }
25) }

Figure 10.12
Program segment JDBC1,
a Java program segment
with JDBC.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC 333

 2. Load the JDBC driver. This is shown in lines 4 to 7. The Java exception in
line 5 occurs if the driver is not loaded successfully.

 3. Create appropriate variables. These are the variables needed in the Java
program (lines 8 and 9).

 4. The Connection object. A connection object is created using the
getConnection function of the DriverManager class of JDBC. In lines 12
and 13, the Connection object is created by using the function call
getConnection(urlstring), where urlstring has the form

jdbc:oracle:<driverType>:<dbaccount>/<password>

An alternative form is

getConnection(url, dbaccount, password)

Various properties can be set for a connection object, but they are mainly
related to transactional properties, which we discuss in Chapter 21.

 5. The Prepared Statement object. A statement object is created in the pro-
gram. In JDBC, there is a basic statement class, Statement, with two spe-
cialized subclasses: PreparedStatement and CallableStatement. The
example in Figure 10.12 illustrates how PreparedStatement objects are
created and used. The next example (Figure 10.13) illustrates the other type
of Statement objects. In line 14 in Figure 10.12, a query string with a sin-
gle parameter—indicated by the ? symbol—is created in the string variable
stmt1. In line 15, an object p of type PreparedStatement is created based
on the query string in stmt1 and using the connection object conn. In gen-
eral, the programmer should use PreparedStatement objects if a query is
to be executed multiple times, since it would be prepared, checked, and
compiled only once, thus saving this cost for the additional executions of
the query.

 6. Setting the statement parameters. The question mark (?) symbol in line 14
represents a statement parameter, which is a value to be determined at run-
time, typically by binding it to a Java program variable. In general, there
could be several parameters, distinguished by the order of appearance of the
question marks within the statement string (first ? represents parameter 1,
second ? represents parameter 2, and so on), as we discussed previously.

 7. Binding the statement parameters. Before executing a PreparedStatement
query, any parameters should be bound to program variables. Depending
on the type of the parameter, different functions such as setString,
setInteger, setDouble, and so on are applied to the PreparedStatement
object to set its parameters. The appropriate function should be used to cor-
respond to the data type of the parameter being set. In Figure 10.12, the
parameter (indicated by ?) in object p is bound to the Java program variable
ssn in line 18. The function setString is used because ssn is a string vari-
able. If there are n parameters in the SQL statement, we should have n set ...
functions, each with a different parameter position (1, 2, … , n). Generally, it
is advisable to clear all parameters before setting any new values (line 17).

334 Chapter 10 Introduction to SQL Programming Techniques

 8. Executing the SQL statement. Following these preparations, we can now
execute the SQL statement referenced by the object p using the function
executeQuery (line 19). There is a generic function execute in JDBC,
plus two specialized functions: executeUpdate and executeQuery.
executeUpdate is used for SQL insert, delete, or update statements, and
returns an integer value indicating the number of tuples that were affected.
executeQuery is used for SQL retrieval statements, and returns an object of
type ResultSet, which we discuss next.

 9. Processing the ResultSet object. In line 19, the result of the query is
returned in an object r of type ResultSet. This resembles a two-dimensional
array or a table, where the tuples are the rows and the attributes returned are
the columns. A ResultSet object is similar to a cursor in embedded SQL
and an iterator in SQLJ. In our example, when the query is executed, r refers
to a tuple before the first tuple in the query result. The r.next() function
(line 20) moves to the next tuple (row) in the ResultSet object and returns
NULL if there are no more objects. This is used to control the looping. The

 //Program Segment JDBC2:
 0) import java.io.* ;
 1) import java.sql.*
 ...
 2) class printDepartmentEmps {
 3) public static void main (String args [])
 throws SQLException, IOException {
 4) try { Class.forName("oracle.jdbc.driver.OracleDriver")
 5) } catch (ClassNotFoundException x) {
 6) System.out.println ("Driver could not be loaded") ;
 7) }
 8) String dbacct, passwrd, lname ;
 9) Double salary ;
10) Integer dno ;
11) dbacct = readentry("Enter database account:") ;
12) passwrd = readentry("Enter password:") ;
13) Connection conn = DriverManager.getConnection
14) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
15) dno = readentry("Enter a Department Number: ") ;
16) String q = "select Lname, Salary from EMPLOYEE where Dno = " +
 dno.tostring() ;
17) Statement s = conn.createStatement() ;
18) ResultSet r = s.executeQuery(q) ;
19) while (r.next()) {
20) lname = r.getString(1) ;
21) salary = r.getDouble(2) ;
22) system.out.printline(lname + salary) ;
23) } }
24) }

Figure 10.13
Program segment JDBC2, a Java program
segment that uses JDBC for a query with a
collection of tuples in its result.

 10.4 Database Stored Procedures and SQL/PSM 335

programmer can refer to the attributes in the current tuple using various
get ... functions that depend on the type of each attribute (for example,
getString, getInteger, getDouble, and so on). The programmer can
either use the attribute positions (1, 2) or the actual attribute names
("Lname", "Salary") with the get … functions. In our examples, we used
the positional notation in lines 21 and 22.

In general, the programmer can check for SQL exceptions after each JDBC function
call. We did not do this to simplify the examples.

Notice that JDBC does not distinguish between queries that return single tuples and
those that return multiple tuples, unlike some of the other techniques. This is justi-
fiable because a single tuple result set is just a special case.

In example JDBC1, a single tuple is selected by the SQL query, so the loop in lines 20
to 24 is executed at most once. The example shown in Figure 10.13 illustrates the
retrieval of multiple tuples. The program segment in JDBC2 reads (inputs) a depart-
ment number and then retrieves the employees who work in that department. A
loop then iterates over each employee record, one at a time, and prints the employee’s
last name and salary. This example also illustrates how we can execute a query
directly, without having to prepare it as in the previous example. This technique is
preferred for queries that will be executed only once, since it is simpler to program.
In line 17 of Figure 10.13, the programmer creates a Statement object (instead of
PreparedStatement, as in the previous example) without associating it with a
particular query string. The query string q is passed to the statement object s when
it is executed in line 18.

This concludes our brief introduction to JDBC. The interested reader is referred to
the Web site http://java.sun.com/docs/books/tutorial/jdbc/, which contains many
further details about JDBC.

10.4 Database Stored Procedures
and SQL/PSM

This section introduces two additional topics related to database programming. In
Section 10.4.1, we discuss the concept of stored procedures, which are program
modules that are stored by the DBMS at the database server. Then in Section 10.4.2
we discuss the extensions to SQL that are specified in the standard to include
general-purpose programming constructs in SQL. These extensions are known as
SQL/PSM (SQL/Persistent Stored Modules) and can be used to write stored proce-
dures. SQL/PSM also serves as an example of a database programming language
that extends a database model and language—namely, SQL—with programming
language constructs, such as conditional statements and loops.

10.4.1 Database Stored Procedures and Functions
In our presentation of database programming techniques so far, there was an
implicit assumption that the database application program was running on a client

336 Chapter 10 Introduction to SQL Programming Techniques

machine, or more likely at the application server computer in the middle-tier of a
three-tier client-server architecture (see Section 2.5.4 and Figure 2.7). In either case,
the machine where the program is executing is different from the machine on which
the database server—and the main part of the DBMS software package—is located.
Although this is suitable for many applications, it is sometimes useful to create
database program modules—procedures or functions—that are stored and exe-
cuted by the DBMS at the database server. These are historically known as database
stored procedures, although they can be functions or procedures. The term used in
the SQL standard for stored procedures is persistent stored modules because these
programs are stored persistently by the DBMS, similarly to the persistent data
stored by the DBMS.

Stored procedures are useful in the following circumstances:

 ■ If a database program is needed by several applications, it can be stored at
the server and invoked by any of the application programs. This reduces
duplication of effort and improves software modularity.

 ■ Executing a program at the server can reduce data transfer and communica-
tion cost between the client and server in certain situations.

 ■ These procedures can enhance the modeling power provided by views by
allowing more complex types of derived data to be made available to the
database users via the stored procedures. Additionally, they can be used to
check for complex constraints that are beyond the specification power of
assertions and triggers.

In general, many commercial DBMSs allow stored procedures and functions to be
written in a general-purpose programming language. Alternatively, a stored proce-
dure can be made of simple SQL commands such as retrievals and updates. The
general form of declaring stored procedures is as follows:

CREATE PROCEDURE <procedure name> (<parameters>)
<local declarations>
<procedure body> ;

The parameters and local declarations are optional, and are specified only if needed.
For declaring a function, a return type is necessary, so the declaration form is:

CREATE FUNCTION <function name> (<parameters>)
RETURNS <return type>
<local declarations>
<function body> ;

If the procedure (or function) is written in a general-purpose programming language,
it is typical to specify the language as well as a file name where the program code is
stored. For example, the following format can be used:

CREATE PROCEDURE <procedure name> (<parameters>)
LANGUAGE <programming language name>
EXTERNAL NAME <file path name> ;

 10.4 Database Stored Procedures and SQL/PSM 337

In general, each parameter should have a parameter type that is one of the SQL
data types. Each parameter should also have a parameter mode, which is one of IN,
OUT, or INOUT. These correspond to parameters whose values are input only, out-
put (returned) only, or both input and output, respectively.

Because the procedures and functions are stored persistently by the DBMS, it
should be possible to call them from the various SQL interfaces and programming
techniques. The CALL statement in the SQL standard can be used to invoke a stored
procedure—either from an interactive interface or from embedded SQL or SQLJ.
The format of the statement is as follows:

CALL <procedure or function name> (<argument list>) ;

If this statement is called from JDBC, it should be assigned to a statement object of
type CallableStatement (see Section 10.3.2).

10.4.2 SQL/PSM: Extending SQL for Specifying Persistent
Stored Modules

SQL/PSM is the part of the SQL standard that specifies how to write persistent
stored modules. It includes the statements to create functions and procedures that
we described in the previous section. It also includes additional programming con-
structs to enhance the power of SQL for the purpose of writing the code (or body)
of stored procedures and functions.

In this section, we discuss the SQL/PSM constructs for conditional (branching)
statements and for looping statements. These will give a flavor of the type of con-
structs that SQL/PSM has incorporated;20 then we give an example to illustrate how
these constructs can be used.

The conditional branching statement in SQL/PSM has the following form:

IF <condition> THEN <statement list>
ELSEIF <condition> THEN <statement list>
…
ELSEIF <condition> THEN <statement list>
ELSE <statement list>

END IF ;

Consider the example in Figure 10.14, which illustrates how the conditional branch
structure can be used in an SQL/PSM function. The function returns a string value
(line 1) describing the size of a department within a company based on the number
of employees. There is one IN integer parameter, deptno, which gives a depart-
ment number. A local variable NoOfEmps is declared in line 2. The query in lines 3
and 4 returns the number of employees in the department, and the conditional

20We only give a brief introduction to SQL/PSM here. There are many other features in the SQL/PSM
standard.

338 Chapter 10 Introduction to SQL Programming Techniques

branch in lines 5 to 8 then returns one of the values {‘HUGE’, ‘LARGE’, ‘MEDIUM’,
‘SMALL’} based on the number of employees.

SQL/PSM has several constructs for looping. There are standard while and repeat
looping structures, which have the following forms:

WHILE <condition> DO
 <statement list>
END WHILE ;
REPEAT
 <statement list>
UNTIL <condition>
END REPEAT ;

There is also a cursor-based looping structure. The statement list in such a loop is
executed once for each tuple in the query result. This has the following form:

FOR <loop name> AS <cursor name> CURSOR FOR <query> DO
 <statement list>
END FOR ;

Loops can have names, and there is a LEAVE <loop name> statement to break a loop
when a condition is satisfied. SQL/PSM has many other features, but they are out-
side the scope of our presentation.

10.5 Comparing the Three Approaches
In this section, we briefly compare the three approaches for database programming
and discuss the advantages and disadvantages of each approach.

 4. Embedded SQL Approach. The main advantage of this approach is that the
query text is part of the program source code itself, and hence can be checked
for syntax errors and validated against the database schema at compile time.
This also makes the program quite readable, as the queries are readily visible

//Function PSM1:
0) CREATE FUNCTION Dept_size(IN deptno INTEGER)
1) RETURNS VARCHAR [7]
2) DECLARE No_of_emps INTEGER ;
3) SELECT COUNT(*) INTO No_of_emps
4) FROM EMPLOYEE WHERE Dno = deptno ;
5) IF No_of_emps > 100 THEN RETURN "HUGE"
6) ELSEIF No_of_emps > 25 THEN RETURN "LARGE"
7) ELSEIF No_of_emps > 10 THEN RETURN "MEDIUM"
8) ELSE RETURN "SMALL"
9) END IF ;

Figure 10.14
Declaring a function in
SQL/PSM.

 10.6 Summary 339

in the source code. The main disadvantages are the loss of flexibility in
changing the query at runtime, and the fact that all changes to queries must
go through the whole recompilation process. In addition, because the que-
ries are known beforehand, the choice of program variables to hold the
query results is a simple task, and so the programming of the application is
generally easier. However, for complex applications where queries have to
be generated at runtime, the function call approach will be more suitable.

 5. Library of Classes and Function Calls Approach. This approach provides
more flexibility in that queries can be generated at runtime if needed. How-
ever, this leads to more complex programming, as program variables that
match the columns in the query result may not be known in advance.
Because queries are passed as statement strings within the function calls, no
checking can be done at compile time. All syntax checking and query valida-
tion has to be done at runtime by preparing the query, and the programmer
must check and account for possible additional runtime errors within the
program code.

 6. Database Programming Language Approach. This approach does not suf-
fer from the impedance mismatch problem, as the programming language
data types are the same as the database data types. However, programmers
must learn a new programming language rather than use a language they are
already familiar with. In addition, some database programming languages
are vendor-specific, whereas general-purpose programming languages can
easily work with systems from multiple vendors.

10.6 Summary
In this chapter we presented additional features of the SQL database language. In
particular, we presented an overview of the most important techniques for database
programming in Section 10.1. Then we discussed the various approaches to data-
base application programming in Sections 10.2 to 10.4.

In Section 10.2, we discussed the general technique known as embedded SQL,
where the queries are part of the program source code. A precompiler is typically
used to extract SQL commands from the program for processing by the DBMS, and
replacing them with function calls to the DBMS compiled code. We presented an
overview of embedded SQL, using the C programming language as host language in
our examples. We also discussed the SQLJ technique for embedding SQL in Java
programs. The concepts of cursor (for embedded SQL) and iterator (for SQLJ) were
presented and illustrated by examples to show how they are used for looping over
the tuples in a query result, and extracting the attribute value into program vari-
ables for further processing.

In Section 10.3, we discussed how function call libraries can be used to access SQL
databases. This technique is more dynamic than embedding SQL, but requires
more complex programming because the attribute types and number in a query
result may be determined at runtime. An overview of the SQL/CLI standard was

340 Chapter 10 Introduction to SQL Programming Techniques

presented, with examples using C as the host language. We discussed some of the
functions in the SQL/CLI library, how queries are passed as strings, how query
parameters are assigned at runtime, and how results are returned to program vari-
ables. We then gave an overview of the JDBC class library, which is used with Java,
and discussed some of its classes and operations. In particular, the ResultSet class
is used to create objects that hold the query results, which can then be iterated over
by the next() operation. The get and set functions for retrieving attribute values
and setting parameter values were also discussed.

In Section 10.4, we gave a brief overview of stored procedures, and discussed
SQL/PSM as an example of a database programming language. Finally, we briefly
compared the three approaches in Section 10.5. It is important to note that we chose
to give a comparative overview of the three main approaches to database program-
ming, since studying a particular approach in depth is a topic that is worthy of its
own textbook.

Review Questions
 10.1. What is ODBC? How is it related to SQL/CLI?

 10.2. What is JDBC? Is it an example of embedded SQL or of using function calls?

 10.3. List the three main approaches to database programming. What are the
advantages and disadvantages of each approach?

 10.4. What is the impedance mismatch problem? Which of the three program-
ming approaches minimizes this problem?

 10.5. Describe the concept of a cursor and how it is used in embedded SQL.

 10.6. What is SQLJ used for? Describe the two types of iterators available in SQLJ.

Exercises
 10.7. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. Write a program segment to read a student’s name and print his or
her grade point average, assuming that A = 4, B = 3, C = 2, and D = 1 points.
Use embedded SQL with C as the host language.

 10.8. Repeat Exercise 10.7, but use SQLJ with Java as the host language.

 10.9. Consider the library relational database schema in Figure 6.6. Write a pro-
gram segment that retrieves the list of books that became overdue yesterday
and that prints the book title and borrower name for each. Use embedded
SQL with C as the host language.

 10.10. Repeat Exercise 10.9, but use SQLJ with Java as the host language.

 Selected Bibliography 341

 10.11. Repeat Exercises 10.7 and 10.9, but use SQL/CLI with C as the host lan-
guage.

 10.12. Repeat Exercises 10.7 and 10.9, but use JDBC with Java as the host language.

 10.13. Repeat Exercise 10.7, but write a function in SQL/PSM.

 10.14. Create a function in PSM that computes the median salary for the EMPLOYEE
table shown in Figure 5.5.

Selected Bibliography
There are many books that describe various aspects of SQL database programming.
For example, Sunderraman (2007) describes programming on the Oracle 10g
DBMS and Reese (1997) focuses on JDBC and Java programming. Many Web
resources are also available.

This page intentionally left blank

343

11
Web Database

Programming Using PHP

In the previous chapter, we gave an overview of data-
base programming techniques using traditional pro-

gramming languages, and we used the Java and C programming languages in our
examples. We now turn our attention to how databases are accessed from scripting
languages. Many Internet applications that provide Web interfaces to access infor-
mation stored in one or more databases use scripting languages. These languages
are often used to generate HTML documents, which are then displayed by the Web
browser for interaction with the user. In our presentation, we assume that the
reader is familiar with basic HTML concepts.

Basic HTML is useful for generating static Web pages with fixed text and other
objects, but most Internet applications require Web pages that provide interactive
features with the user. For example, consider the case of an airline customer who
wants to check the arrival time and gate information of a particular flight. The user
may enter information such as a date and flight number in certain fields of the Web
page. The Web interface will send this information to the application program,
which formulates and submits a query to the airline database server to retrieve the
information that the user needs. The database information is sent back to the Web
page for display. Such Web pages, where part of the information is extracted from
databases or other data sources, are called dynamic Web pages. The data extracted
and displayed each time will be for different flights and dates.

There are various techniques for programming dynamic features into Web pages.
We will focus on one technique here, which is based on using the PHP open source
server side scripting language. PHP originally stood for Personal Home Page, but
now stands for PHP Hypertext Processor. PHP has experienced widespread use. The
interpreters for PHP are provided free of charge and are written in the C language so

chapter 11

344 Chapter 11 Web Database Programming Using PHP

they are available on most computer platforms. A PHP interpreter provides a Hyper-
text Preprocessor, which will execute PHP commands in a text file and create the
desired HTML file. To access databases, a library of PHP functions needs to be
included in the PHP interpreter, as we will discuss in Section 11.3. PHP programs
are executed on the Web server computer. This is in contrast to some scripting lan-
guages, such as JavaScript, that are executed on the client computer. There are many
other popular scripting languages that can be used to access databases and create
dynamic Web pages, such as JavaScript, Ruby, Python, and PERL, to name a few.

This chapter is organized as follows. Section 11.1 gives a simple example to illustrate
how PHP can be used. Section 11.2 gives a general overview of the PHP language
and how it is used to program some basic functions for interactive Web pages. Sec-
tion 11.3 focuses on using PHP to interact with SQL databases through a library of
functions known as PEAR DB. Section 11.4 lists some of the additional technologies
associated with Java for Web and database programming (we already discussed
JDBC and SQLJ in Chapter 10). Finally, Section 11.5 contains a chapter summary.

11.1 A Simple PHP Example
PHP is an open source general-purpose scripting language. The interpreter engine
for PHP is written in the C programming language so it can be used on nearly all
types of computers and operating systems. PHP usually comes installed with the
UNIX operating system. For computer platforms with other operating systems
such as Windows, Linux, or Mac OS, the PHP interpreter can be downloaded from:
http://www.php.net. As with other scripting languages, PHP is particularly suited
for manipulation of text pages, and in particular for manipulating dynamic HTML
pages at the Web server computer. This is in contrast to JavaScript, which is down-
loaded with the Web pages to execute on the client computer.

PHP has libraries of functions for accessing databases stored under various types of
relational database systems such as Oracle, MySQL, SQLServer, and any system
that supports the ODBC standard (see Chapter 10). Under the three-tier architec-
ture (see Chapter 2), the DBMS would reside at the bottom-tier database server.
PHP would run at the middle-tier Web server, where the PHP program commands
would manipulate the HTML files to create the customized dynamic Web pages.
The HTML is then sent to the client tier for display and interaction with the user.

Consider the PHP example shown in Figure 11.1(a), which prompts a user to enter
the first and last name and then prints a welcome message to that user. The line
numbers are not part of the program code; they are used below for explanation
purposes only:

 1. Suppose that the file containing PHP script in program segment P1 is stored in
the following Internet location: http://www.myserver.com/example/greeting.php.
Then if a user types this address in the browser, the PHP interpreter would start
interpreting the code and produce the form shown in Figure 11.1(b). We will
explain how that happens as we go over the lines in code segment P1.

 11.1 A Simple PHP Example 345

 2. Line 0 shows the PHP start tag <?php, which indicates to the PHP inter-
preter engine that it should process all subsequent text lines until it encoun-
ters the PHP end tag ?>, shown on line 16. Text outside of these tags is
printed as is. This allows PHP code segments to be included within a larger
HTML file. Only the sections in the file between <?php and ?> are processed
by the PHP preprocessor.

 3. Line 1 shows one way of posting comments in a PHP program on a single
line started by //. Single-line comments can also be started with #, and end
at the end of the line in which they are entered. Multiple-line comments
start with /* and end with */.

 4. The auto-global predefined PHP variable $_POST (line 2) is an array that
holds all the values entered through form parameters. Arrays in PHP are

Enter your name:

SUBMIT NAME SUBMIT NAME

Enter your name:
(b) (c)

(d)

John Smith

Welcome, John Smith

(a)
 //Program Segment P1:
 0) <?php
 1) // Printing a welcome message if the user submitted their name
 // through the HTML form
 2) if ($_POST['user_name']) {
 3) print("Welcome, ") ;
 4) print($_POST['user_name']);
 5) }
 6) else {
 7) // Printing the form to enter the user name since no name has
 // been entered yet
 8) print <<<_HTML_
 9) <FORM method="post" action="$_SERVER['PHP_SELF']">
10) Enter your name: <input type="text" name="user_name">
11)

12) <INPUT type="submit" value="SUBMIT NAME">
13) </FORM>
14) _HTML_;
15) }
16) ?>

Figure 11.1
(a) PHP program segment for entering a greeting.
(b) Initial form displayed by PHP program segment.
(c) User enters name John Smith. (d) Form prints
welcome message for John Smith.

346 Chapter 11 Web Database Programming Using PHP

dynamic arrays, with no fixed number of elements. They can be numerically
indexed arrays whose indexes (positions) are numbered (0, 1, 2, …), or they
can be associative arrays whose indexes can be any string values. For exam-
ple, an associative array indexed based on color can have the indexes {“red”,
“blue”, “green”}. In this example, $_POST is associatively indexed by the
name of the posted value user_name that is specified in the name attribute of
the input tag on line 10. Thus $_POST['user_name'] will contain the value
typed in by the user. We will discuss PHP arrays further in Section 11.2.2.

 5. When the Web page at http://www.myserver.com/example/greeting.php is
first opened, the if condition in line 2 will evaluate to false because there is
no value yet in $_POST['user_name']. Hence, the PHP interpreter will
process lines 6 through 15, which create the text for an HTML file that dis-
plays the form shown in Figure 11.1(b). This is then displayed at the client
side by the Web browser.

 6. Line 8 shows one way of creating long text strings in an HTML file. We will
discuss other ways to specify strings later in this section. All text between an
opening <<<_HTML_ and a closing _HTML_; is printed into the HTML file as
is. The closing _HTML_; must be alone on a separate line. Thus, the text
added to the HTML file sent to the client will be the text between lines 9
and 13. This includes HTML tags to create the form shown in Figure 11.1(b).

 7. PHP variable names start with a $ sign and can include characters, num-
bers, and the underscore character _. The PHP auto-global (predefined)
variable $_SERVER (line 9) is an array that includes information about the
local server. The element $_SERVER['PHP_SELF'] in the array is the path
name of the PHP file currently being executed on the server. Thus, the action
attribute of the form tag (line 9) instructs the PHP interpreter to reprocess
the same file, once the form parameters are entered by the user.

 8. Once the user types the name John Smith in the text box and clicks on the
SUBMIT NAME button (Figure 11.1(c)), program segment P1 is repro-
cessed. This time, $_POST['user_name'] will include the string
"John Smith", so lines 3 and 4 will now be placed in the HTML file sent to
the client, which displays the message in Figure 11.1(d).

As we can see from this example, a PHP program can create two different HTML
commands depending on whether the user just started or whether they had already
submitted their name through the form. In general, a PHP program can create
numerous variations of HTML text in an HTML file at the server depending on the
particular conditional paths taken in the program. Hence, the HTML sent to the
client will be different depending on the interaction with the user. This is one way
in which PHP is used to create dynamic Web pages.

11.2 Overview of Basic Features of PHP
In this section we give an overview of a few of the features of PHP that are useful in
creating interactive HTML pages. Section 11.3 will focus on how PHP programs
can access databases for querying and updating. We cannot give a comprehensive

 11.2 Overview of Basic Features of PHP 347

discussion of PHP; there are many books that focus solely on PHP. Rather, we focus
on illustrating certain features of PHP that are particularly suited for creating
dynamic Web pages that contain database access commands. This section covers
some PHP concepts and features that will be needed when we discuss database
access in Section 11.3.

11.2.1 PHP Variables, Data Types, and Programming Constructs
PHP variable names start with the $ symbol and can include characters, letters, and
the underscore character (_). No other special characters are permitted. Variable
names are case sensitive, and the first character cannot be a number. Variables are
not typed. The values assigned to the variables determine their type. In fact, the
same variable can change its type once a new value is assigned to it. Assignment is
via the = operator.

Since PHP is directed toward text processing, there are several different types of
string values. There are also many functions available for processing strings. We
only discuss some basic properties of string values and variables here. Figure 11.2
illustrates some string values. There are three main ways to express strings and text:

 1. Single-quoted strings. Enclose the string between single quotes, as in lines
0, 1, and 2. If a single quote is needed within the string, use the escape char-
acter (\) (see line 2).

 2. Double-quoted strings. Enclose strings between double quotes as in
line 7. In this case, variable names appearing within the string are replaced
by the values that are currently stored in these variables. The interpreter
identifies variable names within double-quoted strings by their initial
character $ and replaces them with the value in the variable. This is known
as interpolating variables within strings. Interpolation does not occur in
single-quoted strings.

 3. Here documents. Enclose a part of a document between a <<<DOCNAME
and end it with a single line containing the document name DOCNAME.

 0) print 'Welcome to my Web site.';
 1) print 'I said to him, "Welcome Home"';
 2) print 'We\'ll now visit the next Web site';
 3) printf('The cost is $%.2f and the tax is $%.2f',

$cost, $tax) ;
 4) print strtolower('AbCdE');
 5) print ucwords(strtolower('JOHN smith'));
 6) print 'abc' . 'efg'
 7) print "send your email reply to: $email_address"
 8) print <<<FORM_HTML
 9) <FORM method="post" action="$_SERVER['PHP_SELF']">
10) Enter your name: <input type="text" name="user_name">
11) FORM_HTML

Figure 11.2
Illustrating basic PHP
string and text values.

348 Chapter 11 Web Database Programming Using PHP

DOCNAME can be any string as long as it used both to start and end the here
document. This is illustrated in lines 8 through 11 in Figure 11.2. Variables
are also interpolated by replacing them with their string values if they appear
inside here documents. This feature is used in a similar way to double-
quoted strings, but it is more convenient for multiple-line text.

 4. Single and double quotes. Single and double quotes used by PHP to enclose
strings should be straight quotes ("") on both sides of the string. The text
editor that creates these quotes should not produce curly opening and clos-
ing quotes (“ ”) around the string.

There is also a string concatenate operator specified by the period (.) symbol, as
illustrated in line 6 of Figure 11.2. There are many string functions. We only illus-
trate a couple of them here. The function strtolower changes the alphabetic char-
acters in the string to all lowercase, whereas the function ucwords capitalizes all the
words in a string. These are illustrated in lines 4 and 5 in Figure 11.2.

The general rule is to use single-quoted strings for literal strings that contain no
PHP program variables and the other two types (double-quoted strings and here
documents) when the values from variables need to be interpolated into the string.
For large blocks of multiline text, the program should use the here documents style
for strings.

PHP also has numeric data types for integers and floating points and generally fol-
lows the rules of the C programming language for processing these types. Numbers
can be formatted for printing into strings by specifying the number of digits that
follow the decimal point. A variation of the print function called printf (print
formatted) allows formatting of numbers within a string, as illustrated in line 3 of
Figure 11.2.

There are the standard programming language constructs of for-loops, while-loops,
and conditional if-statements. They are generally similar to their C language coun-
terparts. We will not discuss them here. Similarly, any value evaluates to true if used
as a Boolean expression except for numeric zero (0) and blank string, which evalu-
ate to false. There are also literal true and false values that can be assigned. The
comparison operators also generally follow C language rules. They are == (equal),
!= (not equal), > (greater than), >= (greater than or equal), < (less than),
and <= (less than or equal).

11.2.2 PHP Arrays
Arrays are very important in PHP, since they allow lists of elements. They are used
frequently in forms that employ pull-down menus. A single-dimensional array is
used to hold the list of choices in the pull-down menu. For database query results,
two-dimensional arrays are used, with the first dimension representing rows of a
table and the second dimension representing columns (attributes) within a row.
There are two main types of arrays: numeric and associative. We discuss each of
these in the context of single-dimensional arrays next.

 11.2 Overview of Basic Features of PHP 349

A numeric array associates a numeric index (or position or sequence number) with
each element in the array. Indexes are integer numbers that start at zero and grow
incrementally. An element in the array is referenced through its index. An
associative array provides pairs of (key => value) elements. The value of an element
is referenced through its key, and all key values in a particular array must be unique.
The element values can be strings or integers, or they can be arrays themselves, thus
leading to higher dimensional arrays.

Figure 11.3 gives two examples of array variables: $teaching and $courses. The
first array $teaching is associative (see line 0 in Figure 11.3), and each element
associates a course name (as key) with the name of the course instructor (as value).
There are three elements in this array. Line 1 shows how the array may be updated.
The first command in line 1 assigns a new instructor to the course ‘Graphics’ by
updating its value. Since the key value ‘Graphics’ already exists in the array, no new
element is created but the existing value is updated. The second command creates a
new element since the key value ‘Data Mining’ did not exist in the array before.
New elements are added at the end of the array.

If we only provide values (no keys) as array elements, the keys are automatically
numeric and numbered 0, 1, 2, … . This is illustrated in line 5 of Figure 11.3, by
the $courses array. Both associative and numeric arrays have no size limits. If
some value of another data type, say an integer, is assigned to a PHP variable that
was holding an array, the variable now holds the integer value and the array con-
tents are lost. Basically, most variables can be assigned to values of any data type
at any time.

There are several different techniques for looping through arrays in PHP. We illus-
trate two of these techniques in Figure 11.3. Lines 3 and 4 show one method of
looping through all the elements in an array using the foreach construct, and
printing the key and value of each element on a separate line. Lines 7 through 10
show how a traditional for-loop construct can be used. A built-in function count

Figure 11.3
Illustrating basic PHP array processing.

 0) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick',
 'Graphics' => 'Kam');
 1) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';
 2) sort($teaching);
 3) foreach ($teaching as $key => $value) {
 4) print " $key : $value\n";}
 5) $courses = array('Database', 'OS', 'Graphics', 'Data Mining');
 6) $alt_row_color = array('blue', 'yellow');
 7) for ($i = 0, $num = count($courses); i < $num; $i++) {
 8) print '<TR bgcolor="' . $alt_row_color[$i % 2] . '">';
 9) print "<TD>Course $i is</TD><TD>$course[$i]</TD></TR>\n";
10) }

350 Chapter 11 Web Database Programming Using PHP

(line 7) returns the current number of elements in the array, which is assigned to
the variable $num and used to control ending the loop.

The example in lines 7 through 10 also illustrates how an HTML table can be
displayed with alternating row colors, by setting the two colors in an array
$alt_row_color (line 8). Each time through the loop, the remainder function
$i % 2 switches from one row (index 0) to the next (index 1) (see line 8). The color
is assigned to the HTML bgcolor attribute of the <TR> (table row) tag.

The count function (line 7) returns the current number of elements in the array.
The sort function (line 2) sorts the array based on the element values in it (not the
keys). For associative arrays, each key remains associated with the same element
value after sorting. This does not occur when sorting numeric arrays. There are
many other functions that can be applied to PHP arrays, but a full discussion is
outside the scope of our presentation.

11.2.3 PHP Functions
As with other programming languages, functions can be defined in PHP to bet-
ter structure a complex program and to share common sections of code that can
be reused by multiple applications. The newer version of PHP, PHP5, also has
object-oriented features, but we will not discuss these here because we are focus-
ing on the basics of PHP. Basic PHP functions can have arguments that are
passed by value. Global variables can be accessed within functions. Standard
scope rules apply to variables that appear within a function and within the code
that calls the function.

We now give two simple examples to illustrate basic PHP functions. In Figure 11.4,
we show how we could rewrite the code segment P1 from Figure 11.1(a) using func-
tions. The code segment P1′ in Figure 11.4 has two functions: display_welcome()
(lines 0 to 3) and display_empty_form() (lines 5 to 13). Neither of these func-
tions has arguments; nor do they have return values. Lines 14 through 19 show how
we can call these functions to produce the same effect as the segment of code P1 in
Figure 11.1(a). As we can see in this example, functions can be used just to make the
PHP code better structured and easier to follow.

A second example is shown in Figure 11.5. Here we are using the $teaching array
introduced in Figure 11.3. The function course_instructor() in lines 0 to 8 in
Figure 11.5 has two arguments: $course (a string holding a course name) and
$teaching_assignments (an associative array holding course assignments, simi-
lar to the $teaching array shown in Figure 11.3). The function finds the name of
the instructor who teaches a particular course. Lines 9 to 14 in Figure 11.5 show
how this function may be used.

The function call in line 11 would return the string: Smith is teaching Database,
because the array entry with the key ‘Database’ has the value ‘Smith’ for instructor.
On the other hand, the function call on line 13 would return the string: there is no
Computer Architecture course because there is no entry in the array with the key

 11.2 Overview of Basic Features of PHP 351

Figure 11.4
Rewriting program segment P1 as P1′ using functions.

 //Program Segment P1′:
 0) function display_welcome() {
 1) print("Welcome, ") ;
 2) print($_POST['user_name']);
 3) }
 4)
 5) function display_empty_form(); {
 6) print <<<_HTML_
 7) <FORM method="post" action="$_SERVER['PHP_SELF']">
 8) Enter your name: <INPUT type="text" name="user_name">
 9)

10) <INPUT type="submit" value="Submit name">
11) </FORM>
12) _HTML_;
13) }
14) if ($_POST['user_name']) {
15) display_welcome();
16) }
17) else {
18) display_empty_form();
19) }

Figure 11.5
Illustrating a function with arguments and return value.

 0) function course_instructor ($course, $teaching_assignments) {
 1) if (array_key_exists($course, $teaching_assignments)) {
 2) $instructor = $teaching_assignments[$course];
 3) RETURN "$instructor is teaching $course";
 4) }
 5) else {
 6) RETURN "there is no $course course";
 7) }
 8) }
 9) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick',
 'Graphics' => 'Kam');
10) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';
11) $x = course_instructor('Database', $teaching);
12) print($x);
13) $x = course_instructor('Computer Architecture', $teaching);
14) print($x);

352 Chapter 11 Web Database Programming Using PHP

‘Computer Architecture’. A few comments about this example and about PHP
functions in general:

 ■ The built-in PHP array function array_key_exists($k, $a) returns true
if the value in variable $k exists as a key in the associative array in the vari-
able $a. In our example, it checks whether the $course value provided
exists as a key in the array $teaching_assignments (line 1 in Figure 11.5).

 ■ Function arguments are passed by value. Hence, in this example, the calls in
lines 11 and 13 could not change the array $teaching provided as argu-
ment for the call. The values provided in the arguments are passed (copied)
to the function arguments when the function is called.

 ■ Return values of a function are placed after the RETURN keyword. A function
can return any type. In this example, it returns a string type. Two different
strings can be returned in our example, depending on whether the $course
key value provided exists in the array or not.

 ■ Scope rules for variable names apply as in other programming languages.
Global variables outside of the function cannot be used unless they are referred
to using the built-in PHP array $GLOBALS. Basically, $GLOBALS['abc'] will
access the value in a global variable $abc defined outside the function. Other-
wise, variables appearing inside a function are local even if there is a global
variable with the same name.

The previous discussion gives a brief overview of PHP functions. Many details are
not discussed since it is not our goal to present PHP in detail.

11.2.4 PHP Server Variables and Forms
There are a number of built-in entries in a PHP auto-global built-in array variable
called $_SERVER that can provide the programmer with useful information about
the server where the PHP interpreter is running, as well as other information. These
may be needed when constructing the text in an HTML document (for example, see
line 7 in Figure 11.4). Here are some of these entries:

 1. $_SERVER['SERVER_NAME']. This provides the Web site name or the Uni-
form Resource Locator (URL) of the server computer where the PHP inter-
preter is running. For example, if the PHP interpreter is running on the
Web site http://www.uta.edu, then this string would be the value in
$_SERVER['SERVER_NAME'].

 2. $_SERVER['REMOTE_ADDRESS']. This is the IP (Internet Protocol) address
of the client user computer that is accessing the server; for example,
129.107.61.8.

 3. $_SERVER['REMOTE_HOST']. This is the Web site name (URL) of the client
user computer; for example, abc.uta.edu. In this case, the server will need to
translate the name into an IP address to access the client.

 4. $_SERVER['PATH_INFO']. This is the part of the URL address that comes
after a backslash (/) at the end of the URL.

 11.3 Overview of PHP Database Programming 353

 5. $_SERVER['QUERY_STRING']. This provides the string that holds parame-
ters in a URL after a question mark (?) at the end of the URL. This can hold
search parameters, for example.

 6. $_SERVER['DOCUMENT_ROOT']. This is the root directory that holds the
files on the Web server that are accessible to client users.

These and other entries in the $_SERVER array are usually needed when creating
the HTML file to be sent to the client for display.

Another important PHP auto-global built-in array variable is called $_POST. This
provides the programmer with input values submitted by the user through HTML
forms specified in the HTML <INPUT> tag and other similar tags. For example, in
Figure 11.4, line 14, the variable $_POST['user_name'] provides the programmer
with the value typed in by the user in the HTML form specified via the <INPUT> tag
on line 8 in Figure 11.4. The keys to this array are the names of the various input
parameters provided via the form, for example by using the name attribute of the
HTML <INPUT> tag as on line 8. When users enter data through forms, the data
values are stored in this array.

11.3 Overview of PHP Database Programming
There are various techniques for accessing a database through a programming lan-
guage. We discussed some of the techniques in Chapter 10, in the overviews of how
to access an SQL database using the C and Java programming languages. In particu-
lar, we discussed embedded SQL, JDBC, SQL/CLI (similar to ODBC), and SQLJ. In
this section we give an overview of how to access the database using the script lan-
guage PHP, which is suitable for creating Web interfaces for searching and updat-
ing databases, as well as dynamic Web pages.

There is a PHP database access function library that is part of PHP Extension and
Application Repository (PEAR), which is a collection of several libraries of func-
tions for enhancing PHP. The PEAR DB library provides functions for database
access. Many database systems can be accessed from this library, including Oracle,
MySQL, SQLite, and Microsoft SQLServer, among others.

We will discuss several functions that are part of PEAR DB in the context of some
examples. Section 11.3.1 shows how to connect to a database using PHP. Sec-
tion 11.3.2 discusses how data collected from HTML forms can be used to insert a
new record in a database table. Section 11.3.3 shows how retrieval queries can be
executed and have their results displayed within a dynamic Web page.

11.3.1 Connecting to a Database
To use the database functions in a PHP program, the PEAR DB library module
called DB.php must be loaded. In Figure 11.6, this is done in line 0 of the example.
The DB library functions can now be accessed using DB::<function_name>.
The function for connecting to a database is called DB::connect('string'),

354 Chapter 11 Web Database Programming Using PHP

where the string argument specifies the database information. The format for
'string' is:

<DBMS software>://<user account>:<password>@<database server>

In Figure 11.6, line 1 connects to the database that is stored using Oracle (specified
via the string oci8). The <DBMS software> portion of the 'string' specifies the
particular DBMS software package being connected to. Some of the DBMS software
packages that are accessible through PEAR DB are:

 ■ MySQL. Specified as mysql for earlier versions and mysqli for later ver-
sions starting with version 4.1.2.

 ■ Oracle. Specified as oc8i for versions 7, 8, and 9. This is used in line 1 of
Figure 11.6.

 ■ SQLite. Specified as sqlite.

 ■ Microsoft SQL Server. Specified as mssql.

 ■ Mini SQL. Specified as msql.

 ■ Informix. Specified as ifx.

 ■ Sybase. Specified as sybase.

 ■ Any ODBC-compliant system. Specified as odbc.

The above is not a comprehensive list.

 0) require 'DB.php';
 1) $d = DB::connect('oci8://acct1:pass12@www.host.com/db1');
 2) if (DB::isError($d)) { die("cannot connect − " . $d->getMessage());}
 ...
 3) $q = $d->query("CREATE TABLE EMPLOYEE
 4) (Emp_id INT,
 5) Name VARCHAR(15),
 6) Job VARCHAR(10),
 7) Dno INT);");
 8) if (DB::isError($q)) { die("table creation not successful − " .
 $q->getMessage()); }
 ...
 9) $d->setErrorHandling(PEAR_ERROR_DIE);
 ...
10) $eid = $d->nextID('EMPLOYEE');
11) $q = $d->query("INSERT INTO EMPLOYEE VALUES
12) ($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno'])");
 ...
13) $eid = $d->nextID('EMPLOYEE');
14) $q = $d->query('INSERT INTO EMPLOYEE VALUES (?, ?, ?, ?)',
15) array($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno']));

Figure 11.6
Connecting to a database, creating a table, and inserting a record.

 11.3 Overview of PHP Database Programming 355

Following the <DB software> in the string argument passed to DB::connect is
the separator :// followed by the user account name <user account> followed by
the separator : and the account password <password>. These are followed by the
separator @ and the server name and directory <database server> where the
database is stored.

In line 1 of Figure 11.6, the user is connecting to the server at www.host.com/db1
using the account name acct1 and password pass12 stored under the Oracle
DBMS oci8. The whole string is passed using DB::connect. The connection
information is kept in the database connection variable $d, which is used whenever
an operation to this particular database is applied.

Checking for errors. Line 2 in Figure 11.6 shows how to check whether the
connection to the database was established successfully or not. PEAR DB has a
function DB::isError, which can determine whether any database access oper-
ation was successful or not. The argument to this function is the database con-
nection variable ($d in this example). In general, the PHP programmer can
check after every database call to determine whether the last database operation
was successful or not, and terminate the program (using the die function) if it
was not successful. An error message is also returned from the database via the
operation $d->get_message(). This can also be displayed as shown in line 2 of
Figure 11.6.

Submitting queries and other SQL statements. In general, most SQL com-
mands can be sent to the database once a connection is established by using the
query function. The function $d->query takes an SQL command as its string argu-
ment and sends it to the database server for execution. In Figure 11.6, lines 3 to 7
send a CREATE TABLE command to create a table called EMPLOYEE with four attri-
butes. Whenever a query or SQL statement is executed, the result of the query is
assigned to a query variable, which is called $q in our example. Line 8 checks
whether the query was executed successfully or not.

The PHP PEAR DB library offers an alternative to having to check for errors after
every database command. The function

$d–>setErrorHandling(PEAR_ERROR_DIE)

will terminate the program and print the default error messages if any subsequent
errors occur when accessing the database through connection $d (see line 9 in
Figure 11.6).

11.3.2 Collecting Data from Forms
and Inserting Records

It is common in database applications to collect information through HTML or
other types of Web forms. For example, when purchasing an airline ticket or apply-
ing for a credit card, the user has to enter personal information such as name,
address, and phone number. This information is typically collected and stored in a
database record on a database server.

356 Chapter 11 Web Database Programming Using PHP

Lines 10 through 12 in Figure 11.6 illustrate how this may be done. In this exam-
ple, we omitted the code for creating the form and collecting the data, which can
be a variation of the example in Figure 11.1. We assume that the user entered valid
values in the input parameters called emp_name, emp_job, and emp_dno. These
would be accessible via the PHP auto-global array $_POST as discussed at the end
of Section 11.2.4.

In the SQL INSERT command shown on lines 11 and 12 in Figure 11.6, the array
entries $POST['emp_name'], $POST['emp_job'], and $POST['emp_dno'] will
hold the values collected from the user through the input form of HTML. These are
then inserted as a new employee record in the EMPLOYEE table.

This example also illustrates another feature of PEAR DB. It is common in some
applications to create a unique record identifier for each new record inserted into
the database.1

PHP has a function $d–>nextID to create a sequence of unique values for a partic-
ular table. In our example, the field Emp_id of the EMPLOYEE table (see Figure 11.6,
line 4) is created for this purpose. Line 10 shows how to retrieve the next unique
value in the sequence for the EMPLOYEE table and insert it as part of the new record
in lines 11 and 12.

The code for insert in lines 10 to 12 in Figure 11.6 may allow malicious strings to be
entered that can alter the INSERT command. A safer way to do inserts and other
queries is through the use of placeholders (specified by the ? symbol). An example
is illustrated in lines 13 to 15, where another record is to be inserted. In this form of
the $d->query() function, there are two arguments. The first argument is the SQL
statement, with one or more ? symbols (placeholders). The second argument is an
array, whose element values will be used to replace the placeholders in the order
they are specified (see lines 13 to 15 in Figure 11.6).

11.3.3 Retrieval Queries from Database Tables
We now give three examples of retrieval queries through PHP, shown in Fig-
ure 11.7. The first few lines 0 to 3 establish a database connection $d and set the
error handling to the default, as we discussed in the previous section. The first
query (lines 4 to 7) retrieves the name and department number of all employee
records. The query variable $q is used to refer to the query result. A while-loop to
go over each row in the result is shown in lines 5 to 7. The function $q->fetchRow()
in line 5 serves to retrieve the next record in the query result and to control the
loop. The looping starts at the first record.

The second query example is shown in lines 8 to 13 and illustrates a dynamic
query. In this query, the conditions for selection of rows are based on values
input by the user. Here we want to retrieve the names of employees who have a

1This would be similar to the system-generated OID discussed in Chapter 12 for object and object-rela-
tional database systems.

 11.3 Overview of PHP Database Programming 357

specific job and work for a particular department. The particular job and
department number are entered through a form in the array variables
$POST['emp_job'] and $POST['emp_dno'] . If the user had entered
‘Engineer’ for the job and 5 for the department number, the query would select
the names of all engineers who worked in department 5. As we can see, this is a
dynamic query whose results differ depending on the choices that the user
enters as input. We used two ? placeholders in this example, as discussed at the
end of Section 11.3.2.

The last query (lines 14 to 17) shows an alternative way of specifying a query and
looping over its rows. In this example, the function $d=>getAll holds all the
records in a query result in a single variable, called $allresult. To loop over the
individual records, a foreach loop can be used, with the row variable $r iterating
over each row in $allresult.2

As we can see, PHP is suited for both database access and creating dynamic
Web pages.

 0) require 'DB.php';
 1) $d = DB::connect('oci8://acct1:pass12@www.host.com/dbname');
 2) if (DB::isError($d)) { die("cannot connect − " . $d->getMessage()); }
 3) $d->setErrorHandling(PEAR_ERROR_DIE);
 ...
 4) $q = $d->query('SELECT Name, Dno FROM EMPLOYEE');
 5) while ($r = $q->fetchRow()) {
 6) print "employee $r[0] works for department $r[1] \n" ;
 7) }
 ...
 8) $q = $d->query('SELECT Name FROM EMPLOYEE WHERE Job = ? AND Dno = ?',
 9) array($_POST['emp_job'], $_POST['emp_dno']));
10) print "employees in dept $_POST['emp_dno'] whose job is
 $_POST['emp_job']: \n"
11) while ($r = $q->fetchRow()) {
12) print "employee $r[0] \n" ;
13) }
 ...
14) $allresult = $d->getAll('SELECT Name, Job, Dno FROM EMPLOYEE');
15) foreach ($allresult as $r) {
16) print "employee $r[0] has job $r[1] and works for department $r[2] \n" ;
17) }
 ...

Figure 11.7
Illustrating database retrieval queries.

2The $r variable is similar to the cursors and iterator variables discussed in Chapters 10 and 12.

358 Chapter 11 Web Database Programming Using PHP

11.4 Brief Overview of Java Technologies
for Database Web Programming

The parts of the PHP scripting language that we discussed run on the application
server and serve as a conduit that collects client user input through forms, formu-
lates database queries and submits them to the database server, and then creates
dynamic HTML Web pages to display query results. The Java environment has
components that run on the server and other components that can run on the client
machine. It also has standards for exchanging data objects. We briefly discuss some
of these components here that are related to Web and database access. We already
discussed JDBC and SQLJ in some detail in Chapter 10.

Java Servlets. Servlets are Java objects that can reside on the Web server
machine and manage interactions with the client. They can store information
that was submitted by the client during a session, so that this information can
be used to generate database queries. Servlet objects can also store query results
so that parts of these results can be formatted as HTML and sent to the client
for display. The servlet object can maintain all the information produced dur-
ing a particular client interaction until the client session is terminated.

Java Server Pages (JSP). This allows scripting at the server to produce dynamic Web
pages to be sent at the client in a manner somewhat similar to PHP. However, it is
associated with the Java language and the scripting can be combined with Java code.

JavaScript. JavaScript is a scripting language that is different from the Java
programming language and was developed separately. It is widely used in Web
applications, and it can run on the client computer or on the server.

Java Script Object Notation (JSON). This is a text-based representation of
data objects, so that data can be formatted in JSON and exchanged between
clients and servers over the Web in text format. It can be considered as an alter-
native to XML (see Chapter 13) and represents objects using attribute-value
pairs. JSON has also been adopted as the data model by some newer database
systems known as NOSQL systems, such as MongoDB (see Chapter 24).

11.5 Summary
In this chapter, we gave an overview of how to convert some structured data from
databases into elements to be entered or displayed on a Web page. We focused on
the PHP scripting language, which is becoming very popular for Web database pro-
gramming. Section 11.1 presented some PHP basics for Web programming through
a simple example. Section 11.2 gave some of the basics of the PHP language, includ-
ing its array and string data types that are used extensively. Section 11.3 presented
an overview of how PHP can be used to specify various types of database com-
mands, including creating tables, inserting new records, and retrieving database
records. PHP runs at the server computer in comparison to some other scripting
languages that run on the client computer. Section 11.4 introduced some of the
technologies associated with Java that can be used in similar contexts.

 Selected Bibliography 359

We gave only a very basic introduction to PHP. There are many books as well as
many Web sites devoted to introductory and advanced PHP programming. Many
libraries of functions also exist for PHP, as it is an open source product.

Review Questions
 11.1. Why are scripting languages popular for programming Web applications?

Where in the three-tier architecture does a PHP program execute? Where
does a JavaScript program execute?

 11.2. What type of programming language is PHP?

 11.3. Discuss the different ways of specifying strings in PHP.

 11.4. Discuss the different types of arrays in PHP.

 11.5. What are PHP auto-global variables? Give some examples of PHP auto-
global arrays, and discuss how each is typically used.

 11.6. What is PEAR? What is PEAR DB?

 11.7. Discuss the main functions for accessing a database in PEAR DB, and how
each is used.

 11.8. Discuss the different ways for looping over a query result in PHP.

 11.9. What are placeholders? How are they used in PHP database programming?

Exercises
 11.10. Consider the LIBRARY database schema shown in Figure 4.6. Write PHP

code to create the tables of this schema.

 11.11. Write a PHP program that creates Web forms for entering the information
about a new BORROWER entity. Repeat for a new BOOK entity.

 11.12. Write PHP Web interfaces for the queries specified in Exercise 6.18.

Selected Bibliography
There are many sources for PHP programming, both in print and on the Web. We
give two books as examples. A very good introduction to PHP is given in Sklar
(2005). For advanced Web site development, the book by Schlossnagle (2005) pro-
vides many detailed examples. Nixon (2014) has a popular book on web program-
ming that covers PHP, Javascript, Jquery, CSS and HTML5.

This page intentionally left blank

Object, Object-Relational, and
XML: Concepts, Models,

Languages, and Standards

part 5

This page intentionally left blank

363

12
Object and Object-Relational

Databases

In this chapter, we discuss the features of object-
oriented data models and show how some of these

features have been incorporated in relational database systems and the SQL standard.
Some features of object data models have also been incorporated into the data mod-
els of newer types of database systems, known as NOSQL systems (see Chapter 24).
In addition, the XML model (see Chapter 13) has similarities to the object model.
So an introduction to the object model will give a good perspective on many of the
recent advances in database technology. Database systems that were based on the
object data model were known originally as object-oriented databases (OODBs) but
are now referred to as object databases (ODBs).Traditional data models and sys-
tems, such as network, hierarchical, and relational have been quite successful in
developing the database technologies required for many traditional business data-
base applications. However, they have certain shortcomings when more complex
database applications must be designed and implemented—for example, databases
for engineering design and manufacturing (CAD/CAM and CIM1), biological and
other sciences, telecommunications, geographic information systems, and multi-
media.2 These ODBs were developed for applications that have requirements
requiring more complex structures for stored objects. A key feature of object data-
bases is the power they give the designer to specify both the structure of complex
objects and the operations that can be applied to these objects.

chapter 12

1Computer-aided design/computer-aided manufacturing and computer-integrated manufacturing.
2Multimedia databases must store various types of multimedia objects, such as video, audio, images,
graphics, and documents (see Chapter 26).

364 Chapter 12 Object and Object-Relational Databases

Another reason for the creation of object-oriented databases is the vast increase in
the use of object-oriented programming languages for developing software applica-
tions. Databases are fundamental components in many software systems, and tradi-
tional databases are sometimes difficult to use with software applications that are
developed in an object-oriented programming language such as C++ or Java. Object
databases are designed so they can be directly—or seamlessly—integrated with soft-
ware that is developed using object-oriented programming languages.

Relational DBMS (RDBMS) vendors have also recognized the need for incorporat-
ing features that were proposed for object databases, and newer versions of rela-
tional systems have incorporated many of these features. This has led to database
systems that are characterized as object-relational or ORDBMSs. A recent version
of the SQL standard (2008) for RDBMSs, known as SQL/Foundation, includes
many of these features, which were originally known as SQL/Object and have now
been merged into the main SQL specification.

Although many experimental prototypes and commercial object-oriented database
systems have been created, they have not found widespread use because of the pop-
ularity of relational and object-relational systems. The experimental prototypes
included the Orion system developed at MCC, OpenOODB at Texas Instruments,
the Iris system at Hewlett-Packard laboratories, the Ode system at AT&T Bell Labs,
and the ENCORE/ObServer project at Brown University. Commercially available
systems included GemStone Object Server of GemStone Systems, ONTOS DB
of Ontos, Objectivity/DB of Objectivity Inc., Versant Object Database and
FastObjects by Versant Corporation (and Poet), ObjectStore of Object Design, and
Ardent Database of Ardent.

As commercial object DBMSs became available, the need for a standard model and
language was recognized. Because the formal procedure for approval of standards
normally takes a number of years, a consortium of object DBMS vendors and users,
called ODMG, proposed a standard whose current specification is known as the
ODMG 3.0 standard.

Object-oriented databases have adopted many of the concepts that were developed
originally for object-oriented programming languages.3 In Section 12.1, we describe
the key concepts utilized in many object database systems and that were later incor-
porated into object-relational systems and the SQL standard. These include object
identity, object structure and type constructors, encapsulation of operations, and the
definition of methods as part of class declarations, mechanisms for storing objects
in a database by making them persistent, and type and class hierarchies and inheri-
tance. Then, in Section 12.2 we see how these concepts have been incorporated into
the latest SQL standards, leading to object-relational databases. Object features
were originally introduced in SQL:1999, and then updated in SQL:2008. In Sec-
tion 12.3, we turn our attention to “pure” object database standards by presenting
features of the object database standard ODMG 3.0 and the object definition

3Similar concepts were also developed in the fields of semantic data modeling and knowledge
representation.

 12.1 Overview of Object Database Concepts 365

language ODL. Section 12.4 presents an overview of the database design process for
object databases. Section 12.5 discusses the object query language (OQL), which is
part of the ODMG 3.0 standard. In Section 12.6, we discuss programming language
bindings, which specify how to extend object-oriented programming languages to
include the features of the object database standard. Section 12.7 summarizes the
chapter. Sections 12.3 through 12.6 may be left out if a less thorough introduction
to object databases is desired.

12.1 Overview of Object Database Concepts

12.1.1 Introduction to Object-Oriented Concepts and Features
The term object-oriented—abbreviated OO or O-O—has its origins in OO pro-
gramming languages, or OOPLs. Today OO concepts are applied in the areas of
databases, software engineering, knowledge bases, artificial intelligence, and
computer systems in general. OOPLs have their roots in the SIMULA language,
which was proposed in the late 1960s. The programming language Smalltalk,
developed at Xerox PARC4 in the 1970s, was one of the first languages to explic-
itly incorporate additional OO concepts, such as message passing and inheri-
tance. It is known as a pure OO programming language, meaning that it was
explicitly designed to be object-oriented. This contrasts with hybrid OO pro-
gramming languages, which incorporate OO concepts into an already existing
language. An example of the latter is C++, which incorporates OO concepts into
the popular C programming language.

An object typically has two components: state (value) and behavior (operations). It
can have a complex data structure as well as specific operations defined by the pro-
grammer.5 Objects in an OOPL exist only during program execution; therefore,
they are called transient objects. An OO database can extend the existence of objects
so that they are stored permanently in a database, and hence the objects become
persistent objects that exist beyond program termination and can be retrieved later
and shared by other programs. In other words, OO databases store persistent
objects permanently in secondary storage and allow the sharing of these objects
among multiple programs and applications. This requires the incorporation of
other well-known features of database management systems, such as indexing
mechanisms to efficiently locate the objects, concurrency control to allow object
sharing among concurrent programs, and recovery from failures. An OO database
system will typically interface with one or more OO programming languages to
provide persistent and shared object capabilities.

The internal structure of an object in OOPLs includes the specification of instance
variables, which hold the values that define the internal state of the object. An
instance variable is similar to the concept of an attribute in the relational model,

4Palo Alto Research Center, Palo Alto, California.
5Objects have many other characteristics, as we discuss in the rest of this chapter.

366 Chapter 12 Object and Object-Relational Databases

except that instance variables may be encapsulated within the object and thus are
not necessarily visible to external users. Instance variables may also be of arbitrarily
complex data types. Object-oriented systems allow definition of the operations or
functions (behavior) that can be applied to objects of a particular type. In fact, some
OO models insist that all operations a user can apply to an object must be pre-
defined. This forces a complete encapsulation of objects. This rigid approach has
been relaxed in most OO data models for two reasons. First, database users often
need to know the attribute names so they can specify selection conditions on the
attributes to retrieve specific objects. Second, complete encapsulation implies that
any simple retrieval requires a predefined operation, thus making ad hoc queries
difficult to specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first part,
called the signature or interface of the operation, specifies the operation name and
arguments (or parameters). The second part, called the method or body, specifies
the implementation of the operation, usually written in some general-purpose pro-
gramming language. Operations can be invoked by passing a message to an object,
which includes the operation name and the parameters. The object then executes
the method for that operation. This encapsulation permits modification of the
internal structure of an object, as well as the implementation of its operations, with-
out the need to disturb the external programs that invoke these operations. Hence,
encapsulation provides a form of data and operation independence (see Chapter 2).

Another key concept in OO systems is that of type and class hierarchies and inheri-
tance. This permits specification of new types or classes that inherit much of their
structure and/or operations from previously defined types or classes. This makes it
easier to develop the data types of a system incrementally and to reuse existing type
definitions when creating new types of objects.

One problem in early OO database systems involved representing relationships
among objects. The insistence on complete encapsulation in early OO data models
led to the argument that relationships should not be explicitly represented, but
should instead be described by defining appropriate methods that locate related
objects. However, this approach does not work very well for complex databases
with many relationships because it is useful to identify these relationships and make
them visible to users. The ODMG object database standard has recognized this
need and it explicitly represents binary relationships via a pair of inverse references,
as we will describe in Section 12.3.

Another OO concept is operator overloading, which refers to an operation’s ability
to be applied to different types of objects; in such a situation, an operation name
may refer to several distinct implementations, depending on the type of object it is
applied to. This feature is also called operator polymorphism. For example, an oper-
ation to calculate the area of a geometric object may differ in its method (imple-
mentation), depending on whether the object is of type triangle, circle, or rectangle.
This may require the use of late binding of the operation name to the appropriate
method at runtime, when the type of object to which the operation is applied
becomes known.

 12.1 Overview of Object Database Concepts 367

In the next several sections, we discuss in some detail the main characteristics of
object databases. Section 12.1.2 discusses object identity; Section 12.1.3 shows
how the types for complex-structured objects are specified via type constructors;
Section 12.1.4 discusses encapsulation and persistence; and Section 12.1.5 pres-
ents inheritance concepts. Section 12.1.6 discusses some additional OO con-
cepts, and Section 12.1.7 gives a summary of all the OO concepts that we
introduced. In Section 12.2, we show how some of these concepts have been
incorporated into the SQL:2008 standard for relational databases. Then in Sec-
tion 12.3, we show how these concepts are realized in the ODMG 3.0 object data-
base standard.

12.1.2 Object Identity, and Objects versus Literals
One goal of an ODB is to maintain a direct correspondence between real-world
and database objects so that objects do not lose their integrity and identity and
can easily be identified and operated upon. Hence, a unique identity is assigned
to each independent object stored in the database. This unique identity is typi-
cally implemented via a unique, system-generated object identifier (OID). The
value of an OID may not be visible to the external user but is used internally by
the system to identify each object uniquely and to create and manage interobject
references. The OID can be assigned to program variables of the appropriate type
when needed.

The main property required of an OID is that it be immutable; that is, the OID
value of a particular object should not change. This preserves the identity of the
real-world object being represented. Hence, an ODMS must have some mechanism
for generating OIDs and preserving the immutability property. It is also desirable
that each OID be used only once; that is, even if an object is removed from the data-
base, its OID should not be assigned to another object. These two properties imply
that the OID should not depend on any attribute values of the object, since the
value of an attribute may be changed or corrected. We can compare this with the
relational model, where each relation must have a primary key attribute whose
value identifies each tuple uniquely. If the value of the primary key is changed, the
tuple will have a new identity, even though it may still represent the same real-
world object. Alternatively, a real-world object may have different names for key
attributes in different relations, making it difficult to ascertain that the keys repre-
sent the same real-world object (for example, using the Emp_id of an EMPLOYEE in
one relation and the Ssn in another).

It is also inappropriate to base the OID on the physical address of the object in stor-
age, since the physical address can change after a physical reorganization of the
database. However, some early ODMSs have used the physical address as the OID
to increase the efficiency of object retrieval. If the physical address of the object
changes, an indirect pointer can be placed at the former address, which gives the
new physical location of the object. It is more common to use long integers as OIDs
and then to use some form of hash table to map the OID value to the current physi-
cal address of the object in storage.

368 Chapter 12 Object and Object-Relational Databases

Some early OO data models required that everything—from a simple value to a
complex object—was represented as an object; hence, every basic value, such as an
integer, string, or Boolean value, has an OID. This allows two identical basic values
to have different OIDs, which can be useful in some cases. For example, the integer
value 50 can sometimes be used to mean a weight in kilograms and at other times to
mean the age of a person. Then, two basic objects with distinct OIDs could be cre-
ated, but both objects would have the integer 50 as their value. Although useful as a
theoretical model, this is not very practical, since it leads to the generation of too
many OIDs. Hence, most ODBs allow for the representation of both objects and
literals (or values). Every object must have an immutable OID, whereas a literal
value has no OID and its value just stands for itself. Thus, a literal value is typically
stored within an object and cannot be referenced from other objects. In many sys-
tems, complex structured literal values can also be created without having a corre-
sponding OID if needed.

12.1.3 Complex Type Structures for Objects and Literals
Another feature of ODBs is that objects and literals may have a type structure of
arbitrary complexity in order to contain all of the necessary information that
describes the object or literal. In contrast, in traditional database systems, informa-
tion about a complex object is often scattered over many relations or records, lead-
ing to loss of direct correspondence between a real-world object and its database
representation. In ODBs, a complex type may be constructed from other types by
nesting of type constructors. The three most basic constructors are atom, struct (or
tuple), and collection.

 1. One type constructor has been called the atom constructor, although this
term is not used in the latest object standard. This includes the basic built-in
data types of the object model, which are similar to the basic types in many
programming languages: integers, strings, floating-point numbers, enumer-
ated types, Booleans, and so on. These basic data types are called single-
valued or atomic types, since each value of the type is considered an atomic
(indivisible) single value.

 2. A second type constructor is referred to as the struct (or tuple) constructor.
This can create standard structured types, such as the tuples (record types)
in the basic relational model. A structured type is made up of several com-
ponents and is also sometimes referred to as a compound or composite type.
More accurately, the struct constructor is not considered to be a type, but
rather a type generator, because many different structured types can be cre-
ated. For example, two different structured types that can be created are:
struct Name<FirstName: string, MiddleInitial: char, LastName: string>, and
struct CollegeDegree<Major: string, Degree: string, Year: date>. To create
complex nested type structures in the object model, the collection type con-
structors are needed, which we discuss next. Notice that the type construc-
tors atom and struct are the only ones available in the original (basic)
relational model.

 12.1 Overview of Object Database Concepts 369

 3. Collection (or multivalued) type constructors include the set(T), list(T),
bag(T), array(T), and dictionary(K,T) type constructors. These allow part
of an object or literal value to include a collection of other objects or values
when needed. These constructors are also considered to be type generators
because many different types can be created. For example, set(string),
set(integer), and set(Employee) are three different types that can be created
from the set type constructor. All the elements in a particular collection
value must be of the same type. For example, all values in a collection of type
set(string) must be string values.

The atom constructor is used to represent all basic atomic values, such as integers,
real numbers, character strings, Booleans, and any other basic data types that the
system supports directly. The tuple constructor can create structured values and
objects of the form <a1:i1, a2:i2, … , an:in>, where each aj is an attribute name6 and
each ij is a value or an OID.

The other commonly used constructors are collectively referred to as collection
types but have individual differences among them. The set constructor will create
objects or literals that are a set of distinct elements {i1, i2, … , in}, all of the same
type. The bag constructor (also called a multiset) is similar to a set except that the
elements in a bag need not be distinct. The list constructor will create an ordered list
[i1, i2, … , in] of OIDs or values of the same type. A list is similar to a bag except that
the elements in a list are ordered, and hence we can refer to the first, second, or jth
element. The array constructor creates a single-dimensional array of elements of
the same type. The main difference between array and list is that a list can have an
arbitrary number of elements whereas an array typically has a maximum size.
Finally, the dictionary constructor creates a collection of key-value pairs (K, V),
where the value of a key K can be used to retrieve the corresponding value V.

The main characteristic of a collection type is that its objects or values will be a col-
lection of objects or values of the same type that may be unordered (such as a set or a
bag) or ordered (such as a list or an array). The tuple type constructor is often
called a structured type, since it corresponds to the struct construct in the C and
C++ programming languages.

An object definition language (ODL)7 that incorporates the preceding type con-
structors can be used to define the object types for a particular database application.
In Section 12.3 we will describe the standard ODL of ODMG, but first we introduce
the concepts gradually in this section using a simpler notation. The type construc-
tors can be used to define the data structures for an OO database schema. Fig-
ure 12.1 shows how we may declare EMPLOYEE and DEPARTMENT types.

In Figure 12.1, the attributes that refer to other objects—such as Dept of EMPLOYEE
or Projects of DEPARTMENT—are basically OIDs that serve as references to other
objects to represent relationships among the objects. For example, the attribute Dept

6Also called an instance variable name in OO terminology.
7This corresponds to the DDL (data definition language) of the database system (see Chapter 2).

370 Chapter 12 Object and Object-Relational Databases

of EMPLOYEE is of type DEPARTMENT and hence is used to refer to a specific
DEPARTMENT object (the DEPARTMENT object where the employee works). The
value of such an attribute would be an OID for a specific DEPARTMENT object. A
binary relationship can be represented in one direction, or it can have an inverse
reference. The latter representation makes it easy to traverse the relationship in both
directions. For example, in Figure 12.1 the attribute Employees of DEPARTMENT has
as its value a set of references (that is, a set of OIDs) to objects of type EMPLOYEE;
these are the employees who work for the DEPARTMENT. The inverse is the refer-
ence attribute Dept of EMPLOYEE. We will see in Section 12.3 how the ODMG stan-
dard allows inverses to be explicitly declared as relationship attributes to ensure
that inverse references are consistent.

12.1.4 Encapsulation of Operations
and Persistence of Objects

Encapsulation of Operations. The concept of encapsulation is one of the main
characteristics of OO languages and systems. It is also related to the concepts of
abstract data types and information hiding in programming languages. In tradi-
tional database models and systems this concept was not applied, since it is cus-
tomary to make the structure of database objects visible to users and external
programs. In these traditional models, a number of generic database operations

define type EMPLOYEE
 tuple (Fname: string;
 Minit : char;
 Lname: string;
 Ssn: string;
 Birth_date: DATE;
 Address: string;
 Sex: char;
 Salary: float;
 Supervisor: EMPLOYEE;
 Dept: DEPARTMENT;
define type DATE
 tuple (Year: integer;
 Month: integer;
 Day: integer;);
define type DEPARTMENT
 tuple (Dname: string;
 Dnumber: integer;
 Mgr: tuple (Manager: EMPLOYEE;
 Start_date: DATE;);
 Locations: set(string);
 Employees: set(EMPLOYEE);
 Projects: set(PROJECT););

Figure 12.1
Specifying the object
types EMPLOYEE,
DATE, and
DEPARTMENT using
type constructors.

 12.1 Overview of Object Database Concepts 371

are applicable to objects of all types. For example, in the relational model, the oper-
ations for selecting, inserting, deleting, and modifying tuples are generic and may
be applied to any relation in the database. The relation and its attributes are visible
to users and to external programs that access the relation by using these opera-
tions. The concept of encapsulation is applied to database objects in ODBs by
defining the behavior of a type of object based on the operations that can be exter-
nally applied to objects of that type. Some operations may be used to create (insert)
or destroy (delete) objects; other operations may update the object state; and oth-
ers may be used to retrieve parts of the object state or to apply some calculations.
Still other operations may perform a combination of retrieval, calculation, and
update. In general, the implementation of an operation can be specified in a
 general-purpose programming language that provides flexibility and power in
defining the operations.

The external users of the object are only made aware of the interface of the oper-
ations, which defines the name and arguments (parameters) of each operation.
The implementation is hidden from the external users; it includes the definition
of any hidden internal data structures of the object and the implementation of the
operations that access these structures. The interface part of an operation is
sometimes called the signature, and the operation implementation is sometimes
called the method.

For database applications, the requirement that all objects be completely encapsu-
lated is too stringent. One way to relax this requirement is to divide the structure of
an object into visible and hidden attributes (instance variables). Visible attributes
can be seen by and are directly accessible to the database users and programmers
via the query language. The hidden attributes of an object are completely encapsu-
lated and can be accessed only through predefined operations. Most ODMSs
employ high-level query languages for accessing visible attributes. In Section 12.5
we will describe the OQL query language that is proposed as a standard query lan-
guage for ODBs.

The term class is often used to refer to a type definition, along with the definitions
of the operations for that type.8 Figure 12.2 shows how the type definitions in Fig-
ure 12.1 can be extended with operations to define classes. A number of operations
are declared for each class, and the signature (interface) of each operation is
included in the class definition. A method (implementation) for each operation
must be defined elsewhere using a programming language. Typical operations
include the object constructor operation (often called new), which is used to create
a new object, and the destructor operation, which is used to destroy (delete) an
object. A number of object modifier operations can also be declared to modify the
states (values) of various attributes of an object. Additional operations can retrieve
information about the object.

8This definition of class is similar to how it is used in the popular C++ programming language. The
ODMG standard uses the word interface in addition to class (see Section 12.3). In the EER model, the
term class was used to refer to an object type, along with the set of all objects of that type (see
Chapter 8).

372 Chapter 12 Object and Object-Relational Databases

An operation is typically applied to an object by using the dot notation. For exam-
ple, if d is a reference to a DEPARTMENT object, we can invoke an operation such as
no_of_emps by writing d.no_of_emps. Similarly, by writing d.destroy_dept, the object
referenced by d is destroyed (deleted). The only exception is the constructor opera-
tion, which returns a reference to a new DEPARTMENT object. Hence, it is custom-
ary in some OO models to have a default name for the constructor operation that is
the name of the class itself, although this was not used in Figure 12.2.9 The dot notation
is also used to refer to attributes of an object—for example, by writing d.Dnumber or
d.Mgr_Start_date.

define class EMPLOYEE
 type tuple (Fname: string;
 Minit: char;
 Lname: string;
 Ssn: string;
 Birth_date: DATE;
 Address: string;
 Sex: char;
 Salary: float;
 Supervisor: EMPLOYEE;
 Dept: DEPARTMENT;);
 operations age: integer;
 create_emp: EMPLOYEE;
 destroy_emp: boolean;
end EMPLOYEE;
define class DEPARTMENT
 type tuple (Dname: string;
 Dnumber: integer;
 Mgr: tuple (Manager: EMPLOYEE;
 Start_date: DATE;);
 Locations: set (string);
 Employees: set (EMPLOYEE);
 Projects set(PROJECT););
 operations no_of_emps: integer;
 create_dept: DEPARTMENT;
 destroy_dept: boolean;
 assign_emp(e: EMPLOYEE): boolean;
 (* adds an employee to the department *)
 remove_emp(e: EMPLOYEE): boolean;
 (* removes an employee from the department *)
end DEPARTMENT;

Figure 12.2
Adding operations to
the definitions of
EMPLOYEE and
DEPARTMENT.

9Default names for the constructor and destructor operations exist in the C++ programming language.
For example, for class EMPLOYEE, the default constructor name is EMPLOYEE and the default

destructor name is ~EMPLOYEE. It is also common to use the new operation to create new objects.

 12.1 Overview of Object Database Concepts 373

Specifying Object Persistence via Naming and Reachability. An ODBS is
often closely coupled with an object-oriented programming language (OOPL). The
OOPL is used to specify the method (operation) implementations as well as other
application code. Not all objects are meant to be stored permanently in the data-
base. Transient objects exist in the executing program and disappear once the pro-
gram terminates. Persistent objects are stored in the database and persist after
program termination. The typical mechanisms for making an object persistent are
naming and reachability.

The naming mechanism involves giving an object a unique persistent name within
a particular database. This persistent object name can be given via a specific state-
ment or operation in the program, as shown in Figure 12.3. The named persistent
objects are used as entry points to the database through which users and applica-
tions can start their database access. Obviously, it is not practical to give names to
all objects in a large database that includes thousands of objects, so most objects are
made persistent by using the second mechanism, called reachability. The reach-
ability mechanism works by making the object reachable from some other persis-
tent object. An object B is said to be reachable from an object A if a sequence of
references in the database lead from object A to object B.

If we first create a named persistent object N, whose state is a set of objects of some
class C, we can make objects of C persistent by adding them to the set, thus making
them reachable from N. Hence, N is a named object that defines a persistent
collection of objects of class C. In the object model standard, N is called the extent
of C (see Section 12.3).

For example, we can define a class DEPARTMENT_SET (see Figure 12.3) whose
objects are of type set(DEPARTMENT).10 We can create an object of type
DEPARTMENT_SET, and give it a persistent name ALL_DEPARTMENTS, as shown in
Figure 12.3. Any DEPARTMENT object that is added to the set of ALL_DEPARTMENTS
by using the add_dept operation becomes persistent by virtue of its being reach-
able from ALL_DEPARTMENTS. As we will see in Section 12.3, the ODMG ODL
standard gives the schema designer the option of naming an extent as part of
class definition.

Notice the difference between traditional database models and ODBs in this respect.
In traditional database models, such as the relational model, all objects are assumed
to be persistent. Hence, when a table such as EMPLOYEE is created in a relational
database, it represents both the type declaration for EMPLOYEE and a persistent set
of all EMPLOYEE records (tuples). In the OO approach, a class declaration of
EMPLOYEE specifies only the type and operations for a class of objects. The user
must separately define a persistent object of type set(EMPLOYEE) whose value is the
collection of references (OIDs) to all persistent EMPLOYEE objects, if this is desired,
as shown in Figure 12.3.11 This allows transient and persistent objects to follow the

10As we will see in Section 12.3, the ODMG ODL syntax uses set<DEPARTMENT> instead of
set(DEPARTMENT).
11Some systems, such as POET, automatically create the extent for a class.

374 Chapter 12 Object and Object-Relational Databases

same type and class declarations of the ODL and the OOPL. In general, it is possible
to define several persistent collections for the same class definition, if desired.

12.1.5 Type Hierarchies and Inheritance

Simplified Model for Inheritance. Another main characteristic of ODBs is that
they allow type hierarchies and inheritance. We use a simple OO model in this
section—a model in which attributes and operations are treated uniformly—since
both attributes and operations can be inherited. In Section 12.3, we will discuss the
inheritance model of the ODMG standard, which differs from the model discussed
here because it distinguishes between two types of inheritance. Inheritance allows
the definition of new types based on other predefined types, leading to a type (or
class) hierarchy.

A type is defined by assigning it a type name and then defining a number of attri-
butes (instance variables) and operations (methods) for the type.12 In the simplified
model we use in this section, the attributes and operations are together called func-
tions, since attributes resemble functions with zero arguments. A function name
can be used to refer to the value of an attribute or to refer to the resulting value of an
operation (method). We use the term function to refer to both attributes and oper-
ations, since they are treated similarly in a basic introduction to inheritance.13

define class DEPARTMENT_SET
 type set (DEPARTMENT);
 operations add_dept(d: DEPARTMENT): boolean;
 (* adds a department to the DEPARTMENT_SET object *)
 remove_dept(d: DEPARTMENT): boolean;
 (* removes a department from the DEPARTMENT_SET object *)
 create_dept_set: DEPARTMENT_SET;
 destroy_dept_set: boolean;
end Department_Set;
…
persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)
…
d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)
…
b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

Figure 12.3
Creating persistent
objects by naming
and reachability.

12In this section we will use the terms type and class as meaning the same thing—namely, the attributes
and operations of some type of object.
13We will see in Section 12.3 that types with functions are similar to the concept of interfaces as used in
ODMG ODL.

 12.1 Overview of Object Database Concepts 375

A type in its simplest form has a type name and a list of visible (public) functions.
When specifying a type in this section, we use the following format, which does not
specify arguments of functions, to simplify the discussion:

TYPE_NAME: function, function, … , function

For example, a type that describes characteristics of a PERSON may be defined as
follows:

PERSON: Name, Address, Birth_date, Age, Ssn

In the PERSON type, the Name, Address, Ssn, and Birth_date functions can be imple-
mented as stored attributes, whereas the Age function can be implemented as an
operation that calculates the Age from the value of the Birth_date attribute and the
current date.

The concept of subtype is useful when the designer or user must create a new type that
is similar but not identical to an already defined type. The subtype then inherits all the
functions of the predefined type, which is referred to as the supertype. For example,
suppose that we want to define two new types EMPLOYEE and STUDENT as follows:

EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, Seniority
STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON
plus some additional functions of their own, we can declare them to be subtypes of
PERSON. Each will inherit the previously defined functions of PERSON—namely,
Name, Address, Birth_date, Age, and Ssn. For STUDENT, it is only necessary to define
the new (local) functions Major and Gpa, which are not inherited. Presumably, Major
can be defined as a stored attribute, whereas Gpa may be implemented as an opera-
tion that calculates the student’s grade point average by accessing the Grade values
that are internally stored (hidden) within each STUDENT object as hidden attributes.
For EMPLOYEE, the Salary and Hire_date functions may be stored attributes, whereas
Seniority may be an operation that calculates Seniority from the value of Hire_date.

Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniority
STUDENT subtype-of PERSON: Major, Gpa

In general, a subtype includes all of the functions that are defined for its supertype
plus some additional functions that are specific only to the subtype. Hence, it is pos-
sible to generate a type hierarchy to show the supertype/subtype relationships
among all the types declared in the system.

As another example, consider a type that describes objects in plane geometry, which
may be defined as follows:

GEOMETRY_OBJECT: Shape, Area, Reference_point

For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domain
can be an enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and

376 Chapter 12 Object and Object-Relational Databases

Area is a method that is applied to calculate the area. Reference_point specifies the
coordinates of a point that determines the object location. Now suppose that we
want to define a number of subtypes for the GEOMETRY_OBJECT type, as follows:

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height
TRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle
CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Notice that the Area operation may be implemented by a different method for each
subtype, since the procedure for area calculation is different for rectangles, trian-
gles, and circles. Similarly, the attribute Reference_point may have a different mean-
ing for each subtype; it might be the center point for RECTANGLE and CIRCLE
objects, and the vertex point between the two given sides for a TRIANGLE object.

Notice that type definitions describe objects but do not generate objects on their
own. When an object is created, typically it belongs to one or more of these types
that have been declared. For example, a circle object is of type CIRCLE and
GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of one
or more persistent collections of objects (or extents), which are used to group
together collections of objects that are persistently stored in the database.

Constraints on Extents Corresponding to a Type Hierarchy. In most ODBs,
an extent is defined to store the collection of persistent objects for each type or sub-
type. In this case, the constraint is that every object in an extent that corresponds to
a subtype must also be a member of the extent that corresponds to its supertype.
Some OO database systems have a predefined system type (called the ROOT class or
the OBJECT class) whose extent contains all the objects in the system.14

Classification then proceeds by assigning objects into additional subtypes that are
meaningful to the application, creating a type hierarchy (or class hierarchy) for the
system. All extents for system- and user-defined classes are subsets of the extent
corresponding to the class OBJECT, directly or indirectly. In the ODMG model (see
Section 12.3), the user may or may not specify an extent for each class (type),
depending on the application.

An extent is a named persistent object whose value is a persistent collection that
holds a collection of objects of the same type that are stored permanently in the
database. The objects can be accessed and shared by multiple programs. It is also
possible to create a transient collection, which exists temporarily during the execu-
tion of a program but is not kept when the program terminates. For example, a
transient collection may be created in a program to hold the result of a query that
selects some objects from a persistent collection and copies those objects into the
transient collection. The program can then manipulate the objects in the transient
collection, and once the program terminates, the transient collection ceases to exist.
In general, numerous collections—transient or persistent—may contain objects of
the same type.

14This is called OBJECT in the ODMG model (see Section 12.3).

 12.1 Overview of Object Database Concepts 377

The inheritance model discussed in this section is very simple. As we will see in Sec-
tion 12.3, the ODMG model distinguishes between type inheritance—called inter-
face inheritance and denoted by a colon (:)—and the extent inheritance
constraint—denoted by the keyword EXTEND.

12.1.6 Other Object-Oriented Concepts

Polymorphism of Operations (Operator Overloading). Another characteris-
tic of OO systems in general is that they provide for polymorphism of operations,
which is also known as operator overloading. This concept allows the same opera-
tor name or symbol to be bound to two or more different implementations of the
operator, depending on the type of objects to which the operator is applied. A sim-
ple example from programming languages can illustrate this concept. In some lan-
guages, the operator symbol “+” can mean different things when applied to
operands (objects) of different types. If the operands of “+” are of type integer, the
operation invoked is integer addition. If the operands of “+” are of type floating
point, the operation invoked is floating-point addition. If the operands of “+” are of
type set, the operation invoked is set union. The compiler can determine which
operation to execute based on the types of operands supplied.

In OO databases, a similar situation may occur. We can use the GEOMETRY_OBJECT
example presented in Section 12.1.5 to illustrate operation polymorphism15
in ODB. In this example, the function Area is declared for all objects of type
GEOMETRY_OBJECT. However, the implementation of the method for Area may
differ for each subtype of GEOMETRY_OBJECT. One possibility is to have a general
implementation for calculating the area of a generalized GEOMETRY_OBJECT (for
example, by writing a general algorithm to calculate the area of a polygon) and then
to rewrite more efficient algorithms to calculate the areas of specific types of geo-
metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the
Area function is overloaded by different implementations.

The ODMS must now select the appropriate method for the Area function based on
the type of geometric object to which it is applied. In strongly typed systems, this
can be done at compile time, since the object types must be known. This is termed
early (or static) binding. However, in systems with weak typing or no typing (such
as Smalltalk, LISP, PHP, and most scripting languages), the type of the object to
which a function is applied may not be known until runtime. In this case, the func-
tion must check the type of object at runtime and then invoke the appropriate
method. This is often referred to as late (or dynamic) binding.

Multiple Inheritance and Selective Inheritance. Multiple inheritance occurs
when a certain subtype T is a subtype of two (or more) types and hence inherits the
functions (attributes and methods) of both supertypes. For example, we may create

15In programming languages, there are several kinds of polymorphism. The interested reader is referred to
the Selected Bibliography at the end of this chapter for works that include a more thorough discussion.

378 Chapter 12 Object and Object-Relational Databases

a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and
ENGINEER. This leads to the creation of a type lattice rather than a type hierarchy.
One problem that can occur with multiple inheritance is that the supertypes from
which the subtype inherits may have distinct functions of the same name, creating an
ambiguity. For example, both MANAGER and ENGINEER may have a function called
Salary. If the Salary function is implemented by different methods in the MANAGER
and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by
the subtype ENGINEERING_MANAGER. It is possible, however, that both ENGINEER
and MANAGER inherit Salary from the same supertype (such as EMPLOYEE) higher
up in the lattice. The general rule is that if a function is inherited from some com-
mon supertype, then it is inherited only once. In such a case, there is no ambiguity;
the problem only arises if the functions are distinct in the two supertypes.

There are several techniques for dealing with ambiguity in multiple inheritance.
One solution is to have the system check for ambiguity when the subtype is created,
and to let the user explicitly choose which function is to be inherited at this time. A
second solution is to use some system default. A third solution is to disallow mul-
tiple inheritance altogether if name ambiguity occurs, instead forcing the user to
change the name of one of the functions in one of the supertypes. Indeed, some OO
systems do not permit multiple inheritance at all. In the object database standard
(see Section 12.3), multiple inheritance is allowed for operation inheritance of
interfaces, but is not allowed for EXTENDS inheritance of classes.

Selective inheritance occurs when a subtype inherits only some of the functions of
a supertype. Other functions are not inherited. In this case, an EXCEPT clause may
be used to list the functions in a supertype that are not to be inherited by the sub-
type. The mechanism of selective inheritance is not typically provided in ODBs, but
it is used more frequently in artificial intelligence applications.16

12.1.7 Summary of Object Database Concepts
To conclude this section, we give a summary of the main concepts used in ODBs
and object-relational systems:

 ■ Object identity. Objects have unique identities that are independent of their
attribute values and are generated by the ODB system.

 ■ Type constructors. Complex object structures can be constructed by apply-
ing in a nested manner a set of basic type generators/constructors, such as
tuple, set, list, array, and bag.

 ■ Encapsulation of operations. Both the object structure and the operations that
can be applied to individual objects are included in the class/type definitions.

 ■ Programming language compatibility. Both persistent and transient objects
are handled seamlessly. Objects are made persistent by being reachable from

16In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (see
Section 12.3).

 12.2 Object Database Extensions to SQL 379

a persistent collection (extent) or by explicit naming (assigning a unique
name by which the object can be referenced/retrieved).

 ■ Type hierarchies and inheritance. Object types can be specified by using a
type hierarchy, which allows the inheritance of both attributes and methods
(operations) of previously defined types. Multiple inheritance is allowed in
some models.

 ■ Extents. All persistent objects of a particular class/type C can be stored in an
extent, which is a named persistent object of type set(C). Extents corre-
sponding to a type hierarchy have set/subset constraints enforced on their
collections of persistent objects.

 ■ Polymorphism and operator overloading. Operations and method names
can be overloaded to apply to different object types with different imple-
mentations.

In the following sections we show how these concepts are realized, first in the SQL
standard (Section 12.2) and then in the ODMG standard (Section 12.3).

12.2 Object Database Extensions to SQL
We introduced SQL as the standard language for RDBMSs in Chapters 6 and 7. As
we discussed, SQL was first specified by Chamberlin and Boyce (1974) and under-
went enhancements and standardization in 1989 and 1992. The language continued
its evolution with a new standard, initially called SQL3 while being developed and
later known as SQL:99 for the parts of SQL3 that were approved into the standard.
Starting with the version of SQL known as SQL3, features from object databases
were incorporated into the SQL standard. At first, these extensions were known as
SQL/Object, but later they were incorporated in the main part of SQL, known as
SQL/Foundation in SQL:2008.

The relational model with object database enhancements is sometimes referred to
as the object-relational model. Additional revisions were made to SQL in 2003 and
2006 to add features related to XML (see Chapter 13).

The following are some of the object database features that have been included in SQL:

 ■ Some type constructors have been added to specify complex objects. These
include the row type, which corresponds to the tuple (or struct) constructor.
An array type for specifying collections is also provided. Other collection
type constructors, such as set, list, and bag constructors, were not part of the
original SQL/Object specifications in SQL:99 but were later included in the
standard in SQL:2008.

 ■ A mechanism for specifying object identity through the use of reference
type is included.

 ■ Encapsulation of operations is provided through the mechanism of
user-defined types (UDTs) that may include operations as part of their
declaration. These are somewhat similar to the concept of abstract data

380 Chapter 12 Object and Object-Relational Databases

types that were developed in programming languages. In addition, the
concept of user-defined routines (UDRs) allows the definition of general
methods (operations).

 ■ Inheritance mechanisms are provided using the keyword UNDER.

We now discuss each of these concepts in more detail. In our discussion, we will
refer to the example in Figure 12.4.

12.2.1 User-Defined Types Using CREATE TYPE
and Complex Objects

To allow the creation of complex-structured objects and to separate the declaration
of a class/type from the creation of a table (which is the collection of objects/rows
and hence corresponds to the extent discussed in Section 12.1), SQL now provides
user-defined types (UDTs). In addition, four collection types have been included
to allow for collections (multivalued types and attributes) in order to specify com-
plex-structured objects rather than just simple (flat) records. The user will create
the UDTs for a particular application as part of the database schema. A UDT may
be specified in its simplest form using the following syntax:

CREATE TYPE TYPE_NAME AS (<component declarations>);

Figure 12.4 illustrates some of the object concepts in SQL. We will explain the
examples in this figure gradually as we explain the concepts. First, a UDT can be
used as either the type for an attribute or as the type for a table. By using a UDT as
the type for an attribute within another UDT, a complex structure for objects
(tuples) in a table can be created, much like that achieved by nesting type construc-
tors/generators as discussed in Section 12.1. This is similar to using the struct
type constructor of Section 12.1.3. For example, in Figure 12.4(a), the UDT
STREET_ADDR_TYPE is used as the type for the STREET_ADDR attribute in the UDT
USA_ADDR_TYPE. Similarly, the UDT USA_ADDR_TYPE is in turn used as the type
for the ADDR attribute in the UDT PERSON_TYPE in Figure 12.4(b). If a UDT does
not have any operations, as in the examples in Figure 12.4(a), it is possible to use
the concept of ROW TYPE to directly create a structured attribute by using the
keyword ROW. For example, we could use the following instead of declaring
STREET_ADDR_TYPE as a separate type as in Figure 12.4(a):

CREATE TYPE USA_ADDR_TYPE AS (
 STREET_ADDR ROW (NUMBER VARCHAR (5),
 STREET_NAME VARCHAR (25),
 APT_NO VARCHAR (5),
 SUITE_NO VARCHAR (5)),
 CITY VARCHAR (25),
 ZIP VARCHAR (10)
);

To allow for collection types in order to create complex-structured objects, four
constructors are now included in SQL: ARRAY, MULTISET, LIST, and SET. These are

 12.2 Object Database Extensions to SQL 381

(a) CREATE TYPE STREET_ADDR_TYPE AS (
 NUMBER VARCHAR (5),
 STREET NAME VARCHAR (25),
 APT_NO VARCHAR (5),
 SUITE_NO VARCHAR (5)
);
 CREATE TYPE USA_ADDR_TYPE AS (
 STREET_ADDR STREET_ADDR_TYPE,
 CITY VARCHAR (25),
 ZIP VARCHAR (10)
);
 CREATE TYPE USA_PHONE_TYPE AS (
 PHONE_TYPE VARCHAR (5),
 AREA_CODE CHAR (3),
 PHONE_NUM CHAR (7)
);

(b) CREATE TYPE PERSON_TYPE AS (
 NAME VARCHAR (35),
 SEX CHAR,
 BIRTH_DATE DATE,
 PHONES USA_PHONE_TYPE ARRAY [4],
 ADDR USA_ADDR_TYPE
 INSTANTIABLE
 NOT FINAL
 REF IS SYSTEM GENERATED
 INSTANCE METHOD AGE() RETURNS INTEGER;
 CREATE INSTANCE METHOD AGE() RETURNS INTEGER
 FOR PERSON_TYPE
 BEGIN
 RETURN /* CODE TO CALCULATE A PERSON’S AGE FROM

TODAY’S DATE AND SELF.BIRTH_DATE */
 END;
);

(c) CREATE TYPE GRADE_TYPE AS (
 COURSENO CHAR (8),
 SEMESTER VARCHAR (8),
 YEAR CHAR (4),
 GRADE CHAR
);
 CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
 MAJOR_CODE CHAR (4),
 STUDENT_ID CHAR (12),
 DEGREE VARCHAR (5),
 TRANSCRIPT GRADE_TYPE ARRAY [100]

Figure 12.4
Illustrating some of the object
features of SQL. (a) Using UDTs
as types for attributes such as
Address and Phone, (b) specifying
UDT for PERSON_TYPE,
(c) specifying UDTs for
STUDENT_TYPE and EMPLOYEE_TYPE
as two subtypes of PERSON_TYPE.

(continues)

382 Chapter 12 Object and Object-Relational Databases

 INSTANTIABLE
 NOT FINAL
 INSTANCE METHOD GPA() RETURNS FLOAT;
 CREATE INSTANCE METHOD GPA() RETURNS FLOAT
 FOR STUDENT_TYPE
 BEGIN
 RETURN /* CODE TO CALCULATE A STUDENT’S GPA FROM

SELF.TRANSCRIPT */
 END;
);
 CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (
 JOB_CODE CHAR (4),
 SALARY FLOAT,
 SSN CHAR (11)
 INSTANTIABLE
 NOT FINAL
);
 CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
 DEPT_MANAGED CHAR (20)
 INSTANTIABLE
);

(d) CREATE TABLE PERSON OF PERSON_TYPE
 REF IS PERSON_ID SYSTEM GENERATED;
 CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
 UNDER PERSON;
 CREATE TABLE MANAGER OF MANAGER_TYPE
 UNDER EMPLOYEE;
 CREATE TABLE STUDENT OF STUDENT_TYPE
 UNDER PERSON;

(e) CREATE TYPE COMPANY_TYPE AS (
 COMP_NAME VARCHAR (20),
 LOCATION VARCHAR (20));
 CREATE TYPE EMPLOYMENT_TYPE AS (
 Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
 Company REF (COMPANY_TYPE) SCOPE (COMPANY));
 CREATE TABLE COMPANY OF COMPANY_TYPE (
 REF IS COMP_ID SYSTEM GENERATED,
 PRIMARY KEY (COMP_NAME));
 CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;

Figure 12.4
(continued)
llustrating some of
the object features of
SQL. (c) (continued)
Specifying UDTs for
STUDENT_TYPE and
EMPLOYEE_TYPE as
two subtypes of
PERSON_TYPE,
(d) Creating tables based
on some of the UDTs,
and illustrating table
inheritance,
(e) Specifying
relationships using REF
and SCOPE.

 12.2 Object Database Extensions to SQL 383

similar to the type constructors discussed in Section 12.1.3. In the initial specifica-
tion of SQL/Object, only the ARRAY type was specified, since it can be used to simu-
late the other types, but the three additional collection types were included in a
later version of the SQL standard. In Figure 12.4(b), the PHONES attribute of
PERSON_TYPE has as its type an array whose elements are of the previously defined
UDT USA_PHONE_TYPE. This array has a maximum of four elements, meaning
that we can store up to four phone numbers per person. An array can also have no
maximum number of elements if desired.

An array type can have its elements referenced using the common notation of
square brackets. For example, PHONES[1] refers to the first location value in a
PHONES attribute (see Figure 12.4(b)). A built-in function CARDINALITY can return
the current number of elements in an array (or any other collection type). For
example, PHONES[CARDINALITY (PHONES)] refers to the last element in the array.

The commonly used dot notation is used to refer to components of a ROW TYPE or
a UDT. For example, ADDR.CITY refers to the CITY component of an ADDR attribute
(see Figure 12.4(b)).

12.2.2 Object Identifiers Using Reference Types
Unique system-generated object identifiers can be created via the reference type
using the keyword REF. For example, in Figure 12.4(b), the phrase:

REF IS SYSTEM GENERATED

indicates that whenever a new PERSON_TYPE object is created, the system will
assign it a unique system-generated identifier. It is also possible not to have a system-
generated object identifier and use the traditional keys of the basic relational model
if desired.

In general, the user can specify that system-generated object identifiers for the indi-
vidual rows in a table should be created. By using the syntax:

REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;

the user declares that the attribute named <OID_ATTRIBUTE> will be used to identify
individual tuples in the table. The options for <VALUE_GENERATION_METHOD>
are SYSTEM GENERATED or DERIVED. In the former case, the system will
automatically generate a unique identifier for each tuple. In the latter case, the
traditional method of using the user-provided primary key value to identify
tuples is applied.

12.2.3 Creating Tables Based on the UDTs
For each UDT that is specified to be instantiable via the phrase INSTANTIABLE (see
Figure 12.4(b)), one or more tables may be created. This is illustrated in Fig-
ure 12.4(d), where we create a table PERSON based on the PERSON_TYPE UDT. Notice
that the UDTs in Figure 12.4(a) are noninstantiable and hence can only be used as

384 Chapter 12 Object and Object-Relational Databases

types for attributes, but not as a basis for table creation. In Figure 12.4(b), the attri-
bute PERSON_ID will hold the system-generated object identifier whenever a new
PERSON record (object) is created and inserted in the table.

12.2.4 Encapsulation of Operations
In SQL, a user-defined type can have its own behavioral specification by specifying
methods (or operations) in addition to the attributes. The general form of a UDT
specification with methods is as follows:

CREATE TYPE <TYPE-NAME> (
 <LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>
 <DECLARATION OF FUNCTIONS (METHODS)>
);

For example, in Figure 12.4(b), we declared a method Age() that calculates the age of
an individual object of type PERSON_TYPE.

The code for implementing the method still has to be written. We can refer to the
method implementation by specifying the file that contains the code for the method,
or we can write the actual code within the type declaration itself (see Figure 12.4(b)).

SQL provides certain built-in functions for user-defined types. For a UDT called
TYPE_T, the constructor function TYPE_T() returns a new object of that type. In
the new UDT object, every attribute is initialized to its default value. An observer
function A is implicitly created for each attribute A to read its value. Hence, A(X)
or X.A returns the value of attribute A of TYPE_T if X is a variable that refers to an
object/row of type TYPE_T. A mutator function for updating an attribute sets the
value of the attribute to a new value. SQL allows these functions to be blocked from
public use; an EXECUTE privilege is needed to have access to these functions.

In general, a UDT can have a number of user-defined functions associated with it.
The syntax is

INSTANCE METHOD <NAME> (<ARGUMENT_LIST>) RETURNS
<RETURN_TYPE>;

Two types of functions can be defined: internal SQL and external. Internal functions
are written in the extended PSM language of SQL (see Chapter 10). External func-
tions are written in a host language, with only their signature (interface) appearing
in the UDT definition. An external function definition can be declared as follows:

DECLARE EXTERNAL <FUNCTION_NAME> <SIGNATURE>
LANGUAGE <LANGUAGE_NAME>;

Attributes and functions in UDTs are divided into three categories:

 ■ PUBLIC (visible at the UDT interface)

 ■ PRIVATE (not visible at the UDT interface)

 ■ PROTECTED (visible only to subtypes)

 12.2 Object Database Extensions to SQL 385

It is also possible to define virtual attributes as part of UDTs, which are computed
and updated using functions.

12.2.5 Specifying Inheritance and Overloading of Functions
In SQL, inheritance can be applied to types or to tables; we will discuss the meaning
of each in this section. Recall that we already discussed many of the principles of
inheritance in Section 12.1.5. SQL has rules for dealing with type inheritance
(specified via the UNDER keyword). In general, both attributes and instance meth-
ods (operations) are inherited. The phrase NOT FINAL must be included in a UDT if
subtypes are allowed to be created under that UDT (see Figures 12.4(a) and (b),
where PERSON_TYPE, STUDENT_TYPE, and EMPLOYEE_TYPE are declared to be
NOT FINAL). Associated with type inheritance are the rules for overloading of func-
tion implementations and for resolution of function names. These inheritance rules
can be summarized as follows:

 ■ All attributes are inherited.

 ■ The order of supertypes in the UNDER clause determines the inheritance
hierarchy.

 ■ An instance of a subtype can be used in every context in which a supertype
instance is used.

 ■ A subtype can redefine any function that is defined in its supertype, with the
restriction that the signature be the same.

 ■ When a function is called, the best match is selected based on the types of all
arguments.

 ■ For dynamic linking, the types of the parameters are considered at runtime.

Consider the following examples to illustrate type inheritance, which are illustrated
in Figure 12.4(c). Suppose that we want to create two subtypes of PERSON_TYPE:
EMPLOYEE_TYPE and STUDENT_TYPE. In addition, we also create a subtype
MANAGER_TYPE that inherits all the attributes (and methods) of EMPLOYEE_TYPE
but has an additional attribute DEPT_MANAGED. These subtypes are shown in
Figure 12.4(c).

In general, we specify the local (specific) attributes and any additional specific
methods for the subtype, which inherits the attributes and operations (methods) of
its supertype.

Another facility in SQL is table inheritance via the supertable/subtable facility.
This is also specified using the keyword UNDER (see Figure 12.4(d)). Here, a new
record that is inserted into a subtable, say the MANAGER table, is also inserted into
its supertables EMPLOYEE and PERSON. Notice that when a record is inserted in
MANAGER, we must provide values for all its inherited attributes. INSERT, DELETE,
and UPDATE operations are appropriately propagated. Basically, table inheritance
corresponds to the extent inheritance discussed in Section 12.1.5. The rule is that a
tuple in a sub-table must also exist in its super-table to enforce the set/subset con-
straint on the objects.

386 Chapter 12 Object and Object-Relational Databases

12.2.6 Specifying Relationships via Reference
A component attribute of one tuple may be a reference (specified using the key-
word REF) to a tuple of another (or possibly the same) table. An example is shown
in Figure 12.4(e).

The keyword SCOPE specifies the name of the table whose tuples can be referenced
by the reference attribute. Notice that this is similar to a foreign key, except that the
system-generated OID value is used rather than the primary key value.

SQL uses a dot notation to build path expressions that refer to the component
attributes of tuples and row types. However, for an attribute whose type is REF, the
dereferencing symbol –> is used. For example, the query below retrieves employees
working in the company named ‘ABCXYZ’ by querying the EMPLOYMENT table:

SELECT E.Employee–>NAME
FROM EMPLOYMENT AS E
WHERE E.Company–>COMP_NAME = ‘ABCXYZ’;

In SQL, –> is used for dereferencing and has the same meaning assigned to it in the
C programming language. Thus, if r is a reference to a tuple (object) and a is a com-
ponent attribute in that tuple, then r –> a is the value of attribute a in that tuple.

If several relations of the same type exist, SQL provides the SCOPE keyword by
which a reference attribute may be made to point to a tuple within a specific table of
that type.

12.3 The ODMG Object Model and the Object
Definition Language ODL

As we discussed in the introduction to Chapter 6, one of the reasons for the success
of commercial relational DBMSs is the SQL standard. The lack of a standard for
ODBs for several years may have caused some potential users to shy away from con-
verting to this new technology. Subsequently, a consortium of ODB vendors and
users, called ODMG (Object Data Management Group), proposed a standard that is
known as the ODMG-93 or ODMG 1.0 standard. This was revised into ODMG 2.0,
and later to ODMG 3.0. The standard is made up of several parts, including the
object model, the object definition language (ODL), the object query language
(OQL), and the bindings to object-oriented programming languages.

In this section, we describe the ODMG object model and the ODL. In Section 12.4,
we discuss how to design an ODB from an EER conceptual schema. We will give an
overview of OQL in Section 12.5, and the C++ language binding in Section 12.6.
Examples of how to use ODL, OQL, and the C++ language binding will use the
UNIVERSITY database example introduced in Chapter 4. In our description, we will
follow the ODMG 3.0 object model as described in Cattell et al. (2000).17 It is

17The earlier versions of the object model were published in 1993 and 1997.

 12.3 The ODMG Object Model and the Object Definition Language ODL 387

important to note that many of the ideas embodied in the ODMG object model are
based on two decades of research into conceptual modeling and object databases by
many researchers.

The incorporation of object concepts into the SQL relational database standard,
leading to object-relational technology, was presented in Section 12.2.

12.3.1 Overview of the Object Model of ODMG
The ODMG object model is the data model upon which the object definition lan-
guage (ODL) and object query language (OQL) are based. It is meant to provide a
standard data model for object databases, just as SQL describes a standard data
model for relational databases. It also provides a standard terminology in a field
where the same terms were sometimes used to describe different concepts. We will
try to adhere to the ODMG terminology in this chapter. Many of the concepts in
the ODMG model have already been discussed in Section 12.1, and we assume the
reader has read this section. We will point out whenever the ODMG terminology
differs from that used in Section 12.1.

Objects and Literals. Objects and literals are the basic building blocks of the
object model. The main difference between the two is that an object has both an
object identifier and a state (or current value), whereas a literal has a value
(state) but no object identifier.18 In either case, the value can have a complex
structure. The object state can change over time by modifying the object value. A
literal is basically a constant value, possibly having a complex structure, but it
does not change.

An object has five aspects: identifier, name, lifetime, structure, and creation.

 1. The object identifier is a unique system-wide identifier (or Object_id).19

Every object must have an object identifier.

 2. Some objects may optionally be given a unique name within a particular
ODMS—this name can be used to locate the object, and the system should
return the object given that name.20 Obviously, not all individual objects
will have unique names. Typically, a few objects, mainly those that hold
collections of objects of a particular object class/type—such as extents—will
have a name. These names are used as entry points to the database; that is,
by locating these objects by their unique name, the user can then locate
other objects that are referenced from these objects. Other important
objects in the application may also have unique names, and it is possible to
give more than one name to an object. All names within a particular ODB
must be unique.

18We will use the terms value and state interchangeably here.
19This corresponds to the OID of Section 12.1.2.
20This corresponds to the naming mechanism for persistence, described in Section 12.1.4.

388 Chapter 12 Object and Object-Relational Databases

 3. The lifetime of an object specifies whether it is a persistent object (that is, a
database object) or transient object (that is, an object in an executing pro-
gram that disappears after the program terminates). Lifetimes are indepen-
dent of classes/types—that is, some objects of a particular class may be
transient whereas others may be persistent.

 4. The structure of an object specifies how the object is constructed by using
the type constructors. The structure specifies whether an object is atomic or
not. An atomic object refers to a single object that follows a user-defined
type, such as Employee or Department. If an object is not atomic, then it will be
composed of other objects. For example, a collection object is not an atomic
object, since its state will be a collection of other objects.21 The term atomic
object is different from how we defined the atom constructor in Sec-
tion 12.1.3, which referred to all values of built-in data types. In the ODMG
model, an atomic object is any individual user-defined object. All values of
the basic built-in data types are considered to be literals.

 5. Object creation refers to the manner in which an object can be created. This
is typically accomplished via an operation new for a special Object_Factory
interface. We shall describe this in more detail later in this section.

In the object model, a literal is a value that does not have an object identifier. How-
ever, the value may have a simple or complex structure. There are three types of
literals: atomic, structured, and collection.

 1. Atomic literals22 correspond to the values of basic data types and are pre-
defined. The basic data types of the object model include long, short, and
unsigned integer numbers (these are specified by the keywords long, short,
unsigned long, and unsigned short in ODL), regular and double precision
floating-point numbers (float, double), Boolean values (boolean), single
characters (char), character strings (string), and enumeration types (enum),
among others.

 2. Structured literals correspond roughly to values that are constructed using
the tuple constructor described in Section 12.1.3. The built-in structured lit-
erals include Date, Interval, Time, and Timestamp (see Figure 12.5(b)). Addi-
tional user-defined structured literals can be defined as needed by each
application.23 User-defined structures are created using the STRUCT key-
word in ODL, as in the C and C++ programming languages.

21In the ODMG model, atomic objects do not correspond to objects whose values are basic data types.
All basic values (integers, reals, and so on) are considered literals.
22The use of the word atomic in atomic literal corresponds to the way we used atom constructor in
Section 12.1.3.
23The structures for Date, Interval, Time, and Timestamp can be used to create either literal values or
objects with identifiers.

 12.3 The ODMG Object Model and the Object Definition Language ODL 389

(continues)

(a) nterface Object {
 …
 boolean same_as(in object other_object);
 object copy();
 void delete();
 };

(b) Class Date : Object {
 enum Weekday
 { Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday };
 enum Month
 { January, February, March, April, May, June,
 July, August, September, October, November,
 December };
 unsigned short year();
 unsigned short month();
 unsigned short day();
 …
 boolean is_equal(in Date other_date);
 boolean is_greater(in Date other_date);
 … };
 Class Time : Object {
 …
 unsigned short hour();
 unsigned short minute();
 unsigned short second();
 unsigned short millisecond();
 …
 boolean is_equal(in Time a_time);
 boolean is_greater(in Time a_time);
 …
 Time add_interval(in Interval an_interval);
 Time subtract_interval(in Interval an_interval);
 Interval subtract_time(in Time other_time); };
 class Timestamp : Object {
 …
 unsigned short year();
 unsigned short month();
 unsigned short day();
 unsigned short hour();
 unsigned short minute();
 unsigned short second();
 unsigned short millisecond();
 …
 Timestamp plus(in Interval an_interval);

Figure 12.5
Overview of the interface definitions
for part of the ODMG object model.
(a) The basic Object interface, inherited
by all objects, (b) Some standard
interfaces for structured literals.

390 Chapter 12 Object and Object-Relational Databases

 Timestamp minus(in Interval an_interval);
 boolean is_equal(in Timestamp a_timestamp);
 boolean is_greater(in Timestamp a_timestamp);
 … };
 class Interval : Object {
 unsigned short day();
 unsigned short hour();
 unsigned short minute();
 unsigned short second();
 unsigned short millisecond();
 …
 Interval plus(in Interval an_interval);
 Interval minus(in Interval an_interval);
 Interval product(in long a_value);
 Interval quotient(in long a_value);
 boolean is_equal(in interval an_interval);
 boolean is_greater(in interval an_interval);
 … };

(c) interface Collection : Object {
 …
 exception ElementNotFound{ Object element; };
 unsigned long cardinality();
 boolean is_empty();
 …
 boolean contains_element(in Object element);
 void insert_element(in Object element);
 void remove_element(in Object element)
 raises(ElementNotFound);
 iterator create_iterator(in boolean stable);
 … };
 interface Iterator {
 exception NoMoreElements();
 …
 boolean at_end();
 void reset();
 Object get_element() raises(NoMoreElements);
 void next_position() raises(NoMoreElements);
 … };
 interface set : Collection {
 set create_union(in set other_set);
 …
 boolean is_subset_of(in set other_set);
 … };
 interface bag : Collection {
 unsigned long occurrences_of(in Object element);

Figure 12.5
(continued)
Overview of the
interface
definitions for
part of the ODMG
object model.
(b) (continued) Some
standard interfaces
for structured literals,
(c) Interfaces for
collections and
iterators.

 12.3 The ODMG Object Model and the Object Definition Language ODL 391

 bag create_union(in Bag other_bag);
 … };
 interface list : Collection {
 exception lnvalid_lndex{unsigned_long index;);
 void remove_element_at(in unsigned long index)
 raises(lnvalidlndex);
 Object retrieve_element_at(in unsigned long index)
 raises(lnvalidlndex);
 void replace_element_at(in Object element, in unsigned long index)
 raises(lnvalidlndex);
 void insert_element_after(in Object element, in unsigned long index)
 raises(lnvalidlndex);
 …
 void insert_element_first(in Object element);
 …
 void remove_first_element() raises(ElementNotFound);
 …
 Object retrieve_first_element() raises(ElementNotFound);
 …
 list concat(in list other_list);
 void append(in list other_list);
 };
 interface array : Collection {
 exception lnvalid_lndex{unsigned_long index; };
 exception lnvalid_Size{unsigned_long size; };
 void remove_element_at(in unsigned long index)
 raises(InvalidIndex);
 Object retrieve_element_at(in unsigned long index)
 raises(InvalidIndex);
 void replace_element_at(in unsigned long index, in Object element)
 raises(InvalidIndex);
 void resize(in unsigned long new_size)
 raises(InvalidSize);
 };
 struct association { Object key; Object value; };
 interface dictionary : Collection {
 exception DuplicateName{string key; };
 exception KeyNotFound{Object key; };
 void bind(in Object key, in Object value)
 raises(DuplicateName);
 void unbind(in Object key) raises(KeyNotFound);
 Object lookup(in Object key) raises(KeyNotFound);
 boolean contains_key(in Object key);
 };

Figure 12.5
(continued)
Overview of the
interface
definitions for
part of the
ODMG object
model.
(c) (continued)
Interfaces for
collections and
iterators.

392 Chapter 12 Object and Object-Relational Databases

 3. Collection literals specify a literal value that is a collection of objects or
values but the collection itself does not have an Object_id. The collections
in the object model can be defined by the type generators set<T>, bag<T>,
list<T>, and array<T>, where T is the type of objects or values in the collec-
tion.24 Another collection type is dictionary<K, V>, which is a collection of
associations <K, V>, where each K is a key (a unique search value) associ-
ated with a value V; this can be used to create an index on a collection of
values V.

Figure 12.5 gives a simplified view of the basic types and type generators of the
object model. The notation of ODMG uses three concepts: interface, literal, and
class. Following the ODMG terminology, we use the word behavior to refer to
operations and state to refer to properties (attributes and relationships). An
interface specifies only behavior of an object type and is typically noninstantiable
(that is, no objects are created corresponding to an interface). Although an inter-
face may have state properties (attributes and relationships) as part of its specifi-
cations, these cannot be inherited from the interface. Hence, an interface serves
to define operations that can be inherited by other interfaces, as well as by classes
that define the user-defined objects for a particular application. A class specifies
both state (attributes) and behavior (operations) of an object type and is
instantiable. Hence, database and application objects are typically created based
on the user-specified class declarations that form a database schema. Finally, a
literal declaration specifies state but no behavior. Thus, a literal instance holds a
simple or complex structured value but has neither an object identifier nor
encapsulated operations.

Figure 12.5 is a simplified version of the object model. For the full specifications,
see Cattell et al. (2000). We will describe some of the constructs shown in Fig-
ure 12.5 as we describe the object model. In the object model, all objects inherit the
basic interface operations of Object, shown in Figure 12.5(a); these include opera-
tions such as copy (creates a new copy of the object), delete (deletes the object), and
same_as (compares the object’s identity to another object).25 In general, operations
are applied to objects using the dot notation. For example, given an object O, to
compare it with another object P, we write

O.same_as(P)

The result returned by this operation is Boolean and would be true if the identity of
P is the same as that of O, and false otherwise. Similarly, to create a copy P of object
O, we write

P = O.copy()

An alternative to the dot notation is the arrow notation: O–>same_as(P) or
O–>copy().

24These are similar to the corresponding type constructors described in Section 12.1.3.
25Additional operations are defined on objects for locking purposes, which are not shown in Figure 12.5.
We discuss locking concepts for databases in Chapter 22.

 12.3 The ODMG Object Model and the Object Definition Language ODL 393

12.3.2 Inheritance in the Object Model of ODMG
In the ODMG object model, two types of inheritance relationships exist: behavior-
only inheritance and state plus behavior inheritance. Behavior inheritance
is also known as ISA or interface inheritance and is specified by the colon (:)
notation.26 Hence, in the ODMG object model, behavior inheritance requires
the supertype to be an interface, whereas the subtype could be either a class or
another interface.

The other inheritance relationship, called EXTENDS inheritance, is specified by the
keyword extends. It is used to inherit both state and behavior strictly among classes,
so both the supertype and the subtype must be classes. Multiple inheritance via
extends is not permitted. However, multiple inheritance is allowed for behavior
inheritance via the colon (:) notation. Hence, an interface may inherit behavior
from several other interfaces. A class may also inherit behavior from several inter-
faces via colon (:) notation, in addition to inheriting behavior and state from at
most one other class via extends. In Section 12.3.4 we will give examples of how these
two inheritance relationships—“:” and extends—may be used.

12.3.3 Built-in Interfaces and Classes in the Object Model
Figure 12.5 shows the built-in interfaces of the object model. All interfaces, such as
Collection, Date, and Time, inherit the basic Object interface. In the object model,
there is a distinction between collections, whose state contains multiple objects or
literals, versus atomic (and structured) objects, whose state is an individual object
or literal. Collection objects inherit the basic Collection interface shown in Fig-
ure 12.5(c), which shows the operations for all collection objects. Given a collection
object O, the O.cardinality() operation returns the number of elements in the collec-
tion. The operation O.is_empty() returns true if the collection O is empty, and
returns false otherwise. The operations O.insert_element(E) and O.remove_element(E)
insert or remove an element E from the collection O. Finally, the operation
O.contains_element(E) returns true if the collection O includes element E, and
returns false otherwise. The operation I = O.create_iterator() creates an iterator
object I for the collection object O, which can iterate over each element in the
collection. The interface for iterator objects is also shown in Figure 12.5(c). The
I.reset() operation sets the iterator at the first element in a collection (for an unor-
dered collection, this would be some arbitrary element), and I.next_position() sets the
iterator to the next element. The I.get_element() retrieves the current element,
which is the element at which the iterator is currently positioned.

The ODMG object model uses exceptions for reporting errors or particular condi-
tions. For example, the ElementNotFound exception in the Collection interface would be
raised by the O.remove_element(E) operation if E is not an element in the collection O.

26The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/specializa-
tion relationships, although in the literature these terms have been used to describe inheritance of both
state and operations (see Chapter 8 and Section 12.1).

394 Chapter 12 Object and Object-Relational Databases

The NoMoreElements exception in the iterator interface would be raised by the
I.next_position() operation if the iterator is currently positioned at the last element in
the collection, and hence no more elements exist for the iterator to point to.

Collection objects are further specialized into set, list, bag, array, and dictionary, which
inherit the operations of the Collection interface. A set<T> type generator can be
used to create objects such that the value of object O is a set whose elements are of
type T. The Set interface includes the additional operation P = O.create_union(S)
(see Figure 12.5(c)), which returns a new object P of type set<T> that is the union of
the two sets O and S. Other operations similar to create_union (not shown in Fig-
ure 12.5(c)) are create_intersection(S) and create_difference(S). Operations for set com-
parison include the O.is_subset_of(S) operation, which returns true if the set object
O is a subset of some other set object S, and returns false otherwise. Similar opera-
tions (not shown in Figure 12.5(c)) are is_proper_subset_of(S), is_superset_of(S), and
is_proper_superset_of(S). The bag<T> type generator allows duplicate elements in
the collection and also inherits the Collection interface. It has three operations—
create_union(b), create_intersection(b), and create_difference(b)—that all return a new
object of type bag<T>.

A list<T> type generator inherits the Collection operations and can be used to create
collections of objects of type T where the order of the elements is important. The
value of each such object O is an ordered list whose elements are of type T. Hence, we
can refer to the first, last, and ith element in the list. Also, when we add an element to
the list, we must specify the position in the list where the element is inserted. Some of
the list operations are shown in Figure 12.5(c). If O is an object of type list<T>, the
operation O.insert_element_first(E) inserts the element E before the first element in the
list O, so that E becomes the first element in the list. A similar operation (not shown)
is O.insert_element_last(E). The operation O.insert_element_after(E, I) in Figure 12.5(c)
inserts the element E after the ith element in the list O and will raise the exception
InvalidIndex if no ith element exists in O. A similar operation (not shown) is
O.insert_element_before(E, I). To remove elements from the list, the operations are
E = O.remove_first_element(), E = O.remove_last_element(), and E = O.remove_element _at(I);
these operations remove the indicated element from the list and return the element as
the operation’s result. Other operations retrieve an element without removing it from
the list. These are E = O.retrieve_first_element(), E = O.retrieve _last_element(), and
E = O.retrieve_element_at(I). Also, two operations to manipulate lists are defined. They
are P = O.concat(I), which creates a new list P that is the concatenation of lists O and I
(the elements in list O followed by those in list I), and O.append(I), which appends
the elements of list I to the end of list O (without creating a new list object).

The array<T> type generator also inherits the Collection operations and is similar to
list. Specific operations for an array object O are O.replace_element_at(I, E), which
replaces the array element at position I with element E; E = O.remove_element_at(I),
which retrieves the ith element and replaces it with a NULL value; and
E = O.retrieve_element_at(I), which simply retrieves the ith element of the array. Any
of these operations can raise the exception InvalidIndex if I is greater than the array’s
size. The operation O.resize(N) changes the number of array elements to N.

 12.3 The ODMG Object Model and the Object Definition Language ODL 395

The last type of collection objects are of type dictionary<K,V>. This allows the cre-
ation of a collection of association pairs <K,V>, where all K (key) values are unique.
Making the key values unique allows for associative retrieval of a particular pair
given its key value (similar to an index). If O is a collection object of type
dictionary<K,V>, then O.bind(K,V) binds value V to the key K as an association
<K,V> in the collection, whereas O.unbind(K) removes the association with key K
from O, and V = O.lookup(K) returns the value V associated with key K in O. The
latter two operations can raise the exception KeyNotFound. Finally, O.contains_key(K)
returns true if key K exists in O, and returns false otherwise.

Figure 12.6 is a diagram that illustrates the inheritance hierarchy of the built-in
constructs of the object model. Operations are inherited from the supertype to the
subtype. The collection interfaces described above are not directly instantiable; that
is, one cannot directly create objects based on these interfaces. Rather, the inter-
faces can be used to generate user-defined collection types—of type set, bag, list,
array, or dictionary—for a particular database application. If an attribute or class has
a collection type, say a set, then it will inherit the operations of the set interface. For
example, in a UNIVERSITY database application, the user can specify a type for
set<STUDENT>, whose state would be sets of STUDENT objects. The programmer
can then use the operations for set<T> to manipulate an object of type
set<STUDENT>. Creating application classes is typically done by utilizing the object
definition language ODL (see Section 12.3.6).

It is important to note that all objects in a particular collection must be of the same
type. Hence, although the keyword any appears in the specifications of collection
interfaces in Figure 12.5(c), this does not mean that objects of any type can be inter-
mixed within the same collection. Rather, it means that any type can be used when
specifying the type of elements for a particular collection (including other collec-
tion types!).

12.3.4 Atomic (User-Defined) Objects
The previous section described the built-in collection types of the object model.
Now we discuss how object types for atomic objects can be constructed. These are

Collection

Object

Iterator Date IntervalTime

set list bag dictionary

Timestamp

array

Figure 12.6
Inheritance hierarchy for the built-in
interfaces of the object model.

396 Chapter 12 Object and Object-Relational Databases

specified using the keyword class in ODL. In the object model, any user-defined
object that is not a collection object is called an atomic object.27

For example, in a UNIVERSITY database application, the user can specify an object
type (class) for STUDENT objects. Most such objects will be structured objects; for
example, a STUDENT object will have a complex structure, with many attributes,
relationships, and operations, but it is still considered atomic because it is not a
collection. Such a user-defined atomic object type is defined as a class by specify-
ing its properties and operations. The properties define the state of the object and
are further distinguished into attributes and relationships. In this subsection, we
elaborate on the three types of components—attributes, relationships, and
 operations—that a user-defined object type for atomic (structured) objects can
include. We illustrate our discussion with the two classes EMPLOYEE and DEPARTMENT
shown in Figure 12.7.

An attribute is a property that describes some aspect of an object. Attributes have
values (which are typically literals having a simple or complex structure) that are
stored within the object. However, attribute values can also be Object_ids of other
objects. Attribute values can even be specified via methods that are used to calculate
the attribute value. In Figure 12.728 the attributes for EMPLOYEE are Name, Ssn,
Birth_date, Sex, and Age, and those for DEPARTMENT are Dname, Dnumber, Mgr,
Locations, and Projs. The Mgr and Projs attributes of DEPARTMENT have complex
structure and are defined via struct, which corresponds to the tuple constructor of
Section 12.1.3. Hence, the value of Mgr in each DEPARTMENT object will have two
components: Manager, whose value is an Object_id that references the EMPLOYEE
object that manages the DEPARTMENT, and Start_date, whose value is a date. The
locations attribute of DEPARTMENT is defined via the set constructor, since each
DEPARTMENT object can have a set of locations.

A relationship is a property that specifies that two objects in the database are related.
In the object model of ODMG, only binary relationships (see Section 3.4) are
explicitly represented, and each binary relationship is represented by a pair of
inverse references specified via the keyword relationship. In Figure 12.7, one rela-
tionship exists that relates each EMPLOYEE to the DEPARTMENT in which he or she
works—the Works_for relationship of EMPLOYEE. In the inverse direction, each
DEPARTMENT is related to the set of EMPLOYEES that work in the DEPARTMENT—
the Has_emps relationship of DEPARTMENT. The keyword inverse specifies that
these two properties define a single conceptual relationship in inverse directions.29

By specifying inverses, the database system can maintain the referential integrity of
the relationship automatically. That is, if the value of Works_for for a particular

27As mentioned earlier, this definition of atomic object in the ODMG object model is different from the
definition of atom constructor given in Section 12.1.3, which is the definition used in much of the object-
oriented database literature.
28We are using the Object Definition Language (ODL) notation in Figure 12.7, which will be discussed in
more detail in Section 12.3.6.
29Section 7.4 discusses how a relationship can be represented by two attributes in inverse directions.

 12.3 The ODMG Object Model and the Object Definition Language ODL 397

EMPLOYEE E refers to DEPARTMENT D, then the value of Has_emps for DEPARTMENT
D must include a reference to E in its set of EMPLOYEE references. If the database
designer desires to have a relationship to be represented in only one direction, then
it has to be modeled as an attribute (or operation). An example is the Manager com-
ponent of the Mgr attribute in DEPARTMENT.

In addition to attributes and relationships, the designer can include operations in
object type (class) specifications. Each object type can have a number of operation
signatures, which specify the operation name, its argument types, and its returned
value, if applicable. Operation names are unique within each object type, but they
can be overloaded by having the same operation name appear in distinct object
types. The operation signature can also specify the names of exceptions that
can occur during operation execution. The implementation of the operation
will include the code to raise these exceptions. In Figure 12.7 the EMPLOYEE class

class EMPLOYEE
(extent ALL_EMPLOYEES
 key Ssn)
{
 attribute string Name;
 attribute string Ssn;
 attribute date Birth_date;
 attribute enum Gender{M, F} Sex;
 attribute short Age;
 relationship DEPARTMENT Works_for
 inverse DEPARTMENT::Has_emps;
 void reassign_emp(in string New_dname)
 raises(dname_not_valid);
};
class DEPARTMENT
(extent ALL_DEPARTMENTS
 key Dname, Dnumber)
{
 attribute string Dname;
 attribute short Dnumber;
 attribute struct Dept_mgr {EMPLOYEE Manager, date Start_date}
 Mgr;
 attribute set<string> Locations;
 attribute struct Projs {string Proj_name, time Weekly_hours)
 Projs;
 relationship set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;
 void add_emp(in string New_ename) raises(ename_not_valid);
 void change_manager(in string New_mgr_name; in date
 Start_date);
};

Figure 12.7
The attributes, relationships,
and operations in a class
definition.

398 Chapter 12 Object and Object-Relational Databases

has one operation: reassign_emp, and the DEPARTMENT class has two operations:
add_emp and change_manager.

12.3.5 Extents, Keys, and Factory Objects
In the ODMG object model, the database designer can declare an extent (using the
keyword extent) for any object type that is defined via a class declaration. The extent
is given a name, and it will contain all persistent objects of that class. Hence, the
extent behaves as a set object that holds all persistent objects of the class. In Fig-
ure 12.7 the EMPLOYEE and DEPARTMENT classes have extents called ALL_EMPLOYEES
and ALL_DEPARTMENTS, respectively. This is similar to creating two objects—one
of type set<EMPLOYEE> and the second of type set<DEPARTMENT>—and making
them persistent by naming them ALL_EMPLOYEES and ALL_DEPARTMENTS. Extents
are also used to automatically enforce the set/subset relationship between the
extents of a supertype and its subtype. If two classes A and B have extents ALL_A and
ALL_B, and class B is a subtype of class A (that is, class B extends class A), then the
collection of objects in ALL_B must be a subset of those in ALL_A at any point. This
constraint is automatically enforced by the database system.

A class with an extent can have one or more keys. A key consists of one or more
properties (attributes or relationships) whose values are constrained to be unique
for each object in the extent. For example, in Figure 12.7 the EMPLOYEE class has
the Ssn attribute as key (each EMPLOYEE object in the extent must have a unique
Ssn value), and the DEPARTMENT class has two distinct keys: Dname and Dnumber
(each DEPARTMENT must have a unique Dname and a unique Dnumber). For a
composite key30 that is made of several properties, the properties that form the
key are contained in parentheses. For example, if a class VEHICLE with an extent
ALL_VEHICLES has a key made up of a combination of two attributes State and
License_number, they would be placed in parentheses as (State, License_number) in
the key declaration.

Next, we present the concept of factory object—an object that can be used to gen-
erate or create individual objects via its operations. Some of the interfaces of factory
objects that are part of the ODMG object model are shown in Figure 12.8. The
interface ObjectFactory has a single operation, new(), which returns a new object
with an Object_id. By inheriting this interface, users can create their own factory
interfaces for each user-defined (atomic) object type, and the programmer can
implement the operation new differently for each type of object. Figure 12.8 also
shows a DateFactory interface, which has additional operations for creating a new
calendar_date and for creating an object whose value is the current_date, among other
operations (not shown in Figure 12.8). As we can see, a factory object basically pro-
vides the constructor operations for new objects.

Finally, we discuss the concept of a database. Because an ODB system can create
many different databases, each with its own schema, the ODMG object model has

30A composite key is called a compound key in the ODMG report.

 12.3 The ODMG Object Model and the Object Definition Language ODL 399

interface ObjectFactory {
 Object new();
};

interface SetFactory : ObjectFactory {
 Set new_of_size(in long size);
};

interface ListFactory : ObjectFactory {
 List new_of_size(in long size);
};

interface ArrayFactory : ObjectFactory {
 Array new_of_size(in long size);
};

interface DictionaryFactory : ObjectFactory {
 Dictionary new_of_size(in long size);
};

interface DateFactory : ObjectFactory {
 exception InvalidDate{};
 …
 Date calendar_date(in unsigned short year,
 in unsigned short month,
 in unsigned short day)
 raises(InvalidDate);
 …
 Date current();
};

interface DatabaseFactory {
 Database new();
};

interface Database {
 …
 void open(in string database_name)
 raises(DatabaseNotFound, DatabaseOpen);
 void close() raises(DatabaseClosed, …);
 void bind(in Object an_object, in string name)
 raises(DatabaseClosed, ObjectNameNotUnique, …);
 Object unbind(in string name)
 raises(DatabaseClosed, ObjectNameNotFound, …);
 Object Iookup(in string object_name)
 raises(DatabaseClosed, ObjectNameNotFound, …);
 … };

Figure 12.8
Interfaces to illustrate factory
objects and database objects.

400 Chapter 12 Object and Object-Relational Databases

interfaces for DatabaseFactory and Database objects, as shown in Figure 12.8. Each
database has its own database name, and the bind operation can be used to assign
individual unique names to persistent objects in a particular database. The lookup
operation returns an object from the database that has the specified persistent
object_name, and the unbind operation removes the name of a persistent named
object from the database.

12.3.6 The Object Definition Language ODL
After our overview of the ODMG object model in the previous section, we now
show how these concepts can be utilized to create an object database schema using
the object definition language ODL.31

The ODL is designed to support the semantic constructs of the ODMG object
model and is independent of any particular programming language. Its main use is
to create object specifications—that is, classes and interfaces. Hence, ODL is not a
programming language. A user can specify a database schema in ODL indepen-
dently of any programming language, and then use the specific language bindings
to specify how ODL constructs can be mapped to constructs in specific program-
ming languages, such as C++, Smalltalk, and Java. We will give an overview of the
C++ binding in Section 12.6.

Figure 12.9(b) shows a possible object schema for part of the UNIVERSITY data-
base, which was presented in Chapter 4. We will describe the concepts of ODL
using this example, and the one in Figure 12.11. The graphical notation for Fig-
ure 12.9(b) is shown in Figure 12.9(a) and can be considered as a variation of EER
diagrams (see Chapter 4) with the added concept of interface inheritance but
without several EER concepts, such as categories (union types) and attributes of
relationships.

Figure 12.10 shows one possible set of ODL class definitions for the UNIVERSITY
database. In general, there may be several possible mappings from an object schema
diagram (or EER schema diagram) into ODL classes. We will discuss these options
further in Section 12.4.

Figure 12.10 shows the straightforward way of mapping part of the UNIVERSITY
database from Chapter 4. Entity types are mapped into ODL classes, and inher-
itance is done using extends. However, there is no direct way to map categories
(union types) or to do multiple inheritance. In Figure 12.10 the classes
PERSON, FACULTY, STUDENT, and GRAD_STUDENT have the extents PERSONS,
FACULTY, STUDENTS, and GRAD_STUDENTS, respectively. Both FACULTY and
STUDENT extends PERSON and GRAD_STUDENT extends STUDENT. Hence, the
collection of STUDENTS (and the collection of FACULTY) will be constrained to
be a subset of the collection of PERSONs at any time. Similarly, the collection of

31The ODL syntax and data types are meant to be compatible with the Interface Definition language
(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships and
other database concepts.

 12.3 The ODMG Object Model and the Object Definition Language ODL 401

(a)

(b)

Person-IFInterface

STUDENTClass

PERSON

Works_in

Has_faculty

Has_majors
DEPARTMENT

GRAD_STUDENT

Registered_in
FACULTY STUDENT

Advisor

Committee

Advises

COURSE

Offered_by
Majors_in

Completed_sections

Has_sections

Students

Of_course

Offers

SECTION

Registered_students

On_committee_of

CURR_SECTION

Relationships

1:1

1:N

M:N

Inheritance

Interface(is-a)
inheritance
using “:”

Class inheritance
using extends

Figure 12.9
An example of a database schema.
(a) Graphical notation for representing ODL
schemas. (b) A graphical object database
schema for part of the UNIVERSITY
database (GRADE and DEGREE classes
are not shown).

GRAD_STUDENTs will be a subset of STUDENTs. At the same time, individual
STUDENT and FACULTY objects will inherit the properties (attributes and rela-
tionships) and operations of PERSON, and individual GRAD_STUDENT objects
will inherit those of STUDENT.

The classes DEPARTMENT, COURSE, SECTION, and CURR_SECTION in Figure 12.10
are straightforward mappings of the corresponding entity types in Figure 12.9(b).

402 Chapter 12 Object and Object-Relational Databases

class PERSON
(extent PERSONS
 key Ssn)
{ attribute struct Pname { string Fname,
 string Mname,
 string Lname } Name;
 attribute string Ssn;
 attribute date Birth_date;
 attribute enum Gender{M, F} Sex;
 attribute struct Address { short No,
 string Street,
 short Apt_no,
 string City,
 string State,
 short Zip } Address;
 short Age(); };
class FACULTY extends PERSON
(extent FACULTY)
{ attribute string Rank;
 attribute float Salary;
 attribute string Office;
 attribute string Phone;
 relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;
 relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;
 relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;
 void give_raise(in float raise);
 void promote(in string new rank); };
class GRADE
(extent GRADES)
{
 attribute enum GradeValues{A,B,C,D,F,l, P} Grade;
 relationship SECTION Section inverse SECTION::Students;
 relationship STUDENT Student inverse STUDENT::Completed_sections; };
class STUDENT extends PERSON
(extent STUDENTS)
{ attribute string Class;
 attribute Department Minors_in;
 relationship Department Majors_in inverse DEPARTMENT::Has_majors;
 relationship set<GRADE> Completed_sections inverse GRADE::Student;
 relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;
 void change_major(in string dname) raises(dname_not_valid);
 float gpa();
 void register(in short secno) raises(section_not_valid);
 void assign_grade(in short secno; IN GradeValue grade)
 raises(section_not_valid,grade_not_valid); };

Figure 12.10
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).

 12.3 The ODMG Object Model and the Object Definition Language ODL 403

class DEGREE
{ attribute string College;
 attribute string Degree;
 attribute string Year; };
class GRAD_STUDENT extends STUDENT
(extent GRAD_STUDENTS)
{ attribute set<Degree> Degrees;
 relationship Faculty advisor inverse FACULTY::Advises;
 relationship set<FACULTY> Committee inverse FACULTY::On_committee_of;
 void assign_advisor(in string Lname; in string Fname)
 raises(facuIty_not_valid);
 void assign_committee_member(in string Lname; in string Fname)
 raises(facuIty_not_valid); };
class DEPARTMENT
(extent DEPARTMENTS
 key Dname)
{ attribute string Dname;
 attribute string Dphone;
 attribute string Doffice;
 attribute string College;
 attribute FACULTY Chair;
 relationship set<FACULTY> Has_faculty inverse FACULTY::Works_in;
 relationship set<STUDENT> Has_majors inverse STUDENT::Majors_in;
 relationship set<COURSE> Offers inverse COURSE::Offered_by; };
class COURSE
(extent COURSES
 key Cno)
{ attribute string Cname;
 attribute string Cno;
 attribute string Description;
 relationship set<SECTION> Has_sections inverse SECTION::Of_course;
 relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };
class SECTION
(extent SECTIONS)
{ attribute short Sec_no;
 attribute string Year;
 attribute enum Quarter{Fall, Winter, Spring, Summer}
 Qtr;
 relationship set<Grade> Students inverse Grade::Section;
 relationship COURSE Of_course inverse COURSE::Has_sections; };
class CURR_SECTION extends SECTION
(extent CURRENT_SECTIONS)
{ relationship set<STUDENT> Registered_students
 inverse STUDENT::Registered_in
 void register_student(in string Ssn)
 raises(student_not_valid, section_full); };

Figure 12.10 (continued)
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).

404 Chapter 12 Object and Object-Relational Databases

However, the class GRADE requires some explanation. The GRADE class corre-
sponds to the M:N relationship between STUDENT and SECTION in Figure 12.9(b).
The reason it was made into a separate class (rather than as a pair of inverse rela-
tionships) is because it includes the relationship attribute Grade.32

Hence, the M:N relationship is mapped to the class GRADE, and a pair of 1:N rela-
tionships, one between STUDENT and GRADE and the other between SECTION and

32We will discuss alternative mappings for attributes of relationships in Section 12.4.

TRIANGLE

GeometryObject

CIRCLERECTANGLE . . .

Figure 12.11
An illustration of
interface inheritance
via “:”. (a) Graphical
schema representation,
(b) Corresponding
interface and class
definitions in ODL.

(b) interface GeometryObject
 { attribute enum Shape{RECTANGLE, TRIANGLE, CIRCLE, … }
 Shape;
 attribute struct Point {short x, short y} Reference_point;
 float perimeter();
 float area();
 void translate(in short x_translation; in short y_translation);
 void rotate(in float angle_of_rotation); };
 class RECTANGLE : GeometryObject
 (extent RECTANGLES)
 { attribute struct Point {short x, short y} Reference_point;
 attribute short Length;
 attribute short Height;
 attribute float Orientation_angle; };
 class TRIANGLE : GeometryObject
 (extent TRIANGLES)
 { attribute struct Point {short x, short y} Reference_point;
 attribute short Side_1;
 attribute short Side_2;
 attribute float Side1_side2_angle;
 attribute float Side1_orientation_angle; };
 class CIRCLE : GeometryObject
 (extent CIRCLES)
 { attribute struct Point {short x, short y} Reference_point;
 attribute short Radius; };
 …

(a)

 12.4 Object Database Conceptual Design 405

GRADE.33 These relationships are represented by the following relationship proper-
ties: Completed_sections of STUDENT; Section and Student of GRADE; and Students of
SECTION (see Figure 12.10). Finally, the class DEGREE is used to represent the com-
posite, multivalued attribute degrees of GRAD_STUDENT (see Figure 8.10).

Because the previous example does not include any interfaces, only classes, we now
utilize a different example to illustrate interfaces and interface (behavior) inheri-
tance. Figure 12.11(a) is part of a database schema for storing geometric objects. An
interface GeometryObject is specified, with operations to calculate the perimeter and
area of a geometric object, plus operations to translate (move) and rotate an object.
Several classes (RECTANGLE, TRIANGLE, CIRCLE, …) inherit the GeometryObject
interface. Since GeometryObject is an interface, it is noninstantiable—that is, no
objects can be created based on this interface directly. However, objects of type
RECTANGLE, TRIANGLE, CIRCLE, … can be created, and these objects inherit all the
operations of the GeometryObject interface. Note that with interface inheritance,
only operations are inherited, not properties (attributes, relationships). Hence, if a
property is needed in the inheriting class, it must be repeated in the class defini-
tion, as with the Reference_point attribute in Figure 12.11(b). Notice that the inher-
ited operations can have different implementations in each class. For example, the
implementations of the area and perimeter operations may be different for
RECTANGLE, TRIANGLE, and CIRCLE.

Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of
interfaces by another interface. However, with extends (class) inheritance, multiple
inheritance is not permitted. Hence, a class can inherit via extends from at most one
class (in addition to inheriting from zero or more interfaces).

12.4 Object Database Conceptual Design
Section 12.4.1 discusses how object database (ODB) design differs from relational
database (RDB) design. Section 12.4.2 outlines a mapping algorithm that can be
used to create an ODB schema, made of ODMG ODL class definitions, from a con-
ceptual EER schema.

12.4.1 Differences between Conceptual Design
of ODB and RDB
One of the main differences between ODB and RDB design is how relationships are
handled. In ODB, relationships are typically handled by having relationship prop-
erties or reference attributes that include OID(s) of the related objects. These can be
considered as OID references to the related objects. Both single references and col-
lections of references are allowed. References for a binary relationship can be

33This is similar to how an M:N relationship is mapped in the relational model (see Section 9.1) and in
the legacy network model (see Appendix E).

406 Chapter 12 Object and Object-Relational Databases

declared in a single direction, or in both directions, depending on the types of
access expected. If declared in both directions, they may be specified as inverses of
one another, thus enforcing the ODB equivalent of the relational referential integ-
rity constraint.

In RDB, relationships among tuples (records) are specified by attributes with
matching values. These can be considered as value references and are specified via
foreign keys, which are values of primary key attributes repeated in tuples of the
referencing relation. These are limited to being single-valued in each record because
multivalued attributes are not permitted in the basic relational model. Thus, M:N
relationships must be represented not directly, but as a separate relation (table), as
discussed in Section 9.1.

Mapping binary relationships that contain attributes is not straightforward in
ODBs, since the designer must choose in which direction the attributes should be
included. If the attributes are included in both directions, then redundancy in stor-
age will exist and may lead to inconsistent data. Hence, it is sometimes preferable to
use the relational approach of creating a separate table by creating a separate class
to represent the relationship. This approach can also be used for n-ary relation-
ships, with degree n > 2.

Another major area of difference between ODB and RDB design is how inheritance
is handled. In ODB, these structures are built into the model, so the mapping is
achieved by using the inheritance constructs, such as derived (:) and extends. In
relational design, as we discussed in Section 9.2, there are several options to choose
from since no built-in construct exists for inheritance in the basic relational model.
It is important to note, though, that object-relational and extended-relational sys-
tems are adding features to model these constructs directly as well as to include
operation specifications in abstract data types (see Section 12.2).

The third major difference is that in ODB design, it is necessary to specify the oper-
ations early on in the design since they are part of the class specifications. Although
it is important to specify operations during the design phase for all types of data-
bases, the design of operations may be delayed in RDB design as it is not strictly
required until the implementation phase.

There is a philosophical difference between the relational model and the object
model of data in terms of behavioral specification. The relational model does not
mandate the database designers to predefine a set of valid behaviors or operations,
whereas this is a tacit requirement in the object model. One of the claimed advan-
tages of the relational model is the support of ad hoc queries and transactions,
whereas these are against the principle of encapsulation.

In practice, it is becoming commonplace to have database design teams apply
object-based methodologies at early stages of conceptual design so that both the
structure and the use or operations of the data are considered, and a complete spec-
ification is developed during conceptual design. These specifications are then
mapped into relational schemas, constraints, and behavioral artifacts such as trig-
gers or stored procedures (see Sections 5.2 and 13.4).

 12.4 Object Database Conceptual Design 407

12.4.2 Mapping an EER Schema to an ODB Schema
It is relatively straightforward to design the type declarations of object classes
for an ODBMS from an EER schema that contains neither categories nor n-ary
relationships with n > 2. However, the operations of classes are not specified in
the EER diagram and must be added to the class declarations after the struc-
tural mapping is completed. The outline of the mapping from EER to ODL is
as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the
ODL class should include all the attributes of the EER class.34 Multivalued attributes
are typically declared by using the set, bag, or list constructors.35 If the values of the
multivalued attribute for an object should be ordered, the list constructor is chosen;
if duplicates are allowed, the bag constructor should be chosen; otherwise, the set
constructor is chosen. Composite attributes are mapped into a tuple constructor (by
using a struct declaration in ODL).

Declare an extent for each class, and specify any key attributes as keys of the extent.

Step 2. Add relationship properties or reference attributes for each binary relation-
ship into the ODL classes that participate in the relationship. These may be created
in one or both directions. If a binary relationship is represented by references in both
directions, declare the references to be relationship properties that are inverses of
one another, if such a facility exists.36 If a binary relationship is represented by a
reference in only one direction, declare the reference to be an attribute in the refer-
encing class whose type is the referenced class name.

Depending on the cardinality ratio of the binary relationship, the relationship
properties or reference attributes may be single-valued or collection types. They
will be single-valued for binary relationships in the 1:1 or N:1 directions; they will
be collection types (set-valued or list-valued37) for relationships in the 1:N or
M:N direction. An alternative way to map binary M:N relationships is discussed in
step 7.

If relationship attributes exist, a tuple constructor (struct) can be used to create a
structure of the form <reference, relationship attributes>, which may be included
instead of the reference attribute. However, this does not allow the use of the inverse
constraint. Additionally, if this choice is represented in both directions, the attribute
values will be represented twice, creating redundancy.

34This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tuple
constructor is not explicitly shown in the ODL class declarations.
35Further analysis of the application domain is needed to decide which constructor to use because this
information is not available from the EER schema.
36The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS products
may not provide this support; in such cases, programmers must maintain every relationship explicitly by
coding the methods that update the objects appropriately.
37The decision whether to use set or list is not available from the EER schema and must be determined
from the requirements.

408 Chapter 12 Object and Object-Relational Databases

Step 3. Include appropriate operations for each class. These are not available from
the EER schema and must be added to the database design by referring to the origi-
nal requirements. A constructor method should include program code that checks
any constraints that must hold when a new object is created. A destructor method
should check any constraints that may be violated when an object is deleted. Other
methods should include any further constraint checks that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via
extends) the attributes, relationships, and methods of its superclass in the ODL
schema. Its specific (local) attributes, relationship references, and operations are
specified, as discussed in steps 1, 2, and 3.

Step 5. Weak entity types can be mapped in the same way as regular entity types.
An alternative mapping is possible for weak entity types that do not participate in
any relationships except their identifying relationship; these can be mapped as
though they were composite multivalued attributes of the owner entity type, by using
the set<struct<…>> or list<struct<…>> constructors. The attributes of the weak entity
are included in the struct<…> construct, which corresponds to a tuple constructor.
Attributes are mapped as discussed in steps 1 and 2.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is
possible to create a mapping similar to the EER-to-relational mapping (see Sec-
tion 9.2) by declaring a class to represent the category and defining 1:1 relationships
between the category and each of its superclasses.

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class,
with appropriate references to each participating class. These references are based on
mapping a 1:N relationship from each class that represents a participating entity
type to the class that represents the n-ary relationship. An M:N binary relationship,
especially if it contains relationship attributes, may also use this mapping option,
if desired.

The mapping has been applied to a subset of the UNIVERSITY database schema in
Figure 4.10 in the context of the ODMG object database standard. The mapped
object schema using the ODL notation is shown in Figure 12.10.

12.5 The Object Query Language OQL
The object query language OQL is the query language proposed for the ODMG
object model. It is designed to work closely with the programming languages for
which an ODMG binding is defined, such as C++, Smalltalk, and Java. Hence, an
OQL query embedded into one of these programming languages can return objects
that match the type system of that language. Additionally, the implementations of
class operations in an ODMG schema can have their code written in these pro-
gramming languages. The OQL syntax for queries is similar to the syntax of the
relational standard query language SQL, with additional features for ODMG con-
cepts, such as object identity, complex objects, operations, inheritance, polymor-
phism, and relationships.

 12.5 The Object Query Language OQL 409

In Section 12.5.1 we will discuss the syntax of simple OQL queries and the concept
of using named objects or extents as database entry points. Then, in Section 12.5.2
we will discuss the structure of query results and the use of path expressions to tra-
verse relationships among objects. Other OQL features for handling object identity,
inheritance, polymorphism, and other object-oriented concepts are discussed in
Section 12.5.3. The examples to illustrate OQL queries are based on the UNIVERSITY
database schema given in Figure 12.10.

12.5.1 Simple OQL Queries, Database Entry Points,
and Iterator Variables

The basic OQL syntax is a select … from … where … structure, as it is for SQL. For
example, the query to retrieve the names of all departments in the college of
‘Engineering’ can be written as follows:

Q0: select D.Dname
 from D in DEPARTMENTS
 where D.College = ‘Engineering’;

In general, an entry point to the database is needed for each query, which can be
any named persistent object. For many queries, the entry point is the name of the
extent of a class. Recall that the extent name is considered to be the name of a persis-
tent object whose type is a collection (in most cases, a set) of objects from the class.
Looking at the extent names in Figure 12.10, the named object DEPARTMENTS is of
type set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY is of type
set<FACULTY>; and so on.

The use of an extent name—DEPARTMENTS in Q0—as an entry point refers to a
persistent collection of objects. Whenever a collection is referenced in an OQL
query, we should define an iterator variable38—D in Q0—that ranges over each
object in the collection. In many cases, as in Q0, the query will select certain objects
from the collection, based on the conditions specified in the where clause. In Q0,
only persistent objects D in the collection of DEPARTMENTS that satisfy the condi-
tion D.College = ‘Engineering’ are selected for the query result. For each selected
object D, the value of D.Dname is retrieved in the query result. Hence, the type of the
result for Q0 is bag<string> because the type of each Dname value is string (even
though the actual result is a set because Dname is a key attribute). In general, the
result of a query would be of type bag for select … from … and of type set for select
distinct … from … , as in SQL (adding the keyword distinct eliminates duplicates).

Using the example in Q0, there are three syntactic options for specifying iterator
variables:

D in DEPARTMENTS
DEPARTMENTS D
DEPARTMENTS AS D

38This is similar to the tuple variables that range over tuples in SQL queries.

410 Chapter 12 Object and Object-Relational Databases

We will use the first construct in our examples.39

The named objects used as database entry points for OQL queries are not limited to
the names of extents. Any named persistent object, whether it refers to an atomic
(single) object or to a collection object, can be used as a database entry point.

12.5.2 Query Results and Path Expressions
In general, the result of a query can be of any type that can be expressed in the
ODMG object model. A query does not have to follow the select … from … where …
structure; in the simplest case, any persistent name on its own is a query, whose
result is a reference to that persistent object. For example, the query

Q1: DEPARTMENTS;

returns a reference to the collection of all persistent DEPARTMENT objects, whose
type is set<DEPARTMENT>. Similarly, suppose we had given (via the database bind
operation, see Figure 12.8) a persistent name CS_DEPARTMENT to a single
DEPARTMENT object (the Computer Science department); then, the query

Q1A: CS_DEPARTMENT;

returns a reference to that individual object of type DEPARTMENT. Once an entry point
is specified, the concept of a path expression can be used to specify a path to related
attributes and objects. A path expression typically starts at a persistent object name, or at
the iterator variable that ranges over individual objects in a collection. This name will
be followed by zero or more relationship names or attribute names connected using
the dot notation. For example, referring to the UNIVERSITY database in Figure 12.10,
the following are examples of path expressions, which are also valid queries in OQL:

Q2: CS_DEPARTMENT.Chair;
Q2A: CS_DEPARTMENT.Chair.Rank;
Q2B: CS_DEPARTMENT.Has_faculty;

The first expression Q2 returns an object of type FACULTY, because that is the type
of the attribute Chair of the DEPARTMENT class. This will be a reference to the
FACULTY object that is related to the DEPARTMENT object whose persistent name is
CS_DEPARTMENT via the attribute Chair; that is, a reference to the FACULTY object
who is chairperson of the Computer Science department. The second expression
Q2A is similar, except that it returns the Rank of this FACULTY object (the Computer
Science chair) rather than the object reference; hence, the type returned by Q2A is
string, which is the data type for the Rank attribute of the FACULTY class.

Path expressions Q2 and Q2A return single values, because the attributes Chair (of
DEPARTMENT) and Rank (of FACULTY) are both single-valued and they are applied to
a single object. The third expression, Q2B, is different; it returns an object of type
set<FACULTY> even when applied to a single object, because that is the type of the
relationship Has_faculty of the DEPARTMENT class. The collection returned will include

39Note that the latter two options are similar to the syntax for specifying tuple variables in SQL queries.

 12.5 The Object Query Language OQL 411

a set of references to all FACULTY objects that are related to the DEPARTMENT object
whose persistent name is CS_DEPARTMENT via the relationship Has_faculty; that is, a
set of references to all FACULTY objects who are working in the Computer Science
department. Now, to return the ranks of Computer Science faculty, we cannot write

Q3′: CS_DEPARTMENT.Has_faculty.Rank;

because it is not clear whether the object returned would be of type set<string> or
bag<string> (the latter being more likely, since multiple faculty may share the same
rank). Because of this type of ambiguity problem, OQL does not allow expressions
such as Q3′. Rather, one must use an iterator variable over any collections, as in
Q3A or Q3B below:

Q3A: select F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Q3B: select distinct F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Here, Q3A returns bag<string> (duplicate rank values appear in the result), whereas
Q3B returns set<string> (duplicates are eliminated via the distinct keyword). Both
Q3A and Q3B illustrate how an iterator variable can be defined in the from clause to
range over a restricted collection specified in the query. The variable F in Q3A and
Q3B ranges over the elements of the collection CS_DEPARTMENT.Has_faculty, which
is of type set<FACULTY>, and includes only those faculty who are members of the
Computer Science department.

In general, an OQL query can return a result with a complex structure specified in
the query itself by utilizing the struct keyword. Consider the following examples:

Q4: CS_DEPARTMENT.Chair.Advises;

Q4A: select struct (name: struct (last_name: S.name.Lname, first_name:
S.name.Fname),

 degrees:(select struct (deg: D.Degree,
yr: D.Year,
college: D.College)

 from D in S.Degrees))
 from S in CS_DEPARTMENT.Chair.Advises;

Here, Q4 is straightforward, returning an object of type set<GRAD_STUDENT> as its
result; this is the collection of graduate students who are advised by the chair of the
Computer Science department. Now, suppose that a query is needed to retrieve the
last and first names of these graduate students, plus the list of previous degrees of
each. This can be written as in Q4A, where the variable S ranges over the collection
of graduate students advised by the chairperson, and the variable D ranges over the
degrees of each such student S. The type of the result of Q4A is a collection of (first-
level) structs where each struct has two components: name and degrees.40

40As mentioned earlier, struct corresponds to the tuple constructor discussed in Section 12.1.3.

412 Chapter 12 Object and Object-Relational Databases

The name component is a further struct made up of last_name and first_name, each
being a single string. The degrees component is defined by an embedded query and
is itself a collection of further (second level) structs, each with three string compo-
nents: deg, yr, and college.

Note that OQL is orthogonal with respect to specifying path expressions. That is,
attributes, relationships, and operation names (methods) can be used interchange-
ably within the path expressions, as long as the type system of OQL is not compro-
mised. For example, one can write the following queries to retrieve the grade point
average of all senior students majoring in Computer Science, with the result ordered
by GPA, and within that by last and first name:

Q5A: select struct (last_name: S.name.Lname, first_name: S.name.Fname,
gpa: S.gpa)

 from S in CS_DEPARTMENT.Has_majors
 where S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5B: select struct (last_name: S.name.Lname, first_name: S.name.Fname,
gpa: S.gpa)

 from S in STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’ and
 S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5A used the named entry point CS_DEPARTMENT to directly locate the reference
to the Computer Science department and then locate the students via the relation-
ship Has_majors, whereas Q5B searches the STUDENTS extent to locate all students
majoring in that department. Notice how attribute names, relationship names, and
operation (method) names are all used interchangeably (in an orthogonal manner)
in the path expressions: gpa is an operation; Majors_in and Has_majors are relation-
ships; and Class, Name, Dname, Lname, and Fname are attributes. The implementa-
tion of the gpa operation computes the grade point average and returns its value as
a float type for each selected STUDENT.

The order by clause is similar to the corresponding SQL construct, and specifies in
which order the query result is to be displayed. Hence, the collection returned by a
query with an order by clause is of type list.

12.5.3 Other Features of OQL

Specifying Views as Named Queries. The view mechanism in OQL uses the
concept of a named query. The define keyword is used to specify an identifier of the
named query, which must be a unique name among all named objects, class names,
method names, and function names in the schema. If the identifier has the same
name as an existing named query, then the new definition replaces the previous
definition. Once defined, a query definition is persistent until it is redefined or
deleted. A view can also have parameters (arguments) in its definition.

 12.5 The Object Query Language OQL 413

For example, the following view V1 defines a named query Has_minors to retrieve
the set of objects for students minoring in a given department:

V1: define Has_minors(Dept_name) as
 select S
 from S in STUDENTS
 where S.Minors_in.Dname = Dept_name;

Because the ODL schema in Figure 12.10 only provided a unidirectional Minors_in
attribute for a STUDENT, we can use the above view to represent its inverse without
having to explicitly define a relationship. This type of view can be used to represent
inverse relationships that are not expected to be used frequently. The user can now
utilize the above view to write queries such as

Has_minors(‘Computer Science’);

which would return a bag of students minoring in the Computer Science depart-
ment. Note that in Figure 12.10, we defined Has_majors as an explicit relationship,
presumably because it is expected to be used more often.

Extracting Single Elements from Singleton Collections. An OQL query will,
in general, return a collection as its result, such as a bag, set (if distinct is specified), or
list (if the order by clause is used). If the user requires that a query only return a sin-
gle element, there is an element operator in OQL that is guaranteed to return a
single element E from a singleton collection C that contains only one element. If C
contains more than one element or if C is empty, then the element operator raises
an exception. For example, Q6 returns the single object reference to the Computer
Science department:

Q6: element (select D
 from D in DEPARTMENTS
 where D.Dname = ‘Computer Science’);

Since a department name is unique across all departments, the result should be one
department. The type of the result is D:DEPARTMENT.

Collection Operators (Aggregate Functions, Quantifiers). Because many
query expressions specify collections as their result, a number of operators have been
defined that are applied to such collections. These include aggregate operators as
well as membership and quantification (universal and existential) over a collection.

The aggregate operators (min, max, count, sum, avg) operate over a collection.41 The
operator count returns an integer type. The remaining aggregate operators (min,
max, sum, avg) return the same type as the type of the operand collection. Two
examples follow. The query Q7 returns the number of students minoring in Com-
puter Science and Q8 returns the average GPA of all seniors majoring in Computer
Science.

41These correspond to aggregate functions in SQL.

414 Chapter 12 Object and Object-Relational Databases

Q7: count (S in Has_minors(‘Computer Science’));

Q8: avg (select S.Gpa
 from S in STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’ and
 S.Class = ‘Senior’);

Notice that aggregate operations can be applied to any collection of the appropriate
type and can be used in any part of a query. For example, the query to retrieve all
department names that have more than 100 majors can be written as in Q9:

Q9: select D.Dname
 from D in DEPARTMENTS
 where count (D.Has_majors) > 100;

The membership and quantification expressions return a Boolean type—that is, true or
false. Let V be a variable, C a collection expression, B an expression of type Boolean (that
is, a Boolean condition), and E an element of the type of elements in collection C. Then:

(E in C) returns true if element E is a member of collection C.
(for all V in C : B) returns true if all the elements of collection C satisfy B.
(exists V in C : B) returns true if there is at least one element in C satisfying B.

To illustrate the membership condition, suppose we want to retrieve the names of
all students who completed the course called ‘Database Systems I’. This can be writ-
ten as in Q10, where the nested query returns the collection of course names that
each STUDENT S has completed, and the membership condition returns true if
‘Database Systems I’ is in the collection for a particular STUDENT S:

Q10: select S.name.Lname, S.name.Fname
 from S in STUDENTS
 where ‘Database Systems I’ in
 (select C.Section.Of_course.Cname
 from C in S.Completed_sections);

Q10 also illustrates a simpler way to specify the select clause of queries that return a
collection of structs; the type returned by Q10 is bag<struct(string, string)>.

One can also write queries that return true/false results. As an example, let us
assume that there is a named object called JEREMY of type STUDENT. Then, query
Q11 answers the following question: Is Jeremy a Computer Science minor? Similarly,
Q12 answers the question Are all Computer Science graduate students advised by
Computer Science faculty? Both Q11 and Q12 return true or false, which are inter-
preted as yes or no answers to the above questions:

Q11: JEREMY in Has_minors(‘Computer Science’);

Q12: for all G in
 (select S
 from S in GRAD_STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’)
 : G.Advisor in CS_DEPARTMENT.Has_faculty;

 12.5 The Object Query Language OQL 415

Note that query Q12 also illustrates how attribute, relationship, and operation
inheritance applies to queries. Although S is an iterator that ranges over the extent
GRAD_STUDENTS, we can write S.Majors_in because the Majors_in relationship is
inherited by GRAD_STUDENT from STUDENT via extends (see Figure 12.10). Finally,
to illustrate the exists quantifier, query Q13 answers the following question: Does
any graduate Computer Science major have a 4.0 GPA? Here, again, the operation
gpa is inherited by GRAD_STUDENT from STUDENT via extends.

Q13: exists G in
 (select S
 from S in GRAD_STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’)
 : G.Gpa = 4;

Ordered (Indexed) Collection Expressions. As we discussed in Section 12.3.3,
collections that are lists and arrays have additional operations, such as retrieving
the ith, first, and last elements. Additionally, operations exist for extracting a sub-
collection and concatenating two lists. Hence, query expressions that involve lists
or arrays can invoke these operations. We will illustrate a few of these operations
using sample queries. Q14 retrieves the last name of the faculty member who earns
the highest salary:

Q14: first (select struct(facname: F.name.Lname, salary: F.Salary)
 from F in FACULTY
 order by salary desc);

Q14 illustrates the use of the first operator on a list collection that contains the sala-
ries of faculty members sorted in descending order by salary. Thus, the first element
in this sorted list contains the faculty member with the highest salary. This query
assumes that only one faculty member earns the maximum salary. The next query,
Q15, retrieves the top three Computer Science majors based on GPA.

Q15: (select struct(last_name: S.name.Lname, first_name: S.name.Fname,
gpa: S.Gpa)

 from S in CS_DEPARTMENT.Has_majors
 order by gpa desc) [0:2];

The select-from-order-by query returns a list of Computer Science students ordered
by GPA in descending order. The first element of an ordered collection has an
index position of 0, so the expression [0:2] returns a list containing the first, second,
and third elements of the select … from … order by … result.

The Grouping Operator. The group by clause in OQL, although similar to the
corresponding clause in SQL, provides explicit reference to the collection of objects
within each group or partition. First we give an example, and then we describe the
general form of these queries.

Q16 retrieves the number of majors in each department. In this query, the students
are grouped into the same partition (group) if they have the same major; that is, the
same value for S.Majors_in.Dname:

416 Chapter 12 Object and Object-Relational Databases

Q16: (select struct(dept_name, number_of_majors: count (partition))
 from S in STUDENTS
 group by dept_name: S.Majors_in.Dname;

The result of the grouping specification is of type set<struct(dept_name: string, partition:
bag<struct(S:STUDENT>)>), which contains a struct for each group (partition) that
has two components: the grouping attribute value (dept_name) and the bag of the
STUDENT objects in the group (partition). The select clause returns the grouping
attribute (name of the department), and a count of the number of elements in each
partition (that is, the number of students in each department), where partition is the
keyword used to refer to each partition. The result type of the select clause is
set<struct(dept_name: string, number_of_majors: integer)>. In general, the syntax for
the group by clause is

group by F1: E1, F2: E2, … , Fk: Ek

where F1: E1, F2: E2, … , Fk: Ek is a list of partitioning (grouping) attributes and each
partitioning attribute specification Fi: Ei defines an attribute (field) name Fi and an
expression Ei. The result of applying the grouping (specified in the group by clause)
is a set of structures:

set<struct(F1: T1, F2: T2, … , Fk: Tk, partition: bag)>

where Ti is the type returned by the expression Ei, partition is a distinguished field
name (a keyword), and B is a structure whose fields are the iterator variables (S in
Q16) declared in the from clause having the appropriate type.

Just as in SQL, a having clause can be used to filter the partitioned sets (that is, select
only some of the groups based on group conditions). In Q17, the previous query is
modified to illustrate the having clause (and also shows the simplified syntax for the
select clause). Q17 retrieves for each department having more than 100 majors, the
average GPA of its majors. The having clause in Q17 selects only those partitions
(groups) that have more than 100 elements (that is, departments with more than
100 students).

Q17: select dept_name, avg_gpa: avg (select P.gpa from P in partition)
 from S in STUDENTS
 group by dept_name: S.Majors_in.Dname
 having count (partition) > 100;

Note that the select clause of Q17 returns the average GPA of the students in the
partition. The expression

select P.Gpa from P in partition

returns a bag of student GPAs for that partition. The from clause declares an iterator
variable P over the partition collection, which is of type bag<struct(S: STUDENT)>.
Then the path expression P.gpa is used to access the GPA of each student in the
partition.

 12.6 Overview of the C++ Language Binding in the ODMG Standard 417

12.6 Overview of the C++ Language Binding
in the ODMG Standard

The C++ language binding specifies how ODL constructs are mapped to C++ con-
structs. This is done via a C++ class library that provides classes and operations
that implement the ODL constructs. An object manipulation language (OML) is
needed to specify how database objects are retrieved and manipulated within a
C++ program, and this is based on the C++ programming language syntax and
semantics. In addition to the ODL/OML bindings, a set of constructs called physi-
cal pragmas are defined to allow the programmer some control over physical stor-
age issues, such as clustering of objects, utilizing indexes, and memory
management.

The class library added to C++ for the ODMG standard uses the prefix d_ for
class declarations that deal with database concepts.42 The goal is that the pro-
grammer should think that only one language is being used, not two separate
languages. For the programmer to refer to database objects in a program, a class
D_Ref<T> is defined for each database class T in the schema. Hence, program
variables of type D_Ref<T> can refer to both persistent and transient objects of
class T.

In order to utilize the various built-in types in the ODMG object model such as
collection types, various template classes are specified in the library. For example,
an abstract class D_Object<T> specifies the operations to be inherited by all objects.
Similarly, an abstract class D_Collection<T> specifies the operations of collections.
These classes are not instantiable, but only specify the operations that can be
inherited by all objects and by collection objects, respectively. A template class is
specified for each type of collection; these include D_Set<T>, D_List<T>,
D_Bag<T>, D_Varray<T>, and D_Dictionary<T>, and they correspond to the collection
types in the object model (see Section 12.3.1). Hence, the programmer can create
classes of types such as D_Set<D_Ref<STUDENT>> whose instances would be sets
of references to STUDENT objects, or D_Set<string> whose instances would be sets
of strings. Additionally, a class d_Iterator corresponds to the Iterator class of the
object model.

The C++ ODL allows a user to specify the classes of a database schema using
the constructs of C++ as well as the constructs provided by the object database
library. For specifying the data types of attributes,43 basic types such as d_Short
(short integer), d_Ushort (unsigned short integer), d_Long (long integer), and
d_Float (floating-point number) are provided. In addition to the basic data types,
several structured literal types are provided to correspond to the structured literal
types of the ODMG object model. These include d_String, d_Interval, d_Date, d_Time,
and d_Timestamp (see Figure 12.5(b)).

42Presumably, d_ stands for database classes.
43That is, member variables in object-oriented programming terminology.

418 Chapter 12 Object and Object-Relational Databases

To specify relationships, the keyword rel_ is used within the prefix of type names;
for example, by writing

d_Rel_Ref<DEPARTMENT, Has_majors> Majors_in;

in the STUDENT class, and

d_Rel_Set<STUDENT, Majors_in> Has_majors;

in the DEPARTMENT class, we are declaring that Majors_in and Has_majors are rela-
tionship properties that are inverses of one another and hence represent a 1:N
binary relationship between DEPARTMENT and STUDENT.

For the OML, the binding overloads the operation new so that it can be used to
create either persistent or transient objects. To create persistent objects, one
must provide the database name and the persistent name of the object. For
example, by writing

D_Ref<STUDENT> S = new(DB1, ‘John_Smith’) STUDENT;

the programmer creates a named persistent object of type STUDENT in database
DB1 with persistent name John_Smith. Another operation, delete_object() can be
used to delete objects. Object modification is done by the operations (methods)
defined in each class by the programmer.

The C++ binding also allows the creation of extents by using the library class
d_Extent. For example, by writing

D_Extent<PERSON> ALL_PERSONS(DB1);

the programmer would create a named collection object ALL_PERSONS—whose
type would be D_Set<PERSON>—in the database DB1 that would hold persistent
objects of type PERSON. However, key constraints are not supported in the C++
binding, and any key checks must be programmed in the class methods.44 Also,
the C++ binding does not support persistence via reachability; the object must be
statically declared to be persistent at the time it is created.

12.7 Summary
In this chapter, we started in Section 12.1 with an overview of the concepts utilized
in object databases, and we discussed how these concepts were derived from gen-
eral object-oriented principles. The main concepts we discussed were: object iden-
tity and identifiers; encapsulation of operations; inheritance; complex structure of
objects through nesting of type constructors; and how objects are made persistent.

44We have only provided a brief overview of the C++ binding. For full details, see Cattell et al. (2000),
Chapter 5.

 12.7 Summary 419

Then, in Section 12.2, we showed how many of these concepts were incorporated
into the relational model and the SQL standard; we showed that this incorporation
leads to expanded relational database functionality. These systems have been called
object-relational databases.

We then discussed the ODMG 3.0 standard for object databases. We started by
describing the various constructs of the object model in Sction 12.3. The various
built-in types, such as Object, Collection, Iterator, set, list, and so on, were described by
their interfaces, which specify the built-in operations of each type. These built-in
types are the foundation upon which the object definition language (ODL) and
object query language (OQL) are based. We also described the difference between
objects, which have an ObjectId, and literals, which are values with no OID. Users
can declare classes for their application that inherit operations from the appropriate
built-in interfaces. Two types of properties can be specified in a user-defined class—
attributes and relationships—in addition to the operations that can be applied to
objects of the class. The ODL allows users to specify both interfaces and classes, and
permits two different types of inheritance—interface inheritance via “:” and class
inheritance via extends. A class can have an extent and keys. A description of ODL
followed, and an example database schema for the UNIVERSITY database was used to
illustrate the ODL constructs.

Following the description of the ODMG object model, we described a general tech-
nique for designing object database schemas in Section 12.4. We discussed how
object databases differ from relational databases in three main areas: references to
represent relationships, inclusion of operations, and inheritance. Finally, we
showed how to map a conceptual database design in the EER model to the con-
structs of object databases.

In Section 12.5, we presented an overview of the object query language (OQL). The
OQL follows the concept of orthogonality in constructing queries, meaning that an
operation can be applied to the result of another operation as long as the type of the
result is of the correct input type for the operation. The OQL syntax follows many
of the constructs of SQL but includes additional concepts such as path expressions,
inheritance, methods, relationships, and collections. Examples of how to use OQL
over the UNIVERSITY database were given.

Next we gave an overview of the C++ language binding in Section 12.6, which
extends C++ class declarations with the ODL type constructors but permits seam-
less integration of C++ with the ODBMS.

In 1997 Sun endorsed the ODMG API (Application Program Interface). O2 tech-
nologies was the first corporation to deliver an ODMG-compliant DBMS. Many
ODBMS vendors, including Object Design (now eXcelon), Gemstone Systems, POET
Software, and Versant Corporation45, have endorsed the ODMG standard.

45The Versant Object Technology product now belongs to Actian Corporation.

420 Chapter 12 Object and Object-Relational Databases

Review Questions
 12.1. What are the origins of the object-oriented approach?

 12.2. What primary characteristics should an OID possess?

 12.3. Discuss the various type constructors. How are they used to create complex
object structures?

 12.4. Discuss the concept of encapsulation, and tell how it is used to create abstract
data types.

 12.5. Explain what the following terms mean in object-oriented database termi-
nology: method, signature, message, collection, extent.

 12.6. What is the relationship between a type and its subtype in a type hierarchy?
What is the constraint that is enforced on extents corresponding to types in
the type hierarchy?

 12.7. What is the difference between persistent and transient objects? How is
persistence handled in typical OO database systems?

 12.8. How do regular inheritance, multiple inheritance, and selective inheritance
differ?

 12.9. Discuss the concept of polymorphism/operator overloading.

 12.10. Discuss how each of the following features is realized in SQL 2008: object identi-
fier, type inheritance, encapsulation of operations, and complex object structures.

 12.11. In the traditional relational model, creating a table defined both the table
type (schema or attributes) and the table itself (extension or set of current
tuples). How can these two concepts be separated in SQL 2008?

 12.12. Describe the rules of inheritance in SQL 2008.

 12.13. What are the differences and similarities between objects and literals in the
ODMG object model?

 12.14. List the basic operations of the following built-in interfaces of the
ODMG object model: Object, Collection, Iterator, Set, List, Bag, Array, and
Dictionary.

 12.15. Describe the built-in structured literals of the ODMG object model and the
operations of each.

 12.16. What are the differences and similarities of attribute and relationship prop-
erties of a user-defined (atomic) class?

 12.17. What are the differences and similarities of class inhertance via extends and
interface inheritance via “:” in the ODMG object model?

 12.18. Discuss how persistence is specified in the ODMG object model in the C++
binding.

 Exercises 421

 12.19. Why are the concepts of extents and keys important in database applica-
tions?

 12.20. Describe the following OQL concepts: database entry points, path expressions,
iterator variables, named queries (views), aggregate functions, grouping,
and quantifiers.

 12.21. What is meant by the type orthogonality of OQL?

 12.22. Discuss the general principles behind the C++ binding of the ODMG
standard.

 12.23. What are the main differences between designing a relational database and
an object database?

 12.24. Describe the steps of the algorithm for object database design by EER-to-
OO mapping.

Exercises
 12.25. Convert the example of GEOMETRY_OBJECTs given in Section 12.1.5 from

the functional notation to the notation given in Figure 12.2 that distin-
guishes between attributes and operations. Use the keyword INHERIT to
show that one class inherits from another class.

 12.26. Compare inheritance in the EER model (see Chapter 4) to inheritance in the
OO model described in Section 12.1.5.

 12.27. Consider the UNIVERSITY EER schema in Figure 4.10. Think of what opera-
tions are needed for the entity types/classes in the schema. Do not consider
constructor and destructor operations.

 12.28. Consider the COMPANY ER schema in Figure 3.2. Think of what operations
are needed for the entity types/classes in the schema. Do not consider con-
structor and destructor operations.

 12.29. Design an OO schema for a database application that you are interested in.
Construct an EER schema for the application, and then create the corre-
sponding classes in ODL. Specify a number of methods for each class, and
then specify queries in OQL for your database application.

 12.30. Consider the AIRPORT database described in Exercise 4.21. Specify a num-
ber of operations/methods that you think should be applicable to that appli-
cation. Specify the ODL classes and methods for the database.

 12.31. Map the COMPANY ER schema in Figure 3.2 into ODL classes. Include
appropriate methods for each class.

 12.32. Specify in OQL the queries in the exercises of Chapters 6 and 7 that apply to
the COMPANY database.

422 Chapter 12 Object and Object-Relational Databases

Selected Bibliography
Object-oriented database concepts are an amalgam of concepts from OO pro-
gramming languages and from database systems and conceptual data models. A
number of textbooks describe OO programming languages—for example,
Stroustrup (1997) for C++, and Goldberg and Robson (1989) for Smalltalk.
Books by Cattell (1994) and Lausen and Vossen (1997) describe OO database
concepts. Other books on OO models include a detailed description of the
experimental OODBMS developed at Microelectronic Computer Corporation
called ORION and related OO topics by Kim and Lochovsky (1989). Bancilhon
et al. (1992) describes the story of building the O2 OODBMS with a detailed
discussion of design decisions and language implementation. Dogac et al.
(1994) provides a thorough discussion on OO database topics by experts at a
NATO workshop.

There is a vast bibliography on OO databases, so we can only provide a repre-
sentative sample here. The October 1991 issue of CACM and the December
1990 issue of ieee Computer describe OO database concepts and systems. Dit-
trich (1986) and Zaniolo et al. (1986) survey the basic concepts of OO data
models. An early paper on OO database system implementation is Baroody and
DeWitt (1981). Su et al. (1988) presents an OO data model that was used in
CAD/CAM applications. Gupta and Horowitz (1992) discusses OO applica-
tions to CAD, Network Management, and other areas. Mitschang (1989)
extends the relational algebra to cover complex objects. Query languages and
graphical user interfaces for OO are described in Gyssens et al. (1990), Kim
(1989), Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), and
Cruz (1992).

The Object-Oriented Manifesto by Atkinson et al. (1990) is an interesting arti-
cle that reports on the position by a panel of experts regarding the mandatory
and optional features of OO database management. Polymorphism in databases
and OO programming languages is discussed in Osborn (1989), Atkinson and
Buneman (1987), and Danforth and Tomlinson (1988). Object identity is dis-
cussed in Abiteboul and Kanellakis (1989). OO programming languages for
databases are discussed in Kent (1991). Object constraints are discussed in Del-
cambre et al. (1991) and Elmasri, James, and Kouramajian (1993). Authoriza-
tion and security in OO databases are examined in Rabitti et al. (1991) and
Bertino (1992).

Cattell et al. (2000) describe the ODMG 3.0 standard, which is described in this
chapter, and Cattell et al. (1993) and Cattell et al. (1997) describe the earlier
versions of the standard. Bancilhon and Ferrari (1995) give a tutorial presenta-
tion of the important aspects of the ODMG standard. Several books describe
the CORBA architecture—for example, Baker (1996).

The O2 system is described in Deux et al. (1991), and Bancilhon et al. (1992)
includes a list of references to other publications describing various aspects of
O2. The O2 model was formalized in Velez et al. (1989). The ObjectStore system

 Selected Bibliography 423

is described in Lamb et al. (1991). Fishman et al. (1987) and Wilkinson et al.
(1990) discuss IRIS, an object-oriented DBMS developed at Hewlett-Packard
Laboratories. Maier et al. (1986) and Butterworth et al. (1991) describe the design
of GEMSTONE. The ODE system developed at AT&T Bell Labs is described in
Agrawal and Gehani (1989). The ORION system developed at MCC is described
in Kim et al. (1990). Morsi et al. (1992) describes an OO testbed.

Cattell (1991) surveys concepts from both relational and object databases and
discusses several prototypes of object-based and extended relational database sys-
tems. Alagic (1997) points out discrepancies between the ODMG data model and
its language bindings and proposes some solutions. Bertino and Guerrini (1998)
propose an extension of the ODMG model for supporting composite objects.
Alagic (1999) presents several data models belonging to the ODMG family.

This page intentionally left blank

425

13
XML: Extensible

Markup Language

Many Internet applications provide Web inter-
faces to access information stored in one or

more databases. These databases are often referred to as data sources. It is common
to use the three-tier client/server architectures for Internet applications (see Sec-
tion 2.5). Internet database applications are designed to interact with the user through
Web interfaces that display Web pages on desktops, laptops, and mobile devices.
The common method of specifying the contents and formatting of Web pages is
through the use of hypertext documents. There are various languages for writing
these documents, the most common being HTML (HyperText Markup Language).
Although HTML is widely used for formatting and structuring Web documents, it
is not suitable for specifying structured data that is extracted from databases. A new
language—namely, XML (Extensible Markup Language)—has emerged as the stan-
dard for structuring and exchanging data over the Web in text files. Another lan-
guage that can be used for the same purpose is JSON (JavaScript Object Notation;
see Section 11.4). XML can be used to provide information about the structure and
meaning of the data in the Web pages rather than just specifying how the Web
pages are formatted for display on the screen. Both XML and JSON documents
provide descriptive information, such as attribute names, as well as the values of
these attributes, in a text file; hence, they are known as self-describing documents.
The formatting aspects of Web pages are specified separately—for example, by
using a formatting language such as XSL (Extensible Stylesheet Language) or a
transformation language such as XSLT (Extensible Stylesheet Language for Trans-
formations or simply XSL Transformations). Recently, XML has also been pro-
posed as a possible model for data storage and retrieval, although only a few
experimental database systems based on XML have been developed so far.

chapter 13

426 Chapter 13 XML: Extensible Markup Language

Basic HTML is useful for generating static Web pages with fixed text and other
objects, but most e-commerce applications require Web pages that provide interac-
tive features with the user and use the information provided by the user for select-
ing specific data from a database for display. Such Web pages are called dynamic
Web pages, because the data extracted and displayed each time will be different
depending on user input. For example, a banking app would get the user’s account
number, then extract the balance for that user’s account from the database for dis-
play. We discussed how scripting languages, such as PHP, can be used to generate
dynamic Web pages for applications such as those presented in Chapter 11. XML
can be used to transfer information in self-describing textual files among various
programs on different computers when needed by the applications.

In this chapter, we will focus on describing the XML data model and its associated
languages, and how data extracted from relational databases can be formatted as
XML documents to be exchanged over the Web. Section 13.1 discusses the differ-
ence among structured, semistructured, and unstructured data. Section 13.2 pres-
ents the XML data model, which is based on tree (hierarchical) structures as
compared to the flat relational data model structures. In Section 13.3, we focus on
the structure of XML documents and the languages for specifying the structure of
these documents, such as DTD (Document Type Definition) and XML Schema.
Section 13.4 shows the relationship between XML and relational databases. Sec-
tion 13.5 describes some of the languages associated with XML, such as XPath and
XQuery. Section 13.6 discusses how data extracted from relational databases can be
formatted as XML documents. In Section 13.7, we discuss the new functions that
have been incorporated into XML for the purpose of generating XML documents
from relational databases. Finally, Section 13.8 is the chapter summary.

13.1 Structured, Semistructured,
and Unstructured Data

The information stored in relational databases is known as structured data because
it is represented in a strict format. For example, each record in a relational database
table—such as each of the tables in the COMPANY database in Figure 5.6—follows
the same format as the other records. For structured data, it is common to carefully
design the database schema using techniques such as those described in Chapters 3
and 4 in order to define the database structure. The DBMS then checks to ensure
that all data follows the structures and constraints specified in the schema.

However, not all data is collected and inserted into carefully designed structured
databases. In some applications, data is collected in an ad hoc manner before it is
known how it will be stored and managed. This data may have a certain structure,
but not all the information collected will have the identical structure. Some attri-
butes may be shared among the various entities, but other attributes may exist only
in a few entities. Moreover, additional attributes can be introduced in some of the
newer data items at any time, and there is no predefined schema. This type of data
is known as semistructured data. A number of data models have been introduced

 13.1 Structured, Semistructured, and Unstructured Data 427

for representing semistructured data, often based on using tree or graph data struc-
tures rather than the flat relational model structures.

A key difference between structured and semistructured data concerns how the
schema constructs (such as the names of attributes, relationships, and entity types)
are handled. In semistructured data, the schema information is mixed in with the
data values, since each data object can have different attributes that are not known
in advance. Hence, this type of data is sometimes referred to as self-describing
data. Many of the newer NOSQL systems adopt self-describing storage schemes
(see Chapter 24). Consider the following example. We want to collect a list of bib-
liographic references related to a certain research project. Some of these may be
books or technical reports, others may be research articles in journals or conference
proceedings, and still others may refer to complete journal issues or conference
proceedings. Clearly, each of these may have different attributes and different types
of information. Even for the same type of reference—say, conference articles—we
may have different information. For example, one article citation may be com-
plete, with full information about author names, title, proceedings, page numbers,
and so on, whereas another citation may not have all the information available.
New types of bibliographic sources may appear in the future—for instance, references
to Web pages or to conference tutorials—and these may have new attributes that
describe them.

One model for displaying semistructured data is a directed graph, as shown in
Figure 13.1. The information shown in Figure 13.1 corresponds to some of the
structured data shown in Figure 5.6. As we can see, this model somewhat resem-
bles the object model (see Section 12.1.3) in its ability to represent complex objects
and nested structures. In Figure 13.1, the labels or tags on the directed edges
represent the schema names: the names of attributes, object types (or entity types

LocationNumber

Project Project

Company projects

Name

‘Bellaire’1‘Product X’

Worker Worker

HoursLast_
name

Ssn HoursFirst_
name

Ssn

32.5‘Smith’‘123456789’ 20.0‘Joyce’‘435435435’

Figure 13.1
Representing
semistructured data
as a graph.

428 Chapter 13 XML: Extensible Markup Language

or classes), and relationships. The internal nodes represent individual objects or
composite attributes. The leaf nodes represent actual data values of simple
(atomic) attributes.

There are two main differences between the semistructured model and the object
model that we discussed in Chapter 12:

 1. The schema information—names of attributes, relationships, and classes
(object types) in the semistructured model—is intermixed with the objects
and their data values in the same data structure.

 2. In the semistructured model, there is no requirement for a predefined
schema to which the data objects must conform, although it is possible
to define a schema if necessary. The object model of Chapter 12 requires
a schema.

In addition to structured and semistructured data, a third category exists, known as
unstructured data because there is very limited indication of the type of data. A
typical example is a text document that contains information embedded within it.
Web pages in HTML that contain some data are considered to be unstructured
data. Consider part of an HTML file, shown in Figure 13.2. Text that appears
between angled brackets, <…>, is an HTML tag. A tag with a slash, </…>, indicates
an end tag, which represents the ending of the effect of a matching start tag. The
tags mark up the document1 in order to instruct an HTML processor how to dis-
play the text between a start tag and a matching end tag. Hence, the tags specify
document formatting rather than the meaning of the various data elements in the
document. HTML tags specify information, such as font size and style (boldface,
italics, and so on), color, heading levels in documents, and so on. Some tags provide
text structuring in documents, such as specifying a numbered or unnumbered list
or a table. Even these structuring tags specify that the embedded textual data is to be
displayed in a certain manner rather than indicating the type of data represented in
the table.

HTML uses a large number of predefined tags, which are used to specify a variety of
commands for formatting Web documents for display. The start and end tags spec-
ify the range of text to be formatted by each command. A few examples of the tags
shown in Figure 13.2 follow:

 ■ The <HTML> … </HTML> tags specify the boundaries of the document.

 ■ The document header information—within the <HEAD> … </HEAD>
tags—specifies various commands that will be used elsewhere in the docu-
ment. For example, it may specify various script functions in a language
such as JavaScript or PERL, or certain formatting styles (fonts, paragraph
styles, header styles, and so on) that can be used in the document. It can also
specify a title to indicate what the HTML file is for, and other similar infor-
mation that will not be displayed as part of the document.

1That is why it is known as HyperText Markup Language.

 13.1 Structured, Semistructured, and Unstructured Data 429

<HTML>
 <HEAD>
 …
 </HEAD>
 <BODY>
 <H1>List of company projects and the employees in each project</H1>
 <H2>The ProductX project:</H2>
 <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
 <TR>
 <TD width=“50%”>John Smith:</TD>
 <TD>32.5 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Joyce English:</TD>
 <TD>20.0 hours per week</TD>
 </TR>
 </TABLE>
 <H2>The ProductY project:</H2>
 <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
 <TR>
 <TD width=“50%”>John Smith:</TD>
 <TD>7.5 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Joyce English:</TD>
 <TD>20.0 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Franklin Wong:</TD>
 <TD>10.0 hours per week</TD>
 </TR>
 </TABLE>
 …
 </BODY>
</HTML>

Figure 13.2
Part of an HTML document
representing unstructured data.

 ■ The body of the document—specified within the <BODY> … </BODY>
tags—includes the document text and the markup tags that specify how the
text is to be formatted and displayed. It can also include references to other
objects, such as images, videos, voice messages, and other documents.

 ■ The <H1> … </H1> tags specify that the text is to be displayed as a level 1
heading. There are many heading levels (<H2>, <H3>, and so on), each
displaying text in a less prominent heading format.

 ■ The <TABLE> … </TABLE> tags specify that the following text is to be dis-
played as a table. Each table row in the table is enclosed within <TR> … </TR>

430 Chapter 13 XML: Extensible Markup Language

tags, and the individual table data elements in a row are displayed within
<TD> … </TD> tags.2

 ■ Some tags may have attributes, which appear within the start tag and
describe additional properties of the tag.3

In Figure 13.2, the <TABLE> start tag has four attributes describing various charac-
teristics of the table. The following <TD> and start tags have one and two
attributes, respectively.

HTML has a very large number of predefined tags, and whole books are devoted to
describing how to use these tags. If designed properly, HTML documents can be
formatted so that humans are able to easily understand the document contents and
are able to navigate through the resulting Web documents. However, the source
HTML text documents are very difficult to interpret automatically by computer pro-
grams because they do not include schema information about the type of data in the
documents. As e-commerce and other Internet applications become increasingly
automated, it is becoming crucial to be able to exchange Web documents among
various computer sites and to interpret their contents automatically. This need was
one of the reasons that led to the development of XML. In addition, an extendible
version of HTML called XHTML was developed that allows users to extend the tags
of HTML for different applications and allows an XHTML file to be interpreted by
standard XML processing programs. Our discussion will focus on XML only.

The example in Figure 13.2 illustrates a static HTML page, since all the information
to be displayed is explicitly spelled out as fixed text in the HTML file. In many cases,
some of the information to be displayed may be extracted from a database. For
example, the project names and the employees working on each project may be
extracted from the database in Figure 5.6 through the appropriate SQL query. We
may want to use the same HTML formatting tags for displaying each project and the
employees who work on it, but we may want to change the particular projects (and
employees) being displayed. For example, we may want to see a Web page displaying
the information for ProjectX, and then later a page displaying the information for
ProjectY. Although both pages are displayed using the same HTML formatting tags,
the actual data items displayed will be different. Such Web pages are called dynamic,
since the data parts of the page may be different each time it is displayed, even though
the display appearance is the same. We discussed in Chapter 11 how scripting lan-
guages, such as PHP, can be used to generate dynamic Web pages.

13.2 XML Hierarchical (Tree) Data Model
We now introduce the data model used in XML. The basic object in XML is the XML
document. Two main structuring concepts are used to construct an XML document:
elements and attributes. It is important to note that the term attribute in XML is not

2<TR> stands for table row and <TD> stands for table data.
3This is how the term attribute is used in document markup languages, which differs from how it is used
in database models.

 13.2 XML Hierarchical (Tree) Data Model 431

used in the same manner as is customary in database terminology, but rather as it is used
in document description languages such as HTML and SGML.4 Attributes in XML
provide additional information that describes elements, as we will see. There are addi-
tional concepts in XML, such as entities, identifiers, and references, but first we concen-
trate on describing elements and attributes to show the essence of the XML model.

Figure 13.3 shows an example of an XML element called <Projects>. As in HTML,
elements are identified in a document by their start tag and end tag. The tag names
are enclosed between angled brackets < … >, and end tags are further identified by
a slash, </ … >.5

Complex elements are constructed from other elements hierarchically, whereas
simple elements contain data values. A major difference between XML and HTML
is that XML tag names are defined to describe the meaning of the data elements in
the document rather than to describe how the text is to be displayed. This makes it
possible to process the data elements in the XML document automatically by com-
puter programs. Also, the XML tag (element) names can be defined in another doc-
ument, known as the schema document, to give a semantic meaning to the tag
names that can be exchanged among multiple programs and users. In HTML, all
tag names are predefined and fixed; that is why they are not extendible.

It is straightforward to see the correspondence between the XML textual representa-
tion shown in Figure 13.3 and the tree structure shown in Figure 13.1. In the tree
representation, internal nodes represent complex elements, whereas leaf nodes rep-
resent simple elements. That is why the XML model is called a tree model or a
hierarchical model. In Figure 13.3, the simple elements are the ones with the tag
names <Name>, <Number>, <Location>, <Dept_no>, <Ssn>, <Last_name>, <First_name>,
and <Hours>. The complex elements are the ones with the tag names <Projects>,
<Project>, and <Worker>. In general, there is no limit on the levels of nesting of elements.

It is possible to characterize three main types of XML documents:

 ■ Data-centric XML documents. These documents have many small data
items that follow a specific structure and hence may be extracted from a
structured database. They are formatted as XML documents in order to
exchange them over the Web. These usually follow a predefined schema that
defines the tag names.

 ■ Document-centric XML documents. These are documents with large
amounts of text, such as news articles or books. There are few or no struc-
tured data elements in these documents.

 ■ Hybrid XML documents. These documents may have parts that contain
structured data and other parts that are predominantly textual or unstruc-
tured. They may or may not have a predefined schema.

4SGML (Standard Generalized Markup Language) is a more general language for describing documents
and provides capabilities for specifying new tags. However, it is more complex than HTML and XML.
5The left and right angled bracket characters (< and >) are reserved characters, as are the ampersand
(&), apostrophe (’), and single quotation mark (‘). To include them within the text of a document, they
must be encoded with escapes as <, >, &, ', and ", respectively.

432 Chapter 13 XML: Extensible Markup Language

<?xml version=“1.0” standalone=“yes”?>
 <Projects>
 <Project>
 <Name>ProductX</Name>
 <Number>1</Number>
 <Location>Bellaire</Location>
 <Dept_no>5</Dept_no>
 <Worker>
 <Ssn>123456789</Ssn>
 <Last_name>Smith</Last_name>
 <Hours>32.5</Hours>
 </Worker>
 <Worker>
 <Ssn>453453453</Ssn>
 <First_name>Joyce</First_name>
 <Hours>20.0</Hours>
 </Worker>
 </Project>
 <Project>
 <Name>ProductY</Name>
 <Number>2</Number>
 <Location>Sugarland</Location>
 <Dept_no>5</Dept_no>
 <Worker>
 <Ssn>123456789</Ssn>
 <Hours>7.5</Hours>
 </Worker>
 <Worker>
 <Ssn>453453453</Ssn>
 <Hours>20.0</Hours>
 </Worker>
 <Worker>
 <Ssn>333445555</Ssn>
 <Hours>10.0</Hours>
 </Worker>
 </Project>
 …
 </Projects>

Figure 13.3
A complex XML
element called
<Projects>.

XML documents that do not follow a predefined schema of element names and cor-
responding tree structure are known as schemaless XML documents. It is impor-
tant to note that data-centric XML documents can be considered either as
semistructured data or as structured data as defined in Section 13.1. If an XML
document conforms to a predefined XML schema or DTD (see Section 13.3), then
the document can be considered as structured data. On the other hand, XML allows

 13.3 XML Documents, DTD, and XML Schema 433

documents that do not conform to any schema; these would be considered as
semistructured data and are schemaless XML documents. When the value of the
standalone attribute in an XML document is yes, as in the first line in Figure 13.3,
the document is standalone and schemaless.

XML attributes are generally used in a manner similar to how they are used in
HTML (see Figure 13.2), namely, to describe properties and characteristics of the
elements (tags) within which they appear. It is also possible to use XML attributes
to hold the values of simple data elements; however, this is generally not recom-
mended. An exception to this rule is in cases that need to reference another ele-
ment in another part of the XML document. To do this, it is common to use
attribute values in one element as the references. This resembles the concept of for-
eign keys in relational databases, and it is a way to get around the strict hierarchical
model that the XML tree model implies. We discuss XML attributes further in Sec-
tion 13.3 when we discuss XML schema and DTD.

13.3 XML Documents, DTD, and XML Schema

13.3.1 Well-Formed and Valid XML Documents and XML DTD
In Figure 13.3, we saw what a simple XML document may look like. An XML docu-
ment is well formed if it follows a few conditions. In particular, it must start with an
XML declaration to indicate the version of XML being used as well as any other
relevant attributes, as shown in the first line in Figure 13.3. It must also follow the
syntactic guidelines of the tree data model. This means that there should be a single
root element, and every element must include a matching pair of start and end tags
within the start and end tags of the parent element. This ensures that the nested ele-
ments specify a well-formed tree structure.

A well-formed XML document is syntactically correct. This allows it to be pro-
cessed by generic processors that traverse the document and create an internal tree
representation. A standard model with an associated set of API (application pro-
gramming interface) functions called DOM (Document Object Model) allows pro-
grams to manipulate the resulting tree representation corresponding to a
well-formed XML document. However, the whole document must be parsed
beforehand when using DOM in order to convert the document to that standard
DOM internal data structure representation. Another API called SAX (Simple API
for XML) allows processing of XML documents on the fly by notifying the process-
ing program through callbacks whenever a start or end tag is encountered. This
makes it easier to process large documents and allows for processing of so-called
streaming XML documents, where the processing program can process the tags as
they are encountered. This is also known as event-based processing. There are also
other specialized processors that work with various programming and scripting
languages for parsing XML documents.

A well-formed XML document can be schemaless; that is, it can have any tag
names for the elements within the document. In this case, there is no predefined

434 Chapter 13 XML: Extensible Markup Language

set of elements (tag names) that a program processing the document knows to
expect. This gives the document creator the freedom to specify new elements but
limits the possibilities for automatically interpreting the meaning or semantics of
the elements within the document.

A stronger criterion is for an XML document to be valid. In this case, the document
must be well formed, and it must follow a particular schema. That is, the element
names used in the start and end tag pairs must follow the structure specified in a
separate XML DTD (Document Type Definition) file or XML schema file. We
first discuss XML DTD here, and then we give an overview of XML schema in Sec-
tion 13.3.2. Figure 13.4 shows a simple XML DTD file, which specifies the elements
(tag names) and their nested structures. Any valid documents conforming to this
DTD should follow the specified structure. A special syntax exists for specifying
DTD files, as illustrated in Figure 13.4(a). First, a name is given to the root tag of
the document, which is called Projects in the first line in Figure 13.4. Then the ele-
ments and their nested structure are specified.

When specifying elements, the following notation is used:

 ■ A * following the element name means that the element can be repeated zero
or more times in the document. This kind of element is known as an optional
multivalued (repeating) element.

 ■ A + following the element name means that the element can be repeated one
or more times in the document. This kind of element is a required multival-
ued (repeating) element.

 ■ A ? following the element name means that the element can be repeated zero
or one times. This kind is an optional single-valued (nonrepeating) element.

 ■ An element appearing without any of the preceding three symbols must
appear exactly once in the document. This kind is a required single-valued
(nonrepeating) element.

 ■ The type of the element is specified via parentheses following the element. If
the parentheses include names of other elements, these latter elements are
the children of the element in the tree structure. If the parentheses include
the keyword #PCDATA or one of the other data types available in XML DTD,
the element is a leaf node. PCDATA stands for parsed character data, which is
roughly similar to a string data type.

 ■ The list of attributes that can appear within an element can also be specified
via the keyword !ATTLIST. In Figure 13.3, the Project element has an attribute
ProjId. If the type of an attribute is ID, then it can be referenced from another
attribute whose type is IDREF within another element. Notice that attributes
can also be used to hold the values of simple data elements of type #PCDATA.

 ■ Parentheses can be nested when specifying elements.

 ■ A bar symbol (e1 | e2) specifies that either e1 or e2 can appear in the document.

We can see that the tree structure in Figure 13.1 and the XML document in Fig-
ure 13.3 conform to the XML DTD in Figure 13.4. To require that an XML
document be checked for conformance to a DTD, we must specify this in the

 13.3 XML Documents, DTD, and XML Schema 435

declaration of the document. For example, we could change the first line in Fig-
ure 13.3 to the following:

<?xml version = “1.0” standalone = “no”?>
<!DOCTYPE Projects SYSTEM “proj.dtd”>

When the value of the standalone attribute in an XML document is “no”, the docu-
ment needs to be checked against a separate DTD document or XML schema docu-
ment (see Section 13.2.2). The DTD file shown in Figure 13.4 should be stored in

Figure 13.4
(a) An XML DTD
file called Projects.
(b) An XML
DTD file called
Company.

(a) <!DOCTYPE Projects [
 <!ELEMENT Projects (Project+)>
 <!ELEMENT Project (Name, Number, Location, Dept_no?, Workers)>
 <!ATTLIST Project
 ProjId ID #REQUIRED>
 <!ELEMENT Name (#PCDATA)>
 <!ELEMENT Number (#PCDATA)
 <!ELEMENT Location (#PCDATA)>
 <!ELEMENT Dept_no (#PCDATA)>
 <!ELEMENT Workers (Worker*)>
 <!ELEMENT Worker (Ssn, Last_name?, First_name?, Hours)>
 <!ELEMENT Ssn (#PCDATA)>
 <!ELEMENT Last_name (#PCDATA)>
 <!ELEMENT First_name (#PCDATA)>
 <!ELEMENT Hours (#PCDATA)>
] >

(b) <!DOCTYPE Company [
 <!ELEMENT Company((Employee|Department|Project)*)>
 <!ELEMENT Department (DName, Location+)>
 <!ATTLIST Department
 DeptId ID #REQUIRED>

 <!ELEMENT Employee (EName, Job, Salary)>
 <!ATTLIST Project
 EmpId ID #REQUIRED
 DeptId IDREF #REQUIRED>
 <!ELEMENT Project (PName, Location)
 <!ATTLIST Project
 ProjId ID #REQUIRED
 Workers IDREFS #IMPLIED>
 <!ELEMENT DName (#PCDATA)>
 <!ELEMENT EName (#PCDATA)>
 <!ELEMENT PName (#PCDATA)>
 <!ELEMENT Job (#PCDATA)
 <!ELEMENT Location (#PCDATA)>
 <!ELEMENT Salary (#PCDATA)>
] >

436 Chapter 13 XML: Extensible Markup Language

the same file system as the XML document and should be given the file name
proj.dtd. Alternatively, we could include the DTD document text at the beginning of
the XML document itself to allow the checking.

Figure 13.4(b) shows another DTD document called Company to illustrate the use
of IDREF. A Company document can have any number of Department, Employee,
and Project elements, with IDs DeptID, EmpId, and ProjID, respectively. The
Employee element has an attribute DeptId of type IDREF, which is a reference to
the Department element where the employee works; this is similar to a foreign key.
The Project element has an attribute Workers of type IDREFS, which will hold a list
of Employee EmpIDs that work on that project; this is similar to a collection or list
of foreign keys. The #IMPLIED keyword means that this attribute is optional. It is
also possible to provide a default value for any attribute.

Although XML DTD is adequate for specifying tree structures with required,
optional, and repeating elements, and with various types of attributes, it has several
limitations. First, the data types in DTD are not very general. Second, DTD has its
own special syntax and thus requires specialized processors. It would be advanta-
geous to specify XML schema documents using the syntax rules of XML itself so
that the same processors used for XML documents could process XML schema
descriptions. Third, all DTD elements are always forced to follow the specified
ordering of the document, so unordered elements are not permitted. These draw-
backs led to the development of XML schema, a more general but also more com-
plex language for specifying the structure and elements of XML documents.

13.3.2 XML Schema
The XML schema language is a standard for specifying the structure of XML docu-
ments. It uses the same syntax rules as regular XML documents, so that the same pro-
cessors can be used on both. To distinguish the two types of documents, we will use the
term XML instance document or XML document for a regular XML document that con-
tains both tag names and data values, and XML schema document for a document that
specifies an XML schema. An XML schema document would contain only tag names,
tree structure information, constraints, and other descriptions but no data values. Fig-
ure 13.5 shows an XML schema document corresponding to the COMPANY database
shown in Figure 5.5. Although it is unlikely that we would want to display the whole
database as a single document, there have been proposals to store data in native XML
format as an alternative to storing the data in relational databases. The schema in Fig-
ure 13.5 would serve the purpose of specifying the structure of the COMPANY database
if it were stored in a native XML system. We discuss this topic further in Section 13.4.

As with XML DTD, XML schema is based on the tree data model, with elements and
attributes as the main structuring concepts. However, it borrows additional concepts
from database and object models, such as keys, references, and identifiers. Here we
describe the features of XML schema in a step-by-step manner, referring to the sam-
ple XML schema document in Figure 13.5 for illustration. We introduce and describe
some of the schema concepts in the order in which they are used in Figure 13.5.

 13.3 XML Documents, DTD, and XML Schema 437

Figure 13.5
An XML schema file called company.

<?xml version=“1.0” encoding=“UTF-8” ?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <xsd:annotation>
 <xsd:documentation xml:lang=“en”>Company Schema (Element Approach) - Prepared by Babak
 Hojabri</xsd:documentation>
 </xsd:annotation>
<xsd:element name=“company”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“department” type=“Department” minOccurs=“0” maxOccurs=“unbounded” />
 <xsd:element name=“employee” type=“Employee” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:unique name=“dependentNameUnique”>
 <xsd:selector xpath=“employeeDependent” />
 <xsd:field xpath=“dependentName” />
 </xsd:unique>
 </xsd:element>
 <xsd:element name=“project” type=“Project” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:unique name=“departmentNameUnique”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentName” />
 </xsd:unique>
 <xsd:unique name=“projectNameUnique”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectName” />
 </xsd:unique>
 <xsd:key name=“projectNumberKey”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectNumber” />
 </xsd:key>
 <xsd:key name=“departmentNumberKey”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentNumber” />
 </xsd:key>
 <xsd:key name=“employeeSSNKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeSSN” />
 </xsd:key>
 <xsd:keyref name=“departmentManagerSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentManagerSSN” />
 </xsd:keyref>

(continues)

438 Chapter 13 XML: Extensible Markup Language

 <xsd:keyref name=“employeeDepartmentNumberKeyRef”
 refer=“departmentNumberKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“employeeSupervisorSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeSupervisorSSN” />
 </xsd:keyref>
 <xsd:keyref name=“projectDepartmentNumberKeyRef” refer=“departmentNumberKey”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“projectWorkerSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“project/projectWorker” />
 <xsd:field xpath=“SSN” />
 </xsd:keyref>
 <xsd:keyref name=“employeeWorksOnProjectNumberKeyRef”
 refer=“projectNumberKey”>
 <xsd:selector xpath=“employee/employeeWorksOn” />
 <xsd:field xpath=“projectNumber” />
 </xsd:keyref>
</xsd:element>
<xsd:complexType name=“Department”>
 <xsd:sequence>
 <xsd:element name=“departmentName” type=“xsd:string” />
 <xsd:element name=“departmentNumber” type=“xsd:string” />
 <xsd:element name=“departmentManagerSSN” type=“xsd:string” />
 <xsd:element name=“departmentManagerStartDate” type=“xsd:date” />
 <xsd:element name=“departmentLocation” type=“xsd:string” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Employee”>
 <xsd:sequence>
 <xsd:element name=“employeeName” type=“Name” />
 <xsd:element name=“employeeSSN” type=“xsd:string” />
 <xsd:element name=“employeeSex” type=“xsd:string” />
 <xsd:element name=“employeeSalary” type=“xsd:unsignedInt” />
 <xsd:element name=“employeeBirthDate” type=“xsd:date” />
 <xsd:element name=“employeeDepartmentNumber” type=“xsd:string” />
 <xsd:element name=“employeeSupervisorSSN” type=“xsd:string” />
 <xsd:element name=“employeeAddress” type=“Address” />
 <xsd:element name=“employeeWorksOn” type=“WorksOn” minOccurs=“1” maxOccurs=“unbounded” />
 <xsd:element name=“employeeDependent” type=“Dependent” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>

Figure 13.5 (continued)
An XML schema file called company.

 13.3 XML Documents, DTD, and XML Schema 439

<xsd:complexType name=“Project”>
 <xsd:sequence>
 <xsd:element name=“projectName” type=“xsd:string” />
 <xsd:element name=“projectNumber” type=“xsd:string” />
 <xsd:element name=“projectLocation” type=“xsd:string” />
 <xsd:element name=“projectDepartmentNumber” type=“xsd:string” />
 <xsd:element name=“projectWorker” type=“Worker” minOccurs=“1” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Dependent”>
 <xsd:sequence>
 <xsd:element name=“dependentName” type=“xsd:string” />
 <xsd:element name=“dependentSex” type=“xsd:string” />
 <xsd:element name=“dependentBirthDate” type=“xsd:date” />
 <xsd:element name=“dependentRelationship” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Address”>
 <xsd:sequence>
 <xsd:element name=“number” type=“xsd:string” />
 <xsd:element name=“street” type=“xsd:string” />
 <xsd:element name=“city” type=“xsd:string” />
 <xsd:element name=“state” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Name”>
 <xsd:sequence>
 <xsd:element name=“firstName” type=“xsd:string” />
 <xsd:element name=“middleName” type=“xsd:string” />
 <xsd:element name=“lastName” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Worker”>
 <xsd:sequence>
 <xsd:element name=“SSN” type=“xsd:string” />
 <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“WorksOn”>
 <xsd:sequence>
 <xsd:element name=“projectNumber” type=“xsd:string” />
 <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 13.5 (continued)
An XML schema file called company.

440 Chapter 13 XML: Extensible Markup Language

 1. Schema descriptions and XML namespaces. It is necessary to identify the
specific set of XML schema language elements (tags) being used by specify-
ing a file stored at a Web site location. The second line in Figure 13.5 speci-
fies the file used in this example, which is http://www.w3.org/2001/XMLSchema.
This is a commonly used standard for XML schema commands. Each such
definition is called an XML namespace because it defines the set of com-
mands (names) that can be used. The file name is assigned to the variable xsd
(XML schema description) using the attribute xmlns (XML namespace), and
this variable is used as a prefix to all XML schema commands (tag names).
For example, in Figure 13.5, when we write xsd:element or xsd:sequence, we
are referring to the definitions of the element and sequence tags as defined in
the file http://www.w3.org/2001/XMLSchema.

 2. Annotations, documentation, and language used. The next couple of lines
in Figure 13.5 illustrate the XML schema elements (tags) xsd:annotation and
xsd:documentation, which are used for providing comments and other
descriptions in the XML document. The attribute xml:lang of the
xsd:documentation element specifies the language being used, where en stands
for the English language.

 3. Elements and types. Next, we specify the root element of our XML schema.
In XML schema, the name attribute of the xsd:element tag specifies the ele-
ment name, which is called company for the root element in our example (see
Figure 13.5). The structure of the company root element can then be speci-
fied, which in our example is xsd:complexType. This is further specified to be
a sequence of departments, employees, and projects using the xsd:sequence
structure of XML schema. It is important to note here that this is not the
only way to specify an XML schema for the COMPANY database. We will
discuss other options in Section 13.6.

 4. First-level elements in the COMPANY database. Next, we specify the three
first-level elements under the company root element in Figure 13.5. These
elements are named employee, department, and project, and each is specified
in an xsd:element tag. Notice that if a tag has only attributes and no further
subelements or data within it, it can be ended with the backslash symbol (/>)
directly instead of having a separate matching end tag. These are called
empty elements; examples are the xsd:element elements named department
and project in Figure 13.5.

 5. Specifying element type and minimum and maximum occurrences. In
XML schema, the attributes type, minOccurs, and maxOccurs in the xsd:element
tag specify the type and multiplicity of each element in any document that
conforms to the schema specifications. If we specify a type attribute in an
xsd:element, the structure of the element must be described separately, typi-
cally using the xsd:complexType element of XML schema. This is illustrated
by the employee, department, and project elements in Figure 13.5. On the other
hand, if no type attribute is specified, the element structure can be defined
directly following the tag, as illustrated by the company root element in Fig-
ure 13.5. The minOccurs and maxOccurs tags are used for specifying lower

 13.3 XML Documents, DTD, and XML Schema 441

and upper bounds on the number of occurrences of an element in any XML
document that conforms to the schema specifications. If they are not speci-
fied, the default is exactly one occurrence. These serve a similar role to the *,
+, and ? symbols of XML DTD.

 6. Specifying keys. In XML schema, it is possible to specify constraints that
correspond to unique and primary key constraints in a relational database
(see Section 5.2.2), as well as foreign keys (or referential integrity) con-
straints (see Section 5.2.4). The xsd:unique tag specifies elements that cor-
respond to unique attributes in a relational database. We can give each
such uniqueness constraint a name, and we must specify xsd:selector and
xsd:field tags for it to identify the element type that contains the unique ele-
ment and the element name within it that is unique via the xpath attribute.
This is illustrated by the departmentNameUnique and projectNameUnique ele-
ments in Figure 13.5. For specifying primary keys, the tag xsd:key is used
instead of xsd:unique, as illustrated by the projectNumberKey, department-
NumberKey, and employeeSSNKey elements in Figure 13.5. For specifying
foreign keys, the tag xsd:keyref is used, as illustrated by the six xsd:keyref
elements in Figure 13.5. When specifying a foreign key, the attribute refer
of the xsd:keyref tag specifies the referenced primary key, whereas the tags
xsd:selector and xsd:field specify the referencing element type and foreign
key (see Figure 13.5).

 7. Specifying the structures of complex elements via complex types. The
next part of our example specifies the structures of the complex elements
Department, Employee, Project, and Dependent, using the tag xsd:complexType
(see Figure 13.5). We specify each of these as a sequence of subelements cor-
responding to the database attributes of each entity type (see Figure 7.7)by
using the xsd:sequence and xsd:element tags of XML schema. Each element is
given a name and type via the attributes name and type of xsd:element. We can
also specify minOccurs and maxOccurs attributes if we need to change the
default of exactly one occurrence. For (optional) database attributes where
null is allowed, we need to specify minOccurs = 0, whereas for multivalued
database attributes we need to specify maxOccurs = “unbounded” on the cor-
responding element. Notice that if we were not going to specify any key con-
straints, we could have embedded the subelements within the parent element
definitions directly without having to specify complex types. However, when
unique, primary key and foreign key constraints need to be specified; we
must define complex types to specify the element structures.

 8. Composite (compound) attributes. Composite attributes from Figure 9.2
are also specified as complex types in Figure 13.7, as illustrated by the
Address, Name, Worker, and WorksOn complex types. These could have been
directly embedded within their parent elements.

This example illustrates some of the main features of XML schema. There are other
features, but they are beyond the scope of our presentation. In the next section, we
discuss the different approaches to creating XML documents from relational data-
bases and storing XML documents.

442 Chapter 13 XML: Extensible Markup Language

13.4 Storing and Extracting XML Documents
from Databases

Several approaches to organizing the contents of XML documents to facilitate their
subsequent querying and retrieval have been proposed. The following are the most
common approaches:

 1. Using a file system or a DBMS to store the documents as text. An XML
document can be stored as a text file within a traditional file system. Alter-
natively, a relational DBMS can be used to store whole XML documents as
text fields within the DBMS recordss. This approach can be used if the
DBMS has a special module for document processing, and it would work for
storing schemaless and document-centric XML documents.

 2. Using a DBMS to store the document contents as data elements. This
approach would work for storing a collection of documents that follow a
specific XML DTD or XML schema. Because all the documents have the
same structure, one can design a relational database to store the leaf-level
data elements within the XML documents. This approach would require
mapping algorithms to design a database schema that is compatible with the
XML document structure as specified in the XML schema or DTD and to
re-create the XML documents from the stored data. These algorithms can be
implemented either as an internal DBMS module or as separate middleware
that is not part of the DBMS. If all elements in an XML document have IDs,
a simple representation would be to have a table with attributes XDOC(CId,
PId, Etag, Val) where CID and PId are the parent and child element IDs,
Etag is the name of the element of the Cid, and Val is the value if it is a leaf
node, assuming all values are the same type.

 3. Designing a specialized system for storing native XML data. A new type
of database system based on the hierarchical (tree) model could be designed
and implemented. Such systems are referred to as native XML DBMSs. The
system would include specialized indexing and querying techniques and
would work for all types of XML documents. It could also include data com-
pression techniques to reduce the size of the documents for storage. Tamino
by Software AG and the Dynamic Application Platform of eXcelon are two
popular products that offer native XML DBMS capability. Oracle also offers
a native XML storage option.

 4. Creating or publishing customized XML documents from preexisting
relational databases. Because there are enormous amounts of data already
stored in relational databases, parts of this data may need to be formatted as
documents for exchanging or displaying over the Web. This approach would
use a separate middleware software layer to handle the conversions needed
between the relational data and the extracted XML documents. Section 13.6
discusses this approach, in which data-centric XML documents are extracted
from existing databases, in more detail. In particular, we show how tree
structured documents can be created from flat relational databases that have

 13.5 XML Languages 443

been designed using the ER graph-structured data model. Section 13.6.2
discusses the problem of cycles and how to deal with it.

All of these approaches have received considerable attention. We focus on the
fourth approach in Section 13.6, because it gives a good conceptual understanding
of the differences between the XML tree data model and the traditional database
models based on flat files (relational model) and graph representations (ER model).
But first we give an overview of XML query languages in Section 13.5.

13.5 XML Languages
There have been several proposals for XML query languages, and two query language
standards have emerged. The first is XPath, which provides language constructs for
specifying path expressions to identify certain nodes (elements) or attributes within
an XML document that match specific patterns. The second is XQuery, which is a
more general query language. XQuery uses XPath expressions but has additional con-
structs. We give an overview of each of these languages in this section. Then we dis-
cuss some additional languages related to HTML in Section 13.5.3.

13.5.1 XPath: Specifying Path Expressions in XML
An XPath expression generally returns a sequence of items that satisfy a certain pat-
tern as specified by the expression. These items are either values (from leaf nodes)
or elements or attributes. The most common type of XPath expression returns a col-
lection of element or attribute nodes that satisfy certain patterns specified in the
expression. The names in the XPath expression are node names in the XML docu-
ment tree that are either tag (element) names or attribute names, possibly with
additional qualifier conditions to further restrict the nodes that satisfy the pattern.
Two main separators are used when specifying a path: single slash (/) and double
slash (//). A single slash before a tag specifies that the tag must appear as a direct
child of the previous (parent) tag, whereas a double slash specifies that the tag can
appear as a descendant of the previous tag at any level. To refer to an attribute name
instead of an element (tag) name, the prefix @ is used before the attribute name. Let
us look at some examples of XPath as shown in Figure 13.6.

The first XPath expression in Figure 13.6 returns the company root node and all its
descendant nodes, which means that it returns the whole XML document. We
should note that it is customary to include the file name in the XPath query. This
allows us to specify any local file name or even any path name that specifies a file on
the Web. For example, if the COMPANY XML document is stored at the location

www.company.com/info.XML

then the first XPath expression in Figure 13.6 can be written as

doc(www.company.com/info.XML)/company

This prefix would also be included in the other examples of XPath expressions.

444 Chapter 13 XML: Extensible Markup Language

The second example in Figure 13.6 returns all department nodes (elements) and
their descendant subtrees. Note that the nodes (elements) in an XML document are
ordered, so the XPath result that returns multiple nodes will do so in the same order
in which the nodes are ordered in the document tree.

The third XPath expression in Figure 13.6 illustrates the use of //, which is conve-
nient to use if we do not know the full path name we are searching for, but we do
know the name of some tags of interest within the XML document. This is particu-
larly useful for schemaless XML documents or for documents with many nested
levels of nodes.6

The expression returns all employeeName nodes that are direct children of an
employee node, such that the employee node has another child element employeeSalary
whose value is greater than 70000. This illustrates the use of qualifier conditions,
which restrict the nodes selected by the XPath expression to those that satisfy the
condition. XPath has a number of comparison operations for use in qualifier condi-
tions, including standard arithmetic, string, and set comparison operations.

The fourth XPath expression in Figure 13.6 should return the same result as the pre-
vious one, except that we specified the full path name in this example. The fifth
expression in Figure 13.6 returns all projectWorker nodes and their descendant
nodes that are children under a path /company/project and have a child node, hours,
with a value greater than 20.0 hours.

When we need to include attributes in an XPath expression, the attribute name is
prefixed by the @ symbol to distinguish it from element (tag) names. It is also pos-
sible to use the wildcard symbol *, which stands for any element, as in the following
example, which retrieves all elements that are child elements of the root, regardless
of their element type. When wildcards are used, the result can be a sequence of dif-
ferent types of elements.

/company/*

The examples above illustrate simple XPath expressions, where we can only move
down in the tree structure from a given node. A more general model for path
expressions has been proposed. In this model, it is possible to move in multiple
directions from the current node in the path expression. These are known as the

1. /company

2. /company/department

3. //employee [employeeSalary gt 70000]/employeeName

4. /company/employee [employeeSalary gt 70000]/employeeName

5. /company/project/projectWorker [hours ge 20.0]

Figure 13.6
Some examples of
XPath expressions
on XML documents
that follow the XML
schema file company
in Figure 13.5.

6We use the terms node, tag, and element interchangeably here.

 13.5 XML Languages 445

axes of an XPath expression. Our examples above used only three of these axes: child
of the current node (/), descendent or self at any level of the current node (//), and
attribute of the current node (@). Other axes include parent, ancestor (at any level),
previous sibling (a node at same level to the left), and next sibling (a node at the
same level to the right). These axes allow for more complex path expressions.

The main restriction of XPath path expressions is that the path that specifies the pat-
tern also specifies the items to be retrieved. Hence, it is difficult to specify certain
conditions on the pattern while separately specifying which result items should be
retrieved. The XQuery language separates these two concerns and provides more
powerful constructs for specifying queries.

13.5.2 XQuery: Specifying Queries in XML
XPath allows us to write expressions that select items from a tree-structured XML
document. XQuery permits the specification of more general queries on one or
more XML documents. The typical form of a query in XQuery is known as a
FLWOR expression, which stands for the five main clauses of XQuery and has the
following form:

FOR <variable bindings to individual nodes (elements)>
LET <variable bindings to collections of nodes (elements)>
WHERE <qualifier conditions>
ORDER BY <ordering specifications>
RETURN <query result specification>

There can be zero or more instances of the FOR clause, as well as of the LET clause
in a single XQuery. The WHERE and ORDER BY clauses are optional but can appear
at most once, and the RETURN clause must appear exactly once. Let us illustrate
these clauses with the following simple example of an XQuery.

LET $d : = doc(www.company.com/info.xml)
FOR $x IN $d/company/project[projectNumber = 5]/projectWorker,

$y IN $d/company/employee
WHERE $x/hours gt 20.0 AND $y.ssn = $x.ssn
ORDER BY $x/hours
RETURN <res> $y/employeeName/firstName, $y/employeeName/lastName,

$x/hours </res>

 1. Variables are prefixed with the $ sign. In the above example, $d, $x, and $y
are variables. The LET clause assigns a variable to a particular expression for
the rest of the query. In this example, $d is assigned to the document file
name. It is possible to have a query that refers to multiple documents by
assigning multiple variables in this way.

 2. The FOR clause assigns a variable to range over each of the individual ele-
ments in a sequence. In our example, the sequences are specified by path
expressions. The $x variable ranges over elements that satisfy the path expres-
sion $d/company/project[projectNumber = 5]/projectWorker. The $y variable

446 Chapter 13 XML: Extensible Markup Language

ranges over elements that satisfy the path expression $d/company/employee.
Hence, $x ranges over projectWorker elements for workers who work in proj-
ect 5, whereas $y ranges over employee elements.

 3. The WHERE clause specifies additional conditions on the selection of items.
In this example, the first condition selects only those projectWorker elements
that satisfy the condition (hours gt 20.0). The second condition specifies a
join condition that combines an employee with a projectWorker only if they
have the same ssn value.

 4. The ORDER BY clause specifies that the result elements will be ordered by the
value of the hours per week they work on the project in ascending value of hours.

 5. Finally, the RETURN clause specifies which elements or attributes should be
retrieved from the items that satisfy the query conditions. In this example, it
will return a sequence of elements each containing <firstName, lastName, hours>
for employees who work more that 20 hours per week on project number 5.

Figure 13.7 includes some additional examples of queries in XQuery that can be
specified on an XML instance documents that follow the XML schema document
in Figure 13.5. The first query retrieves the first and last names of employees who
earn more than $70,000. The variable $x is bound to each employeeName element
that is a child of an employee element, but only for employee elements that satisfy
the qualifier that their employeeSalary value is greater than $70,000. The result
retrieves the firstName and lastName child elements of the selected employeeName
elements. The second query is an alternative way of retrieving the same elements
retrieved by the first query.

The third query illustrates how a join operation can be performed by using more
than one variable. Here, the $x variable is bound to each projectWorker element that
is a child of project number 5, whereas the $y variable is bound to each employee
element. The join condition matches ssn values in order to retrieve the employee
names. Notice that this is an alternative way of specifying the same query in our
earlier example, but without the LET clause.

XQuery has very powerful constructs to specify complex queries. In particular, it can
specify universal and existential quantifiers in the conditions of a query, aggregate
functions, ordering of query results, selection based on position in a sequence, and
even conditional branching. Hence, in some ways, it qualifies as a full-fledged pro-
gramming language.

This concludes our brief introduction to XQuery. The interested reader is referred to
www.w3.org, which contains documents describing the latest standards related to
XML and XQuery. The next section briefly discusses some additional languages and
protocols related to XML.

13.5.3 Other Languages and Protocols Related to XML
There are several other languages and protocols related to XML technology.
The long-term goal of these and other languages and protocols is to provide the

 13.6 Extracting XML Documents from Relational Databases 447

technology for realization of the Semantic Web, where all information in the
Web can be intelligently located and processed.

 ■ The Extensible Stylesheet Language (XSL) can be used to define how a docu-
ment should be rendered for display by a Web browser.

 ■ The Extensible Stylesheet Language for Transformations (XSLT) can be
used to transform one structure into a different structure. Hence, it can con-
vert documents from one form to another.

 ■ The Web Services Description Language (WSDL) allows for the description
of Web Services in XML. This makes the Web Service available to users and
programs over the Web.

 ■ The Simple Object Access Protocol (SOAP) is a platform-independent and
programming language-independent protocol for messaging and remote
procedure calls.

 ■ The Resource Description Framework (RDF) provides languages and tools
for exchanging and processing of meta-data (schema) descriptions and
specifications over the Web.

13.6 Extracting XML Documents from
Relational Databases

13.6.1 Creating Hierarchical XML Views over
Flat or Graph-Based Data

This section discusses the representational issues that arise when converting data
from a database system into XML documents. As we have discussed, XML uses a
hierarchical (tree) model to represent documents. The database systems with the
most widespread use follow the flat relational data model. When we add referential

1. FOR $x IN
doc(www.company.com/info.xml)
//employee [employeeSalary gt 70000]/employeeName
RETURN <res> $x/firstName, $x/lastName </res>

2. FOR $x IN
doc(www.company.com/info.xml)/company/employee
WHERE $x/employeeSalary gt 70000
RETURN <res> $x/employeeName/firstName, $x/employeeName/lastName </res>

3. FOR $x IN
doc(www.company.com/info.xml)/company/project[projectNumber=5]/projectWorker,
$y IN doc(www.company.com/info.xml)/company/employee
WHERE $x/hours gt 20.0 AND $y.ssn=$x.ssn
RETURN <res> $y/employeeName/firstName, $y/employeeName/lastName, $x/hours </res>

Figure 13.7
Some examples of XQuery
queries on XML documents
that follow the XML schema
file company in Figure 13.5.

448 Chapter 13 XML: Extensible Markup Language

integrity constraints, a relational schema can be considered to be a graph structure
(for example, see Figure 3.7). Similarly, the ER model represents data using graph-
like structures (for example, see Figure 7.2). We saw in Chapter 9 that there are
straightforward mappings between the ER and relational models, so we can con-
ceptually represent a relational database schema using the corresponding ER
schema. Although we will use the ER model in our discussion and examples to clar-
ify the conceptual differences between tree and graph models, the same issues apply
to converting relational data to XML.

We will use the simplified UNIVERSITY ER schema shown in Figure 13.8 to illus-
trate our discussion. Suppose that an application needs to extract XML docu-
ments for student, course, and grade information from the UNIVERSITY database.
The data needed for these documents is contained in the database attributes of
the entity types COURSE, SECTION, and STUDENT from Figure 13.8, and the
relationships S-S and C-S between them. In general, most documents extracted

Name

S-D

Students

Courses

Instructors

Major dept Department

1 1

1

1

N

N

S-S C-S S-1

D-1

D-C

DEPARTMENT

COURSE

SECTION

Name

Ssn

N N

M 1

Class

YearNumber Qtr

Grade

STUDENT

Sections
completed Sections taught

N N
Students attended Instructors

NameSsnName

Number

Rank

SalaryINSTRUCTOR

Department

Course

Sections

Figure 13.8
An ER schema diagram for a simplified UNIVERSITY database.

 13.6 Extracting XML Documents from Relational Databases 449

from a database will only use a subset of the attributes, entity types, and relation-
ships in the database. In this example, the subset of the database that is needed is
shown in Figure 13.9.

At least three possible document hierarchies can be extracted from the database
subset in Figure 13.9. First, we can choose COURSE as the root, as illustrated in
Figure 13.10. Here, each course entity has the set of its sections as subelements, and
each section has its students as subelements. We can see one consequence of mod-
eling the information in a hierarchical tree structure. If a student has taken multiple
sections, that student’s information will appear multiple times in the document—
once under each section. A possible simplified XML schema for this view is shown
in Figure 13.11. The Grade database attribute in the S-S relationship is migrated to
the STUDENT element. This is because STUDENT becomes a child of SECTION in this
hierarchy, so each STUDENT element under a specific SECTION element can have a

1

Number

Sections

Name
COURSE

1

Number

Students
attended

Qtr

YearSECTION

N

N

Name

Ssn

Grade

Class
STUDENT

Figure 13.10
Hierarchical (tree) view with
COURSE as the root.

S-D

Ssn

Name

Class

STUDENT
Sections
completed

M N N 1

Number

Year Qtr

SECTION

Number

Name

COURSES-D
Students
attended

Course Sections

Grade

Figure 13.9
Subset of the UNIVERSITY database schema
needed for XML document extraction.

450 Chapter 13 XML: Extensible Markup Language

<xsd:element name=“root”>
 <xsd:sequence>
 <xsd:element name=“course” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
 <xsd:element name=“cname” type=“xsd:string” />
 <xsd:element name=“cnumber” type=“xsd:unsignedInt” />
 <xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
 <xsd:element name=“secnumber” type=“xsd:unsignedInt” />
 <xsd:element name=“year” type=“xsd:string” />
 <xsd:element name=“quarter” type=“xsd:string” />
 <xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
 <xsd:element name=“ssn” type=“xsd:string” />
 <xsd:element name=“sname” type=“xsd:string” />
 <xsd:element name=“class” type=“xsd:string” />
 <xsd:element name=“grade” type=“xsd:string” />
 </xsd:sequence>
 </xsd:element>
 </xsd:sequence>
 </xsd:element>
 </xsd:sequence>
 </xsd:element>
 </xsd:sequence>
 </xsd:element>

Figure 13.11
XML schema document with course as the root.

specific grade in that section. In this document hierarchy, a student taking more
than one section will have several replicas, one under each section, and each replica
will have the specific grade given in that particular section.

In the second hierarchical document view, we can choose STUDENT as root (Fig-
ure 13.12). In this hierarchical view, each student has a set of sections as its child
elements, and each section is related to one course as its child, because the rela-
tionship between SECTION and COURSE is N:1. Thus, we can merge the COURSE
and SECTION elements in this view, as shown in Figure 13.12. In addition, the
GRADE database attribute can be migrated to the SECTION element. In this hier-
archy, the combined COURSE/SECTION information is replicated under each stu-
dent who completed the section. A possible simplified XML schema for this view
is shown in Figure 13.13.

The third possible way is to choose SECTION as the root, as shown in Figure 13.14.
Similar to the second hierarchical view, the COURSE information can be merged
into the SECTION element. The GRADE database attribute can be migrated to the

 13.6 Extracting XML Documents from Relational Databases 451

1

Ssn

Sections
completed

NameSTUDENT

1

Number

Qtr

Year
SECTION

1

N

Grade

Class

COURSE

Course_number

Course_name

Figure 13.12
Hierarchical (tree) view with
STUDENT as the root.

Figure 13.13
XML schema document
with student as the root.

<xsd:element name=“root”>
<xsd:sequence>
<xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
 <xsd:element name=“ssn” type=“xsd:string” />
 <xsd:element name=“sname” type=“xsd:string” />
 <xsd:element name=“class” type=“xsd:string” />
 <xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
 <xsd:element name=“secnumber” type=“xsd:unsignedInt” />
 <xsd:element name=“year” type=“xsd:string” />
 <xsd:element name=“quarter” type=“xsd:string” />
 <xsd:element name=“cnumber” type=“xsd:unsignedInt” />
 <xsd:element name=“cname” type=“xsd:string” />
 <xsd:element name=“grade” type=“xsd:string” />
 </xsd:sequence>
 </xsd:element>
 </xsd:sequence>
</xsd:element>
</xsd:sequence>
</xsd:element>

452 Chapter 13 XML: Extensible Markup Language

STUDENT element. As we can see, even in this simple example, there can be numer-
ous hierarchical document views, each corresponding to a different root and a dif-
ferent XML document structure.

13.6.2 Breaking Cycles to Convert Graphs into Trees
In the previous examples, the subset of the database of interest had no cycles. It is
possible to have a more complex subset with one or more cycles, indicating multi-
ple relationships among the entities. In this case, it is more difficult to decide how
to create the document hierarchies. Additional duplication of entities may be
needed to represent the multiple relationships. We will illustrate this with an exam-
ple using the ER schema in Figure 13.8.

Suppose that we need the information in all the entity types and relationships in
Figure 13.8 for a particular XML document, with STUDENT as the root element.
Figure 13.15 illustrates how a possible hierarchical tree structure can be created for
this document. First, we get a lattice with STUDENT as the root, as shown in Fig-
ure 13.15(a). This is not a tree structure because of the cycles. One way to break the
cycles is to replicate the entity types involved in the cycles. First, we replicate
INSTRUCTOR as shown in Figure 13.15(b), calling the replica to the right
INSTRUCTOR1. The INSTRUCTOR replica on the left represents the relationship
between instructors and the sections they teach, whereas the INSTRUCTOR1 replica
on the right represents the relationship between instructors and the department
each works in. After this, we still have the cycle involving COURSE, so we can repli-
cate COURSE in a similar manner, leading to the hierarchy shown in Fig-
ure 13.15(c). The COURSE1 replica to the left represents the relationship between
courses and their sections, whereas the COURSE replica to the right represents the
relationship between courses and the department that offers each course.

In Figure 13.15(c), we have converted the initial graph to a hierarchy. We can do
further merging if desired (as in our previous example) before creating the final
hierarchy and the corresponding XML schema structure.

1

Ssn Students
attended

Name
STUDENT

1

Number

Qtr

Year
SECTION

1

N

Grade

Class

COURSE

Course_number

Course_nameFigure 13.14
Hierarchical (tree)
view with SECTION as
the root.

 13.7 XML/SQL: SQL Functions for Creating XML Data 453

13.6.3 Other Steps for Extracting XML Documents
from Databases

In addition to creating the appropriate XML hierarchy and corresponding XML
schema document, several other steps are needed to extract a particular XML docu-
ment from a database:

 1. It is necessary to create the correct query in SQL to extract the desired infor-
mation for the XML document.

 2. Once the query is executed, its result must be restructured from the flat rela-
tional form to the XML tree structure.

 3. The query can be customized to select either a single object or multiple
objects into the document. For example, in the view in Figure 13.13, the
query can select a single student entity and create a document corresponding
to that single student, or it may select several—or even all—of the students and
create a document with multiple students.

13.7 XML/SQL: SQL Functions for Creating
XML Data

In this section, we discuss some of the functions that have been added to the recent
versions of the SQL standard for the purpose of generating XML data from relational
databases. These functions can be used to format the results of queries into XML ele-
ments and documents, and to specify the roots of an XML hierarchy so that nested
hierarchical data can be created from flat relational data. First we list and briefly
describe some of the functions that were added to SQL; then we show a few examples.

COURSE

INSTRUCTOR

1 1 N N

1 1NN

(a) (b)

STUDENT

DEPARTMENTSECTION COURSE

INSTRUCTOR INSTRUCTOR1

STUDENT

DEPARTMENTSECTION

(c)

STUDENT

DEPARTMENTSECTION

INSTRUCTOR COURSE1 INSTRUCTOR1 COURSE

1
M

N
N

Figure 13.15
Converting a graph with cycles into a hierarchical (tree) structure.

454 Chapter 13 XML: Extensible Markup Language

We discuss the following functions:

 1. XMLELEMENT: This is used to specify a tag (element) name that will
appear in the XML result. It can specify a tag name for a complex element or
for an individual column.

 2. XMLFOREST: If several tags (elements) are needed in the XML result, this
function can create multiple element names in a simpler manner than
XMLELEMENT. The column names can be listed directly, separated by
commas, with or without renaming. If a column name is not renamed, it will
be used as the element (tag) name.

 3. XMLAGG: This can group together (or aggregate) several elements so they
can be placed under a parent element as a collection of subelements.

 4. XMLROOT: This allows the selected elements to be formatted as an XML
document with a single root element.

 5. XMLATTRIBUTES: This allows the creation of attributes for the elements
of the XML result.

We now illustrate these functions with a few SQL/XML examples that refer to the
EMPLOYEE table from Figures 5.5 and 5.6. The first example X1 shows how to cre-
ate an XML element that contains the EMPLOYEE lastname for the employee
whose ssn is “123456789”:

X1: SELECT XMLELEMENT (NAME “lastname”, E.LName)
 FROM EMPLOYEE E
 WHERE E.Ssn = “123456789” ;

The SQL keyword NAME specifies the XML element (tag) name. The result on the
data shown in Figure 5.6 would be:

<lastname>Smith</lastname>

If we want to retrieve multiple columns for a single row, we can use multiple list-
ings of XMLELEMENT within the parent element, but a simpler way would be
to use XMLFOREST, which allows the specification of multiple columns without
repeating the keyword XMLELEMENT multiple times. This is shown as X2:

X2: SELECT XMLELEMENT (NAME “employee”,
 XMLFOREST (
 E.Lname AS “ln”,
 E.Fname AS “fn”,
 E.Salary AS “sal”))
 FROM EMPLOYEE AS E
 WHERE E.Ssn = “123456789” ;

The result of X2 on the data shown in Figure 5.6 would be:

<employee><ln>Smith</ln><fn>John</fn><sal>30000</sal></employee>

Suppose we want to create XML data that has the last name, first name, and
salary of the employees who work in department 4, and format it as an XML

 13.8 Summary 455

document with the root tag “dept4emps”. Then we can write the SQL/XML
query X3:

X3: SELECT XMLROOT (
 XMLELEMENT (NAME “dept4emps”,

 XMLAGG (
 XMLELEMENT (NAME “emp”
 XMLFOREST (Lname, Fname, Salary)
 ORDER BY Lname)))

 FROM EMPLOYEE
 WHERE Dno = 4 ;

The XMLROOT function creates a single root element, so the XML data would be a
well-formed document (a tree with a single root). The result of X3 on the data
shown in Figure 5.6 would be:

<dept4emps>
<emp><Lname>Jabbar</Lname><Fname>Ahmad</Fname><Salary>25000
 </Salary></emp>
<emp><Lname>Wallace</Lname><Fname>Jennifer
 </Fname><Salary>43000</Salary></emp>
<emp><Lname>Zelaya</Lname><Fname>Alicia</Fname><Salary>25000
 </Salary></emp>
</dept4emps>

These examples give a flavor of how the SQL standard has been extended to allow
users to format query results as XML data.

13.8 Summary
This chapter provided an overview of the XML standard for representing and
exchanging data over the Internet. First we discussed some of the differences between
various types of data, classifying three main types: structured, semistructured, and
unstructured. Structured data is stored in traditional databases. Semistructured data
mixes data types names and data values, but the data does not all have to follow a
fixed predefined structure. Unstructured data refers to information displayed on the
Web, specified via HTML, where information on the types of data items is missing.
We described the XML standard and its tree-structured (hierarchical) data model,
and we discussed XML documents and the languages for specifying the structure of
these documents, namely, XML DTD (Document Type Definition) and XML
schema. We gave an overview of the various approaches for storing XML docu-
ments, whether in their native (text) format, in a compressed form, or in relational
and other types of databases. We gave an overview of the XPath and XQuery lan-
guages proposed for querying XML data, and we discussed the mapping issues that
arise when it is necessary to convert data stored in traditional relational databases
into XML documents. Finally, we discussed SQL/XML, which provides SQL with
additional functionality to format SQL query results as XML data.

456 Chapter 13 XML: Extensible Markup Language

Review Questions
 13.1. What are the differences between structured, semistructured, and unstruc-

tured data?

 13.2. Under which of the categories mentioned in Question 13.1 do XML docu-
ments fall? What about self-describing data?

 13.3. What are the differences between the use of tags in XML versus HTML?

 13.4. What is the difference between data-centric and document-centric XML
documents?

 13.5. What is the difference between attributes and elements in XML? List some
of the important attributes used to specify elements in XML schema.

 13.6. What is the difference between XML schema and XML DTD?

Exercises
 13.7. Create part of an XML instance document to correspond to the data stored

in the relational database shown in Figure 5.6 such that the XML document
conforms to the XML schema document in Figure 13.5.

 13.8. Create XML schema documents and XML DTDs to correspond to the hier-
archies shown in Figures 13.14 and 13.15(c).

 13.9. Consider the LIBRARY relational database schema in Figure 6.6. Create an
XML schema document that corresponds to this database schema.

 13.10. Specify the following views as queries in XQuery on the company XML
schema shown in Figure 13.5.

a. A view that has the department name, manager name, and manager salary
for every department

b. A view that has the employee name, supervisor name, and employee salary
for each employee who works in the Research department

c. A view that has the project name, controlling department name, number of
employees, and total hours worked per week on the project for each project

d. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project with more than one employee working on it

Selected Bibliography
There are so many articles and books on various aspects of XML that it would be
impossible to make even a modest list. We will mention one book: Chaudhri,
Rashid, and Zicari, editors (2003). This book discusses various aspects of XML and
contains a list of references to XML research and practice.

Database Design Theory
and Normalization

part 6

This page intentionally left blank

459

14
Basics of Functional

Dependencies and Normalization
for Relational Databases

In Chapters 5 through 8, we presented various aspects
of the relational model and the languages associated

with it. Each relation schema consists of a number of attributes, and the relational
database schema consists of a number of relation schemas. So far, we have assumed
that attributes are grouped to form a relation schema by using the common sense of
the database designer or by mapping a database schema design from a conceptual
data model such as the ER or enhanced-ER (EER) data model. These models make
the designer identify entity types and relationship types and their respective attri-
butes, which leads to a natural and logical grouping of the attributes into relations
when the mapping procedures discussed in Chapter 9 are followed. However, we
still need some formal way of analyzing why one grouping of attributes into a rela-
tion schema may be better than another. While discussing database design in
 Chapters 3, 4, and 9, we did not develop any measure of appropriateness or goodness
to measure the quality of the design, other than the intuition of the designer. In this
chapter we discuss some of the theory that has been developed with the goal of
evaluating relational schemas for design quality—that is, to measure formally why
one set of groupings of attributes into relation schemas is better than another.

There are two levels at which we can discuss the goodness of relation schemas. The
first is the logical (or conceptual) level—how users interpret the relation schemas
and the meaning of their attributes. Having good relation schemas at this level
enables users to understand clearly the meaning of the data in the relations, and
hence to formulate their queries correctly. The second is the implementation (or
physical storage) level—how the tuples in a base relation are stored and updated.

chapter 14

460 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

This level applies only to schemas of base relations—which will be physically stored
as files—whereas at the logical level we are interested in schemas of both base rela-
tions and views (virtual relations). The relational database design theory developed
in this chapter applies mainly to base relations, although some criteria of appropri-
ateness also apply to views, as shown in Section 14.1.

As with many design problems, database design may be performed using two
approaches: bottom-up or top-down. A bottom-up design methodology (also called
design by synthesis) considers the basic relationships among individual attributes as
the starting point and uses those to construct relation schemas. This approach is not
very popular in practice1 because it suffers from the problem of having to collect a
large number of binary relationships among attributes as the starting point. For prac-
tical situations, it is next to impossible to capture binary relationships among all such
pairs of attributes. In contrast, a top-down design methodology (also called design by
analysis) starts with a number of groupings of attributes into relations that exist
together naturally, for example, on an invoice, a form, or a report. The relations are
then analyzed individually and collectively, leading to further decomposition until all
desirable properties are met. The theory described in this chapter is applicable pri-
marily to the top-down design approach, and as such is more appropriate when per-
forming design of databases by analysis and decomposition of sets of attributes that
appear together in files, in reports, and on forms in real-life situations.

Relational database design ultimately produces a set of relations. The implicit goals
of the design activity are information preservation and minimum redundancy.
Information is very hard to quantify—hence we consider information preservation
in terms of maintaining all concepts, including attribute types, entity types, and
relationship types as well as generalization/specialization relationships, which are
described using a model such as the EER model. Thus, the relational design must
preserve all of these concepts, which are originally captured in the conceptual
design after the conceptual to logical design mapping. Minimizing redundancy
implies minimizing redundant storage of the same information and reducing the
need for multiple updates to maintain consistency across multiple copies of the
same information in response to real-world events that require making an update.

We start this chapter by informally discussing some criteria for good and bad rela-
tion schemas in Section 14.1. In Section 14.2, we define the concept of functional
dependency, a formal constraint among attributes that is the main tool for formally
measuring the appropriateness of attribute groupings into relation schemas. In Sec-
tion 14.3, we discuss normal forms and the process of normalization using func-
tional dependencies. Successive normal forms are defined to meet a set of desirable
constraints expressed using primary keys and functional dependencies. The normal-
ization procedure consists of applying a series of tests to relations to meet these
increasingly stringent requirements and decompose the relations when necessary. In
Section 14.4, we discuss more general definitions of normal forms that can be directly

1An exception in which this approach is used in practice is based on a model called the binary relational

model. An example is the NIAM methodology (Verheijen and VanBekkum, 1982).

 14.1 Informal Design Guidelines for Relation Schemas 461

applied to any given design and do not require step-by-step analysis and normaliza-
tion. Sections 14.5 to 14.7 discuss further normal forms up to the fifth normal form.
In Section 14.6 we introduce the multivalued dependency (MVD), followed by the
join dependency (JD) in Section 14.7. Section 14.8 summarizes the chapter.

Chapter 15 continues the development of the theory related to the design of good
relational schemas. We discuss desirable properties of relational decomposition—
nonadditive join property and functional dependency preservation property. A
general algorithm that tests whether or not a decomposition has the nonadditive
(or lossless) join property (Algorithm 15.3 is also presented). We then discuss prop-
erties of functional dependencies and the concept of a minimal cover of dependen-
cies. We consider the bottom-up approach to database design consisting of a set of
algorithms to design relations in a desired normal form. These algorithms assume
as input a given set of functional dependencies and achieve a relational design in a
target normal form while adhering to the above desirable properties. In Chapter 15
we also define additional types of dependencies that further enhance the evaluation
of the goodness of relation schemas.

If Chapter 15 is not covered in a course, we recommend a quick introduction to the
desirable properties of decomposition from Section 15.2. and the importance of the
non-additive join property during decomposition.

14.1 Informal Design Guidelines
for Relation Schemas

Before discussing the formal theory of relational database design, we discuss four
informal guidelines that may be used as measures to determine the quality of relation
schema design:

 ■ Making sure that the semantics of the attributes is clear in the schema

 ■ Reducing the redundant information in tuples

 ■ Reducing the NULL values in tuples

 ■ Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another, as we will see.

14.1.1 Imparting Clear Semantics to Attributes in Relations
Whenever we group attributes to form a relation schema, we assume that attri-
butes belonging to one relation have certain real-world meaning and a proper
interpretation associated with them. The semantics of a relation refers to its mean-
ing resulting from the interpretation of attribute values in a tuple. In Chapter 5 we
discussed how a relation can be interpreted as a set of facts. If the conceptual
design described in Chapters 3 and 4 is done carefully and the mapping procedure
in Chapter 9 is followed systematically, the relational schema design should have a
clear meaning.

462 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

In general, the easier it is to explain the semantics of the relation—or in other words,
what a relation exactly means and stands for—the better the relation schema design
will be. To illustrate this, consider Figure 14.1, a simplified version of the COMPANY
relational database schema in Figure 5.5, and Figure 14.2, which presents an example
of populated relation states of this schema. The meaning of the EMPLOYEE relation
schema is simple: Each tuple represents an employee, with values for the employee’s
name (Ename), Social Security number (Ssn), birth date (Bdate), and address
(Address), and the number of the department that the employee works for (Dnumber).
The Dnumber attribute is a foreign key that represents an implicit relationship between
EMPLOYEE and DEPARTMENT. The semantics of the DEPARTMENT and PROJECT
schemas are also straightforward: Each DEPARTMENT tuple represents a department
entity, and each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of
DEPARTMENT relates a department to the employee who is its manager, whereas
Dnum of PROJECT relates a project to its controlling department; both are foreign key
attributes. The ease with which the meaning of a relation’s attributes can be explained
is an informal measure of how well the relation is designed.

DEPARTMENT

DnumberDname

Ename Bdate Address Dnumber

EMPLOYEE

P.K.

P.K.

F.K.

Pname Pnumber Plocation Dnum

PROJECT F.K.

F.K.

DEPT_LOCATIONS

Dnumber Dlocation

P.K.

P.K.

Pnumber Hours

WORKS_ON
F.K. F.K.

P.K.

F.K.

Ssn

Dmgr_ssn

Ssn

Figure 14.1
A simplified COMPANY relational
database schema.

 14.1 Informal Design Guidelines for Relation Schemas 463

Ename

EMPLOYEE

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.
Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321
666884444

987987987

888665555

666884444

123456789

123456789

333445555

453453453
453453453

333445555

333445555
333445555

999887777

987987987

999887777
987987987

987654321

987654321
888665555

3

1

2

2

1
2

3

10

20

10

30
10

30

30

20

20

40.0

32.5

7.5

10.0

20.0
20.0

10.0

10.0

10.0

35.0

30.0
10.0

5.0

20.0

15.0

Null

1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20
1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Dnumber

Dname

DEPARTMENT

Research

Administration

Headquarters 888665555

333445555

987654321

Dnumber

5

1

4

DEPT_LOCATIONS

1

4

5

Dnumber

Houston

Dlocation

Bellaire

Stafford

Houston

Sugarland

5

5

PROJECT

ProductX

ProductY

ProductZ

Pname

1

Pnumber Plocation Dnum

3

2

20

10

Reorganization

30

5

5

5

1

4

4

Bellaire

Houston

Sugarland

Houston

Stafford

StaffordNewbenefits

Computerization

WORKS_ON

Pnumber Hours

Ssn

Dmgr_ssn

Ssn

Figure 14.2
Sample database state for the relational database schema in Figure 14.1.

464 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

The semantics of the other two relation schemas in Figure 14.1 are slightly more
complex. Each tuple in DEPT_LOCATIONS gives a department number (Dnumber)
and one of the locations of the department (Dlocation). Each tuple in WORKS_ON
gives an employee Social Security number (Ssn), the project number of one of the
projects that the employee works on (Pnumber), and the number of hours per week
that the employee works on that project (Hours). However, both schemas have a
well-defined and unambiguous interpretation. The schema DEPT_LOCATIONS rep-
resents a multivalued attribute of DEPARTMENT, whereas WORKS_ON represents
an M:N relationship between EMPLOYEE and PROJECT. Hence, all the relation
schemas in Figure 14.1 may be considered as easy to explain and therefore good
from the standpoint of having clear semantics. We can thus formulate the following
informal design guideline.

Guideline 1. Design a relation schema so that it is easy to explain its meaning. Do
not combine attributes from multiple entity types and relationship types into a sin-
gle relation. Intuitively, if a relation schema corresponds to one entity type or one
relationship type, it is straightforward to explain its meaning. Otherwise, if the rela-
tion corresponds to a mixture of multiple entities and relationships, semantic ambi-
guities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1. The relation schemas in Figures 14.3(a)
and 14.3(b) also have clear semantics. (The reader should ignore the lines under the
relations for now; they are used to illustrate functional dependency notation, dis-
cussed in Section 14.2.) A tuple in the EMP_DEPT relation schema in Figure 14.3(a)
represents a single employee but includes, along with the Dnumber (the identifier
for the department he/she works for), additional information—namely, the
name (Dname) of the department for which the employee works and the Social
Security number (Dmgr_ssn) of the department manager. For the EMP_PROJ rela-
tion in Figure 14.3(b), each tuple relates an employee to a project but also includes

Ssn

EMP_PROJ

(b)

(a)

FD1

FD2

FD3

Pnumber Hours Ename Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Figure 14.3
Two relation schemas
suffering from update
anomalies.
(a) EMP_DEPT and
(b) EMP_PROJ.

 14.1 Informal Design Guidelines for Relation Schemas 465

the employee name (Ename), project name (Pname), and project location (Plocation).
Although there is nothing wrong logically with these two relations, they violate
Guideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixes
attributes of employees and departments, and EMP_PROJ mixes attributes of
employees and projects and the WORKS_ON relationship. Hence, they fare poorly
against the above measure of design quality. They may be used as views, but they
cause problems when used as base relations, as we discuss in the following section.

14.1.2 Redundant Information in Tuples and Update Anomalies
One goal of schema design is to minimize the storage space used by the base rela-
tions (and hence the corresponding files). Grouping attributes into relation sche-
mas has a significant effect on storage space. For example, compare the space used
by the two base relations EMPLOYEE and DEPARTMENT in Figure 14.2 with that
for an EMP_DEPT base relation in Figure 14.4, which is the result of applying the
NATURAL JOIN operation to EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attri-
bute values pertaining to a particular department (Dnumber, Dname, Dmgr_ssn) are
repeated for every employee who works for that department. In contrast, each depart-
ment’s information appears only once in the DEPARTMENT relation in Figure 14.2.
Only the department number (Dnumber) is repeated in the EMPLOYEE relation for
each employee who works in that department as a foreign key. Similar comments
apply to the EMP_PROJ relation (see Figure 14.4), which augments the WORKS_ON
relation with additional attributes from EMPLOYEE and PROJECT.

Storing natural joins of base relations leads to an additional problem referred to as
update anomalies. These can be classified into insertion anomalies, deletion anom-
alies, and modification anomalies.2

Insertion Anomalies. Insertion anomalies can be differentiated into two types,
illustrated by the following examples based on the EMP_DEPT relation:

 ■ To insert a new employee tuple into EMP_DEPT, we must include either the
attribute values for the department that the employee works for, or NULLs (if
the employee does not work for a department as yet). For example, to insert
a new tuple for an employee who works in department number 5, we must
enter all the attribute values of department 5 correctly so that they are con-
sistent with the corresponding values for department 5 in other tuples in
EMP_DEPT. In the design of Figure 14.2, we do not have to worry about this
consistency problem because we enter only the department number in the
employee tuple; all other attribute values of department 5 are recorded only
once in the database, as a single tuple in the DEPARTMENT relation.

 ■ It is difficult to insert a new department that has no employees as yet in the
EMP_DEPT relation. The only way to do this is to place NULL values in the

2These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, as
we shall discuss in Section 15.3.

466 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

attributes for employee. This violates the entity integrity for EMP_DEPT
because its primary key Ssn cannot be null. Moreover, when the first
employee is assigned to that department, we do not need this tuple with
NULL values anymore. This problem does not occur in the design of Fig-
ure 14.2 because a department is entered in the DEPARTMENT relation whether
or not any employees work for it, and whenever an employee is assigned to
that department, a corresponding tuple is inserted in EMPLOYEE.

Ename

EMP_DEPT

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 FireOak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnumber Dname Dmgr_ssn

Ssn

EMP_PROJ

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

Null

Hours

Narayan, Ramesh K.

Smith, John B.

Smith, John B.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

English, Joyce A.

English, Joyce A.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Wallace, Jennifer S.

Borg, James E.

Ename

ProductZ

ProductX

ProductY

ProductY

ProductZ

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Pname Plocation

Computerization

Redundancy Redundancy

Redundancy

Figure 14.4
Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations
in Figure 14.2. These may be stored as base relations for performance reasons.

 14.1 Informal Design Guidelines for Relation Schemas 467

Deletion Anomalies. The problem of deletion anomalies is related to the second
insertion anomaly situation just discussed. If we delete from EMP_DEPT an employee
tuple that happens to represent the last employee working for a particular depart-
ment, the information concerning that department is lost inadvertently from the
database. This problem does not occur in the database of Figure 14.2 because
DEPARTMENT tuples are stored separately.

Modification Anomalies. In EMP_DEPT, if we change the value of one of the attri-
butes of a particular department—say, the manager of department 5—we must
update the tuples of all employees who work in that department; otherwise, the
database will become inconsistent. If we fail to update some tuples, the same depart-
ment will be shown to have two different values for manager in different employee
tuples, which would be wrong.3

It is easy to see that these three anomalies are undesirable and cause difficulties to
maintain consistency of data as well as require unnecessary updates that can be
avoided; hence, we can state the next guideline as follows.

Guideline 2. Design the base relation schemas so that no insertion, deletion, or
modification anomalies are present in the relations. If any anomalies are present,4

note them clearly and make sure that the programs that update the database will
operate correctly.

The second guideline is consistent with and, in a way, a restatement of the first
guideline. We can also see the need for a more formal approach to evaluating
whether a design meets these guidelines. Sections 14.2 through 14.4 provide these
needed formal concepts. It is important to note that these guidelines may some-
times have to be violated in order to improve the performance of certain queries. If
EMP_DEPT is used as a stored relation (known otherwise as a materialized view) in
addition to the base relations of EMPLOYEE and DEPARTMENT, the anomalies in
EMP_DEPT must be noted and accounted for (for example, by using triggers or
stored procedures that would make automatic updates). This way, whenever the
base relation is updated, we do not end up with inconsistencies. In general, it is
advisable to use anomaly-free base relations and to specify views that include the
joins for placing together the attributes frequently referenced in important queries.

14.1.3 NULL Values in Tuples
In some schema designs we may group many attributes together into a “fat” rela-
tion. If many of the attributes do not apply to all tuples in the relation, we end up
with many NULLs in those tuples. This can waste space at the storage level and may
also lead to problems with understanding the meaning of the attributes and with

3This is not as serious as the other problems, because all tuples can be updated by a single SQL query.

4Other application considerations may dictate and make certain anomalies unavoidable. For example, the
EMP_DEPT relation may correspond to a query or a report that is frequently required.

468 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

specifying JOIN operations at the logical level.5 Another problem with NULLs is how
to account for them when aggregate operations such as COUNT or SUM are applied.
SELECT and JOIN operations involve comparisons; if NULL values are present, the
results may become unpredictable.6 Moreover, NULLs can have multiple interpreta-
tions, such as the following:

 ■ The attribute does not apply to this tuple. For example, Visa_status may not
apply to U.S. students.

 ■ The attribute value for this tuple is unknown. For example, the Date_of_birth
may be unknown for an employee.

 ■ The value is known but absent; that is, it has not been recorded yet. For
example, the Home_Phone_Number for an employee may exist, but may not
be available and recorded yet.

Having the same representation for all NULLs compromises the different meanings
they may have. Therefore, we state another guideline.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose
values may frequently be NULL. If NULLs are unavoidable, make sure that they apply
in exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins with NULL values are the two overriding
criteria that determine whether to include the columns that may have NULLs in a
relation or to have a separate relation for those columns (with the appropriate key
columns). For example, if only 15% of employees have individual offices, there is
little justification for including an attribute Office_number in the EMPLOYEE rela-
tion; rather, a relation EMP_OFFICES(Essn, Office_number) can be created to include
tuples for only the employees with individual offices.

14.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.5(a),
which can be used instead of the single EMP_PROJ relation in Figure 14.3(b). A
tuple in EMP_LOCS means that the employee whose name is Ename works on at
least one project located at Plocation. A tuple in EMP_PROJ1 refers to the fact that the
employee whose Social Security number is Ssn works the given Hours per week on
the project whose name, number, and location are Pname, Pnumber, and Plocation.
Figure 14.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 corresponding
to the EMP_PROJ relation in Figure 14.4, which are obtained by applying the appro-
priate PROJECT (π) operations to EMP_PROJ.

5This is because inner and outer joins produce different results when NULLs are involved in joins. The users
must thus be aware of the different meanings of the various types of joins. Although this is reasonable for
sophisticated users, it may be difficult for others.

6In Section 5.5.1 we presented comparisons involving NULL values where the outcome (in three-valued
logic) is TRUE, FALSE, and UNKNOWN.

 14.1 Informal Design Guidelines for Relation Schemas 469

Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of
EMP_PROJ. This produces a particularly bad schema design because we cannot
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and
EMP_LOCS. If we attempt a NATURAL JOIN operation on EMP_PROJ1 and
EMP_LOCS, the result produces many more tuples than the original set of tuples
in EMP_PROJ. In Figure 14.6, the result of applying the join to only the tuples for
employee with Ssn = “123456789” is shown (to reduce the size of the resulting rela-
tion). Additional tuples that were not in EMP_PROJ are called spurious tuples
because they represent spurious information that is not valid. The spurious
tuples are marked by asterisks (*) in Figure 14.6. It is left to the reader to complete
the result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCS
tables in their entirety and to mark the spurious tuples in this result.

Ssn Pnumber Hours Pname Plocation

Ename

P.K.

EMP_PROJ1

Plocation

P.K.

EMP_LOCS

Ename
Smith, John B.
Smith, John B.
Narayan, Ramesh K.
English, Joyce A.
English, Joyce A.
Wong, Franklin T.
Wong, Franklin T.
Wong, Franklin T.
Zelaya, Alicia J.
Jabbar, Ahmad V.
Wallace, Jennifer S.
Wallace, Jennifer S.
Borg, James E.

Houston

Bellaire
Sugarland

Sugarland

Bellaire
Sugarland

Stafford

Houston

Stafford
Houston

Houston
Stafford
Stafford

Plocation

(b)

(a)

EMP_PROJ1

Ssn
123456789
123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777
999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3
10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

ProductZ

ProductX

ProductY

ProductY

ProductZ

Computerization

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Hours Pname Plocation

EMP_LOCS
Figure 14.5
Particularly poor design for the EMP_PROJ relation in
Figure 14.3(b). (a) The two relation schemas EMP_LOCS
and EMP_PROJ1. (b) The result of projecting the
extension of EMP_PROJ from Figure 14.4 onto the
relations EMP_LOCS and EMP_PROJ1.

470 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because
when we JOIN them back using NATURAL JOIN, we do not get the correct original
information. This is because in this case Plocation happens to be the attribute that
relates EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a
foreign key in either EMP_LOCS or EMP_PROJ1. We now informally state another
design guideline.

Guideline 4. Design relation schemas so that they can be joined with equality
conditions on attributes that are appropriately related (primary key, foreign key)
pairs in a way that guarantees that no spurious tuples are generated. Avoid relations
that contain matching attributes that are not (foreign key, primary key) combina-
tions because joining on such attributes may produce spurious tuples.

Ssn
123456789

123456789

123456789

123456789

123456789

666884444

666884444

453453453

453453453

453453453

453453453

453453453

333445555

333445555

333445555

333445555

2

1

1

3

2

2

2

2

2

2

2

3

1

1

2

3

Pnumber

7.5

32.5

32.5

40.0

40.0

20.0

20.0

7.5

7.5

20.0

10.0

20.0

20.0

10.0

10.0

10.0

Hours

ProductY

ProductX

ProductX

ProductZ

ProductZ

ProductX

ProductX

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductY

ProductZ

Pname

Sugarland

Bellaire

Bellaire

Houston

Houston

Bellaire

Bellaire

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Sugarland

Houston
333445555 3 10.0 ProductZ Houston

333445555 10 10.0 Computerization Stafford
333445555 20 10.0 Reorganization Houston

333445555 20

*

*

*

*

*

*

*

*

*

*

*

10.0 Reorganization Houston

Smith, John B.

Smith, John B.

English, Joyce A.

Narayan, Ramesh K.

Wong, Franklin T.

Smith, John B.

English, Joyce A.

English, Joyce A.

Wong, Franklin T.

Smith, John B.

Smith, John B.

English, Joyce A.

Wong, Franklin T.

English, Joyce A.

Wong, Franklin T.

Narayan, Ramesh K.
Wong, Franklin T.

Wong, Franklin T.
Narayan, Ramesh K.

Wong, Franklin T.

Plocation Ename

*
*

*

Figure 14.6
Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCS
of Figure 14.5 just for employee with Ssn = “123456789”. Generated spurious
tuples are marked by asterisks.

 14.2 Functional Dependencies 471

This informal guideline obviously needs to be stated more formally. In Section 15.2
we discuss a formal condition called the nonadditive (or lossless) join property that
guarantees that certain joins do not produce spurious tuples.

14.1.5 Summary and Discussion of Design Guidelines
In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead to
problematic relation schemas and we proposed informal guidelines for a good rela-
tional design. The problems we pointed out, which can be detected without addi-
tional tools of analysis, are as follows:

 ■ Anomalies that cause redundant work to be done during insertion into and
modification of a relation, and that may cause accidental loss of information
during a deletion from a relation

 ■ Waste of storage space due to NULLs and the difficulty of performing selec-
tions, aggregation operations, and joins due to NULL values

 ■ Generation of invalid and spurious data during joins on base relations with
matched attributes that may not represent a proper (foreign key, primary
key) relationship

In the rest of this chapter we present formal concepts and theory that may be used
to define the goodness and badness of individual relation schemas more precisely.
First we discuss functional dependency as a tool for analysis. Then we specify the
three normal forms and Boyce-Codd normal form (BCNF) for relation schemas as
the established and accepted standards of quality in relational design. The strategy
for achieving a good design is to decompose a badly designed relation appropriately
to achieve higher normal forms. We also briefly introduce additional normal forms
that deal with additional dependencies. In Chapter 15, we discuss the properties of
decomposition in detail and provide a variety of algorithms related to functional
dependencies, goodness of decomposition, and the bottom-up design of relations
by using the functional dependencies as a starting point.

14.2 Functional Dependencies
So far we have dealt with the informal measures of database design. We now intro-
duce a formal tool for analysis of relational schemas that enables us to detect and
describe some of the above-mentioned problems in precise terms. The single most
important concept in relational schema design theory is that of a functional depen-
dency. In this section we formally define the concept, and in Section 14.3 we see
how it can be used to define normal forms for relation schemas.

14.2.1 Definition of Functional Dependency
A functional dependency is a constraint between two sets of attributes from the
database. Suppose that our relational database schema has n attributes A1, A2,
… , An; let us think of the whole database as being described by a single universal

472 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 relation schema R = {A1, A2, … , An}.7 We do not imply that we will actually store
the database as a single universal table; we use this concept only in developing the
formal theory of data dependencies.8

Definition. A functional dependency, denoted by X → Y, between two sets of
attributes X and Y that are subsets of R specifies a constraint on the possible
tuples that can form a relation state r of R. The constraint is that, for any two
tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on, or are deter-
mined by, the values of the X component; alternatively, the values of the X component
of a tuple uniquely (or functionally) determine the values of the Y component. We
also say that there is a functional dependency from X to Y, or that Y is functionally
dependent on X. The abbreviation for functional dependency is FD or f.d. The set of
attributes X is called the left-hand side of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever
two tuples of r(R) agree on their X-value, they must necessarily agree on their
Y-value. Note the following:

 ■ If a constraint on R states that there cannot be more than one tuple with a
given X-value in any relation instance r(R)—that is, X is a candidate key of
R—this implies that X → Y for any subset of attributes Y of R (because the
key constraint implies that no two tuples in any legal state r(R) will have the
same value of X). If X is a candidate key of R, then X → R.

 ■ If X → Y in R, this does not say whether or not Y → X in R.

A functional dependency is a property of the semantics or meaning of the
attributes. The database designers will use their understanding of the semantics of the
attributes of R—that is, how they relate to one another—to specify the functional
dependencies that should hold on all relation states (extensions) r of R. Relation
extensions r(R) that satisfy the functional dependency constraints are called legal
relation states (or legal extensions) of R. Hence, the main use of functional depen-
dencies is to describe further a relation schema R by specifying constraints on its
attributes that must hold at all times. Certain FDs can be specified without referring
to a specific relation, but as a property of those attributes given their commonly
understood meaning. For example, {State, Driver_license_number} → Ssn should
normally hold for any adult in the United States and hence should hold whenever
these attributes appear in a relation.9 It is also possible that certain functional

7This concept of a universal relation is important when we discuss the algorithms for relational database
design in Chapter 15.

8This assumption implies that every attribute in the database should have a distinct name. In Chapter 5
we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinct
relations had the same name.

9Note that there are databases, such as those of credit card agencies or police departments, where this
functional dependency may not hold because of fraudulent records resulting from the same driver’s
license number being used by two or more different individuals.

 14.2 Functional Dependencies 473

dependencies may cease to exist in the real world if the relationship changes. For
example, the FD Zip_code → Area_code used to exist as a relationship between postal
codes and telephone number codes in the United States, but with the proliferation
of telephone area codes it is no longer true.

Consider the relation schema EMP_PROJ in Figure 14.3(b); from the semantics of
the attributes and the relation, we know that the following functional dependencies
should hold:

 a. Ssn → Ename

 b. Pnumber → {Pname, Plocation}

 c. {Ssn, Pnumber} → Hours

These functional dependencies specify that (a) the value of an employee’s Social
Security number (Ssn) uniquely determines the employee name (Ename), (b) the
value of a project’s number (Pnumber) uniquely determines the project name
(Pname) and location (Plocation), and (c) a combination of Ssn and Pnumber values
uniquely determines the number of hours the employee currently works on the
project per week (Hours). Alternatively, we say that Ename is functionally deter-
mined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the
value of Ename, and so on.

A functional dependency is a property of the relation schema R, not of a particular
legal relation state r of R. Therefore, an FD cannot be inferred automatically from a
given relation extension r but must be defined explicitly by someone who knows
the semantics of the attributes of R. For example, Figure 14.7 shows a particular
state of the TEACH relation schema. Although at first glance we may think that
Text → Course, we cannot confirm this unless we know that it is true for all possible
legal states of TEACH. It is, however, sufficient to demonstrate a single counterexam-
ple to disprove a functional dependency. For example, because ‘Smith’ teaches both
‘Data Structures’ and ‘Database Systems,’ we can conclude that Teacher does not
functionally determine Course.

Given a populated relation, we cannot determine which FDs hold and which do not
unless we know the meaning of and the relationships among the attributes. All we can
say is that a certain FD may exist if it holds in that particular extension. We cannot
guarantee its existence until we understand the meaning of the corresponding attri-
butes. We can, however, emphatically state that a certain FD does not hold if there are

TEACH

Teacher
Smith

Smith

Hall

Brown

Bartram

Martin

Hoffman

Horowitz

Compilers

Data Structures

Data Management

Data Structures

Course Text

Figure 14.7
A relation state of TEACH with a
possible functional dependency
TEXT → COURSE. However,
TEACHER → COURSE,
TEXT → TEACHER and
COURSE → TEXT are ruled out.

474 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

tuples that show the violation of such an FD. See the illustrative example relation in
Figure 14.8. Here, the following FDs may hold because the four tuples in the current
extension have no violation of these constraints: B → C; C → B; {A, B} → C; {A, B} → D;
and {C, D} → B. However, the following do not hold because we already have viola-
tions of them in the given extension: A → B (tuples 1 and 2 violate this constraint);
B → A (tuples 2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD is
displayed as a horizontal line. The left-hand-side attributes of the FD are connected
by vertical lines to the line representing the FD, whereas the right-hand-side attri-
butes are connected by the lines with arrows pointing toward the attributes.

We denote by F the set of functional dependencies that are specified on relation
schema R. Typically, the schema designer specifies the functional dependencies that
are semantically obvious; usually, however, numerous other functional dependen-
cies hold in all legal relation instances among sets of attributes that can be derived
from and satisfy the dependencies in F. Those other dependencies can be inferred
or deduced from the FDs in F. We defer the details of inference rules and properties
of functional dependencies to Chapter 15.

14.3 Normal Forms Based on Primary Keys
Having introduced functional dependencies, we are now ready to use them to spec-
ify how to use them to develop a formal methodology for testing and improving
relation schemas. We assume that a set of functional dependencies is given for each
relation, and that each relation has a designated primary key; this information com-
bined with the tests (conditions) for normal forms drives the normalization process
for relational schema design. Most practical relational design projects take one of
the following two approaches:

 ■ Perform a conceptual schema design using a conceptual model such as ER
or EER and map the conceptual design into a set of relations.

 ■ Design the relations based on external knowledge derived from an existing
implementation of files or forms or reports.

Following either of these approaches, it is then useful to evaluate the relations for
goodness and decompose them further as needed to achieve higher normal forms
using the normalization theory presented in this chapter and the next. We focus in

Figure 14.8
A relation R (A, B, C, D)
with its extension.

A B C D

a1 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d3

a3 b3 c4 d3

 14.3 Normal Forms Based on Primary Keys 475

this section on the first three normal forms for relation schemas and the intuition
behind them, and we discuss how they were developed historically. More general
definitions of these normal forms, which take into account all candidate keys of a
relation rather than just the primary key, are deferred to Section 14.4.

We start by informally discussing normal forms and the motivation behind their
development, as well as reviewing some definitions from Chapter 3 that are needed
here. Then we discuss the first normal form (1NF) in Section 14.3.4, and we present
the definitions of second normal form (2NF) and third normal form (3NF), which
are based on primary keys, in Sections 14.3.5 and 14.3.6, respectively.

14.3.1 Normalization of Relations
The normalization process, as first proposed by Codd (1972a), takes a relation
schema through a series of tests to certify whether it satisfies a certain normal form.
The process, which proceeds in a top-down fashion by evaluating each relation
against the criteria for normal forms and decomposing relations as necessary, can
thus be considered as relational design by analysis. Initially, Codd proposed three
normal forms, which he called first, second, and third normal form. A stronger
definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed later
by Boyce and Codd. All these normal forms are based on a single analytical tool: the
functional dependencies among the attributes of a relation. Later, a fourth normal
form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of
multivalued dependencies and join dependencies, respectively; these are briefly dis-
cussed in Sections 14.6 and 14.7.

Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of
(1) minimizing redundancy and (2) minimizing the insertion, deletion, and update
anomalies discussed in Section 14.1.2. It can be considered as a “filtering” or “purifi-
cation” process to make the design have successively better quality. An unsatisfactory
relation schema that does not meet the condition for a normal form—the normal
form test—is decomposed into smaller relation schemas that contain a subset of the
attributes and meet the test that was otherwise not met by the original relation. Thus,
the normalization procedure provides database designers with the following:

 ■ A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes

 ■ A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired
degree

Definition. The normal form of a relation refers to the highest normal form
condition that it meets, and hence indicates the degree to which it has been
normalized.

Normal forms, when considered in isolation from other factors, do not guarantee a
good database design. It is generally not sufficient to check separately that each

476 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

relation schema in the database is, say, in BCNF or 3NF. Rather, the process of nor-
malization through decomposition must also confirm the existence of additional
properties that the relational schemas, taken together, should possess. These would
include two properties:

 ■ The nonadditive join or lossless join property, which guarantees that the
spurious tuple generation problem discussed in Section 14.1.4 does not
occur with respect to the relation schemas created after decomposition

 ■ The dependency preservation property, which ensures that each functional
dependency is represented in some individual relation resulting after
decomposition

The nonadditive join property is extremely critical and must be achieved at any
cost, whereas the dependency preservation property, although desirable, is some-
times sacrificed, as we discuss in Section 15.2.2. We defer the discussion of the for-
mal concepts and techniques that guarantee the above two properties to Chapter 15.

14.3.2 Practical Use of Normal Forms
Most practical design projects in commercial and governmental environment acquire
existing designs of databases from previous designs, from designs in legacy models, or
from existing files. They are certainly interested in assuring that the designs are good
quality and sustainable over long periods of time. Existing designs are evaluated by
applying the tests for normal forms, and normalization is carried out in practice so
that the resulting designs are of high quality and meet the desirable properties stated
previously. Although several higher normal forms have been defined, such as the 4NF
and 5NF that we discuss in Sections 14.6 and 14.7, the practical utility of these normal
forms becomes questionable. The reason is that the constraints on which they are
based are rare and hard for the database designers and users to understand or to
detect. Designers and users must either already know them or discover them as a part
of the business. Thus, database design as practiced in industry today pays particular
attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status,
such as 2NF, for performance reasons, such as those discussed at the end of Sec-
tion 14.1.2. Doing so incurs the corresponding penalties of dealing with the anomalies.

Definition. Denormalization is the process of storing the join of higher nor-
mal form relations as a base relation, which is in a lower normal form.

14.3.3 Definitions of Keys and Attributes Participating in Keys
Before proceeding further, let’s look again at the definitions of keys of a relation
schema from Chapter 3.

Definition. A superkey of a relation schema R = {A1, A2, … , An} is a set of attri-
butes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation
state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional property
that removal of any attribute from K will cause K not to be a superkey anymore.

 14.3 Normal Forms Based on Primary Keys 477

The difference between a key and a superkey is that a key has to be minimal; that is,
if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of R for any Ai,
1 ≤ i ≤ k. In Figure 14.1, {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename},
{Ssn, Ename, Bdate}, and any set of attributes that includes Ssn are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of
the candidate keys is arbitrarily designated to be the primary key, and the others
are called secondary keys. In a practical relational database, each relation schema
must have a primary key. If no candidate key is known for a relation, the entire rela-
tion can be treated as a default superkey. In Figure 14.1, {Ssn} is the only candidate
key for EMPLOYEE, so it is also the primary key.

Definition. An attribute of relation schema R is called a prime attribute of R if
it is a member of some candidate key of R. An attribute is called nonprime if it
is not a prime attribute—that is, if it is not a member of any candidate key.

In Figure 14.1, both Ssn and Pnumber are prime attributes of WORKS_ON, whereas
other attributes of WORKS_ON are nonprime.

We now present the first three normal forms: 1NF, 2NF, and 3NF. These were pro-
posed by Codd (1972a) as a sequence to achieve the desirable state of 3NF relations
by progressing through the intermediate states of 1NF and 2NF if needed. As we
shall see, 2NF and 3NF independently attack different types of problems arising
from problematic functional dependencies among attributes. However, for histori-
cal reasons, it is customary to follow them in that sequence; hence, by definition a
3NF relation already satisfies 2NF.

14.3.4 First Normal Form
First normal form (1NF)is now considered to be part of the formal definition of a
relation in the basic (flat) relational model; historically, it was defined to disallow
multivalued attributes, composite attributes, and their combinations. It states that
the domain of an attribute must include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be a single value from the domain of
that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a
combination of both as an attribute value for a single tuple. In other words, 1NF
disallows relations within relations or relations as attribute values within tuples. The
only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 14.1, whose primary
key is Dnumber, and suppose that we extend it by including the Dlocations attribute
as shown in Figure 14.9(a). We assume that each department can have a number of
locations. The DEPARTMENT schema and a sample relation state are shown in Fig-
ure 14.9. As we can see, this is not in 1NF because Dlocations is not an atomic attri-
bute, as illustrated by the first tuple in Figure 14.9(b). There are two ways we can
look at the Dlocations attribute:

 ■ The domain of Dlocations contains atomic values, but some tuples can have a
set of these values. In this case, Dlocations is not functionally dependent on
the primary key Dnumber.

478 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 ■ The domain of Dlocations contains sets of values and hence is nonatomic. In
this case, Dnumber → Dlocations because each set is considered a single mem-
ber of the attribute domain.10

In either case, the DEPARTMENT relation in Figure 14.9 is not in 1NF; in fact, it does
not even qualify as a relation according to our definition of relation in Section 3.1.
There are three main techniques to achieve first normal form for such a relation:

 1. Remove the attribute Dlocations that violates 1NF and place it in a separate
relation DEPT_LOCATIONS along with the primary key Dnumber of
DEPARTMENT. The primary key of this newly formed relation is the combi-
nation {Dnumber, Dlocation}, as shown in Figure 14.2. A distinct tuple in
DEPT_LOCATIONS exists for each location of a department. This decom-
poses the non-1NF relation into two 1NF relations.

Dname
DEPARTMENT
(a)

DEPARTMENT
(b)

DEPARTMENT
(c)

Dnumber Dmgr_ssn Dlocations

Dname
Research

Administration

Headquarters 1

5

4

Dnumber

888665555

333445555

987654321

Dmgr_ssn

{Houston}

{Bellaire, Sugarland, Houston}

{Stafford}

Dlocations

Dname
Research

Research

Research

Administration

Headquarters

Bellaire

Sugarland

Houston

Stafford

Houston

5

5

5

4

1

Dnumber

333445555

333445555

333445555

987654321

888665555

Dmgr_ssn Dlocation
Figure 14.9
Normalization into 1NF. (a) A
relation schema that is not in
1NF. (b) Sample state of
relation DEPARTMENT.
(c) 1NF version of the same
relation with redundancy.

10In this case we can consider the domain of Dlocations to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.

 14.3 Normal Forms Based on Primary Keys 479

 2. Expand the key so that there will be a separate tuple in the original
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Fig-
ure 14.9(c). In this case, the primary key becomes the combination {Dnumber,
Dlocation}. This solution has the disadvantage of introducing redundancy in
the relation and hence is rarely adopted.

 3. If a maximum number of values is known for the attribute—for example, if it
is known that at most three locations can exist for a department—replace the
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and
Dlocation3. This solution has the disadvantage of introducing NULL values if
most departments have fewer than three locations. It further introduces
spurious semantics about the ordering among the location values; that
ordering is not originally intended. Querying on this attribute becomes more
difficult; for example, consider how you would write the query: List the
departments that have ‘Bellaire’ as one of their locations in this design. For all
these reasons, it is best to avoid this alternative.

Of the three solutions above, the first is generally considered best because it
does not suffer from redundancy and it is completely general; it places no max-
imum limit on the number of values. In fact, if we choose the second solution, it
will be decomposed further during subsequent normalization steps into the
first solution.

First normal form also disallows multivalued attributes that are themselves com-
posite. These are called nested relations because each tuple can have a relation
within it. Figure 14.10 shows how the EMP_PROJ relation could appear if nesting is
allowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber,
Hours) within each tuple represents the employee’s projects and the hours per week
that employee works on each project. The schema of this EMP_PROJ relation can be
represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

The set braces { } identify the attribute PROJS as multivalued, and we list the com-
ponent attributes that form PROJS between parentheses (). Interestingly, recent
trends for supporting complex objects (see Chapter 12) and XML data (see Chap-
ter 13) attempt to allow and formalize nested relations within relational database
systems, which were disallowed early on by 1NF.

Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 14.10(a)
and (b), whereas Pnumber is the partial key of the nested relation; that is, within each
tuple, the nested relation must have unique values of Pnumber. To normalize this
into 1NF, we remove the nested relation attributes into a new relation and propa-
gate the primary key into it; the primary key of the new relation will combine the
partial key with the primary key of the original relation. Decomposition and pri-
mary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2, as shown in
Figure 14.10(c).

This procedure can be applied recursively to a relation with multiple-level nesting
to unnest the relation into a set of 1NF relations. This is useful in converting an

480 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

unnormalized relation schema with many levels of nesting into 1NF relations. As
an example, consider the following:

CANDIDATE (Ssn, Name, {JOB_HIST (Company, Highest_position,
{SAL_HIST (Year, Max_sal)})})

The foregoing describes data about candidates applying for jobs with their job his-
tory as a nested relation within which the salary history is stored as a deeper nested

EMP_PROJ
(a)

Projs
Pnumber HoursSsn Ename

EMP_PROJ1
(c)

Ssn Ename

EMP_PROJ2

HoursSsn Pnumber

EMP_PROJ
(b)

Ssn

123456789

666884444

453453453

333445555

999887777

987987987

987654321

888665555

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Borg, James E.

32.5

7.5
40.0

20.0

20.0

10.0
10.0

10.0

10.0

30.0
10.0

35.0

5.0
20.0

15.0

NULL

English, Joyce A.

Narayan, Ramesh K.

Smith, John B.

Wong, Franklin T.

Ename

3

1

2

1

2

2

20

3

10

30
10

10

20

30
30

20

Pnumber Hours

Figure 14.10
Normalizing nested
relations into 1NF.
(a) Schema of the
EMP_PROJ relation with
a nested relation attribute
PROJS. (b) Sample
extension of the
EMP_PROJ relation
showing nested relations
within each tuple.
(c) Decomposition of
EMP_PROJ into relations
EMP_PROJ1 and
EMP_PROJ2 by
propagating the primary
key.

 14.3 Normal Forms Based on Primary Keys 481

relation. The first normalization using internal partial keys Company and Year,
respectively, results in the following 1NF relations:

CANDIDATE_1 (Ssn, Name)
CANDIDATE_JOB_HIST (Ssn, Company, Highest_position)
CANDIDATE_SAL_HIST (Ssn, Company, Year, Max-sal)

The existence of more than one multivalued attribute in one relation must be han-
dled carefully. As an example, consider the following non-1NF relation:

PERSON (Ss#, {Car_lic#}, {Phone#})

This relation represents the fact that a person has multiple cars and multiple phones.
If strategy 2 above is followed, it results in an all-key relation:

PERSON_IN_1NF (Ss#, Car_lic#, Phone#)

To avoid introducing any extraneous relationship between Car_lic# and Phone#, all
possible combinations of values are represented for every Ss#, giving rise to redun-
dancy. This leads to the problems that are typically discovered at a later stage of
normalization and that are handled by multivalued dependencies and 4NF, which
we will discuss in Section 14.6. The right way to deal with the two multivalued attri-
butes in PERSON shown previously is to decompose it into two separate relations,
using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

A note about the relations that involve attributes that go beyond just numeric and
character string data. It is becoming common in today’s databases to incorporate
images, documents, video clips, audio clips, and so on. When these are stored in a
relation, the entire object or file is treated as an atomic value, which is stored as a
BLOB (binary large object) or CLOB (character large object) data type using SQL.
For practical purposes, the object is treated as an atomic, single-valued attribute
and hence it maintains the 1NF status of the relation.

14.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency.
A functional dependency X → Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold anymore; that is, for
any attribute A ε X, (X − {A}) does not functionally determine Y. A functional
dependency X → Y is a partial dependency if some attribute A ε X can be removed
from X and the dependency still holds; that is, for some A ε X, (X − {A}) → Y. In
Figure 14.3(b), {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours
nor Pnumber → Hours holds). However, the dependency {Ssn, Pnumber} → Ename is
partial because Ssn → Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is
fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute,
the test need not be applied at all. The EMP_PROJ relation in Figure 14.3(b) is in

482 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

1NF but is not in 2NF. The nonprime attribute Ename violates 2NF because of FD2,
as do the nonprime attributes Pname and Plocation because of FD3. Each of the func-
tional dependencies FD2 and FD3 violates 2NF because Ename can be functionally
determined by only Ssn, and both Pname and Plocation can be functionally deter-
mined by only Pnumber. Attributes Ssn and Pnumber are a part of the primary key
{Ssn, Pnumber} of EMP_PROJ, thus violating the 2NF test.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized
into a number of 2NF relations in which nonprime attributes are associated only
with the part of the primary key on which they are fully functionally dependent.
Therefore, the functional dependencies FD1, FD2, and FD3 in Figure 14.3(b) lead to
the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3
shown in Figure 14.11(a), each of which is in 2NF.

Ssn

EMP_PROJ
(a)

(b)

FD1

FD2

FD3

2NF Normalization

Pnumber Hours Ename Pname Plocation

Ssn

EP1

FD1

Pnumber Hours

Ename Ssn

ED1
Bdate Address Dnumber

Ssn

EP2

FD2

Ename Pnumber

EP3

FD3

Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Dnumber

ED2
Dname Dmgr_ssn

3NF Normalization

Figure 14.11
Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into
2NF relations. (b) Normalizing EMP_DEPT into 3NF relations.

 14.4 General Definitions of Second and Third Normal Forms 483

14.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A func-
tional dependency X → Y in a relation schema R is a transitive dependency if there
exists a set of attributes Z in R that is neither a candidate key nor a subset of any key of
R,11 and both X → Z and Z → Y hold. The dependency Ssn → Dmgr_ssn is transitive
through Dnumber in EMP_DEPT in Figure 14.3(a), because both the dependencies
Ssn → Dnumber and Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor a
subset of the key of EMP_DEPT. Intuitively, we can see that the dependency of Dmgr_ssn
on Dnumber is undesirable in EMP_DEPT since Dnumber is not a key of EMP_DEPT.

Definition. According to Codd’s original definition, a relation schema R is in
3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent
on the primary key.

The relation schema EMP_DEPT in Figure 14.3(a) is in 2NF, since no partial depen-
dencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitive
dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. We can normalize
EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2
shown in Figure 14.11(b). Intuitively, we see that ED1 and ED2 represent indepen-
dent facts about employees and departments, both of which are entities in their
own right. A NATURAL JOIN operation on ED1 and ED2 will recover the original
relation EMP_DEPT without generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (a proper subset) of the primary key, or any functional dependency in which the
left-hand side is a nonkey attribute, is a problematic FD. 2NF and 3NF normalization
remove these problem FDs by decomposing the original relation into new relations. In
terms of the normalization process, it is not necessary to remove the partial dependen-
cies before the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before it is tested for 3NF. Moreover,
the general definition of 3NF we present in Section 14.4.2 automatically covers the
condition that the relation also satisfies 2NF. Table 14.1 informally summarizes the
three normal forms based on primary keys, the tests used in each case, and the corre-
sponding remedy or normalization performed to achieve the normal form.

14.4 General Definitions of Second
and Third Normal Forms

In general, we want to design our relation schemas so that they have neither partial
nor transitive dependencies because these types of dependencies cause the update
anomalies discussed in Section 14.1.2. The steps for normalization into 3NF rela-
tions that we have discussed so far disallow partial and transitive dependencies on

11This is the general definition of transitive dependency. Because we are concerned only with primary
keys in this section, we allow transitive dependencies where X is the primary key but Z may be (a subset
of) a candidate key.

484 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

the primary key. The normalization procedure described so far is useful for analysis
in practical situations for a given database where primary keys have already been
defined. These definitions, however, do not take other candidate keys of a relation, if
any, into account. In this section we give the more general definitions of 2NF and
3NF that take all candidate keys of a relation into account. Notice that this does not
affect the definition of 1NF since it is independent of keys and functional depen-
dencies. As a general definition of prime attribute, an attribute that is part of any
candidate key will be considered as prime. Partial and full functional dependencies
and transitive dependencies will now be considered with respect to all candidate keys
of a relation.

14.4.1 General Definition of Second Normal Form
Definition. A relation schema R is in second normal form (2NF) if every
nonprime attribute A in R is not partially dependent on any key of R.12

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute,
the test need not be applied at all. Consider the relation schema LOTS shown in
Figure 14.12(a), which describes parcels of land for sale in various counties of a
state. Suppose that there are two candidate keys: Property_id# and {County_name,
Lot#}; that is, lot numbers are unique only within each county, but Property_id#
numbers are unique across counties for the entire state.

Table 14.1 Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form Test Remedy (Normalization)

First (1NF) Relation should have no multivalued
attributes or nested relations.

Form new relations for each multivalued
attribute or nested relation.

Second (2NF) For relations where primary key
contains multiple attributes, no nonkey
attribute should be functionally
dependent on a part of the primary key.

Decompose and set up a new relation
for each partial key with its dependent
attribute(s). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.

Third (3NF) Relation should not have a nonkey
attribute functionally determined by
another nonkey attribute (or by a set of
nonkey attributes). That is, there should
be no transitive dependency of a nonkey
attribute on the primary key.

Decompose and set up a relation that
includes the nonkey attribute(s) that
functionally determine(s) other nonkey
attribute(s).

12This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A
in R is fully functionally dependent on every key of R.

 14.4 General Definitions of Second and Third Normal Forms 485

Property_id#

LOTS
(a)

FD1

FD2

FD3

FD4

County_name Lot# Area Price Tax_rate

Property_id#
LOTS1

(b)

FD1

FD2

FD4

County_name Lot# Area Price

(c)

(d)

Property_id#
LOTS1A

FD1

FD2

County_name Lot# Area

LOTS2

FD3

County_name Tax_rate

LOTS1B

FD4

Area Price

LOTS 1NF

LOTS1

LOTS1A LOTS1B

LOTS2 2NF

LOTS2 3NF

Candidate Key

Figure 14.12
Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies
FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2.
(c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressive
normalization of LOTS into a 3NF design.

486 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Based on the two candidate keys Property_id# and {County_name, Lot#}, the func-
tional dependencies FD1 and FD2 in Figure 14.12(a) hold. We choose Property_id#
as the primary key, so it is underlined in Figure 14.12(a), but no special consider-
ation will be given to this key over the other candidate key. Suppose that the follow-
ing two additional functional dependencies hold in LOTS:

FD3: County_name → Tax_rate
FD4: Area → Price

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), whereas FD4 says that the price of a lot
is determined by its area regardless of which county it is in. (Assume that this is the
price of the lot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because Tax_rate is
partially dependent on the candidate key {County_name, Lot#}, due to FD3. To nor-
malize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2,
shown in Figure 14.12(b). We construct LOTS1 by removing the attribute Tax_rate
that violates 2NF from LOTS and placing it with County_name (the left-hand side of
FD3 that causes the partial dependency) into another relation LOTS2. Both LOTS1
and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to
LOTS1.

14.4.2 General Definition of Third Normal Form
Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X → A holds in R, either (a) X is a superkey
of R, or (b) A is a prime attribute of R.13

According to this definition, LOTS2 (Figure 14.12(b)) is in 3NF. However, FD4 in
LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute
in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the relation sche-
mas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A by
removing the attribute Price that violates 3NF from LOTS1 and placing it with Area
(the left-hand side of FD4 that causes the transitive dependency) into another rela-
tion LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

 ■ LOTS1 violates 3NF because Price is transitively dependent on each of the
candidate keys of LOTS1 via the nonprime attribute Area.

 ■ This general definition can be applied directly to test whether a relation schema
is in 3NF; it does not have to go through 2NF first. In other words, if a relation
passes the general 3NF test, then it automatically passes the 2NF test.

13Note that based on inferred f.d.’s (which are discussed in Section 15.1), the f.d. Y → YA also holds
whenever Y → A is true. Therefore, a slightly better way of saying this statement is that {A-X} is a prime
attribute of R.

 14.5 Boyce-Codd Normal Form 487

If we apply the above 3NF definition to LOTS with the dependencies FD1 through
FD4, we find that both FD3 and FD4 violate 3NF by the general definition above
because the LHS County_name in FD3 is not a superkey. Therefore, we could
decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive
and partial dependencies that violate 3NF can be removed in any order.

14.4.3 Interpreting the General Definition of Third Normal Form
A relation schema R violates the general definition of 3NF if a functional depen-
dency X → A holds in R that meets either of the two conditions, namely (a) and (b).
The first condition “catches” two types of problematic dependencies:

 ■ A nonprime attribute determines another nonprime attribute. Here we typi-
cally have a transitive dependency that violates 3NF.

 ■ A proper subset of a key of R functionally determines a nonprime attribute.
Here we have a partial dependency that violates 2NF.

Thus, condition (a) alone addresses the problematic dependencies that were causes
for second and third normalization as we discussed.

Therefore, we can state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute
of R meets both of the following conditions:

 ■ It is fully functionally dependent on every key of R.

 ■ It is nontransitively dependent on every key of R.

However, note the clause (b) in the general definition of 3NF. It allows certain func-
tional dependencies to slip through or escape in that they are OK with the 3NF
definition and hence are not “caught” by the 3NF definition even though they may
be potentially problematic. The Boyce-Codd normal form “catches” these depen-
dencies in that it does not allow them. We discuss that normal form next.

14.5 Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it
was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;
however, a relation in 3NF is not necessarily in BCNF. We pointed out in the last
subsection that although 3NF allows functional dependencies that conform to the
clause (b) in the 3NF definition, BCNF disallows them and hence is a stricter defini-
tion of a normal form.

Intuitively, we can see the need for a stronger normal form than 3NF by going back to
the LOTS relation schema in Figure 14.12(a) with its four functional dependencies FD1
through FD4. Suppose that we have thousands of lots in the relation but the lots are
from only two counties: DeKalb and Fulton. Suppose also that lot sizes in DeKalb
County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County

488 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

are restricted to 1.1, 1.2, … , 1.9, and 2.0 acres. In such a situation we would have the
additional functional dependency FD5: Area → County_name. If we add this to the other
dependencies, the relation schema LOTS1A still is in 3NF because this f.d. conforms to
clause (b) in the general definition of 3NF, County_name being a prime attribute.

The area of a lot that determines the county, as specified by FD5, can be represented
by 16 tuples in a separate relation R(Area, County_name), since there are only 16 pos-
sible Area values (see Figure 14.13). This representation reduces the redundancy of
repeating the same information in the thousands of LOTS1A tuples. BCNF is a
stronger normal form that would disallow LOTS1A and suggest the need for decom-
posing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X → A holds in R, then X is a superkey of R.

The formal definition of BCNF differs from the definition of 3NF in that clause (b)
of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent from
BCNF. That makes BCNF a stronger normal form compared to 3NF. In our exam-
ple, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A. We
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown
in Figure 14.13(a). This decomposition loses the functional dependency FD2
because its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if there
exists some f.d. X → A that holds in a relation schema R with X not being a superkey

Property_id#

LOTS1A(a)

(b)

FD1

FD2

FD1

FD2

FD5

BCNF Normalization

County_name Lot# Area

Property_id#

LOTS1AX
Area Lot#

A
R

B C

Area

LOTS1AY
County_name

Figure 14.13
Boyce-Codd normal form. (a) BCNF
normalization of LOTS1A with the
functional dependency FD2 being
lost in the decomposition. (b) A
schematic relation with FDs; it is in
3NF, but not in BCNF due to the
f.d. C → B.

 14.5 Boyce-Codd Normal Form 489

and A being a prime attribute will R be in 3NF but not in BCNF. The relation schema
R shown in Figure 14.13(b) illustrates the general case of such a relation. Such
an f.d. leads to potential redundancy of data, as we illustrated above in case of
FD5: Area → County_name.in LOTS1A relation. Ideally, relational database design
should strive to achieve BCNF or 3NF for every relation schema. Achieving the normal-
ization status of just 1NF or 2NF is not considered adequate, since both were developed
historically to be intermediate normal forms as stepping stones to 3NF and BCNF.

14.5.1 Decomposition of Relations not in BCNF
As another example, consider Figure 14.14, which shows a relation TEACH with the
following dependencies:

FD1: {Student, Course} → Instructor
FD2:14 Instructor → Course

Note that {Student, Course} is a candidate key for this relation and that the depen-
dencies shown follow the pattern in Figure 14.13(b), with Student as A, Course as B,
and Instructor as C. Hence this relation is in 3NF but not BCNF. Decomposition of
this relation schema into two schemas is not straightforward because it may be
decomposed into one of the three following possible pairs:

 1. R1 (Student, Instructor) and R2(Student, Course)

 2. R1 (Course, Instructor) and R2(Course, Student)

 3. R1 (Instructor, Course) and R2(Instructor, Student)

All three decompositions lose the functional dependency FD1. The question then
becomes: Which of the above three is a desirable decomposition? As we pointed out
earlier (Section 14.3.1), we strive to meet two properties of decomposition during

14This dependency means that each instructor teaches one course is a constraint for this application.

TEACH

Student
Narayan

Smith

Smith

Smith

Mark

Navathe

Ammar

Schulman

Operating Systems

Database

Database

Theory

Wallace

Wallace

Wong

Zelaya

Mark

Ahamad

Omiecinski

Navathe

Database

Database

Operating Systems

Database

Course Instructor

Narayan Operating Systems Ammar

Figure 14.14
A relation TEACH that is in
3NF but not BCNF.

490 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

the normalization process: the nonadditive join property and the functional depen-
dency preservation property. We are not able to meet the functional dependency
preservation for any of the above BCNF decompositions as seen above; but we must
meet the nonadditive join property. A simple test comes in handy to test the binary
decomposition of a relation into two relations:

NJB (Nonadditive Join Test for Binary Decompositions). A decomposition
D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a
set of functional dependencies F on R if and only if either

 ■ The FD ((R1 ∩ R2) → (R1 − R2)) is in F+15, or

 ■ The FD ((R1 ∩ R2) → (R2 − R1)) is in F+

If we apply this test to the above three decompositions, we find that only the third
decomposition meets the test. In the third decomposition, the R1 ∩ R2 for the above
test is Instructor and R1 − R2 is Course. Because Instructor → Course, the NJB test
is satisfied and the decomposition is nonadditive. (It is left as an exercise for the
reader to show that the first two decompositions do not meet the NJB test.) Hence,
the proper decomposition of TEACH into BCNF relations is:

TEACH1 (Instructor, Course) and TEACH2 (Instructor, Student)

We make sure that we meet this property, because nonadditive decomposition is
a must during normalization. You should verify that this property holds with
respect to our informal successive normalization examples in Sections 14.3
and 14.4 and also by the decomposition of LOTS1A into two BCNF relations
 LOTS1AX and LOTS1AY.

In general, a relation R not in BCNF can be decomposed so as to meet the nonaddi-
tive join property by the following procedure.16 It decomposes R successively into a
set of relations that are in BCNF:

Let R be the relation not in BCNF, let X ⊆ R, and let X → A be the FD that
causes a violation of BCNF. R may be decomposed into two relations:

R –A

XA

If either R –A or XA. is not in BCNF, repeat the process.

The reader should verify that if we applied the above procedure to LOTS1A, we
obtain relations LOTS1AX and LOTS1AY as before. Similarly, applying this proce-
dure to TEACH results in relations TEACH1 and TEACH2

15The notation F+ refers to the cover of the set of functional dependencies and includes all f.d.’s implied
by F. It is discussed in detail in Section 15.1. Here, it is enough to make sure that one of the two f.d.’s
actually holds for the nonadditive decomposition into R1 and R2 to pass this test.

16Note that this procedure is based on Algorithm 15.5 from Chapter 15 for producing BCNF schemas
by decomposition of a universal schema.

 14.6 Multivalued Dependency and Fourth Normal Form 491

Note that if we designate (Student, Instructor) as a primary key of the relation TEACH,
the FD instructor → Course causes a partial (non-fully-functional) dependency of
Course on a part of this key. This FD may be removed as a part of second normaliza-
tion (or by a direct application of the above procedure to achieve BCNF) yielding
exactly the same two relations in the result. This is an example of a case where we
may reach the same ultimate BCNF design via alternate paths of normalization.

14.6 Multivalued Dependency
and Fourth Normal Form

Consider the relation EMP shown in Figure 14.15(a). A tuple in this EMP relation
represents the fact that an employee whose name is Ename works on the project
whose name is Pname and has a dependent whose name is Dname. An employee
may work on several projects and may have several dependents, and the employee’s
projects and dependents are independent of one another.17 To keep the relation
state consistent and to avoid any spurious relationship between the two indepen-
dent attributes, we must have a separate tuple to represent every combination of an
employee’s dependent and an employee’s project. In the relation state shown in
Figure 14.15(a), the employee with Ename Smith works on two projects ‘X’ and ‘Y’
and has two dependents ‘John’ and ‘Anna’, and therefore there are four tuples to
represent these facts together. The relation EMP is an all-key relation (with key
made up of all attributes) and therefore has no f.d.’s and as such qualifies to be a
BCNF relation. We can see that there is an obvious redundancy in the relation
EMP—the dependent information is repeated for every project and the project
information is repeated for every dependent.

As illustrated by the EMP relation, some relations have constraints that cannot be
specified as functional dependencies and hence are not in violation of BCNF. To
address this situation, the concept of multivalued dependency (MVD) was proposed
and, based on this dependency, the fourth normal form was defined. A more formal
discussion of MVDs and their properties is deferred to Chapter 15. Multivalued depen-
dencies are a consequence of first normal form (1NF) (see Section 14.3.4), which disal-
lows an attribute in a tuple to have a set of values. If more than one multivalued attribute
is present, the second option of normalizing the relation (see Section 14.3.4) intro-
duces a multivalued dependency. Informally, whenever two independent 1:N relation-
ships A:B and A:C are mixed in the same relation, R(A, B, C), an MVD may arise.18

14.6.1 Formal Definition of Multivalued Dependency
Definition. A multivalued dependency X → Y specified on relation schema R,
where X and Y are both subsets of R, specifies the following constraint on any

17In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type
(see Chapter 7).

18This MVD is denoted as A →→ B|C.

492 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then
two tuples t3 and t4 should also exist in r with the following properties,19 where
we use Z to denote (R − (X ∪ Y)):20

 ■ t3[X] = t4[X] = t1[X] = t2[X]

 ■ t3[Y] = t1[Y] and t4[Y] = t2[Y]

 ■ t3[Z] = t2[Z] and t4[Z] = t1[Z]

(a) EMP

Ename

Smith
Smith

Smith

Smith

John
Anna

Anna

John

X

Y

X

Y

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

John
Anna

Dname

(c) SUPPLY

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Adamsky

Smith

Bolt

Bolt

Nut

Bolt

Nut

Nail

Bolt

ProjY

ProjX

ProjY

ProjX

ProjZ

ProjX

ProjY

Part_name Proj_name

(d) R1

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Bolt

Bolt

Nut

Nut

Nail

Bolt

Bolt

Nut

Nut

Nail

Part_name

R2

Sname

Smith

Smith

Adamsky

Walton

Adamsky

Proj_name

ProjY

ProjX

ProjY

ProjZ

ProjX

R3

Part_name Proj_name

ProjY

ProjX

ProjY

ProjZ

ProjX

Figure 14.15
Fourth and fifth normal forms.
(a) The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname.
(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.
(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3).
(d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

19The tuples t1, t2, t3, and t4 are not necessarily distinct.

20Z is shorthand for the attributes in R after the attributes in (X ∪ Y) are removed from R.

 14.6 Multivalued Dependency and Fourth Normal Form 493

Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symme-
try in the definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y
implies X →→ Z and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R.
For example, the relation EMP_PROJECTS in Figure 14.15(b) has the trivial
MVD Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD
Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial
MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because
it does not specify any significant or meaningful constraint on R.

If we have a nontrivial MVD in a relation, we may have to repeat values redun-
dantly in the tuples. In the EMP relation of Figure 14.15(a), the values ‘X’ and ‘Y’ of
Pname are repeated with each value of Dname (or, by symmetry, the values ‘John’
and ‘Anna’ of Dname are repeated with each value of Pname). This redundancy is
clearly undesirable. However, the EMP schema is in BCNF because no functional
dependencies hold in EMP. Therefore, we need to define a fourth normal form that
is stronger than BCNF and disallows relation schemas such as EMP. Notice that
relations containing nontrivial MVDs tend to be all-key relations—that is, their
key is all their attributes taken together. Furthermore, it is rare that such all-key
relations with a combinatorial occurrence of repeated values would be designed in
practice. However, recognition of MVDs as a potential problematic dependency is
essential in relational design.

We now present the definition of fourth normal form (4NF), which is violated
when a relation has undesirable multivalued dependencies and hence can be used
to identify and decompose such relations.

Definition. A relation schema R is in 4NF with respect to a set of dependencies
F (that includes functional dependencies and multivalued dependencies) if, for
every nontrivial multivalued dependency X →→ Y in F+,21 X is a superkey for R.

We can state the following points:

 ■ An all-key relation is always in BCNF since it has no FDs.

 ■ An all-key relation such as the EMP relation in Figure 14.15(a), which has no
FDs but has the MVD Ename →→ Pname | Dname, is not in 4NF.

 ■ A relation that is not in 4NF due to a nontrivial MVD must be decomposed
to convert it into a set of relations in 4NF.

 ■ The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF
consists of decomposing it so that each MVD is represented by a separate relation
where it becomes a trivial MVD. Consider the EMP relation in Figure 14.15(a). EMP is
not in 4NF because in the nontrivial MVDs Ename →→ Pname and Ename →→ Dname,

21F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. This is
defined in Section 15.1.

494 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

and Ename is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and
EMP_DEPENDENTS, shown in Figure 14.15(b). Both EMP_PROJECTS and
EMP_DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in
EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No
other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No
FDs hold in these relation schemas either.

14.7 Join Dependencies and Fifth Normal Form
In our discussion so far, we have pointed out the problematic functional dependen-
cies and shown how they were eliminated by a process of repeated binary decompo-
sition during the process of normalization to achieve 1NF, 2NF, 3NF, and BCNF.
These binary decompositions must obey the NJB property for which we introduced
a test in Section 14.5 while discussing the decomposition to achieve BCNF. Achiev-
ing 4NF typically involves eliminating MVDs by repeated binary decompositions as
well. However, in some cases there may be no nonadditive join decomposition of R
into two relation schemas, but there may be a nonadditive join decomposition into
more than two relation schemas. Moreover, there may be no functional dependency
in R that violates any normal form up to BCNF, and there may be no nontrivial
MVD present in R either that violates 4NF. We then resort to another dependency
called the join dependency and, if it is present, carry out a multiway decomposition
into fifth normal form (5NF). It is important to note that such a dependency is a
peculiar semantic constraint that is difficult to detect in practice; therefore, normal-
ization into 5NF is rarely done in practice.

Definition. A join dependency (JD), denoted by JD(R1, R2, … , Rn), specified
on relation schema R, specifies a constraint on the states r of R. The constraint
states that every legal state r of R should have a nonadditive join decomposition
into R1, R2, … , Rn. Hence, for every such r we have

* (πR1
(r), πR2

(r), … , πRn
(r)) = r

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted
as JD(R1, R2) implies an MVD (R1 ∩ R2) →→ (R1 − R2)(or, by symmetry,
(R1 ∩ R2) →→ (R2 − R1)). A join dependency JD(R1, R2, … , Rn), specified on relation
schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, … , Rn) is equal
to R. Such a dependency is called trivial because it has the nonadditive join property
for any relation state r of R and thus does not specify any constraint on R. We can
now define the fifth normal form, which is also called project-join normal form.

Definition. A relation schema R is in fifth normal form (5NF) (or project-join
normal form (PJNF)) with respect to a set F of functional, multivalued, and
join dependencies if, for every nontrivial join dependency JD(R1, R2, … , Rn) in
F+ (that is, implied by F),22 every Ri is a superkey of R.

22Again, F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F.
This is defined in Section 15.1.

 14.6 Summary 495

For an example of a JD, consider once again the SUPPLY all-key relation in Fig-
ure 14.15(c). Suppose that the following additional constraint always holds: Whenever
a supplier s supplies part p, and a project j uses part p, and the supplier s supplies at
least one part to project j, then supplier s will also be supplying part p to project j.
This constraint can be restated in other ways and specifies a join dependency
JD(R1, R2, R3) among the three projections R1 (Sname, Part_name), R2 (Sname,
Proj_name), and R3 (Part_name, Proj_name) of SUPPLY. If this constraint holds, the
tuples below the dashed line in Figure 14.15(c) must exist in any legal state of the
SUPPLY relation that also contains the tuples above the dashed line. Figure 14.15(d)
shows how the SUPPLY relation with the join dependency is decomposed into three
relations R1, R2, and R3 that are each in 5NF. Notice that applying a natural join to
any two of these relations produces spurious tuples, but applying a natural join to
all three together does not. The reader should verify this on the sample relation in
Figure 14.15(c) and its projections in Figure 14.15(d). This is because only the JD
exists, but no MVDs are specified. Notice, too, that the JD(R1, R2, R3) is specified on
all legal relation states, not just on the one shown in Figure 14.15(c).

Discovering JDs in practical databases with hundreds of attributes is next to impos-
sible. It can be done only with a great degree of intuition about the data on the part
of the designer. Therefore, the current practice of database design pays scant atten-
tion to them. One result due to Date and Fagin (1992) relates to conditions detected
using f.d.’s alone and ignores JDs completely. It states: “If a relation schema is in
3NF and each of its keys consists of a single attribute, it is also in 5NF.”

14.8 Summary
In this chapter we discussed several pitfalls in relational database design using intu-
itive arguments. We identified informally some of the measures for indicating
whether a relation schema is good or bad, and we provided informal guidelines for
a good design. These guidelines are based on doing a careful conceptual design in
the ER and EER model, following the mapping procedure in Chapter 9 to map enti-
ties and relationships into relations. Proper enforcement of these guidelines and
lack of redundancy will avoid the insertion/deletion/update anomalies and genera-
tion of spurious data. We recommended limiting NULL values, which cause prob-
lems during SELECT, JOIN, and aggregation operations. Then we presented some
formal concepts that allow us to do relational design in a top-down fashion by ana-
lyzing relations individually. We defined this process of design by analysis and
decomposition by introducing the process of normalization.

We defined the concept of functional dependency, which is the basic tool for ana-
lyzing relational schemas, and we discussed some of its properties. Functional
dependencies specify semantic constraints among the attributes of a relation
schema. Next we described the normalization process for achieving good designs
by testing relations for undesirable types of problematic functional dependencies.
We provided a treatment of successive normalization based on a predefined pri-
mary key in each relation, and we then relaxed this requirement and provided more

496 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

general definitions of second normal form (2NF) and third normal form (3NF) that
take all candidate keys of a relation into account. We presented examples to illus-
trate how, by using the general definition of 3NF, a given relation may be analyzed
and decomposed to eventually yield a set of relations in 3NF.

We presented Boyce-Codd normal form (BCNF) and discussed how it is a stronger
form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement. We pre-
sented a test for the nonadditive join property of binary decompositions and also
gave a general algorithm to convert any relation not in BCNF into a set of BCNF
relations. We motivated the need for an additional constraint beyond the functional
dependencies based on mixing of independent multivalued attributes into a single
relation. We introduced multivalued dependency (MVD) to address such condi-
tions and defined the fourth normal form based on MVDs. Finally, we introduced
the fifth normal form, which is based on join dependency and which identifies a
peculiar constraint that causes a relation to be decomposed into several compo-
nents so that they always yield the original relation after a join. In practice, most
commercial designs have followed the normal forms up to BCNF. The need to
decompose into 5NF rarely arises in practice, and join dependencies are difficult to
detect for most practical situations, making 5NF more of theoretical value.

Chapter 15 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we
discuss the concepts of nonadditive (or lossless) join and dependency preservation,
which are enforced by some of these algorithms. Other topics in Chapter 15 include
a more detailed treatment of functional and multivalued dependencies, and other
types of dependencies.

Review Questions
 14.1. Discuss attribute semantics as an informal measure of goodness for a rela-

tion schema.

 14.2. Discuss insertion, deletion, and modification anomalies. Why are they con-
sidered bad? Illustrate with examples.

 14.3. Why should NULLs in a relation be avoided as much as possible? Discuss the
problem of spurious tuples and how we may prevent it.

 14.4. State the informal guidelines for relation schema design that we discussed.
Illustrate how violation of these guidelines may be harmful.

 14.5. What is a functional dependency? What are the possible sources of the
information that defines the functional dependencies that hold among the
attributes of a relation schema?

 14.6. Why can we not infer a functional dependency automatically from a partic-
ular relation state?

 Exercises 497

 14.7. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

 14.8. Define first, second, and third normal forms when only primary keys are
considered. How do the general definitions of 2NF and 3NF, which consider
all keys of a relation, differ from those that consider only primary keys?

 14.9. What undesirable dependencies are avoided when a relation is in 2NF?

 14.10. What undesirable dependencies are avoided when a relation is in 3NF?

 14.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-
nitions beyond primary keys?

 14.12. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it
considered a stronger form of 3NF?

 14.13. What is multivalued dependency? When does it arise?

 14.14. Does a relation with two or more columns always have an MVD? Show with
an example.

 14.15. Define fourth normal form. When is it violated? When is it typically applicable?

 14.16. Define join dependency and fifth normal form.

 14.17. Why is 5NF also called project-join normal form (PJNF)?

 14.18. Why do practical database designs typically aim for BCNF and not aim for
higher normal forms?

Exercises
 14.19. Suppose that we have the following requirements for a university database

that is used to keep track of students’ transcripts:

a. The university keeps track of each student’s name (Sname), student num-
ber (Snum), Social Security number (Ssn), current address (Sc_addr) and
phone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone),
birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, … ,
‘graduate’), major department (Major_code), minor department
(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, … , ‘ph.d.’).
Both Ssn and student number have unique values for each student.

b. Each department is described by a name (Dname), department code
(Dcode), office number (Doffice), office phone (Dphone), and college
(Dcollege). Both name and code have unique values for each department.

c. Each course has a course name (Cname), description (Cdesc), course
number (Cnum), number of semester hours (Credit), level (Level), and
offering department (Cdept). The course number is unique for each
course.

498 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

d. Each section has an instructor (Iname), semester (Semester), year (Year),
course (Sec_course), and section number (Sec_num). The section number
distinguishes different sections of the same course that are taught during
the same semester/year; its values are 1, 2, 3, … , up to the total number of
sections taught during each semester.

e. A grade record refers to a student (Ssn), a particular section, and a
grade (Grade).

Design a relational database schema for this database application. First show
all the functional dependencies that should hold among the attributes. Then
design relation schemas for the database that are each in 3NF or BCNF. Spec-
ify the key attributes of each relation. Note any unspecified requirements,
and make appropriate assumptions to render the specification complete.

 14.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of
Figures 14.3 and 14.4?

 14.21. In what normal form is the LOTS relation schema in Figure 14.12(a) with
respect to the restrictive interpretations of normal form that take only the
primary key into account? Would it be in the same normal form if the gen-
eral definitions of normal form were used?

 14.22. Prove that any relation schema with two attributes is in BCNF.

 14.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and
EMP_ LOCS relations in Figure 14.5 (result shown in Figure 14.6)?

 14.24. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set
of functional dependencies F = {{A, B}→{C}, {A}→{D, E}, {B}→{F},
{F}→{G, H}, {D}→{I, J}}. What is the key for R? Decompose R into 2NF and
then 3NF relations.

 14.25. Repeat Exercise 14.24 for the following different set of functional dependen-
cies G = {{A, B}→{C}, {B, D}→{E, F}, {A, D}→{G, H}, {A}→{I}, {H}→{J}}.

 14.26. Consider the following relation:

A B C TUPLE#

10 b1 c1 1

10 b2 c2 2

11 b4 c1 3

12 b3 c4 4

13 b1 c1 5

14 b3 c4 6

a. Given the previous extension (state), which of the following dependen-
cies may hold in the above relation? If the dependency cannot hold,
explain why by specifying the tuples that cause the violation.

 i. A → B, ii. B → C, iii. C → B, iv. B → A, v. C → A

 Exercises 499

b. Does the above relation have a potential candidate key? If it does, what is
it? If it does not, why not?

 14.27. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB → C, CD → E, DE → B

 Is AB a candidate key of this relation? If not, is ABD? Explain your answer.

 14.28. Consider the relation R, which has attributes that hold schedules of courses
and sections at a university; R = {Course_no, Sec_no, Offering_dept,
Credit_hours, Course_level, Instructor_ssn, Semester, Year, Days_hours, Room_no,
No_of_students}. Suppose that the following functional dependencies hold on R:

{Course_no} → {Offering_dept, Credit_hours, Course_level}
{Course_no, Sec_no, Semester, Year} → {Days_hours, Room_no,
 No_of_students, Instructor_ssn}
{Room_no, Days_hours, Semester, Year} → {Instructor_ssn, Course_no,
 Sec_no}

 Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

 14.29. Consider the following relations for an order-processing application data-
base at ABC, Inc.

ORDER (O#, Odate, Cust#, Total_amount)
ORDER_ITEM(O#, I#, Qty_ordered, Total_price, Discount%)

 Assume that each item has a different discount. The Total_price refers to one
item, Odate is the date on which the order was placed, and the Total_amount
is the amount of the order. If we apply a natural join on the relations
ORDER_ITEM and ORDER in this database, what does the resulting relation
schema RES look like? What will be its key? Show the FDs in this resulting
relation. Is RES in 2NF? Is it in 3NF? Why or why not? (State assumptions,
if you make any.)

 14.30. Consider the following relation:

 CAR_SALE(Car#, Date_sold, Salesperson#, Commission%, Discount_amt)

 Assume that a car may be sold by multiple salespeople, and hence {Car#,
Salesperson#} is the primary key. Additional dependencies are

Date_sold → Discount_amt and
Salesperson# → Commission%

 Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why
or why not? How would you successively normalize it completely?

 14.31. Consider the following relation for published books:

BOOK (Book_title, Author_name, Book_type, List_price, Author_affil,
 Publisher)

500 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Author_affil refers to the affiliation of author. Suppose the following depen-
dencies exist:

Book_title → Publisher, Book_type
Book_type → List_price
Author_name → Author_affil

a. What normal form is the relation in? Explain your answer.

b. Apply normalization until you cannot decompose the relations further.
State the reasons behind each decomposition.

 14.32. This exercise asks you to convert business statements into dependencies.
Consider the relation DISK_DRIVE (Serial_number, Manufacturer, Model, Batch,
Capacity, Retailer). Each tuple in the relation DISK_DRIVE contains information
about a disk drive with a unique Serial_number, made by a manufacturer, with a
particular model number, released in a certain batch, which has a certain stor-
age capacity and is sold by a certain retailer. For example, the tuple Disk_drive
(‘1978619’, ‘WesternDigital’, ‘A2235X’, ‘765234’, 500, ‘CompUSA’) specifies
that WesternDigital made a disk drive with serial number 1978619 and model
number A2235X, released in batch 765234; it is 500GB and sold by CompUSA.

 Write each of the following dependencies as an FD:

a. The manufacturer and serial number uniquely identifies the drive.

b. A model number is registered by a manufacturer and therefore can’t be
used by another manufacturer.

c. All disk drives in a particular batch are the same model.

d. All disk drives of a certain model of a particular manufacturer have
exactly the same capacity.

 14.33. Consider the following relation:

R (Doctor#, Patient#, Date, Diagnosis, Treat_code, Charge)

 In the above relation, a tuple describes a visit of a patient to a doctor along
with a treatment code and daily charge. Assume that diagnosis is determined
(uniquely) for each patient by a doctor. Assume that each treatment code
has a fixed charge (regardless of patient). Is this relation in 2NF? Justify your
answer and decompose if necessary. Then argue whether further normaliza-
tion to 3NF is necessary, and if so, perform it.

 14.34. Consider the following relation:

CAR_SALE (Car_id, Option_type, Option_listprice, Sale_date,
 Option_discountedprice)

 This relation refers to options installed in cars (e.g., cruise control) that were
sold at a dealership, and the list and discounted prices of the options.

 If CarID → Sale_date and Option_type → Option_listprice and CarID, Option_type
→ Option_discountedprice, argue using the generalized definition of the 3NF

 Laboratory Exercises 501

that this relation is not in 3NF. Then argue from your knowledge of 2NF,
why it is not even in 2NF.

 14.35. Consider the relation:

BOOK (Book_Name, Author, Edition, Year)

 with the data:

Book_Name Author Edition Copyright_Year

DB_fundamentals Navathe 4 2004

DB_fundamentals Elmasri 4 2004

DB_fundamentals Elmasri 5 2007

DB_fundamentals Navathe 5 2007

a. Based on a common-sense understanding of the above data, what are the
possible candidate keys of this relation?

b. Justify that this relation has the MVD {Book} →→ {Author} | {Edition, Year}.

c. What would be the decomposition of this relation based on the above
MVD? Evaluate each resulting relation for the highest normal form it
possesses.

 14.36. Consider the following relation:

TRIP (Trip_id, Start_date, Cities_visited, Cards_used)

 This relation refers to business trips made by company salespeople. Suppose
the TRIP has a single Start_date but involves many Cities and salespeople
may use multiple credit cards on the trip. Make up a mock-up population of
the table.

a. Discuss what FDs and/or MVDs exist in this relation.

b. Show how you will go about normalizing the relation.

Laboratory Exercises
Note: The following exercises use the DBD (Data Base Designer) system that is
described in the laboratory manual.

The relational schema R and set of functional dependencies F need to be coded as
lists. As an example, R and F for this problem are coded as:

 R = [a, b, c, d, e, f, g, h, i, j]
 F = [[[a, b],[c]],
 [[a],[d, e]],
 [[b],[f]],
 [[f],[g, h]],
 [[d],[i, j]]]

502 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

Since DBD is implemented in Prolog, use of uppercase terms is reserved for vari-
ables in the language and therefore lowercase constants are used to code the attri-
butes. For further details on using the DBD system, please refer to the laboratory
manual.

 14.37. Using the DBD system, verify your answers to the following exercises:

a. 14.24 (3NF only)

b. 14.25

c. 14.27

d. 14.28

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original
definitions of first, second, and third normal form were also defined in Codd
(1972a), where a discussion on update anomalies can be found. Boyce-Codd nor-
mal form was defined in Codd (1974). The alternative definition of third normal
form is given in Ullman (1988), as is the definition of BCNF that we give here. Ull-
man (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many of
the theorems and proofs concerning functional dependencies. Date and Fagin
(1992) give some simple and practical results related to higher normal forms.

Additional references to relational design theory are given in Chapter 15.

503

15
Relational Database Design

Algorithms and Further
Dependencies

Chapter 14 presented a top-down relational design
technique and related concepts used extensively

in commercial database design projects today. The procedure involves designing an
ER or EER conceptual schema and then mapping it to the relational model by a
procedure such as the one described in Chapter 9. Primary keys are assigned to
each relation based on known functional dependencies. In the subsequent process,
which may be called relational design by analysis, initially designed relations from
the above procedure—or those inherited from previous files, forms, and other
sources—are analyzed to detect undesirable functional dependencies. These depen-
dencies are removed by the successive normalization procedure that we described
in Section 14.3 along with definitions of related normal forms, which are succes-
sively better states of design of individual relations. In Section 14.3 we assumed that
primary keys were assigned to individual relations; in Section 14.4 a more general
treatment of normalization was presented where all candidate keys are considered
for each relation, and Section 14.5 discussed a further normal form called BCNF.
Then in Sections 14.6 and 14.7 we discussed two more types of dependencies—
multivalued dependencies and join dependencies—that can also cause redundancies
and showed how they can be eliminated with further normalization.

In this chapter, we use the theory of normal forms and functional, multivalued, and
join dependencies developed in the last chapter and build upon it while maintain-
ing three different thrusts. First, we discuss the concept of inferring new functional
dependencies from a given set and discuss notions including closure, cover, mini-
mal cover, and equivalence. Conceptually, we need to capture the semantics of

chapter 15

504 Chapter 15 Relational Database Design Algorithms and Further Dependencies

attibutes within a relation completely and succinctly, and the minimal cover allows
us to do it. Second, we discuss the desirable properties of nonadditive (lossless)
joins and preservation of functional dependencies. A general algorithm to test for
nonadditivity of joins among a set of relations is presented. Third, we present an
approach to relational design by synthesis of functional dependencies. This is a
bottom-up approach to design that presupposes that the known functional depen-
dencies among sets of attributes in the Universe of Discourse (UoD) have been
given as input. We present algorithms to achieve the desirable normal forms,
namely 3NF and BCNF, and achieve one or both of the desirable properties of non-
additivity of joins and functional dependency preservation. Although the synthesis
approach is theoretically appealing as a formal approach, it has not been used in
practice for large database design projects because of the difficulty of providing all
possible functional dependencies up front before the design can be attempted.
Alternately, with the approach presented in Chapter 14, successive decompositions
and ongoing refinements to design become more manageable and may evolve over
time. The final goal of this chapter is to discuss further the multivalued dependency
(MVD) concept we introduced in Chapter 14 and briefly point out other types of
dependencies that have been identified.

In Section 15.1 we discuss the rules of inference for functional dependencies and
use them to define the concepts of a cover, equivalence, and minimal cover among
functional dependencies. In Section 15.2, first we describe the two desirable
properties of decompositions, namely, the dependency preservation property
and the nonadditive (or lossless) join property, which are both used by the design
algorithms to achieve desirable decompositions. It is important to note that it is
insufficient to test the relation schemas independently of one another for compli-
ance with higher normal forms like 2NF, 3NF, and BCNF. The resulting relations
must collectively satisfy these two additional properties to qualify as a good design.
Section 15.3 is devoted to the development of relational design algorithms that
start off with one giant relation schema called the universal relation, which is a
hypothetical relation containing all the attributes. This relation is decomposed (or
in other words, the given functional dependencies are synthesized) into relations
that satisfy a certain normal form like 3NF or BCNF and also meet one or both of
the desirable properties.

In Section 15.5 we discuss the multivalued dependency (MVD) concept further by
applying the notions of inference, and equivalence to MVDs. Finally, in Sec-
tion 15.6 we complete the discussion on dependencies among data by introducing
inclusion dependencies and template dependencies. Inclusion dependencies can
represent referential integrity constraints and class/subclass constraints across rela-
tions. We also describe some situations where a procedure or function is needed to
state and verify a functional dependency among attributes. Then we briefly discuss
domain-key normal form (DKNF), which is considered the most general normal
form. Section 15.7 summarizes this chapter.

It is possible to skip some or all of Sections 15.3, 15.4, and 15.5 in an introductory
database course.

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 505

15.1 Further Topics in Functional
Dependencies: Inference Rules,
Equivalence, and Minimal Cover

We introduced the concept of functional dependencies (FDs) in Section 14.2, illus-
trated it with some examples, and developed a notation to denote multiple FDs over
a single relation. We identified and discussed problematic functional dependencies
in Sections 14.3 and 14.4 and showed how they can be eliminated by a proper decom-
position of a relation. This process was described as normalization, and we showed
how to achieve the first through third normal forms (1NF through 3NF) given pri-
mary keys in Section 14.3. In Sections 14.4 and 14.5 we provided generalized tests for
2NF, 3NF, and BCNF given any number of candidate keys in a relation and showed
how to achieve them. Now we return to the study of functional dependencies and
show how new dependencies can be inferred from a given set and discuss the con-
cepts of closure, equivalence, and minimal cover that we will need when we later
consider a synthesis approach to design of relations given a set of FDs.

15.1.1 Inference Rules for Functional Dependencies
We denote by F the set of functional dependencies that are specified on relation
schema R. Typically, the schema designer specifies the functional dependencies
that are semantically obvious; usually, however, numerous other functional
dependencies hold in all legal relation instances among sets of attributes that can
be derived from and satisfy the dependencies in F. Those other dependencies can
be inferred or deduced from the FDs in F. We call them as inferred or implied
functional dependencies.

Definition: An FD X → Y is inferred from or implied by a set of dependencies
F specified on R if X → Y holds in every legal relation state r of R; that is, when-
ever r satisfies all the dependencies in F, X → Y also holds in r.

In real life, it is impossible to specify all possible functional dependencies for a given
situation. For example, if each department has one manager, so that Dept_no
uniquely determines Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a unique
phone number called Mgr_phone (Mgr_ssn → Mgr_phone), then these two dependen-
cies together imply that Dept_no → Mgr_phone. This is an inferred or implied FD
and need not be explicitly stated in addition to the two given FDs. Therefore, it is
useful to define a concept called closure formally that includes all possible depen-
dencies that can be inferred from the given set F.

Definition. Formally, the set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure of F; it is denoted
by F+.

For example, suppose that we specify the following set F of obvious functional
dependencies on the relation schema in Figure 14.3(a):

F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }

506 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Some of the additional functional dependencies that we can infer from F are the
following:

Ssn → {Dname, Dmgr_ssn}
Ssn → Ssn
Dnumber → Dname

The closure F+ of F is the set of all functional dependencies that can be inferred
from F. To determine a systematic way to infer dependencies, we must discover a
set of inference rules that can be used to infer new dependencies from a given set of
dependencies. We consider some of these inference rules next. We use the notation
F |=X → Y to denote that the functional dependency X → Y is inferred from the set
of functional dependencies F.

In the following discussion, we use an abbreviated notation when discussing func-
tional dependencies. We concatenate attribute variables and drop the commas
for convenience. Hence, the FD {X,Y} → Z is abbreviated to XY → Z, and the
FD {X, Y, Z} → {U, V} is abbreviated to XYZ → UV. We present below three rules
IR1 through IR3 that are well-known inference rules for functional dependencies.
They were proposed first by Armstrong (1974) and hence are known as
Armstrong’s axioms.1

IR1 (reflexive rule)2: If X ⊇ Y, then X →Y.

IR2 (augmentation rule)3: {X → Y} |=XZ → YZ.

IR3 (transitive rule): {X → Y, Y → Z} |=X → Z.

Armstrong has shown that inference rules IR1 through IR3 are sound and complete.
By sound, we mean that given a set of functional dependencies F specified on a rela-
tion schema R, any dependency that we can infer from F by using IR1 through IR3
holds in every relation state r of R that satisfies the dependencies in F. By complete,
we mean that using IR1 through IR3 repeatedly to infer dependencies until no more
dependencies can be inferred results in the complete set of all possible dependencies
that can be inferred from F. In other words, the set of dependencies F+, which we
called the closure of F, can be determined from F by using only inference rules IR1
through IR3.

The reflexive rule (IR1) states that a set of attributes always determines itself or any of its
subsets, which is obvious. Because IR1 generates dependencies that are always true, such
dependencies are called trivial. Formally, a functional dependency X → Y is trivial if
X ⊇ Y; otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the
same set of attributes to both the left- and right-hand sides of a dependency results in
another valid dependency. According to IR3, functional dependencies are transitive.

1They are actually inference rules rather than axioms. In the strict mathematical sense, the axioms (given
facts) are the functional dependencies in F, since we assume that they are correct, whereas IR1 through
IR3 are the inference rules for inferring new functional dependencies (new facts).
2The reflexive rule can also be stated as X → X; that is, any set of attributes functionally determines itself.
3The augmentation rule can also be stated as X → Y |= XZ → Y; that is, augmenting the left-hand-side
attributes of an FD produces another valid FD.

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 507

Each of the preceding inference rules can be proved from the definition of functional
dependency, either by direct proof or by contradiction. A proof by contradiction
assumes that the rule does not hold and shows that this is not possible. We now prove
that the first three rules IR1 through IR3 are valid. The second proof is by contradiction.

Proof of IR1. Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some rela-
tion instance r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y;
hence, X → Y must hold in r.

Proof of IR2 (by contradiction). Assume that X → Y holds in a relation instance
r of R but that XZ → YZ does not hold. Then there must exist two tuples t1
and t2 in r such that (1) t1 [X] = t2 [X], (2) t1 [Y] = t2 [Y], (3) t1 [XZ] = t2 [XZ],
and (4) t1 [YZ] ≠ t2 [YZ]. This is not possible because from (1) and (3) we
deduce (5) t1 [Z] = t2 [Z], and from (2) and (5) we deduce (6) t1 [YZ] = t2 [YZ],
contradicting (4).

Proof of IR3. Assume that (1) X → Y and (2) Y → Z both hold in a relation r.
Then for any two tuples t1 and t2 in r such that t1 [X] = t2 [X], we must have (3)
t1 [Y] = t2 [Y], from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z]
from (3) and assumption (2); thus X → Z must hold in r.

There are three other inference rules that follow from IR1, IR2 and IR3. They are
as follows:

IR4 (decomposition, or projective, rule): {X → YZ} |=X → Y.

IR5 (union, or additive, rule): {X → Y, X → Z} |=X → YZ.

IR6 (pseudotransitive rule): {X → Y, WY → Z} |=WX → Z.

The decomposition rule (IR4) says that we can remove attributes from the right-
hand side of a dependency; applying this rule repeatedly can decompose the
FD X → {A1, A2, … , An} into the set of dependencies {X → A1, X → A2, … , X → An}.
The union rule (IR5) allows us to do the opposite; we can combine a set of depen-
dencies {X → A1, X → A2, … , X → An} into the single FD X → {A1, A2, … , An}.
The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left-
hand side of a dependency with another set X that functionally determines Y, and
can be derived from IR2 and IR3 if we augment the first functional dependency
X → Y with W (the augmentation rule) and then apply the transitive rule.

One important cautionary note regarding the use of these rules: Although X → A and
X → B implies X → AB by the union rule stated above, X → A and Y → B does imply
that XY → AB. Also, XY → A does not necessarily imply either X → A or Y → A.

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any
additional valid inference rules. However, a simpler way to prove that an inference
rule for functional dependencies is valid is to prove it by using inference rules that
have already been shown to be valid. Thus IR4, IR5, and IR6 are regarded as a corol-
lary of the Armstrong’s basic inference rules. For example, we can prove IR4 through
IR6 by using IR1 through IR3. We present the proof of IR5 below. Proofs of IR4 and IR6
using IR1 through IR3 are left as an exercise for the reader.

508 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Proof of IR5 (using IR1 through IR3).

1. X →Y (given).

2. X → Z (given).

3. X → XY (using IR2 on 1 by augmenting with X; notice that XX = X).

4. XY → YZ (using IR2 on 2 by augmenting with Y).

5. X → YZ (using IR3 on 3 and 4).

Typically, database designers first specify the set of functional dependencies F that
can easily be determined from the semantics of the attributes of R; then IR1, IR2,
and IR3 are used to infer additional functional dependencies that will also hold on
R. A systematic way to determine these additional functional dependencies is first
to determine each set of attributes X that appears as a left-hand side of some func-
tional dependency in F and then to determine the set of all attributes that are depen-
dent on X.

Definition. For each such set of attributes X, we determine the set X+ of attri-
butes that are functionally determined by X based on F; X+ is called the closure
of X under F.

Algorithm 15.1 can be used to calculate X+.

Algorithm 15.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is
a subset of R.

X+ := X;
repeat
 oldX+ := X+;
 for each functional dependency Y → Z in F do
 if X+ ⊇ Y then X+ := X+ ∪ Z;
 until (X+ = oldX+);

Algorithm 15.1 starts by setting X+ to all the attributes in X. By IR1, we know that all
these attributes are functionally dependent on X. Using inference rules IR3 and IR4,
we add attributes to X+, using each functional dependency in F. We keep going
through all the dependencies in F (the repeat loop) until no more attributes are
added to X+ during a complete cycle (of the for loop) through the dependencies in F.
The closure concept is useful in understanding the meaning and implications of
attributes or sets of attributes in a relation. For example, consider the following
relation schema about classes held at a university in a given academic year.

CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity).

Let F, the set of functional dependencies for the above relation include the
following f.d.s:

FD1: Sectionid → Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity;

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 509

FD2: Course# → Credit_hrs;
FD3: {Course#, Instr_name} → Text, Classroom;
FD4: Text → Publisher
FD5: Classroom → Capacity

Note that the above FDs express certain semantics about the data in the relation
CLASS. For example, FD1 states that each class has a unique Classid. FD3 states
that when a given course is offered by a certain instructor, the text is fixed and the
instructor teaches that class in a fixed room. Using the inference rules about the
FDs and applying the definition of closure, we can define the following closures:

{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher,
Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}
{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher,

Classroom, Capacity }

Note that each closure above has an interpretation that is revealing about the
attribute(s) on the left-hand side. For example, the closure of Course# has only
Credit_hrs besides itself. It does not include Instr_name because different instruc-
tors could teach the same course; it does not include Text because different instruc-
tors may use different texts for the same course. Note also that the closure of
{Course#, Instr_nam} does not include Classid, which implies that it is not a candi-
date key. This further implies that a course with given Course# could be offered by
different instructors, which would make the courses distinct classes.

15.1.2 Equivalence of Sets of Functional Dependencies
In this section, we discuss the equivalence of two sets of functional dependencies.
First, we give some preliminary definitions.

Definition. A set of functional dependencies F is said to cover another set of
functional dependencies E if every FD in E is also in F+; that is, if every
dependency in E can be inferred from F; alternatively, we can say that E is
covered by F.

Definition. Two sets of functional dependencies E and F are equivalent if
E+ = F+. Therefore, equivalence means that every FD in E can be inferred from
F, and every FD in F can be inferred from E; that is, E is equivalent to F if both
the conditions—E covers F and F covers E—hold.

We can determine whether F covers E by calculating X+ with respect to F for each
FD X → Y in E, and then checking whether this X+ includes the attributes in Y. If
this is the case for every FD in E, then F covers E. We determine whether E and F are
equivalent by checking that E covers F and F covers E. It is left to the reader as an
exercise to show that the following two sets of FDs are equivalent:

F = {A → C, AC → D, E → AD, E → H}
and G = {A → CD, E → AH}

510 Chapter 15 Relational Database Design Algorithms and Further Dependencies

15.1.3 Minimal Sets of Functional Dependencies
Just as we applied inference rules to expand on a set F of FDs to arrive at F+, its closure,
it is possible to think in the opposite direction to see if we could shrink or reduce the set
F to its minimal form so that the minimal set is still equivalent to the original set F.
Informally, a minimal cover of a set of functional dependencies E is a set of functional
dependencies F that satisfies the property that every dependency in E is in the closure
F+ of F. In addition, this property is lost if any dependency from the set F is removed; F
must have no redundancies in it, and the dependencies in F are in a standard form.

We will use the concept of an extraneous attribute in a functional dependency for
defining the minimum cover.

Definition: An attribute in a functional dependency is considered an extraneous
attribute if we can remove it without changing the closure of the set of depen-
dencies. Formally, given F, the set of functional dependencies, and a functional
dependency X → A in F, attribute Y is extraneous in X if Y ⊂ X, and F logically
implies (F − (X → A) ∪ { (X − Y) → A }).

We can formally define a set of functional dependencies F to be minimal if it satis-
fies the following conditions:

 1. Every dependency in F has a single attribute for its right-hand side.

 2. We cannot replace any dependency X → A in F with a dependency Y → A,
where Y is a proper subset of X, and still have a set of dependencies that is
equivalent to F.

 3. We cannot remove any dependency from F and still have a set of dependen-
cies that is equivalent to F.

We can think of a minimal set of dependencies as being a set of dependencies in a
standard or canonical form and with no redundancies. Condition 1 just represents
every dependency in a canonical form with a single attribute on the right-hand side,
and it is a preparatory step before we can evaluate if conditions 2 and 3 are met.4

Conditions 2 and 3 ensure that there are no redundancies in the dependencies
either by having redundant attributes (referred to as extraneous attributes) on the
left-hand side of a dependency (Condition 2) or by having a dependency that can be
inferred from the remaining FDs in F (Condition 3).

Definition. A minimal cover of a set of functional dependencies E is a mini-
mal set of dependencies (in the standard canonical form5 and without redun-
dancy) that is equivalent to E. We can always find at least one minimal cover F
for any set of dependencies E using Algorithm 15.2.

4This is a standard form to simplify the conditions and algorithms that ensure no redundancy exists in F.
By using the inference rule IR4, we can convert a single dependency with multiple attributes on the
right-hand side into a set of dependencies with single attributes on the right-hand side.
5It is possible to use the inference rule IR5 and combine the FDs with the same left-hand side into a
single FD in the minimum cover in a nonstandard form. The resulting set is still a minimum cover, as
illustrated in the example.

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 511

If several sets of FDs qualify as minimal covers of E by the definition above, it is
customary to use additional criteria for minimality. For example, we can choose the
minimal set with the smallest number of dependencies or with the smallest total
length (the total length of a set of dependencies is calculated by concatenating the
dependencies and treating them as one long character string).

Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Depen-
dencies E

Input: A set of functional dependencies E.

Note: Explanatory comments are given at the end of some of the steps. They
follow the format: (*comment*).

 1. Set F := E.

 2. Replace each functional dependency X → {A1, A2, … , An} in F by the n
functional dependencies X →A1, X →A2, … , X → An. (*This places the FDs
in a canonical form for subsequent testing*)

 3. For each functional dependency X → A in F

 for each attribute B that is an element of X

 if { {F − {X → A} } ∪ { (X − {B}) → A} } is equivalent to F

 then replace X → A with (X − {B}) → A in F.

(*This constitutes removal of an extraneous attribute B contained in the left-
hand side X of a functional dependency X → A when possible*)

 4. For each remaining functional dependency X → A in F

if {F − {X → A} } is equivalent to F,

then remove X → A from F. (*This constitutes removal of a redundant func-
tional dependency X → A from F when possible*)

We illustrate the above algorithm with the following examples:

Example 1: Let the given set of FDs be E: {B → A, D → A, AB → D}. We have to
find the minimal cover of E.

 ■ All above dependencies are in canonical form (that is, they have only one
attribute on the right-hand side), so we have completed step 1 of Algo-
rithm 15.2 and can proceed to step 2. In step 2 we need to determine if
AB → D has any redundant (extraneous) attribute on the left-hand side; that
is, can it be replaced by B → D or A → D?

 ■ Since B → A, by augmenting with B on both sides (IR2), we have BB → AB,
or B → AB (i). However, AB → D as given (ii).

 ■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Thus
AB → D may be replaced by B → D.

 ■ We now have a set equivalent to original E, say E′: {B → A, D → A, B → D}.
No further reduction is possible in step 2 since all FDs have a single attribute
on the left-hand side.

512 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 ■ In step 3 we look for a redundant FD in E′. By using the transitive rule on
B → D and D → A, we derive B → A. Hence B → A is redundant in E′ and
can be eliminated.

 ■ Therefore, the minimal cover of E is F: {B → D, D → A}.

The reader can verify that the original set F can be inferred from E; in other words,
the two sets F and E are equivalent.

Example 2: Let the given set of FDs be G: {A → BCDE, CD → E}.

 ■ Here, the given FDs are NOT in the canonical form. So we first convert
them into:

E: {A → B, A→ C, A→ D, A→ E, CD → E}.

 ■ In step 2 of the algorithm, for CD → E, neither C nor D is extraneous on the
left-hand side, since we cannot show that C → E or D → E from the given
FDs. Hence we cannot replace it with either.

 ■ In step 3, we want to see if any FD is redundant. Since A→ CD and
CD → E, by transitive rule (IR3), we get A→ E. Thus, A→ E is redundant
in G.

 ■ So we are left with the set F, equivalent to the original set G as: {A → B,
A→ C, A→ D, CD → E}. F is the minimum cover. As we pointed out in foot-
note 6, we can combine the first three FDs using the union rule (IR5) and
express the minimum cover as:

Minimum cover of G, F: {A → BCD, CD → E}.

In Section 15.3, we will show algorithms that synthesize 3NF or BCNF relations
from a given set of dependencies E by first finding the minimal cover F for E.

Next, we provide a simple algorithm to determine the key of a relation:

Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Depen-
dencies

Input: A relation R and a set of functional dependencies F on the attributes
of R.

 1. Set K := R.

 2. For each attribute A in K

{compute (K − A)+ with respect to F;

if (K − A)+ contains all the attributes in R, then set K := K − {A} };

In Algorithm 15.2(a), we start by setting K to all the attributes of R; we can say
that R itself is always a default superkey. We then remove one attribute at a time
and check whether the remaining attributes still form a superkey. Notice, too,
that Algorithm 15.2(a) determines only one key out of the possible candidate keys
for R; the key returned depends on the order in which attributes are removed
from R in step 2.

 15.2 Properties of Relational Decompositions 513

15.2 Properties of Relational Decompositions
We now turn our attention to the process of decomposition that we used through-
out Chapter 14 to get rid of unwanted dependencies and achieve higher normal
forms. In Section 15.2.1, we give examples to show that looking at an individual
relation to test whether it is in a higher normal form does not, on its own, guarantee
a good design; rather, a set of relations that together form the relational database
schema must possess certain additional properties to ensure a good design. In Sec-
tions 15.2.2 and 15.2.3, we discuss two of these properties: the dependency preser-
vation property and the nonadditive (or lossless) join property. Section 15.2.4
discusses binary decompositions, and Section 15.2.5 discusses successive nonaddi-
tive join decompositions.

15.2.1 Relation Decomposition and Insufficiency
of Normal Forms

The relational database design algorithms that we present in Section 15.3 start from
a single universal relation schema R = {A1, A2, … , An} that includes all the attri-
butes of the database. We implicitly make the universal relation assumption,
which states that every attribute name is unique. The set F of functional dependen-
cies that should hold on the attributes of R is specified by the database designers
and is made available to the design algorithms. Using the functional dependencies,
the algorithms decompose the universal relation schema R into a set of relation
schemas D = {R1, R2, … , Rm} that will become the relational database schema; D is
called a decomposition of R.

We must make sure that each attribute in R will appear in at least one relation
schema Ri in the decomposition so that no attributes are lost; formally, we have

R Ri
i

m

=
=

1
U

This is called the attribute preservation condition of a decomposition.

Another goal is to have each individual relation Ri in the decomposition D be in
BCNF or 3NF. However, this condition is not sufficient to guarantee a good data-
base design on its own. We must consider the decomposition of the universal rela-
tion as a whole, in addition to looking at the individual relations. To illustrate this
point, consider the EMP_LOCS(Ename, Plocation) relation in Figure 14.5, which is in
3NF and also in BCNF. In fact, any relation schema with only two attributes is auto-
matically in BCNF.6 Although EMP_LOCS is in BCNF, it still gives rise to spurious
tuples when joined with EMP_PROJ (Ssn, Pnumber, Hours, Pname, Plocation), which is
not in BCNF (see the partial result of the natural join in Figure 14.6). Hence,
EMP_LOCS represents a particularly bad relation schema because of its convoluted

6As an exercise, the reader should prove that this statement is true.

514 Chapter 15 Relational Database Design Algorithms and Further Dependencies

semantics by which Plocation gives the location of one of the projects on which an
employee works. Joining EMP_LOCS with PROJECT(Pname, Pnumber, Plocation,
Dnum) in Figure 14.2—which is in BCNF—using Plocation as a joining attribute also
gives rise to spurious tuples. This underscores the need for other criteria that,
together with the conditions of 3NF or BCNF, prevent such bad designs. In the next
three subsections we discuss such additional conditions that should hold on a
decomposition D as a whole.

15.2.2 Dependency Preservation Property
of a Decomposition

It would be useful if each functional dependency X → Y specified in F either
appeared directly in one of the relation schemas Ri in the decomposition D or
could be inferred from the dependencies that appear in some Ri. Informally, this
is the dependency preservation condition. We want to preserve the dependencies
because each dependency in F represents a constraint on the database. If one of
the dependencies is not represented in some individual relation Ri of the decom-
position, we cannot enforce this constraint by dealing with an individual relation.
We may have to join multiple relations so as to include all attributes involved in
that dependency.

It is not necessary that the exact dependencies specified in F appear themselves in
individual relations of the decomposition D. It is sufficient that the union of the
dependencies that hold on the individual relations in D be equivalent to F. We now
define these concepts more formally.

Definition. Given a set of dependencies F on R, the projection of F on Ri,
denoted by πRi

(F) where Ri is a subset of R, is the set of dependencies X → Y in
F+ such that the attributes in X ∪ Y are all contained in Ri. Hence, the projection
of F on each relation schema Ri in the decomposition D is the set of functional
dependencies in F+, the closure of F, such that all the left- and right-hand-side
attributes of those dependencies are in Ri. We say that a decomposition
D = {R1, R2, … , Rm} of R is dependency-preserving with respect to F if the
union of the projections of F on each Ri in D is equivalent to F; that is,
((πR1

(F)) ∪ K ∪ (πRm
(F)))+ = F+.

If a decomposition is not dependency-preserving, some dependency is lost in
the decomposition. To check that a lost dependency holds, we must take the
JOIN of two or more relations in the decomposition to get a relation that
includes all left- and right-hand-side attributes of the lost dependency, and
then check that the dependency holds on the result of the JOIN—an option that
is not practical.

An example of a decomposition that does not preserve dependencies is shown in
Figure 14.13(a), in which the functional dependency FD2 is lost when LOTS1A is
decomposed into {LOTS1AX, LOTS1AY}. The decompositions in Figure 14.12, how-
ever, are dependency-preserving. Similarly, for the example in Figure 14.14, no

 15.2 Properties of Relational Decompositions 515

matter what decomposition is chosen for the relation TEACH(Student, Course,
Instructor) from the three provided in the text, one or both of the dependencies orig-
inally present are bound to be lost. We now state a claim related to this property
without providing any proof.

Claim 1. It is always possible to find a dependency-preserving decomposition
D with respect to F such that each relation Ri in D is in 3NF.

15.2.3 Nonadditive (Lossless) Join Property
of a Decomposition

Another property that a decomposition D should possess is the nonadditive join
property, which ensures that no spurious tuples are generated when a NATURAL
JOIN operation is applied to the relations resulting from the decomposition. We
already illustrated this problem in Section 14.1.4 with the example in Fig-
ures 14.5 and 14.6. Because this is a property of a decomposition of relation
schemas, the condition of no spurious tuples should hold on every legal relation
state—that is, every relation state that satisfies the functional dependencies in F.
Hence, the lossless join property is always defined with respect to a specific set F
of dependencies.

Definition. Formally, a decomposition D = {R1, R2, … , Rm} of R has the
lossless (nonadditive) join property with respect to the set of dependencies
F on R if, for every relation state r of R that satisfies F, the following holds,
where * is the NATURAL JOIN of all the relations in D: *(πR1

(r), … , πRm
(r)) = r.

The word loss in lossless refers to loss of information, not to loss of tuples. If a
decomposition does not have the lossless join property, we may get additional spu-
rious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied;
these additional tuples represent erroneous or invalid information. We prefer the
term nonadditive join because it describes the situation more accurately. Although
the term lossless join has been popular in the literature, we used the term nonaddi-
tive join in describing the NJB property in Section 14.5.1. We will henceforth use the
term nonadditive join, which is self-explanatory and unambiguous. The nonaddi-
tive join property ensures that no spurious tuples result after the application of
PROJECT and JOIN operations. We may, however, sometimes use the term lossy
design to refer to a design that represents a loss of information. The decomposition
of EMP_PROJ(Ssn, Pnumber, Hours, Ename, Pname, Plocation) in Figure 14.3 into
EMP_LOCS(Ename, Plocation) and EMP_PROJ1(Ssn, Pnumber, Hours, Pname, Plocation)
in Figure 14.5 obviously does not have the nonadditive join property, as illustrated
by the partial result of NATURAL JOIN in Figure 14.6. We provided a simpler test
in case of binary decompositions to check if the decomposition is nonadditive—it
was called the NJB property in Section 14.5.1. We provide a general procedure for
testing whether any decomposition D of a relation into n relations is nonadditive
with respect to a set of given functional dependencies F in the relation; it is pre-
sented as Algorithm 15.3.

516 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Algorithm 15.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition D = {R1, R2, … , Rm} of R, and a
set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They
follow the format: (*comment*).

 1. Create an initial matrix S with one row i for each relation Ri in D, and one
column j for each attribute Aj in R.

 2. Set S(i, j): = bij for all matrix entries. (*Each bij is a distinct symbol associated
with indices (i, j)*)

 3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

 {if (relation Ri includes attribute Aj) then set S(i, j): = aj;};}; (*Each aj is
a distinct symbol associated with index (j)*)

 4. Repeat the following loop until a complete loop execution results in no
changes to S
{for each functional dependency X → Y in F

{for all rows in S that have the same symbols in the columns corresponding
to attributes in X

{make the symbols in each column that correspond to an attribute
in Y be the same in all these rows as follows: If any of the rows has
an a symbol for the column, set the other rows to that same a symbol
in the column. If no a symbol exists for the attribute in any of the
rows, choose one of the b symbols that appears in one of the rows for
the attribute and set the other rows to that same b symbol in the
column ;} ; } ;};

 5. If a row is made up entirely of a symbols, then the decomposition has the
nonadditive join property; otherwise, it does not.

Given a relation R that is decomposed into a number of relations R1, R2, … , Rm,
Algorithm 15.3 begins the matrix S that we consider to be some relation state r of
R. Row i in S represents a tuple ti (corresponding to relation Ri) that has a symbols
in the columns that correspond to the attributes of Ri and b symbols in the remain-
ing columns. The algorithm then transforms the rows of this matrix (during the
loop in step 4) so that they represent tuples that satisfy all the functional depen-
dencies in F. At the end of step 4, any two rows in S—which represent two tuples
in r—that agree in their values for the left-hand-side attributes X of a functional
dependency X → Y in F will also agree in their values for the right-hand-side attri-
butes Y. It can be shown that after applying the loop of step 4, if any row in S ends
up with all a symbols, then the decomposition D has the nonadditive join property
with respect to F.

If, on the other hand, no row ends up being all a symbols, D does not satisfy the
lossless join property. In this case, the relation state r represented by S at the end of

 15.2 Properties of Relational Decompositions 517

the algorithm will be an example of a relation state r of R that satisfies the depen-
dencies in F but does not satisfy the nonadditive join condition. Thus, this relation
serves as a counterexample that proves that D does not have the nonadditive join
property with respect to F. Note that the a and b symbols have no special meaning
at the end of the algorithm.

Figure 15.1(a) shows how we apply Algorithm 15.3 to the decomposition of the
EMP_PROJ relation schema from Figure 14.3(b)into the two relation schemas
EMP_PROJ1 and EMP_LOCS in Figure 14.5(a). The loop in step 4 of the algorithm
cannot change any b symbols to a symbols; hence, the resulting matrix S does not
have a row with all a symbols, and so the decomposition does not have the non-
additive join property.

Figure 15.1(b) shows another decomposition of EMP_PROJ (into EMP, PROJECT,
and WORKS_ON) that does have the nonadditive join property, and Figure 15.1(c)
shows how we apply the algorithm to that decomposition. Once a row consists only
of a symbols, we conclude that the decomposition has the nonadditive join prop-
erty, and we can stop applying the functional dependencies (step 4 in the algorithm)
to the matrix S.

15.2.4 Testing Binary Decompositions for the Nonadditive
Join Property

Algorithm 15.3 allows us to test whether a particular decomposition D into n rela-
tions obeys the nonadditive join property with respect to a set of functional depen-
dencies F. There is a special case of a decomposition called a binary
decomposition—decomposition of a relation R into two relations. A test called the
NJB property test, which is easier to apply than Algorithm 15.3 but is limited only to
binary decompositions, was given in Section 14.5.1. It was used to do binary decom-
position of the TEACH relation, which met 3NF but did not meet BCNF, into two
relations that satisfied this property.

15.2.5 Successive Nonadditive Join Decompositions
We saw the successive decomposition of relations during the process of second and
third normalization in Sections 14.3 and 14.4. To verify that these decompositions
are nonadditive, we need to ensure another property, as set forth in Claim 2.

Claim 2 (Preservation of Nonadditivity in Successive Decompositions). If a
decomposition D = {R1, R2, … , Rm} of R has the nonadditive (lossless) join
property with respect to a set of functional dependencies F on R, and if a decom-
position Di = {Q1, Q2, … , Qk} of Ri has the nonadditive join property with
respect to the projection of F on Ri, then the decomposition D2 = {R1, R2, … ,
Ri−1, Q1, Q2, … , Qk, Ri+1, … , Rm} of R has the nonadditive join property with
respect to F.

518 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Pnumber

PROJECT(b)

Pname Plocation

Ssn
R1 b11

a1

a2

b22

b13

a3

b14

a4

a5

a5

b16

a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R2

R1

R2

R3

D = {R1, R2 }

(No changes to matrix after applying functional dependencies)

Ename Pnumber Pname HoursPlocation

Ssn

EMP

(a) R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP_LOCS = {Ename, Plocation}
R2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

(c)

Ename Ssn

WORKS_ON
Pnumber Hours

Ssn

a1 b32 a3 b34 b35 a6

a1

b21

a2

b22

b13

a3

b14

a4

b15

a5

b16

b26

R1

R2

R3 a1 a2b32 b34a3 a4 a5 a6

(Original matrix S at start of algorithm)

Ename Pnumber Pname HoursPlocation

Ssn

(Matrix S after applying the first two functional dependencies;
last row is all “a” symbols so we stop)

Ename Pnumber Pname HoursPlocation

F = {Ssn Ename; Pnumber {Pname, Plocation}; {Ssn, Pnumber} Hours}

D = {R1, R2, R3}R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP = {Ssn, Ename}
R2 = PROJ = {Pnumber, Pname, Plocation}
R3 = WORKS_ON = {Ssn, Pnumber, Hours}

F = {Ssn Ename; Pnumber {Pname, Plocation}; {Ssn, Pnumber} Hours}

b35

Figure 15.1
Nonadditive join test for n-ary decompositions. (a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1
and EMP_LOCS fails test. (b) A decomposition of EMP_PROJ that has the lossless join property.
(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.

 15.3 Algorithms for Relational Database Schema Design 519

15.3 Algorithms for Relational Database
Schema Design

We now give two algorithms for creating a relational decomposition from a universal
relation. The first algorithm decomposes a universal relation into dependency-
preserving 3NF relations that also possess the nonadditive join property. The second
algorithm decomposes a universal relation schema into BCNF schemas that possess the
nonadditive join property. It is not possible to design an algorithm to produce BCNF
relations that satisfy both dependency preservation and nonadditive join decomposition

15.3.1 Dependency-Preserving and Nonadditive (Lossless)
Join Decomposition into 3NF Schemas

By now we know that it is not possible to have all three of the following: (1) guaran-
teed nonlossy (nonadditive) design, (2) guaranteed dependency preservation, and
(3) all relations in BCNF. As we have stressed repeatedly, the first condition is a
must and cannot be compromised. The second condition is desirable, but not a
must, and may have to be relaxed if we insist on achieving BCNF. The original lost
FDs can be recovered by a JOIN operation over the results of decomposition. Now
we give an algorithm where we achieve conditions 1 and 2 and only guarantee 3NF.
Algorithm 15.4 yields a decomposition D of R that does the following:

 ■ Preserves dependencies

 ■ Has the nonadditive join property

 ■ Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 15.4 Relational Synthesis into 3NF with Dependency Preservation
and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

 1. Find a minimal cover G for F (use Algorithm 15.2).

 2. For each left-hand-side X of a functional dependency that appears in G, create
a relation schema in D with attributes {X ∪ {A1} ∪ {A2} … ∪ {Ak} }, where
X → A1, X → A2, … , X → Ak are the only dependencies in G with X as left-
hand side (X is the key of this relation).

 3. If none of the relation schemas in D contains a key of R, then create one
more relation schema in D that contains attributes that form a key of R.
(Algorithm 15.2(a) may be used to find a key.)

 4. Eliminate redundant relations from the resulting set of relations in the rela-
tional database schema. A relation R is considered redundant if R is a projec-
tion of another relation S in the schema; alternately, R is subsumed by S.7

7Note that there is an additional type of dependency: R is a projection of the join of two or more relations
in the schema. This type of redundancy is considered join dependency, as we discussed in Section 15.7.
Hence, technically, it may continue to exist without disturbing the 3NF status for the schema.

520 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Step 3 of Algorithm 15.4 involves identifying a key K of R. Algorithm 15.2(a) can be
used to identify a key K of R based on the set of given functional dependencies F.
Notice that the set of functional dependencies used to determine a key in Algo-
rithm 15.2(a) could be either F or G, since they are equivalent.

Example 1 of Algorithm 15.4. Consider the following universal relation:

U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

Emp_ssn, Esal, and Ephone refer to the Social Security number, salary, and phone
number of the employee. Pno, Pname, and Plocation refer to the number, name, and
location of the project. Dno is the department number.

The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal
relation. Hence F, the set of given FDs, includes {Emp_ssn → Esal, Ephone, Dno;
Pno → Pname, Plocation; Emp_ssn, Pno → Esal, Ephone, Dno, Pname, Plocation}.

By applying the minimal cover Algorithm 15.2, in step 3 we see that Pno is an extra-
neous attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is extrane-
ous in Emp_ssn, Pno → Pname, Plocation. Hence the minimal cover consists of FD1
and FD2 only (FD3 being completely redundant) as follows (if we group attributes
with the same left-hand side into one FD):

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

The second step of Algorithm 15.4 produces relations R1 and R2 as:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U.
Hence, the resulting design contains:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

R3 (Emp_ssn, Pno)

This design achieves both the desirable properties of dependency preservation and
nonadditive join.

Example 2 of Algorithm 15.4 (Case X). Consider the relation schema LOTS1A
shown in Figure 14.13(a).

Assume that this relation is given as a universal relation U (Property_id, County, Lot#,
Area) with the following functional dependencies:

 15.3 Algorithms for Relational Database Schema Design 521

FD1: Property_id → Lot#, County, Area

FD2: Lot#, County → Area, Property_id

FD3: Area → County

These were called FD1, FD2, and FD5 in Figure 14.13(a). The meanings of the above
attributes and the implication of the above functional dependencies were explained
in Section 14.4.For ease of reference, let us abbreviate the above attributes with the
first letter for each and represent the functional dependencies as the set

F: { P → LCA, LC → AP, A → C }

The universal relation with abbreviated attributes is U (P, C, L, A). If we apply the
minimal cover Algorithm 15.2 to F, (in step 2) we first represent the set F as

F: {P → L, P → C, P → A, LC → A, LC → P, A → C}

In the set F, P → A can be inferred from P → LC and LC → A; hence P → A by tran-
sitivity and is therefore redundant. Thus, one possible minimal cover is

Minimal cover GX: {P → LC, LC → AP, A → C}

In step 2 of Algorithm 15.4, we produce design X (before removing redundant rela-
tions) using the above minimal cover as

Design X: R1 (P, L, C), R2 (L, C, A, P), and R3 (A, C)

In step 4 of the algorithm, we find that R3 is subsumed by R2 (that is, R3 is always a
projection of R2 and R1 is a projection of R2 as well). Hence both of those relations
are redundant. Thus the 3NF schema that achieves both of the desirable properties
is (after removing redundant relations)

Design X: R2 (L, C, A, P).

or, in other words it is identical to the relation LOTS1A (Property_id, Lot#, County,
Area) that we had determined to be in 3NF in Section 14.4.2.

Example 2 of Algorithm 15.4 (Case Y). Starting with LOTS1A as the universal
relation and with the same given set of functional dependencies, the second step of
the minimal cover Algorithm 15.2 produces, as before,

F: {P → C, P → A, P → L, LC → A, LC → P, A → C}

The FD LC → A may be considered redundant because LC → P and P → A implies
LC → A by transitivity. Also, P → C may be considered to be redundant because
P → A and A → C implies P → C by transitivity. This gives a different minimal cover as

Minimal cover GY: { P → LA, LC → P, A → C }

The alternative design Y produced by the algorithm now is

Design Y: S1 (P, A, L), S2 (L, C, P), and S3 (A, C)

Note that this design has three 3NF relations, none of which can be considered as
redundant by the condition in step 4. All FDs in the original set F are preserved. The

522 Chapter 15 Relational Database Design Algorithms and Further Dependencies

reader will notice that of the above three relations, relations S1 and S3 were produced
as the BCNF design by the procedure given in Section 14.5 (implying that S2 is
redundant in the presence of S1 and S3). However, we cannot eliminate relation S2
from the set of three 3NF relations above since it is not a projection of either S1 or S3.
It is easy to see that S2 is a valid and meaningful relation that has the two candidate
keys (L, C), and P placed side-by-side. Notice further that S2 preserves the FD LC → P,
which is lost if the final design contains only S1 and S3. Design Y therefore remains
as one possible final result of applying Algorithm 15.4 to the given universal relation
that provides relations in 3NF.

The above two variations of applying Algorithm 15.4 to the same universal relation
with a given set of FDs have illustrated two things:

 ■ It is possible to generate alternate 3NF designs by starting from the same set
of FDs.

 ■ It is conceivable that in some cases the algorithm actually produces relations
that satisfy BCNF and may include relations that maintain the dependency
preservation property as well.

15.3.2 Nonadditive Join Decomposition into BCNF Schemas
The next algorithm decomposes a universal relation schema R = {A1, A2, … , An}
into a decomposition D = {R1, R2, … , Rm} such that each Ri is in BCNF and the
decomposition D has the lossless join property with respect to F. Algorithm 15.5
utilizes property NJB and claim 2 (preservation of nonadditivity in successive
decompositions) to create a nonadditive join decomposition D = {R1, R2, … , Rm} of
a universal relation R based on a set of functional dependencies F, such that each Ri
in D is in BCNF.

Algorithm 15.5. Relational Decomposition into BCNF with Nonadditive
Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

 1. Set D := {R} ;

 2. While there is a relation schema Q in D that is not in BCNF do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

} ;

Each time through the loop in Algorithm 15.5, we decompose one relation schema
Q that is not in BCNF into two relation schemas. According to property NJB for
binary decompositions and claim 2, the decomposition D has the nonadditive
join property. At the end of the algorithm, all relation schemas in D will be in

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs 523

BCNF. We illustrated the application of this algorithm to the TEACH relation
schema from Figure 14.14; it is decomposed into TEACH1(Instructor, Student)
and TEACH2(Instructor, Course) because the dependency FD2 Instructor → Course
violates BCNF.

In step 2 of Algorithm 15.5, it is necessary to determine whether a relation schema
Q is in BCNF or not. One method for doing this is to test, for each functional depen-
dency X → Y in Q, whether X+ fails to include all the attributes in Q, thereby deter-
mining whether or not X is a (super) key in Q. Another technique is based on an
observation that whenever a relation schema Q has a BCNF violation, there exists a
pair of attributes A and B in Q such that {Q − {A, B} } → A; by computing the clo-
sure {Q − {A, B} }+ for each pair of attributes {A, B} of Q and checking whether the
closure includes A (or B), we can determine whether Q is in BCNF.

It is important to note that the theory of nonadditive join decompositions is based
on the assumption that no NULL values are allowed for the join attributes. The next
section discusses some of the problems that NULLs may cause in relational decom-
positions and provides a general discussion of the algorithms for relational design
by synthesis presented in this section.

15.4 About Nulls, Dangling Tuples, and
Alternative Relational Designs

In this section, we discuss a few general issues related to problems that arise when
relational design is not approached properly.

15.4.1 Problems with NULL Values and Dangling Tuples
We must carefully consider the problems associated with NULLs when designing a
relational database schema. There is no fully satisfactory relational design theory as
yet that includes NULL values. One problem occurs when some tuples have NULL
values for attributes that will be used to join individual relations in the decomposi-
tion. To illustrate this, consider the database shown in Figure 15.2(a), where two
relations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—
‘Berger’ and ‘Benitez’—represent newly hired employees who have not yet been
assigned to a department (assume that this does not violate any integrity con-
straints). Now suppose that we want to retrieve a list of (Ename, Dname) values for
all the employees. If we apply the NATURAL JOIN operation on EMPLOYEE and
DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples will not appear in
the result. The OUTER JOIN operation, discussed in Chapter 8, can deal with this
problem. Recall that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT,
tuples in EMPLOYEE that have NULL for the join attribute will still appear in the
result, joined with an imaginary tuple in DEPARTMENT that has NULLs for all its
attribute values. Figure 15.2(c) shows the result.

In general, whenever a relational database schema is designed in which two or
more relations are interrelated via foreign keys, particular care must be devoted to

524 Chapter 15 Relational Database Design Algorithms and Further Dependencies

watching for potential NULL values in foreign keys. This can cause unexpected loss
of information in queries that involve joins on that foreign key. Moreover, if NULLs
occur in other attributes, such as Salary, their effect on built-in functions such as
SUM and AVERAGE must be carefully evaluated.

A related problem is that of dangling tuples, which may occur if we carry a decom-
position too far. Suppose that we decompose the EMPLOYEE relation in Fig-
ure 15.2(a) further into EMPLOYEE_1 and EMPLOYEE_2, shown in Figures 15.3(a)
and 15.3(b). If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2,
we get the original EMPLOYEE relation. However, we may use the alternative repre-
sentation, shown in Figure 15.3(c), where we do not include a tuple in EMPLOYEE_3
if the employee has not been assigned a department (instead of including a tuple
with NULL for Dnum as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of
EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3, the
tuples for Berger and Benitez will not appear in the result; these are called dangling
tuples in EMPLOYEE_1 because they are represented in only one of the two rela-
tions that represent employees, and hence they are lost if we apply an (INNER)
JOIN operation.

15.4.2 Discussion of Normalization Algorithms
and Alternative Relational Designs

One of the problems with the normalization algorithms we described is that the
database designer must first specify all the relevant functional dependencies among
the database attributes. This is not a simple task for a large database with hundreds
of attributes. Failure to specify one or two important dependencies may result in an
undesirable design. Another problem is that these algorithms are not deterministic
in general. For example, the synthesis algorithms (Algorithms 15.4 and 15.5) require
the specification of a minimal cover G for the set of functional dependencies F.
Because there may be, in general, many minimal covers corresponding to F, as we
illustrated in Example 2 of Algorithm 15.4 above, the algorithm can give different
designs depending on the particular minimal cover used. Some of these designs
may not be desirable. The decomposition algorithm to achieve BCNF (Algo-
rithm 15.5) depends on the order in which the functional dependencies are supplied
to the algorithm to check for BCNF violation. Again, it is possible that many different
designs may arise. Some of the designs may be preferred, whereas others may
be undesirable.

It is not always possible to find a decomposition into relation schemas that pre-
serves dependencies and allows each relation schema in the decomposition to be
in BCNF (instead of 3NF, as in Algorithm 15.4). We can check the 3NF relation
schemas in the decomposition individually to see whether each satisfies BCNF. If
some relation schema Ri is not in BCNF, we can choose to decompose it further
or to leave it as it is in 3NF (with some possible update anomalies). We showed by
using the bottom-up approach to design that different minimal covers in cases X
and Y of Example 2 under Algorithm 15.4 produced different sets of relations

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs 525

(b)

Ename

EMPLOYEE
(a)

Ssn Bdate Address Dnum

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

5

5

4

4

5

4

1

Berger, Anders C. 999775555 1965-04-26 6530 Braes, Bellaire, TX NULL

Benitez, Carlos M. 888664444 1963-01-09 7654 Beech, Houston, TX NULL

5

Dname

DEPARTMENT

Dnum Dmgr_ssn

Research

Administration
Headquarters

5

4
1

333445555

987654321
888665555

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnum Dname Dmgr_ssn

(c)

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555 1963-01-09

1965-04-26 6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

NULL

NULL

NULL

NULL

NULL

NULL

987654321

333445555

Dnum Dname Dmgr_ssnSsn

Figure 15.2
Issues with NULL-value
joins. (a) Some
EMPLOYEE tuples have
NULL for the join attribute
Dnum. (b) Result of
applying NATURAL JOIN
to the EMPLOYEE and
DEPARTMENT relations.
(c) Result of applying
LEFT OUTER JOIN to
EMPLOYEE and
DEPARTMENT.

526 Chapter 15 Relational Database Design Algorithms and Further Dependencies

Ename

EMPLOYEE_1(a)

(b)

Ssn Bdate Address

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555

1965-04-26

1963-01-09

6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

EMPLOYEE_2

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

999775555

888664444

4

5

5

5

4

5

NULL

4

1

NULL

Dnum

(c) EMPLOYEE_3

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

4

5

5

5

4

5

4

1

Dnum

Figure 15.3
The dangling tuple problem.
(a) The relation EMPLOYEE_1 (includes

all attributes of EMPLOYEE from
Figure 15.2(a) except Dnum).

(b) The relation EMPLOYEE_2 (includes
Dnum attribute with NULL values).

(c) The relation EMPLOYEE_3 (includes
Dnum attribute but does not include
tuples for which Dnum has NULL
values).

based on minimal cover. The design X produced the 3NF design as LOTS1A
(Property_id, County, Lot#, Area) relation, which is in 3NF but not BCNF. Alternately,
design Y produced three relations: S1 (Property_id, Area, Lot#), S2 (Lot#, County,
Property_id), and S3 (Area, County). If we test each of these three relations, we find that
they are in BCNF. We also saw previously that if we apply Algorithm 15.5 to LOTS1Y
to decompose it into BCNF relations, the resulting design contains only S1 and S3 as a
BCNF design. In summary, the above examples of cases (called Case X and Case Y)
driven by different minimum covers for the same universal schema amply illustrate
that alternate designs will result by the application of the bottom-up design algo-
rithms we presented in Section 15.3.

Table 15.1 summarizes the properties of the algorithms discussed in this chapter
so far.

 15.5 Further Discussion of Multivalued Dependencies and 4NF 527

Table 15.1 Summary of the Algorithms Discussed in This Chapter

Algorithm Input Output Properties/Purpose Remarks

15.1 An attribute or a set
of attributes X, and a
set of FDs F

A set of attributes in
the closure of X with
respect to F

Determine all the
attributes that can be
functionally deter-
mined from X

The closure of a key
is the entire relation

15.2 A set of functional
dependencies F

The minimal cover
of functional depen-
dencies

To determine the
minimal cover of a
set of dependencies F

Multiple minimal
covers may exist—
depends on the order
of selecting func-
tional dependencies

15.2a Relation schema R
with a set of func-
tional dependencies F

Key K of R To find a key K (that
is a subset of R)

The entire relation R
is always a default
superkey

15.3 A decomposition D
of R and a set F of
functional depen-
dencies

Boolean result: yes
or no for nonaddi-
tive join property

Testing for nonaddi-
tive join decomposi-
tion

See a simpler test
NJB in Section 14.5
for binary decompo-
sitions

15.4 A relation R and a
set of functional
dependencies F

A set of relations in
3NF

Nonadditive join
and dependency-
preserving decom-
position

May not achieve
BCNF, but achieves
all desirable proper-
ties and 3NF

15.5 A relation R and a
set of functional
dependencies F

A set of relations in
BCNF

Nonadditive join
decomposition

No guarantee of
dependency preser-
vation

15.6 A relation R and a
set of functional and
multivalued depen-
dencies

A set of relations in
4NF

Nonadditive join
decomposition

No guarantee of
dependency preser-
vation

15.5 Further Discussion of Multivalued
Dependencies and 4NF

We introduced and defined the concept of multivalued dependencies and used it to
define the fourth normal form in Section 14.6. In this section, we discuss MVDs to
make our treatment complete by stating the rules of inference with MVDs.

15.5.1 Inference Rules for Functional
and Multivalued Dependencies

As with functional dependencies (FDs), inference rules for MVDs have been
developed. It is better, though, to develop a unified framework that includes both
FDs and MVDs so that both types of constraints can be considered together. The

528 Chapter 15 Relational Database Design Algorithms and Further Dependencies

following inference rules IR1 through IR8 form a sound and complete set for infer-
ring functional and multivalued dependencies from a given set of dependencies.
Assume that all attributes are included in a universal relation schema R = {A1, A2,
… , An} and that X, Y, Z, and W are subsets of R.

IR1 (reflexive rule for FDs): If X ⊇ Y, then X → Y.

IR2 (augmentation rule for FDs): {X → Y} |= XZ → YZ.

IR3 (transitive rule for FDs): {X → Y, Y → Z} |= X → Z.

IR4 (complementation rule for MVDs): {X →→ R} |= {X →→(R − (X ∪))}.

IR5 (augmentation rule for MVDs): If X →→ Y and W ⊇ Z, then WX →→ YZ.

IR6 (transitive rule for MVDs): {X →→ Y, Y →→ Z} | = X →→ (X − Y).

IR7 (replication rule for FD to MVD): {X → Y} | = X →→ Y.

IR8 (coalescence rule for FDs and MVDs): If X →→ Y and there exists W with
the properties that (a) W ∩ Y is empty, (b) W → Z, and (c) Y ⊇ Z, then X → Z.

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6
are inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs.
In particular, IR7 says that a functional dependency is a special case of a multi-
valued dependency; that is, every FD is also an MVD because it satisfies the formal
definition of an MVD. However, this equivalence has a catch: An FD X → Y is an
MVD X →→ Y with the additional implicit restriction that at most one value of Y
is associated with each value of X.8 Given a set F of functional and multivalued
dependencies specified on R = {A1, A2, … , An}, we can use IR1 through IR8 to infer
the (complete) set of all dependencies (functional or multivalued) F+ that will hold
in every relation state r of R that satisfies F. We again call F+ the closure of F.

15.5.2 Fourth Normal Form Revisited
We restate the definition of fourth normal form (4NF) from Section 14.6:

Definition. A relation schema R is in 4NF with respect to a set of dependencies F
(that includes functional dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency X →→ Y in F+, X in F+, X is a superkey for R.

To illustrate the importance of 4NF, Figure 15.4(a) shows the EMP relation in Fig-
ure 14.15 with an additional employee, ‘Brown’, who has three dependents (‘Jim’,
‘Joan’, and ‘Bob’) and works on four different projects (‘W’, ‘X’, ‘Y’, and ‘Z’). There
are 16 tuples in EMP in Figure 15.4(a). If we decompose EMP into EMP_PROJECTS
and EMP_DEPENDENTS, as shown in Figure 15.4(b), we need to store a total of
only 11 tuples in both relations. Not only would the decomposition save on stor-
age, but the update anomalies associated with multivalued dependencies would
also be avoided. For example, if ‘Brown’ starts working on a new additional project
‘P’, we must insert three tuples in EMP—one for each dependent. If we forget to

8That is, the set of values of Y determined by a value of X is restricted to being a singleton set with only
one value. Hence, in practice, we never view an FD as an MVD.

 15.5 Further Discussion of Multivalued Dependencies and 4NF 529

insert any one of those, the relation violates the MVD and becomes inconsistent in
that it incorrectly implies a relationship between project and dependent.

If the relation has nontrivial MVDs, then insert, delete, and update operations on
single tuples may cause additional tuples to be modified besides the one in ques-
tion. If the update is handled incorrectly, the meaning of the relation may change.
However, after normalization into 4NF, these update anomalies disappear. For
example, to add the information that ‘Brown’ will be assigned to project ‘P’, only a
single tuple need be inserted in the 4NF relation EMP_PROJECTS.

The EMP relation in Figure 14.15(a) is not in 4NF because it represents two inde-
pendent 1:N relationships—one between employees and the projects they work on
and the other between employees and their dependents. We sometimes have a rela-
tionship among three entities that is a legitimate three-way relationship and not a
combination of two binary relationships among three participating entities, such as
the SUPPLY relation shown in Figure 14.15(c). (Consider only the tuples in Fig-
ure 14.5(c) above the dashed line for now.) In this case a tuple represents a supplier sup-
plying a specific part to a particular project, so there are no nontrivial MVDs. Hence,
the SUPPLY all-key relation is already in 4NF and should not be decomposed.

(a) EMP

Ename

Smith

Smith

Smith

Smith

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

John

Anna

Anna

John

Jim

Jim

Jim

Jim

Joan

Joan

Joan

Joan

Bob

Bob

Bob

Bob

X

Y

X

Y

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

Brown

Brown

Brown

Brown

W

X

Y

Z

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

Brown
Brown

Brown

Jim
Joan

Bob

Anna
John

Dname

Figure 15.4
Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation with
additional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

530 Chapter 15 Relational Database Design Algorithms and Further Dependencies

15.5.3 Nonadditive Join Decomposition into 4NF Relations
Whenever we decompose a relation schema R into R1 = (X ∪ Y) and R2 = (R − Y)
based on an MVD X →→ Y that holds in R, the decomposition has the nonadditive
join property. It can be shown that this is a necessary and sufficient condition for
decomposing a schema into two schemas that have the nonadditive join property,
as given by Property NJB′ that is a further generalization of Property NJB given
earlier in Section 14.5.1. Property NJB dealt with FDs only, whereas NJB′ deals with
both FDs and MVDs (recall that an FD is also an MVD).

Property NJB′. The relation schemas R1 and R2 form a nonadditive join
decomposition of R with respect to a set F of functional and multivalued depen-
dencies if and only if

(R1 ∩ R2) →→ (R1 – R2)

or, by symmetry, if and only if

(R1 ∩ R2) →→ (R2 – R1)

We can use a slight modification of Algorithm 15.5 to develop Algorithm 15.7,
which creates a nonadditive join decomposition into relation schemas that are in
4NF (rather than in BCNF). As with Algorithm 15.5, Algorithm 15.7 does not nec-
essarily produce a decomposition that preserves FDs.

Algorithm 15.7. Relational Decomposition into 4NF Relations with Nonad-
ditive Join Property

Input: A universal relation R and a set of functional and multivalued depen-
dencies F

 1. Set D:= { R };

 2. While there is a relation schema Q in D that is not in 4NF, do

{ choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X →→ Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

};

15.6 Other Dependencies and Normal Forms

15.6.1 Join Dependencies and the Fifth Normal Form
We already introduced another type of dependency called join dependency (JD) in
Section 14.7. It arises when a relation is decomposable into a set of projected rela-
tions that can be joined back to yield the original relation. After defining JD, we
defined the fifth normal form based on it in Section 14.7. Fifth normal form has also
been known as project join normal form or PJNF (Fagin, 1979). A practical problem
with this and some additional dependencies (and related normal forms such as
DKNF, which is defined in Section 15.6.3) is that they are difficult to discover.

 15.6 Other Dependencies and Normal Forms 531

Furthermore, there are no sets of sound and complete inference rules to reason
about them. In the remaining part of this section, we introduce some other types of
dependencies that have been identified. Among them, the inclusion dependencies
and those based on arithmetic or similar functions are used frequently.

15.6.2 Inclusion Dependencies
Inclusion dependencies were defined in order to formalize two types of interrela-
tional constraints:

 ■ The foreign key (or referential integrity) constraint cannot be specified as a
functional or multivalued dependency because it relates attributes across
relations.

 ■ The constraint between two relations that represent a class/subclass rela-
tionship (see Chapters 4 and 9) also has no formal definition in terms of the
functional, multivalued, and join dependencies.

Definition. An inclusion dependency R.X < S.Y between two sets of attri-
butes—X of relation schema R, and Y of relation schema S—specifies the con-
straint that, at any specific time when r is a relation state of R and s is a relation
state of S, we must have

πX(r(R)) ⊆ πY(s(S))

The ⊆ (subset) relationship does not necessarily have to be a proper subset. Obviously,
the sets of attributes on which the inclusion dependency is specified—X of R and Y of
S—must have the same number of attributes. In addition, the domains for each pair of
corresponding attributes should be compatible. For example, if X = {A1, A2, … , An}
and Y = {B1, B2, … , Bn}, one possible correspondence is to have dom(Ai) compatible
with dom(Bi) for 1 ≤ i ≤ n. In this case, we say that Ai corresponds to Bi.

For example, we can specify the following inclusion dependencies on the relational
schema in Figure 14.1:

DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn

WORKS_ON.Ssn < EMPLOYEE.Ssn

EMPLOYEE.Dnumber < DEPARTMENT.Dnumber

PROJECT.Dnum < DEPARTMENT.Dnumber

WORKS_ON.Pnumber < PROJECT.Pnumber

DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

All the preceding inclusion dependencies represent referential integrity
constraints. We can also use inclusion dependencies to represent class/subclass
relationships. For example, in the relational schema of Figure 9.6, we can specify
the following inclusion dependencies:

EMPLOYEE.Ssn < PERSON.Ssn

ALUMNUS.Ssn < PERSON.Ssn

STUDENT.Ssn < PERSON.Ssn

532 Chapter 15 Relational Database Design Algorithms and Further Dependencies

As with other types of dependencies, there are inclusion dependency inference rules
(IDIRs). The following are three examples:

IDIR1 (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y, where X = {A1, A2, … , An} and
Y = {B1, B2, … , Bn} and Ai corresponds to Bi, then R.Ai < S.Bi for 1 ≤ i ≤ n.

IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X < T.Z.

The preceding inference rules were shown to be sound and complete for inclusion
dependencies. So far, no normal forms have been developed based on inclusion
dependencies.

15.6.3 Functional Dependencies Based on Arithmetic
Functions and Procedures

Sometimes some attributes in a relation may be related via some arithmetic func-
tion or a more complicated functional relationship. As long as a unique value of Y
is associated with every X, we can still consider that the FD X → Y exists. For exam-
ple, in the relation

ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,
Discounted_price)

each tuple represents an item from an order with a particular quantity, and the
price per unit for that item. In this relation, (Quantity, Unit_price) → Extended_price
by the formula

Extended_price = Unit_price * Quantity

Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price),
and thus it conforms to the definition of functional dependency.

Moreover, there may be a procedure that takes into account the quantity discounts,
the type of item, and so on and computes a discounted price for the total quantity
ordered for that item. Therefore, we can say

(Item#, Quantity, Unit_price) → Discounted_price, or
(Item#, Quantity, Extended_price) → Discounted_price

To check the above FDs, a more complex procedure COMPUTE_TOTAL_PRICE may
have to be called into play. Although the above kinds of FDs are technically present
in most relations, they are not given particular attention during normalization. They
may be relevant during the loading of relations and during query processing because
populating or retrieving the attribute on the right-hand side of the dependency
requires the execution of a procedure such as the one mentioned above.

15.6.4 Domain-Key Normal Form
There is no hard-and-fast rule about defining normal forms only up to 5NF. His-
torically, the process of normalization and the process of discovering undesirable

 15.7 Summary 533

dependencies were carried through 5NF, but it has been possible to define stricter
normal forms that take into account additional types of dependencies and con-
straints. The idea behind domain-key normal form (DKNF) is to specify (theoreti-
cally, at least) the ultimate normal form that takes into account all possible types of
dependencies and constraints. A relation schema is said to be in DKNF if all con-
straints and dependencies that should hold on the valid relation states can be
enforced simply by enforcing the domain constraints and key constraints on the
relation. For a relation in DKNF, it becomes straightforward to enforce all database
constraints by simply checking that each attribute value in a tuple is of the appro-
priate domain and that every key constraint is enforced.

However, because of the difficulty of including complex constraints in a DKNF
relation, its practical utility is limited, since it may be quite difficult to specify gen-
eral integrity constraints. For example, consider a relation CAR(Make, Vin#) (where
Vin# is the vehicle identification number) and another relation MANUFACTURE(Vin#,
Country) (where Country is the country of manufacture). A general constraint may be
of the following form: If the Make is either ‘Toyota’ or ‘Lexus’, then the first character
of the Vin# is a ‘J’ if the country of manufacture is ‘Japan’; if the Make is ‘Honda’ or
‘Acura’, the second character of the Vin# is a ‘J’ if the country of manufacture is
‘Japan’. There is no simplified way to represent such constraints short of writing a
procedure (or general assertions) to test them. The procedure COMPUTE_TOTAL_PRICE
above is an example of such procedures needed to enforce an appropriate integrity
constraint.

For these reasons, although the concept of DKNF is appealing and appears straight-
forward, it cannot be directly tested or implemented with any guarantees of consis-
tency or non-redundancy of design. Hence it is not used much in practice.

15.7 Summary
In this chapter we presented a further set of topics related to dependencies, a dis-
cussion of decomposition, and several algorithms related to them as well as to the
process of designing 3NF, BCNF, and 4NF relations from a given set of functional
dependencies and multivalued dependencies. In Section 15.1 we presented infer-
ence rules for functional dependencies (FDs), the notion of closure of an attribute,
the notion of closure of a set of functional dependencies, equivalence among sets
of functional dependencies, and algorithms for finding the closure of an attribute
(Algorithm 15.1) and the minimal cover of a set of FDs (Algorithm 15.2). We then
discussed two important properties of decompositions: the nonadditive join prop-
erty and the dependency-preserving property. An algorithm to test for an n-way
nonadditive decomposition of a relation (Algorithm 15.3) was presented. A sim-
pler test for checking for nonadditive binary decompositions (property NJB) has
already been described in Section 14.5.1. We then discussed relational design by
synthesis, based on a set of given functional dependencies. The relational synthesis
algorithm (Algorithm 15.4) creates 3NF relations from a universal relation
schema based on a given set of functional dependencies that has been specified by

534 Chapter 15 Relational Database Design Algorithms and Further Dependencies

the database designer. The relational decomposition algorithms (such as Algo-
rithms 15.5 and 15.6) create BCNF (or 4NF) relations by successive nonadditive
decomposition of unnormalized relations into two component relations at a time.
We saw that it is possible to synthesize 3NF relation schemas that meet both of the
above properties; however, in the case of BCNF, it is possible to aim only for the
nonadditiveness of joins—dependency preservation cannot be necessarily guaran-
teed. If the designer has to aim for one of these two, the nonadditive join condition
is an absolute must. In Section 15.4 we showed how certain difficulties arise in a
collection of relations due to null values that may exist in relations in spite of the
relations being individually in 3NF or BCNF. Sometimes when decomposition is
improperly carried too far, certain “dangling tuples” may result that do not par-
ticipate in results of joins and hence may become invisible. We also showed how
algorithms such as 15.4 for 3NF synthesis could lead to alternative designs based
on the choice of minimum cover. We revisited multivalued dependencies (MVDs)
in Section 15.5. MVDs arise from an improper combination of two or more inde-
pendent multivalued attributes in the same relation, and MVDs result in a combi-
national expansion of the tuples used to define fourth normal form (4NF). We
discussed inference rules applicable to MVDs and discussed the importance of
4NF. Finally, in Section 15.6 we discussed inclusion dependencies, which are used
to specify referential integrity and class/subclass constraints, and pointed out the
need for arithmetic functions or more complex procedures to enforce certain
functional dependency constraints. We concluded with a brief discussion of the
domain-key normal form (DKNF).

Review Questions
 15.1. What is the role of Armstrong’s inference rules (inference rules IR1 through

IR3) in the development of the theory of relational design?

 15.2. What is meant by the completeness and soundness of Armstrong’s infer-
ence rules?

 15.3. What is meant by the closure of a set of functional dependencies? Illustrate
with an example.

 15.4. When are two sets of functional dependencies equivalent? How can we
determine their equivalence?

 15.5. What is a minimal set of functional dependencies? Does every set of depen-
dencies have a minimal equivalent set? Is it always unique?

 15.6. What is meant by the attribute preservation condition on a decomposition?

 15.7. Why are normal forms alone insufficient as a condition for a good schema
design?

 15.8. What is the dependency preservation property for a decomposition? Why is
it important?

 Exercises 535

 15.9. Why can we not guarantee that BCNF relation schemas will be produced by
dependency-preserving decompositions of non-BCNF relation schemas?
Give a counterexample to illustrate this point.

 15.10. What is the lossless (or nonadditive) join property of a decomposition? Why
is it important?

 15.11. Between the properties of dependency preservation and losslessness, which
one must definitely be satisfied? Why?

 15.12. Discuss the NULL value and dangling tuple problems.

 15.13. Illustrate how the process of creating first normal form relations may lead to
multivalued dependencies. How should the first normalization be done
properly so that MVDs are avoided?

 15.14. What types of constraints are inclusion dependencies meant to represent?

 15.15. How do template dependencies differ from the other types of dependencies
we discussed?

 15.16. Why is the domain-key normal form (DKNF) known as the ultimate nor-
mal form?

Exercises
 15.17. Show that the relation schemas produced by Algorithm 15.4 are in 3NF.

 15.18. Show that, if the matrix S resulting from Algorithm 15.3 does not have a row
that is all a symbols, projecting S on the decomposition and joining it back
will always produce at least one spurious tuple.

 15.19. Show that the relation schemas produced by Algorithm 15.5 are in BCNF.

 15.20. Write programs that implement Algorithms 15.4 and 15.5.

 15.21. Consider the relation REFRIG(Model#, Year, Price, Manuf_plant, Color), which
is abbreviated as REFRIG(M, Y, P, MP, C), and the following set F of functional
dependencies: F = {M → MP, {M, Y} → P, MP → C}

a. Evaluate each of the following as a candidate key for REFRIG, giving rea-
sons why it can or cannot be a key: {M}, {M, Y}, {M, C}.

b. Based on the above key determination, state whether the relation REFRIG
is in 3NF and in BCNF, and provide proper reasons.

c. Consider the decomposition of REFRIG into D = {R1(M, Y, P),
R2(M, MP, C)}. Is this decomposition lossless? Show why. (You may
consult the test under Property NJB in Section 14.5.1.)

 15.22. Specify all the inclusion dependencies for the relational schema in Figure 5.5.

 15.23. Prove that a functional dependency satisfies the formal definition of multi-
valued dependency.

536 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 15.24. Consider the example of normalizing the LOTS relation in Sections 14.4
and 14.5. Determine whether the decomposition of LOTS into {LOTS1AX,
LOTS1AY, LOTS1B, LOTS2} has the lossless join property by applying
Algorithm 15.3 and also by using the test under property NJB from Sec-
tion 14.5.1.

 15.25. Show how the MVDs Ename →→ and Ename →→ Dname in Figure 14.15(a)
may arise during normalization into 1NF of a relation, where the attributes
Pname and Dname are multivalued.

 15.26. Apply Algorithm 15.2(a) to the relation in Exercise 14.24 to determine a key
for R. Create a minimal set of dependencies G that is equivalent to F, and apply
the synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations.

 15.27. Repeat Exercise 15.26 for the functional dependencies in Exercise 14.25.

 15.28. Apply the decomposition algorithm (Algorithm 15.5) to the relation R and
the set of dependencies F in Exercise 15.24. Repeat for the dependencies G in
Exercise 15.25.

 15.29. Apply Algorithm 15.2(a) to the relations in Exercises 14.27 and 14.28 to
determine a key for R. Apply the synthesis algorithm (Algorithm 15.4) to
decompose R into 3NF relations and the decomposition algorithm (Algo-
rithm 15.5) to decompose R into BCNF relations.

 15.31. Consider the following decompositions for the relation schema R of Exer-
cise 14.24. Determine whether each decomposition has (1) the dependency
preservation property, and (2) the lossless join property, with respect to F.
Also determine which normal form each relation in the decomposition is in.

a. D1 = {R1, R2, R3, R4, R5}; R1 = {A, B, C}, R2 = {A, D, E}, R3 = {B, F},
R4 = {F, G, H}, R5 = {D, I, J}

b. D2 = {R1, R2, R3}; R1 = {A, B, C, D, E}, R2 = {B, F, G, H}, R3 = {D, I, J}

c. D3 = {R1, R2, R3, R4, R5}; R1 = {A, B, C, D}, R2 = {D, E}, R3 = {B, F},
R4 = {F, G, H}, R5 = {D, I, J}

Laboratory Exercises
Note: These exercises use the DBD (Data Base Designer) system that is described
in the laboratory manual. The relational schema R and set of functional dependen-
cies F need to be coded as lists. As an example, R and F for Problem 14.24 are
coded as:

R = [a, b, c, d, e, f, g, h, i, j]
F = [[[a, b],[c]],

[[a],[d, e]],
[[b],[f]],
[[f],[g, h]],
[[d],[i, j]]]

 Selected Bibliography 537

Since DBD is implemented in Prolog, use of uppercase terms is reserved for variables
in the language and therefore lowercase constants are used to code the attributes. For
further details on using the DBD system, please refer to the laboratory manual.

 15.33. Using the DBD system, verify your answers to the following exercises:

a. 15.24

b. 15.26

c. 15.27

d. 15.28

e. 15.29

f. 15.31 (a) and (b)

g. 15.32 (a) and (c)

Selected Bibliography
The books by Maier (1983) and Atzeni and De Antonellis (1993) include a compre-
hensive discussion of relational dependency theory. Algorithm 15.4 is based on the
normalization algorithm presented in Biskup et al. (1979). The decomposition
algorithm (Algorithm 15.5) is due to Bernstein (1976). Tsou and Fischer (1982)
give a polynomial-time algorithm for BCNF decomposition.

The theory of dependency preservation and lossless joins is given in Ullman (1988),
where proofs of some of the algorithms discussed here appear. The lossless join
property is analyzed in Aho et al. (1979). Algorithms to determine the keys of a
relation from functional dependencies are given in Osborn (1977); testing for
BCNF is discussed in Osborn (1979). Testing for 3NF is discussed in Tsou and
Fischer (1982). Algorithms for designing BCNF relations are given in Wang (1990)
and Hernandez and Chan (1991).

Multivalued dependencies and fourth normal form are defined in Zaniolo (1976)
and Nicolas (1978). Many of the advanced normal forms are due to Fagin: the fourth
normal form in Fagin (1977), PJNF in Fagin (1979), and DKNF in Fagin (1981). The
set of sound and complete rules for functional and multivalued dependencies was
given by Beeri et al. (1977). Join dependencies are discussed by Rissanen (1977) and
Aho et al. (1979). Inference rules for join dependencies are given by Sciore (1982).
Inclusion dependencies are discussed by Casanova et al. (1981) and analyzed further
in Cosmadakis et al. (1990). Their use in optimizing relational schemas is discussed
in Casanova et al. (1989). Template dependencies, which are a general form of
dependencies based on hypotheses and conclusion tuples, are discussed by Sadri and
Ullman (1982). Other dependencies are discussed in Nicolas (1978), Furtado (1978),
and Mendelzon and Maier (1979). Abiteboul et al. (1995) provides a theoretical
treatment of many of the ideas presented in this chapter and Chapter 14.

This page intentionally left blank

part 7
File Structures, Hashing, Indexing,

and Physical Database Design

This page intentionally left blank

541

16
Disk Storage, Basic File

Structures, Hashing, and Modern
Storage Architectures

Databases are stored physically as files of records,
which are typically stored on magnetic disks. This

chapter and the next deal with the organization of databases in storage and the
techniques for accessing them efficiently using various algorithms, some of which
require auxiliary data structures called indexes. These structures are often referred
to as physical database file structures and are at the physical level of the three-
schema architecture described in Chapter 2. We start in Section 16.1 by introducing
the concepts of computer storage hierarchies and how they are used in database
systems. Section 16.2 is devoted to a description of magnetic disk storage devices
and their characteristics, flash memory, and solid-state drives and optical drives
and magnetic tape storage devices used for archiving data. We also discuss tech-
niques for making access from disks more efficient. After discussing different stor-
age technologies, we turn our attention to the methods for physically organizing
data on disks. Section 16.3 covers the technique of double buffering, which is used
to speed retrieval of multiple disk blocks. We also discuss buffer management and
buffer replacement strategies. In Section 16.4 we discuss various ways of formatting
and storing file records on disk. Section 16.5 discusses the various types of opera-
tions that are typically applied to file records. We present three primary methods
for organizing file records on disk: unordered records, in Section 16.6; ordered
records, in Section 16.7; and hashed records, in Section 16.8.

Section 16.9 briefly introduces files of mixed records and other primary methods
for organizing records, such as B-trees. These are particularly relevant for storage of
object-oriented databases, which we discussed in Chapter 11. Section 16.10

chapter 16

542 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

describes RAID (redundant arrays of inexpensive (or independent) disks)—a data
storage system architecture that is commonly used in large organizations for better
reliability and performance. Finally, in Section 16.11 we describe modern develop-
ments in the storage architectures that are important for storing enterprise data:
storage area networks (SANs), network-attached storage (NAS), iSCSI (Internet
SCSI—small computer system interface), and other network-based storage proto-
cols, which make storage area networks more affordable without the use of the
Fibre Channel infrastructure and hence are becoming widely accepted in industry.
We also discuss storage tiering and object-based storage. Section 16.12 summarizes
the chapter. In Chapter 17 we discuss techniques for creating auxiliary data struc-
tures, called indexes, which speed up the search for and retrieval of records. These
techniques involve storage of auxiliary data, called index files, in addition to the file
records themselves.

Chapters 16 and 17 may be browsed through or even omitted by readers who have
already studied file organizations and indexing in a separate course. The material
covered here, in particular Sections 16.1 through 16.8, is necessary for understand-
ing Chapters 18 and 19, which deal with query processing and optimization, as well
as database tuning for improving performance of queries.

16.1 Introduction
The collection of data that makes up a computerized database must be stored phys-
ically on some computer storage medium. The DBMS software can then retrieve,
update, and process this data as needed. Computer storage media form a storage
hierarchy that includes two main categories:

 ■ Primary storage. This category includes storage media that can be operated
on directly by the computer’s central processing unit (CPU), such as the
computer’s main memory and smaller but faster cache memories. Primary
storage usually provides fast access to data but is of limited storage capacity.
Although main memory capacities have been growing rapidly in recent
years, they are still more expensive and have less storage capacity than
demanded by typical enterprise-level databases. The contents of main mem-
ory are lost in case of power failure or a system crash.

 ■ Secondary storage. The primary choice of storage medium for online stor-
age of enterprise databases has been magnetic disks. However, flash memo-
ries are becoming a common medium of choice for storing moderate
amounts of permanent data. When used as a substitute for a disk drive, such
memory is called a solid-state drive (SSD).

 ■ Tertiary storage. Optical disks (CD-ROMs, DVDs, and other similar stor-
age media) and tapes are removable media used in today’s systems as offline
storage for archiving databases and hence come under the category called
tertiary storage. These devices usually have a larger capacity, cost less, and
provide slower access to data than do primary storage devices. Data in sec-
ondary or tertiary storage cannot be processed directly by the CPU; first it
must be copied into primary storage and then processed by the CPU.

 16.1 Introduction 543

We first give an overview of the various storage devices used for primary, second-
ary, and tertiary storage in Section 16.1.1, and in Section 16.1.2 we discuss how
databases are typically handled in the storage hierarchy.

16.1.1 Memory Hierarchies and Storage Devices1

In a modern computer system, data resides and is transported throughout a hierar-
chy of storage media. The highest-speed memory is the most expensive and is
therefore available with the least capacity. The lowest-speed memory is offline tape
storage, which is essentially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes, at the most expensive
end, cache memory, which is a static RAM (random access memory). Cache mem-
ory is typically used by the CPU to speed up execution of program instructions
using techniques such as prefetching and pipelining. The next level of primary stor-
age is DRAM (dynamic RAM), which provides the main work area for the CPU for
keeping program instructions and data. It is popularly called main memory. The
advantage of DRAM is its low cost, which continues to decrease; the drawback is its
volatility2 and lower speed compared with static RAM.

At the secondary and tertiary storage level, the hierarchy includes magnetic disks;
mass storage in the form of CD-ROM (compact disk–read-only memory) and
DVD (digital video disk or digital versatile disk) devices; and finally tapes at the
least expensive end of the hierarchy. The storage capacity is measured in kilobytes
(Kbyte or 1,000 bytes), megabytes (MB or 1 million bytes), gigabytes (GB or 1 bil-
lion bytes), and even terabytes (1,000 GB). The word petabyte (1,000 terabytes or
10**15 bytes) is now becoming relevant in the context of very large repositories of
data in physics, astronomy, earth sciences, and other scientific applications.

Programs reside and execute in dynamic random-access memory (DRAM). Gen-
erally, large permanent databases reside on secondary storage (magnetic disks), and
portions of the database are read into and written from buffers in main memory as
needed. Nowadays, personal computers and workstations have large main memo-
ries of hundreds of megabytes of RAM and DRAM, so it is becoming possible to
load a large part of the database into main memory. Eight to sixteen GB of main
memory is becoming commonplace on laptops, and servers with 256 GB capacity
are not uncommon. In some cases, entire databases can be kept in main memory
(with a backup copy on magnetic disk), which results in main memory databases;
these are particularly useful in real-time applications that require extremely fast
response times. An example is telephone switching applications, which store data-
bases that contain routing and line information in main memory.

Flash Memory. Between DRAM and magnetic disk storage, another form of
memory, flash memory, is becoming common, particularly because it is nonvolatile.

2Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile memory
does not.

1The authors appreciate the valuable input of Dan Forsyth regarding the current status of storage
systems in enterprises. The authors also wish to thank Satish Damle for his suggestions.

544 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Flash memories are high-density, high-performance memories using EEPROM
(electrically erasable programmable read-only memory) technology. The advantage
of flash memory is the fast access speed; the disadvantage is that an entire block
must be erased and written over simultaneously. Flash memories come in two types
called NAND and NOR flash based on the type of logic circuits used. The NAND
flash devices have a higher storage capacity for a given cost and are used as the data
storage medium in appliances with capacities ranging from 8 GB to 64 GB for the
popular cards that cost less than a dollar per GB. Flash devices are used in cameras,
MP3/MP4 players, cell phones, PDAs (personal digital assistants), and so on. USB
(universal serial bus) flash drives or USB sticks have become the most portable
medium for carrying data between personal computers; they have a flash memory
storage device integrated with a USB interface.

Optical Drives. The most popular form of optical removable storage is CDs (com-
pact disks) and DVDs. CDs have a 700-MB capacity whereas DVDs have capacities
ranging from 4.5 to 15 GB. CD-ROM(compact disk – read only memory) disks
store data optically and are read by a laser. CD-ROMs contain prerecorded data
that cannot be overwritten. The version of compact and digital video disks called
CD-R (compact disk recordable) and DVD-R or DVD+R, which are also known as
WORM (write-once-read-many) disks, are a form of optical storage used for
archiving data; they allow data to be written once and read any number of times
without the possibility of erasing. They hold about half a gigabyte of data per disk
and last much longer than magnetic disks.3 A higher capacity format for DVDs
called Blu-ray DVD can store 27 GB per layer, or 54 GB in a two-layer disk. Optical
jukebox memories use an array of CD-ROM platters, which are loaded onto drives
on demand. Although optical jukeboxes have capacities in the hundreds of giga-
bytes, their retrieval times are in the hundreds of milliseconds, quite a bit slower
than magnetic disks. This type of tertiary storage is continuing to decline because
of the rapid decrease in cost and the increase in capacities of magnetic disks. Most
personal computer disk drives now read CD-ROM and DVD disks. Typically,
drives are CD-R (compact disk recordable) that can create CD-ROMs and audio
CDs, as well as record on DVDs.

Magnetic Tapes. Finally, magnetic tapes are used for archiving and backup stor-
age of data. Tape jukeboxes—which contain a bank of tapes that are catalogued
and can be automatically loaded onto tape drives—are becoming popular as tertiary
storage to hold terabytes of data. For example, NASA’s EOS (Earth Observation
 Satellite) system stores archived databases in this fashion.

Many large organizations are using terabyte-sized databases. The term very large
database can no longer be precisely defined because disk storage capacities are on

3Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transfer
rates (around 100 to 200 KB/second) for a 1X drive. nX drives (e.g., 16X (n = 16) are supposed to
give n times higher transfer rate by multiplying the rpm n times. The 1X DVD transfer rate is about
1.385 MB/s.

 16.1 Introduction 545

the rise and costs are declining. Soon the term very large database may be reserved
for databases containing hundreds of terabytes or petabytes.

To summarize, a hierarchy of storage devices and storage systems is available today
for storage of data. Depending upon the intended use and application requirements,
data is kept in one or more levels of this hierarchy. Table 16.1 summarizes the cur-
rent state of these devices and systems and shows the range of capacities, average
access times, bandwidths (transfer speeds), and costs on the open commodity mar-
ket. Cost of storage is generally going down at all levels of this hierarchy.

16.1.2 Storage Organization of Databases
Databases typically store large amounts of data that must persist over long periods
of time, and hence the data is often referred to as persistent data. Parts of this data
are accessed and processed repeatedly during the storage period. This contrasts
with the notion of transient data, which persists for only a limited time during
program execution. Most databases are stored permanently (or persistently) on
magnetic disk secondary storage, for the following reasons:

 ■ Generally, databases are too large to fit entirely in main memory.4

 ■ The circumstances that cause permanent loss of stored data arise less fre-
quently for disk secondary storage than for primary storage. Hence, we refer
to disk—and other secondary storage devices—as nonvolatile storage,
whereas main memory is often called volatile storage.

 ■ The cost of storage per unit of data is an order of magnitude less for disk
secondary storage than for primary storage.

Table 16.1 Types of Storage with Capacity, Access Time, Max Bandwidth (Transfer Speed), and Commodity Cost

Type

Capacity*

Access
Time

Max Bandwidth

Commodity
Prices (2014)**

Main Memory- RAM 4GB–1TB 30ns 35GB/sec $100–$20K

Flash Memory- SSD 64 GB–1TB 50μs 750MB/sec $50–$600

Flash Memory- USB stick 4GB–512GB 100μs 50MB/sec $2–$200

Magnetic Disk 400 GB–8TB 10ms 200MB/sec $70–$500

Optical Storage 50GB–100GB 180ms 72MB/sec $100

Magnetic Tape 2.5TB–8.5TB 10s–80s 40–250MB/sec $2.5K–$30K

Tape jukebox 25TB–2,100,000TB 10s–80s 250MB/sec–1.2PB/sec $3K–$1M+

*Capacities are based on commercially available popular units in 2014.

**Costs are based on commodity online marketplaces.

4This statement is being challenged by recent developments in main memory database systems.
Examles of prominent commercial systems include HANA by SAP and TIMESTEN by Oracle.

546 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Some of the newer technologies—such as solid-state drive (SSD) disks are likely to
provide viable alternatives to the use of magnetic disks. In the future, databases may
therefore reside at different levels of the memory hierarchy from those described in
Section 16.1.1. The levels may range from the highest speed main memory level
storage to the tape jukebox low speed offline storage. However, it is anticipated that
magnetic disks will continue to be the primary medium of choice for large data-
bases for years to come. Hence, it is important to study and understand the proper-
ties and characteristics of magnetic disks and the way data files can be organized on
disk in order to design effective databases with acceptable performance.

Magnetic tapes are frequently used as a storage medium for backing up databases
because storage on tape costs much less than storage on disk. With some interven-
tion by an operator—or an automatic loading device—tapes or optical removable
disks must be loaded and read before the data becomes available for processing. In
contrast, disks are online devices that can be accessed directly at any time.

The techniques used to store large amounts of structured data on disk are impor-
tant for database designers, the DBA, and implementers of a DBMS. Database
designers and the DBA must know the advantages and disadvantages of each stor-
age technique when they design, implement, and operate a database on a specific
DBMS. Usually, the DBMS has several options available for organizing the data.
The process of physical database design involves choosing the particular data
organization techniques that best suit the given application requirements from
among the options. DBMS system implementers must study data organization
techniques so that they can implement them efficiently and thus provide the DBA
and users of the DBMS with sufficient options.

Typical database applications need only a small portion of the database at a time for
processing. Whenever a certain portion of the data is needed, it must be located on
disk, copied to main memory for processing, and then rewritten to the disk if the
data is changed. The data stored on disk is organized as files of records. Each record
is a collection of data values that can be interpreted as facts about entities, their
attributes, and their relationships. Records should be stored on disk in a manner
that makes it possible to locate them efficiently when they are needed. We will dis-
cuss some of the techniques for making disk access more efficient in Section 17.2.2.

There are several primary file organizations, which determine how the file
records are physically placed on the disk, and hence how the records can be accessed.
A heap file (or unordered file) places the records on disk in no particular order by
appending new records at the end of the file, whereas a sorted file (or sequential
file) keeps the records ordered by the value of a particular field (called the sort key).
A hashed file uses a hash function applied to a particular field (called the hash key)
to determine a record’s placement on disk. Other primary file organizations, such
as B-trees, use tree structures. We discuss primary file organizations in Sec-
tions 16.6 through 16.9. A secondary organization or auxiliary access structure
allows efficient access to file records based on alternate fields than those that have
been used for the primary file organization. Most of these exist as indexes and will
be discussed in Chapter 17.

 16.2 Secondary Storage Devices 547

16.2 Secondary Storage Devices
In this section, we describe some characteristics of magnetic disk and magnetic tape
storage devices. Readers who have already studied these devices may simply browse
through this section.

16.2.1 Hardware Description of Disk Devices
Magnetic disks are used for storing large amounts of data. The device that holds the
disks is referred to as a hard disk drive, or HDD. The most basic unit of data on the
disk is a single bit of information. By magnetizing an area on a disk in certain ways,
one can make that area represent a bit value of either 0 (zero) or 1 (one). To code
information, bits are grouped into bytes (or characters). Byte sizes are typically 4 to
8 bits, depending on the computer and the device; 8 bits is the most common. We
assume that one character is stored in a single byte, and we use the terms byte and
character interchangeably. The capacity of a disk is the number of bytes it can store,
which is usually very large. Small floppy disks were used with laptops and desk-
tops for many years—they contained a single disk typically holding from 400 KB
to 1.5 MB; they are almost completely out of circulation. Hard disks for personal
computers currently hold from several hundred gigabytes up to a few terabytes; and
large disk packs used with servers and mainframes have capacities of hundreds of
gigabytes. Disk capacities continue to grow as technology improves.

Whatever their capacity, all disks are made of magnetic material shaped as a thin
circular disk, as shown in Figure 16.1(a), and protected by a plastic or acrylic cover.
A disk is single-sided if it stores information on one of its surfaces only and double-
sided if both surfaces are used. To increase storage capacity, disks are assembled
into a disk pack, as shown in Figure 16.1(b), which may include many disks and
therefore many surfaces. The two most common form factors are 3.5 and 2.5 inch
diameter. Information is stored on a disk surface in concentric circles of small
width,5 each having a distinct diameter. Each circle is called a track. In disk packs,
tracks with the same diameter on the various surfaces are called a cylinder because
of the shape they would form if connected in space. The concept of a cylinder is
important because data stored on one cylinder can be retrieved much faster than if
it were distributed among different cylinders.

The number of tracks on a disk ranges from a few thousand to 152,000 on the disk
drives shown in Table 16.2, and the capacity of each track typically ranges from tens
of kilobytes to 150 Kbytes. Because a track usually contains a large amount of infor-
mation, it is divided into smaller blocks or sectors. The division of a track into
 sectors is hard-coded on the disk surface and cannot be changed. One type of sector
organization, as shown in Figure 16.2(a), calls a portion of a track that subtends a
fixed angle at the center a sector. Several other sector organizations are possible,
one of which is to have the sectors subtend smaller angles at the center as one moves

5In some disks, the circles are now connected into a kind of continuous spiral.

548 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Actuator movement

Track

ArmActuator
Read/write

head Spindle Disk rotation

Cylinder
of tracks
(imaginary)

(a)

(b)

Figure 16.1
(a) A single-sided disk with read/write hardware. (b) A disk pack with read/write hardware.

Track(a) Sector (arc of track)

(b)

Three sectors

Two sectors
One sector

Figure 16.2
Different sector
organizations on disk.
(a) Sectors subtending
a fixed angle.
(b) Sectors maintaining
a uniform recording
density.

 16.2 Secondary Storage Devices 549

Table 16.2 Specifications of Typical High-End Enterprise Disks from Seagate (a) Seagate Enterprise Performance
10 K HDD - 1200 GB

Specifications 1200GB

SED Model Number ST1200MM0017

SED FIPS 140-2 Model Number ST1200MM0027

Model Name Enterprise Performance 10K HDD v7

Interface 6Gb/s SAS

Capacity

Formatted 512 Bytes/Sector (GB) 1200

External Transfer Rate (MB/s) 600

Performance

Spindle Speed (RPM) 10K

Average Latency (ms) 2.9

Sustained Transfer Rate Outer to Inner Diameter (MB/s) 204 to 125

Cache, Multisegmented (MB) 64

Configuration/Reliability

Disks 4

Heads 8

Nonrecoverable Read Errors per Bits Read 1 per 10E16

Annualized Failure Rate (AFR) 0.44%

Physical

Height (in/mm, max) 0.591/15.00

Width (in/mm, max) 2.760/70.10

Depth (in/mm, max) 3.955/100.45

Weight (lb/kg) 0.450/0.204

Courtesy Seagate Technology

(Continued)

away, thus maintaining a uniform density of recording, as shown in Figure 16.2(b).
A technique called ZBR (zone bit recording) allows a range of cylinders to have the
same number of sectors per arc. For example, cylinders 0–99 may have one sector
per track, 100–199 may have two per track, and so on. A common sector size is 512
bytes. Not all disks have their tracks divided into sectors.

The division of a track into equal-sized disk blocks (or pages) is set by the operat-
ing system during disk formatting (or initialization). Block size is fixed during
initialization and cannot be changed dynamically. Typical disk block sizes range

550 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

from 512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdi-
vided or combined into blocks during initialization. Blocks are separated by fixed-
size interblock gaps, which include specially coded control information written
during disk initialization. This information is used to determine which block on the
track follows each interblock gap. Table 16.2 illustrates the specifications of typical
disks used on large servers in industry. The 10K prefix on disk names refers to the
rotational speeds in rpm (revolutions per minute.

There is continuous improvement in the storage capacity and transfer rates associ-
ated with disks; they are also progressively getting cheaper—currently costing only
a fraction of a dollar per megabyte of disk storage. Costs are going down so rapidly
that costs as low as $100/TB are already on the market.

A disk is a random access addressable device. Transfer of data between main mem-
ory and disk takes place in units of disk blocks. The hardware address of a block—
a combination of a cylinder number, track number (surface number within the
cylinder on which the track is located), and block number (within the track)—is
supplied to the disk I/O (input/output) hardware. In many modern disk drives, a
single number called LBA (logical block address), which is a number between 0 and
n (assuming the total capacity of the disk is n + 1 blocks), is mapped automatically
to the right block by the disk drive controller. The address of a buffer—a contiguous

Table 16.2 (b) Internal Drive Characteristics of 300 GB–900 GB Seagate Drives

ST900MM0006
ST900MM0026
ST900MM0046
ST900MM0036

ST600MM0006
ST600MM0026
ST600MM0046

ST450MM0006
ST450MM0026
ST450MM0046

ST300MM0006
ST300MM0026
ST300MM0046

Drive capacity 900 600 450 300 GB (formatted,
rounded off value)

Read/write data
heads

6 4 3 2

Bytes per track 997.9 997.9 997.9 997.9 KBytes (avg, rounded
off values)

Bytes per surface 151,674 151,674 151,674 151,674 MB (unformatted,
rounded off value)

Tracks per surface
(total)

152 152 152 152 KTracks (user
accessible)

Tracks per inch 279 279 279 279 KTPI (average)

Peak bits per inch 1925 1925 1925 1925 KBPI

Areal density 538 538 538 538 Gb/in2

Disk rotation speed 10K 10K 10K 10K rpm

Avg rotational
latency

2.9 2.9 2.9 2.9 ms

 16.2 Secondary Storage Devices 551

reserved area in main storage that holds one disk block—is also provided. For a
read command, the disk block is copied into the buffer; whereas for a write com-
mand, the contents of the buffer are copied into the disk block. Sometimes several
contiguous blocks, called a cluster, may be transferred as a unit. In this case, the
buffer size is adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write
head, which is part of a system called a disk drive. A disk or disk pack is mounted
in the disk drive, which includes a motor that rotates the disks. A read/write head
includes an electronic component attached to a mechanical arm. Disk packs with
multiple surfaces are controlled by several read/write heads—one for each surface,
as shown in Figure 16.1(b). All arms are connected to an actuator attached to
another electrical motor, which moves the read/write heads in unison and positions
them precisely over the cylinder of tracks specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed (typ-
ically ranging between 5,400 and 15,000 rpm). Once the read/write head is posi-
tioned on the right track and the block specified in the block address moves under
the read/write head, the electronic component of the read/write head is activated to
transfer the data. Some disk units have fixed read/write heads, with as many heads as
there are tracks. These are called fixed-head disks, whereas disk units with an actua-
tor are called movable-head disks. For fixed-head disks, a track or cylinder is
selected by electronically switching to the appropriate read/write head rather than by
actual mechanical movement; consequently, it is much faster. However, the cost of
the additional read/write heads is high, so fixed-head disks are not commonly used.

Interfacing Disk Drives to Computer Systems. A disk controller, typically
embedded in the disk drive, controls the disk drive and interfaces it to the computer
system. One of the standard interfaces used for disk drives on PCs and workstations
was called SCSI (small computer system interface). Today to connect HDDs, CDs, and
DVDs to a computer, the interface of choice is SATA. SATA stands for serial ATA,
wherein ATA represents attachment; so SATA becomes serial AT attachment. It has
its origin in PC/AT attachment, which referred to the direct attachment to the 16-bit
bus introduced by IBM. The AT referred to advanced technology but is not used in the
expansion of SATA due to trademark issues. Another popular interface used today is
called SAS (serial attached SCSI). SATA was introduced in 2002 and allows the disk
controller to be in the disk drive; only a simple circuit is required on the motherboard.
SATA transfer speeds underwent an evolution from 2002 to 2008, going from 1.5 Gbps
(gigabits per second) to 6 Gbps. SATA is now called NL-SAS for nearline SAS. The
largest 3.5-inch SATA and SAS drives are 8TB, whereas 2.5-inch SAS drives are smaller
and go up to 1.2TB. The 3.5-inch drives use 7,200 or 10,000 rpm speed whereas
 2.5-inch drives use up to 15,000 rpm. In terms of IOPs (input/output operations) per
second as a price to performance index, SAS is considered superior to SATA.

The controller accepts high-level I/O commands and takes appropriate action to
position the arm and causes the read/write action to take place. To transfer a disk
block, given its address, the disk controller must first mechanically position the

552 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

read/write head on the correct track. The time required to do this is called the seek
time. Typical seek times are 5 to 10 msec on desktops and 3 to 8 msec on servers.
Following that, there is another delay—called the rotational delay or latency—while
the beginning of the desired block rotates into position under the read/write head. It
depends on the rpm of the disk. For example, at 15,000 rpm, the time per rotation is
4 msec and the average rotational delay is the time per half revolution, or 2 msec. At
10,000 rpm the average rotational delay increases to 3 msec. Finally, some additional
time is needed to transfer the data; this is called the block transfer time. Hence, the
total time needed to locate and transfer an arbitrary block, given its address, is the
sum of the seek time, rotational delay, and block transfer time. The seek time and
rotational delay are usually much larger than the block transfer time. To make the
transfer of multiple blocks more efficient, it is common to transfer several consecu-
tive blocks on the same track or cylinder. This eliminates the seek time and rota-
tional delay for all but the first block and can result in a substantial saving of time
when numerous contiguous blocks are transferred. Usually, the disk manufacturer
provides a bulk transfer rate for calculating the time required to transfer consecu-
tive blocks. Appendix B contains a discussion of these and other disk parameters.

The time needed to locate and transfer a disk block is in the order of milliseconds,
usually ranging from 9 to 60 msec. For contiguous blocks, locating the first block
takes from 9 to 60 msec, but transferring subsequent blocks may take only 0.4
to 2 msec each. Many search techniques take advantage of consecutive retrieval of
blocks when searching for data on a disk. In any case, a transfer time in the order of
milliseconds is considered high compared with the time required to process data in
main memory by current CPUs. Hence, locating data on disk is a major bottleneck
in database applications. The file structures we discuss here and in Chapter 17
attempt to minimize the number of block transfers needed to locate and transfer the
required data from disk to main memory. Placing “related information” on contig-
uous blocks is the basic goal of any storage organization on disk.

16.2.2 Making Data Access More Efficient on Disk
In this subsection, we list some of the commonly used techniques to make accessing
data more efficient on HDDs.

 1. Buffering of data: In order to deal with the incompatibility of speeds
between a CPU and the electromechanical device such as an HDD, which is
inherently slower, buffering of data is done in memory so that new data can
be held in a buffer while old data is processed by an application. We discuss
the double buffering strategy followed by general issues of buffer manage-
ment and buffer replacement strategies in Section 16.3.

 2. Proper organization of data on disk: Given the structure and organization
of data on disk, it is advantageous to keep related data on contiguous blocks;
when multiple cylinders are needed by a relation, contiguous cylinders
should be used. Doing so avoids unnecessary movement of the read/write
arm and related seek times.

 16.2 Secondary Storage Devices 553

 3. Reading data ahead of request: To minimize seek times, whenever a block
is read into the buffer, blocks from the rest of the track can also be read even
though they may not have been requested yet. This works well for applica-
tions that are likely to need consecutive blocks; for random block reads this
strategy is counterproductive.

 4. Proper scheduling of I/O requests: If it is necessary to read several blocks
from disk, total access time can be minimized by scheduling them so that the
arm moves only in one direction and picks up the blocks along its move-
ment. One popular algorithm is called the elevator algorithm; this algorithm
mimics the behavior of an elevator that schedules requests on multiple floors
in a proper sequence. In this way, the arm can service requests along its out-
ward and inward movements without much disruption.

 5. Use of log disks to temporarily hold writes: A single disk may be assigned
to just one function called logging of writes. All blocks to be written can go
to that disk sequentially, thus eliminating any seek time. This works much
faster than doing the writes to a file at random locations, which requires a
seek for each write. The log disk can order these writes in (cylinder, track)
ordering to minimize arm movement when writing. Actually, the log disk
can only be an area (extent) of a disk. Having the data file and the log file on
the same disk is a cheaper solution but compromises performance. Although
the idea of a log disk can improve write performance, it is not feasible for
most real-life application data.

 6. Use of SSDs or flash memory for recovery purposes: In applications
where updates occur with high frequency, updates can be lost from main
memory if the system crashes. A preventive measure would be to increase
the speed of updates/writes to disk. One possible approach involves writing
the updates to a nonvolatile SSD buffer, which may be a flash memory or
battery-operated DRAM, both of which operate at must faster speeds
(see Table 16.1). The disk controller then updates the data file during its idle
time and also when the buffer becomes full. During recovery from a crash,
unwritten SSD buffers must be written to the data file on HDD. For further
discussion of recovery and logs, consult Chapter 22.

16.2.3 SolidState Device (SSD) Storage
This type of storage is sometimes known as flash storage because it is based on the
flash memory technology, which we discussed in Section 16.1.1.

The recent trend is to use flash memories as an intermediate layer between main
memory and secondary rotating storage in the form of magnetic disks (HDDs).
Since they resemble disks in terms of the ability to store data in secondary storage
without the need for continuous power supply, they are called solid-state disks or
solid-state drives (SSDs). We will discuss SSDs in general terms first and then
comment on their use at the enterprise level, where they are sometimes referred to
as enterprise flash drives (EFDs), a term first introduced by EMC Corporation.

554 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

The main component of an SSD is a controller and a set of interconnected flash
memory cards. Use of NAND flash memory is most common. Using form factors
compatible with 3.5 inch or 2.5 inch HDDs makes SSDs pluggable into slots already
available for mounting HDDs on laptops and servers. For ultrabooks, tablets, and
the like, card-based form factors such as mSATA and M.2 are being standardized.
Interfaces like SATA express have been created to keep up with advancements in
SSDs. Because there are no moving parts, the unit is more rugged, runs silently, is
faster in terms of access time and provides higher transfer rates than HDD. As
opposed to HDDs, where related data from the same relation must be placed on
contiguous blocks, preferably on contiguous cylinders, there is no restriction on
placement of data on an SSD since any address is directly addressable. As a result,
the data is less likely to be fragmented; hence no reorganization is needed. Typi-
cally, when a write to disk occurs on an HDD, the same block is overwritten with
new data. In SDDs, the data is written to different NAND cells to attain wear-leveling,
which prolongs the life of the SSD. The main issue preventing a wide-scale adop-
tion of SSDs today is their prohibitive cost (see Table 16.1), which tends to be about
70 to 80 cents per GB as opposed to about 15 to 20 cents per GB for HDDs.

In addition to flash memory, DRAM-based SSDs are also available. They are cost-
lier than flash memory, but they offer faster access times of around 10 μs (microsec-
onds) as opposed to 100 μs for flash. Their main drawback is that they need an
internal battery or an adapter to supply power.

As an example of an enterprise level SSD, we can consider CISCO’s UCS (Unified
Computing System©) Invicta series SSDs. They have made it possible to deploy
SSDs at the data center level to unify workloads of all types, including databases and
virtual desktop infrastructure (VDI), and to enable a cost-effective, energy-efficient,
and space-saving solution. CISCO’s claim is that Invicta SSDs offer a better price-
to-performance ratio to applications in a multitenant, multinetworked architecture
because of the advantages of SSDs stated above. CISCO states that typically four
times as many HDD drives may be needed to match an SSD-based RAID in perfor-
mance.6 The SSD configuration can have a capacity from 6 to 144 TB, with up to 1.2
million I/O operations/second, and a bandwidth of up to 7.2 GB/sec with an aver-
age latency of 200 μs.7 Modern data centers are undergoing rapid transformation
and must provide real-time response using cloud-based architectures. In this envi-
ronment, SSDs are likely to play a major role.

16.2.4 Magnetic Tape Storage Devices
Disks are random access secondary storage devices because an arbitrary disk block
may be accessed at random once we specify its address. Magnetic tapes are sequen-
tial access devices; to access the nth block on tape, first we must scan the preceding

6Based on the CISCO White Paper (CISCO, 2014)

7Data sheet for CISCO UCS Invicta Scaling System.

 16.2 Secondary Storage Devices 555

n – 1 blocks. Data is stored on reels of high-capacity magnetic tape, somewhat sim-
ilar to audiotapes or videotapes. A tape drive is required to read the data from or
write the data to a tape reel. Usually, each group of bits that forms a byte is stored
across the tape, and the bytes themselves are stored consecutively on the tape.

A read/write head is used to read or write data on tape. Data records on tape are
also stored in blocks—although the blocks may be substantially larger than those
for disks, and interblock gaps are also quite large. With typical tape densities of
1,600 to 6,250 bytes per inch, a typical interblock gap8 of 0.6 inch corresponds to
960 to 3,750 bytes of wasted storage space. It is customary to group many records
together in one block for better space utilization.

The main characteristic of a tape is its requirement that we access the data blocks in
sequential order. To get to a block in the middle of a reel of tape, the tape is mounted
and then scanned until the required block gets under the read/write head. For this
reason, tape access can be slow and tapes are not used to store online data, except for
some specialized applications. However, tapes serve a very important function—
backing up the database. One reason for backup is to keep copies of disk files in case
the data is lost due to a disk crash, which can happen if the disk read/write head
touches the disk surface because of mechanical malfunction. For this reason, disk
files are copied periodically to tape. For many online critical applications, such as
airline reservation systems, to avoid any downtime, mirrored systems are used to
keep three sets of identical disks—two in online operation and one as backup. Here,
offline disks become a backup device. The three are rotated so that they can be
switched in case there is a failure on one of the live disk drives. Tapes can also be
used to store excessively large database files. Database files that are seldom used or
are outdated but required for historical recordkeeping can be archived on tape.
Originally, half-inch reel tape drives were used for data storage employing the so-
called nine-track tapes. Later, smaller 8-mm magnetic tapes (similar to those used in
camcorders) that can store up to 50 GB, as well as 4-mm helical scan data cartridges
and writable CDs and DVDs, became popular media for backing up data files from
PCs and workstations. They are also used for storing images and system libraries.

Backing up enterprise databases so that no transaction information is lost is a major
undertaking. Tape libraries were in vogue and featured slots for several hundred
cartridges; these tape libraries used digital and superdigital linear tapes (DLTs and
SDLTs), both of which have capacities in the hundreds of gigabytes and record data
on linear tracks. These tape libraries are no longer in further development. The LTO
(Linear Tape Open) consortium set up by IBM, HP, and Seagate released the latest
LTO-6 standard in 2012 for tapes. It uses 1/2-inch-wide magnetic tapes like those
used in earlier tape drives but in a somewhat smaller, single-reel enclosed cartridge.
Current generation of libraries use LTO-6 drives, at 2.5-TB cartridge with 160 MB/s
transfer rate. Average seek time is about 80 seconds. The T10000D drive of
Oracle/StorageTek handles 8.5 TB on a single cartridge with transfer rate upto
252 MB/s.

8Called interrecord gaps in tape terminology.

556 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Robotic arms write on multiple cartridges in parallel using multiple tape drives and
automatic labeling software to identify the backup cartridges. An example of a giant
library is the SL8500 model of Sun Storage Technology. The SL8500 scales from
1,450 to just over 10,000 slots and from 1 to 64 tape drives within each library. It
accepts both DLT/SDLT and LTO tapes. Up to 10 SL8500s can be connected within
a single library complex for over 100,000 slots and up to 640 drives. With 100,000
slots, the SL8500 can store 2.1 exabytes (exabyte = 1,000 petabytes, or million TB =
10**18 bytes). We defer the discussion of disk storage technology called RAID, and
of storage area networks, network-attached storage, and iSCSI storage systems, to
the end of the chapter.

16.3 Buffering of Blocks
When several blocks need to be transferred from disk to main memory and all the
block addresses are known, several buffers can be reserved in main memory to
speed up the transfer. While one buffer is being read or written, the CPU can pro-
cess data in the other buffer because an independent disk I/O processor (controller)
exists that, once started, can proceed to transfer a data block between memory and
disk independent of and in parallel to CPU processing.

Figure 16.3 illustrates how two processes can proceed in parallel. Processes A and B
are running concurrently in an interleaved fashion, whereas processes C and D are
running concurrently in a parallel fashion. When a single CPU controls multiple
processes, parallel execution is not possible. However, the processes can still run
concurrently in an interleaved way. Buffering is most useful when processes can
run concurrently in a parallel fashion, either because a separate disk I/O processor
is available or because multiple CPU processors exist.

Figure 16.4 illustrates how reading and processing can proceed in parallel when the
time required to process a disk block in memory is less than the time required to

Interleaved concurrency
 of operations A and B

Parallel execution of
 operations C and D

t1

A A

B B

t2 t3 t4
Time

Figure 16.3
Interleaved concurrency
versus parallel execution.

 16.3 Buffering of Blocks 557

read the next block and fill a buffer. The CPU can start processing a block once its
transfer to main memory is completed; at the same time, the disk I/O processor can
be reading and transferring the next block into a different buffer. This technique is
called double buffering and can also be used to read a continuous stream of blocks
from disk to memory. Double buffering permits continuous reading or writing of
data on consecutive disk blocks, which eliminates the seek time and rotational delay
for all but the first block transfer. Moreover, data is kept ready for processing, thus
reducing the waiting time in the programs.

16.3.1 Buffer Management

Buffer management and Replacement Strategies. For most large database
files containing millions of pages, it is not possible to bring all of the data into main
memory at the same time. We alluded to double buffering as a technique whereby
we can gain efficiency in terms of performing the I/O operation between the disk
and main memory into one buffer area concurrently with processing the data from
another buffer. The actual management of buffers and decisions about what buffers
to use to place a newly read page in the buffer is a more complex process. We use
the term buffer to refer to a part of main memory that is available to receive blocks
or pages of data from disk.9 Buffer manager is a software component of a DBMS
that responds to requests for data and decides what buffer to use and what pages to
replace in the buffer to accommodate the newly requested blocks. The buffer man-
ager views the available main memory storage as a buffer pool, which has a collec-
tion of pages. The size of the shared buffer pool is typically a parameter for the
DBMS controlled by DBAs. In this section, we briefly discuss the workings of the
buffer manager and discuss a few replacement strategies.

i + 1
Process B

i + 2
Fill A

Time

i
Process A

i + 1
Fill B

Disk Block:
I/O:

Disk Block:
PROCESSING:

i
Fill A

i + 2
Process A

i + 3
Fill A

i + 4
Process A

i + 3
Process B

i + 4
Fill A

Figure 16.4
Use of two buffers, A and B, for reading from disk.

9We use the terms page and block interchangeably in the current context.

558 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

There are two kinds of buffer managers; the first kind controls the main memory
directly, as in most RDBMSs. The second kind allocates buffers in virtual memory,
which allows the control to transfer to the operating system (OS). The OS in turn con-
trols which buffers are actually in main memory and which ones are on disk under the
control of OS. This second kind of buffer manager is common in main memory data-
base systems and some object-oriented DBMSs. The overall goal of the buffer manager
is twofold: (1) to maximize the probability that the requested page is found in main
memory, and (2) in case of reading a new disk block from disk, to find a page to replace
that will cause the least harm in the sense that it will not be required shortly again.

To enable its operation, the buffer manager keeps two types of information on hand
about each page in the buffer pool:

 1. A pin-count: the number of times that page has been requested, or the num-
ber of current users of that page. If this count falls to zero, the page is consid-
ered unpinned. Initially the pin-count for every page is set to zero.
Incrementing the pin-count is called pinning. In general, a pinned block
should not be allowed to be written to disk.

 2. A dirty bit, which is initially set to zero for all pages but is set to 1 whenever
that page is updated by any application program.

In terms of storage management, the buffer manager has the following responsibil-
ity: It must make sure that the number of buffers fits in main memory. If the
requested amount of data exceeds available buffer space, the buffer manager must
select what buffers must be emptied, as governed by the buffer replacement policy
in force. If the buffer manager allocates space in virtual memory and all buffers in
use exceed the actual main memory, then the common operating system problem
of “thrashing” happens and pages get moved back and forth into the swap space on
disk without performing useful work.

When a certain page is requested, the buffer manager takes following actions: it
checks if the requested page is already in a buffer in the buffer pool; if so, it incre-
ments its pin-count and releases the page. If the page is not in the buffer pool, the
buffer manager does the following:

a. It chooses a page for replacement, using the replacement policy, and incre-
ments its pin-count.

b. If the dirty bit of the replacement page is on, the buffer manager writes that
page to disk by replacing its old copy on disk. If the dirty bit is not on, this page
is not modified and the buffer manager is not required to write it back to disk.

c. It reads the requested page into the space just freed up.

d. The main memory address of the new page is passed to the requesting
application.

If there is no unpinned page available in the buffer pool and the requested page is
not available in the buffer pool, the buffer manager may have to wait until a page
gets released. A transaction requesting this page may go into a wait state or may
even be aborted.

 16.3 Buffering of Blocks 559

16.3.2 Buffer Replacement Strategies:
The following are some popular replacement strategies that are similar to those
used elsewhere, such as in operating systems:

 1. Least recently used (LRU): The strategy here is to throw out that page that
has not been used (read or written) for the longest time. This requires the
buffer manager to maintain a table where it records the time every time a
page in a buffer is accessed. Whereas this constitutes an overhead, the strat-
egy works well because for a buffer that is not used for a long time, its chance
of being accessed again is small.

 2. Clock policy: This is a round-robin variant of the LRU policy. Imagine the
buffers are arranged like a circle similar to a clock. Each buffer has a flag
with a 0 or 1 value. Buffers with a 0 are vulnerable and may be used for
replacement and their contents read back to disk. Buffers with a 1 are not
vulnerable. When a block is read into a buffer, the flag is set to 1. When the
buffer is accessed, the flag is set to 1 also. The clock hand is positioned on a
“current buffer.” When the buffer manager needs a buffer for a new block, it
rotates the hand until it finds a buffer with a 0 and uses that to read and
place the new block. (If the dirty bit is on for the page being replaced, that
page will be written to disk, thus overwriting the old page at its address on
disk.) If the clock hand passes buffers with 1s, it sets them to a zero. Thus, a
block is replaced from its buffer only if it is not accessed until the hand com-
pletes a rotation and returns to it and finds the block with the 0 that it set the
last time.

 3. First-in-first-out (FIFO): Under this policy, when a buffer is required, the
one that has been occupied the longest by a page is used for replacement.
Under this policy, the manager notes the time each page gets loaded into a
buffer; but it does not have to keep track of the time pages are accessed.
Although FIFO needs less maintenance than LRU, it can work counter to
desirable behavior. A block that remains in the buffer for a long time because
it is needed continuously, such as a root block of an index, may be thrown
out but may be immediately required to be brought back.

LRU and clock policies are not the best policies for database applications if they
require sequential scans of data and the file cannot fit into the buffer at one time.
There are also situations when certain pages in buffers cannot be thrown out and
written out to disk because certain other pinned pages point to those pages. Also,
policies like FIFO can be modified to make sure that pinned blocks, such as root
block of an index, are allowed to remain in the buffer. Modification of the clock
policy also exists where important buffers can be set to higher values than 1 and
therefore will not be subjected to replacement for several rotations of the hand.
There are also situations when the DBMS has the ability to write certain blocks to
disk even when the space occupied by those blocks is not needed. This is called
force-writing and occurs typically when log records have to be written to disk
ahead of the modified pages in a transaction for recovery purposes. (See Chapter 22.)
There are some other replacement strategies such as MRU (most recently used)

560 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

that work well for certain types of database transactions, such as when a block that
is used most recently is not needed until all the remaining blocks in the relation are
processed.

16.4 Placing File Records on Disk
Data in a database is regarded as a set of records organized into a set of files. In this
section, we define the concepts of records, record types, and files. Then we discuss
techniques for placing file records on disk. Note that henceforth in this chapter we
will be referring to the random access persistent secondary storage as “disk drive” or
“disk.” The disk may be in different forms; for example, magnetic disks with rota-
tional memory or solid-state disks with electronic access and no mechanical delays.

16.4.1 Records and Record Types
Data is usually stored in the form of records. Each record consists of a collection of
related data values or items, where each value is formed of one or more bytes and
corresponds to a particular field of the record. Records usually describe entities and
their attributes. For example, an EMPLOYEE record represents an employee entity,
and each field value in the record specifies some attribute of that employee, such as
Name, Birth_date, Salary, or Supervisor. A collection of field names and their corre-
sponding data types constitutes a record type or record format definition. A data
type, associated with each field, specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in program-
ming. These include numeric (integer, long integer, or floating point), string of
characters (fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE
values only), and sometimes specially coded date and time data types. The number
of bytes required for each data type is fixed for a given computer system. An integer
may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte,
a date 10 bytes (assuming a format of YYYY-MM-DD), and a fixed-length string of
k characters k bytes. Variable-length strings may require as many bytes as there are
characters in each field value. For example, an EMPLOYEE record type may be
defined—using the C programming language notation—as the following structure:

struct employee{
 char name[30];
 char ssn[9];
 int salary;
 int job_code;
 char department[20];
} ;

In some database applications, the need may arise for storing data items that consist
of large unstructured objects, which represent images, digitized video or audio
streams, or free text. These are referred to as BLOBs (binary large objects). A BLOB
data item is typically stored separately from its record in a pool of disk blocks, and

 16.4 Placing File Records on Disk 561

a pointer to the BLOB is included in the record. For storing free text, some DBMSs
(e.g., Oracle, DB2, etc.) provide a data type called CLOB (character large object);
some DBMSs call this data type text.

16.4.2 Files, Fixed-Length Records,
and Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the same
record type. If every record in the file has exactly the same size (in bytes), the file is
said to be made up of fixed-length records. If different records in the file have dif-
ferent sizes, the file is said to be made up of variable-length records. A file may
have variable-length records for several reasons:

 ■ The file records are of the same record type, but one or more of the fields are
of varying size (variable-length fields). For example, the Name field of
EMPLOYEE can be a variable-length field.

 ■ The file records are of the same record type, but one or more of the fields may
have multiple values for individual records; such a field is called a repeating
field and a group of values for the field is often called a repeating group.

 ■ The file records are of the same record type, but one or more of the fields are
optional; that is, they may have values for some but not all of the file records
(optional fields).

 ■ The file contains records of different record types and hence of varying size
(mixed file). This would occur if related records of different types were clustered
(placed together) on disk blocks; for example, the GRADE_REPORT records of
a particular student may be placed following that STUDENT’s record.

The fixed-length EMPLOYEE records in Figure 16.5(a) have a record size of 71 bytes.
Every record has the same fields, and field lengths are fixed, so the system can iden-
tify the starting byte position of each field relative to the starting position of the
record. This facilitates locating field values by programs that access such files.
Notice that it is possible to represent a file that logically should have variable-length
records as a fixed-length records file. For example, in the case of optional fields, we
could have every field included in every file record but store a special NULL value if
no value exists for that field. For a repeating field, we could allocate as many spaces
in each record as the maximum possible number of occurrences of the field. In either
case, space is wasted when certain records do not have values for all the physical
spaces provided in each record. Now we consider other options for formatting
records of a file of variable-length records.

For variable-length fields, each record has a value for each field, but we do not know
the exact length of some field values. To determine the bytes within a particular
record that represent each field, we can use special separator characters (such as ?
or % or $)—which do not appear in any field value—to terminate variable-length
fields, as shown in Figure 16.5(b), or we can store the length in bytes of the field in
the record, preceding the field value.

562 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

A file of records with optional fields can be formatted in different ways. If the total
number of fields for the record type is large, but the number of fields that actually
appear in a typical record is small, we can include in each record a sequence of
<field-name, field-value> pairs rather than just the field values. Three types of sepa-
rator characters are used in Figure 16.5(c), although we could use the same separa-
tor character for the first two purposes—separating the field name from the field
value and separating one field from the next field. A more practical option is to
assign a short field type code—say, an integer number—to each field and include in
each record a sequence of <field-type, field-value> pairs rather than <field-name,
field-value> pairs.

A repeating field needs one separator character to separate the repeating values of
the field and another separator character to indicate termination of the field. Finally,
for a file that includes records of different types, each record is preceded by a record

Name = Smith, John Ssn = 123456789 DEPARTMENT = Computer

Smith, John

Name

1

(a)

(b)

(c)

1 12 21 25 29

Name Ssn Salary Job_code Department Hire_date

31 40 44 48 68

Ssn Salary Job_code Department

Separator Characters123456789 XXXX XXXX Computer

Separator Characters

Separates field name
 from field value

Separates fields

Terminates record

=

Figure 16.5
Three record storage formats. (a) A fixed-length record with six fields and size of 71 bytes. (b) A record with
two variable-length fields and three fixed-length fields. (c) A variable-field record with three types of separator
characters.

 16.4 Placing File Records on Disk 563

type indicator. Understandably, programs that process files of variable-length
records—which are usually part of the file system and hence hidden from the typi-
cal programmers—need to be more complex than those for fixed-length records,
where the starting position and size of each field are known and fixed.10

16.4.3 Record Blocking and Spanned
versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of data
transfer between disk and memory. When the block size is larger than the record size,
each block will contain numerous records, although some files may have unusually
large records that cannot fit in one block. Suppose that the block size is B bytes. For a
file of fixed-length records of size R bytes, with B ≥ R, we can fit bfr = ⎣B/R⎦ records
per block, where the ⎣(x)⎦ (floor function) rounds down the number x to an integer.
The value bfr is called the blocking factor for the file. In general, R may not divide B
exactly, so we have some unused space in each block equal to

B − (bfr * R) bytes

To utilize this unused space, we can store part of a record on one block and the rest
on another. A pointer at the end of the first block points to the block containing the
remainder of the record in case it is not the next consecutive block on disk. This
organization is called spanned because records can span more than one block.
Whenever a record is larger than a block, we must use a spanned organization. If
records are not allowed to cross block boundaries, the organization is called
unspanned. This is used with fixed-length records having B > R because it makes
each record start at a known location in the block, simplifying record processing. For
variable-length records, either a spanned or an unspanned organization can be used.
If the average record is large, it is advantageous to use spanning to reduce the lost
space in each block. Figure 16.6 illustrates spanned versus unspanned organization.

For variable-length records using spanned organization, each block may store a dif-
ferent number of records. In this case, the blocking factor bfr represents the average

10Other schemes are also possible for representing variable-length records.

Record 1Block i Record 2 Record 3 Record 4 P

Record 4 (rest)Block i + 1 Record 5 Record 6 Record 7 P

Record 1Block i

(b)

(a) Record 2 Record 3

Record 4Block i + 1 Record 5 Record 6

Figure 16.6
Types of record
organization.
(a) Unspanned.
(b) Spanned.

564 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

number of records per block for the file. We can use bfr to calculate the number of
blocks b needed for a file of r records:

b = ⎡(r/bfr)⎤ blocks

where the ⎡(x)⎤ (ceiling function) rounds the value x up to the next integer.

16.4.4 Allocating File Blocks on Disk
There are several standard techniques for allocating the blocks of a file on disk. In
contiguous allocation, the file blocks are allocated to consecutive disk blocks. This
makes reading the whole file very fast using double buffering, but it makes expanding
the file difficult. In linked allocation, each file block contains a pointer to the next file
block. This makes it easy to expand the file but makes it slow to read the whole file. A
combination of the two allocates clusters of consecutive disk blocks, and the clusters
are linked. Clusters are sometimes called file segments or extents. Another possibil-
ity is to use indexed allocation, where one or more index blocks contain pointers to
the actual file blocks. It is also common to use combinations of these techniques.

16.4.5 File Headers
A file header or file descriptor contains information about a file that is needed by
the system programs that access the file records. The header includes information
to determine the disk addresses of the file blocks as well as to record format descrip-
tions, which may include field lengths and the order of fields within a record for
fixed-length unspanned records and field type codes, separator characters, and
record type codes for variable-length records.

To search for a record on disk, one or more blocks are copied into main memory
buffers. Programs then search for the desired record or records within the buffers,
using the information in the file header. If the address of the block that contains the
desired record is not known, the search programs must do a linear search through
the file blocks. Each file block is copied into a buffer and searched until the record
is located or all the file blocks have been searched unsuccessfully. This can be very
time-consuming for a large file. The goal of a good file organization is to avoid lin-
ear search or full scan of the file and to locate the block that contains a desired
record with a minimal number of block transfers.

16.5 Operations on Files
Operations on files are usually grouped into retrieval operations and update
 operations. The former do not change any data in the file, but only locate certain
records so that their field values can be examined and processed. The latter change
the file by insertion or deletion of records or by modification of field values. In
either case, we may have to select one or more records for retrieval, deletion, or
modification based on a selection condition (or filtering condition), which specifies
criteria that the desired record or records must satisfy.

 16.5 Operations on Files 565

Consider an EMPLOYEE file with fields Name, Ssn, Salary, Job_code, and Department.
A simple selection condition may involve an equality comparison on some field
value—for example, (Ssn = ‘123456789’) or (Department = ‘Research’). More com-
plex conditions can involve other types of comparison operators, such as > or ≥ ; an
example is (Salary ≥ 30000). The general case is to have an arbitrary Boolean expres-
sion on the fields of the file as the selection condition.

Search operations on files are generally based on simple selection conditions. A
complex condition must be decomposed by the DBMS (or the programmer) to
extract a simple condition that can be used to locate the records on disk. Each
located record is then checked to determine whether it satisfies the full selection
condition. For example, we may extract the simple condition (Department =
‘Research’) from the complex condition ((Salary ≥ 30000) AND (Department =
‘Research’)); each record satisfying (Department = ‘Research’) is located and then
tested to see if it also satisfies (Salary ≥ 30000).

When several file records satisfy a search condition, the first record—with respect
to the physical sequence of file records—is initially located and designated the
 current record. Subsequent search operations commence from this record and
locate the next record in the file that satisfies the condition.

Actual operations for locating and accessing file records vary from system to sys-
tem. In the following list, we present a set of representative operations. Typically,
high-level programs, such as DBMS software programs, access records by using
these commands, so we sometimes refer to program variables in the following
descriptions:

 ■ Open. Prepares the file for reading or writing. Allocates appropriate buffers
(typically at least two) to hold file blocks from disk, and retrieves the file
header. Sets the file pointer to the beginning of the file.

 ■ Reset. Sets the file pointer of an open file to the beginning of the file.

 ■ Find (or Locate). Searches for the first record that satisfies a search condi-
tion. Transfers the block containing that record into a main memory buffer
(if it is not already there). The file pointer points to the record in the buffer
and it becomes the current record. Sometimes, different verbs are used to
indicate whether the located record is to be retrieved or updated.

 ■ Read (or Get). Copies the current record from the buffer to a program vari-
able in the user program. This command may also advance the current
record pointer to the next record in the file, which may necessitate reading
the next file block from disk.

 ■ FindNext. Searches for the next record in the file that satisfies the search
condition. Transfers the block containing that record into a main memory
buffer (if it is not already there). The record is located in the buffer and
becomes the current record. Various forms of FindNext (for example,
 FindNext record within a current parent record, FindNext record of a given
type, or FindNext record where a complex condition is met) are available in
legacy DBMSs based on the hierarchical and network models.

566 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 ■ Delete. Deletes the current record and (eventually) updates the file on disk
to reflect the deletion.

 ■ Modify. Modifies some field values for the current record and (eventually)
updates the file on disk to reflect the modification.

 ■ Insert. Inserts a new record in the file by locating the block where the record
is to be inserted, transferring that block into a main memory buffer (if it is
not already there), writing the record into the buffer, and (eventually) writ-
ing the buffer to disk to reflect the insertion.

 ■ Close. Completes the file access by releasing the buffers and performing any
other needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time operations
because each operation applies to a single record. It is possible to streamline the
operations Find, FindNext, and Read into a single operation, Scan, whose descrip-
tion is as follows:

 ■ Scan. If the file has just been opened or reset, Scan returns the first record;
otherwise it returns the next record. If a condition is specified with the oper-
ation, the returned record is the first or next record satisfying the condition.

In database systems, additional set-at-a-time higher-level operations may be
applied to a file. Examples of these are as follows:

 ■ FindAll. Locates all the records in the file that satisfy a search condition.

 ■ Find (or Locate) n. Searches for the first record that satisfies a search condi-
tion and then continues to locate the next n − 1 records satisfying the same
condition. Transfers the blocks containing the n records to the main mem-
ory buffer (if not already there).

 ■ FindOrdered. Retrieves all the records in the file in some specified order.

 ■ Reorganize. Starts the reorganization process. As we shall see, some file
organizations require periodic reorganization. An example is to reorder the
file records by sorting them on a specified field.

At this point, it is worthwhile to note the difference between the terms file organiza-
tion and access method. A file organization refers to the organization of the data of
a file into records, blocks, and access structures; this includes the way records and
blocks are placed on the storage medium and interlinked. An access method, on
the other hand, provides a group of operations—such as those listed earlier—that
can be applied to a file. In general, it is possible to apply several access methods to a
file organized using a certain organization. Some access methods, though, can be
applied only to files organized in certain ways. For example, we cannot apply an
indexed access method to a file without an index (see Chapter 17).

Usually, we expect to use some search conditions more than others. Some files may
be static, meaning that update operations are rarely performed; other, more
dynamic files may change frequently, so update operations are constantly applied
to them. If a file is not updatable by the end user, it is regarded as a read-only file.

 16.6 Files of Unordered Records (Heap Files) 567

Most data warehouses (see Chapter 29) predominantly contain read-only files. A
successful file organization should perform as efficiently as possible the operations
we expect to apply frequently to the file. For example, consider the EMPLOYEE file,
as shown in Figure 16.5(a), which stores the records for current employees in a
company. We expect to insert records (when employees are hired), delete records
(when employees leave the company), and modify records (for example, when an
employee’s salary or job is changed). Deleting or modifying a record requires a
selection condition to identify a particular record or set of records. Retrieving one
or more records also requires a selection condition.

If users expect mainly to apply a search condition based on Ssn, the designer must
choose a file organization that facilitates locating a record given its Ssn value. This
may involve physically ordering the records by Ssn value or defining an index on
Ssn (see Chapter 17). Suppose that a second application uses the file to generate
employees’ paychecks and requires that paychecks are grouped by department. For
this application, it is best to order employee records by department and then by
name within each department. The clustering of records into blocks and the orga-
nization of blocks on cylinders would now be different than before. However, this
arrangement conflicts with ordering the records by Ssn values. If both applications
are important, the designer should choose an organization that allows both opera-
tions to be done efficiently. Unfortunately, in many cases a single organization does
not allow all needed operations on a file to be implemented efficiently. Since a file
can be stored only once using one particular organization, the DBAs are often faced
with making a difficult design choice about the file organization. They make it
based on the expected importance and mix of retrieval and update operations.

In the following sections and in Chapter 17, we discuss methods for organizing
records of a file on disk. Several general techniques, such as ordering, hashing, and
indexing, are used to create access methods. Additionally, various general tech-
niques for handling insertions and deletions work with many file organizations.

16.6 Files of Unordered Records (Heap Files)
In this simplest and most basic type of organization, records are placed in the file in
the order in which they are inserted, so new records are inserted at the end of the
file. Such an organization is called a heap or pile file.11 This organization is often
used with additional access paths, such as the secondary indexes discussed in Chap-
ter 17. It is also used to collect and store data records for future use.

Inserting a new record is very efficient. The last disk block of the file is copied into a
buffer, the new record is added, and the block is then rewritten back to disk. The
address of the last file block is kept in the file header. However, searching for a
record using any search condition involves a linear search through the file block by
block—an expensive procedure. If only one record satisfies the search condition,
then, on the average, a program will read into memory and search half the file

11Sometimes this organization is called a sequential file.

568 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

blocks before it finds the record. For a file of b blocks, this requires searching (b/2)
blocks, on average. If no records or several records satisfy the search condition, the
program must read and search all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a buffer,
delete the record from the buffer, and finally rewrite the block back to the disk.
This leaves unused space in the disk block. Deleting a large number of records in
this way results in wasted storage space. Another technique used for record deletion
is to have an extra byte or bit, called a deletion marker, stored with each record. A
record is deleted by setting the deletion marker to a certain value. A different value
for the marker indicates a valid (not deleted) record. Search programs consider
only valid records in a block when conducting their search. Both of these deletion
techniques require periodic reorganization of the file to reclaim the unused space
of deleted records. During reorganization, the file blocks are accessed consecu-
tively, and records are packed by removing deleted records. After such a reorgani-
zation, the blocks are filled to capacity once more. Another possibility is to use the
space of deleted records when inserting new records, although this requires extra
bookkeeping to keep track of empty locations.

We can use either spanned or unspanned organization for an unordered file, and it
may be used with either fixed-length or variable-length records. Modifying a vari-
able-length record may require deleting the old record and inserting a modified
record because the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of
the file. Sorting is an expensive operation for a large disk file, and special techniques
for external sorting are used (see Chapter 18).

For a file of unordered fixed-length records using unspanned blocks and contiguous
allocation, it is straightforward to access any record by its position in the file. If the
file records are numbered 0, 1, 2, … , r − 1 and the records in each block are num-
bered 0, 1, …, bfr − 1, where bfr is the blocking factor, then the ith record of the file
is located in block ⎣(i/bfr)⎦ and is the (i mod bfr)th record in that block. Such a file
is often called a relative or direct file because records can easily be accessed directly
by their relative positions. Accessing a record by its position does not help locate a
record based on a search condition; however, it facilitates the construction of access
paths on the file, such as the indexes discussed in Chapter 17.

16.7 Files of Ordered Records (Sorted Files)
We can physically order the records of a file on disk based on the values of one of
their fields—called the ordering field. This leads to an ordered or sequential file.12

If the ordering field is also a key field of the file—a field guaranteed to have a unique
value in each record—then the field is called the ordering key for the file. Figure 16.7

12The term sequential file has also been used to refer to unordered files, although it is more appropriate
for ordered files.

 16.7 Files of Ordered Records (Sorted Files) 569

Name

Aaron, Ed

Abbott, Diane

Block 1

Acosta, Marc

Ssn Birth_date

...

Job Salary Sex

...

Adams, John

Adams, Robin

Block 2

Akers, Jan

...

Alexander, Ed

Alfred, Bob

Block 3

Allen, Sam

...

Allen, Troy

Anders, Keith

Block 4

Anderson, Rob

...

Anderson, Zach

Angeli, Joe

Block 5

Archer, Sue

...

Arnold, Mack

Arnold, Steven

Block 6

Atkins, Timothy

Wong, James

Wood, Donald

Block n–1

Woods, Manny

...

Wright, Pam

Wyatt, Charles

Block n

Zimmer, Byron

...

Figure 16.7
Some blocks of an ordered (sequential) file of EMPLOYEE records with
Name as the ordering key field.

570 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

shows an ordered file with Name as the ordering key field (assuming that employees
have distinct names).

Ordered records have some advantages over unordered files. First, reading the
records in order of the ordering key values becomes extremely efficient because no
sorting is required. The search condition may be of the type < key = value>, or a
range condition such as < value1 < key < value2>. Second, finding the next record
from the current one in order of the ordering key usually requires no additional
block accesses because the next record is in the same block as the current one
(unless the current record is the last one in the block). Third, using a search condi-
tion based on the value of an ordering key field results in faster access when the
binary search technique is used, which constitutes an improvement over linear
searches, although it is not often used for disk files. Ordered files are blocked and
stored on contiguous cylinders to minimize the seek time.

A binary search for disk files can be done on the blocks rather than on the records.
Suppose that the file has b blocks numbered 1, 2, …, b; the records are ordered by
ascending value of their ordering key field; and we are searching for a record whose
ordering key field value is K. Assuming that disk addresses of the file blocks are
available in the file header, the binary search can be described by Algorithm 16.1. A
binary search usually accesses log2(b) blocks, whether the record is found or not—an
improvement over linear searches, where, on the average, (b/2) blocks are accessed
when the record is found and b blocks are accessed when the record is not found.

Algorithm 16.1. Binary Search on an Ordering Key of a Disk File
l ← 1; u ← b; (*b is the number of file blocks*)
while (u ≥ l) do
 begin i ← (l + u) div 2;
 read block i of the file into the buffer;
 if K < (ordering key field value of the first record in block i)
 then u ← i − 1
 else if K > (ordering key field value of the last record in block i)
 then l ← i + 1
 else if the record with ordering key field value = K is in the buffer
 then goto found
 else goto notfound;
 end;
goto notfound;

A search criterion involving the conditions >, <, ≥, and ≤ on the ordering field is
efficient, since the physical ordering of records means that all records satisfying the
condition are contiguous in the file. For example, referring to Figure 16.7, if the
search criterion is (Name > ‘G’)—where > means alphabetically before—the records
satisfying the search criterion are those from the beginning of the file up to the first
record that has a Name value starting with the letter ‘G’.

Ordering does not provide any advantages for random or ordered access of the
records based on values of the other nonordering fields of the file. In these cases, we

 16.7 Files of Ordered Records (Sorted Files) 571

do a linear search for random access. To access the records in order based on a non-
ordering field, it is necessary to create another sorted copy—in a different order—of
the file.

Inserting and deleting records are expensive operations for an ordered file because
the records must remain physically ordered. To insert a record, we must find its
correct position in the file, based on its ordering field value, and then make space in
the file to insert the record in that position. For a large file this can be very time-
consuming because, on the average, half the records of the file must be moved to
make space for the new record. This means that half the file blocks must be read
and rewritten after records are moved among them. For record deletion, the prob-
lem is less severe if deletion markers and periodic reorganization are used.

One option for making insertion more efficient is to keep some unused space in each
block for new records. However, once this space is used up, the original problem
resurfaces. Another frequently used method is to create a temporary unordered file
called an overflow or transaction file. With this technique, the actual ordered file is
called the main or master file. New records are inserted at the end of the overflow
file rather than in their correct position in the main file. Periodically, the overflow
file is sorted and merged with the master file during file reorganization. Insertion
becomes very efficient, but at the cost of increased complexity in the search algo-
rithm. One option is to keep the highest value of the key in each block in a separate
field after taking into account the keys that have overflown from that block. Other-
wise, the overflow file must be searched using a linear search if, after the binary
search, the record is not found in the main file. For applications that do not require
the most up-to-date information, overflow records can be ignored during a search.

Modifying a field value of a record depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition involves the
ordering key field, we can locate the record using a binary search; otherwise we
must do a linear search. A nonordering field can be modified by changing the
record and rewriting it in the same physical location on disk—assuming fixed-
length records. Modifying the ordering field means that the record can change its
position in the file. This requires deletion of the old record followed by insertion of
the modified record.

Reading the file records in order of the ordering field is efficient if we ignore the
records in overflow, since the blocks can be read consecutively using double buffer-
ing. To include the records in overflow, we must merge them in their correct posi-
tions; in this case, first we can reorganize the file, and then read its blocks
sequentially. To reorganize the file, first we sort the records in the overflow file, and
then merge them with the master file. The records marked for deletion are removed
during the reorganization.

Table 16.3 summarizes the average access time in block accesses to find a specific
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access
path, called a primary index, is used; this results in an indexed-sequential file.

572 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

This further improves the random access time on the ordering key field. (We dis-
cuss indexes in Chapter 17.) If the ordering attribute is not a key, the file is called a
clustered file.

16.8 Hashing Techniques
Another type of primary file organization is based on hashing, which provides very
fast access to records under certain search conditions. This organization is usually
called a hash file.13 The search condition must be an equality condition on a single
field, called the hash field. In most cases, the hash field is also a key field of the file,
in which case it is called the hash key. The idea behind hashing is to provide a func-
tion h, called a hash function or randomizing function, which is applied to the
hash field value of a record and yields the address of the disk block in which the
record is stored. A search for the record within the block can be carried out in a
main memory buffer. For most records, we need only a single-block access to
retrieve that record.

Hashing is also used as an internal search structure within a program whenever
a group of records is accessed exclusively by using the value of one field. We
describe the use of hashing for internal files in Section 16.8.1; then we show
how it is modified to store external files on disk in Section 16.8.2. In Sec-
tion 16.8.3 we discuss techniques for extending hashing to dynamically growing
files.

16.8.1 Internal Hashing
For internal files, hashing is typically implemented as a hash table through the use
of an array of records. Suppose that the array index range is from 0 to M – 1, as
shown in Figure 16.8(a); then we have M slots whose addresses correspond to the
array indexes. We choose a hash function that transforms the hash field value into
an integer between 0 and M − 1. One common hash function is the h(K) = K mod
M function, which returns the remainder of an integer hash field value K after divi-
sion by M; this value is then used for the record address.

Table 16.3 Average Access Times for a File of b Blocks under Basic File Organizations

Type of Organization

Access/Search Method

Average Blocks to Access
a Specific Record

Heap (unordered) Sequential scan (linear search) b/2

Ordered Sequential scan b/2

Ordered Binary search log2 b

13A hash file has also been called a direct file.

 16.8 Hashing Techniques 573

Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with
characters can be used in the transformation—for example, by multiplying those
code values. For a hash field whose data type is a string of 20 characters, Algo-
rithm 16.2(a) can be used to calculate the hash address. We assume that the code
function returns the numeric code of a character and that we are given a hash field
value K of type K: array [1..20] of char (in Pascal) or char K[20] (in C).

(a)

–1

–1
–1

M + 2

M

0

1
2

3

M – 2

M – 1

Data fields Overflow pointer

Address space

Overflow space

M + 1

M + 5
–1

M + 4

–1

M + 0 – 2
M + 0 – 1

null pointer = –1
overflow pointer refers to position of next record in linked list

M – 2

M
M + 1
M + 2

M – 1

Name Ssn Job Salary

(b) 0

1
2

3

4

...

Figure 16.8
Internal hashing data structures. (a) Array
of M positions for use in internal hashing.
(b) Collision resolution by chaining records.

574 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Algorithm 16.2. Two simple hashing algorithms: (a) Applying the mod hash
function to a character string K. (b) Collision resolution by open addressing.

(a) temp ← 1;
for i ← 1 to 20 do temp ← temp * code(K[i]) mod M ;
hash_address ← temp mod M;

(b) i ← hash_address(K); a ← i;
if location i is occupied
 then begin i ← (i + 1) mod M;
 while (i ≠ a) and location i is occupied
 do i ← (i + 1) mod M;
 if (i = a) then all positions are full
 else new_hash_address ← i;
 end;

Other hashing functions can be used. One technique, called folding, involves apply-
ing an arithmetic function such as addition or a logical function such as exclusive or
to different portions of the hash field value to calculate the hash address (for exam-
ple, with an address space from 0 to 999 to store 1,000 keys, a 6-digit key 235469
may be folded and stored at the address: (235+964) mod 1000 = 199). Another tech-
nique involves picking some digits of the hash field value—for instance, the third,
fifth, and eighth digits—to form the hash address (for example, storing 1,000
employees with Social Security numbers of 10 digits into a hash file with 1,000 posi-
tions would give the Social Security number 301-67-8923 a hash value of 172 by this
hash function).14 The problem with most hashing functions is that they do not
guarantee that distinct values will hash to distinct addresses, because the hash field
space—the number of possible values a hash field can take—is usually much larger
than the address space—the number of available addresses for records. The hash-
ing function maps the hash field space to the address space.

A collision occurs when the hash field value of a record that is being inserted hashes
to an address that already contains a different record. In this situation, we must
insert the new record in some other position, since its hash address is occupied. The
process of finding another position is called collision resolution. There are numer-
ous methods for collision resolution, including the following:

 ■ Open addressing. Proceeding from the occupied position specified by the
hash address, the program checks the subsequent positions in order until an
unused (empty) position is found. Algorithm 16.2(b) may be used for this
purpose.

 ■ Chaining. For this method, various overflow locations are kept, usually by
extending the array with a number of overflow positions. Additionally, a
pointer field is added to each record location. A collision is resolved by plac-
ing the new record in an unused overflow location and setting the pointer of
the occupied hash address location to the address of that overflow location.

14 A detailed discussion of hashing functions is outside the scope of our presentation.

 16.8 Hashing Techniques 575

A linked list of overflow records for each hash address is thus maintained, as
shown in Figure 16.8(b).

 ■ Multiple hashing. The program applies a second hash function if the first
results in a collision. If another collision results, the program uses open
addressing or applies a third hash function and then uses open addressing if
necessary. Note that the series of hash functions are used in the same order
for retrieval.

Each collision resolution method requires its own algorithms for insertion, retrieval,
and deletion of records. The algorithms for chaining are the simplest. Deletion
algorithms for open addressing are rather tricky. Data structures textbooks discuss
internal hashing algorithms in more detail.

The goal of a good hashing function is twofold: first, to distribute the records uni-
formly over the address space so as to minimize collisions, thus making it possible
to locate a record with a given key in a single access. The second, somewhat con-
flicting, goal is to achieve the above yet occupy the buckets fully, thus not leaving
many unused locations. Simulation and analysis studies have shown that it is usu-
ally best to keep a hash file between 70 and 90% full so that the number of collisions
remains low and we do not waste too much space. Hence, if we expect to have r
records to store in the table, we should choose M locations for the address space
such that (r/M) is between 0.7 and 0.9. It may also be useful to choose a prime num-
ber for M, since it has been demonstrated that this distributes the hash addresses
better over the address space when the mod hashing function is used modulo a
prime number. Other hash functions may require M to be a power of 2.

16.8.2 External Hashing for Disk Files
Hashing for disk files is called external hashing. To suit the characteristics of disk
storage, the target address space is made of buckets, each of which holds multiple
records. A bucket is either one disk block or a cluster of contiguous disk blocks.
The hashing function maps a key into a relative bucket number rather than
assigning an absolute block address to the bucket. A table maintained in the file
header converts the bucket number into the corresponding disk block address, as
illustrated in Figure 16.9.

The collision problem is less severe with buckets, because as many records as will fit
in a bucket can hash to the same bucket without causing problems. However, we
must make provisions for the case where a bucket is filled to capacity and a new
record being inserted hashes to that bucket. We can use a variation of chaining in
which a pointer is maintained in each bucket to a linked list of overflow records for
the bucket, as shown in Figure 16.10. The pointers in the linked list should be
record pointers, which include both a block address and a relative record position
within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. Although most good hash functions do not maintain

576 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

0
1
2

M – 2
M – 1

Bucket
Number Block address on disk

Figure 16.9
Matching bucket numbers to disk
block addresses.

Bucket 0

Main buckets

Overflow buckets

340

460

Record pointer

NULL

NULL

NULL

Bucket 1 321

761
91

Record pointer

981

182

Record pointer

(Pointers are to records within the overflow blocks)

Record pointer

Record pointer

652 Record pointer

Record pointer

Record pointer

Bucket 2 22

72

522
Record pointer

Bucket 9 399

89

Record pointer

NULL

...

Figure 16.10
Handling overflow for buckets
by chaining.

 16.8 Hashing Techniques 577

records in order of hash field values, some functions—called order preserving—
do. A simple example of an order-preserving hash function is to take the leftmost
three digits of an invoice number field that yields a bucket address as the hash
address and keep the records sorted by invoice number within each bucket. Another
example is to use an integer hash key directly as an index to a relative file, if the hash
key values fill up a particular interval; for example, if employee numbers in a com-
pany are assigned as 1, 2, 3, … up to the total number of employees, we can use the
identity hash function (i.e., Relative Address = Key) that maintains order. Unfortu-
nately, this only works if sequence keys are generated in order by some application.

The hashing scheme described so far is called static hashing because a fixed num-
ber of buckets M is allocated. The function does key-to-address mapping, whereby
we are fixing the address space. This can be a serious drawback for dynamic files.
Suppose that we allocate M buckets for the address space and let m be the maxi-
mum number of records that can fit in one bucket; then at most (m * M) records
will fit in the allocated space. If the number of records turns out to be substantially
fewer than (m * M), we are left with a lot of unused space. On the other hand, if the
number of records increases to substantially more than (m * M), numerous colli-
sions will result and retrieval will be slowed down because of the long lists of over-
flow records. In either case, we may have to change the number of blocks M
allocated and then use a new hashing function (based on the new value of M) to
redistribute the records. These reorganizations can be quite time-consuming for
large files. Newer dynamic file organizations based on hashing allow the number of
buckets to vary dynamically with only localized reorganization (see Section 16.8.3).

When using external hashing, searching for a record given a value of some field
other than the hash field is as expensive as in the case of an unordered file. Record
deletion can be implemented by removing the record from its bucket. If the bucket
has an overflow chain, we can move one of the overflow records into the bucket to
replace the deleted record. If the record to be deleted is already in overflow, we sim-
ply remove it from the linked list. Notice that removing an overflow record implies
that we should keep track of empty positions in overflow. This is done easily by
maintaining a linked list of unused overflow locations.

Modifying a specific record’s field value depends on two factors: the search condi-
tion to locate that specific record and the field to be modified. If the search condi-
tion is an equality comparison on the hash field, we can locate the record efficiently
by using the hashing function; otherwise, we must do a linear search. A nonhash
field can be modified by changing the record and rewriting it in the same bucket.
Modifying the hash field means that the record can move to another bucket, which
requires deletion of the old record followed by insertion of the modified record.

16.8.3 Hashing Techniques That Allow Dynamic File Expansion
A major drawback of the static hashing scheme just discussed is that the hash
address space is fixed. Hence, it is difficult to expand or shrink the file dynamically.
The schemes described in this section attempt to remedy this situation. The first

578 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

scheme—extendible hashing—stores an access structure in addition to the file, and
hence is somewhat similar to indexing (see Chapter 17). The main difference is that
the access structure is based on the values that result after application of the hash
function to the search field. In indexing, the access structure is based on the values
of the search field itself. The second technique, called linear hashing, does not
require additional access structures. Another scheme, called dynamic hashing, uses
an access structure based on binary tree data structures.

These hashing schemes take advantage of the fact that the result of applying a hash-
ing function is a nonnegative integer and hence can be represented as a binary
number. The access structure is built on the binary representation of the hashing
function result, which is a string of bits. We call this the hash value of a record.
Records are distributed among buckets based on the values of the leading bits in
their hash values.

Extendible Hashing. In extendible hashing, proposed by Fagin (1979), a type of
directory—an array of 2d bucket addresses—is maintained, where d is called the
global depth of the directory. The integer value corresponding to the first (high-
order) d bits of a hash value is used as an index to the array to determine a directory
entry, and the address in that entry determines the bucket in which the correspond-
ing records are stored. However, there does not have to be a distinct bucket for each
of the 2d directory locations. Several directory locations with the same first d′ bits
for their hash values may contain the same bucket address if all the records that
hash to these locations fit in a single bucket. A local depth d′—stored with each
bucket—specifies the number of bits on which the bucket contents are based. Fig-
ure 16.11 shows a directory with global depth d = 3.

The value of d can be increased or decreased by one at a time, thus doubling or
halving the number of entries in the directory array. Doubling is needed if a bucket,
whose local depth d′ is equal to the global depth d, overflows. Halving occurs if
d > d′ for all the buckets after some deletions occur. Most record retrievals require
two block accesses—one to the directory and the other to the bucket.

To illustrate bucket splitting, suppose that a new inserted record causes overflow in
the bucket whose hash values start with 01—the third bucket in Figure 16.11. The
records will be distributed between two buckets: the first contains all records whose
hash values start with 010, and the second all those whose hash values start with 011.
Now the two directory locations for 010 and 011 point to the two new distinct
buckets. Before the split, they pointed to the same bucket. The local depth d′ of the
two new buckets is 3, which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a local depth d′ equal to the
global depth d of the directory, then the size of the directory must now be doubled
so that we can use an extra bit to distinguish the two new buckets. For example, if
the bucket for records whose hash values start with 111 in Figure 16.11 overflows,
the two new buckets need a directory with global depth d = 4, because the two
buckets are now labeled 1110 and 1111, and hence their local depths are both 4.
The directory size is hence doubled, and each of the other original locations in the

 16.8 Hashing Techniques 579

directory is also split into two locations, both of which have the same pointer value
as did the original location.

The main advantage of extendible hashing that makes it attractive is that the perfor-
mance of the file does not degrade as the file grows, as opposed to static external
hashing, where collisions increase and the corresponding chaining effectively
increases the average number of accesses per key. Additionally, no space is allocated
in extendible hashing for future growth, but additional buckets can be allocated

Global depth
d = 3

000

001

010

011

100

101

110

111

d´ = 3 Bucket for records
whose hash values
start with 000

Directory Data file buckets
Local depth of
each bucket

d´ = 3 Bucket for records
whose hash values
start with 001

d´ = 2 Bucket for records
whose hash values
start with 01

d´ = 2 Bucket for records
whose hash values
start with 10

d´ = 3 Bucket for records
whose hash values
start with 110

d´ = 3 Bucket for records
whose hash values
start with 111

Figure 16.11
Structure of the
extendible hashing
scheme.

580 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

dynamically as needed. The space overhead for the directory table is negligible. The
maximum directory size is 2k, where k is the number of bits in the hash value.
Another advantage is that splitting causes minor reorganization in most cases, since
only the records in one bucket are redistributed to the two new buckets. The only
time reorganization is more expensive is when the directory has to be doubled (or
halved). A disadvantage is that the directory must be searched before accessing the
buckets themselves, resulting in two block accesses instead of one in static hashing.
This performance penalty is considered minor and thus the scheme is considered
quite desirable for dynamic files.

Dynamic Hashing. A precursor to extendible hashing was dynamic hashing pro-
posed by Larson (1978), in which the addresses of the buckets were either the n
high-order bits or n − 1 high-order bits, depending on the total number of keys
belonging to the respective bucket. The eventual storage of records in buckets for
dynamic hashing is somewhat similar to extendible hashing. The major difference
is in the organization of the directory. Whereas extendible hashing uses the notion
of global depth (high-order d bits) for the flat directory and then combines adjacent
collapsible buckets into a bucket of local depth d − 1, dynamic hashing maintains a
tree-structured directory with two types of nodes:

 ■ Internal nodes that have two pointers—the left pointer corresponding to the
0 bit (in the hashed address) and a right pointer corresponding to the 1 bit.

 ■ Leaf nodes—these hold a pointer to the actual bucket with records.

An example of the dynamic hashing appears in Figure 16.12. Four buckets are
shown (“000”, “001”, “110”, and “111”) with high-order 3-bit addresses (corre-
sponding to the global depth of 3), and two buckets (“01” and “10”) are shown
with high-order 2-bit addresses (corresponding to the local depth of 2). The latter
two are the result of collapsing the “010” and “011” into “01” and collapsing “100”
and “101” into “10”. Note that the directory nodes are used implicitly to deter-
mine the “global” and “local” depths of buckets in dynamic hashing. The search
for a record given the hashed address involves traversing the directory tree, which
leads to the bucket holding that record. It is left to the reader to develop algo-
rithms for insertion, deletion, and searching of records for the dynamic hashing
scheme.

Linear Hashing. The idea behind linear hashing, proposed by Litwin (1980), is to
allow a hash file to expand and shrink its number of buckets dynamically without
needing a directory. Suppose that the file starts with M buckets numbered 0, 1, … ,
M − 1 and uses the mod hash function h(K) = K mod M; this hash function is called
the initial hash function hi. Overflow because of collisions is still needed and can
be handled by maintaining individual overflow chains for each bucket. However,
when a collision leads to an overflow record in any file bucket, the first bucket in the
file—bucket 0—is split into two buckets: the original bucket 0 and a new bucket M
at the end of the file. The records originally in bucket 0 are distributed between the
two buckets based on a different hashing function hi+1(K) = K mod 2M. A key prop-
erty of the two hash functions hi and hi+1 is that any records that hashed to bucket 0

 16.8 Hashing Techniques 581

based on hi will hash to either bucket 0 or bucket M based on hi+1; this is necessary
for linear hashing to work.

As further collisions lead to overflow records, additional buckets are split in the
linear order 1, 2, 3, … . If enough overflows occur, all the original file buckets 0, 1,
… , M − 1 will have been split, so the file now has 2M instead of M buckets, and all
buckets use the hash function hi+1. Hence, the records in overflow are eventually
redistributed into regular buckets, using the function hi+1 via a delayed split of their
buckets. There is no directory; only a value n—which is initially set to 0 and is
incremented by 1 whenever a split occurs—is needed to determine which buckets
have been split. To retrieve a record with hash key value K, first apply the function
hi to K; if hi(K) < n, then apply the function hi+1 on K because the bucket is already
split. Initially, n = 0, indicating that the function hi applies to all buckets; n grows
linearly as buckets are split.

Data File Buckets

Bucket for records
whose hash values
start with 000

Bucket for records
whose hash values
start with 001

Bucket for records
whose hash values
start with 01

Bucket for records
whose hash values
start with 10

Bucket for records
whose hash values
start with 110

Bucket for records
whose hash values
start with 111

Directory
0

1

0

1

0

1

0

1

0

1

internal directory node

leaf directory node

Figure 16.12
Structure of the dynamic hashing scheme.

582 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

When n = M after being incremented, this signifies that all the original buckets have
been split and the hash function hi+1 applies to all records in the file. At this point,
n is reset to 0 (zero), and any new collisions that cause overflow lead to the use of a
new hashing function hi+2(K) = K mod 4M. In general, a sequence of hashing func-
tions hi+j(K) = K mod (2jM) is used, where j = 0, 1, 2, … ; a new hashing function
hi+j+1 is needed whenever all the buckets 0, 1, …, (2jM) − 1 have been split and n is
reset to 0. The search for a record with hash key value K is given by Algorithm 16.3.

Splitting can be controlled by monitoring the file load factor instead of by splitting
whenever an overflow occurs. In general, the file load factor l can be defined as
l = r/(bfr * N), where r is the current number of file records, bfr is the maximum
number of records that can fit in a bucket, and N is the current number of file buck-
ets. Buckets that have been split can also be recombined if the load factor of the file
falls below a certain threshold. Blocks are combined linearly, and N is decremented
appropriately. The file load can be used to trigger both splits and combinations; in
this manner the file load can be kept within a desired range. Splits can be triggered
when the load exceeds a certain threshold—say, 0.9—and combinations can be trig-
gered when the load falls below another threshold—say, 0.7. The main advantages
of linear hashing are that it maintains the load factor fairly constantly while the file
grows and shrinks, and it does not require a directory.15

Algorithm 16.3. The Search Procedure for Linear Hashing
if n = 0
 then m ← hj (K) (*m is the hash value of record with hash key K*)
 else begin
 m ← hj (K);
 if m < n then m ← hj+1 (K)
 end;

search the bucket whose hash value is m (and its overflow, if any);

16.9 Other Primary File Organizations

16.9.1 Files of Mixed Records
The file organizations we have studied so far assume that all records of a particular
file are of the same record type. The records could be of EMPLOYEEs, PROJECTs,
STUDENTs, or DEPARTMENTs, but each file contains records of only one type. In
most database applications, we encounter situations in which numerous types of
entities are interrelated in various ways, as we saw in Chapter 7. Relationships among
records in various files can be represented by connecting fields.16 For example, a

15For details of insertion and deletion into Linear hashed files, refer to Litwin (1980) and Salzberg (1988).

16The concept of foreign keys in the relational data model (Chapter 3) and references among objects in
object-oriented models (Chapter 11) are examples of connecting fields.

 16.9 Other Primary File Organizations 583

STUDENT record can have a connecting field Major_dept whose value gives the name
of the DEPARTMENT in which the student is majoring. This Major_dept field refers to
a DEPARTMENT entity, which should be represented by a record of its own in the
DEPARTMENT file. If we want to retrieve field values from two related records, we
must retrieve one of the records first. Then we can use its connecting field value to
retrieve the related record in the other file. Hence, relationships are implemented by
logical field references among the records in distinct files.

File organizations in object DBMSs, as well as legacy systems such as hierarchical
and network DBMSs, often implement relationships among records as physical
relationships realized by physical contiguity (or clustering) of related records or by
physical pointers. These file organizations typically assign an area of the disk to
hold records of more than one type so that records of different types can be
 physically clustered on disk. If a particular relationship is expected to be used
 frequently, implementing the relationship physically can increase the system’s
 efficiency at retrieving related records. For example, if the query to retrieve a
DEPARTMENT record and all records for STUDENTs majoring in that department is
frequent, it would be desirable to place each DEPARTMENT record and its cluster of
STUDENT records contiguously on disk in a mixed file. The concept of physical
clustering of object types is used in object DBMSs to store related objects together
in a mixed file. In data warehouses (see Chapter 29), the input data comes from a
variety of sources and undergoes an integration initially to collect the required data
into an operational data store (ODS). An ODS typically contains files where
records of multiple types are kept together. It is passed on to a data warehouse after
ETL (extract, transform and load) processing operations are performed on it.

To distinguish the records in a mixed file, each record has—in addition to its field
values—a record type field, which specifies the type of record. This is typically the
first field in each record and is used by the system software to determine the type of
record it is about to process. Using the catalog information, the DBMS can deter-
mine the fields of that record type and their sizes, in order to interpret the data
values in the record.

16.9.2 B-Trees and Other Data Structures
as Primary Organization

Other data structures can be used for primary file organizations. For example, if
both the record size and the number of records in a file are small, some DBMSs
offer the option of a B-tree data structure as the primary file organization. We
will describe B-trees in Section 17.3.1, when we discuss the use of the B-tree data
structure for indexing. In general, any data structure that can be adapted to the
characteristics of disk devices can be used as a primary file organization for
record placement on disk. Recently, column-based storage of data has been pro-
posed as a primary method for storage of relations in relational databases. We
will briefly introduce it in Chapter 17 as a possible alternative storage scheme for
relational databases.

584 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

16.10 Parallelizing Disk Access Using
RAID Technology

With the exponential growth in the performance and capacity of semiconductor
devices and memories, faster microprocessors with larger and larger primary mem-
ories are continually becoming available. To match this growth, it is natural to
expect that secondary storage technology must also take steps to keep up with pro-
cessor technology in performance and reliability.

A major advance in secondary storage technology is represented by the develop-
ment of RAID, which originally stood for redundant arrays of inexpensive disks.
More recently, the I in RAID is said to stand for independent. The RAID idea
received a very positive industry endorsement and has been developed into an elab-
orate set of alternative RAID architectures (RAID levels 0 through 6). We highlight
the main features of the technology in this section.

The main goal of RAID is to even out the widely different rates of performance
improvement of disks against those in memory and microprocessors.17 Although
RAM capacities have quadrupled every two to three years, disk access times are
improving at less than 10% per year, and disk transfer rates are improving at roughly
20% per year. Disk capacities are indeed improving at more than 50% per year, but
the speed and access time improvements are of a much smaller magnitude.

A second qualitative disparity exists between the ability of special microprocessors
that cater to new applications involving video, audio, image, and spatial data pro-
cessing (see Chapters 26 for details of these applications), with corresponding lack
of fast access to large, shared data sets.

The natural solution is a large array of small independent disks acting as a single
higher performance logical disk. A concept called data striping is used, which utilizes
parallelism to improve disk performance. Data striping distributes data transpar-
ently over multiple disks to make them appear as a single large, fast disk. Figure
16.13 shows a file distributed or striped over four disks. In bit-level striping, a byte is
split and individual bits are stored on independent disks. Figure 16.13(a) illustrates
bit-striping across four disks where the bits (0, 4) are assigned to disk 0, bits (1, 5) to
disk 1, and so on. With this striping, every disk participates in every read or write
operation; the number of accesses per second would remain the same as on a single
disk, but the amount of data read in a given time would increase fourfold. Thus,
striping improves overall I/O performance by providing high overall transfer rates.
Block-level striping stripes blocks across disks. It treats the array of disks as if it is
one disk. Blocks are logically numbered from 0 in sequence. Disks in an m-disk array
are numbered 0 to m – 1. With striping, block j goes to disk (j mod m). Figure
16.13(b) illustrates block striping with four disks (m = 4). Data striping also accom-
plishes load balancing among disks. Moreover, by storing redundant information on

17This was predicted by Gordon Bell to be about 40% every year between 1974 and 1984 and is now
supposed to exceed 50% per year.

 16.10 Parallelizing Disk Access Using RAID Technology 585

disks using parity or some other error-correction code, reliability can be improved.
In Sections 16.10.1 and 16.10.2, we discuss how RAID achieves the two important
objectives of improved reliability and higher performance. Section 16.10.3 discusses
RAID organizations and levels.

16.10.1 Improving Reliability with RAID
For an array of n disks, the likelihood of failure is n times as much as that for one
disk. Hence, if the MTBF (mean time between failures) of a disk drive is assumed to
be 200,000 hours or about 22.8 years (for the disk drive in Table 16.1 called Seagate
Enterprise Performance 10K HDD, it is 1.4 million hours), the MTBF for a bank of
100 disk drives becomes only 2,000 hours or 83.3 days (for a bank of 1,000 Seagate
Enterprise Performance 10K HDD disks it would be 1,400 hours or 58.33 days).
Keeping a single copy of data in such an array of disks will cause a significant loss of
reliability. An obvious solution is to employ redundancy of data so that disk failures
can be tolerated. The disadvantages are many: additional I/O operations for write,
extra computation to maintain redundancy and to do recovery from errors, and
additional disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing.
Data is written redundantly to two identical physical disks that are treated as one
logical disk. When data is read, it can be retrieved from the disk with shorter
queuing, seek, and rotational delays. If a disk fails, the other disk is used until the
first is repaired. Suppose the mean time to repair is 24 hours; then the mean time
to data loss of a mirrored disk system using 100 disks with MTBF of 200,000
hours each is (200,000)2/(2 * 24) = 8.33 * 108 hours, which is 95,028 years.18 Disk
mirroring also doubles the rate at which read requests are handled, since a read
can go to either disk. The transfer rate of each read, however, remains the same as
that for a single disk.

(a) Disk 0

A0 | A4

B0 | B4

Disk 1

A1 | A5

B1 | B5

Disk 2

A2 | A6

B2 | B6

Disk 3

A3 | A7

B3 | B7

Disk 0

A1

Disk 1

A2

Disk 2

A3

Disk 3

A4

A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7

B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7

Data

Block A1

File A:

(b)

Block A2 Block A3 Block A4

Figure 16.13
Striping of data
across multiple disks.
(a) Bit-level striping
across four disks.
(b) Block-level striping
across four disks.

18The formulas for MTBF calculations appear in Chen et al. (1994).

586 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

Another solution to the problem of reliability is to store extra information that is not
normally needed but that can be used to reconstruct the lost information in case of
disk failure. The incorporation of redundancy must consider two problems: select-
ing a technique for computing the redundant information, and selecting a method of
distributing the redundant information across the disk array. The first problem is
addressed by using error-correcting codes involving parity bits, or specialized codes
such as Hamming codes. Under the parity scheme, a redundant disk may be consid-
ered as having the sum of all the data in the other disks. When a disk fails, the miss-
ing information can be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redun-
dant information on a small number of disks or to distribute it uniformly across all
disks. The latter results in better load balancing. The different levels of RAID choose
a combination of these options to implement redundancy and improve reliability.

16.10.2 Improving Performance with RAID
The disk arrays employ the technique of data striping to achieve higher transfer
rates. Note that data can be read or written only one block at a time, so a typical
transfer contains 512 to 8,192 bytes. Disk striping may be applied at a finer granu-
larity by breaking up a byte of data into bits and spreading the bits to different
disks. Thus, bit-level data striping consists of splitting a byte of data and writing
bit j to the jth disk. With 8-bit bytes, eight physical disks may be considered as one
logical disk with an eightfold increase in the data transfer rate. Each disk partici-
pates in each I/O request and the total amount of data read per request is eight
times as much. Bit-level striping can be generalized to a number of disks that is
either a multiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk
which is (n mod 4). Figure 16.13(a) shows bit-level striping of data.

The granularity of data interleaving can be higher than a bit; for example, blocks of
a file can be striped across disks, giving rise to block-level striping. Figure 16.13(b)
shows block-level data striping assuming the data file contains four blocks. With
block-level striping, multiple independent requests that access single blocks (small
requests) can be serviced in parallel by separate disks, thus decreasing the queuing
time of I/O requests. Requests that access multiple blocks (large requests) can be
parallelized, thus reducing their response time. In general, the more the number of
disks in an array, the larger the potential performance benefit. However, assuming
independent failures, the disk array of 100 disks collectively has 1/100th the reli-
ability of a single disk. Thus, redundancy via error-correcting codes and disk mir-
roring is necessary to provide reliability along with high performance.

16.10.3 RAID Organizations and Levels
Different RAID organizations were defined based on different combinations of the
two factors of granularity of data interleaving (striping) and pattern used to com-
pute redundant information. In the initial proposal, levels 1 through 5 of RAID
were proposed, and two additional levels—0 and 6—were added later.

 16.10 Parallelizing Disk Access Using RAID Technology 587

RAID level 0 uses data striping, has no redundant data, and hence has the best write
performance since updates do not have to be duplicated. It splits data evenly across
two or more disks. However, its read performance is not as good as RAID level 1,
which uses mirrored disks. In the latter, performance improvement is possible by
scheduling a read request to the disk with shortest expected seek and rotational
delay. RAID level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components. Thus, in
one particular version of this level, three redundant disks suffice for four original
disks, whereas with mirroring—as in level 1—four would be required. Level 2
includes both error detection and correction, although detection is generally not
required because broken disks identify themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out
which disk has failed. Levels 4 and 5 use block-level data striping, with level 5 dis-
tributing data and parity information across all disks. Figure 16.14(b) shows an
illustration of RAID level 5, where parity is shown with subscript p. If one disk fails,
the missing data is calculated based on the parity available from the remaining
disks. Finally, RAID level 6 applies the so-called P + Q redundancy scheme using
Reed-Soloman codes to protect against up to two disk failures by using just two
redundant disks.

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require
the reconstruction of a failed disk by reading multiple disks. Level 1 is used for
critical applications such as storing logs of transactions. Levels 3 and 5 are pre-
ferred for large volume storage, with level 3 providing higher transfer rates. Most
popular use of RAID technology currently uses level 0 (with striping), level 1 (with
mirroring), and level 5 with an extra drive for parity. A combination of multiple
RAID levels are also used—for example, 0 + 1 combines striping and mirroring

Disk 0 Disk 1

A1

B1

C1

Dp

A2

B2

Cp

D1

A3

Bp

C2

D2

Ap

B3

C3

D3

(a)

(b)

File A

File B

File C

File D

File A

File B

File C

File D

Figure 16.14
Some popular levels of RAID.
(a) RAID level 1: Mirroring of
data on two disks. (b) RAID
level 5: Striping of data with
distributed parity across four
disks.

588 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

using a minimum of four disks. Other nonstandard RAID levels include: RAID 1.5,
RAID 7, RAID-DP, RAID S or Parity RAID, Matrix RAID, RAID-K, RAID-Z,
RAIDn, Linux MD RAID 10, IBM ServeRAID 1E, and unRAID. A discussion of
these nonstandard levels is beyond the scope of this text. Designers of a RAID setup
for a given application mix have to confront many design decisions such as the level
of RAID, the number of disks, the choice of parity schemes, and grouping of disks
for block-level striping. Detailed performance studies on small reads and writes
(referring to I/O requests for one striping unit) and large reads and writes (referring
to I/O requests for one stripe unit from each disk in an error-correction group) have
been performed.

16.11 Modern Storage Architectures
In this section, we describe some recent developments in storage systems that are
becoming an integral part of most enterprise’s information system architectures.
We already mentioned the SATA and SAS interface, which has almost replaced the
previously popular SCSI (small computer system interface) in laptops and small
servers. The Fibre Channel (FC) interface is the predominant choice for storage
networks in data centers. We review some of the modern storage architectures next.

16.11.1 Storage Area Networks
With the rapid growth of electronic commerce, enterprise resource planning (ERP)
systems that integrate application data across organizations, and data warehouses
that keep historical aggregate information (see Chapter 29), the demand for storage
has gone up substantially. For today’s Internet-driven organizations, it has become
necessary to move from a static fixed data center-oriented operation to a more flex-
ible and dynamic infrastructure for the organizations’ information processing
requirements. The total cost of managing all data is growing so rapidly that in many
instances the cost of managing server-attached storage exceeds the cost of the server
itself. Furthermore, the procurement cost of storage is only a small fraction—typi-
cally, only 10 to 15% of the overall cost of storage management. Many users of
RAID systems cannot use the capacity effectively because it has to be attached in a
fixed manner to one or more servers. Therefore, most large organizations have
moved to a concept called storage area networks (SANs). In a SAN, online storage
peripherals are configured as nodes on a high-speed network and can be attached
and detached from servers in a very flexible manner.

Several companies have emerged as SAN providers and supply their own proprie-
tary topologies. They allow storage systems to be placed at longer distances from
the servers and provide different performance and connectivity options. Existing
storage management applications can be ported into SAN configurations using
Fibre Channel networks that encapsulate the legacy SCSI protocol. As a result, the
SAN-attached devices appear as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point
connections between servers and storage systems via Fiber Channel; use of a Fiber

 16.11 Modern Storage Architectures 589

Channel switch to connect multiple RAID systems, tape libraries, and so on to serv-
ers; and the use of Fiber Channel hubs and switches to connect servers and storage
systems in different configurations. Organizations can slowly move up from sim-
pler topologies to more complex ones by adding servers and storage devices as
needed. We do not provide further details here because they vary among SAN ven-
dors. The main advantages claimed include:

 ■ Flexible many-to-many connectivity among servers and storage devices
using Fiber Channel hubs and switches

 ■ Up to 10 km separation between a server and a storage system using appro-
priate fiber optic cables

 ■ Better isolation capabilities allowing nondisruptive addition of new periph-
erals and servers

 ■ High-speed data replication across multiple storage systems. Typical tech-
nologies use synchronous replication for local and asynchronous replication
for disaster recovery (DR) solutions.

SANs are growing very rapidly but are still faced with many problems, such as com-
bining storage options from multiple vendors and dealing with evolving standards
of storage management software and hardware. Most major companies are evaluat-
ing SANs as a viable option for database storage.

16.11.2 Network-Attached Storage
With the phenomenal growth in digital data, particularly generated from multi-
media and other enterprise applications, the need for high-performance storage
solutions at low cost has become extremely important. Network-attached storage
(NAS) devices are among the storage devices being used for this purpose. These
devices are, in fact, servers that do not provide any of the common server services,
but simply allow the addition of storage for file sharing. NAS devices allow vast
amounts of hard-disk storage space to be added to a network and can make that
space available to multiple servers without shutting them down for maintenance
and upgrades. NAS devices can reside anywhere on a local area network (LAN) and
may be combined in different configurations. A single hardware device, often called
the NAS box or NAS head, acts as the interface between the NAS system and net-
work clients. These NAS devices require no monitor, keyboard, or mouse. One or
more disk or tape drives can be attached to many NAS systems to increase total
capacity. Clients connect to the NAS head rather than to the individual storage
devices. A NAS can store any data that appears in the form of files, such as e-mail
boxes, Web content, remote system backups, and so on. In that sense, NAS devices
are being deployed as a replacement for traditional file servers.

NAS systems strive for reliable operation and easy administration. They include
built-in features such as secure authentication, or the automatic sending of e-mail
alerts in case of error on the device. The NAS devices (or appliances, as some ven-
dors refer to them) are being offered with a high degree of scalability, reliability,

590 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

flexibility, and performance. Such devices typically support RAID levels 0, 1, and 5.
Traditional storage area networks (SANs) differ from NAS in several ways. Specifi-
cally, SANs often utilize Fibre Channel rather than Ethernet, and a SAN often
incorporates multiple network devices or endpoints on a self-contained or private
LAN, whereas NAS relies on individual devices connected directly to the existing
public LAN. Whereas Windows, UNIX, and NetWare file servers each demand
specific protocol support on the client side, NAS systems claim greater operating
system independence of clients. In summary, NAS provides a file system interface
with support for networked files using protocols such as common internet file sys-
tem (CIFS) or network file system (NFS).

16.11.3 iSCSI and Other Network-Based Storage Protocols
A new protocol called iSCSI (Internet SCSI) has been proposed recently. It is a
block-storage protocol like SAN. It allows clients (called initiators) to send SCSI
commands to SCSI storage devices on remote channels. The main advantage of
iSCSI is that it does not require the special cabling needed by Fibre Channel and it
can run over longer distances using existing network infrastructure. By carrying
SCSI commands over IP networks, iSCSI facilitates data transfers over intranets
and manages storage over long distances. It can transfer data over local area net-
works (LANs), wide area networks (WANs), or the Internet.

iSCSI works as follows. When a DBMS needs to access data, the operating system
generates the appropriate SCSI commands and data request, which then go through
encapsulation and, if necessary, encryption procedures. A packet header is added
before the resulting IP packets are transmitted over an Ethernet connection. When
a packet is received, it is decrypted (if it was encrypted before transmission) and
disassembled, separating the SCSI commands and request. The SCSI commands go
via the SCSI controller to the SCSI storage device. Because iSCSI is bidirectional,
the protocol can also be used to return data in response to the original request.
Cisco and IBM have marketed switches and routers based on this technology.

 iSCSI storage has mainly impacted small- and medium-sized businesses because
of its combination of simplicity, low cost, and the functionality of iSCSI devices. It
allows them not to learn the ins and outs of Fibre Channel (FC) technology and
instead benefit from their familiarity with the IP protocol and Ethernet hardware.
iSCSI implementations in the data centers of very large enterprise businesses are
slow in development due to their prior investment in Fibre Channel–based SANs.

iSCSI is one of two main approaches to storage data transmission over IP networks.
The other method, Fibre Channel over IP (FCIP), translates Fibre Channel control
codes and data into IP packets for transmission between geographically distant
Fibre Channel storage area networks. This protocol, known also as Fibre Channel
tunneling or storage tunneling, can only be used in conjunction with Fibre Channel
technology, whereas iSCSI can run over existing Ethernet networks.

The latest idea to enter the enterprise IP storage race is Fibre Channel over
 Ethernet (FCoE), which can be thought of as iSCSI without the IP. It uses many

 16.11 Modern Storage Architectures 591

elements of SCSI and FC (just like iSCSI), but it does not include TCP/IP compo-
nents. FCoE has been successfully productized by CISCO (termed “Data Center
Ethernet”) and Brocade. It takes advantage of a reliable ethernet technology that
uses buffering and end-to-end flow control to avoid dropped packets. This prom-
ises excellent performance, especially on 10 Gigabit Ethernet (10GbE), and is
 relatively easy for vendors to add to their products.

16.11.4 Automated Storage Tiering
Another trend in storage is automated storage tiering (AST), which automati-
cally moves data between different storage types such as SATA, SAS, and solid-
state drives (SSDs) depending on the need. The storage administrator can set up
a tiering policy in which less frequently used data is moved to slower and cheaper
SATA drives and more frequently used data is moved up to solid-state drives
(see Table 16.1 for the various tiers of storage ordered by increasing speed of
access). This automated tiering can improve database performance tremendously.

EMC has an implementation of this technology called FAST (fully automated stor-
age tiering) that does continuous monitoring of data activity and takes actions to
move the data to the appropriate tier based on the policy.

16.11.5 Object-Based Storage
During the last few years, there have been major developments in terms of rapid
growth of the cloud concept, distributed architectures for databases and for analyt-
ics, and development of data-intensive applications on the Web (see Chapters 23,
24, and 25). These developments have caused fundamental changes in enterprise
storage infrastructure. The hardware-oriented file-based systems are evolving into
new open-ended architectures for storage. The latest among these is object-based
storage. Under this scheme, data is managed in the form of objects rather than files
made of blocks. Objects carry metadata that contains properties that can be used for
managing those objects. Each object carries a unique global identifier that is used to
locate it. Object storage has its origins in research projects at CMU (Gibson et al.,
1996) on scaling up of network attached storage and in the Oceanstore system at
UC Berkeley (Kubiatowicz et al., 2000), which attempted to build a global infra-
structure over all forms of trusted and untrusted servers for continuous access to
persistent data. There is no need to do lower level storage operations in terms of
capacity management or making decisions like what type of RAID architecture
should be used for fault protection.

Object storage also allows additional flexibility in terms of interfaces—it gives con-
trol to applications that can control the objects directly and also allows the objects
to be addressable across a wide namespace spanning multiple devices. Replication
and distribution of objects is also supported. In general, object storage is ideally
suited for scalable storage of massive amounts of unstructured data such as Web
pages, images, and audio/video clips and files. Object-based storage device com-
mands (OSDs) were proposed as part of SCSI protocol a long time ago but did not

592 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

become a commercial product until Seagate adopted OSDs in its Kinetic Open
Storage Platform. Currently, Facebook uses an object storage system to store pho-
tos at the level of over 350 Petabytes of storage; Spotify uses an object storage sys-
tem for storing songs; and Dropbox uses it for its storage infrastructure. Object
storage is the choice of many cloud offerings, such as Amazon’s AWS (Amazon
Web Service) S3, and Microsoft’s Azure, which stores files, relations, messages, and
so on as objects. Other examples of products include Hitachi’s HCP, EMC’s Atmos,
and Scality’s RING. Openstack Swift is an open source project that allows one to
use HTTP GET and PUT to retrieve and store objects—that’s basically the whole
API. Openstack Swift uses very cheap hardware, is fully fault resistant, automati-
cally takes advantage of geographic redundancy, and scales to very large numbers of
objects. Since object storage forces locking to occur at the object level, it is not
clear how suitable it is for concurrent transaction processing in high-throughput
transaction-oriented systems. Therefore, it is still not considered viable for main-
stream enterprise-level database applications.

16.12 Summary
We began this chapter by discussing the characteristics of memory hierarchies and
then concentrated on secondary storage devices. In particular, we focused on mag-
netic disks because they are still the preferred medium to store online database files.
Table 16.1 presented a perspective on the memory hierarchies and their current
capacities, access speeds, transfer rates, and costs.

Data on disk is stored in blocks; accessing a disk block is expensive because of the
seek time, rotational delay, and block transfer time. To reduce the average block
access time, double buffering can be used when accessing consecutive disk blocks.
(Other disk parameters are discussed in Appendix B.) We introduced the various
interface technologies in use today for disk drives and optical devices. We presented
a list of strategies employed to improve access of data from disks. We also intro-
duced solid-state drives, which are rapidly becoming popular, and optical drives,
which are mainly used as tertiary storage. We discussed the working of the buffer
manager, which is responsible for handling data requests and we presented various
buffer replacement policies. We presented different ways of storing file records on
disk. File records are grouped into disk blocks and can be fixed length or variable
length, spanned or unspanned, and of the same record type or mixed types. We dis-
cussed the file header, which describes the record formats and keeps track of the disk
addresses of the file blocks. Information in the file header is used by system software
accessing the file records.

Then we presented a set of typical commands for accessing individual file records
and discussed the concept of the current record of a file. We discussed how com-
plex record search conditions are transformed into simple search conditions that
are used to locate records in the file.

Three primary file organizations were then discussed: unordered, ordered, and
hashed. Unordered files require a linear search to locate records, but record

 Review Questions 593

insertion is very simple. We discussed the deletion problem and the use of dele-
tion markers.

Ordered files shorten the time required to read records in order of the ordering
field. The time required to search for an arbitrary record, given the value of its
ordering key field, is also reduced if a binary search is used. However, maintaining
the records in order makes insertion very expensive; thus the technique of using an
unordered overflow file to reduce the cost of record insertion was discussed. Over-
flow records are merged with the master file periodically, and deleted records are
physically dropped during file reorganization.

Hashing provides very fast access to an arbitrary record of a file, given the value of
its hash key. The most suitable method for external hashing is the bucket technique,
with one or more contiguous blocks corresponding to each bucket. Collisions caus-
ing bucket overflow are handled by open addressing, chaining, or multiple hashing.
Access on any nonhash field is slow, and so is ordered access of the records on any
field. We discussed three hashing techniques for files that grow and shrink in the
number of records dynamically: extendible, dynamic, and linear hashing. The first
two use the higher-order bits of the hash address to organize a directory. Linear
hashing is geared to keep the load factor of the file within a given range and adds
new buckets linearly.

We briefly discussed other possibilities for primary file storage and organization,
such as B-trees, and files of mixed records, which implement relationships among
records of different types physically as part of the storage structure. We reviewed
the recent advances in disk technology represented by RAID (redundant arrays of
inexpensive (or independent) disks), which has become a standard technique in
large enterprises to provide better reliability and fault tolerance features in storage.
Finally, we reviewed some modern trends in enterprise storage systems: storage
area networks (SANs), network-attached storage (NAS), iSCSI and other network
based protocols, automatic storage tiering, and finally object-based storage,
which is playing a major role in storage architecture of data centers offering
cloud-based services.

Review Questions
 16.1. What is the difference between primary and secondary storage?

 16.2. Why are disks, not tapes, used to store online database files?

 16.3. Define the following terms: disk, disk pack, track, block, cylinder, sector,
interblock gap, and read/write head.

 16.4. Discuss the process of disk initialization.

 16.5. Discuss the mechanism used to read data from or write data to the disk.

 16.6. What are the components of a disk block address?

594 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 16.7. Why is accessing a disk block expensive? Discuss the time components
involved in accessing a disk block.

 16.8. How does double buffering improve block access time?

 16.9. What are the reasons for having variable-length records? What types of sep-
arator characters are needed for each?

 16.10. Discuss the techniques for allocating file blocks on disk.

 16.11. What is the difference between a file organization and an access method?

 16.12. What is the difference between static and dynamic files?

 16.13. What are the typical record-at-a-time operations for accessing a file? Which
of these depend on the current file record?

 16.14. Discuss the techniques for record deletion.

 16.15. Discuss the advantages and disadvantages of using (a) an unordered file,
(b) an ordered file, and (c) a static hash file with buckets and chaining.
Which operations can be performed efficiently on each of these organiza-
tions, and which operations are expensive?

 16.16. Discuss the techniques for allowing a hash file to expand and shrink dynam-
ically. What are the advantages and disadvantages of each?

 16.17. What is the difference between the directories of extendible and dynamic
hashing?

 16.18. What are mixed files used for? What are other types of primary file organi-
zations?

 16.19. Describe the mismatch between processor and disk technologies.

 16.20. What are the main goals of the RAID technology? How does it achieve them?

 16.21. How does disk mirroring help improve reliability? Give a quantitative
example.

 16.22. What characterizes the levels in RAID organization?

 16.23. What are the highlights of the popular RAID levels 0, 1, and 5?

 16.24. What are storage area networks? What flexibility and advantages do they offer?

 16.25. Describe the main features of network-attached storage as an enterprise
storage solution.

 16.26. How have new iSCSI systems improved the applicability of storage area
networks?

 16.27. What are SATA, SAS, and FC protocols?

 16.28. What are solid-state drives (SSDs) and what advantage do they offer over
HDDs?

 Exercises 595

 16.29. What is the function of a buffer manager? What does it do to serve a request
for data?

 16.30. What are some of the commonly used buffer replacement strategies?

 16.31. What are optical and tape jukeboxes? What are the different types of optical
media served by optical drives?

 16.32. What is automatic storage tiering? Why is it useful?

 16.33. What is object-based storage? How is it superior to conventional storage
systems?

Exercises
 16.34. Consider a disk with the following characteristics (these are not parameters

of any particular disk unit): block size B = 512 bytes; interblock gap size
G = 128 bytes; number of blocks per track = 20; number of tracks per
 surface = 400. A disk pack consists of 15 double-sided disks.

a. What is the total capacity of a track, and what is its useful capacity
(excluding interblock gaps)?

b. How many cylinders are there?

c. What are the total capacity and the useful capacity of a cylinder?

d. What are the total capacity and the useful capacity of a disk pack?

e. Suppose that the disk drive rotates the disk pack at a speed of 2,400 rpm
(revolutions per minute); what are the transfer rate (tr) in bytes/msec and
the block transfer time (btt) in msec? What is the average rotational delay
(rd) in msec? What is the bulk transfer rate? (See Appendix B.)

f. Suppose that the average seek time is 30 msec. How much time does it
take (on the average) in msec to locate and transfer a single block, given
its block address?

g. Calculate the average time it would take to transfer 20 random blocks,
and compare this with the time it would take to transfer 20 consecutive
blocks using double buffering to save seek time and rotational delay.

 16.35. A file has r = 20,000 STUDENT records of fixed length. Each record has the
following fields: Name (30 bytes), Ssn (9 bytes), Address (40 bytes), PHONE
(10 bytes), Birth_date (8 bytes), Sex (1 byte), Major_dept_code (4 bytes),
Minor_dept_code (4 bytes), Class_code (4 bytes, integer), and Degree_program
(3 bytes). An additional byte is used as a deletion marker. The file is stored
on the disk whose parameters are given in Exercise 16.27.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assum-
ing an unspanned organization.

596 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

c. Calculate the average time it takes to find a record by doing a linear search
on the file if (i) the file blocks are stored contiguously, and double buffer-
ing is used; (ii) the file blocks are not stored contiguously.

d. Assume that the file is ordered by Ssn; by doing a binary search, calculate
the time it takes to search for a record given its Ssn value.

 16.36. Suppose that only 80% of the STUDENT records from Exercise 16.28 have a
value for Phone, 85% for Major_dept_code, 15% for Minor_dept_code, and 90%
for Degree_program; and suppose that we use a variable-length record file.
Each record has a 1-byte field type for each field in the record, plus the 1-byte
deletion marker and a 1-byte end-of-record marker. Suppose that we use a
spanned record organization, where each block has a 5-byte pointer to the
next block (this space is not used for record storage).

a. Calculate the average record length R in bytes.

b. Calculate the number of blocks needed for the file.

 16.37. Suppose that a disk unit has the following parameters: seek time s = 20 msec;
rotational delay rd = 10 msec; block transfer time btt = 1 msec; block size
B = 2400 bytes; interblock gap size G = 600 bytes. An EMPLOYEE file has
the following fields: Ssn, 9 bytes; Last_name, 20 bytes; First_name, 20 bytes;
Middle_init, 1 byte; Birth_date, 10 bytes; Address, 35 bytes; Phone, 12 bytes;
Supervisor_ssn, 9 bytes; Department, 4 bytes; Job_code, 4 bytes; deletion
marker, 1 byte. The EMPLOYEE file has r = 30,000 records, fixed-length
format, and unspanned blocking. Write appropriate formulas and calculate
the following values for the above EMPLOYEE file:

a. Calculate the record size R (including the deletion marker), the blocking
factor bfr, and the number of disk blocks b.

b. Calculate the wasted space in each disk block because of the unspanned
organization.

c. Calculate the transfer rate tr and the bulk transfer rate btr for this disk
unit (see Appendix B for definitions of tr and btr).

d. Calculate the average number of block accesses needed to search for an
arbitrary record in the file, using linear search.

e. Calculate in msec the average time needed to search for an arbitrary
record in the file, using linear search, if the file blocks are stored on con-
secutive disk blocks and double buffering is used.

f. Calculate in msec the average time needed to search for an arbitrary
record in the file, using linear search, if the file blocks are not stored on
consecutive disk blocks.

g. Assume that the records are ordered via some key field. Calculate the
average number of block accesses and the average time needed to search
for an arbitrary record in the file, using binary search.

 16.38. A PARTS file with Part# as the hash key includes records with the following
Part# values: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428,

 Exercises 597

3943, 4750, 6975, 4981, and 9208. The file uses eight buckets, numbered 0 to
7. Each bucket is one disk block and holds two records. Load these records
into the file in the given order, using the hash function h(K) = K mod 8. Cal-
culate the average number of block accesses for a random retrieval on Part#.

 16.39. Load the records of Exercise 16.31 into expandable hash files based on
extendible hashing. Show the structure of the directory at each step, and the
global and local depths. Use the hash function h(K) = K mod 128.

 16.40. Load the records of Exercise 16.31 into an expandable hash file, using linear
hashing. Start with a single disk block, using the hash function h0 = K mod 20,
and show how the file grows and how the hash functions change as the
records are inserted. Assume that blocks are split whenever an overflow
occurs, and show the value of n at each stage.

 16.41. Compare the file commands listed in Section 16.5 to those available on a file
access method you are familiar with.

 16.42. Suppose that we have an unordered file of fixed-length records that uses an
unspanned record organization. Outline algorithms for insertion, deletion,
and modification of a file record. State any assumptions you make.

 16.43. Suppose that we have an ordered file of fixed-length records and an unor-
dered overflow file to handle insertion. Both files use unspanned records.
Outline algorithms for insertion, deletion, and modification of a file record
and for reorganizing the file. State any assumptions you make.

 16.44. Can you think of techniques other than an unordered overflow file that can
be used to make insertions in an ordered file more efficient?

 16.45. Suppose that we have a hash file of fixed-length records, and suppose that
overflow is handled by chaining. Outline algorithms for insertion, deletion,
and modification of a file record. State any assumptions you make.

 16.46. Can you think of techniques other than chaining to handle bucket overflow
in external hashing?

 16.47. Write pseudocode for the insertion algorithms for linear hashing and for
extendible hashing.

 16.48. Write program code to access individual fields of records under each of the fol-
lowing circumstances. For each case, state the assumptions you make concern-
ing pointers, separator characters, and so on. Determine the type of information
needed in the file header in order for your code to be general in each case.

a. Fixed-length records with unspanned blocking

b. Fixed-length records with spanned blocking

c. Variable-length records with variable-length fields and spanned blocking

d. Variable-length records with repeating groups and spanned blocking

e. Variable-length records with optional fields and spanned blocking

f. Variable-length records that allow all three cases in parts c, d, and e

598 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 16.49. Suppose that a file initially contains r = 120,000 records of R = 200 bytes each
in an unsorted (heap) file. The block size B = 2,400 bytes, the average seek
time s = 16 ms, the average rotational latency rd = 8.3 ms, and the block
transfer time btt = 0.8 ms. Assume that 1 record is deleted for every 2 records
added until the total number of active records is 240,000.

a. How many block transfers are needed to reorganize the file?

b. How long does it take to find a record right before reorganization?

c. How long does it take to find a record right after reorganization?

 16.50. Suppose we have a sequential (ordered) file of 100,000 records where each
record is 240 bytes. Assume that B = 2,400 bytes, s = 16 ms, rd = 8.3 ms, and
btt = 0.8 ms. Suppose we want to make X independent random record reads
from the file. We could make X random block reads or we could perform
one exhaustive read of the entire file looking for those X records. The ques-
tion is to decide when it would be more efficient to perform one exhaustive
read of the entire file than to perform X individual random reads. That is,
what is the value for X when an exhaustive read of the file is more efficient
than random X reads? Develop this as a function of X.

 16.51. Suppose that a static hash file initially has 600 buckets in the primary area
and that records are inserted that create an overflow area of 600 buckets. If
we reorganize the hash file, we can assume that most of the overflow is elim-
inated. If the cost of reorganizing the file is the cost of the bucket transfers
(reading and writing all of the buckets) and the only periodic file operation
is the fetch operation, then how many times would we have to perform a
fetch (successfully) to make the reorganization cost effective? That is, the
reorganization cost and subsequent search cost are less than the search
cost before reorganization. Support your answer. Assume s = 16 msec,
rd = 8.3 msec, and btt = 1 msec.

 16.52. Suppose we want to create a linear hash file with a file load factor of 0.7 and
a blocking factor of 20 records per bucket, which is to contain 112,000
records initially.

a. How many buckets should we allocate in the primary area?

b. What should be the number of bits used for bucket addresses?

Selected Bibliography
Wiederhold (1987) has a detailed discussion and analysis of secondary storage
devices and file organizations as a part of database design. Optical disks are
described in Berg and Roth (1989) and analyzed in Ford and Christodoulakis
(1991). Flash memory is discussed by Dipert and Levy (1993). Ruemmler and
 Wilkes (1994) present a survey of the magnetic-disk technology. Most textbooks on
databases include discussions of the material presented here. Most data structures
textbooks, including Knuth (1998), discuss static hashing in more detail; Knuth has

 Selected Bibliography 599

a complete discussion of hash functions and collision resolution techniques, as well
as of their performance comparison. Knuth also offers a detailed discussion of tech-
niques for sorting external files. Textbooks on file structures include Claybrook
(1992), Smith and Barnes (1987), and Salzberg (1988); they discuss additional file
organizations including tree-structured files, and have detailed algorithms for
operations on files. Salzberg et al. (1990) describe a distributed external sorting
algorithm. File organizations with a high degree of fault tolerance are described by
Bitton and Gray (1988) and by Gray et al. (1990). Disk striping was proposed in
Salem and Garcia Molina (1986). The first paper on redundant arrays of inexpen-
sive disks (RAID) is by Patterson et al. (1988). Chen and Patterson (1990) and the
excellent survey of RAID by Chen et al. (1994) are additional references. Gro-
chowski and Hoyt (1996) discuss future trends in disk drives. Various formulas for
the RAID architecture appear in Chen et al. (1994).

Morris (1968) is an early paper on hashing. Extendible hashing is described in Fagin
et al. (1979). Linear hashing is described by Litwin (1980). Algorithms for insertion
and deletion for linear hashing are discussed with illustrations in Salzberg (1988).
Dynamic hashing, which we briefly introduced, was proposed by Larson (1978).
There are many proposed variations for extendible and linear hashing; for examples,
see Cesarini and Soda (1991), Du and Tong (1991), and Hachem and Berra (1992).

Gibson et al. (1997) describe a file server scaling approach for network-attached
storage, and Kubiatowicz et al. (2000) decribe the Oceanstore system for creating a
global utility infrastructure for storing persistent data. Both are considered pio-
neering approaches that led to the ideas for object-based storage. Mesnier et al.
(2003) give an overview of the object storage concept. The Lustre system (Braam &
Schwan, 2002) was one of the first object storage products and is used in the major-
ity of supercomputers, including the top two, namely China’s Tianhe-2 and
Oakridge National Lab’s Titan.

Details of disk storage devices can be found at manufacturer sites (for example,
http://www.seagate.com, http://www.ibm.com, http://www.emc.com, http://www.
hp.com, http://www.storagetek.com). IBM has a storage technology research center
at IBM Almaden (http://www.almaden.ibm.com). Additional useful sites include
CISCO storage solutions at cisco.com; Network Appliance (NetApp) at www.
netapp.com; Hitachi Data Storage (HDS) at www.hds.com, and SNIA (Storage Net-
working Industry Association) at www.snia.org. A number of industry white papers
are available at the aforementioned sites.

This page intentionally left blank

601

17
Indexing Structures for Files and

Physical Database Design

In this chapter, we assume that a file already exists with
some primary organization such as the unordered,

ordered, or hashed organizations that were described in Chapter 16. We will
describe additional auxiliary access structures called indexes, which are used to
speed up the retrieval of records in response to certain search conditions. The index
structures are additional files on disk that provide secondary access paths, which
provide alternative ways to access the records without affecting the physical place-
ment of records in the primary data file on disk. They enable efficient access to
records based on the indexing fields that are used to construct the index. Basically,
any field of the file can be used to create an index, and multiple indexes on different
fields—as well as indexes on multiple fields—can be constructed on the same file. A
variety of indexes are possible; each of them uses a particular data structure to speed
up the search. To find a record or records in the data file based on a search condi-
tion on an indexing field, the index is searched, which leads to pointers to one or
more disk blocks in the data file where the required records are located. The most
prevalent types of indexes are based on ordered files (single-level indexes) and use
tree data structures (multilevel indexes, B+-trees) to organize the index. Indexes can
also be constructed based on hashing or other search data structures. We also dis-
cuss indexes that are vectors of bits called bitmap indexes.

We describe different types of single-level ordered indexes—primary, secondary,
and clustering—in Section 17.1. By viewing a single-level index as an ordered file,
one can develop additional indexes for it, giving rise to the concept of multilevel
indexes. A popular indexing scheme called ISAM (indexed sequential access
method) is based on this idea. We discuss multilevel tree-structured indexes in Sec-
tion 17.2. In Section 17.3, we describe B-trees and B+-trees, which are data struc-
tures that are commonly used in DBMSs to implement dynamically changing

chapter 17

602 Chapter 17 Indexing Structures for Files and Physical Database Design

multilevel indexes. B+-trees have become a commonly accepted default structure
for generating indexes on demand in most relational DBMSs. Section 17.4 is devoted
to alternative ways to access data based on a combination of multiple keys. In Sec-
tion 17.5, we discuss hash indexes and introduce the concept of logical indexes,
which give an additional level of indirection from physical indexes and allow the
physical index to be flexible and extensible in its organization. In Section 17.6, we
discuss multikey indexing and bitmap indexes used for searching on one or more keys.
Section 17.7 covers physical design and Section 7.8 summarizes the chapter.

17.1 Types of Single-Level Ordered Indexes
The idea behind an ordered index is similar to that behind the index used in a text-
book, which lists important terms at the end of the book in alphabetical order along
with a list of page numbers where the term appears in the book. We can search the
book index for a certain term in the textbook to find a list of addresses—page num-
bers in this case—and use these addresses to locate the specified pages first and then
search for the term on each specified page. The alternative, if no other guidance is
given, would be to sift slowly through the whole textbook word by word to find the
term we are interested in; this corresponds to doing a linear search, which scans the
whole file. Of course, most books do have additional information, such as chapter
and section titles, which help us find a term without having to search through the
whole book. However, the index is the only exact indication of the pages where each
term occurs in the book.

For a file with a given record structure consisting of several fields (or attributes), an
index access structure is usually defined on a single field of a file, called an indexing
field (or indexing attribute).1 The index typically stores each value of the index field
along with a list of pointers to all disk blocks that contain records with that field
value. The values in the index are ordered so that we can do a binary search on the
index. If both the data file and the index file are ordered, and since the index file is
typically much smaller than the data file, searching the index using a binary search
is a better option. Tree-structured multilevel indexes (see Section 17.2) implement
an extension of the binary search idea that reduces the search space by two-way
partitioning at each search step to an n-ary partitioning approach that divides the
search space in the file n-ways at each stage.

There are several types of ordered indexes. A primary index is specified on the
ordering key field of an ordered file of records. Recall from Section 16.7 that an
ordering key field is used to physically order the file records on disk, and every
record has a unique value for that field. If the ordering field is not a key field—that
is, if numerous records in the file can have the same value for the ordering field—
another type of index, called a clustering index, can be used. The data file is called
a clustered file in this latter case. Notice that a file can have at most one physical
ordering field, so it can have at most one primary index or one clustering index, but

1We use the terms field and attribute interchangeably in this chapter.

 17.1 Types of Single-Level Ordered Indexes 603

not both. A third type of index, called a secondary index, can be specified on any
nonordering field of a file. A data file can have several secondary indexes in addition
to its primary access method. We discuss these types of single-level indexes in the
next three subsections.

17.1.1 Primary Indexes
A primary index is an ordered file whose records are of fixed length with two
fields, and it acts like an access structure to efficiently search for and access the
data records in a data file. The first field is of the same data type as the ordering
key field—called the primary key—of the data file, and the second field is a
pointer to a disk block (a block address). There is one index entry (or index
record) in the index file for each block in the data file. Each index entry has the
value of the primary key field for the first record in a block and a pointer to that
block as its two field values. We will refer to the two field values of index entry i as
<K(i), P(i)>. In the rest of this chapter, we refer to different types of index entries
< K (i), X > as follows:

 ■ X may be the physical address of a block (or page) in the file, as in the case of
P(i) above.

 ■ X may be the record address made up of a block address and a record id (or
offset) within the block.

 ■ X may be a logical address of the block or of the record within the file and is
a relative number that would be mapped to a physical address (see further
explanation in Section 17.6.1).

To create a primary index on the ordered file shown in Figure 16.7, we use the Name
field as primary key, because that is the ordering key field of the file (assuming that
each value of Name is unique). Each entry in the index has a Name value and a
pointer. The first three index entries are as follows:

<K(1) = (Aaron, Ed), P(1) = address of block 1>
<K(2) = (Adams, John), P(2) = address of block 2>
<K(3) = (Alexander, Ed), P(3) = address of block 3>

Figure 17.1 illustrates this primary index. The total number of entries in the index is
the same as the number of disk blocks in the ordered data file. The first record in
each block of the data file is called the anchor record of the block, or simply the
block anchor.2

Indexes can also be characterized as dense or sparse. A dense index has an index
entry for every search key value (and hence every record) in the data file. A sparse
(or nondense) index, on the other hand, has index entries for only some of the
search values. A sparse index has fewer entries than the number of records in
the file. Thus, a primary index is a nondense (sparse) index, since it includes an

2We can use a scheme similar to the one described here, with the last record in each block (rather than
the first) as the block anchor. This slightly improves the efficiency of the search algorithm.

604 Chapter 17 Indexing Structures for Files and Physical Database Design

Index file
(<K(i), P(i)> entries)

Block anchor
primary key

value
Block

pointer

Data file
(Primary
key field)

Name

Aaron, Ed
Abbot, Diane

...

...

...

...

...

Acosta, Marc

Adams, John

Adams, Robin

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mack

Arnold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

Woods, Manny

Wright, Pam

Wyatt, Charles

Zimmer, Byron

Aaron, Ed

Adams, John

Alexander, Ed

Allen, Troy

Anderson, Zach

Arnold, Mack

Wong, James

Wright, Pam

...

...

...

. .
 .

. .
 .

Ssn Birth_date Job Salary Sex

Figure 17.1
Primary index on the ordering
key field of the file shown in
Figure 16.7.

 17.1 Types of Single-Level Ordered Indexes 605

entry for each disk block of the data file and the keys of its anchor record rather
than for every search value (or every record).3

The index file for a primary index occupies a much smaller space than does the data
file, for two reasons. First, there are fewer index entries than there are records in the
data file. Second, each index entry is typically smaller in size than a data record
because it has only two fields, both of which tend to be short in size; consequently,
more index entries than data records can fit in one block. Therefore, a binary search
on the index file requires fewer block accesses than a binary search on the data file.
Referring to Table 16.3, note that the binary search for an ordered data file required
log2b block accesses. But if the primary index file contains only bi blocks, then to
locate a record with a search key value requires a binary search of that index and
access to the block containing that record: a total of log2bi + 1 accesses.

A record whose primary key value is K lies in the block whose address is P(i), where
K(i) ≤ K < K(i + 1). The ith block in the data file contains all such records because of
the physical ordering of the file records on the primary key field. To retrieve a
record, given the value K of its primary key field, we do a binary search on the index
file to find the appropriate index entry i, and then retrieve the data file block whose
address is P(i).4 Example 1 illustrates the saving in block accesses that is attainable
when a primary index is used to search for a record.

Example 1. Suppose that we have an ordered file with r = 300,000 records stored on
a disk with block size B = 4,096 bytes.5 File records are of fixed size and are unspanned,
with record length R = 100 bytes. The blocking factor for the file would be
bfr = ⎣(B/R)⎦ = ⎣(4,096/100)⎦ = 40 records per block. The number of blocks needed
for the file is b = ⎡(r/bfr)⎤ = ⎡(300,000/40)⎤ = 7,500 blocks. A binary search on the data
file would need approximately ⎡log2 b⎤= ⎡(log2 7,500)⎤ = 13 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointer
is P = 6 bytes long, and we have constructed a primary index for the file. The size of
each index entry is Ri = (9 + 6) = 15 bytes, so the blocking factor for the index is
bfri = ⎣(B/Ri)⎦ = ⎣(4,096/15)⎦ = 273 entries per block. The total number of index
entries ri is equal to the number of blocks in the data file, which is 7,500. The number
of index blocks is hence bi = ⎡(ri/bfri)⎤ = ⎡(7,500/273)⎤ = 28 blocks. To perform a
binary search on the index file would need ⎡(log2 bi)⎤ = ⎡(log2 28)⎤ = 5 block accesses.
To search for a record using the index, we need one additional block access to the data
file for a total of 5 + 1 = 6 block accesses—an improvement over binary search on the
data file, which required 13 disk block accesses. Note that the index with 7,500 entries
of 15 bytes each is rather small (112,500 or 112.5 Kbytes) and would typically be kept
in main memory thus requiring negligible time to search with binary search. In that
case we simply make one block access to retrieve the record.

3The sparse primary index has been called clustered (primary) index in some books and articles.
4Notice that the above formula would not be correct if the data file were ordered on a nonkey field; in that
case the same index value in the block anchor could be repeated in the last records of the previous block.
5Most DBMS vendors, including Oracle, are using 4K or 4,096 bytes as a standard block/page size.

606 Chapter 17 Indexing Structures for Files and Physical Database Design

A major problem with a primary index—as with any ordered file—is insertion and
deletion of records. With a primary index, the problem is compounded because if
we attempt to insert a record in its correct position in the data file, we must not
only move records to make space for the new record but also change some index
entries, since moving records will change the anchor records of some blocks. Using
an unordered overflow file, as discussed in Section 16.7, can reduce this problem.
Another possibility is to use a linked list of overflow records for each block in the
data file. This is similar to the method of dealing with overflow records described
with hashing in Section 16.8.2. Records within each block and its overflow linked
list can be sorted to improve retrieval time. Record deletion is handled using dele-
tion markers.

17.1.2 Clustering Indexes
If file records are physically ordered on a nonkey field—which does not have a dis-
tinct value for each record—that field is called the clustering field and the data file
is called a clustered file. We can create a different type of index, called a clustering
index, to speed up retrieval of all the records that have the same value for the clus-
tering field. This differs from a primary index, which requires that the ordering
field of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of the
same type as the clustering field of the data file, and the second field is a disk block
pointer. There is one entry in the clustering index for each distinct value of the
clustering field, and it contains the value and a pointer to the first block in the data
file that has a record with that value for its clustering field. Figure 17.2 shows an
example. Notice that record insertion and deletion still cause problems because
the data records are physically ordered. To alleviate the problem of insertion, it is
common to reserve a whole block (or a cluster of contiguous blocks) for each value
of the clustering field; all records with that value are placed in the block (or block
cluster). This makes insertion and deletion relatively straightforward. Figure 17.3
shows this scheme.

A clustering index is another example of a nondense index because it has an entry
for every distinct value of the indexing field, which is a nonkey by definition and
hence has duplicate values rather than a unique value for every record in the file.

Example 2. Suppose that we consider the same ordered file with r = 300,000
records stored on a disk with block size B = 4,096 bytes. Imagine that it is ordered by
the attribute Zipcode and there are 1,000 zip codes in the file (with an average 300
records per zip code, assuming even distribution across zip codes.) The index in this
case has 1,000 index entries of 11 bytes each (5-byte Zipcode and 6-byte block
pointer) with a blocking factor bfri = ⎣(B/Ri)⎦ = ⎣(4,096/11)⎦ = 372 index entries per
block. The number of index blocks is hence bi = ⎡(ri/bfri)⎤ = ⎡(1,000/372)⎤ = 3 blocks.
To perform a binary search on the index file would need ⎡(log2 bi)⎤ = ⎡(log2 3)⎤ = 2
block accesses. Again, this index would typically be loaded in main memory (occu-
pies 11,000 or 11 Kbytes) and takes negligible time to search in memory. One block
access to the data file would lead to the first record with a given zip code.

 17.1 Types of Single-Level Ordered Indexes 607

Data file
(Clustering

field)
Dept_number

1

1

1
2

Name Ssn Birth_date SalaryJob

2

3

3
3

3

3

4
4

5

5

5
5

6
6

6
6

6

8

8
8

1

2

3

4

5

6
8

Index file
(<K(i), P(i)> entries)

Clustering
field value

Block
pointer

Figure 17.2
A clustering index on the Dept_number
ordering nonkey field of an EMPLOYEE file.

There is some similarity between Figures 17.1, 17.2, and 17.3 and Figures 16.11
and 16.12. An index is somewhat similar to dynamic hashing (described in Sec-
tion 16.8.3) and to the directory structures used for extendible hashing. Both are
searched to find a pointer to the data block containing the desired record. A main
difference is that an index search uses the values of the search field itself, whereas a
hash directory search uses the binary hash value that is calculated by applying the
hash function to the search field.

608 Chapter 17 Indexing Structures for Files and Physical Database Design

Data file

Block pointer
NULL pointer

(Clustering
field)

Dept_number
1

1
2
3
4
5
6
8

1
1

Name Ssn Birth_date SalaryJob

Block pointer

2
2

Block pointer

3

3
3
3

Block pointer

3

Block pointer

4
4

Block pointer

5
5
5
5

Block pointer

6
6
6
6

Block pointer

6

Block pointer

8

8
8

NULL pointer

NULL pointer

NULL pointer

NULL pointer

NULL pointer

NULL pointer

Index file
(<K(i), P(i)> entries)

Clustering
field value

Block
pointer

Figure 17.3
Clustering index with a
separate block cluster
for each group of
records that share the
same value for the
clustering field.

 17.1 Types of Single-Level Ordered Indexes 609

17.1.3 Secondary Indexes
A secondary index provides a secondary means of accessing a data file for which
some primary access already exists. The data file records could be ordered, unor-
dered, or hashed. The secondary index may be created on a field that is a candidate
key and has a unique value in every record, or on a nonkey field with duplicate
values. The index is again an ordered file with two fields. The first field is of the
same data type as some nonordering field of the data file that is an indexing field.
The second field is either a block pointer or a record pointer. Many secondary
indexes (and hence, indexing fields) can be created for the same file—each repre-
sents an additional means of accessing that file based on some specific field.

First we consider a secondary index access structure on a key (unique) field that has a
distinct value for every record. Such a field is sometimes called a secondary key; in the
relational model, this would correspond to any UNIQUE key attribute or to the primary
key attribute of a table. In this case there is one index entry for each record in the data
file, which contains the value of the field for the record and a pointer either to the block
in which the record is stored or to the record itself. Hence, such an index is dense.

Again we refer to the two field values of index entry i as <K(i), P(i)>. The entries are
ordered by value of K(i), so we can perform a binary search. Because the records of
the data file are not physically ordered by values of the secondary key field, we cannot
use block anchors. That is why an index entry is created for each record in the data
file, rather than for each block, as in the case of a primary index. Figure 17.4 illustrates
a secondary index in which the pointers P(i) in the index entries are block pointers,
not record pointers. Once the appropriate disk block is transferred to a main memory
buffer, a search for the desired record within the block can be carried out.

A secondary index usually needs more storage space and longer search time than
does a primary index, because of its larger number of entries. However, the improve-
ment in search time for an arbitrary record is much greater for a secondary index
than for a primary index, since we would have to do a linear search on the data file
if the secondary index did not exist. For a primary index, we could still use a binary
search on the main file, even if the index did not exist. Example 3 illustrates the
improvement in number of blocks accessed.

Example 3. Consider the file of Example 1 with r = 300,000 fixed-length records
of size R = 100 bytes stored on a disk with block size B = 4,096 bytes. The file has
b = 7,500 blocks, as calculated in Example 1. Suppose we want to search for a record
with a specific value for the secondary key—a nonordering key field of the file that is
V = 9 bytes long. Without the secondary index, to do a linear search on the file would
require b/2 = 7,500/2 = 3,750 block accesses on the average. Suppose that we con-
struct a secondary index on that nonordering key field of the file. As in Example 1, a
block pointer is P = 6 bytes long, so each index entry is Ri = (9 + 6) = 15 bytes, and the
blocking factor for the index is bfri = ⎣(B/Ri)⎦ = ⎣(4,096/15)⎦ = 273 index entries per
block. In a dense secondary index such as this, the total number of index entries ri is
equal to the number of records in the data file, which is 300,000. The number of blocks
needed for the index is hence bi = ⎡(ri/bfri)⎤ = ⎡(300,000/273)⎤ = 1,099 blocks.

610 Chapter 17 Indexing Structures for Files and Physical Database Design

Data file

Indexing field
(secondary
key field)

6
15

3

17

9
5

13
8

21

11

16
2

24

10

20
1

4

23

18
14

12

7

19
22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22
23

24

Index file
(<K(i), P(i)> entries)

Index
field value

Block
pointer

Figure 17.4
A dense secondary index (with block pointers) on a nonordering key field of a file.

 17.1 Types of Single-Level Ordered Indexes 611

A binary search on this secondary index needs ⎡(log2 bi)⎤ = ⎡(log21,099)⎤ = 11 block
accesses. To search for a record using the index, we need an additional block access
to the data file for a total of 11 + 1 = 12 block accesses—a vast improvement over the
3,750 block accesses needed on the average for a linear search, but slightly worse
than the 6 block accesses required for the primary index. This difference arose
because the primary index was nondense and hence shorter, with only 28 blocks in
length as opposed to the 1,099 blocks dense index here.

We can also create a secondary index on a nonkey, nonordering field of a file. In this
case, numerous records in the data file can have the same value for the indexing
field. There are several options for implementing such an index:

 ■ Option 1 is to include duplicate index entries with the same K(i) value—one
for each record. This would be a dense index.

 ■ Option 2 is to have variable-length records for the index entries, with a
repeating field for the pointer. We keep a list of pointers <P(i, 1), … , P(i, k)>
in the index entry for K(i)—one pointer to each block that contains a record
whose indexing field value equals K(i). In either option 1 or option 2, the
binary search algorithm on the index must be modified appropriately to
account for a variable number of index entries per index key value.

 ■ Option 3, which is more commonly used, is to keep the index entries them-
selves at a fixed length and have a single entry for each index field value, but
to create an extra level of indirection to handle the multiple pointers. In this
nondense scheme, the pointer P(i) in index entry <K(i), P(i)> points to a
disk block, which contains a set of record pointers; each record pointer in
that disk block points to one of the data file records with value K(i) for the
indexing field. If some value K(i) occurs in too many records, so that their
record pointers cannot fit in a single disk block, a cluster or linked list of
blocks is used. This technique is illustrated in Figure 17.5. Retrieval via the
index requires one or more additional block accesses because of the extra
level, but the algorithms for searching the index and (more importantly) for
inserting of new records in the data file are straightforward. The binary
search algorithm is directly applicable to the index file since it is ordered.
For range retrievals such as retrieving records where V1 ≤ K ≤ V2, block
pointers may be used in the pool of pointers for each value instead of the
record pointers. Then a union operation can be used on the pools of block
pointers corresponding to the entries from V1 to V2 in the index to eliminate
duplicates and the resulting blocks can be accessed. In addition, retrievals on
complex selection conditions may be handled by referring to the record
pointers from multiple non-key secondary indexes, without having to
retrieve many unnecessary records from the data file (see Exercise 17.24).

Notice that a secondary index provides a logical ordering on the records by the
indexing field. If we access the records in order of the entries in the secondary
index, we get them in order of the indexing field. The primary and clustering
indexes assume that the field used for physical ordering of records in the file is the
same as the indexing field.

612 Chapter 17 Indexing Structures for Files and Physical Database Design

Data file

(Indexing field)

Dept_number

3

5

1
6

Name Ssn Birth_date SalaryJob

2

3

4

8

6
8

4

1

6

5

2

5

5

1

6

3

6

3

8

3

1

2

3

4

5

6
8

Blocks of
record

pointers

Index file

(<K(i), P(i)> entries)

Field
value

Block
pointer

Figure 17.5
A secondary index
(with record pointers)
on a nonkey field
implemented using
one level of indirection
so that index entries
are of fixed length
and have unique
field values.

17.1.4 Summary
To conclude this section, we summarize the discussion of index types in two tables.
Table 17.1 shows the index field characteristics of each type of ordered single-level
index discussed—primary, clustering, and secondary. Table 17.2 summarizes the
properties of each type of index by comparing the number of index entries and
specifying which indexes are dense and which use block anchors of the data file.

 17.2 Multilevel Indexes 613

17.2 Multilevel Indexes
The indexing schemes we have described thus far involve an ordered index file. A
binary search is applied to the index to locate pointers to a disk block or to a record
(or records) in the file having a specific index field value. A binary search requires
approximately (log2 bi) block accesses for an index with bi blocks because each step
of the algorithm reduces the part of the index file that we continue to search by a
factor of 2. This is why we take the log function to the base 2. The idea behind a
multilevel index is to reduce the part of the index that we continue to search by
bfri, the blocking factor for the index, which is larger than 2. Hence, the search
space is reduced much faster. The value bfri is called the fan-out of the multilevel
index, and we will refer to it by the symbol fo. Whereas we divide the record search
space into two halves at each step during a binary search, we divide it n-ways
(where n = the fan-out) at each search step using the multilevel index. Searching a
multilevel index requires approximately (logfo bi) block accesses, which is a sub-
stantially smaller number than for a binary search if the fan-out is larger than 2. In
most cases, the fan-out is much larger than 2. Given a blocksize of 4,096, which is
most common in today’s DBMSs, the fan-out depends on how many (key + block
pointer) entries fit within a block. With a 4-byte block pointer (which would
accommodate 232 − 1 = 4.2 *109 blocks) and a 9-byte key such as SSN, the fan-out
comes to 315.

A multilevel index considers the index file, which we will now refer to as the first
(or base) level of a multilevel index, as an ordered file with a distinct value for each

Table 17.1 Types of Indexes Based on the Properties of the Indexing Field

Index Field Used for Physical
Ordering of the File

Index Field Not Used for Physical
Ordering of the File

Indexing field is key Primary index Secondary index (Key)

Indexing field is nonkey Clustering index Secondary index (NonKey)

Table 17.2 Properties of Index Types

Type of Index

Number of (First-Level)
Index Entries

Dense or Nondense
(Sparse)

Block Anchoring
on the Data File

Primary Number of blocks in data file Nondense Yes

Clustering Number of distinct index field
values

Nondense Yes/noa

Secondary (key) Number of records in data file Dense No

Secondary (nonkey) Number of recordsb or number
of distinct index field valuesc

Dense or Nondense No

aYes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
cFor options 2 and 3.

614 Chapter 17 Indexing Structures for Files and Physical Database Design

K(i). Therefore, by considering the first-level index file as a sorted data file, we can
create a primary index for the first level; this index to the first level is called the
second level of the multilevel index. Because the second level is a primary index, we
can use block anchors so that the second level has one entry for each block of the
first level. The blocking factor bfri for the second level—and for all subsequent
levels—is the same as that for the first-level index because all index entries are the
same size; each has one field value and one block address. If the first level has r1
entries, and the blocking factor—which is also the fan-out—for the index is
bfri = fo, then the first level needs ⎡(r1/fo)⎤ blocks, which is therefore the number of
entries r2 needed at the second level of the index.

We can repeat this process for the second level. The third level, which is a primary
index for the second level, has an entry for each second-level block, so the number
of third-level entries is r3 = ⎡(r2/fo)⎤. Notice that we require a second level only if the
first level needs more than one block of disk storage, and, similarly, we require a
third level only if the second level needs more than one block. We can repeat the
preceding process until all the entries of some index level t fit in a single block. This
block at the tth level is called the top index level.6 Each level reduces the number of
entries at the previous level by a factor of fo—the index fan-out—so we can use the
formula 1 ≤ (r1/((fo)t)) to calculate t. Hence, a multilevel index with r1 first-level
entries will have approximately t levels, where t = ⎡(logfo(r1))⎤. When searching the
index, a single disk block is retrieved at each level. Hence, t disk blocks are accessed
for an index search, where t is the number of index levels.

The multilevel scheme described here can be used on any type of index—whether it
is primary, clustering, or secondary—as long as the first-level index has distinct val-
ues for K(i) and fixed-length entries. Figure 17.6 shows a multilevel index built over
a primary index. Example 3 illustrates the improvement in number of blocks
accessed when a multilevel index is used to search for a record.

Example 4. Suppose that the dense secondary index of Example 3 is converted
into a multilevel index. We calculated the index blocking factor bfri = 273 index
entries per block, which is also the fan-out fo for the multilevel index; the number of
first-level blocks b1 = 1,099 blocks was also calculated. The number of second-level
blocks will be b2 = ⎡(b1/fo)⎤ = ⎡(1,099/273)⎤ = 5 blocks, and the number of third-
level blocks will be b3 = ⎡(b2/fo)⎤ = ⎡(5/273)⎤ = 1 block. Hence, the third level is the
top level of the index, and t = 3. To access a record by searching the multilevel index,
we must access one block at each level plus one block from the data file, so we need
t + 1 = 3 + 1 = 4 block accesses. Compare this to Example 3, where 12 block accesses
were needed when a single-level index and binary search were used.

Notice that we could also have a multilevel primary index, which would be non-
dense. Exercise 17.18(c) illustrates this case, where we must access the data block
from the file before we can determine whether the record being searched for is in
the file. For a dense index, this can be determined by accessing the first index level

6The numbering scheme for index levels used here is the reverse of the way levels are commonly defined
for tree data structures. In tree data structures, t is referred to as level 0 (zero), t − 1 is level 1, and so on.

 17.2 Multilevel Indexes 615

Data file

Primary
key field

Second (top)
level

Two-level index

2
5

8
12

15
21

24
29

35
36

39
41

44
46

51
52

55
58

63
66

71
78

80
82

85
89

2

35

55

85

First (base)
level

2

8

15

24

35

39

44

51

55

63

71

80

85

Figure 17.6
A two-level primary index resembling ISAM (indexed sequential access method) organization.

616 Chapter 17 Indexing Structures for Files and Physical Database Design

(without having to access a data block), since there is an index entry for every
record in the file.

A common file organization used in business data processing is an ordered file with a
multilevel primary index on its ordering key field. Such an organization is called an
indexed sequential file and was used in a large number of early IBM systems. IBM’s
ISAM organization incorporates a two-level index that is closely related to the organi-
zation of the disk in terms of cylinders and tracks (see Section 16.2.1). The first level is
a cylinder index, which has the key value of an anchor record for each cylinder of a
disk pack occupied by the file and a pointer to the track index for the cylinder. The
track index has the key value of an anchor record for each track in the cylinder and a
pointer to the track. The track can then be searched sequentially for the desired record
or block. Insertion is handled by some form of overflow file that is merged periodi-
cally with the data file. The index is re-created during file reorganization.

Algorithm 17.1 outlines the search procedure for a record in a data file that uses a
nondense multilevel primary index with t levels. We refer to entry i at level j of the
index as <Kj(i), Pj(i)>, and we search for a record whose primary key value is K. We
assume that any overflow records are ignored. If the record is in the file, there must
be some entry at level 1 with K1(i) ≤ K < K1(i + 1) and the record will be in the block
of the data file whose address is P1(i). Exercise 17.23 discusses modifying the search
algorithm for other types of indexes.

Algorithm 17.1. Searching a Nondense Multilevel Primary Index with t Levels

(*We assume the index entry to be a block anchor that is the first key per block*)
p ← address of top-level block of index;
for j ← t step − 1 to 1 do
 begin
 read the index block (at jth index level) whose address is p;
 search block p for entry i such that Kj (i) ≤ K < Kj(i + 1)
 (* if Kj(i)
 is the last entry in the block, it is sufficient to satisfy Kj(i) ≤ K *);
 p ← Pj(i) (* picks appropriate pointer at jth index level *)
 end;
 read the data file block whose address is p;
 search block p for record with key = K;

As we have seen, a multilevel index reduces the number of blocks accessed when
searching for a record, given its indexing field value. We are still faced with the
problems of dealing with index insertions and deletions, because all index levels are
physically ordered files. To retain the benefits of using multilevel indexing while
reducing index insertion and deletion problems, designers adopted a multilevel
index called a dynamic multilevel index that leaves some space in each of its blocks
for inserting new entries and uses appropriate insertion/deletion algorithms for
creating and deleting new index blocks when the data file grows and shrinks. It is
often implemented by using data structures called B-trees and B+-trees, which we
describe in the next section.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 617

17.3 Dynamic Multilevel Indexes Using
B-Trees and B+-Trees

B-trees and B+-trees are special cases of the well-known search data structure
known as a tree. We briefly introduce the terminology used in discussing tree data
structures. A tree is formed of nodes. Each node in the tree, except for a special
node called the root, has one parent node and zero or more child nodes. The root
node has no parent. A node that does not have any child nodes is called a leaf node;
a nonleaf node is called an internal node. The level of a node is always one more
than the level of its parent, with the level of the root node being zero.7 A subtree of
a node consists of that node and all its descendant nodes—its child nodes, the child
nodes of its child nodes, and so on. A precise recursive definition of a subtree is that
it consists of a node n and the subtrees of all the child nodes of n. Figure 17.7 illus-
trates a tree data structure. In this figure the root node is A, and its child nodes are
B, C, and D. Nodes E, J, C, G, H, and K are leaf nodes. Since the leaf nodes are at
different levels of the tree, this tree is called unbalanced.

In Section 17.3.1, we introduce search trees and then discuss B-trees, which can be
used as dynamic multilevel indexes to guide the search for records in a data file.
B-tree nodes are kept between 50 and 100 percent full, and pointers to the data
blocks are stored in both internal nodes and leaf nodes of the B-tree structure. In
Section 17.3.2 we discuss B+-trees, a variation of B-trees in which pointers to the
data blocks of a file are stored only in leaf nodes, which can lead to fewer levels and

7This standard definition of the level of a tree node, which we use throughout Section 17.3, is different
from the one we gave for multilevel indexes in Section 17.2.

A

CB

Subtree for node B

(Nodes E, J, C, G, H, and K are leaf nodes of the tree)

Root node (level 0)

Nodes at level 1D

Nodes at level 2DF I

Nodes at level 3I

HG

J

E

K

Figure 17.7
A tree data structure that shows an unbalanced tree.

618 Chapter 17 Indexing Structures for Files and Physical Database Design

higher-capacity indexes. In the DBMSs prevalent in the market today, the common
structure used for indexing is B+-trees.

17.3.1 Search Trees and B-Trees
A search tree is a special type of tree that is used to guide the search for a record,
given the value of one of the record’s fields. The multilevel indexes discussed in Sec-
tion 17.2 can be thought of as a variation of a search tree; each node in the multi-
level index can have as many as fo pointers and fo key values, where fo is the index
fan-out. The index field values in each node guide us to the next node, until we
reach the data file block that contains the required records. By following a pointer,
we restrict our search at each level to a subtree of the search tree and ignore all
nodes not in this subtree.

Search Trees. A search tree is slightly different from a multilevel index. A
search tree of order p is a tree such that each node contains at most p − 1 search
values and p pointers in the order <P1, K1, P2, K2, … , Pq−1, Kq−1, Pq>, where q ≤ p.
Each Pi is a pointer to a child node (or a NULL pointer), and each Ki is a search
value from some ordered set of values. All search values are assumed to be
unique.8 Figure 17.8 illustrates a node in a search tree. Two constraints must hold
at all times on the search tree:

 1. Within each node, K1 < K2 < … < Kq−1.

 2. For all values X in the subtree pointed at by Pi, we have Ki−1 < X < Ki for
1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q (see Figure 17.8).

Whenever we search for a value X, we follow the appropriate pointer Pi according
to the formulas in condition 2 above. Figure 17.9 illustrates a search tree of order
p = 3 and integer search values. Notice that some of the pointers Pi in a node may be
NULL pointers.

We can use a search tree as a mechanism to search for records stored in a disk file.
The values in the tree can be the values of one of the fields of the file, called the

8This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist and
the node structure and the navigation rules for the tree may be modified.

P1

P1

K1 Ki–1

Kq–1 < X

X

Ki–1 < X < Ki

X

X < K1

X

Pi Ki Kq–1 Pq.Figure 17.8
A node in a search
tree with pointers to
subtrees below it.

search field (which is the same as the index field if a multilevel index guides the
search). Each key value in the tree is associated with a pointer to the record in the
data file having that value. Alternatively, the pointer could be to the disk block con-
taining that record. The search tree itself can be stored on disk by assigning each
tree node to a disk block. When a new record is inserted in the file, we must update
the search tree by inserting an entry in the tree containing the search field value of
the new record and a pointer to the new record.

Algorithms are necessary for inserting and deleting search values into and from the
search tree while maintaining the preceding two constraints. In general, these algo-
rithms do not guarantee that a search tree is balanced, meaning that all of its leaf
nodes are at the same level.9 The tree in Figure 17.7 is not balanced because it has
leaf nodes at levels 1, 2, and 3. The goals for balancing a search tree are as follows:

 ■ To guarantee that nodes are evenly distributed, so that the depth of the tree
is minimized for the given set of keys and that the tree does not get skewed
with some nodes being at very deep levels

 ■ To make the search speed uniform, so that the average time to find any ran-
dom key is roughly the same

Minimizing the number of levels in the tree is one goal, another implicit goal is to
make sure that the index tree does not need too much restructuring as records are
inserted into and deleted from the main file. Thus we want the nodes to be as full as
possible and do not want any nodes to be empty if there are too many deletions.
Record deletion may leave some nodes in the tree nearly empty, thus wasting stor-
age space and increasing the number of levels. The B-tree addresses both of these
problems by specifying additional constraints on the search tree.

B-Trees. The B-tree has additional constraints that ensure that the tree is always
balanced and that the space wasted by deletion, if any, never becomes excessive.
The algorithms for insertion and deletion, though, become more complex in order
to maintain these constraints. Nonetheless, most insertions and deletions are sim-
ple processes; they become complicated only under special circumstances—namely,
whenever we attempt an insertion into a node that is already full or a deletion from

5

3

Tree node pointer

Null tree pointer

6 9

7 8 121

Figure 17.9
A search tree of
order p = 3.

9The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 619

620 Chapter 17 Indexing Structures for Files and Physical Database Design

a node that makes it less than half full. More formally, a B-tree of order p, when
used as an access structure on a key field to search for records in a data file, can be
defined as follows:

 1. Each internal node in the B-tree (Figure 17.10(a)) is of the form

<P1, <K1, Pr1>, P2, <K2, Pr2>, … , <Kq–1, Prq–1>, Pq>

where q ≤ p. Each Pi is a tree pointer—a pointer to another node in the
B-tree. Each Pri is a data pointer10—a pointer to the record whose search
key field value is equal to Ki (or to the data file block containing that record).

 2. Within each node, K1 < K2 < … < Kq−1.

 3. For all search key field values X in the subtree pointed at by Pi (the ith sub-
tree, see Figure 17.10(a)), we have:

Ki−1 < X < Ki for 1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q

 4. Each node has at most p tree pointers.

 5. Each node, except the root and leaf nodes, has at least ⎡(p/2)⎤ tree pointers.
The root node has at least two tree pointers unless it is the only node in
the tree.

 6. A node with q tree pointers, q ≤ p, has q − 1 search key field values (and
hence has q − 1 data pointers).

 7. All leaf nodes are at the same level. Leaf nodes have the same structure as
internal nodes except that all of their tree pointers Pi are NULL.

Figure 17.10(b) illustrates a B-tree of order p = 3. Notice that all search values K in
the B-tree are unique because we assumed that the tree is used as an access structure
on a key field. If we use a B-tree on a nonkey field, we must change the definition of
the file pointers Pri to point to a block—or a cluster of blocks—that contain the
pointers to the file records. This extra level of indirection is similar to option 3, dis-
cussed in Section 17.1.3, for secondary indexes.

A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero).
Once the root node is full with p − 1 search key values and we attempt to insert
another entry in the tree, the root node splits into two nodes at level 1. Only the
middle value is kept in the root node, and the rest of the values are split evenly
between the other two nodes. When a nonroot node is full and a new entry is
inserted into it, that node is split into two nodes at the same level, and the middle
entry is moved to the parent node along with two pointers to the new split nodes. If
the parent node is full, it is also split. Splitting can propagate all the way to the root
node, creating a new level if the root is split. We do not discuss algorithms for
B-trees in detail in this text,11 but we outline search and insertion procedures for
B+-trees in the next section.

10A data pointer is either a block address or a record address; the latter is essentially a block address
and a record offset within the block.
11For details on insertion and deletion algorithms for B-trees, consult Ramakrishnan and Gehrke (2003).

If deletion of a value causes a node to be less than half full, it is combined with its
neighboring nodes, and this can also propagate all the way to the root. Hence,
deletion can reduce the number of tree levels. It has been shown by analysis and
simulation that, after numerous random insertions and deletions on a B-tree, the
nodes are approximately 69% full when the number of values in the tree stabilizes.
This is also true of B+-trees. If this happens, node splitting and combining will
occur only rarely, so insertion and deletion become quite efficient. If the number
of values grows, the tree will expand without a problem—although splitting of
nodes may occur, so some insertions will take more time. Each B-tree node can
have at most p tree pointers, p − 1 data pointers, and p − 1 search key field values
(see Figure 17.10(a)).

In general, a B-tree node may contain additional information needed by the algo-
rithms that manipulate the tree, such as the number of entries q in the node and a
pointer to the parent node. Next, we illustrate how to calculate the number of blocks
and levels for a B-tree.

Example 5. Suppose that the search field is a nonordering key field, and we con-
struct a B-tree on this field with p = 23. Assume that each node of the B-tree is 69%
full. Each node, on the average, will have p * 0.69 = 23 * 0.69 or approximately

X Tree
pointer

Tree
pointer

Tree
pointer

(a)

(b)

P2

X

Data
pointer

Data
pointer

Data
pointer

5 o 8 Tree node pointero

6 o 7 o 9 o 12 o

Data pointer

Null tree pointer

1 o 3 o

Data
pointer

P1 Pr1K1 Ki–1 Prq–1Kq–1

X

Kq–1 < XKi–1 < X < Ki X < K1

Pi Pq.Pri–1 Ki Pri

Tree
pointer

o

Figure 17.10
B-tree structures. (a) A node in a B-tree with q − 1 search values. (b) A B-tree of order p = 3. The values were
inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 621

622 Chapter 17 Indexing Structures for Files and Physical Database Design

16 pointers and, hence, 15 search key field values. The average fan-out fo = 16.
We can start at the root and see how many values and pointers can exist, on the
average, at each subsequent level:

Root: 1 node 15 key entries 16 pointers

Level 1: 16 nodes 240 key entries 256 pointers

Level 2: 256 nodes 3,840 key entries 4,096 pointers

Level 3: 4,096 nodes 61,440 key entries

At each level, we calculated the number of key entries by multiplying the total num-
ber of pointers at the previous level by 15, the average number of entries in each
node. Hence, for the given block size (512 bytes), record/data pointer size (7 bytes),
tree/block pointer size (6 bytes), and search key field size (9bytes), a two-level B-tree
of order 23 with 69% occupancy holds 3,840 + 240 + 15 = 4,095 entries on the aver-
age; a three-level B-tree holds 65,535 entries on the average.

B-trees are sometimes used as primary file organizations. In this case, whole
records are stored within the B-tree nodes rather than just the <search key, record
pointer> entries. This works well for files with a relatively small number of records
and a small record size. Otherwise, the fan-out and the number of levels become too
great to permit efficient access.

In summary, B-trees provide a multilevel access structure that is a balanced tree
structure in which each node is at least half full. Each node in a B-tree of order p can
have at most p − 1 search values.

17.3.2 B+-Trees
Most implementations of a dynamic multilevel index use a variation of the B-tree data
structure called a B+-tree. In a B-tree, every value of the search field appears once at
some level in the tree, along with a data pointer. In a B+-tree, data pointers are stored
only at the leaf nodes of the tree; hence, the structure of leaf nodes differs from the
structure of internal nodes. The leaf nodes have an entry for every value of the search
field, along with a data pointer to the record (or to the block that contains this record)
if the search field is a key field. For a nonkey search field, the pointer points to a block
containing pointers to the data file records, creating an extra level of indirection.

The leaf nodes of the B+-tree are usually linked to provide ordered access on the
search field to the records. These leaf nodes are similar to the first (base) level of an
index. Internal nodes of the B+-tree correspond to the other levels of a multilevel
index. Some search field values from the leaf nodes are repeated in the internal
nodes of the B+-tree to guide the search. The structure of the internal nodes of a
B+-tree of order p (Figure 17.11(a)) is as follows:

 1. Each internal node is of the form

<P1, K1, P2, K2, … , Pq − 1, Kq −1, Pq>

where q ≤ p and each Pi is a tree pointer.

 2. Within each internal node, K1 < K2 < … < Kq−1.

 3. For all search field values X in the subtree pointed at by Pi, we have Ki−1 < X
≤ Ki for 1 < i < q; X ≤ Ki for i = 1; and Ki−1 < X for i = q (see Figure 17.11(a)).12

 4. Each internal node has at most p tree pointers.

 5. Each internal node, except the root, has at least ⎡(p/2)⎤ tree pointers. The
root node has at least two tree pointers if it is an internal node.

 6. An internal node with q pointers, q ≤ p, has q − 1 search field values.

The structure of the leaf nodes of a B+-tree of order p (Figure 17.11(b)) is as follows:

 1. Each leaf node is of the form

<<K1, Pr1>, <K2, Pr2>, … , <Kq−1, Prq−1>, Pnext>

where q ≤ p, each Pri is a data pointer, and Pnext points to the next leaf node
of the B+-tree.

 2. Within each leaf node, K1 ≤ K2 … , Kq−1, q ≤ p.

 3. Each Pri is a data pointer that points to the record whose search field value is
Ki or to a file block containing the record (or to a block of record pointers that
point to records whose search field value is Ki if the search field is not a key).

 4. Each leaf node has at least ⎡(p/2)⎤ values.

 5. All leaf nodes are at the same level.

12Our definition follows Knuth (1998). One can define a B+-tree differently by exchanging the < and ≤

symbols (Ki−1 ≤ X < Ki; Kq−1 ≤ X), but the principles remain the same.

(b) Pointer to
next leaf
node in
tree

Data
pointer

Data
pointer

Data
pointer

Data
pointer

Pr1K1 Pr2K2 Pri Prq–1 PnextKi Kq–1.

(a) P1 K1 Ki–1

Kq–1 < X

XX

 X < K1

X

Pi Ki Kq–1 Pq.

Tree
pointer

Tree
pointer

Tree
pointer

Ki–1 < X < Ki

Figure 17.11
The nodes of a B+-tree. (a) Internal node of a B+-tree with q − 1 search values. (b) Leaf node of a B+-tree with q − 1
search values and q − 1 data pointers.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 623

624 Chapter 17 Indexing Structures for Files and Physical Database Design

The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereas
the pointers in leaf nodes are data pointers to the data file records or blocks—except
for the Pnext pointer, which is a tree pointer to the next leaf node. By starting at the
leftmost leaf node, it is possible to traverse leaf nodes as a linked list, using the Pnext
pointers. This provides ordered access to the data records on the indexing field. A
Pprevious pointer can also be included. For a B+-tree on a nonkey field, an extra level
of indirection is needed similar to the one shown in Figure 17.5, so the Pr pointers
are block pointers to blocks that contain a set of record pointers to the actual
records in the data file, as discussed in option 3 of Section 17.1.3.

Because entries in the internal nodes of a B+-tree include search values and tree
pointers without any data pointers, more entries can be packed into an internal
node of a B+-tree than for a similar B-tree. Thus, for the same block (node) size, the
order p will be larger for the B+-tree than for the B-tree, as we illustrate in Example 6.
This can lead to fewer B+-tree levels, improving search time. Because the structures
for internal and for leaf nodes of a B+-tree are different, the order p can be different.
We will use p to denote the order for internal nodes and pleaf to denote the order
for leaf nodes, which we define as being the maximum number of data pointers in
a leaf node.

Example 6. To calculate the order p of a B+-tree, suppose that the search key field
is V = 9 bytes long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes,
and a block pointer/tree pointer is P = 6 bytes. An internal node of the B+-tree can
have up to p tree pointers and p − 1 search field values; these must fit into a single
block. Hence, we have:

(p * P) + ((p − 1) * V) ≤ B

(p * 6) + ((p − 1) * 9) ≤ 512

(15 * p) ≤ 512

We can choose p to be the largest value satisfying the above inequality, which gives
p = 34. This is larger than the value of 23 for the B-tree (it is left to the reader to
compute the order of the B-tree assuming same size pointers), resulting in a larger
fan-out and more entries in each internal node of a B+-tree than in the correspond-
ing B-tree. The leaf nodes of the B+-tree will have the same number of values and
pointers, except that the pointers are data pointers and a next pointer. Hence, the
order pleaf for the leaf nodes can be calculated as follows:

(pleaf * (Pr + V)) + P ≤ B

(pleaf * (7 + 9)) + 6 ≤ 512

(16 * pleaf) ≤ 506

It follows that each leaf node can hold up to pleaf = 31 key value/data pointer combi-
nations, assuming that the data pointers are record pointers.

As with the B-tree, we may need additional information—to implement the inser-
tion and deletion algorithms—in each node. This information can include the type
of node (internal or leaf), the number of current entries q in the node, and pointers
to the parent and sibling nodes. Hence, before we do the above calculations for p

and pleaf, we should reduce the block size by the amount of space needed for all such
information. The next example illustrates how we can calculate the number of
entries in a B+-tree.

Example 7. Suppose that we construct a B+-tree on the field in Example 6. To
calculate the approximate number of entries in the B+-tree, we assume that each
node is 69% full. On the average, each internal node will have 34 * 0.69 or approxi-
mately 23 pointers, and hence 22 values. Each leaf node, on the average, will hold
0.69 * pleaf = 0.69 * 31 or approximately 21 data record pointers. A B+-tree will have
the following average number of entries at each level:

Root: 1 node 22 key entries 23 pointers

Level 1: 23 nodes 506 key entries 529 pointers

Level 2: 529 nodes 11,638 key entries 12,167 pointers

Leaf level: 12,167 nodes 255,507 data record pointers

For the block size, pointer size, and search field size as in Example 6, a three-level
B+-tree holds up to 255,507 record pointers, with the average 69% occupancy of
nodes. Note that we considered the leaf node differently from the nonleaf nodes
and computed the data pointers in the leaf node to be 12,167 * 21 based on 69%
occupancy of the leaf node, which can hold 31 keys with data pointers. Compare
this to the 65,535 entries for the corresponding B-tree in Example 5. Because a
B-tree includes a data/record pointer along with each search key at all levels of
the tree, it tends to accommodate less number of keys for a given number of
index levels. This is the main reason that B+-trees are preferred to B-trees as
indexes to database files. Most DBMSs, such as Oracle, are creating all indexes as
B+-trees.

Search, Insertion, and Deletion with B+-Trees. Algorithm 17.2 outlines the
procedure using the B+-tree as the access structure to search for a record. Algo-
rithm 17.3 illustrates the procedure for inserting a record in a file with a B+-tree
access structure. These algorithms assume the existence of a key search field, and
they must be modified appropriately for the case of a B+-tree on a nonkey field. We
illustrate insertion and deletion with an example.

Algorithm 17.2. Searching for a Record with Search Key Field Value K, Using
a B+-Tree

n ← block containing root node of B+-tree;
read block n;
while (n is not a leaf node of the B+-tree) do
 begin
 q ← number of tree pointers in node n;
 if K ≤ n.K1 (*n.Ki refers to the ith search field value in node n*)
 then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
 else if K > n.Kq−1

 then n ← n.Pq

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 625

626 Chapter 17 Indexing Structures for Files and Physical Database Design

 else begin
 search node n for an entry i such that n.Ki−1 < K ≤n.Ki;
 n ← n.Pi

 end;
 read block n
 end;
search block n for entry (Ki, Pri) with K = Ki; (* search leaf node *)
if found
 then read data file block with address Pri and retrieve record
 else the record with search field value K is not in the data file;

Algorithm 17.3. Inserting a Record with Search Key Field Value K in a
B+-Tree of Order p

n ← block containing root node of B+-tree;
read block n; set stack S to empty;
while (n is not a leaf node of the B+-tree) do
 begin
 push address of n on stack S;
 (*stack S holds parent nodes that are needed in case of split*)
 q ← number of tree pointers in node n;
 if K ≤n.K1 (*n.Ki refers to the ith search field value in node n*)
 then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
 else if K ← n.Kq−1

 then n ← n.Pq

 else begin
 search node n for an entry i such that n.Ki−1 < K ≤n.Ki;
 n ← n.Pi

 end;
 read block n
 end;
search block n for entry (Ki,Pri) with K = Ki; (*search leaf node n*)
if found
 then record already in file; cannot insert
 else (*insert entry in B+-tree to point to record*)
 begin
 create entry (K, Pr) where Pr points to the new record;
 if leaf node n is not full
 then insert entry (K, Pr) in correct position in leaf node n
 else begin (*leaf node n is full with pleaf record pointers; is split*)
 copy n to temp (*temp is an oversize leaf node to hold extra entries*);
 insert entry (K, Pr) in temp in correct position;
 (*temp now holds pleaf + 1 entries of the form (Ki, Pri)*)
 new ← a new empty leaf node for the tree; new.Pnext ← n.Pnext ;
 j ← ⎡(pleaf + 1)/2 ⎤ ;
 n ← first j entries in temp (up to entry (Kj, Prj)); n.Pnext ← new;

 new ← remaining entries in temp; K ← Kj ;
 (* now we must move (K, new) and insert in parent internal node;

however, if parent is full, split may propagate*)
 finished ← false;
 repeat
 if stack S is empty
 then (←no parent node; new root node is created for the tree*)
 begin
 root ← a new empty internal node for the tree;
 root ← <n, K, new>; finished ← true;
 end
 else begin
 n ← pop stack S;
 if internal node n is not full
 then
 begin (*parent node not full; no split*)
 insert (K, new) in correct position in internal node n;
 finished ← true
 end
 else begin (* internal node n is full with p tree pointers;

overflow condition; node is split*)
 copy n to temp (*temp is an oversize internal node*);
 insert (K, new) in temp in correct position;
 (*temp now has p + 1 tree pointers*)
 new ← a new empty internal node for the tree;
 j ← ⎣((p + 1)/2⎦ ;
 n ← entries up to tree pointer Pj in temp;
 (*n contains <P1, K1, P2, K2, … , Pj−1, Kj−1, Pj >*)
 new ← entries from tree pointer Pj+1 in temp;
 (*new contains < Pj+1, Kj+1, … , Kp−1, Pp, Kp, Pp+1 >*)
 K ← Kj

 (* now we must move (K, new) and insert in
parentinternal node*)

 end
 end
 until finished
 end;
 end;

Figure 17.12 illustrates insertion of records in a B+-tree of order p = 3 and pleaf = 2. First,
we observe that the root is the only node in the tree, so it is also a leaf node. As soon as
more than one level is created, the tree is divided into internal nodes and leaf nodes.
Notice that every key value must exist at the leaf level, because all data pointers are at the
leaf level. However, only some values exist in internal nodes to guide the search. Notice
also that every value appearing in an internal node also appears as the rightmost value in
the leaf level of the subtree pointed at by the tree pointer to the left of the value.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 627

628 Chapter 17 Indexing Structures for Files and Physical Database Design

5 0 8 Insert 1: overflow (new level)0

5

1 0 5 0 8 0

5

3 5

5

3

3

8

3 7 8

8

Tree node pointer

Data pointer

Null tree pointerInsert 7

Insert 9

Insert 6: overflow (split, propagates)

Insert 3: overflow
(split)

Insert 12: overflow (split, propagates,
new level)

1 0 5 0 7 0 8 0

1 0 5 0

5 0 12 0

3 0

1 0 3 0

5 01 0 3 0

7 0 8 0

7 0 8 0

12 09 07 0 8 0

5

5

5 01 0 3 0 8 0 12 09 06 0 7 0

Insertion sequence: 8, 5, 1, 7, 3, 12, 9, 6

0

Figure 17.12
An example of insertion in a B+-tree with p = 3 and pleaf = 2.

When a leaf node is full and a new entry is inserted there, the node overflows and
must be split. The first j = ⎡((pleaf + 1)/2)⎤ entries in the original node are kept there,
and the remaining entries are moved to a new leaf node. The jth search value is
replicated in the parent internal node, and an extra pointer to the new node is cre-
ated in the parent. These must be inserted in the parent node in their correct
sequence. If the parent internal node is full, the new value will cause it to overflow
also, so it must be split. The entries in the internal node up to Pj—the jth tree pointer
after inserting the new value and pointer, where j = ⎣((p + 1)/2)⎦—are kept, whereas the
jth search value is moved to the parent, not replicated. A new internal node will hold the
entries from Pj+1 to the end of the entries in the node (see Algorithm 17.3). This
splitting can propagate all the way up to create a new root node and hence a new
level for the B+-tree.

Figure 17.13 illustrates deletion from a B+-tree. When an entry is deleted, it is
always removed from the leaf level. If it happens to occur in an internal node, it
must also be removed from there. In the latter case, the value to its left in the leaf
node must replace it in the internal node because that value is now the rightmost
entry in the subtree. Deletion may cause underflow by reducing the number of
entries in the leaf node to below the minimum required. In this case, we try to find
a sibling leaf node—a leaf node directly to the left or to the right of the node with
underflow—and redistribute the entries among the node and its sibling so that
both are at least half full; otherwise, the node is merged with its siblings and the
number of leaf nodes is reduced. A common method is to try to redistribute
entries with the left sibling; if this is not possible, an attempt to redistribute with
the right sibling is made. If this is also not possible, the three nodes are merged
into two leaf nodes. In such a case, underflow may propagate to internal nodes
because one fewer tree pointer and search value are needed. This can propagate
and reduce the tree levels.

Notice that implementing the insertion and deletion algorithms may require par-
ent and sibling pointers for each node, or the use of a stack as in Algorithm 17.3.
Each node should also include the number of entries in it and its type (leaf or
internal). Another alternative is to implement insertion and deletion as recursive
procedures.13

Variations of B-Trees and B+-Trees. To conclude this section, we briefly men-
tion some variations of B-trees and B+-trees. In some cases, constraint 5 on the
B-tree (or for the internal nodes of the B+–tree, except the root node), which
requires each node to be at least half full, can be changed to require each node to be
at least two-thirds full. In this case the B-tree has been called a B*-tree. In general,
some systems allow the user to choose a fill factor between 0.5 and 1.0, where the
latter means that the B-tree (index) nodes are to be completely full. It is also possi-
ble to specify two fill factors for a B+-tree: one for the leaf level and one for the
internal nodes of the tree. When the index is first constructed, each node is filled up

13For more details on insertion and deletion algorithms for B+-trees, consult Ramakrishnan and
Gehrke (2003).

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 629

630 Chapter 17 Indexing Structures for Files and Physical Database Design

7

1 6

7

1 6 9

Deletion sequence: 5, 12, 9

1 o 5 o 6

Delete 5

o 8 o 9 o 12 o7 o

1 o 6 o 8 o 9 o 12 o7 o

9

7

1 6 8

1 o 6 o 8 o 9 o7 o

Delete 12: underflow
(redistribute)

Delete 9: underflow
(merge with left, redistribute)6

1 7

1 o 6 o 8 o7 o

Figure 17.13
An example of deletion from a B+-tree.

to approximately the fill factors specified. Some investigators have suggested relax-
ing the requirement that a node be half full, and instead allow a node to become
completely empty before merging, to simplify the deletion algorithm. Simulation
studies show that this does not waste too much additional space under randomly
distributed insertions and deletions.

 17.4 Indexes on Multiple Keys 631

17.4 Indexes on Multiple Keys
In our discussion so far, we have assumed that the primary or secondary keys on
which files were accessed were single attributes (fields). In many retrieval and
update requests, multiple attributes are involved. If a certain combination of attri-
butes is used frequently, it is advantageous to set up an access structure to provide
efficient access by a key value that is a combination of those attributes.

For example, consider an EMPLOYEE file containing attributes Dno (department
number), Age, Street, City, Zip_code, Salary and Skill_code, with the key of Ssn (Social
Security number). Consider the query: List the employees in department number 4
whose age is 59. Note that both Dno and Age are nonkey attributes, which means
that a search value for either of these will point to multiple records. The following
alternative search strategies may be considered:

 1. Assuming Dno has an index, but Age does not, access the records having
Dno = 4 using the index, and then select from among them those records
that satisfy Age = 59.

 2. Alternately, if Age is indexed but Dno is not, access the records having
Age = 59 using the index, and then select from among them those records that
satisfy Dno = 4.

 3. If indexes have been created on both Dno and Age, both indexes may be
used; each gives a set of records or a set of pointers (to blocks or records). An
intersection of these sets of records or pointers yields those records or point-
ers that satisfy both conditions.

All of these alternatives eventually give the correct result. However, if the set of
records that meet each condition (Dno = 4 or Age = 59) individually are large, yet
only a few records satisfy the combined condition, then none of the above is an effi-
cient technique for the given search request. Note also that queries such as “find the
minimum or maximum age among all employees” can be answered just by using the
index on Age, without going to the data file. Finding the maximum or minimum age
within Dno = 4, however, would not be answerable just by processing the index
alone. Also, listing the departments in which employees with Age = 59 work will also
not be possible by processing just the indexes. A number of possibilities exist that
would treat the combination <Dno, Age> or <Age, Dno> as a search key made up of
multiple attributes. We briefly outline these techniques in the following sections. We
will refer to keys containing multiple attributes as composite keys.

17.4.1 Ordered Index on Multiple Attributes
All the discussion in this chapter so far still applies if we create an index on a search
key field that is a combination of <Dno, Age>. The search key is a pair of values
<4, 59> in the above example. In general, if an index is created on attributes
<A1, A2, … , An>, the search key values are tuples with n values: <v1, v2, … , vn>.

A lexicographic ordering of these tuple values establishes an order on this compos-
ite search key. For our example, all of the department keys for department number

632 Chapter 17 Indexing Structures for Files and Physical Database Design

3 precede those for department number 4. Thus <3, n> precedes <4, m> for any
values of m and n. The ascending key order for keys with Dno = 4 would be <4, 18>,
<4, 19>, <4, 20>, and so on. Lexicographic ordering works similarly to ordering of
character strings. An index on a composite key of n attributes works similarly to
any index discussed in this chapter so far.

17.4.2 Partitioned Hashing
Partitioned hashing is an extension of static external hashing (Section 16.8.2) that
allows access on multiple keys. It is suitable only for equality comparisons; range
queries are not supported. In partitioned hashing, for a key consisting of n compo-
nents, the hash function is designed to produce a result with n separate hash
addresses. The bucket address is a concatenation of these n addresses. It is then pos-
sible to search for the required composite search key by looking up the appropriate
buckets that match the parts of the address in which we are interested.

For example, consider the composite search key <Dno, Age>. If Dno and Age are
hashed into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address.
Suppose that Dno = 4 has a hash address ‘100’ and Age = 59 has hash address ‘10101’.
Then to search for the combined search value, Dno = 4 and Age = 59, one goes to
bucket address 100 10101; just to search for all employees with Age = 59, all buckets
(eight of them) will be searched whose addresses are ‘000 10101’, ‘001 10101’, …
and so on. An advantage of partitioned hashing is that it can be easily extended to
any number of attributes. The bucket addresses can be designed so that high-order
bits in the addresses correspond to more frequently accessed attributes. Addition-
ally, no separate access structure needs to be maintained for the individual attri-
butes. The main drawback of partitioned hashing is that it cannot handle range
queries on any of the component attributes. Additionally, most hash functions do
not maintain records in order by the key being hashed. Hence, accessing records in
lexicographic order by a combination of attributes such as <Dno, Age> used as a key
would not be straightforward or efficient.

17.4.3 Grid Files
Another alternative is to organize the EMPLOYEE file as a grid file. If we want to
access a file on two keys, say Dno and Age as in our example, we can construct a grid
array with one linear scale (or dimension) for each of the search attributes. Fig-
ure 17.14 shows a grid array for the EMPLOYEE file with one linear scale for Dno and
another for the Age attribute. The scales are made in a way as to achieve a uniform
distribution of that attribute. Thus, in our example, we show that the linear scale for
Dno has Dno = 1, 2 combined as one value 0 on the scale, whereas Dno = 5 corre-
sponds to the value 2 on that scale. Similarly, Age is divided into its scale of 0 to 5 by
grouping ages so as to distribute the employees uniformly by age. The grid array
shown for this file has a total of 36 cells. Each cell points to some bucket address
where the records corresponding to that cell are stored. Figure 17.14 also shows the
assignment of cells to buckets (only partially).

 17.5 Other Types of Indexes 633

Thus our request for Dno = 4 and Age = 59 maps into the cell (1, 5) corresponding
to the grid array. The records for this combination will be found in the correspond-
ing bucket. This method is particularly useful for range queries that would map into
a set of cells corresponding to a group of values along the linear scales. If a range
query corresponds to a match on the some of the grid cells, it can be processed by
accessing exactly the buckets for those grid cells. For example, a query for Dno ≤ 5
and Age > 40 refers to the data in the top bucket shown in Figure 17.14.

The grid file concept can be applied to any number of search keys. For example, for
n search keys, the grid array would have n dimensions. The grid array thus allows a
partitioning of the file along the dimensions of the search key attributes and provides
an access by combinations of values along those dimensions. Grid files perform well
in terms of reduction in time for multiple key access. However, they represent a
space overhead in terms of the grid array structure. Moreover, with dynamic files, a
frequent reorganization of the file adds to the maintenance cost.14

17.5 Other Types of Indexes

17.5.1 Hash Indexes
It is also possible to create access structures similar to indexes that are based on
hashing. The hash index is a secondary structure to access the file by using hashing
on a search key other than the one used for the primary data file organization. The
index entries are of the type <K, Pr> or <K, P>, where Pr is a pointer to the record
containing the key, or P is a pointer to the block containing the record for that key.
The index file with these index entries can be organized as a dynamically expand-
able hash file, using one of the techniques described in Section 16.8.3; searching for
an entry uses the hash search algorithm on K. Once an entry is found, the pointer Pr

Linear Scale for Age

EMPLOYEE file Bucket pool

Bucket pool

4

5

3

2
1
0

0 1 2 3 4 5

< 20 21–25 26–30 31–40 41–50 > 50

0 1 2 3 4 5

Dno

Linear scale
for Dno

0 1, 2

3, 4

5

6, 7

8

9, 10

1

2

3

4

5

Figure 17.14
Example of a grid array on
Dno and Age attributes.

14Insertion/deletion algorithms for grid files may be found in Nievergelt et al. (1984).

634 Chapter 17 Indexing Structures for Files and Physical Database Design

(or P) is used to locate the corresponding record in the data file. Figure 17.15 illus-
trates a hash index on the Emp_id field for a file that has been stored as a sequential
file ordered by Name. The Emp_id is hashed to a bucket number by using a hashing
function: the sum of the digits of Emp_id modulo 10. For example, to find Emp_id
51024, the hash function results in bucket number 2; that bucket is accessed first. It
contains the index entry < 51024, Pr >; the pointer Pr leads us to the actual record
in the file. In a practical application, there may be thousands of buckets; the bucket
number, which may be several bits long, would be subjected to the directory
schemes discussed in the context of dynamic hashing in Section 16.8.3. Other
search structures can also be used as indexes.

17.5.2 Bitmap Indexes
The bitmap index is another popular data structure that facilitates querying on
multiple keys. Bitmap indexing is used for relations that contain a large number of
rows. It creates an index for one or more columns, and each value or value range in

Bucket 0 Emp_id

.

12676 Marcus M . .

.

13646 Hanson M . .

.

21124 Dunhill M . .

.

23402 Clarke F . .

.

34723 Ferragamo F . .

.

41301 Zara F . .

.

51024 Bass M . .

.

62104 England M . .

.

71221 Abercombe F . .

.

81165 Gucci F . .

.

13646

21124

.

Lastname Sex

Bucket 1

23402

81165

.

Bucket 2

51024

12676

.

Bucket 3

62104

71221

.

Bucket 9

34723

41301

.

Figure 17.15
Hash-based
indexing.

 17.5 Other Types of Indexes 635

those columns is indexed. Typically, a bitmap index is created for those columns
that contain a fairly small number of unique values. To build a bitmap index on a
set of records in a relation, the records must be numbered from 0 to n with an id (a
record id or a row id) that can be mapped to a physical address made of a block
number and a record offset within the block.

A bitmap index is built on one particular value of a particular field (the column in
a relation) and is just an array of bits. Thus, for a given field, there is one separate
bitmap index (or a vector) maintained corresponding to each unique value in the
database. Consider a bitmap index for the column C and a value V for that column.
For a relation with n rows, it contains n bits. The ith bit is set to 1 if the row i has the
value V for column C; otherwise it is set to a 0. If C contains the valueset <v1, v2, … ,
vm> with m distinct values, then m bitmap indexes would be created for that col-
umn. Figure 17.16 shows the relation EMPLOYEE with columns Emp_id, Lname, Sex,
Zipcode, and Salary_grade (with just eight rows for illustration) and a bitmap index
for the Sex and Zipcode columns. As an example, if the bitmap for Sex = F, the bits
for Row_ids 1, 3, 4, and 7 are set to 1, and the rest of the bits are set to 0, the bitmap
indexes could have the following query applications:

 ■ For the query C1 = V1, the corresponding bitmap for value V1 returns the
Row_ids containing the rows that qualify.

 ■ For the query C1= V1 and C2 = V2 (a multikey search request), the two cor-
responding bitmaps are retrieved and intersected (logically AND-ed) to
yield the set of Row_ids that qualify. In general, k bitvectors can be inter-
sected to deal with k equality conditions. Complex AND-OR conditions can
also be supported using bitmap indexing.

 � For the query C1 = V1 or C2 = V2 or C3 = V3 (a multikey search request),
the three corresponding bitmaps for three different attributes are retrieved
and unioned (logically OR-ed) to yield the set of Row ids that qualify.

EMPLOYEE

Row_id Emp_id Lname Sex Zipcode Salary_grade
0 51024 Bass M 94040 ..
1 23402 Clarke F 30022 ..
2 62104 England M 19046 ..
3 34723 Ferragamo F 30022 ..
4 81165 Gucci F 19046 ..
5 13646 Hanson M 19046 ..
6 12676 Marcus M 30022 ..
7 41301 Zara F 94040 ..

Bitmap index for Sex

 M F
10100110 01011001

Bitmap index for Zipcode

Zipcode 19046 Zipcode 30022 Zipcode 94040
 00101100 01010010 10000001

Figure 17.16
Bitmap indexes for
Sex and Zipcode.

636 Chapter 17 Indexing Structures for Files and Physical Database Design

 ■ To retrieve a count of rows that qualify for the condition C1 = V1, the “1”
entries in the corresponding bitvector are counted.

 ■ Queries with negation, such as C1 ¬ = V1, can be handled by applying the
Boolean complement operation on the corresponding bitmap.

Consider the example relation EMPLOYEE in Figure 17.16 with bitmap indexes
on Sex and Zipcode. To find employees with Sex = F and Zipcode = 30022, we
intersect the bitmaps “01011001” and “01010010” yielding Row_ids 1 and 3.
Employees who do not live in Zipcode = 94040 are obtained by complementing
the bitvector “10000001” and yields Row_ids 1 through 6. In general, if we assume
uniform distribution of values for a given column, and if one column has 5 distinct
values and another has 10 distinct values, the join condition on these two can be
considered to have a selectivity of 1/50 (= 1/5 * 1/10). Hence, only about 2% of the
records would actually have to be retrieved. If a column has only a few values, like
the Sex column in Figure 17.16, retrieval of the Sex = M condition on average
would retrieve 50% of the rows; in such cases, it is better to do a complete scan
rather than use bitmap indexing.

In general, bitmap indexes are efficient in terms of the storage space that they need.
If we consider a file of 1 million rows (records) with record size of 100 bytes per
row, each bitmap index would take up only one bit per row and hence would use 1
million bits or 125 Kbytes. Suppose this relation is for 1 million residents of a state,
and they are spread over 200 ZIP Codes; the 200 bitmaps over Zipcodes contribute
200 bits (or 25 bytes) worth of space per row; hence, the 200 bitmaps occupy only
25% as much space as the data file. They allow an exact retrieval of all residents who
live in a given ZIP Code by yielding their Row_ids.

When records are deleted, renumbering rows and shifting bits in bitmaps becomes
expensive. Another bitmap, called the existence bitmap, can be used to avoid this
expense. This bitmap has a 0 bit for the rows that have been deleted but are still
physically present and a 1 bit for rows that actually exist. Whenever a row is inserted
in the relation, an entry must be made in all the bitmaps of all the columns that have
a bitmap index; rows typically are appended to the relation or may replace deleted
rows to minimize the impact on the reorganization of the bitmaps. This process still
constitutes an indexing overhead.

Large bitvectors are handled by treating them as a series of 32-bit or 64-bit vectors,
and corresponding AND, OR, and NOT operators are used from the instruction set
to deal with 32- or 64-bit input vectors in a single instruction. This makes bitvector
operations computationally very efficient.

Bitmaps for B+-Tree Leaf Nodes. Bitmaps can be used on the leaf nodes of
B+-tree indexes as well as to point to the set of records that contain each specific value
of the indexed field in the leaf node. When the B+-tree is built on a nonkey search
field, the leaf record must contain a list of record pointers alongside each value of
the indexed attribute. For values that occur very frequently, that is, in a large per-
centage of the relation, a bitmap index may be stored instead of the pointers. As an

 17.5 Other Types of Indexes 637

example, for a relation with n rows, suppose a value occurs in 10% of the file records.
A bitvector would have n bits, having the “1” bit for those Row_ids that contain that
search value, which is n/8 or 0.125n bytes in size. If the record pointer takes up 4
bytes (32 bits), then the n/10 record pointers would take up 4 * n/10 or 0.4n bytes.
Since 0.4n is more than 3 times larger than 0.125n, it is better to store the bitmap
index rather than the record pointers. Hence for search values that occur more fre-
quently than a certain ratio (in this case that would be 1/32), it is beneficial to use
bitmaps as a compressed storage mechanism for representing the record pointers in
B+-trees that index a nonkey field.

17.5.3 Function-Based Indexing
In this section, we discuss a new type of indexing, called function-based indexing,
that has been introduced in the Oracle relational DBMS as well as in some other
commercial products.15

The idea behind function-based indexing is to create an index such that the value
that results from applying some function on a field or a collection of fields becomes
the key to the index. The following examples show how to create and use function-
based indexes.

Example 1. The following statement creates a function-based index on the
EMPLOYEE table based on an uppercase representation of the Lname column, which
can be entered in many ways but is always queried by its uppercase representation.

CREATE INDEX upper_ix ON Employee (UPPER(Lname));

This statement will create an index based on the function UPPER(Lname), which returns
the last name in uppercase letters; for example, UPPER('Smith') will return ‘SMITH’.

Function-based indexes ensure that Oracle Database system will use the index
rather than perform a full table scan, even when a function is used in the search
predicate of a query. For example, the following query will use the index:

SELECT First_name, Lname
FROM Employee
WHERE UPPER(Lname)= "SMITH".

Without the function-based index, an Oracle Database might perform a full table
scan, since a B+-tree index is searched only by using the column value directly; the
use of any function on a column prevents such an index from being used.

Example 2. In this example, the EMPLOYEE table is supposed to contain two
fields—salary and commission_pct (commission percentage)—and an index is being
created on the sum of salary and commission based on the commission_pct.

CREATE INDEX income_ix
ON Employee(Salary + (Salary*Commission_pct));

15Rafi Ahmed contributed most of this section.

638 Chapter 17 Indexing Structures for Files and Physical Database Design

The following query uses the income_ix index even though the fields salary and
commission_pct are occurring in the reverse order in the query when compared to
the index definition.

SELECT First_name, Lname
FROM Employee
WHERE ((Salary*Commission_pct) + Salary) > 15000;

Example 3. This is a more advanced example of using function-based indexing
to define conditional uniqueness. The following statement creates a unique func-
tion-based index on the ORDERS table that prevents a customer from taking
advantage of a promotion id (“blowout sale”) more than once. It creates a compos-
ite index on the Customer_id and Promotion_id fields together, and it allows only one
entry in the index for a given Customer_id with the Promotion_id of “2” by declaring
it as a unique index.

CREATE UNIQUE INDEX promo_ix ON Orders
(CASE WHEN Promotion_id = 2 THEN Customer_id ELSE NULL END,
CASE WHEN Promotion_id = 2 THEN Promotion_id ELSE NULL END);

Note that by using the CASE statement, the objective is to remove from the index any
rows where Promotion_id is not equal to 2. Oracle Database does not store in the
B+-tree index any rows where all the keys are NULL. Therefore, in this example, we
map both Customer_id and Promotion_id to NULL unless Promotion_id is equal to 2. The
result is that the index constraint is violated only if Promotion_id is equal to 2, for
two (attempted insertions of) rows with the same Customer_id value.

17.6 Some General Issues Concerning Indexing

17.6.1 Logical versus Physical Indexes
In the earlier discussion, we have assumed that the index entries <K, Pr> (or <K, P>)
always include a physical pointer Pr (or P) that specifies the physical record address
on disk as a block number and offset. This is sometimes called a physical index, and
it has the disadvantage that the pointer must be changed if the record is moved to
another disk location. For example, suppose that a primary file organization is
based on linear hashing or extendible hashing; then, each time a bucket is split,
some records are allocated to new buckets and hence have new physical addresses.
If there was a secondary index on the file, the pointers to those records would have
to be found and updated, which is a difficult task.

To remedy this situation, we can use a structure called a logical index, whose index
entries are of the form <K, Kp>. Each entry has one value K for the secondary index-
ing field matched with the value Kp of the field used for the primary file organiza-
tion. By searching the secondary index on the value of K, a program can locate the
corresponding value of Kp and use this to access the record through the primary file
organization, using a primary index if available. Logical indexes thus introduce an

 17.6 Some General Issues Concerning Indexing 639

additional level of indirection between the access structure and the data. They are
used when physical record addresses are expected to change frequently. The cost of
this indirection is the extra search based on the primary file organization.

17.6.2 Index Creation
Many RDBMSs have a similar type of command for creating an index, although it is
not part of the SQL standard. The general form of this command is:

CREATE [UNIQUE] INDEX <index name>
ON <table name> (<column name> [<order>] { , <column name> [<order>] })
[CLUSTER] ;

The keywords UNIQUE and CLUSTER are optional. The keyword CLUSTER is used
when the index to be created should also sort the data file records on the indexing
attribute. Thus, specifying CLUSTER on a key (unique) attribute would create some
variation of a primary index, whereas specifying CLUSTER on a nonkey (nonu-
nique) attribute would create some variation of a clustering index. The value for
<order> can be either ASC (ascending) or DESC (descending), and it specifies
whether the data file should be ordered in ascending or descending values of the
indexing attribute. The default is ASC. For example, the following would create a
clustering (ascending) index on the nonkey attribute Dno of the EMPLOYEE file:

CREATE INDEX DnoIndex
ON EMPLOYEE (Dno)
CLUSTER ;

Index Creation Process: In many systems, an index is not an integral part of the
data file but can be created and discarded dynamically. That is why it is often called
an access structure. Whenever we expect to access a file frequently based on some
search condition involving a particular field, we can request the DBMS to create an
index on that field as shown above for the DnoIndex. Usually, a secondary index is
created to avoid physical ordering of the records in the data file on disk.

The main advantage of secondary indexes is that—theoretically, at least—they can
be created in conjunction with virtually any primary record organization. Hence, a
secondary index could be used to complement other primary access methods such
as ordering or hashing, or it could even be used with mixed files. To create a B+-tree
secondary index on some field of a file, if the file is large and contains millions of
records, neither the file nor the index would fit in main memory. Insertion of a
large number of entries into the index is done by a process called bulk loading the
index. We must go through all records in the file to create the entries at the leaf level
of the tree. These entries are then sorted and filled according to the specified fill fac-
tor; simultaneously, the other index levels are created. It is more expensive and
much harder to create primary indexes and clustering indexes dynamically, because
the records of the data file must be physically sorted on disk in order of the indexing
field. However, some systems allow users to create these indexes dynamically on
their files by sorting the file during index creation.

640 Chapter 17 Indexing Structures for Files and Physical Database Design

Indexing of Strings: There are a couple of issues that are of particular concern
when indexing strings. Strings can be variable length (e.g., VARCHAR data type in
SQL; see Chapter 6) and strings may be too long limiting the fan-out. If a B+-tree
index is to be built with a string as a search key, there may be an uneven number of
keys per index node and the fan-out may vary. Some nodes may be forced to split
when they become full regardless of the number of keys in them. The technique of
prefix compression alleviates the situation. Instead of storing the entire string in
the intermediate nodes, it stores only the prefix of the search key adequate to distin-
guish the keys that are being separated and directed to the subtree. For example, if
Lastname was a search key and we were looking for “Navathe”, the nonleaf node
may contain “Nac” for Nachamkin and “Nay” for Nayuddin as the two keys on
either side of the subtree pointer that we need to follow.

17.6.3 Tuning Indexes
The initial choice of indexes may have to be revised for the following reasons:

 ■ Certain queries may take too long to run for lack of an index.

 ■ Certain indexes may not get utilized at all.

 ■ Certain indexes may undergo too much updating because the index is on an
attribute that undergoes frequent changes.

Most DBMSs have a command or trace facility, which can be used by the DBA to
ask the system to show how a query was executed—what operations were per-
formed in what order and what secondary access structures (indexes) were used. By
analyzing these execution plans (we will discuss this term further in Chapter 18), it
is possible to diagnose the causes of the above problems. Some indexes may be
dropped and some new indexes may be created based on the tuning analysis.

The goal of tuning is to dynamically evaluate the requirements, which sometimes
fluctuate seasonally or during different times of the month or week, and to reorga-
nize the indexes and file organizations to yield the best overall performance. Drop-
ping and building new indexes is an overhead that can be justified in terms of
performance improvements. Updating of a table is generally suspended while an
index is dropped or created; this loss of service must be accounted for.

Besides dropping or creating indexes and changing from a nonclustered to a clus-
tered index and vice versa, rebuilding the index may improve performance. Most
RDBMSs use B+-trees for an index. If there are many deletions on the index key,
index pages may contain wasted space, which can be claimed during a rebuild oper-
ation. Similarly, too many insertions may cause overflows in a clustered index that
affect performance. Rebuilding a clustered index amounts to reorganizing the
entire table ordered on that key.

The available options for indexing and the way they are defined, created, and
reorganized vary from system to system. As an illustration, consider the sparse
and dense indexes we discussed in Section 17.1. A sparse index such as a primary
index will have one index pointer for each page (disk block) in the data file; a

 17.6 Some General Issues Concerning Indexing 641

dense index such as a unique secondary index will have an index pointer for each
record. Sybase provides clustering indexes as sparse indexes in the form of
B+-trees, whereas INGRES provides sparse clustering indexes as ISAM files and
dense clustering indexes as B+-trees. In some versions of Oracle and DB2, the
option of setting up a clustering index is limited to a dense index, and the DBA
has to work with this limitation.

17.6.4 Additional Issues Related to Storage
of Relations and Indexes

Using an Index for Managing Constraints and Duplicates: It is common to
use an index to enforce a key constraint on an attribute. While searching the index
to insert a new record, it is straightforward to check at the same time whether
another record in the file—and hence in the index tree—has the same key attribute
value as the new record. If so, the insertion can be rejected.

If an index is created on a nonkey field, duplicates occur; handling of these dupli-
cates is an issue the DBMS product vendors have to deal with and affects data stor-
age as well as index creation and management. Data records for the duplicate key
may be contained in the same block or may span multiple blocks where many
duplicates are possible. Some systems add a row id to the record so that records
with duplicate keys have their own unique identifiers. In such cases, the B+-tree
index may regard a <key, Row_id> combination as the de facto key for the index,
turning the index into a unique index with no duplicates. The deletion of a key K
from such an index would involve deleting all occurrences of that key K—hence the
deletion algorithm has to account for this.

In actual DBMS products, deletion from B+-tree indexes is also handled in various
ways to improve performance and response times. Deleted records may be marked
as deleted and the corresponding index entries may also not be removed until a
garbage collection process reclaims the space in the data file; the index is rebuilt
online after garbage collection.

Inverted Files and Other Access Methods: A file that has a secondary index
on every one of its fields is often called a fully inverted file. Because all indexes are
secondary, new records are inserted at the end of the file; therefore, the data file
itself is an unordered (heap) file. The indexes are usually implemented as B+-trees,
so they are updated dynamically to reflect insertion or deletion of records. Some
commercial DBMSs, such as Software AG’s Adabas, use this method extensively.

We referred to the popular IBM file organization called ISAM in Section 17.2.
Another IBM method, the virtual storage access method (VSAM), is somewhat
similar to the B+–tree access structure and is still being used in many commercial
systems.

Using Indexing Hints in Queries: DBMSs such as Oracle have a provision for
allowing hints in queries that are suggested alternatives or indicators to the query

642 Chapter 17 Indexing Structures for Files and Physical Database Design

processor and optimizer for expediting query execution. One form of hints is called
indexing hints; these hints suggest the use of an index to improve the execution of a
query. The hints appear as a special comment (which is preceded by +) and they
override all optimizer decisions, but they may be ignored by the optimizer if they
are invalid, irrelevant, or improperly formulated. We do not get into a detailed dis-
cussion of indexing hints, but illustrate with an example query.

For example, to retrieve the SSN, Salary, and department number for employees
working in department numbers with Dno less than 10:

SELECT /*+ INDEX (EMPLOYEE emp_dno_index) */ Emp_ssn, Salary, Dno
FROM EMPLOYEE
WHERE Dno < 10;

The above query includes a hint to use a valid index called emp_dno_index (which
is an index on the EMPLOYEE relation on Dno).

Column-Based Storage of Relations: There has been a recent trend to con-
sider a column-based storage of relations as an alternative to the traditional way of
storing relations row by row. Commercial relational DBMSs have offered B+-tree
indexing on primary as well as secondary keys as an efficient mechanism to support
access to data by various search criteria and the ability to write a row or a set of rows
to disk at a time to produce write-optimized systems. For data warehouses (to be
discussed in Chapter 29), which are read-only databases, the column-based storage
offers particular advantages for read-only queries. Typically, the column-store
RDBMSs consider storing each column of data individually and afford performance
advantages in the following areas:

 ■ Vertically partitioning the table column by column, so that a two-column
table can be constructed for every attribute and thus only the needed col-
umns can be accessed

 ■ Using column-wise indexes (similar to the bitmap indexes discussed in Sec-
tion 17.5.2) and join indexes on multiple tables to answer queries without
having to access the data tables

 ■ Using materialized views (see Chapter 7) to support queries on multiple
columns

Column-wise storage of data affords additional freedom in the creation of indexes,
such as the bitmap indexes discussed earlier. The same column may be present in
multiple projections of a table and indexes may be created on each projection. To
store the values in the same column, strategies for data compression, null-value
suppression, dictionary encoding techniques (where distinct values in the column
are assigned shorter codes), and run-length encoding techniques have been devised.
MonetDB/X100, C-Store, and Vertica are examples of such systems Some popular
systems (like Cassandra, Hbase, and Hypertable) have used column-based storage
effectively with the concept of wide column-stores. The storage of data in such
systems will be explained in the context of NOSQL systems that we will discuss
in Chapter 24.

 17.7 Physical Database Design in Relational Databases 643

17.7 Physical Database Design
in Relational Databases

In this section, we discuss the physical design factors that affect the performance of
applications and transactions, and then we comment on the specific guidelines for
RDBMSs in the context of what we discussed in Chapter 16 and this chapter so far.

17.7.1 Factors That Influence Physical Database Design
Physical design is an activity where the goal is not only to create the appropriate
structuring of data in storage, but also to do so in a way that guarantees good per-
formance. For a given conceptual schema, there are many physical design alterna-
tives in a given DBMS. It is not possible to make meaningful physical design
decisions and performance analyses until the database designer knows the mix of
queries, transactions, and applications that are expected to run on the database.
This is called the job mix for the particular set of database system applications. The
database administrators/designers must analyze these applications, their expected
frequencies of invocation, any timing constraints on their execution speed, the
expected frequency of update operations, and any unique constraints on attributes.
We discuss each of these factors next.

A. Analyzing the Database Queries and Transactions. Before undertaking
the physical database design, we must have a good idea of the intended use of the
database by defining in a high-level form the queries and transactions that are
expected to run on the database. For each retrieval query, the following informa-
tion about the query would be needed:

 1. The files (relations) that will be accessed by the query

 2. The attributes on which any selection conditions for the query are specified

 3. Whether the selection condition is an equality, inequality, or a range condition

 4. The attributes on which any join conditions or conditions to link multiple
tables or objects for the query are specified

 5. The attributes whose values will be retrieved by the query

The attributes listed in items 2 and 4 above are candidates for the definition of
access structures, such as indexes, hash keys, or sorting of the file.

For each update operation or update transaction, the following information
would be needed:

 1. The files that will be updated

 2. The type of operation on each file (insert, update, or delete)

 3. The attributes on which selection conditions for a delete or update are specified

 4. The attributes whose values will be changed by an update operation

Again, the attributes listed in item 3 are candidates for access structures on the files,
because they would be used to locate the records that will be updated or deleted. On

644 Chapter 17 Indexing Structures for Files and Physical Database Design

the other hand, the attributes listed in item 4 are candidates for avoiding an access
structure, since modifying them will require updating the access structures.

B. Analyzing the Expected Frequency of Invocation of Queries and
Transactions. Besides identifying the characteristics of expected retrieval que-
ries and update transactions, we must consider their expected rates of invocation.
This frequency information, along with the attribute information collected on
each query and transaction, is used to compile a cumulative list of the expected
frequency of use for all queries and transactions. This is expressed as the expected
frequency of using each attribute in each file as a selection attribute or a join attri-
bute, over all the queries and transactions. Generally, for large volumes of pro-
cessing, the informal 80–20 rule can be used: approximately 80% of the processing
is accounted for by only 20% of the queries and transactions. Therefore, in practi-
cal situations, it is rarely necessary to collect exhaustive statistics and invocation
rates on all the queries and transactions; it is sufficient to determine the 20% or so
most important ones.

C. Analyzing the Time Constraints of Queries and Transactions. Some que-
ries and transactions may have stringent performance constraints. For example, a
transaction may have the constraint that it should terminate within 5 seconds on
95% of the occasions when it is invoked, and that it should never take more than 20
seconds. Such timing constraints place further priorities on the attributes that are
candidates for access paths. The selection attributes used by queries and transac-
tions with time constraints become higher-priority candidates for primary access
structures for the files, because the primary access structures are generally the most
efficient for locating records in a file.

D. Analyzing the Expected Frequencies of Update Operations. A minimum
number of access paths should be specified for a file that is frequently updated,
because updating the access paths themselves slows down the update operations. For
example, if a file that has frequent record insertions has 10 indexes on 10 different
attributes, each of these indexes must be updated whenever a new record is inserted.
The overhead for updating 10 indexes can slow down the insert operations.

E. Analyzing the Uniqueness Constraints on Attributes. Access paths should
be specified on all candidate key attributes—or sets of attributes—that are either the
primary key of a file or unique attributes. The existence of an index (or other access
path) makes it sufficient to search only the index when checking this uniqueness
constraint, since all values of the attribute will exist in the leaf nodes of the index.
For example, when inserting a new record, if a key attribute value of the new record
already exists in the index, the insertion of the new record should be rejected, since
it would violate the uniqueness constraint on the attribute.

Once the preceding information is compiled, it is possible to address the physical
database design decisions, which consist mainly of deciding on the storage struc-
tures and access paths for the database files.

 17.7 Physical Database Design in Relational Databases 645

17.7.2 Physical Database Design Decisions
Most relational systems represent each base relation as a physical database file. The
access path options include specifying the type of primary file organization for each
relation and the attributes that are candidates for defining individual or composite
indexes. At most, one of the indexes on each file may be a primary or a clustering
index. Any number of additional secondary indexes can be created.

Design Decisions about Indexing. The attributes whose values are required
in equality or range conditions (selection operation) are those that are keys or
that participate in join conditions (join operation) requiring access paths, such
as indexes.

The performance of queries largely depends upon what indexes or hashing schemes
exist to expedite the processing of selections and joins. On the other hand, during
insert, delete, or update operations, the existence of indexes adds to the overhead.
This overhead must be justified in terms of the gain in efficiency by expediting que-
ries and transactions.

The physical design decisions for indexing fall into the following categories:

 1. Whether to index an attribute. The general rules for creating an index on
an attribute are that the attribute must either be a key (unique), or there
must be some query that uses that attribute either in a selection condition
(equality or range of values) or in a join condition. One reason for creating
multiple indexes is that some operations can be processed by just scanning
the indexes, without having to access the actual data file.

 2. What attribute or attributes to index on. An index can be constructed on a
single attribute, or on more than one attribute if it is a composite index. If
multiple attributes from one relation are involved together in several que-
ries, (for example, (Garment_style_#, Color) in a garment inventory database),
a multiattribute (composite) index is warranted. The ordering of attributes
within a multiattribute index must correspond to the queries. For instance,
the above index assumes that queries would be based on an ordering of col-
ors within a Garment_style_# rather than vice versa.

 3. Whether to set up a clustered index. At most, one index per table can be a
primary or clustering index, because this implies that the file be physically
ordered on that attribute. In most RDBMSs, this is specified by the keyword
CLUSTER. (If the attribute is a key, a primary index is created, whereas a
clustering index is created if the attribute is not a key.) If a table requires sev-
eral indexes, the decision about which one should be the primary or cluster-
ing index depends upon whether keeping the table ordered on that attribute
is needed. Range queries benefit a great deal from clustering. If several attri-
butes require range queries, relative benefits must be evaluated before decid-
ing which attribute to cluster on. If a query is to be answered by doing an
index search only (without retrieving data records), the corresponding index
should not be clustered, since the main benefit of clustering is achieved

646 Chapter 17 Indexing Structures for Files and Physical Database Design

when retrieving the records themselves. A clustering index may be set up as
a multiattribute index if range retrieval by that composite key is useful in
report creation (for example, an index on Zip_code, Store_id, and Product_id
may be a clustering index for sales data).

 4. Whether to use a hash index over a tree index. In general, RDBMSs use
B+-trees for indexing. However, ISAM and hash indexes are also provided in
some systems. B+-trees support both equality and range queries on the attri-
bute used as the search key. Hash indexes work well with equality condi-
tions, particularly during joins to find a matching record(s), but they do not
support range queries.

 5. Whether to use dynamic hashing for the file. For files that are very volatile—
that is, those that grow and shrink continuously—one of the dynamic hashing
schemes discussed in Section 16.9 would be suitable. Currently, such schemes
are not offered by many commercial RDBMSs.

17.8 Summary
In this chapter, we presented file organizations that involve additional access struc-
tures, called indexes, to improve the efficiency of retrieval of records from a data
file. These access structures may be used in conjunction with the primary file orga-
nizations discussed in Chapter 16, which are used to organize the file records them-
selves on disk.

Three types of ordered single-level indexes were introduced: primary, clustering,
and secondary. Each index is specified on a field of the file. Primary and cluster-
ing indexes are constructed on the physical ordering field of a file, whereas sec-
ondary indexes are specified on nonordering fields as additional access structures
to improve performance of queries and transactions. The field for a primary
index must also be a key of the file, whereas it is a nonkey field for a clustering
index. A single-level index is an ordered file and is searched using a binary search.
We showed how multilevel indexes can be constructed to improve the efficiency
of searching an index. An example is IBM’s popular indexed sequential access
method (ISAM), which is a multilevel index based on the cylinder/track configu-
ration on disk.

Next we showed how multilevel indexes can be implemented as B-trees and
B+-trees, which are dynamic structures that allow an index to expand and shrink
dynamically. The nodes (blocks) of these index structures are kept between half full
and completely full by the insertion and deletion algorithms. Nodes eventually sta-
bilize at an average occupancy of 69% full, allowing space for insertions without
requiring reorganization of the index for the majority of insertions. B+-trees can
generally hold more entries in their internal nodes than can B-trees, so they may
have fewer levels or hold more entries than does a corresponding B-tree.

We gave an overview of multiple key access methods, and we showed how an index
can be constructed based on hash data structures. We introduced the concept of

 Review Questions 647

partitioned hashing, which is an extension of external hashing to deal with mul-
tiple keys. We also introduced grid files, which organize data into buckets along
multiple dimensions, We discussed the hash index in some detail—it is a second-
ary structure to access the file by using hashing on a search key other than that
used for the primary organization. Bitmap indexing is another important type of
indexing used for querying by multiple keys and is particularly applicable on fields
with a small number of unique values. Bitmaps can also be used at the leaf nodes of
B+ tree indexes as well. We also discussed function-based indexing, which is being
provided by relational vendors to allow special indexes on a function of one or
more attributes.

We introduced the concept of a logical index and compared it with the physical
indexes we described before. They allow an additional level of indirection in index-
ing in order to permit greater freedom for movement of actual record locations on
disk. We discussed index creation in SQL, the process of bulk loading of index files
and indexing of strings. We discussed circumstances that point to tuning of indexes.
Then we reviewed some general topics related to indexing, including managing
constraints, using inverted indexes, and using indexing hints in queries; we com-
mented on column-based storage of relations, which is becoming a viable alterna-
tive for storing and accessing large databases. Finally, we discussed physical
database design of relational databases, which involves decisions related to storage
and accessing of data that we have been discussing in the current and the previous
chapter. This discussion was divided into factors that influence the design and the
types of decisions regarding whether to index an attribute, what attributes to
include in an index, clustered versus nonclustered indexes, hashed indexes, and
dynamic hashing.

Review Questions
 17.1. Define the following terms: indexing field, primary key field, clustering field,

secondary key field, block anchor, dense index, and nondense (sparse) index.

 17.2. What are the differences among primary, secondary, and clustering indexes?
How do these differences affect the ways in which these indexes are imple-
mented? Which of the indexes are dense, and which are not?

 17.3. Why can we have at most one primary or clustering index on a file, but several
secondary indexes?

 17.4. How does multilevel indexing improve the efficiency of searching an index file?

 17.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.

 17.6. What is the order p of a B+-tree? Describe the structure of both internal and
leaf nodes of a B+-tree.

 17.7. How does a B-tree differ from a B+-tree? Why is a B+-tree usually preferred
as an access structure to a data file?

648 Chapter 17 Indexing Structures for Files and Physical Database Design

 17.8. Explain what alternative choices exist for accessing a file based on multiple
search keys.

 17.9. What is partitioned hashing? How does it work? What are its limitations?

 17.10. What is a grid file? What are its advantages and disadvantages?

 17.11. Show an example of constructing a grid array on two attributes on some file.

 17.12. What is a fully inverted file? What is an indexed sequential file?

 17.13. How can hashing be used to construct an index?

 17.14. What is bitmap indexing? Create a relation with two columns and sixteen
tuples and show an example of a bitmap index on one or both.

 17.15. What is the concept of function-based indexing? What additional purpose
does it serve?

 17.16. What is the difference between a logical index and a physical index?

 17.17. What is column-based storage of a relational database?

Exercises
 17.18. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes

long, and a record pointer is PR = 7 bytes long. A file has r = 30,000
EMPLOYEE records of fixed length. Each record has the following fields:
Name (30 bytes),Ssn (9 bytes), Department_code (9 bytes), Address (40 bytes),
Phone (10 bytes), Birth_date (8 bytes), Sex (1 byte), Job_code (4 bytes), and
Salary (4 bytes, real number). An additional byte is used as a deletion marker.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assuming
an unspanned organization.

c. Suppose that the file is ordered by the key field Ssn and we want to con-
struct a primary index on Ssn. Calculate (i) the index blocking factor bfri
(which is also the index fan-out fo); (ii) the number of first-level index
entries and the number of first-level index blocks; (iii) the number of lev-
els needed if we make it into a multilevel index; (iv) the total number of
blocks required by the multilevel index; and (v) the number of block
accesses needed to search for and retrieve a record from the file—given
its Ssn value—using the primary index.

d. Suppose that the file is not ordered by the key field Ssn and we want to
construct a secondary index on Ssn. Repeat the previous exercise (part c)
for the secondary index and compare with the primary index.

e. Suppose that the file is not ordered by the nonkey field Department_code
and we want to construct a secondary index on Department_code, using

 Exercises 649

option 3 of Section 17.1.3, with an extra level of indirection that stores
record pointers. Assume there are 1,000 distinct values of Department_code
and that the EMPLOYEE records are evenly distributed among these
values. Calculate (i) the index blocking factor bfri (which is also the index
fan-out fo); (ii) the number of blocks needed by the level of indirection
that stores record pointers; (iii) the number of first-level index entries
and the number of first-level index blocks; (iv) the number of levels
needed if we make it into a multilevel index; (v) the total number of
blocks required by the multilevel index and the blocks used in the extra
level of indirection; and (vi) the approximate number of block accesses
needed to search for and retrieve all records in the file that have a specific
Department_code value, using the index.

f. Suppose that the file is ordered by the nonkey field Department_code and we
want to construct a clustering index on Department_code that uses block
anchors (every new value of Department_code starts at the beginning of a
new block). Assume there are 1,000 distinct values of Department_code and
that the EMPLOYEE records are evenly distributed among these values. Cal-
culate (i) the index blocking factor bfri (which is also the index fan-out fo);
(ii) the number of first-level index entries and the number of first-level
index blocks; (iii) the number of levels needed if we make it into a multi-
level index; (iv) the total number of blocks required by the multilevel index;
and (v) the number of block accesses needed to search for and retrieve all
records in the file that have a specific Department_code value, using the clus-
tering index (assume that multiple blocks in a cluster are contiguous).

g. Suppose that the file is not ordered by the key field Ssn and we want to
construct a B+-tree access structure (index) on Ssn. Calculate (i) the orders
p and pleaf of the B+-tree; (ii) the number of leaf-level blocks needed if
blocks are approximately 69% full (rounded up for convenience); (iii) the
number of levels needed if internal nodes are also 69% full (rounded up
for convenience); (iv) the total number of blocks required by the B+-tree;
and (v) the number of block accesses needed to search for and retrieve a
record from the file—given its Ssn value—using the B+-tree.

h. Repeat part g, but for a B-tree rather than for a B+-tree. Compare your
results for the B-tree and for the B+-tree.

 17.19. A PARTS file with Part# as the key field includes records with the following
Part# values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20,
24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. Suppose that the search field values
are inserted in the given order in a B+-tree of order p = 4 and pleaf = 3; show
how the tree will expand and what the final tree will look like.

 17.20. Repeat Exercise 17.19, but use a B-tree of order p = 4 instead of a B+-tree.

 17.21. Suppose that the following search field values are deleted, in the given order,
from the B+-tree of Exercise 17.19; show how the tree will shrink and show
the final tree. The deleted values are 65, 75, 43, 18, 20, 92, 59, 37.

650 Chapter 17 Indexing Structures for Files and Physical Database Design

 17.22. Repeat Exercise 17.21, but for the B-tree of Exercise 17.20.

 17.23. Algorithm 17.1 outlines the procedure for searching a nondense multilevel
primary index to retrieve a file record. Adapt the algorithm for each of the
following cases:

a. A multilevel secondary index on a nonkey nonordering field of a file.
Assume that option 3 of Section 17.1.3 is used, where an extra level of
indirection stores pointers to the individual records with the corres-
ponding index field value.

b. A multilevel secondary index on a nonordering key field of a file.

c. A multilevel clustering index on a nonkey ordering field of a file.

 17.24. Suppose that several secondary indexes exist on nonkey fields of a file,
implemented using option 3 of Section 17.1.3; for example, we could have
secondary indexes on the fields Department_code, Job_code, and Salary of the
EMPLOYEE file of Exercise 17.18. Describe an efficient way to search for and
retrieve records satisfying a complex selection condition on these fields,
such as (Department_code = 5 AND Job_code = 12 AND Salary = 50,000), using
the record pointers in the indirection level.

 17.25. Adapt Algorithms 17.2 and 17.3, which outline search and insertion proce-
dures for a B+-tree, to a B-tree.

 17.26. It is possible to modify the B+-tree insertion algorithm to delay the case
where a new level is produced by checking for a possible redistribution of
values among the leaf nodes. Figure 17.17 illustrates how this could be done
for our example in Figure 17.12; rather than splitting the leftmost leaf
node when 12 is inserted, we do a left redistribution by moving 7 to the leaf
node to its left (if there is space in this node). Figure 17.17 shows how the
tree would look when redistribution is considered. It is also possible to consider
right redistribution. Try to modify the B+-tree insertion algorithm to take
redistribution into account.

 17.27. Outline an algorithm for deletion from a B+-tree.

 17.28. Repeat Exercise 17.27 for a B-tree.

Selected Bibliography
Indexing: Bayer and McCreight (1972) introduced B-trees and associated algo-
rithms. Comer (1979) provides an excellent survey of B-trees and their history, and
variations of B-trees. Knuth (1998) provides detailed analysis of many search tech-
niques, including B-trees and some of their variations. Nievergelt (1974) discusses
the use of binary search trees for file organization. Textbooks on file structures,
including Claybrook (1992), Smith and Barnes (1987), and Salzberg (1988); the
algorithms and data structures textbook by Wirth (1985); as well as the database
textbook by Ramakrihnan and Gehrke (2003) discuss indexing in detail and may be

 Selected Bibliography 651

1 0 3 0 5 0 7 0 8 0

3 5

Insert 12: overflow (left
redistribution)

Insert 9: overflow (new level)

Insert 6: overflow (split)

1 0 3 0 5 0 7 0 8 0 12 0

1 0 3 0 5 0 7 0 8 0 9 0 12 0

12 0

3 7

3 9

7

1 0 3 0 5 0 6 0 7 0 8 0 9 0

3 6 9

7

Figure 17.17
B+-tree insertion with left redistribution.

consulted for search, insertion, and deletion algorithms for B-trees and B+-trees.
Larson (1981) analyzes index-sequential files, and Held and Stonebraker (1978)
compare static multilevel indexes with B-tree dynamic indexes. Lehman and Yao
(1981) and Srinivasan and Carey (1991) did further analysis of concurrent access to
B-trees. The books by Wiederhold (1987), Smith and Barnes (1987), and Salzberg
(1988), among others, discuss many of the search techniques described in this
chapter. Grid files are introduced in Nievergelt et al. (1984). Partial-match retrieval,
which uses partitioned hashing, is discussed in Burkhard (1976, 1979).

New techniques and applications of indexes and B+-trees are discussed in Lanka
and Mays (1991), Zobel et al. (1992), and Faloutsos and Jagadish (1992). Mohan

652 Chapter 17 Indexing Structures for Files and Physical Database Design

and Narang (1992) discuss index creation. The performance of various B–tree and
B+-tree algorithms is assessed in Baeza-Yates and Larson (1989) and Johnson and
Shasha (1993). Buffer management for indexes is discussed in Chan et al. (1992).
Column-based storage of databases was proposed by Stonebraker et al. (2005) in
the C-Store database system; MonetDB/X100 by Boncz et al. (2008) is another
implementation of the idea. Abadi et al. (2008) discuss the advantages of column
stores over row-stored databases for read-only database applications.

Physical Database Design: Wiederhold (1987) covers issues related to physical
design. O’Neil and O’Neil (2001) provides a detailed discussion of physical design
and transaction issues in reference to commercial RDBMSs. Navathe and Kersch-
berg (1986) discuss all phases of database design and point out the role of data dic-
tionaries. Rozen and Shasha (1991) and Carlis and March (1984) present different
models for the problem of physical database design. Shasha and Bonnet (2002) offer
an elaborate discussion of guidelines for database tuning. Niemiec (2008) is one
among several books available for Oracle database administration and tuning;
Schneider (2006) is focused on designing and tuning MySQL databases.

Query Processing
and Optimization

part 8

This page intentionally left blank

655

18
Strategies for Query Processing1

In this chapter, we discuss the techniques used inter-
nally by a DBMS to process high-level queries. A

query expressed in a high-level query language such as SQL must first be scanned,
parsed, and validated.2 The scanner identifies the query tokens—such as SQL key-
words, attribute names, and relation names—that appear in the text of the query,
whereas the parser checks the query syntax to determine whether it is formulated
according to the syntax rules (rules of grammar) of the query language. The query
must also be validated by checking that all attribute and relation names are valid
and semantically meaningful names in the schema of the particular database being
queried. An internal representation of the query is then created, usually as a tree
data structure called a query tree. It is also possible to represent the query using a
graph data structure called a query graph, which is generally a directed acyclic
graph (DAG). The DBMS must then devise an execution strategy or query plan
for retrieving the results of the query from the database files. A query has many pos-
sible execution strategies, and the process of choosing a suitable one for processing
a query is known as query optimization.

We defer a detailed discussion of query optimization to the next chapter. In this
chapter, we will primarily focus on how queries are processed and what algorithms
are used to perform individual operations within the query. Figure 18.1 shows the
different steps of processing a high-level query. The query optimizer module has
the task of producing a good execution plan, and the code generator generates the
code to execute that plan. The runtime database processor has the task of running
(executing) the query code, whether in compiled or interpreted mode, to produce
the query result. If a runtime error results, an error message is generated by the
runtime database processor.

chapter 18

1We appreciate Rafi Ahmed’s contributions in updating this chapter.
2We will not discuss the parsing and syntax-checking phase of query processing here; this material
is discussed in compiler texts.

656 Chapter 18 Strategies for Query Processing

The term optimization is actually a misnomer because in some cases the chosen
execution plan is not the optimal (or absolute best) strategy—it is just a reasonably
efficient or the best available strategy for executing the query. Finding the optimal
strategy is usually too time-consuming—except for the simplest of queries. In addi-
tion, trying to find the optimal query execution strategy requires accurate and
detailed information about the size of the tables and distributions of things such as
column values, which may not be always available in the DBMS catalog. Further-
more, additional information such as the size of the expected result must be derived
based on the predicates in the query. Hence, planning of a good execution strategy
may be a more accurate description than query optimization.

For lower-level navigational database languages in legacy systems—such as the net-
work DML or the hierarchical DL/1 the programmer must choose the query execu-
tion strategy while writing a database program. If a DBMS provides only a
navigational language, there is a limited opportunity for extensive query optimiza-
tion by the DBMS; instead, the programmer is given the capability to choose the
query execution strategy. On the other hand, a high-level query language—such as
SQL for relational DBMSs (RDBMSs) or OQL (see Chapter 12) for object DBMSs
(ODBMSs)—is more declarative in nature because it specifies what the intended
results of the query are rather than identifying the details of how the result should
be obtained. Query optimization is thus necessary for queries that are specified in a
high-level query language.

Query in a high-level language

Scanning, parsing, and validating

Immediate form of query

Query optimizer

Execution plan

Query code generator

Code to execute the query

Runtime database processor

Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever
needed (compiled mode)

Result of query

Figure 18.1
Typical steps when
processing a high-level
query.

 18.1 Translating SQL Queries into Relational Algebra and Other Operators 657

We will concentrate on describing query processing and optimization in the context
of an RDBMS because many of the techniques we describe have also been adapted
for other types of database management systems, such as ODBMSs.3 A relational
DBMS must systematically evaluate alternative query execution strategies and
choose a reasonably efficient or near-optimal strategy. Most DBMSs have a number
of general database access algorithms that implement relational algebra operations
such as SELECT or JOIN (see Chapter 8) or combinations of these operations. Only
execution strategies that can be implemented by the DBMS access algorithms and
that apply to the particular query, as well as to the particular physical database design,
can be considered by the query optimization module.

This chapter is organized as follows. Section 18.1 starts with a general discussion of
how SQL queries are typically translated into relational algebra queries and addi-
tional operations and then optimized. Then we discuss algorithms for implementing
relational algebra operations in Sections 18.2 through 18.6. In Section 18.7, we dis-
cuss the strategy for execution called pipelining. Section 18.8 briefly reviews the
strategy for parallel execution of the operators. Section 18.9 summarizes the chapter.

In the next chapter, we will give an overview of query optimization strategies. There
are two main techniques of query optimization that we will be discussing. The first
technique is based on heuristic rules for ordering the operations in a query execu-
tion strategy that works well in most cases but is not guaranteed to work well in
every case. The rules typically reorder the operations in a query tree. The second
technique involves cost estimation of different execution strategies and choosing
the execution plan that minimizes estimated cost. The topics covered in this chapter
require that the reader be familiar with the material presented in several earlier chap-
ters. In particular, the chapters on SQL (Chapters 6 and 7), relational algebra (Chap-
ter 8), and file structures and indexing (Chapters 16 and 17) are a prerequisite to this
chapter. Also, it is important to note that the topic of query processing and optimiza-
tion is vast, and we can only give an introduction to the basic principles and tech-
niques in this and the next chapter. Several important works are mentioned in the
Bibliography of this and the next chapter.

18.1 Translating SQL Queries into Relational
Algebra and Other Operators

In practice, SQL is the query language that is used in most commercial RDBMSs.
An SQL query is first translated into an equivalent extended relational algebra
expression—represented as a query tree data structure—that is then optimized.
Typically, SQL queries are decomposed into query blocks, which form the basic
units that can be translated into the algebraic operators and optimized. A query
block contains a single SELECT-FROM-WHERE expression, as well as GROUP BY

3There are some query processing and optimization issues and techniques that are pertinent only to
ODBMSs. However, we do not discuss them here because we give only an introduction to query
processing in this chapter and we do not discuss query optimization until Chapter 19.

658 Chapter 18 Strategies for Query Processing

and HAVING clauses if these are part of the block. Hence, nested queries within a
query are identified as separate query blocks. Because SQL includes aggregate
operators—such as MAX, MIN, SUM, and COUNT—these operators must also be
included in the extended algebra, as we discussed in Section 8.4.

Consider the following SQL query on the EMPLOYEE relation in Figure 5.5:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > (SELECT MAX (Salary)
 FROM EMPLOYEE
 WHERE Dno=5);

This query retrieves the names of employees (from any department in the com-
pany) who earn a salary that is greater than the highest salary in department 5. The
query includes a nested subquery and hence would be decomposed into two blocks.
The inner block is:

(SELECT MAX (Salary)
 FROM EMPLOYEE
 WHERE Dno=5)

This retrieves the highest salary in department 5. The outer query block is:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > c

where c represents the result returned from the inner block. The inner block could
be translated into the following extended relational algebra expression:

ℑMAX Salary(σDno=5(EMPLOYEE))

and the outer block into the expression:

πLname,Fname(σSalary>c(EMPLOYEE))

The query optimizer would then choose an execution plan for each query block.
Notice that in the above example, the inner block needs to be evaluated only once to
produce the maximum salary of employees in department 5, which is then used—as
the constant c—by the outer block. We called this a nested subquery block (which is
uncorrelated to the outer query block) in Section 7.1.2. It is more involved to opti-
mize the more complex correlated nested subqueries (see Section 7.1.3), where a
tuple variable from the outer query block appears in the WHERE-clause of the inner
query block. Many techniques are used in advanced DBMSs to unnest and optimize
correlated nested subqueries.

18.1.1 Additional Operators Semi-Join and Anti-Join
Most RDBMSs currently process SQL queries arising from various types of enterprise
applications that include ad hoc queries, standard canned queries with parameters,

 18.1 Translating SQL Queries into Relational Algebra and Other Operators 659

and queries for report generation. Additionally, SQL queries originate from OLAP
(online analytical processing) applications on data warehouses (we discuss data
warehousing in detail in Chapter 29). Some of these queries are transformed into
operations that are not part of the standard relational algebra we discussed in Chap-
ter 8. Two commonly used operations are semi-join and anti-join. Note that both
these operations are a type of join. Semi-join is generally used for unnesting EXISTS,
IN, and ANY subqueries.4 Here we represent semi-join by the following non-
standard syntax: T1.X S = T2.Y, where T1 is the left table and T2 is the right table of
the semi-join. The semantics of semi-join are as follows: A row of T1 is returned as
soon as T1.X finds a match with any value of T2.Y without searching for further
matches. This is in contrast to finding all possi ble matches in inner join.

Consider a slightly modified version of the schema in Figure 5.5 as follows:

EMPLOYEE (Ssn, Bdate, Address, Sex, Salary, Dno)
DEPARTMENT (Dnumber, Dname, Dmgrssn, Zipcode)

where a department is located in a specific zip code.

Let us consider the following query:

Q (SJ) : SELECT COUNT(*)
FROM DEPARTMENT D
WHERE D.Dnumber IN (SELECT E.Dno
 FROM EMPLOYEE E
 WHERE E.Salary > 200000)

Here we have a nested query which is joined by the connector IN.

To remove the nested query:

(SELECT E.Dno
 FROM EMPLOYEE E WHERE E.Salary > 200000)

is called as unnesting. It leads to the following query with an operation called
semi-join,5 which we show with a non-standard notation “S=” below:

SELECT COUNT(*)
FROM EMPLOYEE E, DEPARTMENT D
WHERE D.Dnumber S= E.Dno and E.Salary > 200000;

The above query is counting the number of departments that have employees who
make more than $200,000 annually. Here, the operation is to find the department
whose Dnumber attribute matches the value(s) for the Dno attribute of Employee
with that high salary.

4In some cases where duplicate rows are not relevant, inner join can also be used to unnest EXISTS
and ANY subqueries.
5Note that this semi-join operator is not the same as that used in distributed query processing.

660 Chapter 18 Strategies for Query Processing

In algebra, alternate notations exist. One common notation is shown in the follow-
ing figure.

Semi-join

Now consider another query:

Q (AJ) : SELECT COUNT(*)
FROM EMPLOYEE
WHERE EMPLOYEE.Dno NOT IN (SELECT DEPARTMENT.Dnumber
 FROM DEPARTMENT
 WHERE Zipcode =30332)

The above query counts the number of employees who do not work in departments
located in zip code 30332. Here, the operation is to find the employee tuples
whose Dno attribute does not match the value(s) for the Dnumber attribute in
DEPARTMENT for the given zip code. We are only interested in producing a
count of such employees, and performing an inner join of the two tables would, of
course, produce wrong results. In this case, therefore, the anti-join operator is used
while unnesting this query.

Anti-join is used for unnesting NOT EXISTS, NOT IN, and ALL subqueries. We
represent anti-join by the following nonstandard syntax: T1.x A = T2.y, where T1 is
the left table and T2 is the right table of the anti-join. The semantics of anti-join are
as follows: A row of T1 is rejected as soon as T1.x finds a match with any value
of T2.y. A row of T1 is returned, only if T1.x does not match with any value of T2.y.

In the following result of unnesting, we show the aforementioned anti-join with the
nonstandard symbol “A=” in the following:

SELECT COUNT(*)
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dno A= DEPARTMENT AND Zipcode =30332

In algebra, alternate notations exist. One common notation is shown in the follow-
ing figure.

Anti-join

18.2 Algorithms for External Sorting
Sorting is one of the primary algorithms used in query processing. For example,
whenever an SQL query specifies an ORDER BY-clause, the query result must be
sorted. Sorting is also a key component in sort-merge algorithms used for JOIN and

 18.2 Algorithms for External Sorting 661

other operations (such as UNION and INTERSECTION), and in duplicate elimination
algorithms for the PROJECT operation (when an SQL query specifies the DISTINCT
option in the SELECT clause). We will discuss one of these algorithms in this sec-
tion. Note that sorting of a particular file may be avoided if an appropriate index—
such as a primary or clustering index (see Chapter 17)—exists on the desired file
attribute to allow ordered access to the records of the file.

External sorting refers to sorting algorithms that are suitable for large files of
records stored on disk that do not fit entirely in main memory, such as most data-
base files.6 The typical external sorting algorithm uses a sort-merge strategy, which
starts by sorting small subfiles—called runs—of the main file and then merges the
sorted runs, creating larger sorted subfiles that are merged in turn. The sort-merge
algorithm, like other database algorithms, requires buffer space in main memory,
where the actual sorting and merging of the runs is performed. The basic algorithm,
outlined in Figure 18.2, consists of two phases: the sorting phase and the merging
phase. The buffer space in main memory is part of the DBMS cache—an area in the
computer’s main memory that is controlled by the DBMS. The buffer space is
divided into individual buffers, where each buffer is the same size in bytes as the size
of one disk block. Thus, one buffer can hold the contents of exactly one disk block.

In the sorting phase, runs (portions or pieces) of the file that can fit in the available
buffer space are read into main memory, sorted using an internal sorting algorithm,
and written back to disk as temporary sorted subfiles (or runs). The size of each run
and the number of initial runs (nR) are dictated by the number of file blocks (b)
and the available buffer space (nB). For example, if the number of available main
memory buffers nB = 5 disk blocks and the size of the file b = 1,024 disk blocks, then
nR= ⎡(b/nB)⎤ or 205 initial runs each of size 5 blocks (except the last run, which will
have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted
subfiles of the original file) are stored as temporary subfiles on disk.

In the merging phase, the sorted runs are merged during one or more merge passes.
Each merge pass can have one or more merge steps. The degree of merging (dM)
is the number of sorted subfiles that can be merged in each merge step. During each
merge step, one buffer block is needed to hold one disk block from each of the
sorted subfiles being merged, and one additional buffer is needed for containing
one disk block of the merge result, which will produce a larger sorted file that is the
result of merging several smaller sorted subfiles. Hence, dM is the smaller of (nB − 1)
and nR, and the number of merge passes is ⎡(logdM(nR))⎤. In our example,
where nB = 5, dM = 4 (four-way merging), so the 205 initial sorted runs would be
merged 4 at a time in each step into 52 larger sorted subfiles at the end of the first
merge pass. These 52 sorted files are then merged 4 at a time into 13 sorted files,
which are then merged into 4 sorted files, and then finally into 1 fully sorted file,
which means that four passes are needed.

6Internal sorting algorithms are suitable for sorting data structures, such as tables and lists, that can fit
entirely in main memory. These algorithms are described in detail in data structures and algorithms texts,
and include techniques such as quick sort, heap sort, bubble sort, and many others. We do not discuss
these here. Also, main-memory DBMSs such as HANA employ their own techniques for sorting.

662 Chapter 18 Strategies for Query Processing

The performance of the sort-merge algorithm can be measured in terms of the
number of disk block reads and writes (between the disk and main memory)
before the sorting of the whole file is completed. The following formula approxi-
mates this cost:

(2 * b) + (2 * b * (logdM nR))

The first term (2 * b) represents the number of block accesses for the sorting phase,
since each file block is accessed twice: once for reading into a main memory buffer
and once for writing the sorted records back to disk into one of the sorted subfiles.
The second term represents the number of block accesses for the merging phase.
During each merge pass, a number of disk blocks approximately equal to the original
file blocks b is read and written. Since the number of merge passes is (logdM nR), we
get the total merge cost of (2 * b * (logdM nR)).

set i ← 1;
 j ← b; {size of the file in blocks}
 k ← nB; {size of buffer in blocks}
 m ← ⎡(j/k)⎤; {number of subfiles- each fits in buffer}
{Sorting Phase}
while (i ≤m)
do {
 read next k blocks of the file into the buffer or if there are less than k blocks
 remaining, then read in the remaining blocks;
 sort the records in the buffer and write as a temporary subfile;
 i ← i + 1;
}
{Merging Phase: merge subfiles until only 1 remains}
set i ← 1;
 p ← ⎡logk–1m⎤ {p is the number of passes for the merging phase}
 j ← m;
while (i ≤ p)
do {
 n ← 1;
 q ← (j/(k–1)⎤ ; {number of subfiles to write in this pass}
 while (n ≤ q)
 do {
 read next k–1 subfiles or remaining subfiles (from previous pass)
 one block at a time;
 merge and write as new subfile one block at a time;
 n ← n + 1;
 }
 j ← q;
 i ← i + 1;
}

Figure 18.2
Outline of the
sort-merge
algorithm for
external sorting.

 18.3 Algorithms for SELECT Operation 663

The minimum number of main memory buffers needed is nB = 3, which gives a dM
of 2 and an nR of ⎡(b/3)⎤. The minimum dM of 2 gives the worst-case performance
of the algorithm, which is:

(2 * b) + (2 * (b * (log2 nR))).

The following sections discuss the various algorithms for the operations of the rela-
tional algebra (see Chapter 8).

18.3 Algorithms for SELECT Operation

18.3.1 Implemention Options for the SELECT Operation
There are many algorithms for executing a SELECT operation, which is basically a
search operation to locate the records in a disk file that satisfy a certain condition.
Some of the search algorithms depend on the file having specific access paths, and
they may apply only to certain types of selection conditions. We discuss some of the
algorithms for implementing SELECT in this section. We will use the following oper-
ations, specified on the relational database in Figure 5.5, to illustrate our discussion:

OP1: σSsn = ‘123456789’ (EMPLOYEE)
OP2: σDnumber > 5 (DEPARTMENT)
OP3: σDno= 5 (EMPLOYEE)
OP4: σDno= 5 AND Salary > 30000 AND Sex = ‘F’ (EMPLOYEE)
OP5: σEssn = ‘123456789’ AND Pno =10(WORKS_ON)

OP6: An SQL Query:
 SELECT *
 FROM EMPLOYEE
 WHERE Dno IN (3,27, 49)

OP7: An SQL Query (from Section 17.5.3)
SELECT First_name, Lname
FROM Employee
WHERE ((Salary*Commission_pct) + Salary) > 15000;

Search Methods for Simple Selection. A number of search algorithms are pos-
sible for selecting records from a file. These are also known as file scans, because
they scan the records of a file to search for and retrieve records that satisfy a selection
condition.7 If the search algorithm involves the use of an index, the index search is
called an index scan. The following search methods (S1 through S6) are examples of
some of the search algorithms that can be used to implement a select operation:

 ■ S1—Linear search (brute force algorithm). Retrieve every record in the file,
and test whether its attribute values satisfy the selection condition. Since the

7A selection operation is sometimes called a filter, since it filters out the records in the file that do not
satisfy the selection condition.

664 Chapter 18 Strategies for Query Processing

records are grouped into disk blocks, each disk block is read into a main
memory buffer, and then a search through the records within the disk block
is conducted in main memory.

 ■ S2—Binary search. If the selection condition involves an equality compari-
son on a key attribute on which the file is ordered, binary search—which is
more efficient than linear search—can be used. An example is OP1 if Ssn is
the ordering attribute for the EMPLOYEE file.8

 ■ S3a—Using a primary index. If the selection condition involves an equality
comparison on a key attribute with a primary index—for example,
Ssn = ‘123456789’ in OP1—use the primary index to retrieve the record.
Note that this condition retrieves a single record (at most).

 ■ S3b—Using a hash key. If the selection condition involves an equality com-
parison on a key attribute with a hash key—for example, Ssn = ‘123456789’
in OP1—use the hash key to retrieve the record. Note that this condition
retrieves a single record (at most).

 ■ S4—Using a primary index to retrieve multiple records. If the comparison
condition is >, >=, <, or <= on a key field with a primary index—for exam-
ple, Dnumber > 5 in OP2—use the index to find the record satisfying the cor-
responding equality condition (Dnumber = 5); then retrieve all subsequent
records in the (ordered) file. For the condition Dnumber < 5, retrieve all the
preceding records.

 ■ S5—Using a clustering index to retrieve multiple records. If the selection
condition involves an equality comparison on a nonkey attribute with a
clustering index—for example, Dno = 5 in OP3—use the index to retrieve all
the records satisfying the condition.

 ■ S6—Using a secondary (B+-tree) index on an equality comparison. This
search method can be used to retrieve a single record if the indexing field is
a key (has unique values) or to retrieve multiple records if the indexing field
is not a key. This can also be used for comparisons involving >, >=, <, or <=.
Queries involving a range of values (e.g., 3,000 <= Salary <= 4,000) in their
selection are called range queries. In case of range queries, the B+-tree index
leaf nodes contain the indexing field value in order—so a sequence of them
is used corresponding to the requested range of that field and provide record
pointers to the qualifying records.

 ■ S7a—Using a bitmap index. (See Section 17.5.2.) If the selection condi-
tion involves a set of values for an attribute (e.g., Dnumber in (3,27,49)
in OP6), the corresponding bitmaps for each value can be OR-ed to give
the set of record ids that qualify. In this example, that amounts to
OR-ing three bitmap vectors whose length is the same as the number of
employees.

8Generally, binary search is not used in database searches because ordered files are not used unless
they also have a corresponding primary index.

 18.3 Algorithms for SELECT Operation 665

 ■ S7b—Using a functional index. (See Section 17.5.3.) In OP7, the selection con-
dition involves the expression ((Salary*Commission_pct) + Salary).
If there is a functional index defined as (as shown in Section 17.5.3):

CREATE INDEX income_ix
ON EMPLOYEE (Salary + (Salary*Commission_pct));

then this index can be used to retrieve employee records that qualify. Note
that the exact way in which the function is written while creating the index is
immaterial.

In the next chapter, we discuss how to develop formulas that estimate the access
cost of these search methods in terms of the number of block accesses and access
time. Method S1 (linear search) applies to any file, but all the other methods
depend on having the appropriate access path on the attribute used in the selection
condition. Method S2 (binary search) requires the file to be sorted on the search
attribute. The methods that use an index (S3a, S4, S5, and S6) are generally referred
to as index searches, and they require the appropriate index to exist on the search
attribute. Methods S4 and S6 can be used to retrieve records in a certain range in
range queries. Method S7a (bitmap index search) is suitable for retrievals where
an attribute must match an enumerated set of values. Method S7b (functional
index search) is suitable when the match is based on a function of one or more
attributes on which a functional index exists.

18.3.2 Search Methods for Conjunctive Selection
If a condition of a SELECT operation is a conjunctive condition—that is, if it is
made up of several simple conditions connected with the AND logical connective
such as OP4 above—the DBMS can use the following additional methods to
implement the operation:

 ■ S8—Conjunctive selection using an individual index. If an attribute
involved in any single simple condition in the conjunctive select condition
has an access path that permits the use of one of the methods S2 to S6, use
that condition to retrieve the records and then check whether each retrieved
record satisfies the remaining simple conditions in the conjunctive select
condition.

 ■ S9—Conjunctive selection using a composite index. If two or more attri-
butes are involved in equality conditions in the conjunctive select condition
and a composite index (or hash structure) exists on the combined fields—
for example, if an index has been created on the composite key (Essn, Pno) of
the WORKS_ON file for OP5—we can use the index directly.

 ■ S10—Conjunctive selection by intersection of record pointers.9 If second-
ary indexes (or other access paths) are available on more than one of the
fields involved in simple conditions in the conjunctive select condition, and if

9A record pointer uniquely identifies a record and provides the address of the record on disk; hence, it is
also called the record identifier or record id.

666 Chapter 18 Strategies for Query Processing

the indexes include record pointers (rather than block pointers), then each
index can be used to retrieve the set of record pointers that satisfy the indi-
vidual condition. The intersection of these sets of record pointers gives the
record pointers that satisfy the conjunctive select condition, which are then
used to retrieve those records directly. If only some of the conditions have
secondary indexes, each retrieved record is further tested to determine
whether it satisfies the remaining conditions.10 In general, method S10
assumes that each of the indexes is on a nonkey field of the file, because if one
of the conditions is an equality condition on a key field, only one record will
satisfy the whole condition. The bitmap and functional indexes discussed
above in S7 are applicable for conjunctive selection on multiple attributes as
well. For conjunctive selection on multiple attributes, the resulting bitmaps
are AND-ed to produce the list of record ids; the same can be done when one
or more set of record ids comes from a functional index.

Whenever a single condition specifies the selection—such as OP1, OP2, or OP3—
the DBMS can only check whether or not an access path exists on the attribute
involved in that condition. If an access path (such as index or hash key or bitmap
index or sorted file) exists, the method corresponding to that access path is used;
otherwise, the brute force, linear search approach of method S1 can be used. Query
optimization for a SELECT operation is needed mostly for conjunctive select condi-
tions whenever more than one of the attributes involved in the conditions have an
access path. The optimizer should choose the access path that retrieves the fewest
records in the most efficient way by estimating the different costs (see Section 19.3)
and choosing the method with the least estimated cost.

18.3.3 Search Methods for Disjunctive Selection
Compared to a conjunctive selection condition, a disjunctive condition (where
simple conditions are connected by the OR logical connective rather than by AND)
is much harder to process and optimize. For example, consider OP4′:

OP4′: σDno=5 OR Salary > 30000 OR Sex =‘F’ (EMPLOYEE)

With such a condition, the records satisfying the disjunctive condition are the
union of the records satisfying the individual conditions. Hence, if any one of the
conditions does not have an access path, we are compelled to use the brute force,
linear search approach. Only if an access path exists on every simple condition in
the disjunction can we optimize the selection by retrieving the records satisfying
each condition—or their record ids—and then applying the union operation to
eliminate duplicates.

All the methods discussed in S1 through S7 are applicable for each simple condition
yielding a possible set of record ids. The query optimizer must choose the appropri-
ate one for executing each SELECT operation in a query. This optimization uses

10The technique can have many variations—for example, if the indexes are logical indexes that store primary
key values instead of record pointers.

 18.3 Algorithms for SELECT Operation 667

formulas that estimate the costs for each available access method, as we will discuss
in Sections 19.4 and 19.5. The optimizer chooses the access method with the lowest
estimated cost.

18.3.4 Estimating the Selectivity of a Condition
To minimize the overall cost of query execution in terms of resources used and
response time, the query optimizer receives valuable input from the system catalog,
which contains crucial statistical information about the database.

Information in the Database Catalog. A typical RDBMS catalog contains the
following types of information:

For each relation (table) r with schema R containing rR tuples:

 � The number of rows/records or its cardinality: |r(R) |. We will refer to the
number of rows simply as rR.

 � The “width” of the relation (i.e., the length of each tuple in the relation)
this length of tuple is referred to as R.

 � The number of blocks that relation occupies in storage: referred to as bR.

 � The blocking factor bfr, which is the number of tuples per block.

For each attribute A in relation R:

 � The number of distinct values of A in R: NDV (A, R).

 � The max and min values of attribute A in R: max (A, R) and min (A, R).

Note that many other forms of the statistics are possible and may be kept as needed.
If there is a composite index on attributes <A, B>, then the NDV (R, <A, B>) is of
significance. An effort is made to keep these statistics as accurate as possible; how-
ever, keeping them accurate up-to-the-minute is considered unnecessary since the
overhead of doing so in fairly active databases is too high. We will be revisiting
many of the above parameters again in Section 19.3.2.

When the optimizer is choosing between multiple simple conditions in a conjunc-
tive select condition, it typically considers the selectivity of each condition. The
selectivity (sl) is defined as the ratio of the number of records (tuples) that satisfy
the condition to the total number of records (tuples) in the file (relation), and thus
it is a number between zero and one. Zero selectivity means none of the records in
the file satisfies the selection condition, and a selectivity of one means that all the
records in the file satisfy the condition. In general, the selectivity will not be either
of these two extremes, but will be a fraction that estimates the percentage of file
records that will be retrieved.

Although exact selectivities of all conditions may not be available, estimates of
 selectivities are possible from the information kept in the DBMS catalog and are used
by the optimizer. For example, for an equality condition on a key attribute of relation
r(R), s = 1/|r(R)|, where |r(R)| is the number of tuples in relation r(R). For an equality
condition on a nonkey attribute with i distinct values, s can be estimated by

668 Chapter 18 Strategies for Query Processing

(|r(R)|/i)/|r(R)| or 1/i, assuming that the records are evenly or uniformly distributed
among the distinct values. Under this assumption, |r(R)|/i records will satisfy an
equality condition on this attribute. For a range query with the selection condition,

A ≥ v, assuming uniform distribution,
sl = 0 if v > max (A, R)
sl = max (A, R) – v / max (A, R) – min (A, R)

In general, the number of records satisfying a selection condition with selectivity sl is
estimated to be |r(R)| * sl. The smaller this estimate is, the higher the desirability of
using that condition first to retrieve records. For a nonkey attribute with NDV (A, R)
distinct values, it is often the case that those values are not uniformly distributed.

If the actual distribution of records among the various distinct values of the attribute
is kept by the DBMS in the form of a histogram, it is possible to get more accurate
estimates of the number of records that satisfy a particular condition. We will discuss
the catalog information and histograms in more detail in Section 19.3.3.

18.4 Implementing the JOIN Operation
The JOIN operation is one of the most time-consuming operations in query pro-
cessing. Many of the join operations encountered in queries are of the EQUIJOIN
and NATURAL JOIN varieties, so we consider just these two here since we are only
giving an overview of query processing and optimization. For the remainder of this
chapter, the term join refers to an EQUIJOIN (or NATURAL JOIN).

There are many possible ways to implement a two-way join, which is a join on two
files. Joins involving more than two files are called multiway joins. The number of
possible ways to execute multiway joins grows rapidly because of the combinatorial
explosion of possible join orderings. In this section, we discuss techniques for
implementing only two-way joins. To illustrate our discussion, we refer to the rela-
tional schema shown in Figure 5.5 once more—specifically, to the EMPLOYEE,
DEPARTMENT, and PROJECT relations. The algorithms we discuss next are for a join
operation of the form:

R A=B S

where A and B are the join attributes, which should be domain-compatible attri-
butes of R and S, respectively. The methods we discuss can be extended to more
general forms of join. We illustrate four of the most common techniques for per-
forming such a join, using the following sample operations:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT
OP7: DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

18.4.1 Methods for Implementing Joins
 ■ J1—Nested-loop join (or nested-block join). This is the default (brute force)

algorithm because it does not require any special access paths on either file in the

 18.4 Implementing the JOIN Operation 669

join. For each record t in R (outer loop), retrieve every record s from S (inner
loop) and test whether the two records satisfy the join condition t[A] = s[B].11

 ■ J2—Index-based nested-loop join (using an access structure to retrieve
the matching records). If an index (or hash key) exists for one of the two
join attributes—say, attribute B of file S—retrieve each record t in R (loop
over file R), and then use the access structure (such as an index or a hash
key) to retrieve directly all matching records s from S that satisfy s[B] = t[A].

 ■ J3—Sort-merge join. If the records of R and S are physically sorted (ordered)
by value of the join attributes A and B, respectively, we can implement the join
in the most efficient way possible. Both files are scanned concurrently in order
of the join attributes, matching the records that have the same values for A and
B. If the files are not sorted, they may be sorted first by using external sorting
(see Section 18.2). In this method, pairs of file blocks are copied into memory
buffers in order and the records of each file are scanned only once each for
matching with the other file—unless both A and B are nonkey attributes, in
which case the method needs to be modified slightly. A sketch of the sort-
merge join algorithm is given in Figure 18.3(a). We use R(i) to refer to the ith
record in file R. A variation of the sort-merge join can be used when secondary
indexes exist on both join attributes. The indexes provide the ability to access
(scan) the records in order of the join attributes, but the records themselves
are physically scattered all over the file blocks, so this method may be ineffi-
cient because every record access may involve accessing a different disk block.

 ■ J4—Partition-hash join (or just hash-join). The records of files R and S are
partitioned into smaller files. The partitioning of each file is done using the
same hashing function h on the join attribute A of R (for partitioning file R)
and B of S (for partitioning file S). First, a single pass through the file with
fewer records (say, R) hashes its records to the various partitions of R; this is
called the partitioning phase, since the records of R are partitioned into the
hash buckets. In the simplest case, we assume that the smaller file can fit
entirely in main memory after it is partitioned, so that the partitioned subfiles
of R are all kept in main memory. The collection of records with the same
value of h(A) are placed in the same partition, which is a hash bucket in a hash
table in main memory. In the second phase, called the probing phase, a single
pass through the other file (S) then hashes each of its records using the same
hash function h(B) to probe the appropriate bucket, and that record is com-
bined with all matching records from R in that bucket. This simplified descrip-
tion of partition-hash join assumes that the smaller of the two files fits entirely
into memory buckets after the first phase. We will discuss the general case of
partition-hash join below that does not require this assumption. In practice,
techniques J1 to J4 are implemented by accessing whole disk blocks of a file,
rather than individual records. Depending on the available number of buffers
in memory, the number of blocks read in from the file can be adjusted.

11For disk files, it is obvious that the loops will be over disk blocks, so this technique has also been called
nested-block join.

670 Chapter 18 Strategies for Query Processing

(a) sort the tuples in R on attribute A; (*assume R has n tuples (records)*)
 sort the tuples in S on attribute B; (*assume S has m tuples (records)*)
 set i ←1, j ← 1;
 while (i ≤n) and (j ≤ m)
 do { if R(i)[A] > S(j)[B]
 then set j ← j + 1
 elseif R(i)[A] < S(j)[B]
 then set i ← i + 1
 else { (* R(i)[A] = S(j)[B], so we output a matched tuple *)
 output the combined tuple <R(i), S(j)> to T;

 (* output other tuples that match R(i), if any *)
 set I ← j + 1;
 while (l ≤ m) and (R(i)[A] = S(l)[B])
 do { output the combined tuple <R(i), S(l)> to T;
 set l ← l + 1
 }

 (* output other tuples that match S(j), if any *)
 set k ← i + 1;
 while (k ≤ n) and (R(k)[A] = S(j)[B])
 do { output the combined tuple <R(k), S(j)> to T;
 set k ← k + 1
 }
 set i ←k, j ← l
 }
 }

(b) create a tuple t[<attribute list>] in T ′ for each tuple t in R;
 (* T ′ contains the projection results before duplicate elimination *)
 if <attribute list> includes a key of R
 then T ← T ′
 else { sort the tuples in T ′;
 set i ← 1, j ← 2;
 while i ≤ n
 do { output the tuple T ′[i] to T;
 while T ′[i] = T ′[j] and j ≤ n do j ← j + 1; (* eliminate duplicates *)
 i ← j; j ← i + 1
 }
 }
 (*T contains the projection result after duplicate elimination*)

Figure 18.3
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by
using sort-merge, where R has n tuples and S has m tuples. (a) Implementing the operation
T ← R A=BS. (b) Implementing the operation T ← π<attribute list>(R).

 18.4 Implementing the JOIN Operation 671

(c) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1;
 while (i ≤ n) and (j ≤ m)
 do { if R(i) > S(j)
 then { output S(j) to T;
 set j ← j + 1
 }
 elseif R(i) < S(j)
 then { output R(i) to T;
 set i ← i + 1
 }
 else set j ← j + 1 (* R(i)=S(j), so we skip one of the duplicate tuples *)
 }
 if (i ≤ n) then add tuples R(i) to R(n) to T;
 if (j ≤ m) then add tuples S(j) to S(m) to T;

(d) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1;
 while (i ≤ n) and (j ≤ m)
 do { if R(i) > S(j)
 then set j ← j + 1
 elseif R(i) < S(j)
 then set i ← i + 1
 else { output R(j) to T; (* R(i) = S(j), so we output the tuple *)
 set i ← i + 1, j ← j + 1
 }
 }

(e) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1;
 while (i ≤ n) and (j ≤ m)
 do { if R(i) > S(j)
 then set j ← j + 1
 elseif R(i) < S(j)
 then { output R(i) to T; (* R(i) has no matching S(j), so output R(i) *)
 set i ← i + 1
 }
 else set i ← i + 1, j ← j + 1
 }
 if (i ≤ n) then add tuples R(i) to R(n) to T;

Figure 18.3 (continued)
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by using
sort-merge, where R has n tuples and S has m tuples. (c) Implementing the operation T ← R ∪ S.
(d) Implementing the operation T ← R ∩ S. (e) Implementing the operation T ← R – S.

672 Chapter 18 Strategies for Query Processing

18.4.2 How Buffer Space and Choice of Outer-Loop
File Affect Performance of Nested-Loop Join

The buffer space available has an important effect on some of the join algorithms.
First, let us consider the nested-loop approach (J1). Looking again at the operation
OP6 above, assume that the number of buffers available in main memory for imple-
menting the join is nB = 7 blocks (buffers). Recall that we assume that each memory
buffer is the same size as one disk block. For illustration, assume that the DEPARTMENT
file consists of rD = 50 records stored in bD = 10 disk blocks and that the EMPLOYEE
file consists of rE = 6,000 records stored in bE = 2,000 disk blocks. It is advantageous
to read as many blocks as possible at a time into memory from the file whose records
are used for the outer loop. Note that keeping one block for reading from the inner
file and one block for writing to the output file, nB − 2 blocks are available to read
from the outer relation, The algorithm can then read one block at a time for the
inner-loop file and use its records to probe (that is, search) the outer-loop blocks
that are currently in main memory for matching records. This reduces the total
number of block accesses. An extra buffer in main memory is needed to contain
the resulting records after they are joined, and the contents of this result buffer can
be appended to the result file—the disk file that will contain the join result—
whenever it is filled. This result buffer block then is reused to hold additional join
result records.

In the nested-loop join, it makes a difference which file is chosen for the outer loop
and which for the inner loop. If EMPLOYEE is used for the outer loop, each block of
EMPLOYEE is read once, and the entire DEPARTMENT file (each of its blocks) is read
once for each time we read in (nB – 2) blocks of the EMPLOYEE file. We get the fol-
lowing formulas for the number of disk blocks that are read from disk to main
memory:

Total number of blocks accessed (read) for outer-loop file = bE

Number of times (nB − 2) blocks of outer file are loaded into main mem-
ory = ⎡bE/(nB – 2)⎤
Total number of blocks accessed (read) for inner-loop file = bD * ⎡bE/(nB – 2)⎤

Hence, we get the following total number of block read accesses:

bE + (⎡bE/(nB − 2)⎤ * bD) = 2000 + (⎡(2000/5)⎤ * 10) = 6000 block accesses

On the other hand, if we use the DEPARTMENT records in the outer loop, by sym-
metry we get the following total number of block accesses:

bD + (⎡bD/(nB − 2)⎤ * bE) = 10 + (⎡(10/5)⎤ * 2000) = 4010 block accesses

The join algorithm uses a buffer to hold the joined records of the result file. Once
the buffer is filled, it is written to disk and its contents are appended to the result
file, and then refilled with join result records.12

12If we reserve two buffers for the result file, double buffering can be used to speed the algorithm (see
Section 16.3).

 18.4 Implementing the JOIN Operation 673

If the result file of the join operation has bRES disk blocks, each block is written once
to disk, so an additional bRES block accesses (writes) should be added to the preced-
ing formulas in order to estimate the total cost of the join operation. The same
holds for the formulas developed later for other join algorithms. As this example
shows, it is advantageous to use the file with fewer blocks as the outer-loop file in the
nested-loop join.

18.4.3 How the Join Selection Factor Affects
Join Performance

Another factor that affects the performance of a join, particularly the single-loop
method J2, is the fraction of records in one file that will be joined with records in
the other file. We call this the join selection factor13 of a file with respect to an
equijoin condition with another file. This factor depends on the particular equijoin
condition between the two files. To illustrate this, consider the operation OP7,
which joins each DEPARTMENT record with the EMPLOYEE record for the manager
of that department. Here, each DEPARTMENT record (there are 50 such records in
our example) will be joined with a single EMPLOYEE record, but many EMPLOYEE
records (the 5,950 of them that do not manage a department) will not be joined
with any record from DEPARTMENT.

Suppose that secondary indexes exist on both the attributes Ssn of EMPLOYEE and
Mgr_ssn of DEPARTMENT, with the number of index levels xSsn = 4 and xMgr_ssn= 2,
respectively. We have two options for implementing method J2. The first retrieves
each EMPLOYEE record and then uses the index on Mgr_ssn of DEPARTMENT to find
a matching DEPARTMENT record. In this case, no matching record will be found for
employees who do not manage a department. The number of block accesses for this
case is approximately:

bE + (rE * (xMgr_ssn + 1)) = 2000 + (6000 * 3) = 20,000 block accesses

The second option retrieves each DEPARTMENT record and then uses the index on
Ssn of EMPLOYEE to find a matching manager EMPLOYEE record. In this case, every
DEPARTMENT record will have one matching EMPLOYEE record. The number of
block accesses for this case is approximately:

bD + (rD * (xSsn + 1)) = 10 + (50 * 5) = 260 block accesses

The second option is more efficient because the join selection factor of DEPARTMENT
with respect to the join condition Ssn = Mgr_ssn is 1 (every record in DEPARTMENT
will be joined), whereas the join selection factor of EMPLOYEE with respect to the
same join condition is (50/6,000), or 0.008 (only 0.8% of the records in EMPLOYEE
will be joined). For method J2, either the smaller file or the file that has a match for
every record (that is, the file with the high join selection factor) should be used in
the (single) join loop. It is also possible to create an index specifically for perform-
ing the join operation if one does not already exist.

13This is different from the join selectivity, which we will discuss in Chapter 19.

674 Chapter 18 Strategies for Query Processing

The sort-merge join J3 is quite efficient if both files are already sorted by their join
attribute. Only a single pass is made through each file. Hence, the number of blocks
accessed is equal to the sum of the numbers of blocks in both files. For this method,
both OP6 and OP7 would need bE + bD = 2,000 + 10 = 2,010 block accesses. How-
ever, both files are required to be ordered by the join attributes; if one or both are
not, a sorted copy of each file must be created specifically for performing the join
operation. If we roughly estimate the cost of sorting an external file by (b log2b)
block accesses, and if both files need to be sorted, the total cost of a sort-merge join
can be estimated by (bE + bD + bE log2bE + bD log2bD).14

18.4.4 General Case for Partition-Hash Join
The hash-join method J4 is also efficient. In this case, only a single pass is made
through each file, whether or not the files are ordered. If the hash table for the
smaller of the two files can be kept entirely in main memory after hashing (parti-
tioning) on its join attribute, the implementation is straightforward. If, however,
the partitions of both files must be stored on disk, the method becomes more com-
plex, and a number of variations to improve the efficiency have been proposed. We
discuss two techniques: the general case of partition-hash join and a variation called
hybrid hash-join algorithm, which has been shown to be efficient.

In the general case of partition-hash join, each file is first partitioned into M parti-
tions using the same partitioning hash function on the join attributes. Then, each
pair of corresponding partitions is joined. For example, suppose we are joining
relations R and S on the join attributes R.A and S.B:

R A=B S

In the partitioning phase, R is partitioned into the M partitions R1, R2, … , RM, and S
into the M partitions S1, S2, …, SM. The property of each pair of corresponding parti-
tions Ri, Si with respect to the join operation is that records in Ri only need to be joined
with records in Si, and vice versa. This property is ensured by using the same hash
function to partition both files on their join attributes—attribute A for R and attribute
B for S. The minimum number of in-memory buffers needed for the partitioning
phase is M + 1. Each of the files R and S is partitioned separately. During partitioning
of a file, M in-memory buffers are allocated to store the records that hash to each par-
tition, and one additional buffer is needed to hold one block at a time of the input file
being partitioned. Whenever the in-memory buffer for a partition gets filled, its con-
tents are appended to a disk subfile that stores the partition. The partitioning phase
has two iterations. After the first iteration, the first file R is partitioned into the subfiles
R1, R2, … , RM, where all the records that hashed to the same buffer are in the same
partition. After the second iteration, the second file S is similarly partitioned.

In the second phase, called the joining or probing phase, M iterations are needed.
During iteration i, two corresponding partitions Ri and Si are joined. The minimum

14We can use the more accurate formulas from Section 19.5 if we know the number of available buffers
for sorting.

 18.4 Implementing the JOIN Operation 675

number of buffers needed for iteration i is the number of blocks in the smaller of
the two partitions, say Ri, plus two additional buffers. If we use a nested-loop join
during iteration i, the records from the smaller of the two partitions Ri are copied
into memory buffers; then all blocks from the other partition Si are read—one at a
time—and each record is used to probe (that is, search) partition Ri for matching
record(s). Any matching records are joined and written into the result file. To
improve the efficiency of in-memory probing, it is common to use an in-memory
hash table for storing the records in partition Ri by using a different hash func-
tion from the partitioning hash function.15

We can approximate the cost of this partition hash-join as 3 * (bR + bS) + bRES for our
example, since each record is read once and written back to disk once during the
partitioning phase. During the joining (probing) phase, each record is read a second
time to perform the join. The main difficulty of this algorithm is to ensure that the
partitioning hash function is uniform—that is, the partition sizes are nearly equal in
size. If the partitioning function is skewed (nonuniform), then some partitions may
be too large to fit in the available memory space for the second joining phase.

Notice that if the available in-memory buffer space nB > (bR + 2), where bR is the
number of blocks for the smaller of the two files being joined, say R, then there is no
reason to do partitioning since in this case the join can be performed entirely in
memory using some variation of the nested-loop join based on hashing and probing.
For illustration, assume we are performing the join operation OP6, repeated below:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT

In this example, the smaller file is the DEPARTMENT file; hence, if the number of
available memory buffers nB > (bD + 2), the whole DEPARTMENT file can be read
into main memory and organized into a hash table on the join attribute. Each
EMPLOYEE block is then read into a buffer, and each EMPLOYEE record in the buf-
fer is hashed on its join attribute and is used to probe the corresponding in-memory
bucket in the DEPARTMENT hash table. If a matching record is found, the records
are joined, and the result record(s) are written to the result buffer and eventually to
the result file on disk. The cost in terms of block accesses is hence (bD + bE), plus
bRES—the cost of writing the result file.

18.4.5 Hybrid Hash-Join
The hybrid hash-join algorithm is a variation of partition hash-join, where the join-
ing phase for one of the partitions is included in the partitioning phase. To illustrate
this, let us assume that the size of a memory buffer is one disk block; that nB such
buffers are available; and that the partitioning hash function used is h(K) =
K mod M, so that M partitions are being created, where M < nB. For illustration,
assume we are performing the join operation OP6. In the first pass of the partitioning
phase, when the hybrid hash-join algorithm is partitioning the smaller of the two files

15If the hash function used for partitioning is used again, all records in a partition will hash to the same
bucket again.

676 Chapter 18 Strategies for Query Processing

(DEPARTMENT in OP6), the algorithm divides the buffer space among the M parti-
tions such that all the blocks of the first partition of DEPARTMENT completely reside
in main memory. For each of the other partitions, only a single in-memory buffer—
whose size is one disk block—is allocated; the remainder of the partition is written to
disk as in the regular partition-hash join. Hence, at the end of the first pass of the
partitioning phase, the first partition of DEPARTMENT resides wholly in main mem-
ory, whereas each of the other partitions of DEPARTMENT resides in a disk subfile.

For the second pass of the partitioning phase, the records of the second file being
joined—the larger file, EMPLOYEE in OP6—are being partitioned. If a record
hashes to the first partition, it is joined with the matching record in DEPARTMENT
and the joined records are written to the result buffer (and eventually to disk). If
an EMPLOYEE record hashes to a partition other than the first, it is partitioned
normally and stored to disk. Hence, at the end of the second pass of the partition-
ing phase, all records that hash to the first partition have been joined. At this point,
there are M − 1 pairs of partitions on disk. Therefore, during the second joining or
probing phase, M − 1 iterations are needed instead of M. The goal is to join as
many records during the partitioning phase so as to save the cost of storing those
records on disk and then rereading them a second time during the joining phase.

18.5 Algorithms for PROJECT
and Set Operations

A PROJECT operation π<attribute list>(R) from relational algebra implies that after
projecting R on only the columns in the list of attributes, any duplicates are removed
by treating the result strictly as a set of tuples. However, the SQL query:

SELECT Salary
FROM EMPLOYEE

produces a list of salaries of all employees. If there are 10,000 employees and only 80
distinct values for salary, it produces a one column result with 10,000 tuples. This oper-
ation is done by simple linear search by making a complete pass through the table.

Getting the true effect of the relational algebra π<attribute list>(R) operator is straight-
forward to implement if <attribute list> includes a key of relation R, because in this
case the result of the operation will have the same number of tuples as R, but with
only the values for the attributes in <attribute list> in each tuple. If <attribute list>
does not include a key of R, duplicate tuples must be eliminated. This can be done by
sorting the result of the operation and then eliminating duplicate tuples, which
appear consecutively after sorting. A sketch of the algorithm is given in Fig-
ure 18.3(b). Hashing can also be used to eliminate duplicates: as each record is
hashed and inserted into a bucket of the hash file in memory, it is checked against
those records already in the bucket; if it is a duplicate, it is not inserted in the bucket.
It is useful to recall here that in SQL queries, the default is not to eliminate dupli-
cates from the query result; duplicates are eliminated from the query result only if
the keyword DISTINCT is included.

 18.5 Algorithms for PROJECT and Set Operations 677

Set operations—UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN
PRODUCT—are sometimes expensive to implement, since UNION,
INTERSECTION, MINUS or SET DIFFERENCE are set operators and must always
return distinct results.

In particular, the CARTESIAN PRODUCT operation R × S is expensive because its
result includes a record for each combination of records from R and S. Also, each
record in the result includes all attributes of R and S. If R has n records and j attri-
butes, and S has m records and k attributes, the result relation for R × S will have
n * m records and each record will have j + k attributes. Hence, it is important to
avoid the CARTESIAN PRODUCT operation and to substitute other operations such
as join during query optimization. The other three set operations—UNION,
INTERSECTION, and SET DIFFERENCE16—apply only to type-compatible (or
union-compatible) relations, which have the same number of attributes and the
same attribute domains. The customary way to implement these operations is to
use variations of the sort-merge technique: the two relations are sorted on the
same attributes, and, after sorting, a single scan through each relation is sufficient
to produce the result. For example, we can implement the UNION operation, R ∪ S,
by scanning and merging both sorted files concurrently, and whenever the
same tuple exists in both relations, only one is kept in the merged result. For the
INTERSECTION operation, R ∩ S, we keep in the merged result only those tuples
that appear in both sorted relations. Figure 18.3(c) to (e) sketches the implementa-
tion of these operations by sorting and merging. Some of the details are not
included in these algorithms.

Hashing can also be used to implement UNION, INTERSECTION, and SET
DIFFERENCE. One table is first scanned and then partitioned into an in-memory
hash table with buckets, and the records in the other table are then scanned one at a
time and used to probe the appropriate partition. For example, to implement R ∪ S,
first hash (partition) the records of R; then, hash (probe) the records of S, but do not
insert duplicate records in the buckets. To implement R ∩ S, first partition the
records of R to the hash file. Then, while hashing each record of S, probe to check if
an identical record from R is found in the bucket, and if so add the record to the
result file. To implement R – S, first hash the records of R to the hash file buckets.
While hashing (probing) each record of S, if an identical record is found in the
bucket, remove that record from the bucket.

18.5.1 Use of Anti-Join for SET DIFFERENCE
(or EXCEPT or MINUS in SQL)

The MINUS operator in SQL is transformed into an anti-join (which we introduced
in Section 18.1) as follows. Suppose we want to find out which departments have no
employees in the schema of Figure 5.5:

Select Dnumber from DEPARTMENT MINUS Select Dno from EMPLOYEE;

16SET DIFFERENCE is called MINUS or EXCEPT in SQL.

678 Chapter 18 Strategies for Query Processing

can be converted into the following:

SELECT DISTINCT DEPARTMENT.Dnumber
FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT.Dnumber A = EMPLOYEE.Dno

We used the nonstandard notation for anti-join, “A=”, where DEPARTMENT is on
the left of anti-join and EMPLOYEE is on the right.

In SQL, there are two variations of these set operations. The operations
UNION, INTERSECTION, and EXCEPT or MINUS (the SQL keywords for the SET
DIFFERENCE operation) apply to traditional sets, where no duplicate records
exist in the result. The operations UNION ALL, INTERSECTION ALL, and EXCEPT
ALL apply to multisets (or bags). Thus, going back to the database of Figure 5.5,
consider a query that finds all departments that employees are working on
where at least one project exists controlled by that department, and this result
is written as:

SELECT Dno from EMPLOYEE
INTERSECT ALL
SELECT Dum from PROJECT

This would not eliminate any duplicates of Dno from EMPLOYEE while perform-
ing the INTERSECTION. If all 10,000 employees are assigned to departments
where some project is present in the PROJECT relation, the result would be the list
of all the 10,000 department numbers including duplicates.. This can be accom-
plished by the semi-join operation we introduced in Section 18.1 as follows:

SELECT DISTINCT EMPLOYEE.Dno
FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.Dno S = DEPARTMENT.Dnumber

If INTERSECTION is used without the ALL, then an additional step of duplicate
elimination will be required for the selected department numbers.

18.6 Implementing Aggregate Operations
and Different Types of JOINs

18.6.1 Implementing Aggregate Operations
The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an
entire table, can be computed by a table scan or by using an appropriate index, if
available. For example, consider the following SQL query:

SELECT MAX(Salary)
FROM EMPLOYEE;

If an (ascending) B+-tree index on Salary exists for the EMPLOYEE relation, then
the optimizer can decide on using the Salary index to search for the largest Salary
value in the index by following the rightmost pointer in each index node from the

 18.6 Implementing Aggregate Operations and Different Types of JOINs 679

root to the rightmost leaf. That node would include the largest Salary value as its
last entry. In most cases, this would be more efficient than a full table scan of
EMPLOYEE, since no actual records need to be retrieved. The MIN function can be
handled in a similar manner, except that the leftmost pointer in the index is fol-
lowed from the root to leftmost leaf. That node would include the smallest Salary
value as its first entry.

The index could also be used for the AVERAGE and SUM aggregate functions,
but only if it is a dense index—that is, if there is an index entry for every record
in the main file. In this case, the associated computation would be applied to
the values in the index. For a nondense index, the actual number of records
associated with each index value must be used for a correct computation. This
can be done if the number of records associated with each value in the index is
stored in each index entry. For the COUNT aggregate function, the number of
values can be also computed from the index in a similar manner. If a COUNT(*)
function is applied to a whole relation, the number of records currently in each
relation are typically stored in the catalog, and so the result can be retrieved
directly from the catalog.

When a GROUP BY clause is used in a query, the aggregate operator must be applied
separately to each group of tuples as partitioned by the grouping attribute. Hence,
the table must first be partitioned into subsets of tuples, where each partition
(group) has the same value for the grouping attributes. In this case, the computa-
tion is more complex. Consider the following query:

SELECT Dno, AVG(Salary)
FROM EMPLOYEE
GROUP BY Dno;

The usual technique for such queries is to first use either sorting or hashing on the
grouping attributes to partition the file into the appropriate groups. Then the algo-
rithm computes the aggregate function for the tuples in each group, which have the
same grouping attribute(s) value. In the sample query, the set of EMPLOYEE tuples
for each department number would be grouped together in a partition and the
average salary computed for each group.

Notice that if a clustering index (see Chapter 17) exists on the grouping attribute(s),
then the records are already partitioned (grouped) into the appropriate subsets. In
this case, it is only necessary to apply the computation to each group.

18.6.2 Implementing Different Types of JOINs
In addition to the standard JOIN (also called INNER JOIN in SQL), there are varia-
tions of JOIN that are frequently used. Let us briefly consider three of them below:
outer joins, semi-joins, and anti-joins.

Outer Joins. In Section 6.4, we discussed the outer join operation, with its three
variations: left outer join, right outer join, and full outer join. In Chapter 5, we

680 Chapter 18 Strategies for Query Processing

discussed how these operations can be specified in SQL. The following is an exam-
ple of a left outer join operation in SQL:

SELECT E.Lname, E.Fname, D.Dname
FROM (EMPLOYEE E LEFT OUTER JOIN DEPARTMENT D ON E.Dno = D.Dnumber);

The result of this query is a table of employee names and their associated depart-
ments. The table contains the same results as a regular (inner) join, with the excep-
tion that if an EMPLOYEE tuple (a tuple in the left relation) does not have an
associated department, the employee’s name will still appear in the resulting table,
but the department name would be NULL for such tuples in the query result. Outer
join can be looked upon as a combination of inner join and anti-join.

Outer join can be computed by modifying one of the join algorithms, such as
nested-loop join or single-loop join. For example, to compute a left outer join, we
use the left relation as the outer loop or index-based nested loop because every tuple
in the left relation must appear in the result. If there are matching tuples in the
other relation, the joined tuples are produced and saved in the result. However, if
no matching tuple is found, the tuple is still included in the result but is padded
with NULL value(s). The sort-merge and hash-join algorithms can also be extended
to compute outer joins.

Theoretically, outer join can also be computed by executing a combination of rela-
tional algebra operators. For example, the left outer join operation shown above is
equivalent to the following sequence of relational operations:

 1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

TEMP1 ← πLname, Fname, Dname (EMPLOYEE Dno=Dnumber DEPARTMENT)

 2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2 ← πLname, Fname (EMPLOYEE) − πLname, Fname (TEMP1)

This minus operation can be achieved by performing an anti-join on
Lname, Fname between EMPLOYEE and TEMP1, as we discussed above in
Section 18.5.2.

 3. Pad each tuple in TEMP2 with a NULL Dname field.

TEMP2 ← TEMP2 × NULL

 4. Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT OUTER
JOIN result.

RESULT ← TEMP1 ∪ TEMP2

The cost of the outer join as computed above would be the sum of the costs of the
associated steps (inner join, projections, set difference, and union). However, note
that step 3 can be done as the temporary relation is being constructed in step 2; that
is, we can simply pad each resulting tuple with a NULL. In addition, in step 4, we
know that the two operands of the union are disjoint (no common tuples), so there
is no need for duplicate elimination. So the preferred method is to use a combina-
tion of inner join and anti-join rather than the above steps since the algebraic

 18.7 Combining Operations Using Pipelining 681

approach of projection followed by set difference causes temporary tables to be
stored and processed multiple times.

The right outer join can be converted to a left outer join by switching the operands
and hence needs no separate discussion. Full outer join requires computing the
result of inner join and then padding to the result extra tuples arising from
unmatched tuples from both the left and right operand relations. Typically, full
outer join would be computed by extending sort-merge or hashed join algorithms
to account for the unmatched tuples.

Implementing Semi-Join and Anti-Join. In Section 18.1, we introduced these types
of joins as possible operations to which some queries with nested subqueries get
mapped. The purpose is to be able to perform some variant of join instead of evaluat-
ing the subquery multiple times. Use of inner join would be invalid in these cases, since
for every tuple of the outer relation, the inner join looks for all possible matches on the
inner relation. In semi-join, the search stops as soon as the first match is found and the
tuple from outer relation is selected; in anti-join, search stops as soon as the first match
is found and the tuple from outer relation is rejected. Both these types of joins can be
implemented as an extension of the join algorithms we discussed in Section 18.4.

Implementing Non-Equi-Join Join operation may also be performed when the
join condition is one of inequality. In Chapter 6, we referred to this operation as
theta-join.This functionality is based on a condition involving any operators, such
as <, >, ≥, ≤, ≠, and so on. All of the join methods discussed are again applicable
here with the exception that hash-based algorithms cannot be used.

18.7 Combining Operations Using Pipelining
A query specified in SQL will typically be translated into a relational algebra expres-
sion that is a sequence of relational operations. If we execute a single operation at a
time, we must generate temporary files on disk to hold the results of these tempo-
rary operations, creating excessive overhead. Evaluating a query by creating and
storing each temporary result and then passing it as an argument for the next oper-
ator is called materialized evaluation. Each temporary materialized result is then
written to disk and adds to the overall cost of query processing.

Generating and storing large temporary files on disk is time-consuming and can be
unnecessary in many cases, since these files will immediately be used as input to the
next operation. To reduce the number of temporary files, it is common to generate
query execution code that corresponds to algorithms for combinations of opera-
tions in a query.

For example, rather than being implemented separately, a JOIN can be combined
with two SELECT operations on the input files and a final PROJECT operation on
the resulting file; all this is implemented by one algorithm with two input files and
a single output file. Rather than creating four temporary files, we apply the algo-
rithm directly and get just one result file.

682 Chapter 18 Strategies for Query Processing

In Section 19.1, we discuss how heuristic relational algebra optimization can group
operations together for execution. Combining several operations into one and
avoiding the writing of temporary results to disk is called pipelining or stream-
based processing.

It is common to create the query execution code dynamically to implement multi-
ple operations. The generated code for producing the query combines several algo-
rithms that correspond to individual operations. As the result tuples from one
operation are produced, they are provided as input for subsequent operations. For
example, if a join operation follows two select operations on base relations, the
tuples resulting from each select are provided as input for the join algorithm in a
stream or pipeline as they are produced. The corresponding evaluation is consid-
ered a pipelined evaluation. It has two distinct benefits:

 ■ Avoiding the additional cost and time delay incurred for writing the inter-
mediate results to disk.

 ■ Being able to start generating results as quickly as possible when the root
operator is combined with some of the operators discussed in the follow-
ing section means that the pipelined evaluation can start generating tuples
of the result while rest of the pipelined intermediate tables are undergoing
processing.

18.7.1 Iterators for implementing Physical Operations
Various algorithms for algebraic operations involve reading some input in the form
of one or more files, processing it, and generating an output file as a relation. If the
operation is implemented in such a way that it outputs one tuple at a time, then it
can be regarded as an iterator. For example, we can devise a tuple-based imple-
mentation of the nested-loop join that will generate a tuple at a time as output.
Iterators work in contrast with the materialization approach wherein entire rela-
tions are produced as temporary results and stored on disk or main memory and
are read back again by the next algorithm. The query plan that contains the query
tree may be executed by invoking the iterators in a certain order. Many iterators
may be active at one time, thereby passing results up the execution tree and avoid-
ing the need for additional storage of temporary results. The iterator interface typi-
cally consists of the following methods:

 1. Open (): This method initializes the operator by allocating buffers for its
input and output and initializing any data structures needed for the opera-
tor. It is also used to pass arguments such as selection conditions needed to
perform the operation. It in turn calls Open() to get the arguments it needs.

 2. Get_Next (): This method calls the Get_next() on each of its input argu-
ments and calls the code specific to the operation being performed on
the inputs. The next output tuple generated is returned and the state of
the iterator is updated to keep track of the amount of input processed.
When no more tuples can be returned, it places some special value in the
output buffer.

 18.8 Parallel Algorithms for Query Processing 683

 3. Close(): This method ends the iteration after all tuples that can be generated
have been generated, or the required/demanded number of tuples have been
returned. It also calls Close() on the arguments of the iterator.

Each iterator may be regarded as a class for its implementation with the above
three methods applicable to each instance of that class. If the operator to be imple-
mented allows a tuple to be completely processed when it is received, it may be
possible to use the pipelining strategy effectively. However, if the input tuples need
to be examined over multiple passes, then the input has to be received as a materi-
alized relation. This becomes tantamount to the Open () method doing most of the
work and the benefit of pipelining not being fully achieved. Some physical opera-
tors may not lend themselves to the iterator interface concept and hence may not
support pipelining.

The iterator concept may also be applied to access methods. Accessing a B+-tree or
a hash-based index may be regarded as a function that can be implemented as an
iterator; it produces as output a series of tuples that meet the selection condition
passed to the Open() method.

18.8 Parallel Algorithms for Query Processing
In Chapter 2, we mentioned several variations of the client/server architectures,
including two-tier and three-tier architectures. There is another type of architec-
ture, called parallel database architecture, that is prevalent for data-intensive
applications. We will discuss it in further detail in Chapter 23 in conjunction with
distributed databases and the big data and NOSQL emerging technologies.

Three main approaches have been proposed for parallel databases. They corre-
spond to three different hardware configurations of processors and secondary stor-
age devices (disks) to support parallelism. In shared-memory architecture,
multiple processors are attached to an interconnection network and can access a
common main memory region. Each processor has access to the entire memory
address space from all machines. The memory access to local memory and local
cache is faster; memory access to the common memory is slower. This architecture
suffers from interference because as more processors are added, there is increasing
contention for the common memory. The second type of architecture is known as
shared-disk architecture. In this architecture, every processor has its own mem-
ory, which is not accessible from other processors. However, every machine has
access to all disks through the interconnection network. Every processor may not
necessarily have a disk of its own. We discussed two forms of enterprise-level sec-
ondary storage systems in Section 16.11. Both storage area networks (SANs) and
network attached storage (NAS) fall into the shared-disk architecture and lend
themselves to parallel processing. They have different units of data transfer; SANs
transfer data in units of blocks or pages to and from disks to processors; NAS
behaves like a file server that transfers files using some file transfer protocol. In
these systems, as more processors are added, there is more contention for the lim-
ited network bandwidth.

684 Chapter 18 Strategies for Query Processing

The above difficulties have led to shared-nothing architecture becoming the most
commonly used architecture in parallel database systems. In this architecture, each
processor accesses its own main memory and disk storage. When a processor A
requests data located on the disk DB attached to processor B, processor A sends the
request as a message over a network to processor B, which accesses its own disk DB

and ships the data over the network in a message to processor A. Parallel databases
using shared-nothing architecture are relatively inexpensive to build. Today, com-
modity processors are being connected in this fashion on a rack, and several racks
can be connected by an external network. Each processor has its own memory and
disk storage.

The shared-nothing architecture affords the possibility of achieving parallelism in
query processing at three levels, which we will discuss below: individual operator
parallelism, intraquery parallelism, and interquery parallelism. Studies have shown
that by allocating more processors and disks, linear speed-up—a linear reduction
in the time taken for operations—is possible. Linear scale-up, on the other hand,
refers to being able to give a constant sustained performance by increasing the
number of processors and disks proportional to the size of data. Both of these are
implicit goals of parallel processing.

18.8.1 Operator-Level Parallelism
In the operations that can be implemented with parallel algorithms, one of the main
strategies is to partition data across disks. Horizontal partitioning of a relation
corresponds to distributing the tuples across disks based on some partitioning
method. Given n disks, assigning the ith tuple to disk i mod n is called round-robin
partitioning. Under range partitioning, tuples are equally distributed (as much as
possible) by dividing the range of values of some attribute. For example, employee
tuples from the EMPLOYEE relation may be assigned to 10 disks by dividing the
age range into 10 ranges—say 22–25, 26–28, 29–30, and so on—such that each has
roughly one-tenth of the total number of employees. Range partitioning is a chal-
lenging operation and requires a good understanding of the distribution of data
along the attribute involved in the range clause. The ranges used for partitioning
are represented by the range vector. With hash partitioning, tuple i is assigned to
the disk h(i), where h is the hashing function. Next, we briefly discuss how parallel
algorithms are designed for various individual operations.

Sorting. If the data has been range partitioned on an attribute—say, age—into n
disks on n processors, then to sort the entire relation on age, each partition can be
sorted separately in parallel and the results can be concatenated. This potentially
causes close to an n-fold reduction in the overall sorting time. If the relation has
been partitioned using another scheme, the following approaches are possible:

 ■ Repartition the relation by using range partitioning on the same attribute
that is the target for sorting; then sort each partition individually followed
by concatenation, as mentioned above.

 ■ Use a parallel version of the external sort-merge algorithm shown in Figure 18.2.

 18.8 Parallel Algorithms for Query Processing 685

Selection. For a selection based on some condition, if the condition is an equality
condition, <A = v> and the same attribute A has been used for range partitioning, the
selection can be performed on only that partition to which the value v belongs. In other
cases, the selection would be performed in parallel on all the processors and the results
merged. If the selection condition is v1 ≤ A ≤ v2 and attribute A is used for range par-
titioning, then the range of values (v1, v2) must overlap a certain number of partitions.
The selection operation needs to be performed only in those processors in parallel.

Projection and Duplicate Elimination. Projection without duplicate elimination
can be achieved by performing the operation in parallel as data is read from each
partition. Duplicate elimination can be achieved by sorting the tuples and discard-
ing duplicates. For sorting, any of the techniques mentioned above can be used
based on how the data is partitioned.

Join. The basic idea of parallel join is to split the relations to be joined, say R and S,
in such a way that the join is divided into multiple n smaller joins, and then perform
these smaller joins in parallel on n processors and take a union of the result. Next,
we discuss the various techniques involved to achieve this.

a. Equality-based partitioned join: If both the relations R and S are parti-
tioned into n partitions on n processors such that partition ri and parti-
tion si are both assigned to the same processor Pi, then the join can be
computed locally provided the join is an equality join or natural join.
Note that the partitions must be non-overlapping on the join key; in that
sense, the partitioning is a strict set-theoretic partitioning. Furthermore,
the attribute used in the join condition must also satisfy these conditions:

 � It is the same as that used for range partitioning, and the ranges used
for each partition are also the same for both R and S. Or,

 � It is the same as that used to partition into n partitions using hash
partitioning. The same hash function must be used for R and S. If the
distributions of values of the joining attribute are different in R and S,
it is difficult to come up with a range vector that will uniformly distrib-
ute both R and S into equal partitions. Ideally, the size of | ri | + | si |
should be even for all partitions i. Otherwise, if there is too much data
skew, then the benefits of parallel processing are not fully achieved.
The local join at each processor may be performed using any of the
techniques discussed for join: sort merge, nested loop, and hash join.

b. Inequality join with partitioning and replication: If the join condition
is an inequality condition, involving <, ≤, >, ≥, ≠, and so on, then it is not
possible to partition R and S in such a way that the ith partition of R—
namely, ri— joins the jth partition of S—namely, si only. Such a join can
be parallelized in two ways:

 � Asymmetric case: Partitioning a relation R using one of the partitioning
schemes; replicating one of the relations (say S) to all the n partitions;
and performing the join between ri and the entire S at processor Pi.
This method is preferred when S is much smaller than R.

686 Chapter 18 Strategies for Query Processing

 � Symmetric case: Under this general method, which is applicable to any
type of join, both R and S are partitioned. R is partitioned n ways, and
S is partitioned m ways. A total of m * n processors are used for the
parallel join. These partitions are appropriately replicated so that pro-
cessors P0,0 thru Pn-1,m-1 (total of m * n processors) can perform the
join locally. The processor Pi,j performs the join of ri with si using any
of the join techniques. The system replicates the partition ri to proces-
sors Pi,0, Pi,1 thru Pi,m-1. Similarly, partition si is replicated to processors

P0,j, P1,j, P n-1,j. In general, partitioning with replication has a higher
cost than just partitioning; thus partitioning with replication costs
more in the case of an equijoin.

c. Parallel partitioned hash join: The partitioned hash join we described as
algorithm J4 in Section 18.4 can be parallelized. The idea is that when R and S
are large relations, even if we partition each relation into n partitions equaling
the number of processors, the local join at each processor can still be costly.
This join proceeds as follows; assume that s is the smaller of r and s:

 1. Using a hash function h1 on the join attribute, map each tuple of rela-
tions r and s to one of the n processors. Let ri and si be the partitions
hashed to Pi.. First, read the s tuples at each processor on its local disk
and map them to the appropriate processor using h1.

 2. Within each processor Pi, the tuples of S received in step 1 are parti-
tioned using a different hash function h2 to, say, k buckets. This step is
identical to the partitioning phase of the partitioned hash algorithm
we described as J4 in Section 18.4.

 3. Read the r tuples from each local disk at each processor and map them
to the appropriate processor using hashing function h1. As they are
received at each processor, the processor partitions them using the
same hash function h2 used in step 2 for the k buckets; this process is
just as in the probing phase of algorithm J4.

 4. The processor Pi executes the partitioned hash algorithm locally on the
partitions ri and si using the joining phase on the k buckets (as
described in algorithm J4) and produces a join result.

The results from all processors Pi are independently computed and
unioned to produce the final result.

Aggregation. Aggregate operations with grouping are achieved by partitioning
on the grouping attribute and then computing the aggregate function locally at
each processor using any of the uni-processor algorithms. Either range partitioning
or hash partitioning can be used.

Set Operations. For union, intersection, and set difference operations, if the
argument relations R and S are partitioned using the same hash function, they can
be done in parallel on each processor. If the partitioning is based on unmatched
criteria, R and S may need to be redistributed using an identical hash function.

 18.8 Parallel Algorithms for Query Processing 687

18.8.2 Intraquery Parallelism
We have discussed how each individual operation may be executed by distrib-
uting the data among multiple processors and performing the operation in
parallel on those processors. A query execution plan can be modeled as a graph
of operations. To achieve a parallel execution of a query, one approach is to
use a parallel algorithm for each operation involved in the query, with appro-
priate partitioning of the data input to that operation. Another opportunity to
parallelize comes from the evaluation of an operator tree where some of the
operations may be executed in parallel because they do not depend on one
another. These operations may be executed on separate processors. If the out-
put of one of the operations can be generated tuple-by-tuple and fed into
another operator, the result is pipelined parallelism. An operator that does
not produce any output until it has consumed all its inputs is said to block the
pipelining.

18.8.3 Interquery Parallelism
Interquery parallelism refers to the execution of multiple queries in parallel. In
shared-nothing or shared-disk architectures, this is difficult to achieve. Activi-
ties of locking, logging, and so on among processors (see the chapters in Part 9
on Transaction Processing) must be coordinated, and simultaneous conflicting
updates of the same data by multiple processors must be avoided. There must be
cache coherency, which guarantees that the processor updating a page has the
latest version of that page in the buffer. The cache-coherency and concurrency
control protocols (see Chapter 21) must work in coordination as well.

The main goal behind interquery parallelism is to scale up (i.e., to increase the
overall rate at which queries or transactions can be processed by increasing the
number of processors). Because single-processor multiuser systems themselves
are designed to support concurrency control among transactions with the goal
of increasing transaction throughput (see Chapter 21), database systems using
shared memory parallel architecture can achieve this type of parallelism more
easily without significant changes.

From the above discussion it is clear that we can speed up the query execution by
performing various operations, such as sorting, selection, projection, join, and
aggregate operations, individually using their parallel execution. We may achieve
further speed-up by executing parts of the query tree that are independent in
parallel on different processors. However, it is difficult to achieve interquery
parallelism in shared-nothing parallel architectures. One area where the shared-
disk architecture has an edge is that it has a more general applicability, since it,
unlike the shared-nothing architecture, does not require data to be stored in a
partitioned manner. Current SAN- and NAS-based systems afford this advan-
tage. A number of parameters—such as available number of processors and
available buffer space—play a role in determining the overall speed-up. A
detailed discussion of the effect of these parameters is outside our scope.

688 Chapter 18 Strategies for Query Processing

18.9 Summary
In this chapter, we gave an overview of the techniques used by DBMSs in processing
high-level queries. We first discussed how SQL queries are translated into relational
algebra. We introduced the operations of semi-join and anti-join, to which certain
nested queries are mapped to avoid doing the regular inner join. We discussed exter-
nal sorting, which is commonly needed during query processing to order the tuples
of a relation while dealing with aggregation, duplicate elimination, and so forth. We
considered various cases of selection and discussed the algorithms employed for
simple selection based on one attribute and complex selections using conjunctive
and disjunctive clauses. Many techniques were discussed for the different selection
types, including linear and binary search, use of B+-tree index, bitmap indexes, clus-
tering index, and functional index. The idea of selectivity of conditions and the typi-
cal information placed in a DBMS catalog was discussed. Then we considered the
join operation in detail and proposed algorithms called nested-loop join, index-
based nested-loop join, sort-merge join, and hash join.

We gave illustrations of how buffer space, join selection factor, and inner–outer rela-
tion choice affect the performance of the join algorithms. We also discussed the hybrid
hash algorithm, which avoids some of the cost of writing during the joining phase. We
discussed algorithms for projection and set operations as well as algorithms for aggre-
gation. Then we discussed the algorithms for different types of joins, including outer
joins, semi-join, anti-join, and non-equi-join. We also discussed how operations can
be combined during query processing to create pipelined or stream-based execution
instead of materialized execution. We introduced how operators may be implemented
using the iterator concept. We ended the discussion of query processing strategies with
a quick introduction to the three types of parallel database system architectures. Then
we briefly summarized how parallelism can be achieved at the individual operations
level and discussed intraquery and interquery parallelism as well.

Review Questions
 18.1. Discuss the reasons for converting SQL queries into relational algebra que-

ries before optimization is done.

 18.2. Discuss semi-join and anti-join as operations to which nested queries may
be mapped; provide an example of each.

 18.3. How are large tables that do not fit in memory sorted? Give the overall
procedure.

 18.4. Discuss the different algorithms for implementing each of the following rela-
tional operators and the circumstances under which each algorithm can be
used: SELECT, JOIN, PROJECT, UNION, INTERSECT, SET DIFFERENCE,
CARTESIAN PRODUCT.

 18.4. Give examples of a conjunctive selection and a disjunctive selection query
and discuss how there may be multiple options for their execution.

 Selected Bibliography 689

 18.5. Discuss alternative ways of eliminating duplicates when a
“SELECT Distinct <attribute>” query is evaluated.

 18.6. How are aggregate operations implemented?

 18.7. How are outer join and non–equi-join implemented?

 18.8. What is the iterator concept? What methods are part of an iterator?

 18.9. What are the three types of parallel architectures applicable to database sys-
tems? Which one is most commonly used?

 18.10. What are the parallel implementations of join?

 18.11. What are intraquery and interquery parallelisms? Which one is harder to
achieve in the shared-nothing architecture? Why?

 18.12. Under what conditions is pipelined parallel execution of a sequence of oper-
ations prevented?

Exercises
 18.13. Consider SQL queries Q1, Q8, Q1B, and Q4 in Chapter 6 and Q27 in

Chapter 7.

a. Draw at least two query trees that can represent each of these queries.
Under what circumstances would you use each of your query trees?

b. Draw the initial query tree for each of these queries, and then show how
the query tree is optimized by the algorithm outlined in Section 18.7.

c. For each query, compare your own query trees of part (a) and the initial
and final query trees of part (b).

 18.14. A file of 4,096 blocks is to be sorted with an available buffer space of 64
blocks. How many passes will be needed in the merge phase of the external
sort-merge algorithm?

 18.15. Can a nondense index be used in the implementation of an aggregate opera-
tor? Why or why not? Illustrate with an example.

 18.16. Extend the sort-merge join algorithm to implement the LEFT OUTER JOIN
operation.

Selected Bibliography
We will give references to the literature for the query processing and optimization
area together at the end of Chapter19. Thus the Chapter19 references apply to this
chapter and the next chapter. It is difficult to separate the literature that addresses
just query processing strategies and algorithms from the literature that discusses
the optimization area.

This page intentionally left blank

691

19
Query Optimization

In this chapter,1 we will assume that the reader is
already familiar with the strategies for query process-

ing in relational DBMSs that we discussed in the previous chapter. The goal of
query optimization is to select the best possible strategy for query evaluation. As we
said before, the term optimization is a misnomer because the chosen execution plan
may not always be the most optimal plan possible. The primary goal is to arrive at
the most efficient and cost-effective plan using the available information about the
schema and the content of relations involved, and to do so in a reasonable amount
of time. Thus a proper way to describe query optimization would be that it is an
activity conducted by a query optimizer in a DBMS to select the best available strat-
egy for executing the query.

This chapter is organized as follows. In Section 19.1 we describe the notation for
mapping of the queries from SQL into query trees and graphs. Most RDBMSs use
an internal representation of the query as a tree. We present heuristics to transform
the query into a more efficient equivalent form followed by a general procedure for
applying those heuristics. In Section 19.2, we discuss the conversion of queries into
execution plans. We discuss nested subquery optimization. We also present exam-
ples of query transformation in two cases: merging of views in Group By queries
and transformation of Star Schema queries that arise in data warehouses. We also
briefly discuss materialized views. Section 19.3 is devoted to a discussion of selectiv-
ity and result-size estimation and presents a cost-based approach to optimization.
We revisit the information in the system catalog that we presented in Section 18.3.4
earlier and present histograms. Cost models for selection and join operation are
presented in Sections 19.4 and 19.5. We discuss the join ordering problem, which is
a critical one, in some detail in Section 19.5.3. Section 19.6 presents an example of
cost-based optimization. Section 19.7 discusses some additional issues related to

chapter 19

1The substantial contribution of Rafi Ahmed to this chapter is appreciated.

692 Chapter 19 Query Optimization

query optimization. Section 19.8 is devoted to a discussion of query optimization in
data warehouses. Section 19.9 gives an overview of query optimization in Oracle.
Section 19.10 briefly discusses semantic query optimization. We end the chapter
with a summary in Section 19.11.

19.1 Query Trees and Heuristics
for Query Optimization

In this section, we discuss optimization techniques that apply heuristic rules to modify
the internal representation of a query—which is usually in the form of a query tree or a
query graph data structure—to improve its expected performance. The scanner and
parser of an SQL query first generate a data structure that corresponds to an initial
query representation, which is then optimized according to heuristic rules. This leads
to an optimized query representation, which corresponds to the query execution strat-
egy. Following that, a query execution plan is generated to execute groups of opera-
tions based on the access paths available on the files involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before
applying the JOIN or other binary operations, because the size of the file resulting
from a binary operation—such as JOIN—is usually a multiplicative function of the
sizes of the input files. The SELECT and PROJECT operations reduce the size of a file
and hence should be applied before a join or other binary operation.

In Section 19.1.1, we reiterate the query tree and query graph notations that we
introduced earlier in the context of relational algebra and calculus in Sections 8.3.5
and 8.6.5, respectively. These can be used as the basis for the data structures that are
used for internal representation of queries. A query tree is used to represent a rela-
tional algebra or extended relational algebra expression, whereas a query graph is
used to represent a relational calculus expression. Then, in Section 19.1.2, we show
how heuristic optimization rules are applied to convert an initial query tree into an
equivalent query tree, which represents a different relational algebra expression
that is more efficient to execute but gives the same result as the original tree. We
also discuss the equivalence of various relational algebra expressions. Finally, Sec-
tion 19.1.3 discusses the generation of query execution plans.

19.1.1 Notation for Query Trees and Query Graphs
A query tree is a tree data structure that corresponds to an extended relational alge-
bra expression. It represents the input relations of the query as leaf nodes of the tree,
and it represents the relational algebra operations as internal nodes. An execution of
the query tree consists of executing an internal node operation whenever its operands
are available and then replacing that internal node by the relation that results from
executing the operation. The order of execution of operations starts at the leaf nodes,
which represents the input database relations for the query, and ends at the root node,
which represents the final operation of the query. The execution terminates when the
root node operation is executed and produces the result relation for the query.

 19.1 Query Trees and Heuristics for Query Optimization 693

Figure 19.1(a) shows a query tree (the same as shown in Figure 6.9) for query Q2
in Chapters 6 to 8: For every project located in ‘Stafford’, retrieve the project
number, the controlling department number, and the department manager’s last
name, address, and birthdate. This query is specified on the COMPANY rela-
tional schema in Figure 5.5 and corresponds to the following relational algebra
expression:

πPnumber, Dnum, Lname, Address, Bdate (((σPlocation=‘Stafford’(PROJECT))

 Dnum=Dnumber(DEPARTMENT)) Mgr_ssn=Ssn(EMPLOYEE))

(b)

(a)

E

DP

P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdateπ

P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation=‘Stafford’
σ

(c)

EDP

[P.Pnumber, P.Dnum] [E.Lname, E.Address, E.Bdate]

P.Dnum=D.Dnumber

P.Plocation=‘Stafford’

D.Mgr_ssn=E.Ssn

‘Stafford’

X

X

(1)

(2)

(3)

P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdateπ

D.Mgr_ssn=E.Ssn

P.Dnum=D.Dnumber

σP.Plocation= ‘Stafford’

E

D

P

EMPLOYEE

DEPARTMENT

PROJECT

Figure 19.1
Two query trees for the query Q2. (a) Query tree corresponding to the relational algebra
expression for Q2. (b) Initial (canonical) query tree for SQL query Q2. (c) Query graph for Q2.

694 Chapter 19 Query Optimization

This corresponds to the following SQL query:

Q2: SELECT P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate
 FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
 WHERE P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND
 P.Plocation= ‘Stafford’;

In Figure 19.1(a), the leaf nodes P, D, and E represent the three relations PROJECT,
DEPARTMENT, and EMPLOYEE, respectively, and the internal tree nodes represent
the relational algebra operations of the expression. When this query tree is executed,
the node marked (1) in Figure 19.1(a) must begin execution before node (2) because
some resulting tuples of operation (1) must be available before we can begin execut-
ing operation (2). Similarly, node (2) must begin executing and producing results
before node (3) can start execution, and so on.

As we can see, the query tree represents a specific order of operations for executing
a query. A more neutral data structure for representation of a query is the query
graph notation. Figure 19.1(c) (the same as shown in Figure 6.13) shows the query
graph for query Q2. Relations in the query are represented by relation nodes, which
are displayed as single circles. Constant values, typically from the query selection
conditions, are represented by constant nodes, which are displayed as double cir-
cles or ovals. Selection and join conditions are represented by the graph edges, as
shown in Figure 19.1(c). Finally, the attributes to be retrieved from each relation are
displayed in square brackets above each relation.

The query graph representation does not indicate an order on which operations to
perform first. There is only a single graph corresponding to each query.2 Although
some optimization techniques were based on query graphs such as those originally
in the INGRES DBMS, it is now generally accepted that query trees are preferable
because, in practice, the query optimizer needs to show the order of operations for
query execution, which is not possible in query graphs.

19.1.2 Heuristic Optimization of Query Trees
In general, many different relational algebra expressions—and hence many differ-
ent query trees—can be semantically equivalent; that is, they can represent the
same query and produce the same results.3

The query parser will typically generate a standard initial query tree to correspond
to an SQL query, without doing any optimization. For example, for a SELECT-
PROJECT-JOIN query, such as Q2, the initial tree is shown in Figure 19.1(b). The
CARTESIAN PRODUCT of the relations specified in the FROM clause is first applied;
then the selection and join conditions of the WHERE clause are applied, followed by

2Hence, a query graph corresponds to a relational calculus expression as shown in Section 8.6.5.

3The same query may also be stated in various ways in a high-level query language such as SQL (see
Chapters 7 and 8).

 19.1 Query Trees and Heuristics for Query Optimization 695

the projection on the SELECT clause attributes. Such a canonical query tree repre-
sents a relational algebra expression that is very inefficient if executed directly,
because of the CARTESIAN PRODUCT (×) operations. For example, if the PROJECT,
DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150 bytes
and contained 100, 20, and 5,000 tuples, respectively, the result of the CARTESIAN
PRODUCT would contain 10 million tuples of record size 300 bytes each. However,
this canonical query tree in Figure 19.1(b) is in a simple standard form that can be
easily created from the SQL query. It will never be executed. The heuristic query
optimizer will transform this initial query tree into an equivalent final query tree
that is efficient to execute.

The optimizer must include rules for equivalence among extended relational algebra
expressions that can be applied to transform the initial tree into the final, optimized
query tree. First we discuss informally how a query tree is transformed by using
heuristics, and then we discuss general transformation rules and show how they can
be used in an algebraic heuristic optimizer.

Example of Transforming a Query. Consider the following query Q on the
database in Figure 5.5: Find the last names of employees born after 1957 who work on
a project named ‘Aquarius’. This query can be specified in SQL as follows:

Q: SELECT E.Lname
 FROM EMPLOYEE E, WORKS_ON W, PROJECT P
 WHERE P.Pname=‘Aquarius’ AND P.Pnumber=W.Pno AND E.Essn=W.Ssn
 AND E.Bdate > ‘1957-12-31’;

The initial query tree for Q is shown in Figure 19.2(a). Executing this tree directly
first creates a very large file containing the CARTESIAN PRODUCT of the entire
EMPLOYEE, WORKS_ON, and PROJECT files. That is why the initial query tree is
never executed, but is transformed into another equivalent tree that is efficient to
execute. This particular query needs only one record from the PROJECT relation—
for the ‘Aquarius’ project—and only the EMPLOYEE records for those whose date of
birth is after ‘1957-12-31’. Figure 19.2(b) shows an improved query tree that first
applies the SELECT operations to reduce the number of tuples that appear in the
CARTESIAN PRODUCT.

A further improvement is achieved by switching the positions of the EMPLOYEE
and PROJECT relations in the tree, as shown in Figure 19.2(c). This uses the
information that Pnumber is a key attribute of the PROJECT relation, and hence
the SELECT operation on the PROJECT relation will retrieve a single record
only. We can further improve the query tree by replacing any CARTESIAN
PRODUCT operation that is followed by a join condition as a selection with a
JOIN operation, as shown in Figure 19.2(d). Another improvement is to keep
only the attributes needed by subsequent operations in the intermediate rela-
tions, by including PROJECT (π) operations as early as possible in the query
tree, as shown in Figure 19.2(e). This reduces the attributes (columns) of the
intermediate relations, whereas the SELECT operations reduce the number of
tuples (records).

696 Chapter 19 Query Optimization

(a) Lname

Pname=‘Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>‘1957-12-31’

PROJECT

WORKS_ONEMPLOYEE

(b) Lname

Pnumber=Pno

Bdate>‘1957-12-31’

Pname=‘Aquarius’Essn=Ssn

π

π

σ

σ

σσ

σ

EMPLOYEE

PROJECT

WORKS_ON

X

X

X

X

(c)

σ Essn=Ssn

π Lname

σ Pnumber=Pno σ Bdate>‘1957-12-31’

σ
Pname=‘Aquarius’

EMPLOYEE

WORKS_ON

PROJECT

X

X

Figure 19.2
Steps in converting a query tree during heuristic optimization. (a) Initial (canonical) query tree for SQL query Q.
(b) Moving SELECT operations down the query tree. (c) Applying the more restrictive SELECT operation first.

 19.1 Query Trees and Heuristics for Query Optimization 697

(e) π Lname

σBdate>‘1957-12-31’

σPname=‘Aquarius’

π Pnumber π Essn,Pno

π Essn πSsn, Lname

EMPLOYEE

WORKS_ON

PROJECT

(d) π Lname

σ Bdate>‘1957-12-31’

σPname=‘Aquarius’ EMPLOYEEWORKS_ON

PROJECT

Essn=Ssn

Pnumber=Pno

Pnumber=Pno

Essn=Ssn

Figure 19.2 (continued)
Steps in converting a query tree during heuristic optimization. (d) Replacing CARTESIAN PRODUCT and SELECT
with JOIN operations. (e) Moving PROJECT operations down the query tree.

As the preceding example demonstrates, a query tree can be transformed step by
step into an equivalent query tree that is more efficient to execute. However, we
must make sure that the transformation steps always lead to an equivalent query
tree. To do this, the query optimizer must know which transformation rules pre-
serve this equivalence. We discuss some of these transformation rules next.

General Transformation Rules for Relational Algebra Operations. There
are many rules for transforming relational algebra operations into equivalent ones.
For query optimization purposes, we are interested in the meaning of the opera-
tions and the resulting relations. Hence, if two relations have the same set of attri-
butes in a different order but the two relations represent the same information, we
consider the relations to be equivalent. In Section 5.1.2 we gave an alternative defi-
nition of relation that makes the order of attributes unimportant; we will use this

698 Chapter 19 Query Optimization

definition here. We will state some transformation rules that are useful in query
optimization, without proving them:

 1. Cascade of σ. A conjunctive selection condition can be broken up into a
cascade (that is, a sequence) of individual σ operations:

σc1 AND c2 AND … AND cn
(R) ≡ σc1

 (σc2
 (…(σcn

(R))…))

 2. Commutativity of σ. The σ operation is commutative:

σc1
 (σc2

(R)) ≡ σc2
 (σc1

(R))

 3. Cascade of π. In a cascade (sequence) of π operations, all but the last one
can be ignored:

πList1
 (πList2

 (…(πListn
(R))…)) ≡ πList1

(R)

 4. Commuting σ with π. If the selection condition c involves only those attri-
butes A1, … , An in the projection list, the two operations can be commuted:

πA1, A2, … , An
 (σc (R)) ≡ σc (πA1, A2, … , An

 (R))

 5. Commutativity of (and ×). The join operation is commutative, as is the ×
operation:

R c S ≡ S c R

R × S ≡ S × R

Notice that although the order of attributes may not be the same in the rela-
tions resulting from the two joins (or two Cartesian products), the meaning
is the same because the order of attributes is not important in the alternative
definition of relation.

 6. Commuting σ with (or ×). If all the attributes in the selection condition c
involve only the attributes of one of the relations being joined—say, R—the
two operations can be commuted as follows:

σc (R S) ≡ (σc (R)) S

Alternatively, if the selection condition c can be written as (c1 AND c2), where
condition c1 involves only the attributes of R and condition c2 involves only
the attributes of S, the operations commute as follows:

σc (R S) ≡ (σc1
 (R)) (σc2

 (S))

The same rules apply if the is replaced by a × operation.

 7. Commuting π with (or ×). Suppose that the projection list is L = {A1, … ,
An, B1, … , Bm} , where A1, … , An are attributes of R and B1, … , Bm are
attributes of S. If the join condition c involves only attributes in L, the two
operations can be commuted as follows:

πL (R c S) ≡ (πA1, … , An
 (R)) c (πB1, … , Bm

 (S))

If the join condition c contains additional attributes not in L, these must be added
to the projection list, and a final π operation is needed. For example, if attributes

 19.1 Query Trees and Heuristics for Query Optimization 699

An+1, … , An+k of R and Bm+1, … , Bm+p of S are involved in the join condition c
but are not in the projection list L, the operations commute as follows:

πL (R c S) ≡ πL ((πA1, … , An, An+1, … , An+k
(R)) c (πB1, … , Bm, Bm+1, … , Bm+p (S)))

For ×, there is no condition c, so the first transformation rule always applies
by replacing c with ×.

 8. Commutativity of set operations. The set operations ∪ and ∩ are commu-
tative, but − is not.

 9. Associativity of , ×, ∪, and ∩. These four operations are individually asso-
ciative; that is, if both occurrences of θ stand for the same operation that is
any one of these four operations (throughout the expression), we have:

(R θ S) θ T ≡ R θ (S θ T)

 10. Commuting σ with set operations. The σ operation commutes with ∪, ∩,
and −. If θ stands for any one of these three operations (throughout the
expression), we have:

σc (R θ S) ≡ (σc (R)) θ (σc (S))

 11. The π operation commutes with ∪.

πL (R ∪ S) ≡ (πL (R)) ∪ (πL (S))

 12. Converting a (σ, ×) sequence into . If the condition c of a σ that follows a ×
corresponds to a join condition, convert the (σ, ×) sequence into a as follows:

(σc (R × S)) ≡ (R c S)

 13. Pushing σ in conjunction with set difference.

σc (R − S) = σc (R) – σc (S)

However, σ may be applied to only one relation:

σc (R – S) = σc (R) – S

 14. Pushing σ to only one argument in ∩.

If in the condition σc all attributes are from relation R, then:

σc (R ∩ S) = σc (R) ∩ S

 15. Some trivial transformations.

If S is empty, then R ∪ S = R

If the condition c in σc is true for the entire R, then σc (R) = R.

There are other possible transformations. For example, a selection or join condition
c can be converted into an equivalent condition by using the following standard
rules from Boolean algebra (De Morgan’s laws):

NOT (c1 AND c2) ≡ (NOT c1) OR (NOT c2)

NOT (c1 OR c2) ≡ (NOT c1) AND (NOT c2)

700 Chapter 19 Query Optimization

Additional transformations discussed in Chapters 4, 5, and 6 are not repeated here.
We discuss next how transformations can be used in heuristic optimization.

Outline of a Heuristic Algebraic Optimization Algorithm. We can now out-
line the steps of an algorithm that utilizes some of the above rules to transform an
initial query tree into a final tree that is more efficient to execute (in most cases).
The algorithm will lead to transformations similar to those discussed in our exam-
ple in Figure 19.2. The steps of the algorithm are as follows:

 1. Using Rule 1, break up any SELECT operations with conjunctive conditions
into a cascade of SELECT operations. This permits a greater degree of free-
dom in moving SELECT operations down different branches of the tree.

 2. Using Rules 2, 4, 6, and 10, 13, 14 concerning the commutativity of SELECT
with other operations, move each SELECT operation as far down the query
tree as is permitted by the attributes involved in the select condition. If the
condition involves attributes from only one table, which means that it repre-
sents a selection condition, the operation is moved all the way to the leaf
node that represents this table. If the condition involves attributes from two
tables, which means that it represents a join condition, the condition is
moved to a location down the tree after the two tables are combined.

 3. Using Rules 5 and 9 concerning commutativity and associativity of binary oper-
ations, rearrange the leaf nodes of the tree using the following criteria. First,
position the leaf node relations with the most restrictive SELECT operations so
they are executed first in the query tree representation. The definition of most
restrictive SELECT can mean either the ones that produce a relation with the
fewest tuples or with the smallest absolute size.4 Another possibility is to define
the most restrictive SELECT as the one with the smallest selectivity; this is more
practical because estimates of selectivities are often available in the DBMS
catalog. Second, make sure that the ordering of leaf nodes does not cause
CARTESIAN PRODUCT operations; for example, if the two relations with the
most restrictive SELECT do not have a direct join condition between them, it
may be desirable to change the order of leaf nodes to avoid Cartesian products.5

 4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subse-
quent SELECT operation in the tree into a JOIN operation, if the condition
represents a join condition.

 5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the com-
muting of PROJECT with other operations, break down and move lists of pro-
jection attributes down the tree as far as possible by creating new PROJECT
operations as needed. Only those attributes needed in the query result and in
subsequent operations in the query tree should be kept after each PROJECT
operation.

4Either definition can be used, since these rules are heuristic.

5Note that a CARTESIAN PRODUCT is acceptable in some cases—for example, if each relation has only
a single tuple because each had a previous select condition on a key field.

 19.2 Choice of Query Execution Plans 701

 6. Identify subtrees that represent groups of operations that can be executed by
a single algorithm.

In our example, Figure 19.2(b) shows the tree in Figure 19.2(a) after applying steps 1
and 2 of the algorithm; Figure 19.2(c) shows the tree after step 3; Figure 19.2(d)
after step 4; and Figure 19.2(e) after step 5. In step 6, we may group together the
operations in the subtree whose root is the operation πEssn into a single algorithm.
We may also group the remaining operations into another subtree, where the tuples
resulting from the first algorithm replace the subtree whose root is the operation
πEssn, because the first grouping means that this subtree is executed first.

Summary of Heuristics for Algebraic Optimization. The main heuristic is to
apply first the operations that reduce the size of intermediate results. This includes
performing as early as possible SELECT operations to reduce the number of tuples
and PROJECT operations to reduce the number of attributes—by moving SELECT
and PROJECT operations as far down the tree as possible. Additionally, the SELECT
and JOIN operations that are most restrictive—that is, result in relations with the
fewest tuples or with the smallest absolute size—should be executed before other
similar operations. The latter rule is accomplished through reordering the leaf
nodes of the tree among themselves while avoiding Cartesian products, and adjust-
ing the rest of the tree appropriately.

19.2 Choice of Query Execution Plans

19.2.1 Alternatives for Query Evaluation
An execution plan for a relational algebra expression represented as a query tree
includes information about the access methods available for each relation as well as
the algorithms to be used in computing the relational operators represented in the
tree. As a simple example, consider query Q1 from Chapter 7, whose corresponding
relational algebra expression is

πFname, Lname, Address(σDname=‘Research’(DEPARTMENT) Dnumber=Dno EMPLOYEE)

The query tree is shown in Figure 19.3. To convert this into an execution plan, the
optimizer might choose an index search for the SELECT operation on DEPARTMENT
(assuming one exists), an index-based nested-loop join algorithm that loops over
the records in the result of the SELECT operation on DEPARTMENT for the join
operation (assuming an index exists on the Dno attribute of EMPLOYEE), and a scan
of the JOIN result for input to the PROJECT operator. Additionally, the approach
taken for executing the query may specify a materialized or a pipelined evaluation,
although in general a pipelined evaluation is preferred whenever feasible.

With materialized evaluation, the result of an operation is stored as a temporary
relation (that is, the result is physically materialized). For instance, the JOIN opera-
tion can be computed and the entire result stored as a temporary relation, which is
then read as input by the algorithm that computes the PROJECT operation, which

702 Chapter 19 Query Optimization

would produce the query result table. On the other hand, with pipelined evaluation,
as the resulting tuples of an operation are produced, they are forwarded directly
to the next operation in the query sequence. We discussed pipelining as a strategy
for query processing in Section 18.7. For example, as the selected tuples from
DEPARTMENT are produced by the SELECT operation, they are placed in a buffer;
the JOIN operation algorithm then consumes the tuples from the buffer, and those
tuples that result from the JOIN operation are pipelined to the projection operation
algorithm. The advantage of pipelining is the cost savings in not having to write
the intermediate results to disk and not having to read them back for the next
operation.

We discussed in Section 19.1 the possibility of converting query trees into equiva-
lent trees so that the evaluation of the query is more efficient in terms of its execu-
tion time and overall resources consumed. There are more elaborate transformations
of queries that are possible to optimize, or rather to “improve.” Transformations
can be applied either in a heuristic-based or cost-based manner.

As we discussed in Sections 7.1.2 and 7.1.3, nested subqueries may occur in the
WHERE clause as well as in the FROM clause of SQL queries. In the WHERE
clause, if an inner block makes a reference to the relation used in the outer block, it
is called a correlated nested query. When a query is used within the FROM clause to
define a resulting or derived relation, which participates as a relation in the outer
query, it is equivalent to a view. Both these types of nested subqueries are handled
by the optimizer, which transforms them and rewrites the entire query. In the next
two subsections, we consider these two variations of query transformation and
rewriting with examples. We will call them nested subquery optimization and sub-
query (view) merging transformation. In Section 19.8, we revisit this topic in the
context of data warehouses and illustrate star transformation optimizations.

19.2.2 Nested Subquery Optimization
We discussed nested queries in Section 7.1.2. Consider the query:

SELECT E1.Fname, E1.Lname
FROM EMLOYEE E1
WHERE E1.Salary = (SELECT MAX (Salary)
 FROM EMPLOYEE E2)

π Fname, Lname, Address

σ Dname=‘Research’

DEPARTMENT

EMPLOYEE

Dnumber=Dno

Figure 19.3
A query tree for query Q1.

 19.2 Choice of Query Execution Plans 703

In the above nested query, there is a query block inside an outer query block.
Evaluation of this query involves executing the nested query first, which yields a
single value of the maximum salary M in the EMPLOYEE relation; then the
outer block is simply executed with the selection condition Salary = M. The max-
imum salary could be obtained just from the highest value in the index on salary
(if one exists) or from the catalog if it is up-to-date. The outer query is evaluated
based on the same index. If no index exists, then linear search would be needed
for both.

We discussed correlated nested SQL queries in Section 7.1.3. In a correlated sub-
query, the inner query contains a reference to the outer query via one or more vari-
ables. The subquery acts as a function that returns a set of values for each value of
this variable or combination of variables.

Suppose in the database of Figure 5.5, we modify the DEPARTMENT relation as:

DEPARTMENT (Dnumber, Dname, Mgr_ssn, Mgr_start_date, Zipcode)

Consider the query:

SELECT Fname, Lname, Salary
FROM EMPLOYEE E
WHERE EXISTS (SELECT *
 FROM DEPARTMENT D
 WHERE D.Dnumber = E.Dno AND D.Zipcode=30332);

In the above, the nested subquery takes the E.Dno, the department where the
employee works, as a parameter and returns a true or false value as a function
depending on whether the department is located in zip code 30332. The naïve strat-
egy for evaluating the query is to evaluate the inner nested subquery for every tuple
of the outer relation, which is inefficient. Wherever possible, SQL optimizer tries to
convert queries with nested subqueries into a join operation. The join can then be
evaluated with one of the options we considered in Section 18.4. The above query
would be converted to

SELECT Fname, Lname, Salary
FROM EMPLOYEE E, DEPARTMENT D
WHERE WHERE D.Dnumber = E.Dno AND D.Zipcode=30332

The process of removing the nested query and converting the outer and inner
query into one block is called unnesting. Here inner join is used, since
D.Dnumber is unique and the join is an equi-join; this guarantees that a tuple
from relation Employee will match with at most one tuple from relation
Department. We showed in Chapter 7 that the query Q16, which has a subquery
connected with the IN connector, was also unnested into a single block query
involving a join. In general, queries involving a nested subquery connected by
IN or ANY connector in SQL can always be converted into a single block query.
Other techniques used include creation of temporary result tables from sub-
queries and using them in joins.

704 Chapter 19 Query Optimization

We repeat the example query shown in Section 18.1. (Note that the IN operator is
equivalent to the =ANY operator.):

Q (SJ) :
SELECT COUNT(*)
FROM DEPARTMENT D
WHERE D.Dnumber IN (SELECT E.Dno
 FROM EMPLOYEE E
 WHERE E.Salary > 200000)

In this case again, there are two options for the optimizer:

 1. Evaluate the nested subquery for each outer tuple; it is inefficient to do so.

 2. Unnest the subquery using semi-join, which is much more efficient than
option 1. In Section 18.1, we used this alternative to introduce and define the
semi-join operator. Note that for unnesting this subquery, which refers to
expressing it as a single block, inner join cannot be used, since in inner join
a tuple of DEPARTMENT may match more than one tuple of EMPLOYEE
and thus produce wrong results. It is easy to see that a nested subquery acts
as a filter and thus it cannot, unlike inner join, produce more rows than
there are in the DEPARTMENT table. Semi-join simulates this behavior.

The process we described as unnesting is sometimes called decorrelation. We
showed another example in Section 18.1 using the connector “NOT IN”, which was
converted into a single block query using the operation anti-join. Optimization of
complex nested subqueries is difficult and requires techniques that can be quite
involved. We illustrate two such techniques in Section 19.2.3 below. Unnesting is a
powerful optimization technique and is used widely by SQL optimizers.

19.2.3 Subquery (View) Merging Transformation
There are instances where a subquery appears in the FROM clause of a query and
amounts to including a derived relation, which is similar to a predefined view that
is involved in the query. This FROM clause subquery is often referred to as an inline
view. Sometimes, an actual view defined earlier as a separate query is used as one of
the argument relations in a new query. In such cases, the transformation of the
query can be referred to as a view-merging or subquery merging transformation.
The techniques of view merging discussed here apply equally to both inline and
predefined views,

Consider the following three relations:

EMP (Ssn, Fn, Ln, Dno)
DEPT (Dno, Dname, Dmgrname, Bldg_id)
BLDG (Bldg_id, No_storeys, Addr, Phone)

The meaning of the relations is self-explanatory; the last one represents build-
ings where departments are located; the phone refers to a phone number for the
building lobby.

 19.2 Choice of Query Execution Plans 705

The following query uses an inline view in the FROM clause; it retrieves for employ-
ees named “John” the last name, address and phone number of building where they
work:

SELECT E.Ln, V.Addr, V.Phone
FROM EMP E, (SELECT D.Dno, D.Dname, B.Addr, B.Phone
 FROM DEPT D, BLDG B
 WHERE D.Bldg_id = B.Bldg_id) V
WHERE V.Dno = E.Dno AND E.Fn = “John”;

The above query joins the EMP table with a view called V that provides the address
and phone of the building where the employee works. In turn, the view joins the
two tables DEPT and BLDG. This query may be executed by first temporarily
materializing the view and then joining it with the EMP table. The optimizer is
then constrained to consider the join order E, V or V, E; and for computing the
view, the join orders possible are D, B and B, D. Thus the total number of join
order candidates is limited to 4. Also, index-based join on E, V is precluded since
there is no index on V on the join column Dno. The view-merging operation
merges the tables in the view with the tables from the outer query block and pro-
duces the following query:

SELECT E.Ln, B.Addr, B.Phone
FROM EMP E, DEPT D, BLDG B
WHERE D.Bldg_id = B.Bldg_id AND D.Dno = E.Dno AND E.Fn = “John”;

With the merged query block above, three tables appear in the FROM clause, thus
affording eight possible join orders and indexes on Dno in DEPT, and Bldg_id in
BLDG can be used for index-based nested loop joins that were previously excluded.
We leave it to the reader to develop execution plans with and without merging to
see the comparison.

In general, views containing select-project-join operations are considered simple
views and they can always be subjected to this type of view-merging. Typically, view
merging enables additional options to be considered and results in an execution
plan that is better than one without view merging. Sometimes other optimizations
are enabled, such as dropping a table in the outer query if it is used within the view.
View-merging may be invalid under certain conditions where the view is more
complex and involves DISTINCT, OUTER JOIN, AGGREGATION, GROUP BY
set operations, and so forth. We next consider a possible situation of GROUP-BY
view-merging.

GROUP-BY View-Merging: When the view has additional constructs besides
select-project-join as we mentioned above, merging of the view as shown above
may or may not be desirable. Delaying the Group By operation after performing
joins may afford the advantage of reducing the data subjected to grouping in case
the joins have low join selectivity. Alternately, performing early Group By may be
advantageous by reducing the amount of data subjected to subsequent joins. The
optimizer would typically consider execution plans with and without merging and

706 Chapter 19 Query Optimization

compare their cost to determine the viability of doing the merging. We illustrate
with an example.

Consider the following relations:

SALES (Custid, Productid, Date, Qty_sold)
CUST (Custid, Custname, Country, Cemail)
PRODUCT (Productid, Pname, Qty_onhand)

The query: List customers from France who have bought more than 50 units
of a product “Ring_234” may be set up as follows:

A view is created to count total quantity of any item bought for the
<Custid, Productid> pairs:
CREATE VIEW CP_BOUGHT_VIEW AS
SELECT SUM (S.Qty_sold) as Bought, S.Custid, S.Productid
FROM SALES S
GROUP BY S.Custid, S.Productid;

Then the query using this view becomes:

QG: SELECT C.Custid, C.Custname, C.Cemail
FROM CUST C, PRODUCT P, CP_BOUGHT_VIEW V1
WHERE P.Productid = V1.Productid AND C.Custid = V1.Custid AND V1.
Bought >50
AND Pname = “Ring_234” AND C.Country = “France”;

The view V1 may be evaluated first and its results temporarily materialized, then
the query QG may be evaluated using the materialized view as one of the tables in
the join. By using the merging transformation, this query becomes:

QT: SELECT C.Custid, C.Custname, C.Cemail
FROM CUST C, PRODUCT P, SALES S
WHERE P.Productid = S.Productid AND C.Custid = S.Custid AND
 Pname = “Ring_234” AND C.Country = “France”
GROUP BY, P.Productid, P.rowid, C.rowid, C.Custid, C.Custname, C.Cemail
HAVING SUM (S.Qty_sold) > 50;

After merging, the resulting query QT is much more efficient and cheaper to exe-
cute. The reasoning is as follows. Before merging, the view V1 does grouping on the
entire SALES table and materializes the result, and it is expensive to do so. In the
transformed query, the grouping is applied to the join of the three tables; in this
operation, a single product tuple is involved from the PRODUCT table, thus filter-
ing the data from SALES considerably. The join in QT after transformation may
be slightly more expensive in that the whole SALES relation is involved rather than
the aggregated view table CP_BOUGHT_VIEW in QG. Note, however, that the
GROUP-BY operation in V1 produces a table whose cardinality is not considerably
smaller than the cardinality of SALES, because the grouping is on <Custid, Productid>,
which may not have high repetition in SALES. Also note the use of P.rowid and
C.rowid, which refer to the unique row identifiers that are added to maintain equiv-
alence with the original query. We reiterate that the decision to merge GROUP-BY
views must be made by the optimizer based on estimated costs.

 19.2 Choice of Query Execution Plans 707

19.2.4 Materialized Views
We discussed the concept of views in Section 7.3 and also introduced the concept
of materialization of views. A view is defined in the database as a query, and a
materialized view stores the results of that query. Using materialized views to
avoid some of the computation involved in a query is another query optimiza-
tion technique. A materialized view may be stored temporarily to allow more
queries to be processed against it or permanently, as is common in data ware-
houses (see Chapter 29). A materialized view constitutes derived data because its
content can be computed as a result of processing the defining query of the
materialized view. The main idea behind materialization is that it is much
cheaper to read it when needed and query against it than to recompute it from
scratch. The savings can be significant when the view involves costly operations
like join, aggregation, and so forth.

Consider, for example, view V2 in Section 7.3, which defines the view as a relation
by joining the DEPARTMENT and EMPLOYEE relations. For every department, it
computes the total number of employees and the total salary paid to employees in
that department. If this information is frequently required in reports or queries,
this view may be permanently stored. The materialized view may contain data
related only to a fragment or sub-expression of the user query. Therefore, an
involved algorithm is needed to replace only the relevant fragments of the query
with one or more materialized views and compute the rest of the query in a conven-
tional way. We also mentioned in Section 7.3 three update (also known as refresh)
strategies for updating the view:

 ■ Immediate update, which updates the view as soon as any of the relations
participating in the view are updated

 ■ Lazy update, which recomputes the view only upon demand

 ■ Periodic update (or deferred update), which updates the view later, possibly
with some regular frequency

When immediate update is in force, it constitutes a large amount of overhead to keep
the view updated when any of the underlying base relations have a change in the form
of insert, delete, and modify. For example, deleting an employee from the database, or
changing the salary of an employee, or hiring a new employee affects the tuple corre-
sponding to that department in the view and hence would require the view V2 in
Section 7.3 to be immediately updated. These updates are handled sometimes manu-
ally by programs that update all views defined on top of a base relation whenever the
base relation is updated. But there is obviously no guarantee that all views may be
accounted for. Triggers (see Section 7.2) that are activated upon an update to the base
relation may be used to take action and make appropriate changes to the materialized
views. The straightforward and naive approach is to recompute the entire view for
every update to any base table and is prohibitively costly. Hence incremental view
maintenance is done in most RDBMSs today. We discuss that next.

Incremental View Maintenance. The basic idea behind incremental view mainte-
nance is that instead of creating the view from scratch, it can be updated incrementally

708 Chapter 19 Query Optimization

by accounting for only the changes that occurred since the last time it was
created/updated. The trick is in figuring out exactly what is the net change to the
materialized view based on a set of inserted or deleted tuples in the base relation.
We describe below the general approaches to incremental view maintenance for
views involving join, selection, projection, and a few types of aggregation. To deal
with modification, we can consider these approaches as a combination of delete of
the old tuple followed by an insert of the new tuple. Assume a view V defined over
relations R and S. The respective instances are v, r, and s.

Join: If a view contains inner join of relations r and s, vold = r s, and there is a new
set of tuples inserted: ri, in r, then the new value of the view contains (r ∪ ri) s. The
incremental change to the view can be computed as vnew = r s ∪ ri s. Similarly,
deleting a set of tuples rd from r results in the new view as vnew = r s − rd s. We
will have similar expressions symmetrically when s undergoes addition or deletion.

Selection: If a view is defined as V = σC R with condition C for selection, when a
set of tuples ri are inserted into r, the view can be modified as vnew = vold ∪ σC ri. On
the other hand, upon deletion of tuples rd from r, we get vnew = vold − σC rd.

Projection: Compared to the above strategy, projection requires additional work.
Consider the view defined as V = πSex, SalaryR, where R is the EMPLOYEE relation,
and suppose the following <Sex, Salary> pairs exist for Salary of 50,000 in r in three
distinct tuples: t5 contains <M, 50000>, t17 contains <M, 50000> and t23 contains
<F, 50000>. The view v therefore contains <M, 50000> and <F, 50000> as two tuples
derived from the three tuples of r. If tuple t5 were to be deleted from r, it would have
no effect on the view. However, if t23 were to be deleted from r, the tuple <F, 50000>
would have to be removed from the view. Similarly, if another new tuple t77 con-
taining <M, 50000> were to be inserted in the relation r, it also would have no effect
on the view. Thus, view maintenance of projection views requires a count to be
maintained in addition to the actual columns in the view. In the above example, the
original count values are 2 for <M, 50000> and 1 for <F, 50000>. Each time an
insert to the base relation results in contributing to the view, the count is incre-
mented; if a deleted tuple from the base relation has been represented in the view,
its count is decremented. When the count of a tuple in the view reaches zero, the
tuple is actually dropped from the view. When a new inserted tuple contributes to
the view, its count is set to 1. Note that the above discussion assumes that SELECT
DISTINCT is being used in defining the view to correspond to the project (π) opera-
tion. If the multiset version of projection is used with no DISTINCT, the counts would
still be used. There is an option to display the view tuple as many times as its count
in case the view must be displayed as a multiset.

Intersection: If the view is defined as V= R ∩ S, when a new tuple ri is inserted, it
is compared against the s relation to see if it is present there. If present, it is inserted
in v, else not. If tuple rd is deleted, it is matched against the view v and, if present
there, it is removed from the view.

 19.2 Choice of Query Execution Plans 709

Aggregation (Group By): For aggregation, let us consider that GROUP BY
is used on column G in relation R and the view contains (SELECT G, aggregate-
function (A)). The view is a result of some aggregation function applied to attribute A,
which corresponds to (see Section 8.4.2):

GℑAggregate-function(A)

We consider a few aggregate-functions below:

 ■ Count: For keeping the count of tuples for each group, if a new tuple is
inserted in r, and if it has a value for G = g1, and if g1 is present in the view,
then its count is incremented by 1. If there is no tuple with the value g1 in the
view, then a new tuple is inserted in the view: <g1, 1>. When the tuple being
deleted has the value G = g1, its count is decremented by 1. If the count of g1
reaches zero after deletion in the view, that tuple is removed from the view.

 ■ Sum: Suppose the view contains (G, sum(A)). There is a count maintained
for each group in the view. If a tuple is inserted in the relation r and has (g1,
x1) under the columns R.G and R.A, and if the view does not have an entry
for g1, a new tuple <g1, x1> is inserted in the view and its count is set to 1. If
there is already an entry for g1 as <g1, s1> in the old view, it is modified as
<g1, s1 + x1> and its count is incremented by 1. For the deletion from base
relation of a tuple with R.G, R.A being <g1, x1>, if the count of the corre-
sponding group g1 is 1, the tuple for group g1 would be removed from the
view. If it is present and has count higher than 1, the count would be decre-
mented by 1 and the sum s1 would be decremented to s1– x1.

 ■ Average: The aggregate function cannot be maintained by itself without main-
taining the sum and the count functions and then computing the average as sum
divided by count. So both the sum and count functions need to be maintained
and incrementally updated as discussed above to compute the new average.

 ■ Max and Min: We can just consider Max. Min would be symmetrically han-
dled. Again for each group, the (g, max(a), count) combination is main-
tained, where max(a) represents the maximum value of R.A in the base
relation. If the inserted tuple has R.A value lower than the current max(a)
value, or if it has a value equal to max(a) in the view, only the count for the
group is incremented. If it has a value greater than max(a), the max value in
the view is set to the new value and the count is incremented. Upon deletion
of a tuple, if its R.A value is less than the max(a), only the count is decre-
mented. If the R.A value matches the max(a), the count is decremented by 1;
so the tuple that represented the max value of A has been deleted. Therefore,
a new max must be computed for A for the group that requires substantial
amount of work. If the count becomes 0, that group is removed from the
view because the deleted tuple was the last tuple in the group.

We discussed incremental materialization as an optimization technique for main-
taining views. However, we can also look upon materialized views as a way to
reduce the effort in certain queries. For example, if a query has a component, say,
R S or πLR that is available as a view, then the query may be modified to use the

710 Chapter 19 Query Optimization

view and avoid doing unnecessary computation. Sometimes an opposite situation
happens. A view V is used in the query Q, and that view has been materialized as v;
let us say the view includes R S; however, no access structures like indexes are
available on v. Suppose that indexes are available on certain attributes, say, A of the
component relation R and that the query Q involves a selection condition on A. In
such cases, the query against the view can benefit by using the index on a compo-
nent relation, and the view is replaced by its defining query; the relation represent-
ing the materialized view is not used at all.

19.3 Use of Selectivities
in Cost-Based Optimization

A query optimizer does not depend solely on heuristic rules or query transforma-
tions; it also estimates and compares the costs of executing a query using different
execution strategies and algorithms, and it then chooses the strategy with the lowest
cost estimate. For this approach to work, accurate cost estimates are required so that
different strategies can be compared fairly and realistically. In addition, the opti-
mizer must limit the number of execution strategies to be considered; otherwise,
too much time will be spent making cost estimates for the many possible execution
strategies. Hence, this approach is more suitable for compiled queries, rather than
ad-hoc queries where the optimization is done at compile time and the resulting
execution strategy code is stored and executed directly at runtime. For interpreted
queries, where the entire process shown in Figure 18.1 occurs at runtime, a full-
scale optimization may slow down the response time. A more elaborate optimiza-
tion is indicated for compiled queries, whereas a partial, less time-consuming
optimization works best for interpreted queries.

This approach is generally referred to as cost-based query optimization.6 It uses
traditional optimization techniques that search the solution space to a problem for a
solution that minimizes an objective (cost) function. The cost functions used in
query optimization are estimates and not exact cost functions, so the optimization
may select a query execution strategy that is not the optimal (absolute best) one. In
Section 19.3.1, we discuss the components of query execution cost. In Sec-
tion 19.3.2, we discuss the type of information needed in cost functions. This infor-
mation is kept in the DBMS catalog. In Section 19.3.3, we describe histograms that
are used to keep details on the value distributions of important attributes.

The decision-making process during query optimization is nontrivial and has mul-
tiple challenges. We can abstract the overall cost-based query optimization
approach in the following way:

 ■ For a given subexpression in the query, there may be multiple equivalence
rules that apply. The process of applying equivalences is a cascaded one; it

6This approach was first used in the optimizer for the SYSTEM R in an experimental DBMS developed at
IBM (Selinger et al., 1979).

 19.3 Use of Selectivities in Cost-Based Optimization 711

does not have any limit and there is no definitive convergence. It is difficult
to conduct this in a space-efficient manner.

 ■ It is necessary to resort to some quantitative measure for evaluation of alter-
natives. By using the space and time requirements and reducing them to
some common metric called cost, it is possible to devise some methodology
for optimization.

 ■ Appropriate search strategies can be designed by keeping the cheapest alter-
natives and pruning the costlier alternatives.

 ■ The scope of query optimization is generally a query block. Various table
and index access paths, join permutations (orders), join methods, group-by
methods, and so on provide the alternatives from which the query optimizer
must chose.

 ■ In a global query optimization, the scope of optimization is multiple query
blocks.7

19.3.1 Cost Components for Query Execution
The cost of executing a query includes the following components:

 1. Access cost to secondary storage. This is the cost of transferring (reading
and writing) data blocks between secondary disk storage and main mem-
ory buffers. This is also known as disk I/O (input/output) cost. The cost of
searching for records in a disk file depends on the type of access struc-
tures on that file, such as ordering, hashing, and primary or secondary
indexes. In addition, factors such as whether the file blocks are allocated
contiguously on the same disk cylinder or scattered on the disk affect the
access cost.

 2. Disk storage cost. This is the cost of storing on disk any intermediate files
that are generated by an execution strategy for the query.

 3. Computation cost. This is the cost of performing in-memory operations on
the records within the data buffers during query execution. Such operations
include searching for and sorting records, merging records for a join or a
sort operation, and performing computations on field values. This is also
known as CPU (central processing unit) cost.

 4. Memory usage cost. This is the cost pertaining to the number of main
memory buffers needed during query execution.

 5. Communication cost. This is the cost of shipping the query and its results
from the database site to the site or terminal where the query originated.
In distributed databases (see Chapter 23), it would also include the cost of
transferring tables and results among various computers during query
evaluation.

7We do not discuss global optimization in this sense in the present chapter. Details may be found in
Ahmed et al. (2006).

712 Chapter 19 Query Optimization

For large databases, the main emphasis is often on minimizing the access cost to
secondary storage. Simple cost functions ignore other factors and compare dif-
ferent query execution strategies in terms of the number of block transfers
between disk and main memory buffers. For smaller databases, where most of
the data in the files involved in the query can be completely stored in memory,
the emphasis is on minimizing computation cost. In distributed databases,
where many sites are involved (see Chapter 23), communication cost must be
minimized. It is difficult to include all the cost components in a (weighted) cost
function because of the difficulty of assigning suitable weights to the cost com-
ponents. This is why some cost functions consider a single factor only—disk
access. In the next section, we discuss some of the information that is needed for
formulating cost functions.

19.3.2 Catalog Information Used in Cost Functions
To estimate the costs of various execution strategies, we must keep track of any
information that is needed for the cost functions. This information may be stored
in the DBMS catalog, where it is accessed by the query optimizer. First, we must
know the size of each file. For a file whose records are all of the same type, the
number of records (tuples) (r), the (average) record size (R), and the number of
file blocks (b) (or close estimates of them) are needed. The blocking factor (bfr) for
the file may also be needed. These were mentioned in Section 18.3.4, and we utilized
them while illustrating the various implementation algorithms for relational opera-
tions. We must also keep track of the primary file organization for each file. The
primary file organization records may be unordered, ordered by an attribute with or
without a primary or clustering index, or hashed (static hashing or one of the
dynamic hashing methods) on a key attribute. Information is also kept on all pri-
mary, secondary, or clustering indexes and their indexing attributes. The number
of levels (x) of each multilevel index (primary, secondary, or clustering) is needed
for cost functions that estimate the number of block accesses that occur during
query execution. In some cost functions the number of first-level index blocks
(bI1) is needed.

Another important parameter is the number of distinct values NDV (A, R) of an
attribute in relation R and the attribute selectivity (sl), which is the fraction of
records satisfying an equality condition on the attribute. This allows estimation of
the selection cardinality (s = sl*r) of an attribute, which is the average number of
records that will satisfy an equality selection condition on that attribute.

Information such as the number of index levels is easy to maintain because it does
not change very often. However, other information may change frequently; for
example, the number of records r in a file changes every time a record is inserted or
deleted. The query optimizer will need reasonably close but not necessarily com-
pletely up-to-the-minute values of these parameters for use in estimating the cost of
various execution strategies. To help with estimating the size of the results of que-
ries, it is important to have as good an estimate of the distribution of values as pos-
sible. To that end, most systems store a histogram.

 19.3 Use of Selectivities in Cost-Based Optimization 713

19.3.3 Histograms
Histograms are tables or data structures maintained by the DBMS to record infor-
mation about the distribution of data. It is customary for most RDBMSs to store
histograms for most of the important attributes. Without a histogram, the best
assumption is that values of an attribute are uniformly distributed over its range
from high to low. Histograms divide the attribute over important ranges (called
buckets) and store the total number of records that belong to that bucket in that
relation. Sometimes they may also store the number of distinct values in each
bucket as well. An implicit assumption is made sometimes that among the distinct
values within a bucket there is a uniform distribution. All these assumptions are
oversimplifications that rarely hold. So keeping a histogram with a finer granularity
(i.e., larger number of buckets) is always useful. A couple of variations of histo-
grams are common: in equi-width histograms, the range of values is divided into
equal subranges. In equi-height histograms, the buckets are so formed that each
one contains roughly the same number of records. Equi-height histograms are con-
sidered better since they keep fewer numbers of more frequently occurring values
in one bucket and more numbers of less frequently occurring ones in a different
bucket. So the uniform distribution assumption within a bucket seems to hold bet-
ter. We show an example of a histogram for salary information in a company in
Figure 19.4. This histogram divides the salary range into five buckets that may cor-
respond to the important sub-ranges over which the queries may be likely because
they belong to certain types of employees. It is neither an equi-width nor an equi-
height histogram.

30k–40k 40k–70k 70k–120k 120k–200k 200k–500k
Salary

100

200

300

400

500

600

700

N
o.

 o
f E

m
pl

oy
ee

s

Figure 19.4
Histogram of salary in the relation EMPLOYEE.

714 Chapter 19 Query Optimization

19.4 Cost Functions for SELECT Operation
We now provide cost functions for the selection algorithms S1 to S8 discussed in
Section 18.3.1 in terms of number of block transfers between memory and disk.
Algorithm S9 involves an intersection of record pointers after they have been
retrieved by some other means, such as algorithm S6, and so the cost function will
be based on the cost for S6. These cost functions are estimates that ignore computa-
tion time, storage cost, and other factors. To reiterate, the following notation is
used in the formulas hereafter:

CSi: Cost for method Si in block accesses
rX: Number of records (tuples) in a relation X
bX: Number of blocks occupied by relation X (also referred to as b)
bfrX: Blocking factor (i.e., number of records per block) in relation X
slA: Selectivity of an attribute A for a given condition
sA: Selection cardinality of the attribute being selected (= slA * r)
xA: Number of levels of the index for attribute A
bI1A: Number of first-level blocks of the index on attribute A
NDV (A, X): Number of distinct values of attribute A in relation X

Note: In using the above notation in formulas, we have omitted the relation name
or attribute name when it is obvious.

 ■ S1—Linear search (brute force) approach. We search all the file blocks to
retrieve all records satisfying the selection condition; hence, CS1a = b. For an
equality condition on a key attribute, only half the file blocks are searched on
the average before finding the record, so a rough estimate for CS1b = (b/2) if
the record is found; if no record is found that satisfies the condition, CS1b = b.

 ■ S2—Binary search. This search accesses approximately CS2 =
log2b + ⎡(s/bfr)⎤ − 1 file blocks. This reduces to log2b if the equality condition
is on a unique (key) attribute, because s = 1 in this case.

 ■ S3a—Using a primary index to retrieve a single record. For a primary
index, retrieve one disk block at each index level, plus one disk block from
the data file. Hence, the cost is one more disk block than the number of
index levels: CS3a = x + 1.

 ■ S3b—Using a hash key to retrieve a single record. For hashing, only one
disk block needs to be accessed in most cases. The cost function is approxi-
mately CS3b = 1 for static hashing or linear hashing, and it is 2 disk block
accesses for extendible hashing (see Section 16.8).

 ■ S4—Using an ordering index to retrieve multiple records. If the compari-
son condition is >, >=, <, or <= on a key field with an ordering index, roughly
half the file records will satisfy the condition. This gives a cost function of
CS4 = x + (b/2). This is a very rough estimate, and although it may be correct
on the average, it may be inaccurate in individual cases. A more accurate
estimate is possible if the distribution of records is stored in a histogram.

 ■ S5—Using a clustering index to retrieve multiple records. One disk block
is accessed at each index level, which gives the address of the first file disk

 19.4 Cost Functions for SELECT Operation 715

block in the cluster. Given an equality condition on the indexing attribute, s
records will satisfy the condition, where s is the selection cardinality of the
indexing attribute. This means that ⎡(s/bfr)⎤ file blocks will be in the cluster
of file blocks that hold all the selected records, giving CS5 = x + ⎡(s/bfr)⎤.

 ■ S6—Using a secondary (B+-tree) index. For a secondary index on a key
(unique) attribute, with an equality (i.e., <attribute = value>) selection condi-
tion, the cost is x + 1 disk block accesses. For a secondary index on a nonkey
(nonunique) attribute, s records will satisfy an equality condition, where s is
the selection cardinality of the indexing attribute. However, because the
index is nonclustering, each of the records may reside on a different disk
block, so the (worst case) cost estimate is CS6a = x + 1 + s. The additional 1 is
to account for the disk block that contains the record pointers after the index
is searched (see Figure 17.5). For range queries, if the comparison condition
is >, >=, <, or <= and half the file records are assumed to satisfy the condition,
then (very roughly) half the first-level index blocks are accessed, plus half the
file records via the index. The cost estimate for this case, approximately, is
CS6b = x + (bI1/2) + (r/2). The r/2 factor can be refined if better selectivity
estimates are available through a histogram. The latter method CS6b can be
very costly. For a range condition such as v1 < A < v2, the selection cardinal-
ity s must be computed from the histogram or as a default, under the uniform
distribution assumption; then the cost would be computed based on whether
or not A is a key or nonkey with a B+-tree index on A. (We leave this as an
exercise for the reader to compute under the different conditions.)

 ■ S7—Conjunctive selection. We can use either S1 or one of the methods S2
to S6 discussed above. In the latter case, we use one condition to retrieve the
records and then check in the main memory buffers whether each retrieved
record satisfies the remaining conditions in the conjunction. If multiple
indexes exist, the search of each index can produce a set of record pointers
(record ids) in the main memory buffers. The intersection of the sets of
record pointers (referred to in S9) can be computed in main memory, and
then the resulting records are retrieved based on their record ids.

 ■ S8—Conjunctive selection using a composite index. Same as S3a, S5, or
S6a, depending on the type of index.

 ■ S9—Selection using a bitmap index. (See Section 17.5.2.) Depending on the
nature of selection, if we can reduce the selection to a set of equality condi-
tions, each equating the attribute with a value (e.g., A = {7, 13, 17, 55}), then
a bit vector for each value is accessed which is r bits or r/8 bytes long. A
number of bit vectors may fit in one block. Then, if s records qualify, s blocks
are accessed for the data records.

 ■ S10—Selection using a functional index. (See Section 17.5.3.) This works
similar to S6 except that the index is based on a function of multiple attributes;
if that function is appearing in the SELECT clause, the corresponding index
may be utilized.

716 Chapter 19 Query Optimization

Cost-Based Optimization Approach. In a query optimizer, it is common to
enumerate the various possible strategies for executing a query and to estimate the
costs for different strategies. An optimization technique, such as dynamic program-
ming, may be used to find the optimal (least) cost estimate efficiently without hav-
ing to consider all possible execution strategies. Dynamic programming is an
optimization technique8 in which subproblems are solved only once. This tech-
nique is applicable when a problem may be broken down into subproblems that
themselves have subproblems. We will visit the dynamic programming approach
when we discuss join ordering in Section 19.5.5. We do not discuss optimization
algorithms here; rather, we use a simple example to illustrate how cost estimates
may be used.

19.4.1 Example of Optimization of Selection Based
on Cost Formulas:

Suppose that the EMPLOYEE file in Figure 5.5 has rE = 10,000 records stored in
bE = 2,000 disk blocks with blocking factor bfrE = 5 records/block and the following
access paths:

 1. A clustering index on Salary, with levels xSalary = 3 and average selection cardi-
nality sSalary = 20. (This corresponds to a selectivity of slSalary = 20/10000 = 0.002.)

 2. A secondary index on the key attribute Ssn, with xSsn = 4 (sSsn = 1, slSsn = 0.0001).

 3. A secondary index on the nonkey attribute Dno, with xDno = 2 and first-level
index blocks bI1Dno = 4. There are NDV (Dno, EMPLOYEE) = 125 distinct val-
ues for Dno, so the selectivity of Dno is slDno = (1/ NDV (Dno, EMPLOYEE)) =
0.008, and the selection cardinality is sDno = (rE * slDno) = (rE/NDV (Dno,
EMPLOYEE)) = 80.

 4. A secondary index on Sex, with xSex = 1. There are NDV (Sex, EMPLOYEE) =
2 values for the Sex attribute, so the average selection cardinality is sSex =
(rE/NDV (Sex, EMPLOYEE)) = 5000. (Note that in this case, a histogram
giving the percentage of male and female employees may be useful, unless
the percentages are approximately equal.)

We illustrate the use of cost functions with the following examples:

OP1: σSsn=‘123456789’ (EMPLOYEE)
OP2: σDno>5(EMPLOYEE)
OP3: σDno=5(EMPLOYEE)
OP4: σDno=5 AND SALARY>30000 AND Sex=‘F’ (EMPLOYEE)

The cost of the brute force (linear search or file scan) option S1 will be estimated as
CS1a = bE = 2000 (for a selection on a nonkey attribute) or CS1b = (bE/2) = 1,000

8For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-
sult an algorithm textbook such as Corman et al. (2003).

 19.5 Cost Functions for the JOIN Operation 717

(average cost for a selection on a key attribute). For OP1 we can use either method
S1 or method S6a; the cost estimate for S6a is CS6a = xSsn + 1 = 4 + 1 = 5, and it is
chosen over method S1, whose average cost is CS1b = 1,000. For OP2 we can use
either method S1 (with estimated cost CS1a = 2,000) or method S6b (with estimated
cost CS6b = xDno + (bI1Dno/2) + (rE /2) = 2 + (4/2) + (10,000/2) = 5,004), so we choose
the linear search approach for OP2. For OP3 we can use either method S1 (with
estimated cost CS1a = 2,000) or method S6a (with estimated cost CS6a = xDno + sDno =
2 + 80 = 82), so we choose method S6a.

Finally, consider OP4, which has a conjunctive selection condition. We need to esti-
mate the cost of using any one of the three components of the selection condition to
retrieve the records, plus the linear search approach. The latter gives cost estimate
CS1a = 2000. Using the condition (Dno = 5) first gives the cost estimate CS6a = 82.
Using the condition (Salary > 30000) first gives a cost estimate CS4 = xSalary + (bE/2) =
3 + (2000/2) = 1003. Using the condition (Sex = ‘F’) first gives a cost estimate CS6a =
xSex + sSex = 1 + 5000 = 5001. The optimizer would then choose method S6a on the
secondary index on Dno because it has the lowest cost estimate. The condition
(Dno = 5) is used to retrieve the records, and the remaining part of the conjunctive
condition (Salary > 30,000 AND Sex = ‘F’) is checked for each selected record after it
is retrieved into memory. Only the records that satisfy these additional conditions
are included in the result of the operation. Consider the Dno = 5 condition in OP3
above; Dno has 125 values and hence a B+-tree index would be appropriate. Instead,
if we had an attribute Zipcode in EMPLOYEE and if the condition were Zipcode =
30332 and we had only five zip codes, bitmap indexing could be used to know what
records qualify. Assuming uniform distribution, sZipcode = 2,000. This would result
in a cost of 2,000 for bitmap indexing.

19.5 Cost Functions for the JOIN Operation
To develop reasonably accurate cost functions for JOIN operations, we must have an
estimate for the size (number of tuples) of the file that results after the JOIN opera-
tion. This is usually kept as a ratio of the size (number of tuples) of the resulting join
file to the size of the CARTESIAN PRODUCT file, if both are applied to the same input
files, and it is called the join selectivity (js). If we denote the number of tuples of a
relation R by |R|, we have:

 js = |(R c S)| / |(R × S)| = |(R c S)| / (|R| * |S|)

If there is no join condition c, then js = 1 and the join is the same as the CARTESIAN
PRODUCT. If no tuples from the relations satisfy the join condition, then js = 0. In
general, 0 ≤ js ≤ 1. For a join where the condition c is an equality comparison
R.A = S.B, we get the following two special cases:

 1. If A is a key of R, then |(R c S)| ≤ |S|, so js ≤ (1/|R|). This is because each
record in file S will be joined with at most one record in file R, since A is a
key of R. A special case of this condition is when attribute B is a foreign key
of S that references the primary key A of R. In addition, if the foreign key B

718 Chapter 19 Query Optimization

has the NOT NULL constraint, then js = (1/|R|), and the result file of the join
will contain |S| records.

 2. If B is a key of S, then |(R c S)| ≤ |R|, so js ≤ (1/|S|).

Hence a simple formula to use for join selectivity is:

js = 1/ max (NDV (A, R), NDV (B,S))

Having an estimate of the join selectivity for commonly occurring join conditions
enables the query optimizer to estimate the size of the resulting file after the join
operation, which we call join cardinality (jc).

jc = |(Rc S)| = js * |R| * |S|.

We can now give some sample approximate cost functions for estimating the cost of
some of the join algorithms given in Section 18.4. The join operations are of the form:

R A=B S

where A and B are domain-compatible attributes of R and S, respectively. Assume
that R has bR blocks and that S has bS blocks:

 ■ J1—Nested-loop join. Suppose that we use R for the outer loop; then we get
the following cost function to estimate the number of block accesses for this
method, assuming three memory buffers. We assume that the blocking factor
for the resulting file is bfrRS and that the join selectivity is known:

CJ1 = bR + (bR * bS) + ((js * |R| * |S|)/bfrRS)

The last part of the formula is the cost of writing the resulting file to disk. This
cost formula can be modified to take into account different numbers of
memory buffers, as presented in Section 19.4. If nB main memory buffer
blocks are available to perform the join, the cost formula becomes:

CJ1 = bR + (⎡bR/(nB – 2)⎤ * bS) + ((js * |R| * |S|)/bfrRS)

 ■ J2—Index-based nested-loop join (using an access structure to retrieve
the matching record(s)). If an index exists for the join attribute B of S with
index levels xB, we can retrieve each record s in R and then use the index to
retrieve all the matching records t from S that satisfy t[B] = s[A]. The cost
depends on the type of index. For a secondary index where sB is the selection
cardinality for the join attribute B of S,9 we get:

CJ2a = bR + (|R| * (xB + 1 + sB)) + ((js * |R| * |S|)/bfrRS)

For a clustering index where sB is the selection cardinality of B, we get

CJ2b = bR + (|R| * (xB + (sB/bfrB))) + ((js * |R| * |S|)/bfrRS)

9Selection cardinality was defined as the average number of records that satisfy an equality condition on
an attribute, which is the average number of records that have the same value for the attribute and
hence will be joined to a single record in the other file.

 19.5 Cost Functions for the JOIN Operation 719

For a primary index, we get

CJ2c = bR + (|R| * (xB + 1)) + ((js * |R| * |S|)/bfrRS)

If a hash key exists for one of the two join attributes—say, B of S—we get

CJ2d = bR + (|R| * h) + ((js * |R| * |S|)/bfrRS)

where h ≥ 1 is the average number of block accesses to retrieve a record,
given its hash key value. Usually, h is estimated to be 1 for static and linear
hashing and 2 for extendible hashing. This is an optimistic estimate, and typ-
ically h ranges from 1.2 to 1.5 in practical situations.

 ■ J3—Sort-merge join. If the files are already sorted on the join attributes, the
cost function for this method is

CJ3a = bR + bS + ((js * |R| * |S|)/bfrRS)

If we must sort the files, the cost of sorting must be added. We can use the
formulas from Section 18.2 to estimate the sorting cost.

 ■ J4—Partition–hash join (or just hash join). The records of files R and S are
partitioned into smaller files. The partitioning of each file is done using the
same hashing function h on the join attribute A of R (for partitioning file R)
and B of S (for partitioning file S). As we showed in Section 18.4, the cost of
this join can be approximated to:

CJ4 = 3 * (bR + bS) + ((js * |R| * |S|)/bfrRS)

19.5.1 Join Selectivity and Cardinality
for Semi-Join and Anti-Join

We consider these two important operations, which are used when unnesting cer-
tain queries. In Section 18.1 we showed examples of subqueries that are transformed
into these operations. The goal of these operations is to avoid the unnecessary effort
of doing exhaustive pairwise matching of two tables based on the join condition.
Let us consider the join selectivity and cardinality of these two types of joins.

Semi-Join

SELECT COUNT(*)
FROM T1
WHERE T1.X IN (SELECT T2.Y
 FROM T2);

Unnesting of the query above leads to semi-join. (In the following query, the nota-
tion “S=” for semi-join is nonstandard.)

SELECT COUNT(*)
FROM T1, T2
WHERE T1.X S= T2.Y;

720 Chapter 19 Query Optimization

The join selectivity of the semi-join above is given by:

js = MIN(1,NDV(Y, T2)/NDV(X, T1))

The join cardinality of the semi-join is given by:

jc = |T1|* js

Anti-Join Consider the following query:

SELECT COUNT (*)
FROM T1
WHERE T1.X NOT IN (SELECT T2.Y
FROM T2);

Unnesting of the query above leads to anti-join.10 (In the following query, the notation
“A=” for anti-join is nonstandard.)

SELECT COUNT(*)
FROM T1, T2
WHERE T1.X A= T2.Y;

The join selectivity of the anti-join above is given by:

js = 1 – MIN(1,NDV(T2.y)/NDV(T1.x))

The join cardinality of the anti-join is given by:

jc = |T1|*js

19.5.2 Example of Join Optimization Based on Cost Formulas
Suppose that we have the EMPLOYEE file described in the example in the previ-
ous section, and assume that the DEPARTMENT file in Figure 5.5 consists of
rD = 125 records stored in bD = 13 disk blocks. Consider the following two join
 operations:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT
OP7: DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

Suppose that we have a primary index on Dnumber of DEPARTMENT with xDnumber= 1
level and a secondary index on Mgr_ssn of DEPARTMENT with selection cardinality
sMgr_ssn= 1 and levels xMgr_ssn= 2. Assume that the join selectivity for OP6 is
jsOP6 = (1/|DEPARTMENT|) = 1/12511 because Dnumber is a key of DEPARTMENT.
Also assume that the blocking factor for the resulting join file is bfrED= 4 records

10Note that in order for anti-join to be used in the NOT IN subquery, both the join attributes, T1.X and
T2.Y, must have non-null values. For a detailed discussion, consult Bellamkonda et al. (2009).

11Note that this coincides with our other formula: = 1/ max (NDV (Dno, EMPLOYEEE), NDV (Dnumber,
DEPARTMENT) = 1/max (125,125) = 1/125.

 19.5 Cost Functions for the JOIN Operation 721

per block. We can estimate the worst-case costs for the JOIN operation OP6 using
the applicable methods J1 and J2 as follows:

 1. Using method J1 with EMPLOYEE as outer loop:

CJ1 = bE + (bE * bD) + ((jsOP6 * rE* rD)/bfrED)

 = 2,000 + (2,000 * 13) + (((1/125) * 10,000 * 125)/4) = 30,500

 2. Using method J1 with DEPARTMENT as outer loop:

CJ1 = bD + (bE * bD) + ((jsOP6* rE* rD)/bfrED)

 = 13 + (13 * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513

 3. Using method J2 with EMPLOYEE as outer loop:

CJ2c = bE + (rE * (xDnumber+ 1)) + ((jsOP6 * rE * rD)/bfrED

 = 2,000 + (10,000 * 2) + (((1/125) * 10,000 * 125/4) = 24,500

 4. Using method J2 with DEPARTMENT as outer loop:

CJ2a = bD + (rD * (xDno + sDno)) + ((jsOP6 * rE * rD)/bfrED)

 = 13 + (125 * (2 + 80)) + (((1/125) * 10,000 * 125/4) = 12,763

 5. Using method J4 gives:

CJ4 = 3* (bD + bE) + ((jsOP6 * rE * rD)/bfrED)

 = 3* (13+2,000) + 2,500 = 8,539

Case 5 has the lowest cost estimate and will be chosen. Notice that in case 2 above,
if 15 memory buffer blocks (or more) were available for executing the join instead
of just 3, 13 of them could be used to hold the entire DEPARTMENT relation (outer
loop relation) in memory, one could be used as buffer for the result, and one would
be used to hold one block at a time of the EMPLOYEE file (inner loop file), and the
cost for case 2 could be drastically reduced to just bE + bD + ((jsOP6 * rE * rD)/bfrED)
or 4,513, as discussed in Section 18.4. If some other number of main memory buf-
fers was available, say nB = 10, then the cost for case 2 would be calculated as fol-
lows, which would also give better performance than case 4:

CJ1 = bD + (⎡bD/(nB – 2)⎤ * bE) + ((js * |R| * |S|)/bfrRS)

 = 13 + (⎡13/8⎤ * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513

 = 13 + (2 * 2,000) + 2,500 = 6,513

As an exercise, the reader should perform a similar analysis for OP7.

19.5.3 Multirelation Queries and JOIN Ordering Choices
The algebraic transformation rules in Section 19.1.2 include a commutative rule
and an associative rule for the join operation. With these rules, many equivalent
join expressions can be produced. As a result, the number of alternative query trees
grows very rapidly as the number of joins in a query increases. A query block that
joins n relations will often have n − 1 join operations, and hence can have a large
number of different join orders. In general, for a query block that has n relations,

722 Chapter 19 Query Optimization

there are n! join orders; Cartesian products are included in this total number. Esti-
mating the cost of every possible join tree for a query with a large number of joins
will require a substantial amount of time by the query optimizer. Hence, some
pruning of the possible query trees is needed. Query optimizers typically limit the
structure of a (join) query tree to that of left-deep (or right-deep) trees. A left-deep
join tree is a binary tree in which the right child of each non–leaf node is always a
base relation. The optimizer would choose the particular left-deep join tree with the
lowest estimated cost. Two examples of left-deep trees are shown in Figure 19.5(a).
(Note that the trees in Figure 19.2 are also left-deep trees.) A right-deep join tree is
a binary tree where the left child of every leaf node is a base relation (Figure 19.5(b)).

A bushy join tree is a binary tree where the left or right child of an internal node
may be an internal node. Figure 19.5(b) shows a right-deep join tree whereas Fig-
ure 19.5(c) shows a bushy one using four base relations. Most query optimizers con-
sider left-deep join trees as the preferred join tree and then choose one among the
n! possible join orderings, where n is the number of relations. We discuss the join
ordering issue in more detail in Sections 19.5.4 and 19.5.5. The left-deep tree has
exactly one shape, and the join orders for N tables in a left-deep tree are given by N!.
In contrast, the shapes of a bushy tree are given by the following recurrence relation
(i.e., recursive function), with S(n) defined as follows: S(1) = 1.

S(n) =
n-1

Σ
i =1

 S(i) * S(n − i)

The above recursive equation for S(n) can be explained as follows. It states that, for
i between 1 and N – 1 as the number of leaves in the left subtree, those leaves may
be rearranged in S(i) ways. Similarly, the remaining N – i leaves in the right subtree
can be rearranged in S(N – i) ways. The number of permutations of the bushy trees
is given by:

P(n) = n! * S(n) = (2n – 2)!/(n – 1)!

Table 19.1 shows the number of possible left-deep (or right-deep) join trees and
bushy join trees for joins of up to seven relations.

It is clear from Table 19.1 that the possible space of alternatives becomes rapidly
unmanageable if all possible bushy tree alternatives were to be considered. In certain

Table19.1 Number of Permutations of Left-Deep and Bushy Join Trees of n Relations

No. of Relations N

No. of Left-Deep
Trees N!

No. of Bushy
Shapes S(N)

No. of Bushy Trees
(2N − 2)!/(N − 1)!

2 2 1 2

3 6 2 12

4 24 5 120

5 120 14 1,680

6 720 42 30,240

7 5,040 132 665,280

 19.5 Cost Functions for the JOIN Operation 723

cases like complex versions of snowflake schemas (see Section 29.3), approaches to
considering bushy tree alternatives have been proposed.12

With left-deep trees, the right child is considered to be the inner relation when exe-
cuting a nested-loop join, or the probing relation when executing an index-based
nested-loop join. One advantage of left-deep (or right-deep) trees is that they are
amenable to pipelining, as discussed in Section 18.7. For instance, consider the first
left-deep tree in Figure 19.5(a) and assume that the join algorithm is the index-based
nested-loop method; in this case, a disk page of tuples of the outer relation is used to
probe the inner relation for matching tuples. As resulting tuples (records) are pro-
duced from the join of R1 and R2, they can be used to probe R3 to locate their match-
ing records for joining. Likewise, as resulting tuples are produced from this join,
they could be used to probe R4. Another advantage of left-deep (or right-deep) trees
is that having a base relation as one of the inputs of each join allows the optimizer to
utilize any access paths on that relation that may be useful in executing the join.

If materialization is used instead of pipelining (see Sections 18.7 and 19.2), the join
results could be materialized and stored as temporary relations. The key idea from

12As a representative case for bushy trees, refer to Ahmed et al. (2014).

R1 R2

(a)

(c)

R3

R4

R4

(b)

R1

R3 R4

R2

R3

R2

R2R1 R4R3

R1

Figure 19.5
(a) Two left-deep join query trees.
(b) A right-deep join query tree.
(c) A bushy query tree.

724 Chapter 19 Query Optimization

the optimizer’s standpoint with respect to join ordering is to find an ordering that
will reduce the size of the temporary results, since the temporary results (pipelined
or materialized) are used by subsequent operators and hence affect the execution
cost of those operators.

19.5.4 Physical Optimization
For a given logical query plan based on the heuristics we have been discussing so
far, each operation needs a further decision in terms of executing the operation by a
specific algorithm at the physical level. This is referred to as physical optimization.
If this optimization is based on the relative cost of each possible implementation,
we call it cost-based physical optimization. The two sets of approaches to this deci-
sion making may be broadly classified as top-down and bottom-up approaches. In
the top-down approach, we consider the options for implementing each operation
working our way down the tree and choosing the best alternative at each stage. In
the bottom-up approach, we consider the operations working up the tree, evaluat-
ing options for physical execution, and choosing the best at each stage. Theoreti-
cally, both approaches amount to evaluation of the entire space of possible
implementation solutions to minimize the cost of evaluation; however, the bottom-
up strategy lends itself naturally to pipelining and hence is used in commercial
RDBMSs. Among the most important physical decisions is the ordering of join
operations, which we will briefly discuss in Section 19.5.5. There are certain heuris-
tics applied at the physical optimization stage that make elaborate cost computa-
tions unnecessary. These heuristics include:

 ■ For selections, use index scans wherever possible.

 ■ If the selection condition is conjunctive, use the selection that results in the
smallest cardinality first.

 ■ If the relations are already sorted on the attributes being matched in a join,
then prefer sort-merge join to other join methods.

 ■ For union and intersection of more than two relations, use the associative
rule; consider the relations in the ascending order of their estimated car-
dinalities.

 ■ If one of the arguments in a join has an index on the join attribute, use that
as the inner relation.

 ■ If the left relation is small and the right relation is large and it has index on
the joining column, then try index-based nested-loop join.

 ■ Consider only those join orders where there are no Cartesian products or
where all joins appear before Cartesian products.

The following are only some of the types of physical level heuristics used by the
optimizer. If the number of relations is small (typically less than 6) and, there-
fore, possible implementations options are limited, then most optimizers would
elect to apply a cost-based optimization approach directly rather than to explore
heuristics.

 19.5 Cost Functions for the JOIN Operation 725

19.5.5 Dynamic Programming Approach to Join Ordering
We saw in Section 19.5.3 that there are many possible ways to order n relations in
an n-way join. Even for n = 5, which is not uncommon in practical applications, the
possible permutations are 120 with left-deep trees and 1,680 with bushy trees. Since
bushy trees expand the solution space tremendously, left-deep trees are generally
preferred (over both bushy and right-deep trees). They have multiple advantages:
First, they work well with the common algorithms for join, including nested-loop,
index-based nested-loop, and other one-pass algorithms. Second, they can generate
fully pipelined plans (i.e., plans where all joins can be evaluated using pipelining).
Note that inner tables must always be materialized because in the join implementa-
tion algorithms, the entire inner table is needed to perform the matching on the
join attribute. This is not possible with right-deep trees.

The common approach to evaluate possible permutations of joining relations is a greedy
heuristic approach called dynamic programming. Dynamic programming is an opti-
mization technique13 where subproblems are solved only once, and it is applicable when
a problem may be broken down into subproblems that themselves have subproblems. A
typical dynamic programming algorithm has the following characteristics14:

 1. The structure of an optimal solution is developed.

 2. The value of the optimal solution is recursively defined.

 3. The optimal solution is computed and its value developed in a bottom-up
fashion.

Note that the solution developed by this procedure is an optimal solution and not the
absolute optimal solution. To consider how dynamic programming may be applied to
the join order selection, consider the problem of ordering a 5-way join of relations r1,
r2, r3, r4, r5. This problem has 120 (=5!) possible left-deep tree solutions. Ideally, the
cost of each of them can be estimated and compared and the best one selected. Dynamic
programming takes an approach that breaks down this problem to make it more man-
ageable. We know that for three relations, there are only six possible left-deep tree
solutions. Note that if all possible bushy tree join solutions were to be evaluated, there
would be 12 of them. We can therefore consider the join to be broken down as:

r1 r2 r3 r4 r5 = (r1 r2 r3) r4 r5

The 6 (= 3!) possible options of (r1 r2 r3) may then be combined with the 6 pos-
sible options of taking the result of the first join, say, temp1, and then considering
the next join:

(temp1 r4 r5)

If we were to consider the 6 options for evaluating temp1 and, for each of them,
consider the 6 options of evaluating the second join (temp1 r4 r5), the possible

13For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-
sult an algorithm textbook such as Corman et al. (2003).

14Based on Chapter 16 in Corman et al. (2003).

726 Chapter 19 Query Optimization

solution space has 6 * 6 = 36 alternatives. This is where dynamic programming can
be used to do a sort of greedy optimization. It takes the “optimal” plan for evaluating
temp1 and does not revisit that plan. So the solution space now reduces to only 6
options to be considered for the second join. Thus the total number of options con-
sidered becomes 6 + 6 instead of 120 (=5!) in the nonheuristic exhaustive approach.

The order in which the result of the join is generated is also important for finding
the best overall order of joins since for using sort-merge join with the next relation,
it plays an important role. The ordering beneficial for the next join is considered an
interesting join order. This approach was first proposed in System R at IBM
Research.15 Besides the join attributes of the later join, System R also included
grouping attributes of a later GROUP BY or a sort order at the root of the tree
among interesting sort orders. For example, in the case we discussed above, the
interesting join orders for the temp1 relation will include those that match the join
attribute(s) required to join with either r4 or with r5. The dynamic programming
algorithm can be extended to consider best join orders for each interesting sort
order. The number of subsets of n relations is 2n (for n = 5 it is 32; n = 10 gives
1,024, which is still manageable), and the number of interesting join orders is small.
The complexity of the extended dynamic programming algorithm to determine the
optimal left-deep join tree permutation has been shown to be O(3n).

19.6 Example to Illustrate Cost-Based
Query Optimization

We will consider query Q2 and its query tree shown in Figure 19.1(a) to illustrate
cost-based query optimization:

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

 Plocation=‘Stafford’;

Suppose we have the information about the relations shown in Figure 19.6. The
LOW_VALUE and HIGH_VALUE statistics have been normalized for clarity. The tree
in Figure 19.1(a) is assumed to represent the result of the algebraic heuristic optimi-
zation process and the start of cost-based optimization (in this example, we assume
that the heuristic optimizer does not push the projection operations down the tree).

The first cost-based optimization to consider is join ordering. As previously men-
tioned, we assume the optimizer considers only left-deep trees, so the potential join
orders—without CARTESIAN PRODUCT—are:

 1. PROJECT DEPARTMENT EMPLOYEE

 2. DEPARTMENT PROJECT EMPLOYEE

15See the classic reference in this area by Selinger et al. (1979).

 19.6 Example to Illustrate Cost-Based Query Optimization 727

 3. DEPARTMENT EMPLOYEE PROJECT

 4. EMPLOYEE DEPARTMENT PROJECT

Assume that the selection operation has already been applied to the PROJECT rela-
tion. If we assume a materialized approach, then a new temporary relation is cre-
ated after each join operation. To examine the cost of join order (1), the first join is
between PROJECT and DEPARTMENT. Both the join method and the access methods
for the input relations must be determined. Since DEPARTMENT has no index
according to Figure 19.6, the only available access method is a table scan (that is, a
linear search). The PROJECT relation will have the selection operation performed
before the join, so two options exist—table scan (linear search) or use of the
PROJ_PLOC index—so the optimizer must compare the estimated costs of these
two options. The statistical information on the PROJ_PLOC index (see Figure 19.6)
shows the number of index levels x = 2 (root plus leaf levels). The index is nonunique

(a) Table_name

PROJECT
PROJECT

PROJECT

DEPARTMENT

DEPARTMENT
EMPLOYEE

EMPLOYEE

EMPLOYEE

200
2000

50

50

50
10000

50

500

1
1

1

1

1
1

1

1

200
2000

50

50

50
10000

50

500

Dnum

Dnumber

Plocation

Pnumber

Dno

Salary

Mgr_ssn

Ssn

Column_name Num_distinct Low_value High_value

(c) Index_name

*Blevel is the number of levels without the leaf level.

PROJ_PLOC
EMP_SSN

EMP_SAL

1
1

1

4
50

50

200
10000

500NONUNIQUE

NONUNIQUE

UNIQUE

Uniqueness Blevel* Leaf_blocks Distinct_keys

(b) Table_name

PROJECT
DEPARTMENT

EMPLOYEE

100
5

200010000

2000

50

Num_rows Blocks

Figure 19.6
Sample statistical information for relations in Q2. (a) Column information.
(b) Table information. (c) Index information.

728 Chapter 19 Query Optimization

(because Plocation is not a key of PROJECT), so the optimizer assumes a uniform
data distribution and estimates the number of record pointers for each Plocation
value to be 10. This is computed from the tables in Figure 19.6 by multiplying
Selectivity * Num_rows, where Selectivity is estimated by 1/Num_distinct. So the cost of
using the index and accessing the records is estimated to be 12 block accesses (2 for
the index and 10 for the data blocks). The cost of a table scan is estimated to be 100
block accesses, so the index access is more efficient as expected.

In the materialized approach, a temporary file TEMP1 of size 1 block is created to
hold the result of the selection operation. The file size is calculated by determin-
ing the blocking factor using the formula Num_rows/Blocks, which gives 2,000/100
or 20 rows per block. Hence, the 10 records selected from the PROJECT relation
will fit into a single block. Now we can compute the estimated cost of the first
join. We will consider only the nested-loop join method, where the outer relation
is the temporary file, TEMP1, and the inner relation is DEPARTMENT. Since the
entire TEMP1 file fits in the available buffer space, we need to read each of the
DEPARTMENT table’s five blocks only once, so the join cost is six block accesses
plus the cost of writing the temporary result file, TEMP2. The optimizer would
have to determine the size of TEMP2. Since the join attribute Dnumber is the key
for DEPARTMENT, any Dnum value from TEMP1 will join with at most one record
from DEPARTMENT, so the number of rows in TEMP2 will be equal to the number
of rows in TEMP1, which is 10. The optimizer would determine the record size for
TEMP2 and the number of blocks needed to store these 10 rows. For brevity,
assume that the blocking factor for TEMP2 is five rows per block, so a total of two
blocks are needed to store TEMP2.

Finally, the cost of the last join must be estimated. We can use a single-loop join on
TEMP2 since in this case the index EMP_SSN (see Figure 19.6) can be used to probe
and locate matching records from EMPLOYEE. Hence, the join method would
involve reading in each block of TEMP2 and looking up each of the five Mgr_ssn
values using the EMP_SSN index. Each index lookup would require a root access, a
leaf access, and a data block access (x + 1, where the number of levels x is 2). So, 10
lookups require 30 block accesses. Adding the two block accesses for TEMP2 gives a
total of 32 block accesses for this join.

For the final projection, assume pipelining is used to produce the final result, which
does not require additional block accesses, so the total cost for join order (1) is esti-
mated as the sum of the previous costs. The optimizer would then estimate costs in
a similar manner for the other three join orders and choose the one with the lowest
estimate. We leave this as an exercise for the reader.

19.7 Additional Issues Related
to Query Optimization

In this section, we will discuss a few issues of interest that we have not been able to
discuss earlier.

 19.7 Additional Issues Related to Query Optimization 729

19.7.1 Displaying the System’s Query Execution Plan
Most commercial RDBMSs have a provision to display the execution plan produced
by the query optimizer so that DBA-level personnel can view such execution plans
and try to understand the descision made by the optimizer.16 The common syntax
is some variation of EXPLAIN <query>.

 ■ Oracle uses

 EXPLAIN PLAN FOR
 <SQL Query>

The query may involve INSERT, DELETE, and UPDATE statements; the output
goes into a table called PLAN_TABLE. An appropriate SQL query is written to read
the PLAN_TABLE. Alternately, Oracle provides two scripts UTLXPLS.SQL and
UTLXPLP.SQL to display the plan table output for serial and parallel execution,
respectively.

 ■ IBM DB2 uses

 EXPLAIN PLAN SELECTION [additional options] FOR <SQL-query>

There is no plan table. The PLAN SELECTION is a command to indicate that the
explain tables should be loaded with the explanations during the plan selection
phase. The same statement is also used to explain XQUERY statements.

 ■ SQL SERVER uses

 SET SHOWPLAN_TEXT ON or SET SHOWPLAN_XML ON or SET
SHOWPLAN_ALL ON

The above statements are used before issuing the TRANSACT-SQL, so the plan
output is presented as text or XML or in a verbose form of text corresponding to the
above three options.

 ■ PostgreSQL uses

 EXPLAIN [set of options] <query>.where the options include ANALYZE,
VERBOSE, COSTS, BUFFERS, TIMING, etc.

19.7.2 Size Estimation of Other Operations
In Sections 19.4 and 19.5, we discussed the SELECTION and JOIN operations and
size estimation of the query result when the query involves those operations. Here
we consider the size estimation of some other operations.

Projection: For projection of the form πList (R) expressed as SELECT <attribute-
list> FROM R, since SQL treats it as a multiset, the estimated number of tuples in
the result is |R|. If the DISTINCT option is used, then size of πA (R) is NDV (A, R).

16We have just illustrated this facility without describing the syntactic details of each system.

730 Chapter 19 Query Optimization

Set Operations: If the arguments for an intersection, union, or set difference are
made of selections on the same relation, they can be rewritten as conjunction, dis-
junction, or negation, respectively. For example, σc1 (R) ∩ σc2 (R) can be rewritten
as σc1 AND c2 (R); and σc1 (R) ∪ σc2 (R) can be rewritten as σc1 OR c2 (R). The size
estimation can be made based on the selectivity of conditions c1 and c2. Otherwise,
the estimated upper bound on the size of r ∩ s is the minimum of the sizes of r and s;
the estimated upper bound on the size of r ∪ s is the sum of their sizes.

Aggregation: The size of GℑAggregate-function(A) R is NDV (G, R) since there is one
group for each unique value of G.

Outer Join : the size of R LEFT OUTER JOIN S would be |R S| plus |R anti-join S|.
Similarly, the size of R FULL OUTER JOIN S would be |r s| plus |r anti-join s| plus
|s anti-join r|. We discussed anti-join selectivity estimation in Section 19.5.1.

19.7.3 Plan Caching
In Chapter 2, we referred to parametric users who run the same queries or transac-
tions repeatedly, but each time with a different set of parameters. For example, a
bank teller uses an account number and some function code to check the balance in
that account. To run such queries or transactions repeatedly, the query optimizer
computes the best plan when the query is submitted for the first time and caches the
plan for future use. This storing of the plan and reusing it is referred to as plan
caching. When the query is resubmitted with different constants as parameters, the
same plan is reused with the new parameters. It is conceivable that the plan may
need to be modified under certain situations; for example, if the query involves
report generation over a range of dates or range of accounts, then, depending on
the amount of data involved, different strategies may apply. Under a variation
called parametric query optimization, a query is optimized without a certain set of
values for its parameters and the optimizer outputs a number of plans for different
possible value sets, all of which are cached. As a query is submitted, the parameters
are compared to the ones used for the various plans and the cheapest among the
applicable plans is used.

19.7.4 Top-k Results Optimization
When the output of a query is expected to be large, sometimes the user is satisfied
with only the top-k results based on some sort order. Some RDBMSs have a limit K
clause to limit the result to that size. Similarly, hints may be specified to inform the
optimizer to limit the generation of the result. Trying to generate the entire result
and then presenting only the top-k results by sorting is a naive and inefficient strat-
egy. Among the suggested strategies, one uses generation of results in a sorted order
so that it can be stopped after K tuples. Other strategies, such as introducing addi-
tional selection conditions based on the estimated highest value, have been pro-
posed. Details are beyond our scope here. The reader may consult the bibliographic
notes for details.

 19.8 An Example of Query Optimization in Data Warehouses 731

19.8 An Example of Query Optimization
in Data Warehouses

In this section, we introduce another example of query transformation and rewrit-
ing as a technique for query optimization. In Section 19.2, we saw examples of
query transformation and rewriting. Those examples dealt with nested subqueries
and used heuristics rather than cost-based optimization. The subquery (view)
merging example we showed can be considered a heuristic transformation; but the
group-by view merging uses cost-based optimization as well. In this section, we
consider a transformation of star-schema queries in data warehouses based on cost
considerations. These queries are commonly used in data warehouse applications
that follow the star schema. (See Section 29.3 for a discussion of star schemas.)

We will refer to this procedure as star-transformation optimization. The star
schema contains a collection of tables; it gets its name because of the schema’s
resemblance to a star-like shape whose center contains one or more fact tables
(relations) that reference multiple dimension tables (relations). The fact table con-
tains information about the relationships (e.g., sales) among the various dimension
tables (e.g., customer, part, supplier, channel, year, etc.) and measure columns (e.g.,
amount_sold, etc.). Consider the representative query called QSTAR given below.
Assume that D1, D2, D3 are aliases for the dimension tables DIM1, DIM2, DIM3,
whose primary keys are, respectively, D1.Pk, D2.Pk, and D3.Pk. These dimensions
have corresponding foreign key attributes in the fact table FACT with alias F—
namely, F.Fk1, F.Fk2, F.Fk3—on which joins can be defined. The query creates a
grouping on attributes D1.X, D2.Y and produces a sum of the so-called “measure”
attribute (see Section 29.3) F.M from the fact table F. There are conditions on attri-
butes A, B, C in DIM1, DIM2, DIM3, respectively:

Query QSTAR:
SELECT D1.X, D2.Y, SUM (F.M)
FROM FACT F, DIM1 D1, DIM2 D2, DIM3 D3
WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and F.Fk3 = D3.Pk and
 D1.A > 5 and D2.B < 77 and D3.C = 11
GROUP BY D1.X, D2.Y

The fact table is generally very large in comparison with the dimension tables.
QSTAR is a typical star query, and its fact table tends to be generally very large and
joined with several tables of small dimension tables. The query may also contain
single-table filter predicates on other columns of the dimension tables, which are
generally restrictive. The combination of these filters helps to significantly reduce
the data set processed from the fact table (such as D1.A > 5 in the above query).
This type of query generally does grouping on columns coming from dimension
tables and aggregation on measure columns coming from the fact table.

The goal of star-transformation optimization is to access only this reduced set of
data from the fact table and avoid using a full table scan on it. Two types of star-
transformation optimizations are possible: (A) classic star transformation, and

732 Chapter 19 Query Optimization

(B) bitmap index star transformation. Both these optimizations are performed on
the basis of comparative costs of the original and the transformed queries.

 A. Classic Star Transformation
 In this optimization, a Cartesian product of the dimension tables is per-

formed first after applying the filters (such as D1.A > 5) to each dimension
table. Note that generally there are no join predicates between dimension
tables. The result of this Cartesian product is then joined with the fact table
using B-tree indexes (if any) on the joining keys of the fact table.

 B. Bitmap Index Star Transformation

 The requirement with this optimization is that there must be bitmap17

indexes on the fact-table joining keys referenced in the query. For example,
in QSTAR, there must be bitmap indexes (see Section 17.5.2) on FACT.Fk1,
FACT.Fk2, and FACT.Fk3 attributes; each bit in the bitmap corresponds to
a row in the fact table. The bit is set if the key value of the attribute appears
in a row of the fact table. The given query QSTAR is transformed into
Q2STAR as shown below.

Q2STAR:

SELECT D1.X, D2.Y, SUM (F.M)
FROM FACT F, DIM1 D1, DIM2 D2
WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and D1.A > 5 and D2.B < 77 and
 F.Fk1 IN (SELECT D1.Pk
 FROM DIM1 D1
 WHERE D1.A > 5) AND
 F.Fk2 IN (SELECT D2.Pk
 FROM DIM2 D2
 WHERE D2.B < 77) AND
 F.Fk3 IN (SELECT D3.pk
 FROM DIM3 D3
 WHERE D3.C = 11)
GROUP BY D1.X, D2.Y;

 The bitmap star transformation adds subquery predicates corresponding to
the dimension tables. Note that the subqueries introduced in Q2STAR may
be looked upon as a set membership operation; for example, F.Fk1 IN (5, 9,
12, 13, 29 …).

When driven by bitmap AND and OR operations of the key values supplied by the
dimension subqueries, only the relevant rows from the fact table need to be
retrieved. If the filter predicates on the dimension tables and the intersection of the
fact table joining each dimension table filtered out a significant subset of the fact
table rows, then this optimization would prove to be much more efficient than a
brute force full-table scan of the fact table.

17In some cases, the B-tree index keys can be converted into bitmaps, but we will not discuss this
technique here.

 19.9 Overview of Query Optimization in Oracle 733

The following operations are performed in Q2STAR in order to access and join the
FACT table.

 1. By iterating over the key values coming from a dimension subquery, the
bitmaps are retrieved for a given key value from a bitmap index on the
FACT table.

 2. For a subquery, the bitmaps retrieved for various key values are merged
(OR-ed).

 3. The merged bitmaps for each dimension subqueries are AND-ed; that is, a
conjunction of the joins is performed.

 4. From the final bitmap, the corresponding tuple-ids for the FACT table are
generated.

 5. The FACT table rows are directly retrieved using the tuple-ids.

Joining Back: The subquery bitmap trees filter the fact table based on the filter
predicates on the dimension tables; therefore, it may still be necessary to join the
dimension tables back to the relevant rows in the fact table using the original join
predicates. The join back of a dimension table can be avoided if the column(s)
selected from the subquery are unique and the columns of the dimension table are
not referenced in the SELECT and GROUP-BY clauses. Note that in Q2STAR, the
table DIM3 is not joined back to the FACT table, since it is not referenced in the
SELECT and GROUP-BY clauses, and DIM3.Pk is unique.

19.9 Overview of Query Optimization in Oracle18

This section provides a broad overview of various features in Oracle query process-
ing, including query optimization, execution, and analytics.19

19.9.1 Physical Optimizer
The Oracle physical optimizer is cost based and was introduced in Oracle 7.1. The
scope of the physical optimizer is a single query block. The physical optimizer
examines alternative table and index access paths, operator algorithms, join order-
ings, join methods, parallel execution distribution methods, and so on. It chooses
the execution plan with the lowest estimated cost. The estimated query cost is a
relative number proportional to the expected elapsed time needed to execute the
query with the given execution plan.

The physical optimizer calculates this cost based on object statistics (such as table
cardinalities, number of distinct values in a column, column high and low values,
data distribution of column values), the estimated usage of resources (such as I/O
and CPU time), and memory needed. Its estimated cost is an internal metric that

18This section is contributed by Rafi Ahmed of Oracle Corporation.

19Support for analytics was introduced in Oracle 10.2.

734 Chapter 19 Query Optimization

roughly corresponds to the run time and the required resources. The goal of cost-
based optimization in Oracle is to find the best trade-off between the lowest run
time and the least resource utilization.

19.9.2 Global Query Optimizer
In traditional RDBMSs, query optimization consists of two distinct logical and
physical optimization phases. In contrast, Oracle has a global query optimizer,
where logical transformation and physical optimization phases have been inte-
grated to generate an optimal execution plan for the entire query tree. The architec-
ture of the Oracle query processing is illustrated in Figure 19.7.

Oracle performs a multitude of query transformations, which change and trans-
form the user queries into equivalent but potentially more optimal forms. Transfor-
mations can be either heuristic-based or cost-based. The cost-based query
transformation (CBQT) framework20 introduced in Oracle 10g provides efficient
mechanisms for exploring the state space generated by applying one or more trans-
formations. During cost-based transformation, an SQL statement, which may com-
prise multiple query blocks, is copied and transformed and its cost is computed
using the physical optimizer. This process is repeated multiple times, each time
applying a new set of possibly interdependent transformations; and, at the end, one
or more transformations are selected and applied to the original SQL statement, if
those transformations result in an optimal execution plan. To deal with the combi-
natorial explosion, the CBQT framework provides efficient strategies for searching
the state space of various transformations.

The availability of the general framework for cost-based transformation has made it
possible for other innovative transformations to be added to the vast repertoire of

20As presented in Ahmed et al. (2006).

Parser
Front-End

Execution

Physical
Optimization

Cost-Based
Transformation

CBQT
Framework

Heuristic-Based
Transformation

Figure 19.7
Cost-based query
transformation
framework (based on
Ahmed et al., 2006).

 19.9 Overview of Query Optimization in Oracle 735

Oracle’s query transformation techniques. Major among these transformations are
group-by and distinct subquery merging (in the FROM clause of the query), sub-
query unnesting, predicate move-around, common subexpression elimination, join
predicate push down, OR expansion, subquery coalescing, join factorization,
subquery removal through window function, star transformation, group-by placement,
and bushy join trees.21

The cost-based transformation framework of Oracle 10g is a good example of the
sophisticated approach taken to optimize SQL queries.

19.9.3 Adaptive Optimization
Oracle’s physical optimizer is adaptive and uses a feedback loop from the execu-
tion level to improve on its previous decisions. The optimizer selects the most
optimal execution plan for a given SQL statement using the cost model, which
relies on object statistics (e.g., number of rows, distribution of column values,
etc.) and system statistics (e.g., I/O bandwidth of the storage subsystem). The
optimality of the final execution plan depends primarily on the accuracy of the
statistics fed into the cost model as well as on the sophistication of the cost model
itself. In Oracle, the feedback loop shown in Figure 19.7 establishes a bridge
between the execution engine and the physical optimizer. The bridge brings
valuable statistical information to enable the physical optimizer to assess the
impact of its decisions and make better decisions for the current and future exe-
cutions. For example, based on the estimated value of table cardinality, the opti-
mizer may choose the index-based nested-loop join method. However, during
the execution phase, the actual table cardinality may be detected to diverge sig-
nificantly from the estimated value. This information may trigger the physical
optimizer to revise its decision and dynamically change the index access join
method to the hash join method.

19.9.4 Array Processing
One of the critical deficiencies of SQL implementations is its lack of support for
N-dimensional array-based computation. Oracle has made extensions for analyt-
ics and OLAP features; these extensions have been integrated into the Oracle
RDBMS engine.22 We will illustrate the need for OLAP queries when we discuss
data warehousing in Chapter 29. These SQL extensions involving array-based
computations for complex modeling and optimizations include access structures
and execution strategies for processing these computations efficiently. The com-
putation clause (details are beyond our scope here) allows the Oracle RDBMS to
treat a table as a multidimensional array and specify a set of formulas over it. The
formulas replace multiple joins and UNION operations that must be performed
for equivalent computation with current ANSI SQL (where ANSI stands for

21More details can be found in Ahmed et al. (2006, 2014).
22See Witkowski et al. (2003) for more details.

736 Chapter 19 Query Optimization

American National Standards Institute). The computation clause not only allows
for ease of application development but also offers the Oracle RDBMS an opportu-
nity to perform better optimization.

19.9.5 Hints
An interesting addition to the Oracle query optimizer is the capability for an applica-
tion developer to specify hints (also called query annotations or directives in other
systems) to the optimizer. Hints are embedded in the text of an SQL statement. Hints
are commonly used to address the infrequent cases where the optimizer chooses a
suboptimal plan. The idea is that an application developer occasionally might need
to override the optimizer decisions based on cost or cardinality mis-estimations. For
example, consider the EMPLOYEE table shown in Figure 5.6. The Sex column of that
table has only two distinct values. If there are 10,000 employees, then the optimizer,
in the absence of a histogram on the Sex column, would estimate that half are male
and half are female, assuming a uniform data distribution. If a secondary index
exists, it would more than likely not be used. However, if the application developer
knows that there are only 100 male employees, a hint could be specified in an SQL
query whose WHERE-clause condition is Sex = ‘M’ so that the associated index would
be used in processing the query. Various types of hints can be specified for different
operations; these hints include but are not limited to the following:

 ■ The access path for a given table

 ■ The join order for a query block

 ■ A particular join method for a join between tables

 ■ The enabling or disabling of a transformation

19.9.6 Outlines
In Oracle RDBMSs, outlines are used to preserve execution plans of SQL state-
ments or queries. Outlines are implemented and expressed as a collection of
hints, because hints are easily portable and comprehensible. Oracle provides an
extensive set of hints that are powerful enough to specify any execution plan, no
matter how complex. When an outline is used during the optimization of an SQL
statement, these hints are applied at appropriate stages by the optimizer (and
other components). Every SQL statement processed by the Oracle optimizer
automatically generates an outline that can be displayed with the execution plan.
Outlines are used for purposes such as plan stability, what-if analysis, and perfor-
mance experiments.

19.9.7 SQL Plan Management
Execution plans for SQL statements have a significant impact on the overall perfor-
mance of a database system. New optimizer statistics, configuration parameter
changes, software updates, introduction of new query optimization and processing
techniques, and hardware resource utilizations are among a multitude of factors

 19.10 Semantic Query Optimization 737

that may cause the Oracle query optimizer to generate a new execution plan for the
same SQL queries or statements. Although most of the changes in the execution
plans are beneficial or benign, a few execution plans may turn out to be suboptimal,
which can have a negative impact on system performance.

In Oracle 11g, a novel feature called SQL plan management (SPM) was introduced23

for managing execution plans for a set of queries or workloads. SPM provides stable
and optimal performance for a set of SQL statements by preventing new subopti-
mal plans from being executed while allowing other new plans to be executed if
they are verifiably better than the previous plans. SPM encapsulates an elaborate
mechanism for managing the execution plans of a set of SQL statements, for which
the user has enabled SPM. SPM maintains the previous execution plans in the form
of stored outlines associated with texts of SQL statements and compares the perfor-
mances of the old and new execution plans for a given SQL statement before per-
mitting them to be used by the user. SPM can be configured to work automatically,
or it can be manually controlled for one or more SQL statements.

19.10 Semantic Query Optimization
A different approach to query optimization, called semantic query optimization,
has been suggested. This technique, which may be used in combination with the
techniques discussed previously, uses constraints specified on the database schema—
such as unique attributes and other more complex constraints—to modify one query
into another query that is more efficient to execute. We will not discuss this approach
in detail but we will illustrate it with a simple example. Consider the SQL query:

SELECT E.Lname, M.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS M
WHERE E.Super_ssn=M.Ssn AND E.Salary > M.Salary

This query retrieves the names of employees who earn more than their supervisors.
Suppose that we had a constraint on the database schema that stated that no
employee can earn more than his or her direct supervisor. If the semantic query
optimizer checks for the existence of this constraint, it does not need to execute the
query because it knows that the result of the query will be empty. This may save
considerable time if the constraint checking can be done efficiently. However,
searching through many constraints to find those that are applicable to a given
query and that may semantically optimize it can also be time-consuming.

Consider another example:

SELECT Lname, Salary
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dno = DEPARTMENT.Dnumber and
EMPLOYEE.Salary>100000

23See Ziauddin et al. (2008).

738 Chapter 19 Query Optimization

In this example, the attributes retrieved are only from one relation: EMPLOYEE; the
selection condition is also on that one relation. However, there is a referential integ-
rity constraint that Employee.Dno is a foreign key that refers to the primary key
Department.Dnumber. Therefore, this query can be transformed by removing the
DEPARTMENT relation from the query and thus avoiding the inner join as follows:

SELECT Lname, Salary
FROM EMPLOYEE
WHERE EMPLOYEE.Dno IS NOT NULL and EMPLOYEE.Salary>100000

This type of transformation is based on the primary-key/foreign-key relationship
semantics, which are a constraint between the two relations.

With the inclusion of active rules and additional metadata in database systems (see
Chapter 26), semantic query optimization techniques are being gradually incorpo-
rated into DBMSs.

19.11 Summary
 In the previous chapter, we presented the strategies for query processing used by
relational DBMSs. We considered algorithms for various standard relational opera-
tors, including selection, projection, and join. We also discussed other types of
joins, including outer join, semi-join, and anti-join, and we discussed aggregation
as well as external sorting. In this chapter, our goal was to focus on query optimiza-
tion techniques used by relational DBMSs. In Section 19.1 we introduced the nota-
tion for query trees and graphs and described heuristic approaches to query
optimization; these approaches use heuristic rules and algebraic techniques to
improve the efficiency of query execution. We showed how a query tree that repre-
sents a relational algebra expression can be heuristically optimized by reorganizing
the tree nodes and transforming the tree into another equivalent query tree that is
more efficient to execute. We also gave equivalence-preserving transformation
rules and a systematic procedure for applying them to a query tree. In Section 19.2
we described alternative query evaluation plans, including pipelining and material-
ized evaluation. Then we introduced the notion of query transformation of SQL
queries; this transformation optimizes nested subqueries. We also illustrated with
examples of merging subqueries occurring in the FROM clause, which act as
derived relations or views. We also discussed the technique of materializing views.

We discussed in some detail the cost-based approach to query optimization in
Section 19.3. We discussed information maintained in catalogs that the query
optimizer consults. We also discussed histograms to maintain distribution of
important attributes. We showed how cost functions are developed for some
database access algorithms for selection and join in Sections 19.4 and 19.5, respec-
tively. We illustrated with an example in Section 19.6 how these cost functions
are used to estimate the costs of different execution strategies. A number of addi-
tional issues such as display of query plans, size estimation of results, plan cach-
ing and top-k results optimization were discussed in Section 19.7. Section 19.8

 Review Questions 739

was devoted to a discussion of how typical queries in data warehouses are opti-
mized. We gave an example of cost-based query transformation in data ware-
house queries on the so-called star schema. In Section 19.9 we presented a detailed
overview of the Oracle query optimizer, which uses a number of additional tech-
niques, details of which were beyond our scope. Finally, in Section 19.10 we men-
tioned the technique of semantic query optimization, which uses the semantics or
integrity constraints to simplify the query or completely avoid accessing the data
or the actual execution of the query.

Review Questions
 19.1. What is a query execution plan?

 19.2. What is meant by the term heuristic optimization? Discuss the main heuris-
tics that are applied during query optimization.

 19.3. How does a query tree represent a relational algebra expression? What is
meant by an execution of a query tree? Discuss the rules for transformation
of query trees, and identify when each rule should be applied during optimi-
zation.

 19.4. How many different join orders are there for a query that joins 10 relations?
How many left-deep trees are possible?

 19.5. What is meant by cost-based query optimization?

 19.6. What is the optimization approach based on dynamic programming? How
is it used during query optimization?

 19.7. What are the problems associated with keeping views materialized?

 19.8. What is the difference between pipelining and materialization?

 19.9. Discuss the cost components for a cost function that is used to estimate
query execution cost. Which cost components are used most often as the
basis for cost functions?

 19.10. Discuss the different types of parameters that are used in cost functions.
Where is this information kept?

 19.11. What are semi-join and anti-join? What are the join selectivity and join car-
dinality parameters associated with them? Provide appropriate formulas.

 19.12. List the cost functions for the SELECT and JOIN methods discussed in
Sections19.4 and 19.5.

 19.13. What are the special features of query optimization in Oracle that we did not
discuss in the chapter?

 19.14. What is meant by semantic query optimization? How does it differ from
other query optimization techniques?

740 Chapter 19 Query Optimization

Exercises
 19.15. Develop cost functions for the PROJECT, UNION, INTERSECTION, SET

 DIFFERENCE, and CARTESIAN PRODUCT algorithms discussed in Section 19.4.

 19.16. Develop cost functions for an algorithm that consists of two SELECTs, a
JOIN, and a final PROJECT, in terms of the cost functions for the individual
operations.

 19.17. Develop a pseudo-language-style algorithm for describing the dynamic
 programming procedure for join-order selection.

 19.18. Calculate the cost functions for different options of executing the JOIN
 operation OP7 discussed in Section 19.4.

 19.19. Develop formulas for the hybrid hash-join algorithm for calculating the size
of the buffer for the first bucket. Develop more accurate cost estimation
 formulas for the algorithm.

 19.20. Estimate the cost of operations OP6 and OP7 using the formulas developed
in Exercise 19.19.

 19.21. Compare the cost of two different query plans for the following query:

 σSalary< 40000(EMPLOYEE Dno=DnumberDEPARTMENT)

Use the database statistics shown in Figure 19.6.

Selected Bibliography
This bibliography provides literature references for the topics of query processing
and optimization. We discussed query processing algorithms and strategies in the
previous chapter, but it is difficult to separate the literature that addresses optimiza-
tion from the literature that addresses query processing strategies and algorithms.
Hence, the bibliography is consolidated.

A detailed algorithm for relational algebra optimization is given by Smith and
Chang (1975). The Ph.D. thesis of Kooi (1980) provides a foundation for query
processing techniques. A survey paper by Jarke and Koch (1984) gives a taxonomy
of query optimization and includes a bibliography of work in this area. A survey by
Graefe (1993) discusses query execution in database systems and includes an exten-
sive bibliography.

Whang (1985) discusses query optimization in OBE (Office-By-Example), which is
a system based on the language QBE. Cost-based optimization was introduced in
the SYSTEM R experimental DBMS and is discussed in Astrahan et al. (1976).
Selinger et al. (1979) is a classic paper that discussed cost-based optimization of
multiway joins in SYSTEM R. Join algorithms are discussed in Gotlieb (1975), Blas-
gen and Eswaran (1976), and Whang et al. (1982). Hashing algorithms for imple-
menting joins are described and analyzed in DeWitt et al. (1984), Bratbergsengen

 Selected Bibliography 741

(1984), Shapiro (1986), Kitsuregawa et al. (1989), and Blakeley and Martin (1990),
among others. Blakely et al. (1986) discuss maintenance of materialized views.
Chaudhari et al. (1995) discuss optimization of queries with materialized views.
Approaches to finding a good join order are presented in Ioannidis and Kang
(1990) and in Swami and Gupta (1989). A discussion of the implications of left-
deep and bushy join trees is presented in Ioannidis and Kang (1991). Kim (1982)
discusses transformations of nested SQL queries into canonical representations.
Optimization of aggregate functions is discussed in Klug (1982) and Muralikrishna
(1992). Query optimization with Group By is presented in Chaudhari and Shim
(1994). Yan and Larson (1995) discuss eager and lazy aggregation. Salzberg et al.
(1990) describe a fast external sorting algorithm. Estimating the size of temporary
relations is crucial for query optimization. Sampling-based estimation schemes are
presented in Haas et al. (1995), Haas and Swami (1995), and Lipton et al. (1990).
Having the database system store and use more detailed statistics in the form of
histograms is the topic of Muralikrishna and DeWitt (1988) and Poosala et al.
(1996). Galindo-Legaria and Joshi (2001) discuss nested subquery and aggregation
optimization.

O’Neil and Graefe (1995) discuss multi-table joins using bitmap indexes. Kim et al.
(1985) discuss advanced topics in query optimization. Semantic query optimization
is discussed in King (1981) and Malley and Zdonick (1986). Work on semantic
query optimization is reported in Chakravarthy et al. (1990), Shenoy and Ozsoyo-
glu (1989), and Siegel et al. (1992). Volcano, a query optimizer based on query
equivalence rules, was developed by Graefe and Mckenna (1993). Volcano and the
follow-on Cascades approach by Graefe (1995) are the basis for Microsoft’s SQL
Server query optimization. Carey and Kossman (1998) and Bruno et al. (2002) pres-
ent approaches to query optimization for top-k results. Galindo Legaria et al. (2004)
discuss processing and optimizing database updates.

Ahmed et al. (2006) discuss cost-based query transformation in Oracle and give a
good overview of the global query optimization architecture in Oracle 10g. Ziaud-
din et al. (2008) discuss the idea of making the optimizer change the execution plan
for a query. They discuss Oracle’s SQL plan management (SPM) feature, which
lends stability to performance. Bellamkonda et al. (2009) provide additional tech-
niques for query optimization. Ahmed et al. (2014) consider the advantages of
bushy trees over alternatives for execution. Witkowski et al. (2003) discuss support
for N-dimensional array-based computation for analytics that has been integrated
into the Oracle RDBMS engine.

This page intentionally left blank

Transaction Processing,
Concurrency Control,

and Recovery

part 9

This page intentionally left blank

745

20
Introduction to Transaction

Processing Concepts
and Theory

The concept of transaction provides a mechanism
for describing logical units of database processing.

Transaction processing systems are systems with large databases and hundreds of
concurrent users executing database transactions. Examples of such systems
include airline reservations, banking, credit card processing, online retail purchas-
ing, stock markets, supermarket checkouts, and many other applications. These
systems require high availability and fast response time for hundreds of concur-
rent users. In this chapter, we present the concepts that are needed in transaction
processing systems. We define the concept of a transaction, which is used to repre-
sent a logical unit of database processing that must be completed in its entirety to
ensure correctness. A transaction is typically implemented by a computer program
that includes database commands such as retrievals, insertions, deletions, and
updates. We introduced some of the basic techniques for database programming
in Chapters 10 and 11.

In this chapter, we focus on the basic concepts and theory that are needed to ensure
the correct executions of transactions. We discuss the concurrency control prob-
lem, which occurs when multiple transactions submitted by various users interfere
with one another in a way that produces incorrect results. We also discuss the prob-
lems that can occur when transactions fail, and how the database system can recover
from various types of failures.

This chapter is organized as follows. Section 20.1 informally discusses why concur-
rency control and recovery are necessary in a database system. Section 20.2 defines
the term transaction and discusses additional concepts related to transaction

chapter 20

746 Chapter 20 Introduction to Transaction Processing Concepts and Theory

processing in database systems. Section 20.3 presents the important properties of
atomicity, consistency preservation, isolation, and durability or permanency—
called the ACID properties—that are considered desirable in transaction process-
ing systems. Section 20.4 introduces the concept of schedules (or histories) of
executing transactions and characterizes the recoverability of schedules. Sec-
tion 20.5 discusses the notion of serializability of concurrent transaction execution,
which can be used to define correct execution sequences (or schedules) of concur-
rent transactions. In Section 20.6, we present some of the commands that support
the transaction concept in SQL, and we introduce the concepts of isolation levels.
Section 20.7 summarizes the chapter.

The two following chapters continue with more details on the actual methods and
techniques used to support transaction processing. Chapter 21 gives an overview
of the basic concurrency control protocols and Chapter 22 introduces recovery
techniques.

20.1 Introduction to Transaction Processing
In this section, we discuss the concepts of concurrent execution of transactions and
recovery from transaction failures. Section 20.1.1 compares single-user and multi-
user database systems and demonstrates how concurrent execution of transactions
can take place in multiuser systems. Section 20.1.2 defines the concept of transac-
tion and presents a simple model of transaction execution based on read and write
database operations. This model is used as the basis for defining and formalizing
concurrency control and recovery concepts. Section 20.1.3 uses informal examples
to show why concurrency control techniques are needed in multiuser systems.
Finally, Section 20.1.4 discusses why techniques are needed to handle recovery
from system and transaction failures by discussing the different ways in which
transactions can fail while executing.

20.1.1 Single-User versus Multiuser Systems
One criterion for classifying a database system is according to the number of users
who can use the system concurrently. A DBMS is single-user if at most one user at
a time can use the system, and it is multiuser if many users can use the system—
and hence access the database—concurrently. Single-user DBMSs are mostly
restricted to personal computer systems; most other DBMSs are multiuser. For
example, an airline reservations system is used by hundreds of users and travel
agents concurrently. Database systems used in banks, insurance agencies, stock
exchanges, supermarkets, and many other applications are multiuser systems. In
these systems, hundreds or thousands of users are typically operating on the data-
base by submitting transactions concurrently to the system.

Multiple users can access databases—and use computer systems—simultaneously
because of the concept of multiprogramming, which allows the operating system of
the computer to execute multiple programs—or processes—at the same time. A single

 20.1 Introduction to Transaction Processing 747

central processing unit (CPU) can only execute at most one process at a time. How-
ever, multiprogramming operating systems execute some commands from one pro-
cess, then suspend that process and execute some commands from the next process,
and so on. A process is resumed at the point where it was suspended whenever it gets
its turn to use the CPU again. Hence, concurrent execution of processes is actually
interleaved, as illustrated in Figure 20.1, which shows two processes, A and B, execut-
ing concurrently in an interleaved fashion. Interleaving keeps the CPU busy when a
process requires an input or output (I/O) operation, such as reading a block from disk.
The CPU is switched to execute another process rather than remaining idle during I/O
time. Interleaving also prevents a long process from delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel processing
of multiple processes is possible, as illustrated by processes C and D in Figure 20.1.
Most of the theory concerning concurrency control in databases is developed in terms
of interleaved concurrency, so for the remainder of this chapter we assume this model.
In a multiuser DBMS, the stored data items are the primary resources that may be
accessed concurrently by interactive users or application programs, which are con-
stantly retrieving information from and modifying the database.

20.1.2 Transactions, Database Items, Read
and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database pro-
cessing. A transaction includes one or more database access operations—these can
include insertion, deletion, modification (update), or retrieval operations. The
database operations that form a transaction can either be embedded within an
application program or they can be specified interactively via a high-level query
language such as SQL. One way of specifying the transaction boundaries is by
specifying explicit begin transaction and end transaction statements in an appli-
cation program; in this case, all database access operations between the two are
considered as forming one transaction. A single application program may contain
more than one transaction if it contains several transaction boundaries. If the
database operations in a transaction do not update the database but only retrieve

A A

B B
C
D

CPU1

CPU2

t1 t2 t3 t4
Time

Figure 20.1
Interleaved
 processing versus
parallel processing
of concurrent
 transactions.

748 Chapter 20 Introduction to Transaction Processing Concepts and Theory

data, the transaction is called a read-only transaction; otherwise it is known as a
read-write transaction.

The database model that is used to present transaction processing concepts is sim-
ple when compared to the data models that we discussed earlier in the book, such as
the relational model or the object model. A database is basically represented as a
collection of named data items. The size of a data item is called its granularity. A
data item can be a database record, but it can also be a larger unit such as a whole
disk block, or even a smaller unit such as an individual field (attribute) value of
some record in the database. The transaction processing concepts we discuss are
independent of the data item granularity (size) and apply to data items in general.
Each data item has a unique name, but this name is not typically used by the pro-
grammer; rather, it is just a means to uniquely identify each data item. For example,
if the data item granularity is one disk block, then the disk block address can be
used as the data item name. If the item granularity is a single record, then the record
id can be the item name. Using this simplified database model, the basic database
access operations that a transaction can include are as follows:

 ■ read_item(X). Reads a database item named X into a program variable. To
simplify our notation, we assume that the program variable is also named X.

 ■ write_item(X). Writes the value of program variable X into the database
item named X.

As we discussed in Chapter 16, the basic unit of data transfer from disk to main
memory is one disk page (disk block). Executing a read_item(X) command includes
the following steps:

 1. Find the address of the disk block that contains item X.

 2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer). The size of the buffer is the same as
the disk block size.

 3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

 1. Find the address of the disk block that contains item X.

 2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

 3. Copy item X from the program variable named X into its correct location in
the buffer.

 4. Store the updated disk block from the buffer back to disk (either immedi-
ately or at some later point in time).

It is step 4 that actually updates the database on disk. Sometimes the buffer is not
immediately stored to disk, in case additional changes are to be made to the buffer.
Usually, the decision about when to store a modified disk block whose contents are in
a main memory buffer is handled by the recovery manager of the DBMS in cooperation
with the underlying operating system. The DBMS will maintain in the database cache

 20.1 Introduction to Transaction Processing 749

a number of data buffers in main memory. Each buffer typically holds the contents
of one database disk block, which contains some of the database items being pro-
cessed. When these buffers are all occupied, and additional database disk blocks
must be copied into memory, some buffer replacement policy is used to choose
which of the current occupied buffers is to be replaced. Some commonly used buffer
replacement policies are LRU (least recently used). If the chosen buffer has been
modified, it must be written back to disk before it is reused.1 There are also buffer
replacement policies that are specific to DBMS characteristics. We briefly discuss a
few of these in Section 20.2.4.

A transaction includes read_item and write_item operations to access and update the
database. Figure 20.2 shows examples of two very simple transactions. The read-set
of a transaction is the set of all items that the transaction reads, and the write-set is
the set of all items that the transaction writes. For example, the read-set of T1 in
Figure 20.2 is {X, Y} and its write-set is also {X, Y}.

Concurrency control and recovery mechanisms are mainly concerned with the
database commands in a transaction. Transactions submitted by the various users
may execute concurrently and may access and update the same database items. If
this concurrent execution is uncontrolled, it may lead to problems, such as an
inconsistent database. In the next section, we informally introduce some of the
problems that may occur.

20.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncontrolled
manner. We illustrate some of these problems by referring to a much simplified air-
line reservations database in which a record is stored for each airline flight. Each
record includes the number of reserved seats on that flight as a named (uniquely iden-
tifiable) data item, among other information. Figure 20.2(a) shows a transaction T1
that transfers N reservations from one flight whose number of reserved seats is stored
in the database item named X to another flight whose number of reserved seats is
stored in the database item named Y. Figure 20.2(b) shows a simpler transaction T2
that just reserves M seats on the first flight (X) referenced in transaction T1.2 To sim-
plify our example, we do not show additional portions of the transactions, such as
checking whether a flight has enough seats available before reserving additional seats.

When a database access program is written, it has the flight number, the flight date,
and the number of seats to be booked as parameters; hence, the same program can
be used to execute many different transactions, each with a different flight number,
date, and number of seats to be booked. For concurrency control purposes, a trans-
action is a particular execution of a program on a specific date, flight, and number

1We will not discuss general-purpose buffer replacement policies here because they are typically discussed
in operating systems texts.
2A similar, more commonly used example assumes a bank database, with one transaction doing a transfer
of funds from account X to account Y and the other transaction doing a deposit to account X.

750 Chapter 20 Introduction to Transaction Processing Concepts and Theory

of seats. In Figures 20.2(a) and (b), the transactions T1 and T2 are specific executions
of the programs that refer to the specific flights whose numbers of seats are stored
in data items X and Y in the database. Next we discuss the types of problems we
may encounter with these two simple transactions if they run concurrently.

The Lost Update Problem. This problem occurs when two transactions that access
the same database items have their operations interleaved in a way that makes the value
of some database items incorrect. Suppose that transactions T1 and T2 are submitted at
approximately the same time, and suppose that their operations are interleaved as
shown in Figure 20.3(a); then the final value of item X is incorrect because T2 reads the
value of X before T1 changes it in the database, and hence the updated value resulting
from T1 is lost. For example, if X = 80 at the start (originally there were 80 reservations
on the flight), N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X
to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result
should be X = 79. However, in the interleaving of operations shown in Figure 20.3(a), it
is X = 84 because the update in T1 that removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when one
transaction updates a database item and then the transaction fails for some reason (see
Section 20.1.4). Meanwhile, the updated item is accessed (read) by another transaction
before it is changed back (or rolled back) to its original value. Figure 20.3(b) shows an
example where T1 updates item X and then fails before completion, so the system must
roll back X to its original value. Before it can do so, however, transaction T2 reads the
temporary value of X, which will not be recorded permanently in the database because
of the failure of T1. The value of item X that is read by T2 is called dirty data because it
has been created by a transaction that has not completed and committed yet; hence,
this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate
summary function on a number of database items while other transactions are
updating some of these items, the aggregate function may calculate some values
before they are updated and others after they are updated. For example, suppose
that a transaction T3 is calculating the total number of reservations on all the flights;
meanwhile, transaction T1 is executing. If the interleaving of operations shown in
Figure 20.3(c) occurs, the result of T3 will be off by an amount N because T3 reads
the value of X after N seats have been subtracted from it but reads the value of Y
before those N seats have been added to it.

(a)

read_item(X);
X := X – N;
write_item(X);
read_item(Y);
Y := Y + N;
write_item(Y);

(b)

read_item(X);
X := X + M;
write_item(X);

T1 T2

Figure 20.2
Two sample
 transactions.
(a) Transaction T1.
(b) Transaction T2.

 20.1 Introduction to Transaction Processing 751

(a)

read_item(X);
X := X – N;

write_item(X);
read_item(Y);

read_item(X);
X := X + M;

write_item(X);

Time

Item X has an incorrect value because
its update by T1 is lost (overwritten).

Y := Y + N;
write_item(Y);

(b)

read_item(X);
X := X – N;
write_item(X);

read_item(X);
X := X + M;
write_item(X);

Time

Transaction T1 fails and must change
the value of X back to its old value;
meanwhile T2 has read the temporary
incorrect value of X.

read_item(Y);

T1

T1

(c)

read_item(X);
X := X – N;
write_item(X);

read_item(Y);
Y := Y + N;
write_item(Y);

read_item(X);
sum := sum + X;
read_item(Y);
sum := sum + Y;

T3 reads X after N is subtracted and reads
Y before N is added; a wrong summary
is the result (off by N).

T3

T2

sum := 0;
read_item(A);
sum := sum + A;

T1 T2

Figure 20.3
Some problems that occur when concurrent execution is uncontrolled. (a) The lost update
problem. (b) The temporary update problem. (c) The incorrect summary problem.

752 Chapter 20 Introduction to Transaction Processing Concepts and Theory

The Unrepeatable Read Problem. Another problem that may occur is called
unrepeatable read, where a transaction T reads the same item twice and the item is
changed by another transaction T′ between the two reads. Hence, T receives differ-
ent values for its two reads of the same item. This may occur, for example, if during
an airline reservation transaction, a customer inquires about seat availability on
several flights. When the customer decides on a particular flight, the transaction
then reads the number of seats on that flight a second time before completing the
reservation, and it may end up reading a different value for the item.

20.1.4 Why Recovery Is Needed
Whenever a transaction is submitted to a DBMS for execution, the system is
responsible for making sure that either all the operations in the transaction are
completed successfully and their effect is recorded permanently in the database,
or that the transaction does not have any effect on the database or any other
transactions. In the first case, the transaction is said to be committed, whereas
in the second case, the transaction is aborted. The DBMS must not permit some
operations of a transaction T to be applied to the database while other opera-
tions of T are not, because the whole transaction is a logical unit of database
processing. If a transaction fails after executing some of its operations but before
executing all of them, the operations already executed must be undone and have
no lasting effect.

Types of Failures. Failures are generally classified as transaction, system, and
media failures. There are several possible reasons for a transaction to fail in the
middle of execution:

 1. A computer failure (system crash). A hardware, software, or network error
occurs in the computer system during transaction execution. Hardware
crashes are usually media failures—for example, main memory failure.

 2. A transaction or system error. Some operation in the transaction may
cause it to fail, such as integer overflow or division by zero. Transaction fail-
ure may also occur because of erroneous parameter values or because of a
logical programming error.3 Additionally, the user may interrupt the trans-
action during its execution.

 3. Local errors or exception conditions detected by the transaction. During
transaction execution, certain conditions may occur that necessitate cancel-
lation of the transaction. For example, data for the transaction may not be
found. An exception condition,4 such as insufficient account balance in a
banking database, may cause a transaction, such as a fund withdrawal, to be
canceled. This exception could be programmed in the transaction itself, and
in such a case would not be considered as a transaction failure.

3In general, a transaction should be thoroughly tested to ensure that it does not have any bugs (logical
programming errors).
4Exception conditions, if programmed correctly, do not constitute transaction failures.

 20.2 Transaction and System Concepts 753

 4. Concurrency control enforcement. The concurrency control method (see
Chapter 21)may abort a transaction because it violates serializability (see
Section 20.5), or it may abort one or more transactions to resolve a state of
deadlock among several transactions (see Section 21.1.3). Transactions
aborted because of serializability violations or deadlocks are typically
restarted automatically at a later time.

 5. Disk failure. Some disk blocks may lose their data because of a read or write
malfunction or because of a disk read/write head crash. This may happen
during a read or a write operation of the transaction.

 6. Physical problems and catastrophes. This refers to an endless list of problems
that includes power or air-conditioning failure, fire, theft, sabotage, overwrit-
ing disks or tapes by mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. When-
ever a failure of type 1 through 4 occurs, the system must keep sufficient informa-
tion to quickly recover from the failure. Disk failure or other catastrophic failures of
type 5 or 6 do not happen frequently; if they do occur, recovery is a major task. We
discuss recovery from failure in Chapter 22.

The concept of transaction is fundamental to many techniques for concurrency
control and recovery from failures.

20.2 Transaction and System Concepts
In this section, we discuss additional concepts relevant to transaction processing.
Section 20.2.1 describes the various states a transaction can be in and discusses
other operations needed in transaction processing. Section 20.2.2 discusses the
 system log, which keeps information about transactions and data items that will
be needed for recovery. Section 20.2.3 describes the concept of commit points of
transactions and why they are important in transaction processing. Finally,
 Sec tion 20.2.4 briefly discusses DBMS buffer replacement policies.

20.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that should either be completed in its entirety
or not done at all. For recovery purposes, the system needs to keep track of when each
transaction starts, terminates, and commits, or aborts (see Section 20.2.3). Therefore,
the recovery manager of the DBMS needs to keep track of the following operations:

 ■ BEGIN_TRANSACTION. This marks the beginning of transaction execution.

 ■ READ or WRITE. These specify read or write operations on the database
items that are executed as part of a transaction.

 ■ END_TRANSACTION. This specifies that READ and WRITE transaction opera-
tions have ended and marks the end of transaction execution. However, at
this point it may be necessary to check whether the changes introduced by
the transaction can be permanently applied to the database (committed) or

754 Chapter 20 Introduction to Transaction Processing Concepts and Theory

whether the transaction has to be aborted because it violates serializability
(see Section 20.5) or for some other reason.

 ■ COMMIT_TRANSACTION. This signals a successful end of the transaction so that
any changes (updates) executed by the transaction can be safely committed to
the database and will not be undone.

 ■ ROLLBACK (or ABORT). This signals that the transaction has ended unsuc-
cessfully, so that any changes or effects that the transaction may have applied
to the database must be undone.

Figure 20.4 shows a state transition diagram that illustrates how a transaction
moves through its execution states. A transaction goes into an active state immedi-
ately after it starts execution, where it can execute its READ and WRITE operations.
When the transaction ends, it moves to the partially committed state. At this
point, some types of concurrency control protocols may do additional checks to see
if the transaction can be committed or not. Also, some recovery protocols need to
ensure that a system failure will not result in an inability to record the changes of
the transaction permanently (usually by recording changes in the system log,
 discussed in the next section).5 If these checks are successful, the transaction is said
to have reached its commit point and enters the committed state. Commit points
are discussed in more detail in Section 20.2.3. When a transaction is committed, it
has concluded its execution successfully and all its changes must be recorded
perma nently in the database, even if a system failure occurs.

However, a transaction can go to the failed state if one of the checks fails or if the trans-
action is aborted during its active state. The transaction may then have to be rolled back
to undo the effect of its WRITE operations on the database. The terminated state corre-
sponds to the transaction leaving the system. The transaction information that is main-
tained in system tables while the transaction has been running is removed when the
transaction terminates. Failed or aborted transactions may be restarted later—either
automatically or after being resubmitted by the user—as brand new transactions.

5Optimistic concurrency control (see Section 21.4) also requires that certain checks are made at this
point to ensure that the transaction did not interfere with other executing transactions.

Active

Begin
transaction

End
transaction Commit

AbortAbort

Read, Write

Partially committed

Failed Terminated

Committed

Figure 20.4
State transition diagram illustrating the states for transaction execution.

 20.2 Transaction and System Concepts 755

20.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains
a log6 to keep track of all transaction operations that affect the values of database
items, as well as other transaction information that may be needed to permit
recovery from failures. The log is a sequential, append-only file that is kept on
disk, so it is not affected by any type of failure except for disk or catastrophic
failure. Typically, one (or more) main memory buffers, called the log buffers,
hold the last part of the log file, so that log entries are first added to the log main
memory buffer. When the log buffer is filled, or when certain other conditions
occur, the log buffer is appended to the end of the log file on disk. In addition, the
log file from disk is periodically backed up to archival storage (tape) to guard
against catastrophic failures. The following are the types of entries—called log
records—that are written to the log file and the corresponding action for each
log record. In these entries, T refers to a unique transaction-id that is generated
automatically by the system for each transaction and that is used to identify each
transaction:

 1. [start_transaction, T]. Indicates that transaction T has started execution.

 2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has
changed the value of database item X from old_value to new_value.

 3. [read_item, T, X]. Indicates that transaction T has read the value of database
item X.

 4. [commit, T]. Indicates that transaction T has completed successfully, and affirms
that its effect can be committed (recorded permanently) to the database.

 5. [abort, T]. Indicates that transaction T has been aborted.

Protocols for recovery that avoid cascading rollbacks (see Section 20.4.2)—which
include nearly all practical protocols—do not require that READ operations are
written to the system log. However, if the log is also used for other purposes—such
as auditing (keeping track of all database operations)—then such entries can be
included. Additionally, some recovery protocols require simpler WRITE entries
that only include one of new_value or old_value instead of including both (see Sec-
tion 20.4.2).

Notice that we are assuming that all permanent changes to the database occur
within transactions, so the notion of recovery from a transaction failure amounts
to either undoing or redoing transaction operations individually from the log. If
the system crashes, we can recover to a consistent database state by examining the
log and using one of the techniques described in Chapter 22. Because the log con-
tains a record of every WRITE operation that changes the value of some database
item, it is possible to undo the effect of these WRITE operations of a transaction T
by tracing backward through the log and resetting all items changed by a WRITE
operation of T to their old_values. Redo of an operation may also be necessary if a
transaction has its updates recorded in the log but a failure occurs before the sys-

6The log has sometimes been called the DBMS journal.

756 Chapter 20 Introduction to Transaction Processing Concepts and Theory

tem can be sure that all these new_values have been written to the actual database
on disk from the main memory buffers.7

20.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the
database have been executed successfully and the effect of all the transaction opera-
tions on the database have been recorded in the log. Beyond the commit point, the
transaction is said to be committed, and its effect must be permanently recorded in
the database. The transaction then writes a commit record [commit, T] into the log.
If a system failure occurs, we can search back in the log for all transactions T that
have written a [start_transaction, T] record into the log but have not written their
[commit, T] record yet; these transactions may have to be rolled back to undo their
effect on the database during the recovery process. Transactions that have written
their commit record in the log must also have recorded all their WRITE operations
in the log, so their effect on the database can be redone from the log records.

Notice that the log file must be kept on disk. As discussed in Chapter 16, updating
a disk file involves copying the appropriate block of the file from disk to a buffer in
main memory, updating the buffer in main memory, and copying the buffer to
disk. As we mentioned earlier, it is common to keep one or more blocks of the log
file in main memory buffers, called the log buffer, until they are filled with log
entries and then to write them back to disk only once, rather than writing to disk
every time a log entry is added. This saves the overhead of multiple disk writes of
the same log file buffer. At the time of a system crash, only the log entries that have
been written back to disk are considered in the recovery process if the contents of
main memory are lost. Hence, before a transaction reaches its commit point, any
portion of the log that has not been written to the disk yet must now be written to
the disk. This process is called force-writing the log buffer to disk before commit-
ting a transaction.

20.2.4 DBMS-Specific Buffer Replacement Policies
The DBMS cache will hold the disk pages that contain information currently being
processed in main memory buffers. If all the buffers in the DBMS cache are occu-
pied and new disk pages are required to be loaded into main memory from disk, a
page replacement policy is needed to select the particular buffers to be replaced.
Some page replacement policies that have been developed specifically for database
systems are briefly discussed next.

Domain Separation (DS) Method. In a DBMS, various types of disk pages
exist: index pages, data file pages, log file pages, and so on. In this method, the
DBMS cache is divided into separate domains (sets of buffers). Each domain han-
dles one type of disk pages, and page replacements within each domain are han-

7Undo and redo are discussed more fully in Chapter 22.

 20.3 Desirable Properties of Transactions 757

dled via the basic LRU (least recently used) page replacement. Although this
achieves better performance on average that basic LRU, it is a static algorithm, and
so does not adapt to dynamically changing loads because the number of available
buffers for each domain is predetermined. Several variations of the DS page
replacement policy have been proposed, which add dynamic load-balancing fea-
tures. For example, the GRU (Group LRU) gives each domain a priority level and
selects pages from the lowest-priority level domain first for replacement, whereas
another method dynamically changes the number of buffers in each domain based
on current workload.

Hot Set Method. This page replacement algorithm is useful in queries that have
to scan a set of pages repeatedly, such as when a join operation is performed using
the nested-loop method (see Chapter 18). If the inner loop file is loaded completely
into main memory buffers without replacement (the hot set), the join will be per-
formed efficiently because each page in the outer loop file will have to scan all the
records in the inner loop file to find join matches. The hot set method determines
for each database processing algorithm the set of disk pages that will be accessed
repeatedly, and it does not replace them until their processing is completed.

The DBMIN Method. This page replacement policy uses a model known as QLSM
(query locality set model), which predetermines the pattern of page references for
each algorithm for a particular type of database operation. We discussed various
algorithms for relational operations such as SELECT and JOIN in Chapter 18.
Depending on the type of access method, the file characteristics, and the algorithm
used, the QLSM will estimate the number of main memory buffers needed for each
file involved in the operation. The DBMIN page replacement policy will calculate a
locality set using QLSM for each file instance involved in the query (some queries
may reference the same file twice, so there would be a locality set for each file
instance needed in the query). DBMIN then allocates the appropriate number of
buffers to each file instance involved in the query based on the locality set for that
file instance. The concept of locality set is analogous to the concept of working set,
which is used in page replacement policies for processes by the operating system
but there are multiple locality sets, one for each file instance in the query.

20.3 Desirable Properties of Transactions
Transactions should possess several properties, often called the ACID properties;
they should be enforced by the concurrency control and recovery methods of the
DBMS. The following are the ACID properties:

 ■ Atomicity. A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

 ■ Consistency preservation. A transaction should be consistency preserving,
meaning that if it is completely executed from beginning to end without
interference from other transactions, it should take the database from one
consistent state to another.

758 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 ■ Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are execut-
ing concurrently. That is, the execution of a transaction should not be
interfered with by any other transactions executing concurrently.

 ■ Durability or permanency. The changes applied to the database by a com-
mitted transaction must persist in the database. These changes must not be
lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is
the responsibility of the transaction recovery subsystem of a DBMS to ensure atomi-
city. If a transaction fails to complete for some reason, such as a system crash in the
midst of transaction execution, the recovery technique must undo any effects of the
transaction on the database. On the other hand, write operations of a committed
transaction must be eventually written to disk.

The preservation of consistency is generally considered to be the responsibility of
the programmers who write the database programs and of the DBMS module
that enforces integrity constraints. Recall that a database state is a collection of
all the stored data items (values) in the database at a given point in time. A
 consistent state of the database satisfies the constraints specified in the schema
as well as any other constraints on the database that should hold. A database
program should be written in a way that guarantees that, if the database is in a
consistent state before executing the transaction, it will be in a consistent state
after the complete execution of the transaction, assuming that no interference
with other transactions occurs.

The isolation property is enforced by the concurrency control subsystem of the
DBMS.8 If every transaction does not make its updates (write operations) visible to
other transactions until it is committed, one form of isolation is enforced that
solves the temporary update problem and eliminates cascading rollbacks (see
Chapter 22) but does not eliminate all other problems.

The durability property is the responsibility of the recovery subsystem of the DBMS.
In the next section, we introduce how recovery protocols enforce durability and
atomicity and then discuss this in more detail in Chapter 22.

Levels of Isolation. There have been attempts to define the level of isolation of a
transaction. A transaction is said to have level 0 (zero) isolation if it does not over-
write the dirty reads of higher-level transactions. Level 1 (one) isolation has no lost
updates, and level 2 isolation has no lost updates and no dirty reads. Finally, level 3
isolation (also called true isolation) has, in addition to level 2 properties, repeatable
reads.9 Another type of isolation is called snapshot isolation, and several practical
concurrency control methods are based on this. We shall discuss snapshot isolation
in Section 20.6, and again in Chapter 21, Section 21.4.

8We will discuss concurrency control protocols in Chapter 21.
9The SQL syntax for isolation level discussed in Section 20.6 is closely related to these levels.

 20.4 Characterizing Schedules Based on Recoverability 759

20.4 Characterizing Schedules Based
on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the
order of execution of operations from all the various transactions is known as a
schedule (or history). In this section, first we define the concept of schedules, and
then we characterize the types of schedules that facilitate recovery when failures
occur. In Section 20.5, we characterize schedules in terms of the interference of
participating transactions; this discussion leads to the concepts of serializability and
serializable schedules.

20.4.1 Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, … , Tn is an ordering of the
operations of the transactions. Operations from different transactions can be
interleaved in the schedule S. However, for each transaction Ti that participates
in the schedule S, the operations of Ti in S must appear in the same order in
which they occur in Ti. The order of operations in S is considered to be a total
ordering, meaning that for any two operations in the schedule, one must occur
before the other. It is possible theoretically to deal with schedules whose opera-
tions form partial orders, but we will assume for now total ordering of the opera-
tions in a schedule.

For the purpose of recovery and concurrency control, we are mainly interested in
the read_item and write_item operations of the transactions, as well as the commit and
abort operations. A shorthand notation for describing a schedule uses the symbols
b, r, w, e, c, and a for the operations begin_transaction, read_item, write_item,
end_transaction, commit, and abort, respectively, and appends as a subscript the
transaction id (transaction number) to each operation in the schedule. In this
notation, the database item X that is read or written follows the r and w operations
in parentheses. In some schedules, we will only show the read and write operations,
whereas in other schedules we will show additional operations, such as commit or
abort. The schedule in Figure 20.3(a), which we shall call Sa, can be written as follows
in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

Similarly, the schedule for Figure 20.3(b), which we call Sb, can be written as fol-
lows, if we assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Conflicting Operations in a Schedule. Two operations in a schedule are said to
conflict if they satisfy all three of the following conditions: (1) they belong to differ-
ent transactions; (2) they access the same item X; and (3) at least one of the opera-
tions is a write_item(X). For example, in schedule Sa, the operations r1(X) and w2(X)
conflict, as do the operations r2(X) and w1(X), and the operations w1(X) and w2(X).
However, the operations r1(X) and r2(X) do not conflict, since they are both read

760 Chapter 20 Introduction to Transaction Processing Concepts and Theory

operations; the operations w2(X) and w1(Y) do not conflict because they operate on
distinct data items X and Y; and the operations r1(X) and w1(X) do not conflict
because they belong to the same transaction.

Intuitively, two operations are conflicting if changing their order can result in a dif-
ferent outcome. For example, if we change the order of the two operations r1(X);
w2(X) to w2(X); r1(X), then the value of X that is read by transaction T1 changes,
because in the second ordering the value of X is read by r1(X) after it is changed by
w2(X), whereas in the first ordering the value is read before it is changed. This is
called a read-write conflict. The other type is called a write-write conflict and is
illustrated by the case where we change the order of two operations such as w1(X);
w2(X) to w2(X); w1(X). For a write-write conflict, the last value of X will differ
because in one case it is written by T2 and in the other case by T1. Notice that two
read operations are not conflicting because changing their order makes no differ-
ence in outcome.

The rest of this section covers some theoretical definitions concerning schedules. A
schedule S of n transactions T1, T2, … , Tn is said to be a complete schedule if the
following conditions hold:

 1. The operations in S are exactly those operations in T1, T2, … , Tn, including
a commit or abort operation as the last operation for each transaction in
the schedule.

 2. For any pair of operations from the same transaction Ti, their relative order
of appearance in S is the same as their order of appearance in Ti.

 3. For any two conflicting operations, one of the two must occur before the
other in the schedule.10

The preceding condition (3) allows for two nonconflicting operations to occur in
the schedule without defining which occurs first, thus leading to the definition of
a schedule as a partial order of the operations in the n transactions.11 However, a
total order must be specified in the schedule for any pair of conflicting operations
(condition 3) and for any pair of operations from the same transaction (condi-
tion 2). Condition 1 simply states that all operations in the transactions must
appear in the complete schedule. Since every transaction has either committed
or aborted, a complete schedule will not contain any active transactions at the end
of the schedule.

In general, it is difficult to encounter complete schedules in a transaction process-
ing system because new transactions are continually being submitted to the system.
Hence, it is useful to define the concept of the committed projection C(S) of a
schedule S, which includes only the operations in S that belong to committed trans-
actions—that is, transactions Ti whose commit operation ci is in S.

10Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.
11In practice, most schedules have a total order of operations. If parallel processing is employed, it is
theoretically possible to have schedules with partially ordered nonconflicting operations.

 20.4 Characterizing Schedules Based on Recoverability 761

20.4.2 Characterizing Schedules Based on Recoverability
For some schedules it is easy to recover from transaction and system failures,
whereas for other schedules the recovery process can be quite involved. In some
cases, it is even not possible to recover correctly after a failure. Hence, it is impor-
tant to characterize the types of schedules for which recovery is possible, as well as
those for which recovery is relatively simple. These characterizations do not actually
provide the recovery algorithm; they only attempt to theoretically characterize the
different types of schedules.

First, we would like to ensure that, once a transaction T is committed, it should
never be necessary to roll back T. This ensures that the durability property of
transactions is not violated (see Section 20.3). The schedules that theoretically
meet this criterion are called recoverable schedules. A schedule where a committed
transaction may have to be rolled back during recovery is called nonrecoverable
and hence should not be permitted by the DBMS. The condition for a recoverable
schedule is as follows: A schedule S is recoverable if no transaction T in S commits
until all transactions T′ that have written some item X that T reads have commit-
ted. A transaction T reads from transaction T′ in a schedule S if some item X is
first written by T′ and later read by T. In addition, T′ should not have been aborted
before T reads item X, and there should be no transactions that write X after T′
writes it and before T reads it (unless those transactions, if any, have aborted
before T reads X).

Some recoverable schedules may require a complex recovery process, as we shall
see, but if sufficient information is kept (in the log), a recovery algorithm can be
devised for any recoverable schedule. The (partial) schedules Sa and Sb from the
preceding section are both recoverable, since they satisfy the above definition. Con-
sider the schedule Sa′ given below, which is the same as schedule Sa except that two
commit operations have been added to Sa:

Sa′: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa′ is recoverable, even though it suffers from the lost update problem; this problem
is handled by serializability theory (see Section 20.5). However, consider the two
(partial) schedules Sc and Sd that follow:

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;
Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;
Se: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before T1
commits. The problem occurs if T1 aborts after the c2 operation in Sc; then the value
of X that T2 read is no longer valid and T2 must be aborted after it is committed,
leading to a schedule that is not recoverable. For the schedule to be recoverable, the
c2 operation in Sc must be postponed until after T1 commits, as shown in Sd. If T1
aborts instead of committing, then T2 should also abort as shown in Se, because the
value of X it read is no longer valid. In Se, aborting T2 is acceptable since it has not
committed yet, which is not the case for the nonrecoverable schedule Sc.

762 Chapter 20 Introduction to Transaction Processing Concepts and Theory

In a recoverable schedule, no committed transaction ever needs to be rolled back,
and so the definition of a committed transaction as durable is not violated. How-
ever, it is possible for a phenomenon known as cascading rollback (or cascading
abort) to occur in some recoverable schedules, where an uncommitted transaction
has to be rolled back because it read an item from a transaction that failed. This is
illustrated in schedule Se, where transaction T2 has to be rolled back because it read
item X from T1, and T1 then aborted.

Because cascading rollback can be time-consuming—since numerous transactions
can be rolled back (see Chapter 22)—it is important to characterize the schedules
where this phenomenon is guaranteed not to occur. A schedule is said to be
cascadeless, or to avoid cascading rollback, if every transaction in the schedule
reads only items that were written by committed transactions. In this case, all items
read will not be discarded because the transactions that wrote them have commit-
ted, so no cascading rollback will occur. To satisfy this criterion, the r2(X) com-
mand in schedules Sd and Se must be postponed until after T1 has committed (or
aborted), thus delaying T2 but ensuring no cascading rollback if T1 aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in
which transactions can neither read nor write an item X until the last transaction
that wrote X has committed (or aborted). Strict schedules simplify the recovery
process. In a strict schedule, the process of undoing a write_item(X) operation of an
aborted transaction is simply to restore the before image (old_value or BFIM) of
data item X. This simple procedure always works correctly for strict schedules, but
it may not work for recoverable or cascadeless schedules. For example, consider
schedule Sf :

Sf : w1(X, 5); w2(X, 8); a1;

Suppose that the value of X was originally 9, which is the before image stored in the
system log along with the w1(X, 5) operation. If T1 aborts, as in Sf, the recovery pro-
cedure that restores the before image of an aborted write operation will restore the
value of X to 9, even though it has already been changed to 8 by transaction T2, thus
leading to potentially incorrect results. Although schedule Sf is cascadeless, it is not
a strict schedule, since it permits T2 to write item X even though the transaction T1
that last wrote X had not yet committed (or aborted). A strict schedule does not
have this problem.

It is important to note that any strict schedule is also cascadeless, and any cascade-
less schedule is also recoverable. Suppose we have i transactions T1, T2, … , Ti, and
their number of operations are n1, n2, … , ni, respectively. If we make a set of all
possible schedules of these transactions, we can divide the schedules into two dis-
joint subsets: recoverable and nonrecoverable. The cascadeless schedules will be a
subset of the recoverable schedules, and the strict schedules will be a subset of the
cascadeless schedules. Thus, all strict schedules are cascadeless, and all cascadeless
schedules are recoverable.

Most recovery protocols allow only strict schedules, so that the recovery process
itself is not complicated (see Chapter 22).

 20.5 Characterizing Schedules Based on Serializability 763

20.5 Characterizing Schedules Based
on Serializability

In the previous section, we characterized schedules based on their recoverability
properties. Now we characterize the types of schedules that are always considered
to be correct when concurrent transactions are executing. Such schedules are known
as serializable schedules. Suppose that two users—for example, two airline reserva-
tions agents—submit to the DBMS transactions T1 and T2 in Figure 20.2 at approx-
imately the same time. If no interleaving of operations is permitted, there are only
two possible outcomes:

 1. Execute all the operations of transaction T1 (in sequence) followed by all the
operations of transaction T2 (in sequence).

 2. Execute all the operations of transaction T2 (in sequence) followed by all the
operations of transaction T1 (in sequence).

These two schedules—called serial schedules—are shown in Figures 20.5(a) and (b),
respectively. If interleaving of operations is allowed, there will be many possible
orders in which the system can execute the individual operations of the trans-
actions. Two possible schedules are shown in Figure 20.5(c). The concept of
 serializability of schedules is used to identify which schedules are correct when
transaction executions have interleaving of their operations in the schedules. This
section defines serializability and discusses how it may be used in practice.

20.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figures 20.5(a) and (b) are called serial because the operations
of each transaction are executed consecutively, without any interleaved operations
from the other transaction. In a serial schedule, entire transactions are performed
in serial order: T1 and then T2 in Figure 20.5(a), and T2 and then T1 in Figure 20.5(b).
Schedules C and D in Figure 20.5(c) are called nonserial because each sequence
interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the sched-
ule, all the operations of T are executed consecutively in the schedule; otherwise, the
schedule is called nonserial. Therefore, in a serial schedule, only one transaction at a
time is active—the commit (or abort) of the active transaction initiates execution of
the next transaction. No interleaving occurs in a serial schedule. One reasonable
assumption we can make, if we consider the transactions to be independent, is that
every serial schedule is considered correct. We can assume this because every transac-
tion is assumed to be correct if executed on its own (according to the consistency
preservation property of Section 20.3). Hence, it does not matter which transaction is
executed first. As long as every transaction is executed from beginning to end in
isolation from the operations of other transactions, we get a correct end result.

The problem with serial schedules is that they limit concurrency by prohibiting
interleaving of operations. In a serial schedule, if a transaction waits for an I/O

764 Chapter 20 Introduction to Transaction Processing Concepts and Theory

operation to complete, we cannot switch the CPU processor to another transaction,
thus wasting valuable CPU processing time. Additionally, if some transaction T is
long, the other transactions must wait for T to complete all its operations before
starting. Hence, serial schedules are unacceptable in practice. However, if we can
determine which other schedules are equivalent to a serial schedule, we can allow
these schedules to occur.

To illustrate our discussion, consider the schedules in Figure 20.5, and assume that
the initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2.
After executing transactions T1 and T2, we would expect the database values to be
X = 89 and Y = 93, according to the meaning of the transactions. Sure enough, exe-
cuting either of the serial schedules A or B gives the correct results. Now consider

(a)

Schedule A Schedule B

read_item(X);
X := X – N;

write_item(X);
read_item(Y);

read_item(X);
X := X + M;
write_item(X);

Time
Y := Y + N;
write_item(Y);

 (b)

read_item(X);
X := X + M;
write_item(X);

Time read_item(X);
X := X – N;

write_item(X);
read_item(Y);

Y := Y + N;
write_item(Y);

(c) T1 T2

Schedule C Schedule D

read_item(X);
X := X – N;

write_item(X);
read_item(Y);

read_item(X);
X := X + M;

write_item(X);

Time

Y := Y + N;
write_item(Y);

read_item(X);
X := X + M;
write_item(X);

read_item(X);
X := X – N;
write_item(X);

read_item(Y);
Y := Y + N;
write_item(Y);

T1 T2

T1 T2 T1 T2

Time

Figure 20.5
Examples of serial and nonserial schedules involving transactions T1 and T2. (a) Serial schedule A: T1 followed by
T2. (b) Serial schedule B: T2 followed by T1. (c) Two nonserial schedules C and D with interleaving of operations.

 20.5 Characterizing Schedules Based on Serializability 765

the nonserial schedules C and D. Schedule C (which is the same as Figure 20.3(a))
gives the results X = 92 and Y = 93, in which the X value is erroneous, whereas
schedule D gives the correct results.

Schedule C gives an erroneous result because of the lost update problem discussed
in Section 20.1.3; transaction T2 reads the value of X before it is changed by transac-
tion T1, so only the effect of T2 on X is reflected in the database. The effect of T1 on
X is lost, overwritten by T2, leading to the incorrect result for item X. However,
some nonserial schedules give the correct expected result, such as schedule D. We
would like to determine which of the nonserial schedules always give a correct
result and which may give erroneous results. The concept used to characterize
schedules in this manner is that of serializability of a schedule.

The definition of serializable schedule is as follows: A schedule S of n transactions
is serializable if it is equivalent to some serial schedule of the same n transactions.
We will define the concept of equivalence of schedules shortly. Notice that there
are n! possible serial schedules of n transactions and many more possible non-
serial schedules. We can form two disjoint groups of the nonserial schedules—
those that are equivalent to one (or more) of the serial schedules and hence are
serializable, and those that are not equivalent to any serial schedule and hence are
not serializable.

Saying that a nonserial schedule S is serializable is equivalent to saying that it is cor-
rect, because it is equivalent to a serial schedule, which is considered correct. The
remaining question is: When are two schedules considered equivalent?

There are several ways to define schedule equivalence. The simplest but least sat-
isfactory definition involves comparing the effects of the schedules on the data-
base. Two schedules are called result equivalent if they produce the same final
state of the database. However, two different schedules may accidentally produce
the same final state. For example, in Figure 20.6, schedules S1 and S2 will produce
the same final database state if they execute on a database with an initial value of
X = 100; however, for other initial values of X, the schedules are not result equiva-
lent. Additionally, these schedules execute different transactions, so they defi-
nitely should not be considered equivalent. Hence, result equivalence alone
cannot be used to define equivalence of schedules. The safest and most general
approach to defining schedule equivalence is to focus only on the read_item and
write_item operations of the transactions, and not make any assumptions about
the other internal operations included in the transactions. For two schedules to
be equivalent, the operations applied to each data item affected by the schedules
should be applied to that item in both schedules in the same order. Two defini-
tions of equivalence of schedules are generally used: conflict equivalence and view
equivalence. We discuss conflict equivalence next, which is the more commonly
used definition.

Conflict Equivalence of Two Schedules. Two schedules are said to be conflict
equivalent if the relative order of any two conflicting operations is the same in both
schedules. Recall from Section 20.4.1 that two operations in a schedule are said to

766 Chapter 20 Introduction to Transaction Processing Concepts and Theory

conflict if they belong to different transactions, access the same database item, and
either both are write_item operations or one is a write_item and the other a read_item.
If two conflicting operations are applied in different orders in two schedules, the
effect can be different on the database or on the transactions in the schedule, and
hence the schedules are not conflict equivalent. For example, as we discussed in
Section 20.4.1, if a read and write operation occur in the order r1(X), w2(X) in
schedule S1, and in the reverse order w2(X), r1(X) in schedule S2, the value read by
r1(X) can be different in the two schedules. Similarly, if two write operations occur
in the order w1(X), w2(X) in S1, and in the reverse order w2(X), w1(X) in S2, the next
r(X) operation in the two schedules will read potentially different values; or if these
are the last operations writing item X in the schedules, the final value of item X in
the database will be different.

Serializable Schedules. Using the notion of conflict equivalence, we define a
schedule S to be serializable12 if it is (conflict) equivalent to some serial schedule S′.
In such a case, we can reorder the nonconflicting operations in S until we form the
equivalent serial schedule S′. According to this definition, schedule D in Fig-
ure 20.5(c) is equivalent to the serial schedule A in Figure 20.5(a). In both schedules,
the read_item(X) of T2 reads the value of X written by T1, whereas the other read_item
operations read the database values from the initial database state. Additionally, T1
is the last transaction to write Y, and T2 is the last transaction to write X in both
schedules. Because A is a serial schedule and schedule D is equivalent to A, D is a
serializable schedule. Notice that the operations r1(Y) and w1(Y) of schedule D do
not conflict with the operations r2(X) and w2(X), since they access different data
items. Therefore, we can move r1(Y), w1(Y) before r2(X), w2(X), leading to the
equivalent serial schedule T1, T2.

Schedule C in Figure 20.5(c) is not equivalent to either of the two possible serial
schedules A and B, and hence is not serializable. Trying to reorder the operations of
schedule C to find an equivalent serial schedule fails because r2(X) and w1(X) con-
flict, which means that we cannot move r2(X) down to get the equivalent serial
schedule T1, T2. Similarly, because w1(X) and w2(X) conflict, we cannot move w1(X)
down to get the equivalent serial schedule T2, T1.

Another, more complex definition of equivalence—called view equivalence, which
leads to the concept of view serializability—is discussed in Section 20.5.4.

S1

read_item(X);
X := X + 10;
write_item(X);

S2

read_item(X);
X := X * 1.1;
write_item (X);

Figure 20.6
Two schedules that are result
equivalent for the initial value
of X = 100 but are not result
equivalent in general.

12We will use serializable to mean conflict serializable. Another definition of serializable used in
 practice (see Section 20.6) is to have repeatable reads, no dirty reads, and no phantom records
(see Section 22.7.1 for a discussion on phantoms).

 20.5 Characterizing Schedules Based on Serializability 767

20.5.2 Testing for Serializability of a Schedule
There is a simple algorithm for determining whether a particular schedule is (con-
flict) serializable or not. Most concurrency control methods do not actually test for
serializability. Rather protocols, or rules, are developed that guarantee that any
schedule that follows these rules will be serializable. Some methods guarantee seri-
alizability in most cases, but do not guarantee it absolutely, in order to reduce the
overhead of concurrency control. We discuss the algorithm for testing conflict seri-
alizability of schedules here to gain a better understanding of these concurrency
control protocols, which are discussed in Chapter 21.

Algorithm 20.1 can be used to test a schedule for conflict serializability. The algo-
rithm looks at only the read_item and write_item operations in a schedule to con-
struct a precedence graph (or serialization graph), which is a directed graph
G = (N, E) that consists of a set of nodes N = {T1, T2, … , Tn } and a set of directed
edges E = {e1, e2, … , em }. There is one node in the graph for each transaction Ti in
the schedule. Each edge ei in the graph is of the form (Tj → Tk), 1 ≤ j ≤ n, 1 ≤ k ≤ n,
where Tj is the starting node of ei and Tk is the ending node of ei. Such an edge
from node Tj to node Tk is created by the algorithm if a pair of conflicting operations
exist in Tj and Tk and the conflicting operation in Tj appears in the schedule before
the conflicting operation in Tk.

Algorithm 20.1. Testing Conflict Serializability of a Schedule S

 1. For each transaction Ti participating in schedule S, create a node labeled
Ti in the precedence graph.

 2. For each case in S where Tj executes a read_item(X) after Ti executes a
write_item(X), create an edge (Ti → Tj) in the precedence graph.

 3. For each case in S where Tj executes a write_item(X) after Ti executes a
read_item(X), create an edge (Ti → Tj) in the precedence graph.

 4. For each case in S where Tj executes a write_item(X) after Ti executes a
write_item(X), create an edge (Ti → Tj) in the precedence graph.

 5. The schedule S is serializable if and only if the precedence graph has no
cycles.

The precedence graph is constructed as described in Algorithm 20.1. If there is a
cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no
cycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((Tj → Tk),
(Tk → Tp), … , (Ti → Tj)) with the property that the starting node of each edge—
except the first edge—is the same as the ending node of the previous edge, and the
starting node of the first edge is the same as the ending node of the last edge (the
sequence starts and ends at the same node).

In the precedence graph, an edge from Ti to Tj means that transaction Ti must come
before transaction Tj in any serial schedule that is equivalent to S, because two con-
flicting operations appear in the schedule in that order. If there is no cycle in the pre-
cedence graph, we can create an equivalent serial schedule S′ that is equivalent to S,
by ordering the transactions that participate in S as follows: Whenever an edge exists

768 Chapter 20 Introduction to Transaction Processing Concepts and Theory

in the precedence graph from Ti to Tj, Ti must appear before Tj in the equivalent serial
schedule S′.13 Notice that the edges (Ti → Tj) in a precedence graph can optionally be
labeled by the name(s) of the data item(s) that led to creating the edge. Figure 20.7
shows such labels on the edges. When checking for a cycle, the labels are not relevant.

In general, several serial schedules can be equivalent to S if the precedence graph for
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that
we cannot create any equivalent serial schedule, so S is not serializable. The prece-
dence graphs created for schedules A to D, respectively, in Figure 20.5 appear in
Figures 20.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable.
The graph for schedule D has no cycle, so it is serializable, and the equivalent serial
schedule is T1 followed by T2. The graphs for schedules A and B have no cycles, as
expected, because the schedules are serial and hence serializable.

Another example, in which three transactions participate, is shown in Figure 20.8.
Figure 20.8(a) shows the read_item and write_item operations in each transaction.
Two schedules E and F for these transactions are shown in Figures 20.8(b) and (c),
respectively, and the precedence graphs for schedules E and F are shown in Fig-
ures 20.8(d) and (e). Schedule E is not serializable because the corresponding prece-
dence graph has cycles. Schedule F is serializable, and the serial schedule equivalent
to F is shown in Figure 20.8(e). Although only one equivalent serial schedule exists
for F, in general there may be more than one equivalent serial schedule for a serial-
izable schedule. Figure 20.8(f) shows a precedence graph representing a schedule

13This process of ordering the nodes of an acrylic graph is known as topological sorting.

T1(a)

(c)

(b)

(d)

T2

T1

X

X

X

X

T2

T1 T2

T1 T2

X

Figure 20.7
Constructing the precedence graphs for schedules A to D from Figure 20.5 to test
for conflict serializability. (a) Precedence graph for serial schedule A. (b) Precedence
graph for serial schedule B. (c) Precedence graph for schedule C (not serializable).
(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

 20.5 Characterizing Schedules Based on Serializability 769

Transaction T1

read_item(X);

write_item(X);

read_item(Y);

write_item(Y);

read_item(X);
write_item(X);

read_item(Y);
write_item(Y);

Transaction T3

read_item(Y);

read_item(Z);

write_item(Y);

write_item(Z);

read_item(Y);
read_item(Z);

write_item(Y);
write_item(Z);

Transaction T2

read_item(Z);

read_item(Y);

write_item(Y);

read_item(X);

write_item(X);

read_item(Z);
read_item(Y);
write_item(Y);

read_item(X);

write_item(X);

(b)

(a)

Schedule E

Time

read_item(X);
write_item(X);

read_item(Y);
write_item(Y);

read_item(Y);
read_item(Z);

write_item(Y);
write_item(Z);

read_item(Z);

read_item(Y);
write_item(Y);
read_item(X);
write_item(X);

(c)

Schedule F

Time

Transaction T1 Transaction T2 Transaction T3

Transaction T1 Transaction T2 Transaction T3

Figure 20.8
Another example of serializability testing. (a) The read and write operations of three
transactions T1, T2, and T3. (b) Schedule E. (c) Schedule F.

770 Chapter 20 Introduction to Transaction Processing Concepts and Theory

that has two equivalent serial schedules. To find an equivalent serial schedule, start
with a node that does not have any incoming edges, and then make sure that the
node order for every edge is not violated.

20.5.3 How Serializability Is Used for Concurrency Control
As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S
is (conflict) equivalent to a serial schedule—is tantamount to saying that S is cor-
rect. Being serializable is distinct from being serial, however. A serial schedule rep-
resents inefficient processing because no interleaving of operations from different
transactions is permitted. This can lead to low CPU utilization while a transaction
waits for disk I/O, or for a long transaction to delay other transactions, thus slowing
down transaction processing considerably. A serializable schedule gives the benefits
of concurrent execution without giving up any correctness. In practice, it is difficult
to test for the serializability of a schedule. The interleaving of operations from con-
current transactions—which are usually executed as processes by the operating
system—is typically determined by the operating system scheduler, which allocates

(d)

X

Y

Y Y, Z

T1

Equivalent serial schedules

None

Reason

Cycle X(T1 T2),Y(T2 T1)
Cycle X(T1 T2),YZ (T2 T3),Y(T3 T1)

(e) X,Y

Y Y, Z

Equivalent serial schedules

(f) Equivalent serial schedules

T2

T3

T1 T2

T3

T1 T2

T3

T2T3 T1

T2T3 T1

T1T3 T2

Figure 20.8 (continued)
Another example of serializability testing. (d) Precedence graph for schedule E. (e) Precedence graph for
schedule F. (f) Precedence graph with two equivalent serial schedules.

 20.5 Characterizing Schedules Based on Serializability 771

resources to all processes. Factors such as system load, time of transaction submis-
sion, and priorities of processes contribute to the ordering of operations in a sched-
ule. Hence, it is difficult to determine how the operations of a schedule will be
interleaved beforehand to ensure serializability.

If transactions are executed at will and then the resulting schedule is tested for seri-
alizability, we must cancel the effect of the schedule if it turns out not to be serializ-
able. This is a serious problem that makes this approach impractical. The approach
taken in most commercial DBMSs is to design protocols (sets of rules) that—if
followed by every individual transaction or if enforced by a DBMS concurrency
control subsystem—will ensure serializability of all schedules in which the transac-
tions participate. Some protocols may allow nonserializable schedules in rare cases
to reduce the overhead of the concurrency control method (see Section 20.6).

Another problem is that transactions are submitted continuously to the system, so
it is difficult to determine when a schedule begins and when it ends. Serializability
theory can be adapted to deal with this problem by considering only the committed
projection of a schedule S. Recall from Section 20.4.1 that the committed projection
C(S) of a schedule S includes only the operations in S that belong to committed
transactions. We can theoretically define a schedule S to be serializable if its com-
mitted projection C(S) is equivalent to some serial schedule, since only committed
transactions are guaranteed by the DBMS.

In Chapter 21, we discuss a number of different concurrency control protocols
that guarantee serializability. The most common technique, called two-phase
locking, is based on locking data items to prevent concurrent transactions from
interfering with one another, and enforcing an additional condition that guaran-
tees serializability. This is used in some commercial DBMSs. We will also discuss
a protocol based on the concept of snapshot isolation that ensures serializability
in most but not all cases; this is used in some commercial DBMSs because it has
less overhead than the two-phase locking protocol. Other protocols have been
proposed14; these include timestamp ordering, where each transaction is assigned
a unique timestamp and the protocol ensures that any conflicting operations are
executed in the order of the transaction timestamps; multiversion protocols,
which are based on maintaining multiple versions of data items; and optimistic
(also called certification or validation) protocols, which check for possible serial-
izability violations after the transactions terminate but before they are permitted
to commit.

20.5.4 View Equivalence and View Serializability
In Section 20.5.1, we defined the concepts of conflict equivalence of schedules and
conflict serializability. Another less restrictive definition of equivalence of sched-
ules is called view equivalence. This leads to another definition of serializability

14These other protocols have not been incorporated much into commercial systems; most relational
DBMSs use some variation of two-phase locking or snapshot isolation.

772 Chapter 20 Introduction to Transaction Processing Concepts and Theory

called view serializability. Two schedules S and S′ are said to be view equivalent if
the following three conditions hold:

 1. The same set of transactions participates in S and S′, and S and S′ include the
same operations of those transactions.

 2. For any operation ri(X) of Ti in S, if the value of X read by the operation has
been written by an operation wj(X) of Tj (or if it is the original value of X
before the schedule started), the same condition must hold for the value of X
read by operation ri(X) of Ti in S′.

 3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then
wk(Y) of Tk must also be the last operation to write item Y in S′.

The idea behind view equivalence is that, as long as each read operation of a trans-
action reads the result of the same write operation in both schedules, the write
operations of each transaction must produce the same results. The read operations
are hence said to see the same view in both schedules. Condition 3 ensures that the
final write operation on each data item is the same in both schedules, so the data-
base state should be the same at the end of both schedules. A schedule S is said to be
view serializable if it is view equivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a
condition known as the constrained write assumption (or no blind writes) holds
on all transactions in the schedule. This condition states that any write operation
wi(X) in Ti is preceded by a ri(X) in Ti and that the value written by wi(X) in Ti
depends only on the value of X read by ri(X). This assumes that computation of
the new value of X is a function f(X) based on the old value of X read from the
database. A blind write is a write operation in a transaction T on an item X that is
not dependent on the old value of X, so it is not preceded by a read of X in the
transaction T.

The definition of view serializability is less restrictive than that of conflict serializ-
ability under the unconstrained write assumption, where the value written by an
operation wi(X) in Ti can be independent of its old value. This is possible when
blind writes are allowed, and it is illustrated by the following schedule Sg of three
transactions T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sg the operations w2(X) and w3(X) are blind writes, since T2 and T3 do not read
the value of X. The schedule Sg is view serializable, since it is view equivalent to the
serial schedule T1, T2, T3. However, Sg is not conflict serializable, since it is not con-
flict equivalent to any serial schedule (as an exercise, the reader should construct
the serializability graph for Sg and check for cycles). It has been shown that any
conflict-serializable schedule is also view serializable but not vice versa, as illus-
trated by the preceding example. There is an algorithm to test whether a schedule S
is view serializable or not. However, the problem of testing for view serializability
has been shown to be NP-hard, meaning that finding an efficient polynomial time
algorithm for this problem is highly unlikely.

 20.6 Transaction Support in SQL 773

20.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a
condition for ensuring the correctness of concurrent executions. Some applica-
tions can produce schedules that are correct by satisfying conditions less strin-
gent than either conflict serializability or view serializability. An example is the
type of transactions known as debit-credit transactions—for example, those
that apply deposits and withdrawals to a data item whose value is the current
balance of a bank account. The semantics of debit-credit operations is that they
update the value of a data item X by either subtracting from or adding to the
value of the data item. Because addition and subtraction operations are com-
mutative—that is, they can be applied in any order—it is possible to produce
correct schedules that are not serializable. For example, consider the following
transactions, each of which may be used to transfer an amount of money
between two bank accounts:

T1: r1(X); X :{equal} X − 10; w1(X); r1(Y); Y :{equal} Y + 10; w1(Y);
T2: r2(Y); Y :{equal} Y − 20; w2(Y); r2(X); X :{equal} X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

With the additional knowledge, or semantics, that the operations between each
ri(I) and wi(I) are commutative, we know that the order of executing the
sequences consisting of (read, update, write) is not important as long as each
(read, update, write) sequence by a particular transaction Ti on a particular item
I is not interrupted by conflicting operations. Hence, the schedule Sh is consid-
ered to be correct even though it is not serializable. Researchers have been work-
ing on extending concurrency control theory to deal with cases where
serializability is considered to be too restrictive as a condition for correctness of
schedules. Also, in certain domains of applications, such as computer-aided
design (CAD) of complex systems like aircraft, design transactions last over a
long time period. In such applications, more relaxed schemes of concurrency
control have been proposed to maintain consistency of the database, such as
eventual consistency. We shall discuss eventual consistency in the context of dis-
tributed databases in Chapter 23.

20.6 Transaction Support in SQL
In this section, we give a brief introduction to transaction support in SQL. There
are many more details, and the newer standards have more commands for trans-
action processing. The basic definition of an SQL transaction is similar to our
already defined concept of a transaction. That is, it is a logical unit of work and is
guaranteed to be atomic. A single SQL statement is always considered to be
atomic—either it completes execution without an error or it fails and leaves the
database unchanged.

774 Chapter 20 Introduction to Transaction Processing Concepts and Theory

With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is
done implicitly when particular SQL statements are encountered. However, every
transaction must have an explicit end statement, which is either a COMMIT or a
ROLLBACK. Every transaction has certain characteristics attributed to it. These
characteristics are specified by a SET TRANSACTION statement in SQL. The charac-
teristics are the access mode, the diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is
READ WRITE, unless the isolation level of READ UNCOMMITTED is specified (see
below), in which case READ ONLY is assumed. A mode of READ WRITE allows select,
update, insert, delete, and create commands to be executed. A mode of READ ONLY,
as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n,
which indicates the number of conditions that can be held simultaneously in the
diagnostic area. These conditions supply feedback information (errors or excep-
tions) to the user or program on the n most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>,
where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, or SERIALIZABLE.15 The default isolation level is SERIALIZABLE,
although some systems use READ COMMITTED as their default. The use of the term
SERIALIZABLE here is based on not allowing violations that cause dirty read, unre-
peatable read, and phantoms,16 and it is thus not identical to the way serializability
was defined earlier in Section 20.5. If a transaction executes at a lower isolation level
than SERIALIZABLE, then one or more of the following three violations may occur:

 1. Dirty read. A transaction T1 may read the update of a transaction T2, which
has not yet committed. If T2 fails and is aborted, then T1 would have read a
value that does not exist and is incorrect.

 2. Nonrepeatable read. A transaction T1 may read a given value from a table.
If another transaction T2 later updates that value and T1 reads that value
again, T1 will see a different value.

 3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps
based on some condition specified in the SQL WHERE-clause. Now suppose
that a transaction T2 inserts a new row r that also satisfies the WHERE-clause
condition used in T1, into the table used by T1. The record r is called a
 phantom record because it was not there when T1 starts but is there when
T1 ends. T1 may or may not see the phantom, a row that previously did not
exist. If the equivalent serial order is T1 followed by T2, then the record r
should not be seen; but if it is T2 followed by T1,then the phantom record
should be in the result given to T1. If the system cannot ensure the correct
behavior, then it does not deal with the phantom record problem.

15These are similar to the isolation levels discussed briefly at the end of Section 20.3.
16The dirty read and unrepeatable read problems were discussed in Section 20.1.3. Phantoms are dis-
cussed in Section 22.7.1.

 20.6 Transaction Support in SQL 775

Table 20.1 summarizes the possible violations for the different isolation levels. An
entry of Yes indicates that a violation is possible and an entry of No indicates that it
is not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is the
most restrictive in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
 READ WRITE
 DIAGNOSTIC SIZE 5
 ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)
 VALUES ('Robert', 'Smith', '991004321', 2, 35000);
EXEC SQL UPDATE EMPLOYEE
 SET Salary = Salary * 1.1 WHERE Dno = 2;
EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table
and then updating the salary of all employees who work in department 2. If an error
occurs on any of the SQL statements, the entire transaction is rolled back. This
implies that any updated salary (by this transaction) would be restored to its previ-
ous value and that the newly inserted row would be removed.

As we have seen, SQL provides a number of transaction-oriented features. The
DBA or database programmers can take advantage of these options to try improv-
ing transaction performance by relaxing serializability if that is acceptable for
their applications.

Snapshot Isolation. Another isolation level, known as snapshot isolation, is
used in some commercial DBMSs, and some concurrency control protocols exist
that are based on this concept. The basic definition of snapshot isolation is that a
transaction sees the data items that it reads based on the committed values of the
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since

Table 20.1 Possible Violations Based on Isolation Levels as Defined in SQL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

776 Chapter 20 Introduction to Transaction Processing Concepts and Theory

the database transaction, or in some cases the database statement, will only see the
records that were committed in the database at the time the transaction starts. Any
insertions, deletions, or updates that occur after the transaction starts will not be
seen by the transaction. We will discuss a concurrency control protocol based on
this concept in Chapter 21.

20.7 Summary
In this chapter, we discussed DBMS concepts for transaction processing. We intro-
duced the concept of a database transaction and the operations relevant to transac-
tion processing in Section 20.1. We compared single-user systems to multiuser
systems and then presented examples of how uncontrolled execution of concurrent
transactions in a multiuser system can lead to incorrect results and database values
in Section 20.1.1. We also discussed the various types of failures that may occur
during transaction execution in Section 20.1.4.

Next, in Section 20.2, we introduced the typical states that a transaction passes
through during execution, and discussed several concepts that are used in recovery
and concurrency control methods. The system log (Section 20.2.2) keeps track of
database accesses, and the system uses this information to recover from failures. A
transaction can succeed and reach its commit point, or it can fail and has to be
rolled back. A committed transaction (Section 20.2.3) has its changes permanently
recorded in the database. In Section 20.3, we presented an overview of the desirable
properties of transactions—atomicity, consistency preservation, isolation, and
durability—which are often referred to as the ACID properties.

Then we defined a schedule (or history) as an execution sequence of the opera-
tions of several transactions with interleaving in Section 20.4.1. We character-
ized schedules in terms of their recoverability in Section 20.4.2. Recoverable
schedules ensure that, once a transaction commits, it never needs to be undone.
Cascadeless schedules add an additional condition to ensure that no aborted
transaction requires the cascading abort of other transactions. Strict schedules
provide an even stronger condition that allows a simple recovery scheme con-
sisting of restoring the old values of items that have been changed by an aborted
transaction.

Then in Section 20.5 we defined the equivalence of schedules and saw that a serial-
izable schedule is equivalent to some serial schedule. We defined the concepts of
conflict equivalence and view equivalence. A serializable schedule is considered
correct. We presented an algorithm for testing the (conflict) serializability of a
schedule in Section 20.5.2. We discussed why testing for serializability is impracti-
cal in a real system, although it can be used to define and verify concurrency con-
trol protocols in Section 20.5.3, and we briefly mentioned less restrictive definitions
of schedule equivalence in Sections 20.5.4 and 20.5.5. Finally, in Section 20.6, we
gave a brief overview of how transaction concepts are used in practice within SQL,
and we introduced the concept of snapshot isolation, which is used in several com-
mercial DBMSs.

 Exercises 777

Review Questions
 20.1. What is meant by the concurrent execution of database transactions in a

multiuser system? Discuss why concurrency control is needed, and give
informal examples.

 20.2. Discuss the different types of failures. What is meant by catastrophic failure?

 20.3. Discuss the actions taken by the read_item and write_item operations on a
database.

 20.4. Draw a state diagram and discuss the typical states that a transaction goes
through during execution.

 20.5. What is the system log used for? What are the typical kinds of records in a
system log? What are transaction commit points, and why are they
important?

 20.6. Discuss the atomicity, durability, isolation, and consistency preservation
properties of a database transaction.

 20.7. What is a schedule (history)? Define the concepts of recoverable, cascade-
less, and strict schedules, and compare them in terms of their recoverability.

 20.8. Discuss the different measures of transaction equivalence. What is the dif-
ference between conflict equivalence and view equivalence?

 20.9. What is a serial schedule? What is a serializable schedule? Why is a serial
schedule considered correct? Why is a serializable schedule considered
correct?

 20.10. What is the difference between the constrained write and the unconstrained
write assumptions? Which is more realistic?

 20.11. Discuss how serializability is used to enforce concurrency control in a data-
base system. Why is serializability sometimes considered too restrictive as a
measure of correctness for schedules?

 20.12. Describe the four levels of isolation in SQL. Also discuss the concept of
snapshot isolation and its effect on the phantom record problem.

 20.13. Define the violations caused by each of the following: dirty read, nonrepeat-
able read, and phantoms.

Exercises
 20.14. Change transaction T2 in Figure 20.2(b) to read

read_item(X);
X := X + M;
if X > 90 then exit
else write_item(X);

778 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 Discuss the final result of the different schedules in Figures 20.3(a) and (b),
where M = 2 and N = 2, with respect to the following questions: Does adding
the above condition change the final outcome? Does the outcome obey the
implied consistency rule (that the capacity of X is 90)?

 20.15. Repeat Exercise 20.14, adding a check in T1 so that Y does not exceed 90.

 20.16. Add the operation commit at the end of each of the transactions T1 and T2
in Figure 20.2, and then list all possible schedules for the modified transac-
tions. Determine which of the schedules are recoverable, which are cascade-
less, and which are strict.

 20.17. List all possible schedules for transactions T1 and T2 in Figure 20.2, and
determine which are conflict serializable (correct) and which are not.

 20.18. How many serial schedules exist for the three transactions in Figure 20.8(a)?
What are they? What is the total number of possible schedules?

 20.19. Write a program to create all possible schedules for the three transactions
in Figure 20.8(a), and to determine which of those schedules are conflict
serializable and which are not. For each conflict-serializable schedule,
your program should print the schedule and list all equivalent serial
schedules.

 20.20. Why is an explicit transaction end statement needed in SQL but not an
explicit begin statement?

 20.21. Describe situations where each of the different isolation levels would be use-
ful for transaction processing.

 20.22. Which of the following schedules is (conflict) serializable? For each serializ-
able schedule, determine the equivalent serial schedules.

a. r1(X); r3(X); w1(X); r2(X); w3(X);

b. r1(X); r3(X); w3(X); w1(X); r2(X);

c. r3(X); r2(X); w3(X); r1(X); w1(X);

d. r3(X); r2(X); r1(X); w3(X); w1(X);

 20.23. Consider the three transactions T1, T2, and T3, and the schedules S1 and S2
given below. Draw the serializability (precedence) graphs for S1 and S2, and
state whether each schedule is serializable or not. If a schedule is serializable,
write down the equivalent serial schedule(s).

T1: r1 (X); r1 (Z); w1 (X);
T2: r2 (Z); r2 (Y); w2 (Z); w2 (Y);
T3: r3 (X); r3 (Y); w3 (Y);
S1: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z);

w2 (Y);
S2: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); w2 (Z); w3 (Y);

w2 (Y);

 Selected Bibliography 779

 20.24. Consider schedules S3, S4, and S5 below. Determine whether each schedule is
strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictest
recoverability condition that each schedule satisfies.)

S3: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); c1; w3 (Y); c3; r2 (Y);
w2 (Z); w2 (Y); c2;

S4: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z);
w2 (Y); c1; c2; c3;

S5: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); c1; w2 (Z); w3 (Y);
w2 (Y); c3; c2;

Selected Bibliography
The concept of serializability and related ideas to maintain consistency in a data-
base were introduced in Gray et al. (1975). The concept of the database transaction
was first discussed in Gray (1981). Gray won the coveted ACM Turing Award in
1998 for his work on database transactions and implementation of transactions in
relational DBMSs. Bernstein, Hadzilacos, and Goodman (1988) focus on concur-
rency control and recovery techniques in both centralized and distributed database
systems; it is an excellent reference. Papadimitriou (1986) offers a more theoretical
perspective. A large reference book of more than a thousand pages by Gray and
Reuter (1993) offers a more practical perspective of transaction processing concepts
and techniques. Elmagarmid (1992) offers collections of research papers on trans-
action processing for advanced applications. Transaction support in SQL is
described in Date and Darwen (1997). View serializability is defined in Yannakakis
(1984). Recoverability of schedules and reliability in databases is discussed in
Hadzilacos (1983, 1988). Buffer replacement policies are discussed in Chou and
DeWitt (1985). Snapshot isolation is discussed in Ports and Grittner (2012).

This page intentionally left blank

781

21
Concurrency Control

Techniques

In this chapter, we discuss a number of concurrency
control techniques that are used to ensure the nonin-

terference or isolation property of concurrently executing transactions. Most of
these techniques ensure serializability of schedules—which we defined in Sec-
tion 21.5—using concurrency control protocols (sets of rules) that guarantee serializ-
ability. One important set of protocols—known as two-phase locking protocols—
employs the technique of locking data items to prevent multiple transactions from
accessing the items concurrently; a number of locking protocols are described in
Sections 21.1 and 21.3.2. Locking protocols are used in some commercial DBMSs,
but they are considered to have high overhead. Another set of concurrency control
protocols uses timestamps. A timestamp is a unique identifier for each transaction,
generated by the system. Timestamp values are generated in the same order as the
transaction start times. Concurrency control protocols that use timestamp ordering
to ensure serializability are introduced in Section 21.2. In Section 21.3, we discuss
multiversion concurrency control protocols that use multiple versions of a data
item. One multiversion protocol extends timestamp order to multiversion time-
stamp ordering (Section 21.3.1), and another extends timestamp order to two-
phase locking (Section 21.3.2). In Section 21.4, we present a protocol based on the
concept of validation or certification of a transaction after it executes its opera-
tions; these are sometimes called optimistic protocols, and they also assume that
multiple versions of a data item can exist. In Section 21.4, we discuss a protocol that
is based on the concept of snapshot isolation, which can utilize techniques similar
to those proposed in validation-based and multiversion methods; these protocols
are used in a number of commercial DBMSs and in certain cases are considered to
have lower overhead than locking-based protocols.

chapter 21

782 Chapter 21 Concurrency Control Techniques

Another factor that affects concurrency control is the granularity of the data
items—that is, what portion of the database a data item represents. An item can be
as small as a single attribute (field) value or as large as a disk block, or even a whole
file or the entire database. We discuss granularity of items and a multiple granular-
ity concurrency control protocol, which is an extension of two-phase locking, in
Section 21.5. In Section 21.6, we describe concurrency control issues that arise
when indexes are used to process transactions, and in Section 21.7 we discuss some
additional concurrency control concepts. Section 21.8 summarizes the chapter.

It is sufficient to read Sections 21.1, 21.5, 21.6, and 21.7, and possibly 21.3.2, if your
main interest is an introduction to the concurrency control techniques that are
based on locking.

21.1 Two-Phase Locking Techniques
for Concurrency Control

Some of the main techniques used to control concurrent execution of transactions
are based on the concept of locking data items. A lock is a variable associated with
a data item that describes the status of the item with respect to possible operations
that can be applied to it. Generally, there is one lock for each data item in the data-
base. Locks are used as a means of synchronizing the access by concurrent transac-
tions to the database items. In Section 21.1.1, we discuss the nature and types of
locks. Then, in Section 21.1.2, we present protocols that use locking to guarantee
serializability of transaction schedules. Finally, in Section 21.1.3, we describe two
problems associated with the use of locks—deadlock and starvation—and show
how these problems are handled in concurrency control protocols.

21.1.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking con-
cepts gradually, first we discuss binary locks, which are simple but are also too
restrictive for database concurrency control purposes and so are not used much.
Then we discuss shared/exclusive locks—also known as read/write locks—which
provide more general locking capabilities and are used in database locking schemes.
In Section 21.3.2, we describe an additional type of lock called a certify lock, and we
show how it can be used to improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocked
(or 1 and 0, for simplicity). A distinct lock is associated with each database item X.
If the value of the lock on X is 1, item X cannot be accessed by a database operation
that requests the item. If the value of the lock on X is 0, the item can be accessed
when requested, and the lock value is changed to 1. We refer to the current value
(or state) of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item, are used with binary locking. A trans-
action requests access to an item X by first issuing a lock_item(X) operation. If

 21.1 Two-Phase Locking Techniques for Concurrency Control 783

LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the
transaction locks the item) and the transaction is allowed to access item X. When
the transaction is through using the item, it issues an unlock_item(X) operation,
which sets LOCK(X) back to 0 (unlocks the item) so that X may be accessed by
other transactions. Hence, a binary lock enforces mutual exclusion on the data
item. A description of the lock_item(X) and unlock_item(X) operations is shown in
Figure 21.1.

Notice that the lock_item and unlock_item operations must be implemented as indi-
visible units (known as critical sections in operating systems); that is, no interleav-
ing should be allowed once a lock or unlock operation is started until the operation
terminates or the transaction waits. In Figure 21.1, the wait command within the
lock_item(X) operation is usually implemented by putting the transaction in a wait-
ing queue for item X until X is unlocked and the transaction can be granted access
to it. Other transactions that also want to access X are placed in the same queue.
Hence, the wait command is considered to be outside the lock_item operation.

It is simple to implement a binary lock; all that is needed is a binary-valued variable,
LOCK, associated with each data item X in the database. In its simplest form, each
lock can be a record with three fields: <Data_item_name, LOCK, Locking_transaction>
plus a queue for transactions that are waiting to access the item. The system needs
to maintain only these records for the items that are currently locked in a lock table,
which could be organized as a hash file on the item name. Items not in the lock
table are considered to be unlocked. The DBMS has a lock manager subsystem to
keep track of and control access to locks.

If the simple binary locking scheme described here is used, every transaction must
obey the following rules:

 1. A transaction T must issue the operation lock_item(X) before any
read_item(X) or write_item(X) operations are performed in T.

 2. A transaction T must issue the operation unlock_item(X) after all read_item(X)
and write_item(X) operations are completed in T.

lock_item(X):
B: if LOCK(X) = 0 (*item is unlocked*)
 then LOCK(X) ←1 (*lock the item*)
 else
 begin
 wait (until LOCK(X) = 0
 and the lock manager wakes up the transaction);
 go to B
 end;
unlock_item(X):
 LOCK(X) ← 0; (* unlock the item *)
 if any transactions are waiting
 then wakeup one of the waiting transactions;

Figure 21.1
Lock and unlock operations
for binary locks.

784 Chapter 21 Concurrency Control Techniques

 3. A transaction T will not issue a lock_item(X) operation if it already holds the
lock on item X.1

 4. A transaction T will not issue an unlock_item(X) operation unless it already
holds the lock on item X.

These rules can be enforced by the lock manager module of the DBMS. Between the
lock_item(X) and unlock_item(X) operations in transaction T, T is said to hold the
lock on item X. At most one transaction can hold the lock on a particular item.
Thus no two transactions can access the same item concurrently.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking
scheme is too restrictive for database items because at most one transaction can
hold a lock on a given item. We should allow several transactions to access the
same item X if they all access X for reading purposes only. This is because read
operations on the same item by different transactions are not conflicting (see Sec-
tion 21.4.1). However, if a transaction is to write an item X, it must have exclusive
access to X. For this purpose, a different type of lock, called a multiple-mode
lock, is used. In this scheme—called shared/exclusive or read/write locks—there
are three locking operations: read_lock(X), write_lock(X), and unlock(X). A lock
associated with an item X, LOCK(X), now has three possible states: read-locked,
write-locked, or unlocked. A read-locked item is also called share-locked because
other transactions are allowed to read the item, whereas a write-locked item is
called exclusive-locked because a single transaction exclusively holds the lock on
the item.

One method for implementing the preceding operations on a read/write lock is
to keep track of the number of transactions that hold a shared (read) lock on an
item in the lock table, as well as a list of transaction ids that hold a shared lock.
Each record in the lock table will have four fields: <Data_item_name, LOCK,
No_of_reads, Locking_transaction(s)>. The system needs to maintain lock records
only for locked items in the lock table. The value (state) of LOCK is either read-
locked or write-locked, suitably coded (if we assume no records are kept in
the lock table for unlocked items). If LOCK(X) = write-locked, the value of
 locking_transaction(s) is a single transaction that holds the exclusive (write) lock
on X. If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one
or more transactions that hold the shared (read) lock on X. The three operations
read_lock(X), write_lock(X), and unlock(X) are described in Figure 21.2.2 As before,
each of the three locking operations should be considered indivisible; no inter-
leaving should be allowed once one of the operations is started until either the
operation terminates by granting the lock or the transaction is placed in a wait-
ing queue for the item.

1This rule may be removed if we modify the lock_item (X) operation in Figure 21.1 so that if the item is
currently locked by the requesting transaction, the lock is granted.
2These algorithms do not allow upgrading or downgrading of locks, as described later in this section. The
reader can extend the algorithms to allow these additional operations.

 21.1 Two-Phase Locking Techniques for Concurrency Control 785

When we use the shared/exclusive locking scheme, the system must enforce the
following rules:

 1. A transaction T must issue the operation read_lock(X) or write_lock(X) before
any read_item(X) operation is performed in T.

 2. A transaction T must issue the operation write_lock(X) before any write_item(X)
operation is performed in T.

 3. A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.3

read_lock(X):
B: if LOCK(X) = “unlocked”
 then begin LOCK(X) ← “read-locked”;
 no_of_reads(X) ← 1
 end
 else if LOCK(X) = “read-locked”
 then no_of_reads(X) ← no_of_reads(X) + 1
 else begin
 wait (until LOCK(X) = “unlocked”
 and the lock manager wakes up the transaction);
 go to B
 end;
write_lock(X):
B: if LOCK(X) = “unlocked”
 then LOCK(X) ← “write-locked”
 else begin
 wait (until LOCK(X) = “unlocked”
 and the lock manager wakes up the transaction);
 go to B
 end;
unlock (X):
 if LOCK(X) = “write-locked”
 then begin LOCK(X) ← “unlocked”;
 wakeup one of the waiting transactions, if any
 end
 else it LOCK(X) = “read-locked”
 then begin
 no_of_reads(X) ← no_of_reads(X) −1;
 if no_of_reads(X) = 0
 then begin LOCK(X) = “unlocked”;
 wakeup one of the waiting transactions, if any
 end
 end;

Figure 21.2
Locking and unlocking
operations for two-
mode (read/write, or
shared/exclusive)
locks.

3This rule may be relaxed to allow a transaction to unlock an item, then lock it again later. However, two-
phase locking does not allow this.

786 Chapter 21 Concurrency Control Techniques

 4. A transaction T will not issue a read_lock(X) operation if it already holds a
read (shared) lock or a write (exclusive) lock on item X. This rule may be
relaxed for downgrading of locks, as we discuss shortly.

 5. A transaction T will not issue a write_lock(X) operation if it already holds a
read (shared) lock or write (exclusive) lock on item X. This rule may also be
relaxed for upgrading of locks, as we discuss shortly.

 6. A transaction T will not issue an unlock(X) operation unless it already holds
a read (shared) lock or a write (exclusive) lock on item X.

Conversion (Upgrading, Downgrading) of Locks. It is desirable to relax con-
ditions 4 and 5 in the preceding list in order to allow lock conversion; that is, a
transaction that already holds a lock on item X is allowed under certain conditions
to convert the lock from one locked state to another. For example, it is possible for
a transaction T to issue a read_lock(X) and then later to upgrade the lock by issuing
a write_lock(X) operation. If T is the only transaction holding a read lock on X at the
time it issues the write_lock(X) operation, the lock can be upgraded; otherwise, the
transaction must wait. It is also possible for a transaction T to issue a write_lock(X)
and then later to downgrade the lock by issuing a read_lock(X) operation. When
upgrading and downgrading of locks is used, the lock table must include transac-
tion identifiers in the record structure for each lock (in the locking_transaction(s)
field) to store the information on which transactions hold locks on the item. The
descriptions of the read_lock(X) and write_lock(X) operations in Figure 21.2 must be
changed appropriately to allow for lock upgrading and downgrading. We leave this
as an exercise for the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not
guarantee serializability of schedules on its own. Figure 21.3 shows an example
where the preceding locking rules are followed but a nonserializable schedule may
result. This is because in Figure 21.3(a) the items Y in T1 and X in T2 were unlocked
too early. This allows a schedule such as the one shown in Figure 21.3(c) to occur,
which is not a serializable schedule and hence gives incorrect results. To guarantee
serializability, we must follow an additional protocol concerning the positioning of
locking and unlocking operations in every transaction. The best-known protocol,
two-phase locking, is described in the next section.

21.1.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking opera-
tions (read_lock, write_lock) precede the first unlock operation in the transaction.4

Such a transaction can be divided into two phases: an expanding or growing
(first) phase, during which new locks on items can be acquired but none can be
released; and a shrinking (second) phase, during which existing locks can be
released but no new locks can be acquired. If lock conversion is allowed, then
upgrading of locks (from read-locked to write-locked) must be done during the

4This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter 23).

 21.1 Two-Phase Locking Techniques for Concurrency Control 787

expanding phase, and downgrading of locks (from write-locked to read-locked)
must be done in the shrinking phase.

Transactions T1 and T2 in Figure 21.3(a) do not follow the two-phase locking pro-
tocol because the write_lock(X) operation follows the unlock(Y) operation in T1, and
similarly the write_lock(Y) operation follows the unlock(X) operation in T2. If we
enforce two-phase locking, the transactions can be rewritten as T1′ and T2′, as
shown in Figure 21.4. Now, the schedule shown in Figure 21.3(c) is not permitted
for T1′ and T2′ (with their modified order of locking and unlocking operations)
under the rules of locking described in Section 21.1.1 because T1′ will issue its
write_lock(X) before it unlocks item Y; consequently, when T2′ issues its read_lock(X),
it is forced to wait until T1′ releases the lock by issuing an unlock (X) in the schedule.
However, this can lead to deadlock (see Section 21.1.3).

(a) T1
Initial values: X=20, Y=30

Result serial schedule T1

followed by T2: X=50, Y=80

Result of serial schedule T2

followed by T1: X=70, Y=50

read_lock(Y);
read_item(Y);
unlock(Y);
write_lock(X);
read_item(X);
X := X + Y;
write_item(X);
unlock(X);

write_lock(X);
read_item(X);
X := X + Y;
write_item(X);
unlock(X);

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y := X + Y;
write_item(Y);
unlock(Y);

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y := X + Y;
write_item(Y);
unlock(Y);

(b)

(c)

Time

read_lock(Y);
read_item(Y);
unlock(Y);

Result of schedule S:
X=50, Y=50
(nonserializable)

T2

T1 T2

Figure 21.3
Transactions that do not obey two-phase locking.
(a) Two transactions T1 and T2. (b) Results of
possible serial schedules of T1 and T2. (c) A
nonserializable schedule S that uses locks.

788 Chapter 21 Concurrency Control Techniques

It can be proved that, if every transaction in a schedule follows the two-phase lock-
ing protocol, the schedule is guaranteed to be serializable, obviating the need to test
for serializability of schedules. The locking protocol, by enforcing two-phase lock-
ing rules, also enforces serializability.

Two-phase locking may limit the amount of concurrency that can occur in a sched-
ule because a transaction T may not be able to release an item X after it is through
using it if T must lock an additional item Y later; or, conversely, T must lock the
additional item Y before it needs it so that it can release X. Hence, X must remain
locked by T until all items that the transaction needs to read or write have been
locked; only then can X be released by T. Meanwhile, another transaction seeking to
access X may be forced to wait, even though T is done with X; conversely, if Y is
locked earlier than it is needed, another transaction seeking to access Y is forced to
wait even though T is not using Y yet. This is the price for guaranteeing serializabil-
ity of all schedules without having to check the schedules themselves.

Although the two-phase locking protocol guarantees serializability (that is, every
schedule that is permitted is serializable), it does not permit all possible serializable
schedules (that is, some serializable schedules will be prohibited by the protocol).

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a
number of variations of two-phase locking (2PL). The technique just described is
known as basic 2PL. A variation known as conservative 2PL (or static 2PL)
requires a transaction to lock all the items it accesses before the transaction begins
execution, by predeclaring its read-set and write-set. Recall from Section 21.1.2 that
the read-set of a transaction is the set of all items that the transaction reads, and the
write-set is the set of all items that it writes. If any of the predeclared items needed
cannot be locked, the transaction does not lock any item; instead, it waits until all
the items are available for locking. Conservative 2PL is a deadlock-free protocol, as
we will see in Section 21.1.3 when we discuss the deadlock problem. However, it is
difficult to use in practice because of the need to predeclare the read-set and write-
set, which is not possible in some situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict
schedules (see Section 21.4). In this variation, a transaction T does not release any

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y)
read_item(X);
X := X + Y;
write_item(X);
unlock(X);

read_lock(X);
read_item(X);
write_lock(Y);
unlock(X)
read_item(Y);
Y := X + Y;
write_item(Y);
unlock(Y);

T1� T2�

Figure 21.4
Transactions T1′ and T2′, which are the
same as T1 and T2 in Figure 21.3 but
follow the two-phase locking protocol.
Note that they can produce a deadlock.

 21.1 Two-Phase Locking Techniques for Concurrency Control 789

of its exclusive (write) locks until after it commits or aborts. Hence, no other trans-
action can read or write an item that is written by T unless T has committed, lead-
ing to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A more
restrictive variation of strict 2PL is rigorous 2PL, which also guarantees strict
schedules. In this variation, a transaction T does not release any of its locks (exclu-
sive or shared) until after it commits or aborts, and so it is easier to implement
than strict 2PL.

Notice the difference between strict and rigorous 2PL: the former holds write-locks
until it commits, whereas the latter holds all locks (read and write). Also, the differ-
ence between conservative and rigorous 2PL is that the former must lock all its
items before it starts, so once the transaction starts it is in its shrinking phase; the
latter does not unlock any of its items until after it terminates (by committing or
aborting), so the transaction is in its expanding phase until it ends.

Usually the concurrency control subsystem itself is responsible for generating
the read_lock and write_lock requests. For example, suppose the system is to enforce
the strict 2PL protocol. Then, whenever transaction T issues a read_item(X), the
 system calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is
write_locked by some other transaction T′, the system places T in the waiting queue
for item X; otherwise, it grants the read_lock(X) request and permits the read_item(X)
operation of T to execute. On the other hand, if transaction T issues a write_item(X),
the system calls the write_lock(X) operation on behalf of T. If the state of LOCK(X) is
write_locked or read_locked by some other transaction T′, the system places T in
the waiting queue for item X; if the state of LOCK(X) is read_locked and T itself is
the only transaction holding the read lock on X, the system upgrades the lock to
write_locked and permits the write_item(X) operation by T. Finally, if the state of
LOCK(X) is unlocked, the system grants the write_lock(X) request and permits the
write_item(X) operation to execute. After each action, the system must update its
lock table appropriately.

Locking is generally considered to have a high overhead, because every read or
write operation is preceded by a system locking request. The use of locks can also
cause two additional problems: deadlock and starvation. We discuss these problems
and their solutions in the next section.

21.1.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is
waiting for some item that is locked by some other transaction T′ in the set. Hence,
each transaction in the set is in a waiting queue, waiting for one of the other trans-
actions in the set to release the lock on an item. But because the other transaction is
also waiting, it will never release the lock. A simple example is shown in Fig-
ure 21.5(a), where the two transactions T1′ and T2′ are deadlocked in a partial
schedule; T1′ is in the waiting queue for X, which is locked by T2′, whereas T2′ is in
the waiting queue for Y, which is locked by T1′. Meanwhile, neither T1′ nor T2′ nor
any other transaction can access items X and Y.

790 Chapter 21 Concurrency Control Techniques

Deadlock Prevention Protocols. One way to prevent deadlock is to use a deadlock
prevention protocol.5 One deadlock prevention protocol, which is used in conserva-
tive two-phase locking, requires that every transaction lock all the items it needs in
advance (which is generally not a practical assumption)—if any of the items cannot be
obtained, none of the items are locked. Rather, the transaction waits and then tries
again to lock all the items it needs. Obviously, this solution further limits concurrency.
A second protocol, which also limits concurrency, involves ordering all the items in the
database and making sure that a transaction that needs several items will lock them
according to that order. This requires that the programmer (or the system) is aware of
the chosen order of the items, which is also not practical in the database context.

A number of other deadlock prevention schemes have been proposed that make a
decision about what to do with a transaction involved in a possible deadlock situation:
Should it be blocked and made to wait or should it be aborted, or should the transac-
tion preempt and abort another transaction? Some of these techniques use the concept
of transaction timestamp TS(T′), which is a unique identifier assigned to each trans-
action. The timestamps are typically based on the order in which transactions are
started; hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2).
Notice that the older transaction (which starts first) has the smaller timestamp value.
Two schemes that prevent deadlock are called wait-die and wound-wait. Suppose that
transaction Ti tries to lock an item X but is not able to because X is locked by some
other transaction Tj with a conflicting lock. The rules followed by these schemes are:

 ■ Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait;
otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the
same timestamp.

 ■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds
Tj) and restart it later with the same timestamp; otherwise (Ti younger than
Tj) Ti is allowed to wait.

(a) T1� (b)

read_lock(Y);
read_item(Y);

Time

write_lock(X);

read_lock(X);
read_item(X);

write_lock(Y);

T2�

 T2�T1�

X

Y

Figure 21.5
Illustrating the deadlock problem. (a) A partial schedule of T1′ and T2′ that is
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

5These protocols are not generally used in practice, either because of unrealistic assumptions or
because of their possible overhead. Deadlock detection and timeouts (covered in the following sections)
are more practical.

 21.1 Two-Phase Locking Techniques for Concurrency Control 791

In wait-die, an older transaction is allowed to wait for a younger transaction, whereas
a younger transaction requesting an item held by an older transaction is aborted and
restarted. The wound-wait approach does the opposite: A younger transaction is
allowed to wait for an older one, whereas an older transaction requesting an item held
by a younger transaction preempts the younger transaction by aborting it. Both
schemes end up aborting the younger of the two transactions (the transaction that
started later) that may be involved in a deadlock, assuming that this will waste less
processing. It can be shown that these two techniques are deadlock-free, since in wait-
die, transactions only wait for younger transactions so no cycle is created. Similarly, in
wound-wait, transactions only wait for older transactions so no cycle is created. How-
ever, both techniques may cause some transactions to be aborted and restarted need-
lessly, even though those transactions may never actually cause a deadlock.

Another group of protocols that prevent deadlock do not require timestamps.
These include the no waiting (NW) and cautious waiting (CW) algorithms. In the
no waiting algorithm, if a transaction is unable to obtain a lock, it is immediately
aborted and then restarted after a certain time delay without checking whether a
deadlock will actually occur or not. In this case, no transaction ever waits, so no
deadlock will occur. However, this scheme can cause transactions to abort and
restart needlessly. The cautious waiting algorithm was proposed to try to reduce
the number of needless aborts/restarts. Suppose that transaction Ti tries to lock an
item X but is not able to do so because X is locked by some other transaction Tj with
a conflicting lock. The cautious waiting rule is as follows:

 ■ Cautious waiting. If Tj is not blocked (not waiting for some other locked
item), then Ti is blocked and allowed to wait; otherwise abort Ti.

It can be shown that cautious waiting is deadlock-free, because no transaction will
ever wait for another blocked transaction. By considering the time b(T) at which
each blocked transaction T was blocked, if the two transactions Ti and Tj above both
become blocked and Ti is waiting for Tj, then b(Ti) < b(Tj), since Ti can only wait for
Tj at a time when Tj is not blocked itself. Hence, the blocking times form a total
ordering on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection. An alternative approach to dealing with deadlock is
 deadlock detection, where the system checks if a state of deadlock actually exists.
This solution is attractive if we know there will be little interference among the
transactions—that is, if different transactions will rarely access the same items at
the same time. This can happen if the transactions are short and each transaction
locks only a few items, or if the transaction load is light. On the other hand, if trans-
actions are long and each transaction uses many items, or if the transaction load is
heavy, it may be advantageous to use a deadlock prevention scheme.

A simple way to detect a state of deadlock is for the system to construct and main-
tain a wait-for graph. One node is created in the wait-for graph for each transac-
tion that is currently executing. Whenever a transaction Ti is waiting to lock an
item X that is currently locked by a transaction Tj, a directed edge (Ti → Tj) is cre-
ated in the wait-for graph. When Tj releases the lock(s) on the items that Ti was

792 Chapter 21 Concurrency Control Techniques

waiting for, the directed edge is dropped from the wait-for graph. We have a state of
deadlock if and only if the wait-for graph has a cycle. One problem with this
approach is the matter of determining when the system should check for a dead-
lock. One possibility is to check for a cycle every time an edge is added to the wait-
for graph, but this may cause excessive overhead. Criteria such as the number of
currently executing transactions or the period of time several transactions have
been waiting to lock items may be used instead to check for a cycle. Figure 21.5(b)
shows the wait-for graph for the (partial) schedule shown in Figure 21.5(a).

If the system is in a state of deadlock, some of the transactions causing the deadlock
must be aborted. Choosing which transactions to abort is known as victim
 selection. The algorithm for victim selection should generally avoid selecting trans-
actions that have been running for a long time and that have performed many
updates, and it should try instead to select transactions that have not made many
changes (younger transactions).

Timeouts. Another simple scheme to deal with deadlock is the use of timeouts.
This method is practical because of its low overhead and simplicity. In this method,
if a transaction waits for a period longer than a system-defined timeout period, the
system assumes that the transaction may be deadlocked and aborts it—regardless of
whether a deadlock actually exists.

Starvation. Another problem that may occur when we use locking is starvation,
which occurs when a transaction cannot proceed for an indefinite period of time
while other transactions in the system continue normally. This may occur if the
waiting scheme for locked items is unfair in that it gives priority to some transac-
tions over others. One solution for starvation is to have a fair waiting scheme, such
as using a first-come-first-served queue; transactions are enabled to lock an item
in the order in which they originally requested the lock. Another scheme allows
some transactions to have priority over others but increases the priority of a trans-
action the longer it waits, until it eventually gets the highest priority and proceeds.
Starvation can also occur because of victim selection if the algorithm selects the
same transaction as victim repeatedly, thus causing it to abort and never finish exe-
cution. The algorithm can use higher priorities for transactions that have been
aborted multiple times to avoid this problem. The wait-die and wound-wait
schemes discussed previously avoid starvation, because they restart a transaction
that has been aborted with its same original timestamp, so the possibility that the
same transaction is aborted repeatedly is slim.

21.2 Concurrency Control Based
on Timestamp Ordering

The use of locking, combined with the 2PL protocol, guarantees serializability of
schedules. The serializable schedules produced by 2PL have their equivalent serial
schedules based on the order in which executing transactions lock the items they
acquire. If a transaction needs an item that is already locked, it may be forced to
wait until the item is released. Some transactions may be aborted and restarted

 21.2 Concurrency Control Based on Timestamp Ordering 793

because of the deadlock problem. A different approach to concurrency control
involves using transaction timestamps to order transaction execution for an equiv-
alent serial schedule. In Section 21.2.1, we discuss timestamps; and in Section 21.2.2,
we discuss how serializability is enforced by ordering conflicting operations in dif-
ferent transactions based on the transaction timestamps.

21.2.1 Timestamps
Recall that a timestamp is a unique identifier created by the DBMS to identify a
transaction. Typically, timestamp values are assigned in the order in which the
transactions are submitted to the system, so a timestamp can be thought of as the
transaction start time. We will refer to the timestamp of transaction T as TS(T).
Concurrency control techniques based on timestamp ordering do not use locks;
hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that
is incremented each time its value is assigned to a transaction. The transaction time-
stamps are numbered 1, 2, 3, … in this scheme. A computer counter has a finite
maximum value, so the system must periodically reset the counter to zero when no
transactions are executing for some short period of time. Another way to implement
timestamps is to use the current date/time value of the system clock and ensure that
no two timestamp values are generated during the same tick of the clock.

21.2.2 The Timestamp Ordering Algorithm
for Concurrency Control

The idea for this scheme is to enforce the equivalent serial order on the transac-
tions based on their timestamps. A schedule in which the transactions participate
is then serializable, and the only equivalent serial schedule permitted has the trans-
actions in order of their timestamp values. This is called timestamp ordering
(TO). Notice how this differs from 2PL, where a schedule is serializable by being
equivalent to some serial schedule allowed by the locking protocols. In timestamp
ordering, however, the schedule is equivalent to the particular serial order corre-
sponding to the order of the transaction timestamps. The algorithm allows inter-
leaving of transaction operations, but it must ensure that for each pair of conflicting
operations in the schedule, the order in which the item is accessed must follow the
timestamp order. To do this, the algorithm associates with each database item X
two timestamp (TS) values:

 1. read_TS(X). The read timestamp of item X is the largest timestamp
among all the timestamps of transactions that have successfully read item
X—that is, read_TS(X) = TS(T), where T is the youngest transaction that
has read X successfully.

 2. write_TS(X). The write timestamp of item X is the largest of all the time-
stamps of transactions that have successfully written item X—that is,
write_TS(X) = TS(T), where T is the youngest transaction that has written
X successfully. Based on the algorithm, T will also be the last transaction
to write item X, as we shall see.

794 Chapter 21 Concurrency Control Techniques

Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a
read_item(X) or a write_item(X) operation, the basic TO algorithm compares the
timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp order
of transaction execution is not violated. If this order is violated, then transaction T
is aborted and resubmitted to the system as a new transaction with a new time-
stamp. If T is aborted and rolled back, any transaction T1 that may have used a value
written by T must also be rolled back. Similarly, any transaction T2 that may have
used a value written by T1 must also be rolled back, and so on. This effect is known
as cascading rollback and is one of the problems associated with basic TO, since
the schedules produced are not guaranteed to be recoverable. An additional proto-
col must be enforced to ensure that the schedules are recoverable, cascadeless, or
strict. We first describe the basic TO algorithm here. The concurrency control algo-
rithm must check whether conflicting operations violate the timestamp ordering in
the following two cases:

 1. Whenever a transaction T issues a write_item(X) operation, the following
check is performed:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T
and reject the operation. This should be done because some younger trans-
action with a timestamp greater than TS(T)—and hence after T in the
timestamp ordering—has already read or written the value of item X
before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)
operation of T and set write_TS(X) to TS(T).

 2. Whenever a transaction T issues a read_item(X) operation, the following
check is performed:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.
This should be done because some younger transaction with timestamp
greater than TS(T)—and hence after T in the timestamp ordering—has
already written the value of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Whenever the basic TO algorithm detects two conflicting operations that occur in
the incorrect order, it rejects the later of the two operations by aborting the transac-
tion that issued it. The schedules produced by basic TO are hence guaranteed to be
conflict serializable. As mentioned earlier, deadlock does not occur with timestamp
ordering. However, cyclic restart (and hence starvation) may occur if a transaction
is continually aborted and restarted.

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO ensures
that the schedules are both strict (for easy recoverability) and (conflict) serializable.
In this variation, a transaction T issues a read_item(X) or write_item(X) such that
TS(T) > write_TS(X) has its read or write operation delayed until the transaction T′
that wrote the value of X (hence TS(T′) = write_TS(X)) has committed or aborted.

 21.3 Multiversion Concurrency Control Techniques 795

To implement this algorithm, it is necessary to simulate the locking of an item X that
has been written by transaction T′ until T′ is either committed or aborted. This
 algorithm does not cause deadlock, since T waits for T′ only if TS(T) > TS(T′).

Thomas’s Write Rule. A modification of the basic TO algorithm, known as
Thomas’s write rule, does not enforce conflict serializability, but it rejects fewer
write operations by modifying the checks for the write_item(X) operation as follows:

 1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

 2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than
TS(T)—and hence after T in the timestamp ordering—has already written
the value of X. Thus, we must ignore the write_item(X) operation of T because
it is already outdated and obsolete. Notice that any conflict arising from this
situation would be detected by case (1).

 3. If neither the condition in part (1) nor the condition in part (2) occurs, then
execute the write_item(X) operation of T and set write_TS(X) to TS(T).

21.3 Multiversion Concurrency
Control Techniques

These protocols for concurrency control keep copies of the old values of a data item
when the item is updated (written); they are known as multiversion concurrency
control because several versions (values) of an item are kept by the system. When a
transaction requests to read an item, the appropriate version is chosen to maintain
the serializability of the currently executing schedule. One reason for keeping mul-
tiple versions is that some read operations that would be rejected in other tech-
niques can still be accepted by reading an older version of the item to maintain
serializability. When a transaction writes an item, it writes a new version and the old
version(s) of the item is retained. Some multiversion concurrency control algo-
rithms use the concept of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to
maintain multiple versions of the database items. In some cases, older versions can
be kept in a temporary store. It is also possible that older versions may have to be
maintained anyway—for example, for recovery purposes. Some database applica-
tions may require older versions to be kept to maintain a history of the changes of
data item values. The extreme case is a temporal database (see Section 26.2), which
keeps track of all changes and the times at which they occurred. In such cases, there
is no additional storage penalty for multiversion techniques, since older versions
are already maintained.

Several multiversion concurrency control schemes have been proposed. We dis-
cuss two schemes here, one based on timestamp ordering and the other based on
2PL. In addition, the validation concurrency control method (see Section 21.4)
also maintains multiple versions, and the snapshot isolation technique used in

796 Chapter 21 Concurrency Control Techniques

several commercial systems (see Section 21.4) can be implemented by keeping
older versions of items in a temporary store.

21.3.1 Multiversion Technique Based on Timestamp Ordering
In this method, several versions X1, X2, … , Xk of each data item X are maintained.
For each version, the value of version Xi and the following two timestamps associated
with version Xi are kept:

 1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps
of transactions that have successfully read version Xi.

 2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transac-
tion that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new ver-
sion Xk+1 of item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to
TS(T). Correspondingly, when a transaction T is allowed to read the value of version
Xi, the value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability, the following rules are used:

 1. If transaction T issues a write_item(X) operation, and version i of X has the
highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T),
and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,
create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

 2. If transaction T issues a read_item(X) operation, find the version i of X that
has the highest write_TS(Xi) of all versions of X that is also less than or equal
to TS(T); then return the value of Xi to transaction T, and set the value of
read_TS(Xi) to the larger of TS(T) and the current read_TS(Xi).

As we can see in case 2, a read_item(X) is always successful, since it finds the appro-
priate version Xi to read based on the write_TS of the various existing versions of X.
In case 1, however, transaction T may be aborted and rolled back. This happens if T
attempts to write a version of X that should have been read by another transaction
T′ whose timestamp is read_TS(Xi); however, T′ has already read version Xi, which
was written by the transaction with timestamp equal to write_TS(Xi). If this conflict
occurs, T is rolled back; otherwise, a new version of X, written by transaction T, is
created. Notice that if T is rolled back, cascading rollback may occur. Hence, to
ensure recoverability, a transaction T should not be allowed to commit until after
all the transactions that have written some version that T has read have committed.

21.3.2 Multiversion Two-Phase Locking Using Certify Locks
In this multiple-mode locking scheme, there are three locking modes for an item—
read, write, and certify—instead of just the two modes (read, write) discussed previ-
ously. Hence, the state of LOCK(X) for an item X can be one of read-locked,
write-locked, certify-locked, or unlocked. In the standard locking scheme, with
only read and write locks (see Section 21.1.1), a write lock is an exclusive lock. We
can describe the relationship between read and write locks in the standard scheme

 21.3 Multiversion Concurrency Control Techniques 797

by means of the lock compatibility table shown in Figure 21.6(a). An entry of Yes
means that if a transaction T holds the type of lock specified in the column header
on item X and if transaction T′ requests the type of lock specified in the row header
on the same item X, then T′ can obtain the lock because the locking modes are com-
patible. On the other hand, an entry of No in the table indicates that the locks are
not compatible, so T′ must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item,
no other transactions can access that item. The idea behind multiversion 2PL is to
allow other transactions T′ to read an item X while a single transaction T holds a
write lock on X. This is accomplished by allowing two versions for each item X; one
version, the committed version, must always have been written by some commit-
ted transaction. The second local version X′ can be created when a transaction T
acquires a write lock on X. Other transactions can continue to read the committed
version of X while T holds the write lock. Transaction T can write the value of X′ as
needed, without affecting the value of the committed version X. However, once T is
ready to commit, it must obtain a certify lock on all items that it currently holds
write locks on before it can commit; this is another form of lock upgrading. The
certify lock is not compatible with read locks, so the transaction may have to delay
its commit until all its write-locked items are released by any reading transactions
in order to obtain the certify locks. Once the certify locks—which are exclusive
locks—are acquired, the committed version X of the data item is set to the value of
version X′, version X′ is discarded, and the certify locks are then released. The lock
compatibility table for this scheme is shown in Figure 21.6(b).

In this multiversion 2PL scheme, reads can proceed concurrently with a single write
operation—an arrangement not permitted under the standard 2PL schemes. The
cost is that a transaction may have to delay its commit until it obtains exclusive
certify locks on all the items it has updated. It can be shown that this scheme avoids
cascading aborts, since transactions are only allowed to read the version X that was
written by a committed transaction. However, deadlocks may occur, and these
must be handled by variations of the techniques discussed in Section 21.1.3.

(b) Read Write

Read

Write

Certify

Yes No No

No No No

Yes Yes No

Certify

(a) Read Write

Read

Write No No

Yes No

Figure 21.6
Lock compatibility tables.
(a) Lock compatibility table for
read/write locking scheme.
(b) Lock compatibility table for
read/write/certify locking
scheme.

798 Chapter 21 Concurrency Control Techniques

21.4 Validation (Optimistic) Techniques and
Snapshot Isolation Concurrency Control

In all the concurrency control techniques we have discussed so far, a certain degree
of checking is done before a database operation can be executed. For example, in
locking, a check is done to determine whether the item being accessed is locked. In
timestamp ordering, the transaction timestamp is checked against the read and
write timestamps of the item. Such checking represents overhead during transac-
tion execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or
 certification techniques, no checking is done while the transaction is executing.
Several concurrency control methods are based on the validation technique. We
will describe only one scheme in Section 21.4.1. Then, in Section 21.4.2, we discuss
concurrency control techniques that are based on the concept of snapshot isolation.
The implementations of these concurrency control methods can utilize a combina-
tion of the concepts from validation-based techniques and versioning techniques,
as well as utilizing timestamps. Some of these methods may suffer from anomalies
that can violate serializability, but because they generally have lower overhead than
2PL, they have been implemented in several relational DBMSs.

21.4.1 Validation-Based (Optimistic) Concurrency Control
In this scheme, updates in the transaction are not applied directly to the database
items on disk until the transaction reaches its end and is validated. During transac-
tion execution, all updates are applied to local copies of the data items that are
kept for the transaction.6 At the end of transaction execution, a validation phase
checks whether any of the transaction’s updates violate serializability. Certain
information needed by the validation phase must be kept by the system. If serializ-
ability is not violated, the transaction is committed and the database is updated
from the local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this concurrency control protocol:

 1. Read phase. A transaction can read values of committed data items from the
database. However, updates are applied only to local copies (versions) of the
data items kept in the transaction workspace.

 2. Validation phase. Checking is performed to ensure that serializability will
not be violated if the transaction updates are applied to the database.

 3. Write phase. If the validation phase is successful, the transaction updates
are applied to the database; otherwise, the updates are discarded and the
transaction is restarted.

The idea behind optimistic concurrency control is to do all the checks at once; hence,
transaction execution proceeds with a minimum of overhead until the validation

6Note that this can be considered as keeping multiple versions of items!

 21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control 799

phase is reached. If there is little interference among transactions, most will be vali-
dated successfully. However, if there is much interference, many transactions that
execute to completion will have their results discarded and must be restarted later;
under such circumstances, optimistic techniques do not work well. The techniques
are called optimistic because they assume that little interference will occur and hence
most transaction will be validated successfully, so that there is no need to do check-
ing during transaction execution. This assumption is generally true in many transac-
tion processing workloads.

The optimistic protocol we describe uses transaction timestamps and also requires
that the write_sets and read_sets of the transactions be kept by the system. Addition-
ally, start and end times for the three phases need to be kept for each transaction.
Recall that the write_set of a transaction is the set of items it writes, and the read_set
is the set of items it reads. In the validation phase for transaction Ti, the protocol
checks that Ti does not interfere with any recently committed transactions or with
any other concurrent transactions that have started their validation phase. The vali-
dation phase for Ti checks that, for each such transaction Tj that is either recently
committed or is in its validation phase, one of the following conditions holds:

 1. Transaction Tj completes its write phase before Ti starts its read phase.

 2. Ti starts its write phase after Tj completes its write phase, and the read_set of
Ti has no items in common with the write_set of Tj.

 3. Both the read_set and write_set of Ti have no items in common with the
write_set of Tj, and Tj completes its read phase before Ti completes its
read phase.

When validating transaction Ti against each one of the transactions Tj, the first
 condition is checked first since (1) is the simplest condition to check. Only if
condi tion 1 is false is condition 2 checked, and only if (2) is false is condition 3—the
most complex to evaluate—checked. If any one of these three conditions holds with
each transaction Tj, there is no interference and Ti is validated successfully. If none
of these three conditions holds for any one Tj, the validation of transaction Ti fails
(because Ti and Tj may violate serializability) and so Ti is aborted and restarted later
because interference with Tj may have occurred.

21.4.2 Concurrency Control Based on Snapshot Isolation
As we discussed in Section 20.6, the basic definition of snapshot isolation is that a
transaction sees the data items that it reads based on the committed values of the
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since
the database transaction, or, in some cases, the database statement, will only see the
records that were committed in the database at the time the transaction started.
Any insertions, deletions, or updates that occur after the transaction starts will not
be seen by the transaction. In addition, snapshot isolation does not allow the prob-
lems of dirty read and nonrepeatable read to occur. However, certain anomalies
that violate serializability can occur when snapshot isolation is used as the basis for

800 Chapter 21 Concurrency Control Techniques

concurrency control. Although these anomalies are rare, they are very difficult to
detect and may result in an inconsistent or corrupted database. The interested
reader can refer to the end-of-chapter bibliography for papers that discuss in detail
the rare types of anomalies that can occur.

In this scheme, read operations do not require read locks to be applied to the items,
thus reducing the overhead associated with two-phase locking. However, write
operations do require write locks. Thus, for transactions that have many reads, the
performance is much better than 2PL. When writes do occur, the system will have
to keep track of older versions of the updated items in a temporary version store
(sometimes known as tempstore), with the timestamps of when the version was
created. This is necessary so that a transaction that started before the item was writ-
ten can still read the value (version) of the item that was in the database snapshot
when the transaction started.

To keep track of versions, items that have been updated will have pointers to a list
of recent versions of the item in the tempstore, so that the correct item can be read
for each transaction. The tempstore items will be removed when no longer needed,
so a method to decide when to remove unneeded versions will be needed.

Variations of this method have been used in several commercial and open source
DBMSs, including Oracle and PostGRES. If the users require guaranteed serializ-
ability, then the problems with anomalies that violate serializability will have to be
solved by the programmers/software engineers by analyzing the set of transactions
to determine which types of anomalies can occur, and adding checks that do not
permit these anomalies. This can place a burden on the software developers when
compared to the DBMS enforcing serializability in all cases.

Variations of snapshot isolation (SI) techniques, known as serializable snapshot
isolation (SSI), have been proposed and implemented in some of the DBMSs that
use SI as their primary concurrency control method. For example, recent versions of
the PostGRES DBMS allow the user to choose between basic SI and SSI. The tradeoff
is ensuring full serializability with SSI versus living with possible rare anomalies but
having better performance with basic SI. The interested reader is referred to the end-
of-chapter bibliography for more complete discussions of these topics.

21.5 Granularity of Data Items and
Multiple Granularity Locking

All concurrency control techniques assume that the database is formed of a number
of named data items. A database item could be chosen to be one of the following:

 ■ A database record

 ■ A field value of a database record

 ■ A disk block

 ■ A whole file

 ■ The whole database

 21.5 Granularity of Data Items and Multiple Granularity Locking 801

The particular choice of data item type can affect the performance of concurrency
control and recovery. In Section 21.5.1, we discuss some of the tradeoffs with regard
to choosing the granularity level used for locking; and in Section 21.5.2, we discuss
a multiple granularity locking scheme, where the granularity level (size of the data
item) may be changed dynamically.

21.5.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity
refers to small item sizes, whereas coarse granularity refers to large item sizes. Sev-
eral tradeoffs must be considered in choosing the data item size. We will discuss
data item size in the context of locking, although similar arguments can be made for
other concurrency control techniques.

First, notice that the larger the data item size is, the lower the degree of concurrency
permitted. For example, if the data item size is a disk block, a transaction T that
needs to lock a single record B must lock the whole disk block X that contains B
because a lock is associated with the whole data item (block). Now, if another trans-
action S wants to lock a different record C that happens to reside in the same disk
block X in a conflicting lock mode, it is forced to wait. If the data item size was a
single record instead of a disk block, transaction S would be able to proceed, because
it would be locking a different data item (record).

On the other hand, the smaller the data item size is, the more the number of items
in the database. Because every item is associated with a lock, the system will have a
larger number of active locks to be handled by the lock manager. More lock and
unlock operations will be performed, causing a higher overhead. In addition, more
storage space will be required for the lock table. For timestamps, storage is required
for the read_TS and write_TS for each data item, and there will be similar overhead
for handling a large number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item
size? The answer is that it depends on the types of transactions involved. If a typical
transaction accesses a small number of records, it is advantageous to have the data
item granularity be one record. On the other hand, if a transaction typically accesses
many records in the same file, it may be better to have block or file granularity so
that the transaction will consider all those records as one (or a few) data items.

21.5.2 Multiple Granularity Level Locking
Since the best granularity size depends on the given transaction, it seems appropri-
ate that a database system should support multiple levels of granularity, where the
granularity level can be adjusted dynamically for various mixes of transactions. Fig-
ure 21.7 shows a simple granularity hierarchy with a database containing two files,
each file containing several disk pages, and each page containing several records.
This can be used to illustrate a multiple granularity level 2PL protocol, with
shared/exclusive locking modes, where a lock can be requested at any level. How-
ever, additional types of locks will be needed to support such a protocol efficiently.

802 Chapter 21 Concurrency Control Techniques

Consider the following scenario, which refers to the example in Figure 21.7. Sup-
pose transaction T1 wants to update all the records in file f1, and T1 requests and is
granted an exclusive lock for f1. Then all of f1’s pages (p11 through p1n)—and the
records contained on those pages—are locked in exclusive mode. This is beneficial
for T1 because setting a single file-level lock is more efficient than setting n page-
level locks or having to lock each record individually. Now suppose another trans-
action T2 only wants to read record r1nj from page p1n of file f1; then T2 would
request a shared record-level lock on r1nj. However, the database system (that is, the
transaction manager or, more specifically, the lock manager) must verify the com-
patibility of the requested lock with already held locks. One way to verify this is to
traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a conflicting lock
is held on any of those items, then the lock request for r1nj is denied and T2 is
blocked and must wait. This traversal would be fairly efficient.

However, what if transaction T2’s request came before transaction T1’s request? In
this case, the shared record lock is granted to T2 for r1nj, but when T1’s file-level lock
is requested, it can be time-consuming for the lock manager to check all nodes
(pages and records) that are descendants of node f1 for a lock conflict. This would
be very inefficient and would defeat the purpose of having multiple granularity
level locks.

To make multiple granularity level locking practical, additional types of locks,
called intention locks, are needed. The idea behind intention locks is for a transac-
tion to indicate, along the path from the root to the desired node, what type of lock
(shared or exclusive) it will require from one of the node’s descendants. There are
three types of intention locks:

 1. Intention-shared (IS) indicates that one or more shared locks will be
requested on some descendant node(s).

 2. Intention-exclusive (IX) indicates that one or more exclusive locks will be
requested on some descendant node(s).

db

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk
.

. . .

.

. . .

. . .

p11 p12

f1

p1n p21 p22 p2m

f2

Figure 21.7
A granularity hierarchy for illustrating multiple granularity level locking.

 21.5 Granularity of Data Items and Multiple Granularity Locking 803

 3. Shared-intention-exclusive (SIX) indicates that the current node is locked in
shared mode but that one or more exclusive locks will be requested on some
descendant node(s).

The compatibility table of the three intention locks, and the actual shared and
exclusive locks, is shown in Figure 21.8. In addition to the three types of intention
locks, an appropriate locking protocol must be used. The multiple granularity
locking (MGL) protocol consists of the following rules:

 1. The lock compatibility (based on Figure 21.8) must be adhered to.

 2. The root of the tree must be locked first, in any mode.

 3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

 4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

 5. A transaction T can lock a node only if it has not unlocked any node (to
enforce the 2PL protocol).

 6. A transaction T can unlock a node, N, only if none of the children of node N
are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state
the conditions when a transaction may lock a given node in any of the lock modes.
Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable sched-
ules. Basically, the locking starts from the root and goes down the tree until the
node that needs to be locked is encountered, whereas unlocking starts from the
locked node and goes up the tree until the root itself is unlocked. To illustrate the
MGL protocol with the database hierarchy in Figure 21.7, consider the following
three transactions:

 1. T1 wants to update record r111 and record r211.

 2. T2 wants to update all records on page p12.

 3. T3 wants to read record r11j and the entire f2 file.

IS

IX

S

SIX

X

IS

Yes

Yes

Yes

Yes

No

IX

Yes

No

Yes

No

No

S

No

Yes

Yes

No

No

SIX

No

No

Yes

No

No

X

No

No

No

No

No
Figure 21.8
Lock compatibility matrix for
multiple granularity locking.

804 Chapter 21 Concurrency Control Techniques

Figure 21.9 shows a possible serializable schedule for these three transactions.
Only the lock and unlock operations are shown. The notation <lock_type>(<item>)
is used to display the locking operations in the schedule.

The multiple granularity level protocol is especially suited when processing a
mix of transactions that include (1) short transactions that access only a few
items (records or fields) and (2) long transactions that access entire files. In
this environment, less transaction blocking and less locking overhead are
incurred by such a protocol when compared to a single-level granularity lock-
ing approach.

IX(db)
IX(f1)

T1

IX(p11)
X(r111)

IX(f2)
IX(p21)
X(p211)

unlock(r211)
unlock(p21)
unlock(f2)

unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)

T3

IS(db)
IS(f1)
IS(p11)

S(r11j)

S(f2)

unlock(r11j)
unlock(p11)
unlock(f1)
unlock(f2)
unlock(db)

IX(db)

T2

IX(f1)
X(p12)

unlock(p12)
unlock(f1)
unlock(db)

Figure 21.9
Lock operations to
illustrate a serializable
schedule.

 21.6 Using Locks for Concurrency Control in Indexes 805

21.6 Using Locks for Concurrency
Control in Indexes

Two-phase locking can also be applied to B-tree and B+-tree indexes (see Chap-
ter 19), where the nodes of an index correspond to disk pages. However, holding
locks on index pages until the shrinking phase of 2PL could cause an undue
amount of transaction blocking because searching an index always starts at the
root. For example, if a transaction wants to insert a record (write operation), the
root would be locked in exclusive mode, so all other conflicting lock requests for
the index must wait until the transaction enters its shrinking phase. This blocks all
other transactions from accessing the index, so in practice other approaches to
locking an index must be used.

The tree structure of the index can be taken advantage of when developing a con-
currency control scheme. For example, when an index search (read operation) is
being executed, a path in the tree is traversed from the root to a leaf. Once a lower-
level node in the path has been accessed, the higher-level nodes in that path will not
be used again. So once a read lock on a child node is obtained, the lock on the par-
ent node can be released. When an insertion is being applied to a leaf node (that is,
when a key and a pointer are inserted), then a specific leaf node must be locked in
exclusive mode. However, if that node is not full, the insertion will not cause
changes to higher-level index nodes, which implies that they need not be locked
exclusively.

A conservative approach for insertions would be to lock the root node in exclusive
mode and then to access the appropriate child node of the root. If the child node is
not full, then the lock on the root node can be released. This approach can be
applied all the way down the tree to the leaf, which is typically three or four levels
from the root. Although exclusive locks are held, they are soon released. An alterna-
tive, more optimistic approach would be to request and hold shared locks on the
nodes leading to the leaf node, with an exclusive lock on the leaf. If the insertion
causes the leaf to split, insertion will propagate to one or more higher-level nodes.
Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the B+-tree, called the
B-link tree. In a B-link tree, sibling nodes on the same level are linked at every level.
This allows shared locks to be used when requesting a page and requires that the
lock be released before accessing the child node. For an insert operation, the shared
lock on a node would be upgraded to exclusive mode. If a split occurs, the parent
node must be relocked in exclusive mode. One complication is for search opera-
tions executed concurrently with the update. Suppose that a concurrent update
operation follows the same path as the search and inserts a new entry into the leaf
node. Additionally, suppose that the insert causes that leaf node to split. When the
insert is done, the search process resumes, following the pointer to the desired leaf,
only to find that the key it is looking for is not present because the split has moved
that key into a new leaf node, which would be the right sibling of the original leaf

806 Chapter 21 Concurrency Control Techniques

node. However, the search process can still succeed if it follows the pointer (link) in
the original leaf node to its right sibling, where the desired key has been moved.

Handling the deletion case, where two or more nodes from the index tree merge, is
also part of the B-link tree concurrency protocol. In this case, locks on the nodes to
be merged are held as well as a lock on the parent of the two nodes to be merged.

21.7 Other Concurrency Control Issues
In this section, we discuss some other issues relevant to concurrency control. In
Section 21.7.1, we discuss problems associated with insertion and deletion of
records and we revisit the phantom problem, which may occur when records are
inserted. This problem was described as a potential problem requiring a concur-
rency control measure in Section 20.6. In Section 21.7.2, we discuss problems that
may occur when a transaction outputs some data to a monitor before it commits,
and then the transaction is later aborted.

21.7.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed
until after the item is created and the insert operation is completed. In a locking
environment, a lock for the item can be created and set to exclusive (write) mode;
the lock can be released at the same time as other write locks would be released,
based on the concurrency control protocol being used. For a timestamp-based pro-
tocol, the read and write timestamps of the new item are set to the timestamp of the
creating transaction.

Next, consider a deletion operation that is applied on an existing data item. For
locking protocols, again an exclusive (write) lock must be obtained before the trans-
action can delete the item. For timestamp ordering, the protocol must ensure that no
later transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is
being inserted by some transaction T satisfies a condition that a set of records
accessed by another transaction T′ must satisfy. For example, suppose that transac-
tion T is inserting a new EMPLOYEE record whose Dno = 5, whereas transaction T′
is accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary
values to calculate the personnel budget for department 5). If the equivalent serial
order is T followed by T′, then T′ must read the new EMPLOYEE record and include
its Salary in the sum calculation. For the equivalent serial order T′ followed by T, the
new salary should not be included. Notice that although the transactions logically
conflict, in the latter case there is really no record (data item) in common between
the two transactions, since T′ may have locked all the records with Dno = 5 before T
inserted the new record. This is because the record that causes the conflict is a
phantom record that has suddenly appeared in the database on being inserted. If
other operations in the two transactions conflict, the conflict due to the phantom
record may not be recognized by the concurrency control protocol.

 21.8 Summary 807

One solution to the phantom record problem is to use index locking, as discussed
in Section 21.6. Recall from Chapter 19 that an index includes entries that have an
attribute value plus a set of pointers to all records in the file with that value. For
example, an index on Dno of EMPLOYEE would include an entry for each distinct
Dno value plus a set of pointers to all EMPLOYEE records with that value. If the index
entry is locked before the record itself can be accessed, then the conflict on the
phantom record can be detected, because transaction T′ would request a read lock
on the index entry for Dno = 5, and T would request a write lock on the same entry
before it could place the locks on the actual records. Since the index locks conflict,
the phantom conflict would be detected.

A more general technique, called predicate locking, would lock access to all records
that satisfy an arbitrary predicate (condition) in a similar manner; however, predi-
cate locks have proved to be difficult to implement efficiently. If the concurrency
control method is based on snapshot isolation (see Section 21.4.2), then the trans-
action that reads the items will access the database snapshot at the time the transac-
tion starts; any records inserted after that will not be retrieved by the transaction.

21.7.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output
to an interactive device, such as a monitor screen, before they are committed. The
problem is that a user can input a value of a data item to a transaction T that is
based on some value written to the screen by transaction T′, which may not have
committed. This dependency between T and T′ cannot be modeled by the system
concurrency control method, since it is only based on the user interacting with the
two transactions.

An approach to dealing with this problem is to postpone output of transactions to
the screen until they have committed.

21.7.3 Latches
Locks held for a short duration are typically called latches. Latches do not follow
the usual concurrency control protocol such as two-phase locking. For example, a
latch can be used to guarantee the physical integrity of a disk page when that page is
being written from the buffer to disk. A latch would be acquired for the page, the
page written to disk, and then the latch released.

21.8 Summary
In this chapter, we discussed DBMS techniques for concurrency control. We
started in Section 21.1 by discussing lock-based protocols, which are commonly
used in practice. In Section 21.1.2 we described the two-phase locking (2PL) pro-
tocol and a number of its variations: basic 2PL, strict 2PL, conservative 2PL, and
rigorous 2PL. The strict and rigorous variations are more common because of

808 Chapter 21 Concurrency Control Techniques

their better recoverability properties. We introduced the concepts of shared (read)
and exclusive (write) locks (Section 21.1.1) and showed how locking can guarantee
serializability when used in conjunction with the two-phase locking rule. We also
presented various techniques for dealing with the deadlock problem in Sec-
tion 21.1.3, which can occur with locking. In practice, it is common to use time-
outs and deadlock detection (wait-for graphs). Deadlock prevention protocols,
such as no waiting and cautious waiting, can also be used.

We then presented other concurrency control protocols. These include the time-
stamp ordering protocol (Section 21.2), which ensures serializability based on the
order of transaction timestamps. Timestamps are unique, system-generated trans-
action identifiers. We discussed Thomas’s write rule, which improves performance
but does not guarantee serializability. The strict timestamp ordering protocol was
also presented. We discussed two multiversion protocols (Section 21.3), which
assume that older versions of data items can be kept in the database. One tech-
nique, called multiversion two-phase locking (which has been used in practice),
assumes that two versions can exist for an item and attempts to increase concur-
rency by making write and read locks compatible (at the cost of introducing an
additional certify lock mode). We also presented a multiversion protocol based on
timestamp ordering. In Section 21.4.1, we presented an example of an optimistic
protocol, which is also known as a certification or validation protocol.

We then discussed concurrency control methods that are based on the concept of
snapshot isolation in Section 21.4.2; these are used in several DBMSs because of
their lower overhead. The basic snapshot isolation method can allow nonserializ-
able schedules in rare cases because of certain anomalies that are difficult to detect;
these anomalies may cause a corrupted database. A variation known as serializable
snapshot isolation has been recently developed and ensures serializable schedules.

Then in Section 21.5 we turned our attention to the important practical issue of
data item granularity. We described a multigranularity locking protocol that
allows the change of granularity (item size) based on the current transaction
mix, with the goal of improving the performance of concurrency control. An
important practical issue was then presented in Section 21.6, which is to develop
locking protocols for indexes so that indexes do not become a hindrance to con-
current access. Finally, in Section 21.7, we introduced the phantom problem and
problems with interactive transactions, and we briefly described the concept of
latches and how this concept differs from locks.

Review Questions
 21.1. What is the two-phase locking protocol? How does it guarantee serializability?

 21.2. What are some variations of the two-phase locking protocol? Why is strict
or rigorous two-phase locking often preferred?

 21.3. Discuss the problems of deadlock and starvation, and the different
approaches to dealing with these problems.

 Exercises 809

 21.4. Compare binary locks to exclusive/shared locks. Why is the latter type of
locks preferable?

 21.5. Describe the wait-die and wound-wait protocols for deadlock prevention.

 21.6. Describe the cautious waiting, no waiting, and timeout protocols for dead-
lock prevention.

 21.7. What is a timestamp? How does the system generate timestamps?

 21.8. Discuss the timestamp ordering protocol for concurrency control. How
does strict timestamp ordering differ from basic timestamp ordering?

 21.9. Discuss two multiversion techniques for concurrency control. What is a cer-
tify lock? What are the advantages and disadvantages of using certify locks?

 21.10. How do optimistic concurrency control techniques differ from other con-
currency control techniques? Why are they also called validation or certifi-
cation techniques? Discuss the typical phases of an optimistic concurrency
control method.

 21.11. What is snapshot isolation? What are the advantages and disadvantages of
concurrency control methods that are based on snapshot isolation?

 21.12. How does the granularity of data items affect the performance of concurrency
control? What factors affect selection of granularity size for data items?

 21.13. What type of lock is needed for insert and delete operations?

 21.14. What is multiple granularity locking? Under what circumstances is it used?

 21.15. What are intention locks?

 21.16. When are latches used?

 21.17. What is a phantom record? Discuss the problem that a phantom record can
cause for concurrency control.

 21.18. How does index locking resolve the phantom problem?

 21.19. What is a predicate lock?

Exercises
 21.20. Prove that the basic two-phase locking protocol guarantees conflict serializ-

ability of schedules. (Hint: Show that if a serializability graph for a schedule
has a cycle, then at least one of the transactions participating in the schedule
does not obey the two-phase locking protocol.)

 21.21. Modify the data structures for multiple-mode locks and the algorithms for
read_lock(X), write_lock(X), and unlock(X) so that upgrading and downgrad-
ing of locks are possible. (Hint: The lock needs to check the transaction id(s)
that hold the lock, if any.)

810 Chapter 21 Concurrency Control Techniques

 21.22. Prove that strict two-phase locking guarantees strict schedules.

 21.23. Prove that the wait-die and wound-wait protocols avoid deadlock and
starvation.

 21.24. Prove that cautious waiting avoids deadlock.

 21.25. Apply the timestamp ordering algorithm to the schedules in Figures 21.8(b)
and (c), and determine whether the algorithm will allow the execution of the
schedules.

 21.26. Repeat Exercise 21.25, but use the multiversion timestamp ordering method.

 21.27. Why is two-phase locking not used as a concurrency control method for
indexes such as B+-trees?

 21.28. The compatibility matrix in Figure 21.8 shows that IS and IX locks are com-
patible. Explain why this is valid.

 21.29. The MGL protocol states that a transaction T can unlock a node N, only if
none of the children of node N are still locked by transaction T. Show that
without this condition, the MGL protocol would be incorrect.

Selected Bibliography
The two-phase locking protocol and the concept of predicate locks were first pro-
posed by Eswaran et al. (1976). Bernstein et al. (1987), Gray and Reuter (1993), and
Papadimitriou (1986) focus on concurrency control and recovery. Kumar (1996)
focuses on performance of concurrency control methods. Locking is discussed in
Gray et al. (1975), Lien and Weinberger (1978), Kedem and Silbershatz (1980), and
Korth (1983). Deadlocks and wait-for graphs were formalized by Holt (1972), and
the wait-wound and wound-die schemes are presented in Rosenkrantz et al. (1978).
Cautious waiting is discussed in Hsu and Zhang (1992). Helal et al. (1993) com-
pares various locking approaches.

Timestamp-based concurrency control techniques are discussed in Bernstein and
Goodman (1980) and Reed (1983). Optimistic concurrency control is discussed in
Kung and Robinson (1981) and Bassiouni (1988). Papadimitriou and Kanellakis
(1979) and Bernstein and Goodman (1983) discuss multiversion techniques. Multi-
version timestamp ordering was proposed in Reed (1979, 1983), and multiversion
two-phase locking is discussed in Lai and Wilkinson (1984). A method for multiple
locking granularities was proposed in Gray et al. (1975), and the effects of locking
granularities are analyzed in Ries and Stonebraker (1977). Bhargava and Reidl
(1988) presents an approach for dynamically choosing among various concurrency
control and recovery methods. Concurrency control methods for indexes are pre-
sented in Lehman and Yao (1981) and in Shasha and Goodman (1988). A perfor-
mance study of various B+-tree concurrency control algorithms is presented in
Srinivasan and Carey (1991).

 Selected Bibliography 811

Anomalies that can occur with basic snapshot isolation are discussed in Fekete
et al. (2004), Jorwekar et al. (2007), and Ports and Grittner (2012), among
 others. Modifying snapshot isolation to make it serializable is discussed in
Cahill et al. (2008), Fekete et al. (2005), Revilak et al. (2011), and Ports and
Grittner (2012).

Other work on concurrency control includes semantic-based concurrency
control (Badrinath & Ramamritham, 1992), transaction models for long-
running activities (Dayal et al., 1991), and multilevel transaction management
(Hasse & Weikum, 1991).

This page intentionally left blank

813

22
Database Recovery Techniques

In this chapter, we discuss some of the techniques that
can be used for database recovery in case of system

failure. In Section 20.1.4 we discussed the different causes of failure, such as system
crashes and transaction errors. In Section 20.2, we introduced some of the concepts
that are used by recovery processes, such as the system log and commit points.

This chapter presents additional concepts that are relevant to recovery protocols
and provides an overview of the various database recovery algorithms. We start
in Section 22.1 with an outline of a typical recovery procedure and a categoriza-
tion of recovery algorithms, and then we discuss several recovery concepts,
including write-ahead logging, in-place versus shadow updates, and the process
of rolling back (undoing) the effect of an incomplete or failed transaction. In Sec-
tion 22.2, we present recovery techniques based on deferred update, also known
as the NO-UNDO/REDO technique, where the data on disk is not updated until
after a transaction commits. In Section 22.3, we discuss recovery techniques based
on immediate update, where data can be updated on disk during transaction exe-
cution; these include the UNDO/REDO and UNDO/NO-REDO algorithms. In Sec-
tion 22.4, we discuss the technique known as shadowing or shadow paging, which
can be categorized as a NO-UNDO/NO-REDO algorithm. An example of a practical
DBMS recovery scheme, called ARIES, is presented in Section 22.5. Recovery in
multidatabases is briefly discussed in Section 22.6. Finally, techniques for recov-
ery from catastrophic failure are discussed in Section 22.7. Section 22.8 summa-
rizes the chapter.

Our emphasis is on conceptually describing several different approaches to recov-
ery. For descriptions of recovery features in specific systems, the reader should con-
sult the bibliographic notes at the end of the chapter and the online and printed
user manuals for those systems. Recovery techniques are often intertwined with the
concurrency control mechanisms. Certain recovery techniques are best used with

chapter 22

814 Chapter 22 Database Recovery Techniques

specific concurrency control methods. We will discuss recovery concepts indepen-
dently of concurrency control mechanisms.

22.1 Recovery Concepts

22.1.1 Recovery Outline and Categorization
of Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to
the most recent consistent state before the time of failure. To do this, the system
must keep information about the changes that were applied to data items by the
various transactions. This information is typically kept in the system log, as we
discussed in Section 21.2.2. A typical strategy for recovery may be summarized
informally as follows:

 1. If there is extensive damage to a wide portion of the database due to cata-
strophic failure, such as a disk crash, the recovery method restores a past
copy of the database that was backed up to archival storage (typically tape or
other large capacity offline storage media) and reconstructs a more current
state by reapplying or redoing the operations of committed transactions
from the backed-up log, up to the time of failure.

 2. When the database on disk is not physically damaged, and a noncatastrophic
failure of types 1 through 4 in Section 21.1.4 has occurred, the recovery
strategy is to identify any changes that may cause an inconsistency in the
database. For example, a transaction that has updated some database items
on disk but has not been committed needs to have its changes reversed by
undoing its write operations. It may also be necessary to redo some opera-
tions in order to restore a consistent state of the database; for example, if a
transaction has committed but some of its write operations have not yet
been written to disk. For noncatastrophic failure, the recovery protocol does
not need a complete archival copy of the database. Rather, the entries kept in
the online system log on disk are analyzed to determine the appropriate
actions for recovery.

Conceptually, we can distinguish two main policies for recovery from non-
catastrophic transaction failures: deferred update and immediate update. The
deferred update techniques do not physically update the database on disk until after
a transaction commits; then the updates are recorded in the database. Before reach-
ing commit, all transaction updates are recorded in the local transaction workspace
or in the main memory buffers that the DBMS maintains (the DBMS main memory
cache; see Section 20.2.4). Before commit, the updates are recorded persistently in
the log file on disk, and then after commit, the updates are written to the database
from the main memory buffers. If a transaction fails before reaching its commit
point, it will not have changed the database on disk in any way, so UNDO is not
needed. It may be necessary to REDO the effect of the operations of a committed

 22.1 Recovery Concepts 815

transaction from the log, because their effect may not yet have been recorded in the
database on disk. Hence, deferred update is also known as the NO-UNDO/REDO
algorithm. We discuss this technique in Section 22.2.

In the immediate update techniques, the database may be updated by some opera-
tions of a transaction before the transaction reaches its commit point. However,
these operations must also be recorded in the log on disk by force-writing before
they are applied to the database on disk, making recovery still possible. If a trans-
action fails after recording some changes in the database on disk but before reach-
ing its commit point, the effect of its operations on the database must be undone;
that is, the transaction must be rolled back. In the general case of immediate
update, both undo and redo may be required during recovery. This technique,
known as the UNDO/REDO algorithm, requires both operations during recovery
and is used most often in practice. A variation of the algorithm where all updates
are required to be recorded in the database on disk before a transaction commits
requires undo only, so it is known as the UNDO/NO-REDO algorithm. We discuss
these two techniques in Section 22.3.

The UNDO and REDO operations are required to be idempotent—that is, executing
an operation multiple times is equivalent to executing it just once. In fact, the whole
recovery process should be idempotent because if the system were to fail during the
recovery process, the next recovery attempt might UNDO and REDO certain
write_item operations that had already been executed during the first recovery pro-
cess. The result of recovery from a system crash during recovery should be the same
as the result of recovering when there is no crash during recovery!

22.1.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system func-
tions—in particular, the buffering of database disk pages in the DBMS main
memory cache. Typically, multiple disk pages that include the data items to be
updated are cached into main memory buffers and then updated in memory
before being written back to disk. The caching of disk pages is traditionally an
operating system function, but because of its importance to the efficiency of
recovery procedures, it is handled by the DBMS by calling low-level operating
systems routines (see Section 20.2.4).

In general, it is convenient to consider recovery in terms of the database disk pages
(blocks). Typically a collection of in-memory buffers, called the DBMS cache, is
kept under the control of the DBMS for the purpose of holding these buffers. A
directory for the cache is used to keep track of which database items are in the buf-
fers.1 This can be a table of <Disk_page_address, Buffer_location, … > entries. When
the DBMS requests action on some item, first it checks the cache directory to deter-
mine whether the disk page containing the item is in the DBMS cache. If it is not,

1This is somewhat similar to the concept of page tables used by the operating system.

816 Chapter 22 Database Recovery Techniques

the item must be located on disk, and the appropriate disk pages are copied into the
cache. It may be necessary to replace (or flush) some of the cache buffers to make
space available for the new item (see Section 20.2.4).

The entries in the DBMS cache directory hold additional information relevant to
buffer management. Associated with each buffer in the cache is a dirty bit, which
can be included in the directory entry to indicate whether or not the buffer has been
modified. When a page is first read from the database disk into a cache buffer, a new
entry is inserted in the cache directory with the new disk page address, and the dirty
bit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corre-
sponding directory entry is set to 1 (one). Additional information, such as the trans-
action id(s) of the transaction(s) that modified the buffer, are also kept in the
directory. When the buffer contents are replaced (flushed) from the cache, the con-
tents must first be written back to the corresponding disk page only if its dirty bit is 1.

Another bit, called the pin-unpin bit, is also needed—a page in the cache is pinned
(bit value 1 (one)) if it cannot be written back to disk as yet. For example, the recov-
ery protocol may restrict certain buffer pages from being written back to the disk
until the transactions that changed this buffer have committed.

Two main strategies can be employed when flushing a modified buffer back to disk.
The first strategy, known as in-place updating, writes the buffer to the same origi-
nal disk location, thus overwriting the old value of any changed data items on disk.2

Hence, a single copy of each database disk block is maintained. The second strategy,
known as shadowing, writes an updated buffer at a different disk location, so mul-
tiple versions of data items can be maintained, but this approach is not typically
used in practice.

In general, the old value of the data item before updating is called the before image
(BFIM), and the new value after updating is called the after image (AFIM). If shad-
owing is used, both the BFIM and the AFIM can be kept on disk; hence, it is not
strictly necessary to maintain a log for recovering. We briefly discuss recovery
based on shadowing in Section 22.4.

22.1.3 Write-Ahead Logging, Steal/No-Steal,
and Force/No-Force

When in-place updating is used, it is necessary to use a log for recovery (see Sec-
tion 21.2.2). In this case, the recovery mechanism must ensure that the BFIM of the
data item is recorded in the appropriate log entry and that the log entry is flushed to
disk before the BFIM is overwritten with the AFIM in the database on disk. This
process is generally known as write-ahead logging and is necessary so we can
UNDO the operation if this is required during recovery. Before we can describe a
protocol for write-ahead logging, we need to distinguish between two types of log
entry information included for a write command: the information needed for UNDO

2In-place updating is used in most systems in practice.

 22.1 Recovery Concepts 817

and the information needed for REDO. A REDO-type log entry includes the new
value (AFIM) of the item written by the operation since this is needed to redo the
effect of the operation from the log (by setting the item value in the database on
disk to its AFIM). The UNDO-type log entries include the old value (BFIM) of the
item since this is needed to undo the effect of the operation from the log (by setting
the item value in the database back to its BFIM). In an UNDO/REDO algorithm, both
BFIM and AFIM are recorded into a single log entry. Additionally, when cascading
rollback (see Section 22.1.5) is possible, read_item entries in the log are considered to
be UNDO-type entries.

As mentioned, the DBMS cache holds the cached database disk blocks in main
memory buffers. The DBMS cache includes not only data file blocks, but also index
file blocks and log file blocks from the disk. When a log record is written, it is stored
in the current log buffer in the DBMS cache. The log is simply a sequential (append-
only) disk file, and the DBMS cache may contain several log blocks in main mem-
ory buffers (typically, the last n log blocks of the log file). When an update to a data
block—stored in the DBMS cache—is made, an associated log record is written to
the last log buffer in the DBMS cache. With the write-ahead logging approach, the
log buffers (blocks) that contain the associated log records for a particular data
block update must first be written to disk before the data block itself can be written
back to disk from its main memory buffer.

Standard DBMS recovery terminology includes the terms steal/no-steal and
force/no-force, which specify the rules that govern when a page from the database
cache can be written to disk:

 1. If a cache buffer page updated by a transaction cannot be written to disk before
the transaction commits, the recovery method is called a no-steal approach.
The pin-unpin bit will be set to 1 (pin) to indicate that a cache buffer cannot be
written back to disk. On the other hand, if the recovery protocol allows writing
an updated buffer before the transaction commits, it is called steal. Steal is
used when the DBMS cache (buffer) manager needs a buffer frame for another
transaction and the buffer manager replaces an existing page that had been
updated but whose transaction has not committed. The no-steal rule means
that UNDO will never be needed during recovery, since a committed transac-
tion will not have any of its updates on disk before it commits.

 2. If all pages updated by a transaction are immediately written to disk before
the transaction commits, the recovery approach is called a force approach.
Otherwise, it is called no-force. The force rule means that REDO will never
be needed during recovery, since any committed transaction will have all its
updates on disk before it is committed.

The deferred update (NO-UNDO) recovery scheme discussed in Section 22.2 follows
a no-steal approach. However, typical database systems employ a steal/no-force
(UNDO/REDO) strategy. The advantage of steal is that it avoids the need for a very
large buffer space to store all updated pages in memory. The advantage of no-force
is that an updated page of a committed transaction may still be in the buffer when

818 Chapter 22 Database Recovery Techniques

another transaction needs to update it, thus eliminating the I/O cost to write that
page multiple times to disk and possibly having to read it again from disk. This may
provide a substantial saving in the number of disk I/O operations when a specific
page is updated heavily by multiple transactions.

To permit recovery when in-place updating is used, the appropriate entries required
for recovery must be permanently recorded in the log on disk before changes are
applied to the database. For example, consider the following write-ahead logging
(WAL) protocol for a recovery algorithm that requires both UNDO and REDO:

 1. The before image of an item cannot be overwritten by its after image in the
database on disk until all UNDO-type log entries for the updating transaction—
up to this point—have been force-written to disk.

 2. The commit operation of a transaction cannot be completed until all the
REDO-type and UNDO-type log records for that transaction have been force-
written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to
maintain a number of lists related to the transactions being processed in the system.
These include a list for active transactions that have started but not committed as
yet, and they may also include lists of all committed and aborted transactions
since the last checkpoint (see the next section). Maintaining these lists makes the
recovery process more efficient.

22.1.4 Checkpoints in the System Log
and Fuzzy Checkpointing

Another type of entry in the log is called a checkpoint.3 A [checkpoint, list of active
transactions] record is written into the log periodically at that point when the system
writes out to the database on disk all DBMS buffers that have been modified. As a
consequence of this, all transactions that have their [commit, T] entries in the log
before a [checkpoint] entry do not need to have their WRITE operations redone in
case of a system crash, since all their updates will be recorded in the database on
disk during checkpointing. As part of checkpointing, the list of transaction ids for
active transactions at the time of the checkpoint is included in the checkpoint
record, so that these transactions can be easily identified during recovery.

The recovery manager of a DBMS must decide at what intervals to take a check-
point. The interval may be measured in time—say, every m minutes—or in the
number t of committed transactions since the last checkpoint, where the values of
m or t are system parameters. Taking a checkpoint consists of the following actions:

 1. Suspend execution of transactions temporarily.

 2. Force-write all main memory buffers that have been modified to disk.

3The term checkpoint has been used to describe more restrictive situations in some systems, such as
DB2. It has also been used in the literature to describe entirely different concepts.

 22.1 Recovery Concepts 819

 3. Write a [checkpoint] record to the log, and force-write the log to disk.

 4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include addi-
tional information, such as a list of active transaction ids, and the locations
(addresses) of the first and most recent (last) records in the log for each active
transaction. This can facilitate undoing transaction operations in the event that a
transaction must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction
processing because of step 1, which is not acceptable in practice. To overcome this,
it is common to use a technique called fuzzy checkpointing. In this technique, the
system can resume transaction processing after a [begin_checkpoint] record is writ-
ten to the log without having to wait for step 2 to finish. When step 2 is completed,
an [end_checkpoint, …] record is written in the log with the relevant information
collected during checkpointing. However, until step 2 is completed, the previous
checkpoint record should remain valid. To accomplish this, the system maintains a
file on disk that contains a pointer to the valid checkpoint, which continues to point
to the previous checkpoint record in the log. Once step 2 is concluded, that pointer
is changed to point to the new checkpoint in the log.

22.1.5 Transaction Rollback and Cascading Rollback
If a transaction fails for whatever reason after updating the database, but before the
transaction commits, it may be necessary to roll back the transaction. If any data
item values have been changed by the transaction and written to the database on
disk, they must be restored to their previous values (BFIMs). The undo-type log
entries are used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the
value of some data item X written by T must also be rolled back. Similarly, once S is
rolled back, any transaction R that has read the value of some data item Y written by
S must also be rolled back; and so on. This phenomenon is called cascading
 rollback, and it can occur when the recovery protocol ensures recoverable schedules
but does not ensure strict or cascadeless schedules (see Section 20.4.2). Understand-
ably, cascading rollback can be complex and time-consuming. That is why almost all
recovery mechanisms are designed so that cascading rollback is never required.

Figure 22.1 shows an example where cascading rollback is required. The read and
write operations of three individual transactions are shown in Figure 22.1(a). Fig-
ure 22.1(b) shows the system log at the point of a system crash for a particular execution
schedule of these transactions. The values of data items A, B, C, and D, which are used
by the transactions, are shown to the right of the system log entries. We assume that the
original item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20. At the
point of system failure, transaction T3 has not reached its conclusion and must be rolled
back. The WRITE operations of T3, marked by a single * in Figure 22.1(b), are the T3
operations that are undone during transaction rollback. Figure 22.1(c) graphically
shows the operations of the different transactions along the time axis.

820 Chapter 22 Database Recovery Techniques

(a)

(b)

*

**

**

[start_transaction,T3]

[read_item,T3,C]

[write_item,T3,B,15,12]
[start_transaction,T2]

[read_item,T2,B]

[write_item,T2,B,12,18]

[write_item,T1,D,20,25]

[write_item,T2,D,25,26]

[start_transaction,T1]
[read_item,T1,A]

[read_item,T1,D]

[read_item,T2,D]

[read_item,T3,A]

* T3 is rolled back because it
did not reach its commit point.

** T2 is rolled back because it
reads the value of item B written by T3.

read_item(A)

read_item(D)
write_item(D)

read_item(B)

write_item(B)
read_item(D)

write_item(D)

System crash

T3T2T1

read_item(C)

write_item(B)
read_item(A)

write_item(A)

A

30

B

15

12

18

C

40

D

20

25

26

(c) READ(C)

BEGIN

READ(A)WRITE(B)

T3

READ(B)

BEGIN

WRITE(D)READ(D)WRITE(B)

READ(A)

BEGIN

System crash

Time

READ(D) WRITE(D)

T2

T1

Figure 22.1
Illustrating cascading rollback
(a process that never occurs
in strict or cascadeless
schedules). (a) The read and
write operations of three
transactions. (b) System log at
point of crash. (c) Operations
before the crash.

 22.2 NO-UNDO/REDO Recovery Based on Deferred Update 821

We must now check for cascading rollback. From Figure 22.1(c), we see that trans-
action T2 reads the value of item B that was written by transaction T3; this can also
be determined by examining the log. Because T3 is rolled back, T2 must now be
rolled back, too. The WRITE operations of T2, marked by ** in the log, are the ones
that are undone. Note that only write_item operations need to be undone during
transaction rollback; read_item operations are recorded in the log only to determine
whether cascading rollback of additional transactions is necessary.

In practice, cascading rollback of transactions is never required because practical
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no
need to record any read_item operations in the log because these are needed only for
determining cascading rollback.

22.1.6 Transaction Actions That Do Not Affect the Database
In general, a transaction will have actions that do not affect the database, such as
generating and printing messages or reports from information retrieved from the
database. If a transaction fails before completion, we may not want the user to get
these reports, since the transaction has failed to complete. If such erroneous reports
are produced, part of the recovery process would have to inform the user that these
reports are wrong, since the user may take an action that is based on these reports
and that affects the database. Hence, such reports should be generated only after the
transaction reaches its commit point. A common method of dealing with such
actions is to issue the commands that generate the reports but keep them as batch
jobs, which are executed only after the transaction reaches its commit point. If the
transaction fails, the batch jobs are canceled.

22.2 NO-UNDO/REDO Recovery Based
on Deferred Update

The idea behind deferred update is to defer or postpone any actual updates to the
database on disk until the transaction completes its execution successfully and
reaches its commit point.4

During transaction execution, the updates are recorded only in the log and in the
cache buffers. After the transaction reaches its commit point and the log is force-
written to disk, the updates are recorded in the database. If a transaction fails before
reaching its commit point, there is no need to undo any operations because the
transaction has not affected the database on disk in any way. Therefore, only REDO-
type log entries are needed in the log, which include the new value (AFIM) of the
item written by a write operation. The UNDO-type log entries are not needed since
no undoing of operations will be required during recovery. Although this may sim-
plify the recovery process, it cannot be used in practice unless transactions are short
and each transaction changes few items. For other types of transactions, there is the
potential for running out of buffer space because transaction changes must be held

4Hence deferred update can generally be characterized as a no-steal approach.

822 Chapter 22 Database Recovery Techniques

in the cache buffers until the commit point, so many cache buffers will be pinned
and cannot be replaced.

We can state a typical deferred update protocol as follows:

 1. A transaction cannot change the database on disk until it reaches its commit
point; hence all buffers that have been changed by the transaction must be
pinned until the transaction commits (this corresponds to a no-steal policy).

 2. A transaction does not reach its commit point until all its REDO-type log
entries are recorded in the log and the log buffer is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL)
protocol. Because the database is never updated on disk until after the transaction
commits, there is never a need to UNDO any operations. REDO is needed in case the
system fails after a transaction commits but before all its changes are recorded in
the database on disk. In this case, the transaction operations are redone from the
log entries during recovery.

For multiuser systems with concurrency control, the concurrency control and
recovery processes are interrelated. Consider a system in which concurrency con-
trol uses strict two-phase locking, so the locks on written items remain in effect
until the transaction reaches its commit point. After that, the locks can be released.
This ensures strict and serializable schedules. Assuming that [checkpoint] entries are
included in the log, a possible recovery algorithm for this case, which we call RDU_M
(Recovery using Deferred Update in a Multiuser environment), is given next.

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of trans-
actions maintained by the system: the committed transactions T since the last
checkpoint (commit list), and the active transactions T′ (active list). REDO all
the WRITE operations of the committed transactions from the log, in the order
in which they were written into the log. The transactions that are active and did
not commit are effectively canceled and must be resubmitted.

The REDO procedure is defined as follows:

Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP con-
sists of examining its log entry [write_item, T, X, new_value] and setting the value
of item X in the database to new_value, which is the after image (AFIM).

Figure 22.2 illustrates a timeline for a possible schedule of executing transactions.
When the checkpoint was taken at time t1, transaction T1 had committed, whereas
transactions T3 and T4 had not. Before the system crash at time t2, T3 and T2 were
committed but not T4 and T5. According to the RDU_M method, there is no need to
redo the write_item operations of transaction T1—or any transactions committed
before the last checkpoint time t1. The write_item operations of T2 and T3 must be
redone, however, because both transactions reached their commit points after the
last checkpoint. Recall that the log is force-written before committing a transaction.
Transactions T4 and T5 are ignored: They are effectively canceled or rolled back
because none of their write_item operations were recorded in the database on disk
under the deferred update protocol (no-steal policy).

 22.3 Recovery Techniques Based on Immediate Update 823

We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that,
if a data item X has been updated—as indicated in the log entries—more than once
by committed transactions since the last checkpoint, it is only necessary to REDO
the last update of X from the log during recovery because the other updates would
be overwritten by this last REDO. In this case, we start from the end of the log; then,
whenever an item is redone, it is added to a list of redone items. Before REDO is
applied to an item, the list is checked; if the item appears on the list, it is not redone
again, since its latest value has already been recovered.

If a transaction is aborted for any reason (say, by the deadlock detection method), it
is simply resubmitted, since it has not changed the database on disk. A drawback of
the method described here is that it limits the concurrent execution of transactions
because all write-locked items remain locked until the transaction reaches its commit
point. Additionally, it may require excessive buffer space to hold all updated items
until the transactions commit. The method’s main benefit is that transaction opera-
tions never need to be undone, for two reasons:

 1. A transaction does not record any changes in the database on disk until after
it reaches its commit point—that is, until it completes its execution success-
fully. Hence, a transaction is never rolled back because of failure during
transaction execution.

 2. A transaction will never read the value of an item that is written by an
uncommitted transaction, because items remain locked until a transaction
reaches its commit point. Hence, no cascading rollback will occur.

Figure 22.3 shows an example of recovery for a multiuser system that utilizes the
recovery and concurrency control method just described.

22.3 Recovery Techniques Based
on Immediate Update

In these techniques, when a transaction issues an update command, the database on
disk can be updated immediately, without any need to wait for the transaction to
reach its commit point. Notice that it is not a requirement that every update be

System crash TimeCheckpoint

T2

T1

T3

T5

T4

t1 t2

Figure 22.2
An example of a
recovery timeline to
illustrate the effect of
checkpointing.

824 Chapter 22 Database Recovery Techniques

applied immediately to disk; it is just possible that some updates are applied to disk
before the transaction commits.

Provisions must be made for undoing the effect of update operations that have been
applied to the database by a failed transaction. This is accomplished by rolling back
the transaction and undoing the effect of the transaction’s write_item operations.
Therefore, the UNDO-type log entries, which include the old value (BFIM) of the
item, must be stored in the log. Because UNDO can be needed during recovery, these
methods follow a steal strategy for deciding when updated main memory buffers
can be written back to disk (see Section 22.1.3).

Theoretically, we can distinguish two main categories of immediate update algorithms.

 1. If the recovery technique ensures that all updates of a transaction are
recorded in the database on disk before the transaction commits, there is
never a need to REDO any operations of committed transactions. This is
called the UNDO/NO-REDO recovery algorithm. In this method, all updates
by a transaction must be recorded on disk before the transaction commits, so
that REDO is never needed. Hence, this method must utilize the steal/force

(a) T1

read_item(A)
read_item(D)

write_item(D)

[checkpoint]

(b)

read_item(B)
write_item(B)

read_item(D)

write_item(D)

read_item(A)
write_item(A)

read_item(C)

write_item(C)

read_item(B)
write_item(B)

read_item(A)

write_item(A)

[start_transaction,T1]

[start_transaction, T2]

[write_item, T1, D, 20]

[commit, T1]

[commit, T4]

[start_transaction, T4]

[start_transaction, T3]

[write_item, T4, B, 15]

[write_item, T2, B, 12]

[write_item, T4, A, 20]

[write_item, T3, A, 30]

[write_item,T2, D, 25]

T2 and T3 are ignored because they did not reach their commit points.

T4 is redone because its commit point is after the last system checkpoint.

System crash

T2 T3 T4

Figure 22.3
An example of recovery
using deferred update
with concurrent
 transactions. (a) The
READ and WRITE
operations of four
transactions.
(b) System log at the
point of crash.

 22.3 Recovery Techniques Based on Immediate Update 825

strategy for deciding when updated main memory buffers are written back
to disk (see Section 22.1.3).

 2. If the transaction is allowed to commit before all its changes are written to
the database, we have the most general case, known as the UNDO/REDO
recovery algorithm. In this case, the steal/no-force strategy is applied (see
Section 22.1.3). This is also the most complex technique, but the most com-
monly used in practice. We will outline an UNDO/REDO recovery algorithm
and leave it as an exercise for the reader to develop the UNDO/NO-REDO
variation. In Section 22.5, we describe a more practical approach known as
the ARIES recovery technique.

When concurrent execution is permitted, the recovery process again depends on
the protocols used for concurrency control. The procedure RIU_M (Recovery using
Immediate Updates for a Multiuser environment) outlines a recovery algorithm for
concurrent transactions with immediate update (UNDO/REDO recovery). Assume
that the log includes checkpoints and that the concurrency control protocol
produces strict schedules—as, for example, the strict two-phase locking protocol
does. Recall that a strict schedule does not allow a transaction to read or write an
item unless the transaction that wrote the item has committed. However, deadlocks
can occur in strict two-phase locking, thus requiring abort and UNDO of transac-
tions. For a strict schedule, UNDO of an operation requires changing the item back
to its old value (BFIM).

Procedure RIU_M (UNDO/REDO with checkpoints).

 1. Use two lists of transactions maintained by the system: the committed
transactions since the last checkpoint and the active transactions.

 2. Undo all the write_item operations of the active (uncommitted) transac-
tions, using the UNDO procedure. The operations should be undone in
the reverse of the order in which they were written into the log.

 3. Redo all the write_item operations of the committed transactions from
the log, in the order in which they were written into the log, using the
REDO procedure defined earlier.

The UNDO procedure is defined as follows:

Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consists
of examining its log entry [write_item, T, X, old_value, new_value] and setting the
value of item X in the database to old_value, which is the before image (BFIM).
Undoing a number of write_item operations from one or more transactions from
the log must proceed in the reverse order from the order in which the operations
were written in the log.

As we discussed for the NO-UNDO/REDO procedure, step 3 is more efficiently done
by starting from the end of the log and redoing only the last update of each item X.
Whenever an item is redone, it is added to a list of redone items and is not redone
again. A similar procedure can be devised to improve the efficiency of step 2 so
that an item can be undone at most once during recovery. In this case, the earliest
UNDO is applied first by scanning the log in the forward direction (starting from

826 Chapter 22 Database Recovery Techniques

the beginning of the log). Whenever an item is undone, it is added to a list of
undone items and is not undone again.

22.4 Shadow Paging
This recovery scheme does not require the use of a log in a single-user environ-
ment. In a multiuser environment, a log may be needed for the concurrency control
method. Shadow paging considers the database to be made up of a number of fixed-
size disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n
entries5 is constructed, where the ith entry points to the ith database page on disk.
The directory is kept in main memory if it is not too large, and all references—reads
or writes—to database pages on disk go through it. When a transaction begins exe-
cuting, the current directory—whose entries point to the most recent or current
database pages on disk—is copied into a shadow directory. The shadow directory
is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a
write_item operation is performed, a new copy of the modified database page is cre-
ated, but the old copy of that page is not overwritten. Instead, the new page is writ-
ten elsewhere—on some previously unused disk block. The current directory entry
is modified to point to the new disk block, whereas the shadow directory is not
modified and continues to point to the old unmodified disk block. Figure 22.4 illus-
trates the concepts of shadow and current directories. For pages updated by the
transaction, two versions are kept. The old version is referenced by the shadow
directory and the new version by the current directory.

5The directory is similar to the page table maintained by the operating system for each process.

Current directory
(after updating
pages 2, 5)

Database disk
blocks (pages)

Shadow directory
(not updated)

Page 5 (old)

Page 1

Page 4

Page 2 (old)

Page 3

Page 6

Page 2 (new)

Page 5 (new)

1

2

3

4

5

6

1

2

3

4

5

6

Figure 22.4
An example of shadow paging.

 22.5 The ARIES Recovery Algorithm 827

To recover from a failure during transaction execution, it is sufficient to free the
modified database pages and to discard the current directory. The state of the data-
base before transaction execution is available through the shadow directory, and
that state is recovered by reinstating the shadow directory. The database thus is
returned to its state prior to the transaction that was executing when the crash
occurred, and any modified pages are discarded. Committing a transaction corre-
sponds to discarding the previous shadow directory. Since recovery involves nei-
ther undoing nor redoing data items, this technique can be categorized as a
NO-UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must
be incorporated into the shadow paging technique. One disadvantage of shadow pag-
ing is that the updated database pages change location on disk. This makes it difficult
to keep related database pages close together on disk without complex storage man-
agement strategies. Furthermore, if the directory is large, the overhead of writing
shadow directories to disk as transactions commit is significant. A further complica-
tion is how to handle garbage collection when a transaction commits. The old pages
referenced by the shadow directory that have been updated must be released and
added to a list of free pages for future use. These pages are no longer needed after the
transaction commits. Another issue is that the operation to migrate between current
and shadow directories must be implemented as an atomic operation.

22.5 The ARIES Recovery Algorithm
We now describe the ARIES algorithm as an example of a recovery algorithm used
in database systems. It is used in many relational database-related products of IBM.
ARIES uses a steal/no-force approach for writing, and it is based on three concepts:
write-ahead logging, repeating history during redo, and logging changes during
undo. We discussed write-ahead logging in Section 22.1.3. The second concept,
repeating history, means that ARIES will retrace all actions of the database system
prior to the crash to reconstruct the database state when the crash occurred. Trans-
actions that were uncommitted at the time of the crash (active transactions) are
undone. The third concept, logging during undo, will prevent ARIES from repeat-
ing the completed undo operations if a failure occurs during recovery, which causes
a restart of the recovery process.

The ARIES recovery procedure consists of three main steps: analysis, REDO, and
UNDO. The analysis step identifies the dirty (updated) pages in the buffer6 and the
set of transactions active at the time of the crash. The appropriate point in the log
where the REDO operation should start is also determined. The REDO phase actu-
ally reapplies updates from the log to the database. Generally, the REDO operation
is applied only to committed transactions. However, this is not the case in ARIES.

6The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored in
the log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to identify this information
(as discussed later in this section).

828 Chapter 22 Database Recovery Techniques

Certain information in the ARIES log will provide the start point for REDO, from
which REDO operations are applied until the end of the log is reached. Additionally,
information stored by ARIES and in the data pages will allow ARIES to determine
whether the operation to be redone has actually been applied to the database and
therefore does not need to be reapplied. Thus, only the necessary REDO operations
are applied during recovery. Finally, during the UNDO phase, the log is scanned
backward and the operations of transactions that were active at the time of the crash
are undone in reverse order. The information needed for ARIES to accomplish its
recovery procedure includes the log, the Transaction Table, and the Dirty Page
Table. Additionally, checkpointing is used. These tables are maintained by the
transaction manager and written to the log during checkpointing.

In ARIES, every log record has an associated log sequence number (LSN) that is
monotonically increasing and indicates the address of the log record on disk. Each
LSN corresponds to a specific change (action) of some transaction. Also, each data
page will store the LSN of the latest log record corresponding to a change for that
page. A log record is written for any of the following actions: updating a page
(write), committing a transaction (commit), aborting a transaction (abort), undo-
ing an update (undo), and ending a transaction (end). The need for including the
first three actions in the log has been discussed, but the last two need some explana-
tion. When an update is undone, a compensation log record is written in the log so
that the undo does not have to be repeated. When a transaction ends, whether by
committing or aborting, an end log record is written.

Common fields in all log records include the previous LSN for that transaction, the
transaction ID, and the type of log record. The previous LSN is important because
it links the log records (in reverse order) for each transaction. For an update (write)
action, additional fields in the log record include the page ID for the page that con-
tains the item, the length of the updated item, its offset from the beginning of the
page, the before image of the item, and its after image.

In addition to the log, two tables are needed for efficient recovery: the Transaction
Table and the Dirty Page Table, which are maintained by the transaction manager.
When a crash occurs, these tables are rebuilt in the analysis phase of recovery. The
Transaction Table contains an entry for each active transaction, with information
such as the transaction ID, transaction status, and the LSN of the most recent log
record for the transaction. The Dirty Page Table contains an entry for each dirty
page in the DBMS cache, which includes the page ID and the LSN corresponding to
the earliest update to that page.

Checkpointing in ARIES consists of the following: writing a begin_checkpoint
record to the log, writing an end_checkpoint record to the log, and writing the LSN
of the begin_checkpoint record to a special file. This special file is accessed during
recovery to locate the last checkpoint information. With the end_checkpoint record,
the contents of both the Transaction Table and Dirty Page Table are appended to
the end of the log. To reduce the cost, fuzzy checkpointing is used so that the
DBMS can continue to execute transactions during checkpointing (see Sec-
tion 22.1.4). Additionally, the contents of the DBMS cache do not have to be flushed

 22.5 The ARIES Recovery Algorithm 829

to disk during checkpoint, since the Transaction Table and Dirty Page Table—
which are appended to the log on disk—contain the information needed for
 recovery. Note that if a crash occurs during checkpointing, the special file will refer
to the previous checkpoint, which would be used for recovery.

After a crash, the ARIES recovery manager takes over. Information from the
last checkpoint is first accessed through the special file. The analysis phase
starts at the begin_checkpoint record and proceeds to the end of the log. When the
end_checkpoint record is encountered, the Transaction Table and Dirty Page Table
are accessed (recall that these tables were written in the log during checkpointing).
During analysis, the log records being analyzed may cause modifications to these
two tables. For instance, if an end log record was encountered for a transaction T in
the Transaction Table, then the entry for T is deleted from that table. If some other
type of log record is encountered for a transaction T′, then an entry for T′ is inserted
into the Transaction Table, if not already present, and the last LSN field is modified.
If the log record corresponds to a change for page P, then an entry would be made
for page P (if not present in the table) and the associated LSN field would be
 modified. When the analysis phase is complete, the necessary information for
REDO and UNDO has been compiled in the tables.

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES
starts redoing at a point in the log where it knows (for sure) that previous changes
to dirty pages have already been applied to the database on disk. It can determine
this by finding the smallest LSN, M, of all the dirty pages in the Dirty Page Table,
which indicates the log position where ARIES needs to start the REDO phase. Any
changes corresponding to an LSN < M, for redoable transactions, must have already
been propagated to disk or already been overwritten in the buffer; otherwise, those
dirty pages with that LSN would be in the buffer (and the Dirty Page Table). So,
REDO starts at the log record with LSN = M and scans forward to the end of the log.

For each change recorded in the log, the REDO algorithm would verify whether or
not the change has to be reapplied. For example, if a change recorded in the log
pertains to page P that is not in the Dirty Page Table, then this change is already on
disk and does not need to be reapplied. Or, if a change recorded in the log (with
LSN = N, say) pertains to page P and the Dirty Page Table contains an entry for P
with LSN greater than N, then the change is already present. If neither of these two
conditions holds, page P is read from disk and the LSN stored on that page, LSN(P),
is compared with N. If N < LSN(P), then the change has been applied and the page
does not need to be rewritten to disk.

Once the REDO phase is finished, the database is in the exact state that it was in
when the crash occurred. The set of active transactions—called the undo_set—has
been identified in the Transaction Table during the analysis phase. Now, the UNDO
phase proceeds by scanning backward from the end of the log and undoing the
appropriate actions. A compensating log record is written for each action that is
undone. The UNDO reads backward in the log until every action of the set of trans-
actions in the undo_set has been undone. When this is completed, the recovery pro-
cess is finished and normal processing can begin again.

830 Chapter 22 Database Recovery Techniques

Consider the recovery example shown in Figure 22.5. There are three transactions:
T1, T2, and T3. T1 updates page C, T2 updates pages B and C, and T3 updates page A.
Figure 22.5(a) shows the partial contents of the log, and Figure 22.5(b) shows the
contents of the Transaction Table and Dirty Page Table. Now, suppose that a crash
occurs at this point. Since a checkpoint has occurred, the address of the associated
begin_checkpoint record is retrieved, which is location 4. The analysis phase starts
from location 4 until it reaches the end. The end_checkpoint record contains the
Transaction Table and Dirty Page Table in Figure 22.5(b), and the analysis phase
will further reconstruct these tables. When the analysis phase encounters log record 6,
a new entry for transaction T3 is made in the Transaction Table and a new entry for
page A is made in the Dirty Page Table. After log record 8 is analyzed, the status of
transaction T2 is changed to committed in the Transaction Table. Figure 22.5(c)
shows the two tables after the analysis phase.

TRANSACTION TABLE

Last_lsn Status(b)

(c)

(a) Lsn

1

Last_lsn Tran_id Type Page_id Other_information

Transaction_id

TRANSACTION TABLE DIRTY PAGE TABLE

Transaction_id

T1 3

Last_lsn

commit

Status Page_id

C

Lsn

7

T3

T2 8

6 in progress

commit

A

B

6

2

T2

T1

DIRTY PAGE TABLE

Page_id

C

Lsn

1

B 22

3 commit

in progress

8

7

6

5

4

3

2

0

7

2

0

end checkpoint

begin checkpoint

1

0

T1

T2

T1

T3

T2

T2

update

commit

update

update

commit

update B

C

A

C . . .

. . .

. . .

. . .

. . .

. . .

Figure 22.5
An example of recovery in ARIES. (a) The log at point of crash. (b) The Transaction and Dirty Page Tables at time of
checkpoint. (c) The Transaction and Dirty Page Tables after the analysis phase.

 22.6 Recovery in Multidatabase Systems 831

For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO
will start at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7}
corresponding to the updates for pages C, B, A, and C, respectively, are not less
than the LSNs of those pages (as shown in the Dirty Page Table). So those data
pages will be read again and the updates reapplied from the log (assuming the actual
LSNs stored on those data pages are less than the corresponding log entry). At this
point, the REDO phase is finished and the UNDO phase starts. From the Transaction
Table (Figure 22.5(c)), UNDO is applied only to the active transaction T3. The UNDO
phase starts at log entry 6 (the last update for T3) and proceeds backward in the log.
The backward chain of updates for transaction T3 (only log record 6 in this exam-
ple) is followed and undone.

22.6 Recovery in Multidatabase Systems
So far, we have implicitly assumed that a transaction accesses a single database. In
some cases, a single transaction, called a multidatabase transaction, may require
access to multiple databases. These databases may even be stored on different types of
DBMSs; for example, some DBMSs may be relational, whereas others are object-
oriented, hierarchical, or network DBMSs. In such a case, each DBMS involved in the
multidatabase transaction may have its own recovery technique and transaction man-
ager separate from those of the other DBMSs. This situation is somewhat similar to the
case of a distributed database management system (see Chapter 23), where parts of the
database reside at different sites that are connected by a communication network.

To maintain the atomicity of a multidatabase transaction, it is necessary to have a
two-level recovery mechanism. A global recovery manager, or coordinator, is
needed to maintain information needed for recovery, in addition to the local recov-
ery managers and the information they maintain (log, tables). The coordinator usu-
ally follows a protocol called the two-phase commit protocol, whose two phases
can be stated as follows:

 ■ Phase 1. When all participating databases signal the coordinator that the
part of the multidatabase transaction involving each has concluded, the
coordinator sends a message prepare for commit to each participant to get
ready for committing the transaction. Each participating database receiving
that message will force-write all log records and needed information for
local recovery to disk and then send a ready to commit or OK signal to the
coordinator. If the force-writing to disk fails or the local transaction cannot
commit for some reason, the participating database sends a cannot commit
or not OK signal to the coordinator. If the coordinator does not receive a
reply from the database within a certain time out interval, it assumes a not
OK response.

 ■ Phase 2. If all participating databases reply OK, and the coordinator’s vote is
also OK, the transaction is successful, and the coordinator sends a commit
signal for the transaction to the participating databases. Because all the local
effects of the transaction and information needed for local recovery have

832 Chapter 22 Database Recovery Techniques

been recorded in the logs of the participating databases, local recovery from
failure is now possible. Each participating database completes transaction
commit by writing a [commit] entry for the transaction in the log and perma-
nently updating the database if needed. Conversely, if one or more of the
participating databases or the coordinator have a not OK response, the
transaction has failed, and the coordinator sends a message to roll back or
UNDO the local effect of the transaction to each participating database. This
is done by undoing the local transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating data-
bases commit the effect of the transaction or none of them do. In case any of the
participants—or the coordinator—fails, it is always possible to recover to a state
where either the transaction is committed or it is rolled back. A failure during or
before phase 1 usually requires the transaction to be rolled back, whereas a failure
during phase 2 means that a successful transaction can recover and commit.

22.7 Database Backup and Recovery
from Catastrophic Failures

So far, all the techniques we have discussed apply to noncatastrophic failures. A key
assumption has been that the system log is maintained on the disk and is not lost as
a result of the failure. Similarly, the shadow directory must be stored on disk to
allow recovery when shadow paging is used. The recovery techniques we have dis-
cussed use the entries in the system log or the shadow directory to recover from
failure by bringing the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more catastrophic
failures such as disk crashes. The main technique used to handle such crashes is a
database backup, in which the whole database and the log are periodically copied
onto a cheap storage medium such as magnetic tapes or other large capacity offline
storage devices. In case of a catastrophic system failure, the latest backup copy can be
reloaded from the tape to the disk, and the system can be restarted.

Data from critical applications such as banking, insurance, stock market, and other
databases is periodically backed up in its entirety and moved to physically separate
safe locations. Subterranean storage vaults have been used to protect such data
from flood, storm, earthquake, or fire damage. Events like the 9/11 terrorist attack
in New York (in 2001) and the Katrina hurricane disaster in New Orleans (in 2005)
have created a greater awareness of disaster recovery of critical databases.

To avoid losing all the effects of transactions that have been executed since the last
backup, it is customary to back up the system log at more frequent intervals than full
database backup by periodically copying it to magnetic tape. The system log is usu-
ally substantially smaller than the database itself and hence can be backed up more
frequently. Therefore, users do not lose all transactions they have performed since
the last database backup. All committed transactions recorded in the portion of the
system log that has been backed up to tape can have their effect on the database

 22.8 Summary 833

redone. A new log is started after each database backup. Hence, to recover from disk
failure, the database is first recreated on disk from its latest backup copy on tape. Fol-
lowing that, the effects of all the committed transactions whose operations have been
recorded in the backed-up copies of the system log are reconstructed.

22.8 Summary
In this chapter, we discussed the techniques for recovery from transaction failures.
The main goal of recovery is to ensure the atomicity property of a transaction. If a
transaction fails before completing its execution, the recovery mechanism has to
make sure that the transaction has no lasting effects on the database. First in Sec-
tion 22.1 we gave an informal outline for a recovery process, and then we discussed
system concepts for recovery. These included a discussion of caching, in-place
updating versus shadowing, before and after images of a data item, UNDO versus
REDO recovery operations, steal/no-steal and force/no-force policies, system check-
pointing, and the write-ahead logging protocol.

Next we discussed two different approaches to recovery: deferred update (Sec-
tion 22.2) and immediate update (Section 22.3). Deferred update techniques
 postpone any actual updating of the database on disk until a transaction reaches its
commit point. The transaction force-writes the log to disk before recording the
updates in the database. This approach, when used with certain concurrency
 control methods, is designed never to require transaction rollback, and recovery
simply consists of redoing the operations of transactions committed after the last
checkpoint from the log. The disadvantage is that too much buffer space may be
needed, since updates are kept in the buffers and are not applied to disk until a
trans action commits. Deferred update can lead to a recovery algorithm known as
NO-UNDO/REDO. Immediate update techniques may apply changes to the database
on disk before the transaction reaches a successful conclusion. Any changes applied
to the database must first be recorded in the log and force-written to disk so that
these operations can be undone if necessary. We also gave an overview of a recovery
algorithm for immediate update known as UNDO/REDO. Another algorithm,
known as UNDO/NO-REDO, can also be developed for immediate update if all trans-
action actions are recorded in the database before commit.

We discussed the shadow paging technique for recovery in Section 22.4, which
keeps track of old database pages by using a shadow directory. This technique,
which is classified as NO-UNDO/NO-REDO, does not require a log in single-user sys-
tems but still needs the log for multiuser systems. We also presented ARIES in Sec-
tion 22.5, which is a specific recovery scheme used in many of IBM’s relational
database products. Then in Section 22.6 we discussed the two-phase commit proto-
col, which is used for recovery from failures involving multidatabase transactions.
Finally, we discussed recovery from catastrophic failures in Section 22.7, which is
typically done by backing up the database and the log to tape. The log can be backed
up more frequently than the database, and the backup log can be used to redo oper-
ations starting from the last database backup.

834 Chapter 22 Database Recovery Techniques

Review Questions
 22.1. Discuss the different types of transaction failures. What is meant by cata-

strophic failure?

 22.2. Discuss the actions taken by the read_item and write_item operations on a
database.

 22.3. What is the system log used for? What are the typical kinds of entries in a
system log? What are checkpoints, and why are they important? What are
transaction commit points, and why are they important?

 22.4. How are buffering and caching techniques used by the recovery subsystem?

 22.5. What are the before image (BFIM) and after image (AFIM) of a data item?
What is the difference between in-place updating and shadowing, with
respect to their handling of BFIM and AFIM?

 22.6. What are UNDO-type and REDO-type log entries?

 22.7. Describe the write-ahead logging protocol.

 22.8. Identify three typical lists of transactions that are maintained by the recov-
ery subsystem.

 22.9. What is meant by transaction rollback? What is meant by cascading rollback?
Why do practical recovery methods use protocols that do not permit cascad-
ing rollback? Which recovery techniques do not require any rollback?

 22.10. Discuss the UNDO and REDO operations and the recovery techniques that
use each.

 22.11. Discuss the deferred update technique of recovery. What are the advantages and
disadvantages of this technique? Why is it called the NO-UNDO/REDO method?

 22.12. How can recovery handle transaction operations that do not affect the data-
base, such as the printing of reports by a transaction?

 22.13. Discuss the immediate update recovery technique in both single-user and
multiuser environments. What are the advantages and disadvantages of
immediate update?

 22.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO
algorithms for recovery with immediate update? Develop the outline for an
UNDO/NO-REDO algorithm.

 22.15. Describe the shadow paging recovery technique. Under what circumstances
does it not require a log?

 22.16. Describe the three phases of the ARIES recovery method.

 22.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What
information do the Dirty Page Table and Transaction Table contain?
Describe how fuzzy checkpointing is used in ARIES.

 Exercises 835

 22.18. What do the terms steal/no-steal and force/no-force mean with regard to buf-
fer management for transaction processing?

 22.19. Describe the two-phase commit protocol for multidatabase transactions.

 22.20. Discuss how disaster recovery from catastrophic failures is handled.

Exercises
 22.21. Suppose that the system crashes before the [read_item, T3, A] entry is written to

the log in Figure 22.1(b). Will that make any difference in the recovery process?

 22.22. Suppose that the system crashes before the [write_item, T2, D, 25, 26] entry is
written to the log in Figure 22.1(b). Will that make any difference in the
recovery process?

 22.23. Figure 22.6 shows the log corresponding to a particular schedule at the point
of a system crash for four transactions T1, T2, T3, and T4. Suppose that we
use the immediate update protocol with checkpointing. Describe the recov-
ery process from the system crash. Specify which transactions are rolled
back, which operations in the log are redone and which (if any) are undone,
and whether any cascading rollback takes place.

[checkpoint]

[start_transaction, T1]

[start_transaction, T2]

[start_transaction, T3]

[read_item, T1, A]

[read_item, T1, D]

[read_item, T4, D]

[read_item, T2, D]

[read_item, T2, B]

[write_item, T1, D, 20, 25]

[write_item, T2, B, 12, 18]

[read_item, T4, A]

[write_item, T4, D, 25, 15]

[write_item, T3, C, 30, 40]

[write_item, T2, D, 15, 25]

[write_item, T4, A, 30, 20]

[commit, T1]

[commit, T4]

[start_transaction, T4]

System crash

Figure 22.6
A sample schedule and its
corresponding log.

836 Chapter 22 Database Recovery Techniques

 22.24. Suppose that we use the deferred update protocol for the example in Fig-
ure 22.6. Show how the log would be different in the case of deferred update
by removing the unnecessary log entries; then describe the recovery process,
using your modified log. Assume that only REDO operations are applied,
and specify which operations in the log are redone and which are ignored.

 22.25. How does checkpointing in ARIES differ from checkpointing as described
in Section 22.1.4?

 22.26. How are log sequence numbers used by ARIES to reduce the amount of
REDO work needed for recovery? Illustrate with an example using the infor-
mation shown in Figure 22.5. You can make your own assumptions as to
when a page is written to disk.

 22.27. What implications would a no-steal/force buffer management policy have
on checkpointing and recovery?

Choose the correct answer for each of the following multiple-choice questions:

 22.28. Incremental logging with deferred updates implies that the recovery system
must

a. store the old value of the updated item in the log

b. store the new value of the updated item in the log

c. store both the old and new value of the updated item in the log

d. store only the Begin Transaction and Commit Transaction records in the log

 22.29. The write-ahead logging (WAL) protocol simply means that

a. writing of a data item should be done ahead of any logging operation

b. the log record for an operation should be written before the actual data is
written

c. all log records should be written before a new transaction begins execution

d. the log never needs to be written to disk

 22.30. In case of transaction failure under a deferred update incremental logging
scheme, which of the following will be needed?

a. an undo operation

b. a redo operation

c. an undo and redo operation

d. none of the above

 22.31. For incremental logging with immediate updates, a log record for a transac-
tion would contain

a. a transaction name, a data item name, and the old and new value of the item

b. a transaction name, a data item name, and the old value of the item

c. a transaction name, a data item name, and the new value of the item

d. a transaction name and a data item name

 Exercises 837

 22.32. For correct behavior during recovery, undo and redo operations must be

a. commutative

b. associative

c. idempotent

d. distributive

 22.33. When a failure occurs, the log is consulted and each operation is either
undone or redone. This is a problem because

a. searching the entire log is time consuming

b. many redos are unnecessary

c. both (a) and (b)

d. none of the above

 22.34. Using a log-based recovery scheme might improve performance as well as
provide a recovery mechanism by

a. writing the log records to disk when each transaction commits

b. writing the appropriate log records to disk during the transaction’s
execution

c. waiting to write the log records until multiple transactions commit and
writing them as a batch

d. never writing the log records to disk

 22.35. There is a possibility of a cascading rollback when

a. a transaction writes items that have been written only by a committed
transaction

b. a transaction writes an item that is previously written by an uncommitted
transaction

c. a transaction reads an item that is previously written by an uncommitted
transaction

d. both (b) and (c)

 22.36. To cope with media (disk) failures, it is necessary

a. for the DBMS to only execute transactions in a single user environment

b. to keep a redundant copy of the database

c. to never abort a transaction

d. all of the above

 22.37. If the shadowing approach is used for flushing a data item back to disk,
then

a. the item is written to disk only after the transaction commits

b. the item is written to a different location on disk

c. the item is written to disk before the transaction commits

d. the item is written to the same disk location from which it was read

838 Chapter 22 Database Recovery Techniques

Selected Bibliography
The books by Bernstein et al. (1987) and Papadimitriou (1986) are devoted to the
theory and principles of concurrency control and recovery. The book by Gray and
Reuter (1993) is an encyclopedic work on concurrency control, recovery, and other
transaction-processing issues.

Verhofstad (1978) presents a tutorial and survey of recovery techniques in database
systems. Categorizing algorithms based on their UNDO/REDO characteristics is dis-
cussed in Haerder and Reuter (1983) and in Bernstein et al. (1983). Gray (1978)
discusses recovery, along with other system aspects of implementing operating sys-
tems for databases. The shadow paging technique is discussed in Lorie (1977), Ver-
hofstad (1978), and Reuter (1980). Gray et al. (1981) discuss the recovery mechanism
in SYSTEM R. Lockemann and Knutsen (1968), Davies (1973), and Bjork (1973)
are early papers that discuss recovery. Chandy et al. (1975) discuss transaction roll-
back. Lilien and Bhargava (1985) discuss the concept of integrity block and its use
to improve the efficiency of recovery.

Recovery using write-ahead logging is analyzed in Jhingran and Khedkar (1992)
and is used in the ARIES system (Mohan et al., 1992). More recent work on recov-
ery includes compensating transactions (Korth et al., 1990) and main memory
database recovery (Kumar, 1991). The ARIES recovery algorithms (Mohan et al.,
1992) have been successful in practice. Franklin et al. (1992) discusses recovery in
the EXODUS system. Two books by Kumar and Hsu (1998) and Kumar and Song
(1998) discuss recovery in detail and contain descriptions of recovery methods used
in a number of existing relational database products. Examples of page replacement
strategies that are specific for databases are discussed in Chou and DeWitt (1985)
and Pazos et al. (2006).

Distributed Databases, NOSQL
Systems, and Big Data

part 10

This page intentionally left blank

841

23
Distributed Database Concepts

In this chapter, we turn our attention to distributed
databases (DDBs), distributed database management

systems (DDBMSs), and how the client-server architecture is used as a platform for
database application development. Distributed databases bring the advantages of
distributed computing to the database domain. A distributed computing system
consists of a number of processing sites or nodes that are interconnected by a com-
puter network and that cooperate in performing certain assigned tasks. As a general
goal, distributed computing systems partition a big, unmanageable problem into
smaller pieces and solve it efficiently in a coordinated manner. Thus, more comput-
ing power is harnessed to solve a complex task, and the autonomous processing
nodes can be managed independently while they cooperate to provide the needed
functionalities to solve the problem. DDB technology resulted from a merger of two
technologies: database technology and distributed systems technology.

Several distributed database prototype systems were developed in the 1980s and
1990s to address the issues of data distribution, data replication, distributed query
and transaction processing, distributed database metadata management, and other
topics. More recently, many new technologies have emerged that combine distrib-
uted and database technologies. These technologies and systems are being devel-
oped for dealing with the storage, analysis, and mining of the vast amounts of data
that are being produced and collected, and they are referred to generally as big data
technologies. The origins of big data technologies come from distributed systems
and database systems, as well as data mining and machine learning algorithms that
can process these vast amounts of data to extract needed knowledge.

In this chapter, we discuss the concepts that are central to data distribution and the
management of distributed data. Then in the following two chapters, we give an
overview of some of the new technologies that have emerged to manage and process
big data. Chapter 24 discusses the new class of database systems known as NOSQL

chapter 23

842 Chapter 23 Distributed Database Concepts

systems, which focus on providing distributed solutions to manage the vast amounts
of data that are needed in applications such as social media, healthcare, and security,
to name a few. Chapter 25 introduces the concepts and systems being used for pro-
cessing and analysis of big data, such as map-reduce and other distributed process-
ing technologies. We also discuss cloud computing concepts in Chapter 25.

Section 23.1 introduces distributed database management and related concepts.
Issues of distributed database design, involving fragmenting and sharding of data
and distributing it over multiple sites, as well as data replication, are discussed in
Section 23.2. Section 23.3 gives an overview of concurrency control and recovery in
distributed databases. Sections 23.4 and 23.5 introduce distributed transaction pro-
cessing and distributed query processing techniques, respectively. Sections 23.6 and
23.7 introduce different types of distributed database systems and their architec-
tures, including federated and multidatabase systems. The problems of heterogene-
ity and the needs of autonomy in federated database systems are also highlighted.
Section 23.8 discusses catalog management schemes in distributed databases. Sec-
tion 23.9 summarizes the chapter.

For a short introduction to the topic of distributed databases, Sections 23.1 through
23.5 may be covered and the other sections may be omitted.

23.1 Distributed Database Concepts
We can define a distributed database (DDB) as a collection of multiple logically
interrelated databases distributed over a computer network, and a distributed
database management system (DDBMS) as a software system that manages a dis-
tributed database while making the distribution transparent to the user.

23.1.1 What Constitutes a DDB
For a database to be called distributed, the following minimum conditions should
be satisfied:

 ■ Connection of database nodes over a computer network. There are mul-
tiple computers, called sites or nodes. These sites must be connected by an
underlying network to transmit data and commands among sites.

 ■ Logical interrelation of the connected databases. It is essential that the
information in the various database nodes be logically related.

 ■ Possible absence of homogeneity among connected nodes. It is not neces-
sary that all nodes be identical in terms of data, hardware, and software.

The sites may all be located in physical proximity—say, within the same building or a
group of adjacent buildings—and connected via a local area network, or they may be
geographically distributed over large distances and connected via a long-haul or wide
area network. Local area networks typically use wireless hubs or cables, whereas
long-haul networks use telephone lines, cables, wireless communication infrastruc-
tures, or satellites. It is common to have a combination of various types of networks.

 23.1 Distributed Database Concepts 843

Networks may have different topologies that define the direct communication
paths among sites. The type and topology of the network used may have a signifi-
cant impact on the performance and hence on the strategies for distributed query
processing and distributed database design. For high-level architectural issues,
however, it does not matter what type of network is used; what matters is that each
site be able to communicate, directly or indirectly, with every other site. For the
remainder of this chapter, we assume that some type of network exists among
nodes, regardless of any particular topology. We will not address any network-
specific issues, although it is important to understand that for an efficient operation
of a distributed database system (DDBS), network design and performance issues
are critical and are an integral part of the overall solution. The details of the under-
lying network are invisible to the end user.

23.1.2 Transparency
The concept of transparency extends the general idea of hiding implementation
details from end users. A highly transparent system offers a lot of flexibility to the
end user/application developer since it requires little or no awareness of underly-
ing details on their part. In the case of a traditional centralized database, transpar-
ency simply pertains to logical and physical data independence for application
developers. However, in a DDB scenario, the data and software are distributed
over multiple nodes connected by a computer network, so additional types of
transparencies are introduced.

Consider the company database in Figure 5.5 that we have been discussing through-
out the book. The EMPLOYEE, PROJECT, and WORKS_ON tables may be fragmented
horizontally (that is, into sets of rows, as we will discuss in Section 23.2) and stored
with possible replication, as shown in Figure 23.1. The following types of transpar-
encies are possible:

 ■ Data organization transparency (also known as distribution or network
transparency). This refers to freedom for the user from the operational
details of the network and the placement of the data in the distributed sys-
tem. It may be divided into location transparency and naming transparency.
Location transparency refers to the fact that the command used to perform
a task is independent of the location of the data and the location of the node
where the command was issued. Naming transparency implies that once a
name is associated with an object, the named objects can be accessed unam-
biguously without additional specification as to where the data is located.

 ■ Replication transparency. As we show in Figure 23.1, copies of the same
data objects may be stored at multiple sites for better availability, perfor-
mance, and reliability. Replication transparency makes the user unaware of
the existence of these copies.

 ■ Fragmentation transparency. Two types of fragmentation are possible.
Horizontal fragmentation distributes a relation (table) into subrelations
that are subsets of the tuples (rows) in the original relation; this is also known

844 Chapter 23 Distributed Database Concepts

as sharding in the newer big data and cloud computing systems. Vertical
fragmentation distributes a relation into subrelations where each subrelation
is defined by a subset of the columns of the original relation. Fragmentation
transparency makes the user unaware of the existence of fragments.

 ■ Other transparencies include design transparency and execution
 transparency—which refer, respectively, to freedom from knowing how the
distributed database is designed and where a transaction executes.

23.1.3 Availability and Reliability
Reliability and availability are two of the most common potential advantages cited
for distributed databases. Reliability is broadly defined as the probability that a
system is running (not down) at a certain time point, whereas availability is the
probability that the system is continuously available during a time interval. We can
directly relate reliability and availability of the database to the faults, errors, and
failures associated with it. A failure can be described as a deviation of a system’s
behavior from that which is specified in order to ensure correct execution of opera-
tions. Errors constitute that subset of system states that causes the failure. Fault is
the cause of an error.

To construct a system that is reliable, we can adopt several approaches. One com-
mon approach stresses fault tolerance; it recognizes that faults will occur, and it
designs mechanisms that can detect and remove faults before they can result in a

EMPLOYEES

PROJECTS
WORKS_ON

All

All
All

EMPLOYEES

PROJECTS

WORKS_ON

San Francisco
and Los Angeles

San Francisco

San Francisco
employees

EMPLOYEES

PROJECTS

WORKS_ON

Los Angeles

Los Angeles and
San Francisco

Los Angeles
employees

EMPLOYEES

PROJECTS

WORKS_ON

New York

All

New York
employees

EMPLOYEES

PROJECTS

WORKS_ON

Atlanta

Atlanta

Atlanta
employees

Chicago
(Headquarters)

New York

Los Angeles Atlanta

San Francisco

Communications
Network

Figure 23.1
Data distribution and replication among distributed databases.

 23.1 Distributed Database Concepts 845

system failure. Another more stringent approach attempts to ensure that the final
system does not contain any faults. This is done through an exhaustive design pro-
cess followed by extensive quality control and testing. A reliable DDBMS tolerates
failures of underlying components, and it processes user requests as long as data-
base consistency is not violated. A DDBMS recovery manager has to deal with fail-
ures arising from transactions, hardware, and communication networks. Hardware
failures can either be those that result in loss of main memory contents or loss of
secondary storage contents. Network failures occur due to errors associated with
messages and line failures. Message errors can include their loss, corruption, or
out-of-order arrival at destination.

The previous definitions are used in computer systems in general, where there is a
technical distinction between reliability and availability. In most discussions related
to DDB, the term availability is used generally as an umbrella term to cover both
concepts.

23.1.4 Scalability and Partition Tolerance
Scalability determines the extent to which the system can expand its capacity while
continuing to operate without interruption. There are two types of scalability:

 1. Horizontal scalability: This refers to expanding the number of nodes in the
distributed system. As nodes are added to the system, it should be possible
to distribute some of the data and processing loads from existing nodes to
the new nodes.

 2. Vertical scalability: This refers to expanding the capacity of the individual
nodes in the system, such as expanding the storage capacity or the process-
ing power of a node.

As the system expands its number of nodes, it is possible that the network, which
connects the nodes, may have faults that cause the nodes to be partitioned into
groups of nodes. The nodes within each partition are still connected by a subnet-
work, but communication among the partitions is lost. The concept of partition
tolerance states that the system should have the capacity to continue operating
while the network is partitioned.

23.1.5 Autonomy
Autonomy determines the extent to which individual nodes or DBs in a connected
DDB can operate independently. A high degree of autonomy is desirable for
increased flexibility and customized maintenance of an individual node. Autonomy
can be applied to design, communication, and execution. Design autonomy refers
to independence of data model usage and transaction management techniques
among nodes. Communication autonomy determines the extent to which each
node can decide on sharing of information with other nodes. Execution autonomy
refers to independence of users to act as they please.

846 Chapter 23 Distributed Database Concepts

23.1.6 Advantages of Distributed Databases
Some important advantages of DDB are listed below.

 1. Improved ease and flexibility of application development. Developing
and maintaining applications at geographically distributed sites of an
organization is facilitated due to transparency of data distribution and
control.

 2. Increased availability. This is achieved by the isolation of faults to their
site of origin without affecting the other database nodes connected to the
network. When the data and DDBMS software are distributed over many
sites, one site may fail while other sites continue to operate. Only the data
and software that exist at the failed site cannot be accessed. Further
improvement is achieved by judiciously replicating data and software at
more than one site. In a centralized system, failure at a single site makes
the whole system unavailable to all users. In a distributed database, some
of the data may be unreachable, but users may still be able to access other
parts of the database. If the data in the failed site has been replicated at
another site prior to the failure, then the user will not be affected at all. The
ability of the system to survive network partitioning also contributes to
high availability.

 3. Improved performance. A distributed DBMS fragments the database
by keeping the data closer to where it is needed most. Data localization
reduces the contention for CPU and I/O services and simultaneously
reduces access delays involved in wide area networks. When a large
database is distributed over multiple sites, smaller databases exist at
each site. As a result, local queries and transactions accessing data at a
single site have better performance because of the smaller local data-
bases. In addition, each site has a smaller number of transactions exe-
cuting than if all transactions are submitted to a single centralized
database. Moreover, interquery and intraquery parallelism can be
achieved by executing multiple queries at different sites, or by breaking
up a query into a number of subqueries that execute in parallel. This
contributes to improved performance.

 4. Easier expansion via scalability. In a distributed environment, expansion
of the system in terms of adding more data, increasing database sizes, or
adding more nodes is much easier than in centralized (non-distributed)
systems.

The transparencies we discussed in Section 23.1.2 lead to a compromise between
ease of use and the overhead cost of providing transparency. Total transparency
provides the global user with a view of the entire DDBS as if it is a single centralized
system. Transparency is provided as a complement to autonomy, which gives the
users tighter control over local databases. Transparency features may be imple-
mented as a part of the user language, which may translate the required services
into appropriate operations.

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design 847

23.2 Data Fragmentation, Replication,
and Allocation Techniques for Distributed
Database Design

In this section, we discuss techniques that are used to break up the database into
logical units, called fragments, which may be assigned for storage at the various
nodes. We also discuss the use of data replication, which permits certain data to be
stored in more than one site to increase availability and reliability; and the process
of allocating fragments—or replicas of fragments—for storage at the various nodes.
These techniques are used during the process of distributed database design. The
information concerning data fragmentation, allocation, and replication is stored in
a global directory that is accessed by the DDBS applications as needed.

23.2.1 Data Fragmentation and Sharding
In a DDB, decisions must be made regarding which site should be used to store
which portions of the database. For now, we will assume that there is no replication;
that is, each relation—or portion of a relation—is stored at one site only. We dis-
cuss replication and its effects later in this section. We also use the terminology of
relational databases, but similar concepts apply to other data models. We assume
that we are starting with a relational database schema and must decide on how to
distribute the relations over the various sites. To illustrate our discussion, we use
the relational database schema shown in Figure 5.5.

Before we decide on how to distribute the data, we must determine the logical units of
the database that are to be distributed. The simplest logical units are the relations
themselves; that is, each whole relation is to be stored at a particular site. In our exam-
ple, we must decide on a site to store each of the relations EMPLOYEE, DEPARTMENT,
PROJECT, WORKS_ON, and DEPENDENT in Figure 5.5. In many cases, however, a
relation can be divided into smaller logical units for distribution. For example,
consider the company database shown in Figure 5.6, and assume there are three
computer sites—one for each department in the company.1

We may want to store the database information relating to each department at the
computer site for that department. A technique called horizontal fragmentation or
sharding can be used to partition each relation by department.

Horizontal Fragmentation (Sharding). A horizontal fragment or shard of a
relation is a subset of the tuples in that relation. The tuples that belong to the horizontal
fragment can be specified by a condition on one or more attributes of the relation, or
by some other mechanism. Often, only a single attribute is involved in the condition.
For example, we may define three horizontal fragments on the EMPLOYEE relation in
Figure 5.6 with the following conditions: (Dno = 5), (Dno = 4), and (Dno = 1)—each

1Of course, in an actual situation, there will be many more tuples in the relation than those shown in
Figure 5.6.

848 Chapter 23 Distributed Database Concepts

fragment contains the EMPLOYEE tuples working for a particular department. Sim-
ilarly, we may define three horizontal fragments for the PROJECT relation, with the
conditions (Dnum = 5), (Dnum = 4), and (Dnum = 1)—each fragment contains the
PROJECT tuples controlled by a particular department. Horizontal fragmentation
divides a relation horizontally by grouping rows to create subsets of tuples, where
each subset has a certain logical meaning. These fragments can then be assigned to
different sites (nodes) in the distributed system. Derived horizontal fragmentation
applies the partitioning of a primary relation (DEPARTMENT in our example) to
other secondary relations (EMPLOYEE and PROJECT in our example), which are
related to the primary via a foreign key. Thus, related data between the primary and
the secondary relations gets fragmented in the same way.

Vertical Fragmentation. Each site may not need all the attributes of a relation,
which would indicate the need for a different type of fragmentation. Vertical
 fragmentation divides a relation “vertically” by columns. A vertical fragment of a
relation keeps only certain attributes of the relation. For example, we may want to
fragment the EMPLOYEE relation into two vertical fragments. The first fragment
includes personal information—Name, Bdate, Address, and Sex—and the second
includes work-related information—Ssn, Salary, Super_ssn, and Dno. This vertical
fragmentation is not quite proper, because if the two fragments are stored sepa-
rately, we cannot put the original employee tuples back together since there is no
common attribute between the two fragments. It is necessary to include the primary
key or some unique key attribute in every vertical fragment so that the full relation
can be reconstructed from the fragments. Hence, we must add the Ssn attribute to
the personal information fragment.

Notice that each horizontal fragment on a relation R can be specified in the rela-
tional algebra by a σCi

(R) (select) operation. A set of horizontal fragments whose
conditions C1, C2, … , Cn include all the tuples in R—that is, every tuple in R satis-
fies (C1 OR C2 OR … OR Cn)—is called a complete horizontal fragmentation of R.
In many cases a complete horizontal fragmentation is also disjoint; that is, no tuple
in R satisfies (Ci AND Cj) for any i ≠ j. Our two earlier examples of horizontal frag-
mentation for the EMPLOYEE and PROJECT relations were both complete and dis-
joint. To reconstruct the relation R from a complete horizontal fragmentation, we
need to apply the UNION operation to the fragments.

A vertical fragment on a relation R can be specified by a πLi
(R) operation in the

relational algebra. A set of vertical fragments whose projection lists L1, L2, … , Ln
include all the attributes in R but share only the primary key attribute of R is called
a complete vertical fragmentation of R. In this case the projection lists satisfy the
following two conditions:

 ■ L1 ∪ L2 ∪ … ∪ Ln = ATTRS(R)

 ■ Li ∩ Lj = PK(R) for any i ≠ j, where ATTRS(R) is the set of attributes of R and
PK(R) is the primary key of R

To reconstruct the relation R from a complete vertical fragmentation, we apply
the OUTER UNION operation to the vertical fragments (assuming no horizontal

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design 849

fragmentation is used). Notice that we could also apply a FULL OUTER JOIN opera-
tion and get the same result for a complete vertical fragmentation, even when
some horizontal fragmentation may also have been applied. The two vertical frag-
ments of the EMPLOYEE relation with projection lists L1 = {Ssn, Name, Bdate,
Address, Sex} and L2 = {Ssn, Salary, Super_ssn, Dno} constitute a complete vertical
fragmentation of EMPLOYEE.

Two horizontal fragments that are neither complete nor disjoint are those defined on
the EMPLOYEE relation in Figure 5.5 by the conditions (Salary > 50000) and (Dno = 4);
they may not include all EMPLOYEE tuples, and they may include common tuples.
Two vertical fragments that are not complete are those defined by the attribute lists
L1 = {Name, Address} and L2 = {Ssn, Name, Salary}; these lists violate both conditions
of a complete vertical fragmentation.

Mixed (Hybrid) Fragmentation. We can intermix the two types of fragmenta-
tion, yielding a mixed fragmentation. For example, we may combine the horizon-
tal and vertical fragmentations of the EMPLOYEE relation given earlier into a mixed
fragmentation that includes six fragments. In this case, the original relation can be
reconstructed by applying UNION and OUTER UNION (or OUTER JOIN) operations
in the appropriate order. In general, a fragment of a relation R can be specified by a
SELECT-PROJECT combination of operations πL(σC(R)). If C = TRUE (that is, all
tuples are selected) and L ≠ ATTRS(R), we get a vertical fragment, and if C ≠ TRUE and
L = ATTRS(R), we get a horizontal fragment. Finally, if C ≠ TRUE and L ≠ ATTRS(R),
we get a mixed fragment. Notice that a relation can itself be considered a fragment
with C = TRUE and L = ATTRS(R). In the following discussion, the term fragment is
used to refer to a relation or to any of the preceding types of fragments.

A fragmentation schema of a database is a definition of a set of fragments that includes
all attributes and tuples in the database and satisfies the condition that the whole data-
base can be reconstructed from the fragments by applying some sequence of OUTER
UNION (or OUTER JOIN) and UNION operations. It is also sometimes useful—although
not necessary—to have all the fragments be disjoint except for the repetition of pri-
mary keys among vertical (or mixed) fragments. In the latter case, all replication
and distribution of fragments is clearly specified at a subsequent stage, separately
from fragmentation.

An allocation schema describes the allocation of fragments to nodes (sites) of the
DDBS; hence, it is a mapping that specifies for each fragment the site(s) at which it
is stored. If a fragment is stored at more than one site, it is said to be replicated. We
discuss data replication and allocation next.

23.2.2 Data Replication and Allocation
Replication is useful in improving the availability of data. The most extreme case is
replication of the whole database at every site in the distributed system, thus creat-
ing a fully replicated distributed database. This can improve availability remark-
ably because the system can continue to operate as long as at least one site is up. It

850 Chapter 23 Distributed Database Concepts

also improves performance of retrieval (read performance) for global queries
because the results of such queries can be obtained locally from any one site; hence,
a retrieval query can be processed at the local site where it is submitted, if that site
includes a server module. The disadvantage of full replication is that it can slow
down update operations (write performance) drastically, since a single logical
update must be performed on every copy of the database to keep the copies consis-
tent. This is especially true if many copies of the database exist. Full replication
makes the concurrency control and recovery techniques more expensive than they
would be if there was no replication, as we will see in Section 23.3.

The other extreme from full replication involves having no replication—that is,
each fragment is stored at exactly one site. In this case, all fragments must be dis-
joint, except for the repetition of primary keys among vertical (or mixed) frag-
ments. This is also called nonredundant allocation.

Between these two extremes, we have a wide spectrum of partial replication of
the data—that is, some fragments of the database may be replicated whereas oth-
ers may not. The number of copies of each fragment can range from one up to
the total number of sites in the distributed system. A special case of partial repli-
cation is occurring heavily in applications where mobile workers—such as sales
forces, financial planners, and claims adjustors—carry partially replicated data-
bases with them on laptops and PDAs and synchronize them periodically with
the server database. A description of the replication of fragments is sometimes
called a replication schema.

Each fragment—or each copy of a fragment—must be assigned to a particular site in
the distributed system. This process is called data distribution (or data allocation).
The choice of sites and the degree of replication depend on the performance and
availability goals of the system and on the types and frequencies of transactions
submitted at each site. For example, if high availability is required, transactions can
be submitted at any site, and most transactions are retrieval only, a fully replicated
database is a good choice. However, if certain transactions that access particular
parts of the database are mostly submitted at a particular site, the corresponding set
of fragments can be allocated at that site only. Data that is accessed at multiple sites
can be replicated at those sites. If many updates are performed, it may be useful to
limit replication. Finding an optimal or even a good solution to distributed data
allocation is a complex optimization problem.

23.2.3 Example of Fragmentation, Allocation, and Replication
We now consider an example of fragmenting and distributing the company data-
base in Figures 5.5 and 5.6. Suppose that the company has three computer sites—
one for each current department. Sites 2 and 3 are for departments 5 and 4,
respectively. At each of these sites, we expect frequent access to the EMPLOYEE and
PROJECT information for the employees who work in that department and the
projects controlled by that department. Further, we assume that these sites mainly
access the Name, Ssn, Salary, and Super_ssn attributes of EMPLOYEE. Site 1 is used

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design 851

by company headquarters and accesses all employee and project information regu-
larly, in addition to keeping track of DEPENDENT information for insurance purposes.

According to these requirements, the whole database in Figure 5.6 can be stored at
site 1. To determine the fragments to be replicated at sites 2 and 3, first we can
horizontally fragment DEPARTMENT by its key Dnumber. Then we apply derived
fragmentation to the EMPLOYEE, PROJECT, and DEPT_LOCATIONS relations based
on their foreign keys for department number—called Dno, Dnum, and Dnumber,
respectively, in Figure 5.5. We can vertically fragment the resulting EMPLOYEE
fragments to include only the attributes {Name, Ssn, Salary, Super_ssn, Dno}.
 Figure 23.2 shows the mixed fragments EMPD_5 and EMPD_4, which include the
EMPLOYEE tuples satisfying the conditions Dno = 5 and Dno = 4, respectively. The
horizontal fragments of PROJECT, DEPARTMENT, and DEPT_LOCATIONS are
 similarly fragmented by department number. All these fragments—stored at sites
2 and 3—are replicated because they are also stored at headquarters—site 1.

We must now fragment the WORKS_ON relation and decide which fragments of
WORKS_ON to store at sites 2 and 3. We are confronted with the problem that no
attribute of WORKS_ON directly indicates the department to which each tuple
belongs. In fact, each tuple in WORKS_ON relates an employee e to a project P. We
could fragment WORKS_ON based on the department D in which e works or based
on the department D′ that controls P. Fragmentation becomes easy if we have a
constraint stating that D = D′ for all WORKS_ON tuples—that is, if employees can
work only on projects controlled by the department they work for. However, there
is no such constraint in our database in Figure 5.6. For example, the WORKS_ON
tuple <333445555, 10, 10.0> relates an employee who works for department 5 with
a project controlled by department 4. In this case, we could fragment WORKS_ON
based on the department in which the employee works (which is expressed by the
condition C) and then fragment further based on the department that controls the
projects that employee is working on, as shown in Figure 23.3.

In Figure 23.3, the union of fragments G1, G2, and G3 gives all WORKS_ON tuples
for employees who work for department 5. Similarly, the union of fragments G4, G5,
and G6 gives all WORKS_ON tuples for employees who work for department 4. On
the other hand, the union of fragments G1, G4, and G7 gives all WORKS_ON tuples
for projects controlled by department 5. The condition for each of the fragments G1
through G9 is shown in Figure 23.3. The relations that represent M:N relationships,
such as WORKS_ON, often have several possible logical fragmentations. In our distri-
bution in Figure 23.2, we choose to include all fragments that can be joined to either an
EMPLOYEE tuple or a PROJECT tuple at sites 2 and 3. Hence, we place the union of
fragments G1, G2, G3, G4, and G7 at site 2 and the union of fragments G4, G5, G6, G2,
and G8 at site 3. Notice that fragments G2 and G4 are replicated at both sites. This allo-
cation strategy permits the join between the local EMPLOYEE or PROJECT fragments at
site 2 or site 3 and the local WORKS_ON fragment to be performed completely locally.
This clearly demonstrates how complex the problem of database fragmentation and
allocation is for large databases. The Selected Bibliography at the end of this chapter
discusses some of the work done in this area.

852 Chapter 23 Distributed Database Concepts

(a)

(b)

Fname

John B Smith 123456789 30000 333445555 5

Franklin T Wong 333445555 40000 888665555 5

K Narayan 666884444 38000 333445555 5

A English 453453453 25000 333445555 5

Ramesh

Joyce

EMPD_5

Minit Lname Ssn Salary Super_ssn Dno

Data at site 2

Data at site 3

Fname

Alicia J Zelaya 999887777 25000 987654321 4

Jennifer S Wallace 987654321 43000 888665555 4

V Jabbar 987987987 25000 987654321 4Ahmad

EMPD_4

Minit Lname Ssn Salary Super_ssn Dno

Dname

Research 5 333445555 1988-05-22

DEP_5

Dnumber Mgr_ssn Mgr_start_date Dnumber

5 Bellaire

5 Sugarland

5 Houston

DEP_5_LOCS

Location

Dname

Administration 4 987654321 1995-01-01

DEP_4

Dnumber Mgr_ssn Mgr_start_date

Essn

123456789 1

123456789 2

666884444

453453453

453453453

333445555

333445555

333445555

333445555

1

2

2

3

10

20

3

32.5

7.5

20.0

20.0

10.0

10.0

10.0

10.0

40.0

WORKS_ON_5

Pno Hours Pname

Product X 1

Product Y 2

Product Z 3

Bellaire

Sugarland

Houston

PROJS_5

Pnumber Plocation

5

5

5

Dnum

Essn

333445555 10

999887777 30

999887777

987987987

987987987

987654321

987654321

10

30

30

20

10

10.0

30.0

35.0

5.0

20.0

15.0

10.0

WORKS_ON_4

Pno Hours Pname

Computerization 10

New_benefits 30

Stafford

Stafford

PROJS_4

Pnumber Plocation

4

4

Dnum

Dnumber

4 Stafford

DEP_4_LOCS

Location

Figure 23.2
Allocation of fragments to
sites. (a) Relation fragments
at site 2 corresponding to
department 5. (b) Relation
fragments at site 3
 corresponding to
department 4.

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design 853

Essn

123456789 1 32.5

123456789 2 7.5

3 40.0

1 20.0

2 20.0

2 10.0

3 10.0

666884444

453453453

453453453

333445555

333445555

G1

1C = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 5

Pno Hours Essn

333445555 10 10.0

G2

C2 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

333445555 20 10.0

G3

C3 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G4

(b)

(c)

(a)

C4 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 4

Pno Hours Essn

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 5.0

987654321 30 20.0

G5

C5 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

987654321 20 15.0

G6

C6 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G7

C7 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 1

Pno Hours Essn

G8

C8 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

888665555 20 Null

G9

C9 = C and (Pno in (SELECT
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Figure 23.3
Complete and disjoint fragments of the WORKS_ON relation. (a) Fragments of WORKS_ON for employees
working in department 5 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHERE Dno = 5)]). (b) Fragments of
WORKS_ON for employees working in department 4 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHERE
Dno = 4)]). (c) Fragments of WORKS_ON for employees working in department 1 (C = [Essn in (SELECT Ssn
FROM EMPLOYEE WHERE Dno = 1)]).

854 Chapter 23 Distributed Database Concepts

23.3 Overview of Concurrency Control
and Recovery in Distributed Databases

For concurrency control and recovery purposes, numerous problems arise in a dis-
tributed DBMS environment that are not encountered in a centralized DBMS envi-
ronment. These include the following:

 ■ Dealing with multiple copies of the data items. The concurrency control
method is responsible for maintaining consistency among these copies. The
recovery method is responsible for making a copy consistent with other cop-
ies if the site on which the copy is stored fails and recovers later.

 ■ Failure of individual sites. The DDBMS should continue to operate with its
running sites, if possible, when one or more individual sites fail. When a site
recovers, its local database must be brought up-to-date with the rest of the
sites before it rejoins the system.

 ■ Failure of communication links. The system must be able to deal with the
failure of one or more of the communication links that connect the sites. An
extreme case of this problem is that network partitioning may occur. This
breaks up the sites into two or more partitions, where the sites within each
partition can communicate only with one another and not with sites in other
partitions.

 ■ Distributed commit. Problems can arise with committing a transaction
that is accessing databases stored on multiple sites if some sites fail during
the commit process. The two-phase commit protocol (see Section 21.6) is
often used to deal with this problem.

 ■ Distributed deadlock. Deadlock may occur among several sites, so
techniques for dealing with deadlocks must be extended to take this
into account.

Distributed concurrency control and recovery techniques must deal with these
and other problems. In the following subsections, we review some of the tech-
niques that have been suggested to deal with recovery and concurrency control
in DDBMSs.

23.3.1 Distributed Concurrency Control Based
on a Distinguished Copy of a Data Item

To deal with replicated data items in a distributed database, a number of concur-
rency control methods have been proposed that extend the concurrency control
techniques that are used in centralized databases. We discuss these techniques in
the context of extending centralized locking. Similar extensions apply to other con-
currency control techniques. The idea is to designate a particular copy of each data
item as a distinguished copy. The locks for this data item are associated with the
distinguished copy, and all locking and unlocking requests are sent to the site that
contains that copy.

 23.3 Overview of Concurrency Control and Recovery in Distributed Databases 855

A number of different methods are based on this idea, but they differ in their
method of choosing the distinguished copies. In the primary site technique, all
distinguished copies are kept at the same site. A modification of this approach is
the primary site with a backup site. Another approach is the primary copy
method, where the distinguished copies of the various data items can be stored in
different sites. A site that includes a distinguished copy of a data item basically acts
as the coordinator site for concurrency control on that item. We discuss these
techniques next.

Primary Site Technique. In this method, a single primary site is designated to be
the coordinator site for all database items. Hence, all locks are kept at that site, and
all requests for locking or unlocking are sent there. This method is thus an exten-
sion of the centralized locking approach. For example, if all transactions follow the
two-phase locking protocol, serializability is guaranteed. The advantage of this
approach is that it is a simple extension of the centralized approach and thus is not
overly complex. However, it has certain inherent disadvantages. One is that all
locking requests are sent to a single site, possibly overloading that site and causing
a system bottleneck. A second disadvantage is that failure of the primary site para-
lyzes the system, since all locking information is kept at that site. This can limit
system reliability and availability.

Although all locks are accessed at the primary site, the items themselves can be accessed
at any site at which they reside. For example, once a transaction obtains a Read_lock on
a data item from the primary site, it can access any copy of that data item. However,
once a transaction obtains a Write_lock and updates a data item, the DDBMS is respon-
sible for updating all copies of the data item before releasing the lock.

Primary Site with Backup Site. This approach addresses the second disadvan-
tage of the primary site method by designating a second site to be a backup site. All
locking information is maintained at both the primary and the backup sites. In case
of primary site failure, the backup site takes over as the primary site, and a new
backup site is chosen. This simplifies the process of recovery from failure of the
primary site, since the backup site takes over and processing can resume after a new
backup site is chosen and the lock status information is copied to that site. It slows
down the process of acquiring locks, however, because all lock requests and grant-
ing of locks must be recorded at both the primary and the backup sites before a
response is sent to the requesting transaction. The problem of the primary and
backup sites becoming overloaded with requests and slowing down the system
remains undiminished.

Primary Copy Technique. This method attempts to distribute the load of lock
coordination among various sites by having the distinguished copies of different
data items stored at different sites. Failure of one site affects any transactions that
are accessing locks on items whose primary copies reside at that site, but other
transactions are not affected. This method can also use backup sites to enhance reli-
ability and availability.

856 Chapter 23 Distributed Database Concepts

Choosing a New Coordinator Site in Case of Failure. Whenever a coordina-
tor site fails in any of the preceding techniques, the sites that are still running must
choose a new coordinator. In the case of the primary site approach with no backup
site, all executing transactions must be aborted and restarted in a tedious recovery
process. Part of the recovery process involves choosing a new primary site and cre-
ating a lock manager process and a record of all lock information at that site. For
methods that use backup sites, transaction processing is suspended while the
backup site is designated as the new primary site and a new backup site is chosen
and is sent copies of all the locking information from the new primary site.

If a backup site X is about to become the new primary site, X can choose the new
backup site from among the system’s running sites. However, if no backup site
existed, or if both the primary and the backup sites are down, a process called
election can be used to choose the new coordinator site. In this process, any site Y
that attempts to communicate with the coordinator site repeatedly and fails to do so
can assume that the coordinator is down and can start the election process by send-
ing a message to all running sites proposing that Y become the new coordinator. As
soon as Y receives a majority of yes votes, Y can declare that it is the new coordina-
tor. The election algorithm itself is complex, but this is the main idea behind the
election method. The algorithm also resolves any attempt by two or more sites to
become coordinator at the same time. The references in the Selected Bibliography
at the end of this chapter discuss the process in detail.

23.3.2 Distributed Concurrency Control Based on Voting
The concurrency control methods for replicated items discussed earlier all use the
idea of a distinguished copy that maintains the locks for that item. In the voting
method, there is no distinguished copy; rather, a lock request is sent to all sites that
includes a copy of the data item. Each copy maintains its own lock and can grant or
deny the request for it. If a transaction that requests a lock is granted that lock by a
majority of the copies, it holds the lock and informs all copies that it has been
granted the lock. If a transaction does not receive a majority of votes granting it a
lock within a certain time-out period, it cancels its request and informs all sites of
the cancellation.

The voting method is considered a truly distributed concurrency control method,
since the responsibility for a decision resides with all the sites involved. Simulation
studies have shown that voting has higher message traffic among sites than do the
distinguished copy methods. If the algorithm takes into account possible site fail-
ures during the voting process, it becomes extremely complex.

23.3.3 Distributed Recovery
The recovery process in distributed databases is quite involved. We give only a very
brief idea of some of the issues here. In some cases it is difficult even to determine
whether a site is down without exchanging numerous messages with other sites. For

 23.4 Overview of Transaction Management in Distributed Databases 857

example, suppose that site X sends a message to site Y and expects a response from
Y but does not receive it. There are several possible explanations:

 ■ The message was not delivered to Y because of communication failure.

 ■ Site Y is down and could not respond.

 ■ Site Y is running and sent a response, but the response was not delivered.

Without additional information or the sending of additional messages, it is difficult
to determine what actually happened.

Another problem with distributed recovery is distributed commit. When a transac-
tion is updating data at several sites, it cannot commit until it is sure that the effect
of the transaction on every site cannot be lost. This means that every site must first
have recorded the local effects of the transactions permanently in the local site log
on disk. The two-phase commit protocol is often used to ensure the correctness of
distributed commit (see Section 21.6).

23.4 Overview of Transaction Management
in Distributed Databases

The global and local transaction management software modules, along with the
concurrency control and recovery manager of a DDBMS, collectively guarantee the
ACID properties of transactions (see Chapter 20).

An additional component called the global transaction manager is introduced for
supporting distributed transactions. The site where the transaction originated can
temporarily assume the role of global transaction manager and coordinate the exe-
cution of database operations with transaction managers across multiple sites.
Transaction managers export their functionality as an interface to the application
programs. The operations exported by this interface are similar to those covered in
Section 20.2.1, namely BEGIN_TRANSACTION, READ or WRITE, END_TRANSACTION,
COMMIT_TRANSACTION, and ROLLBACK (or ABORT). The manager stores book-
keeping information related to each transaction, such as a unique identifier, origi-
nating site, name, and so on. For READ operations, it returns a local copy if valid and
available. For WRITE operations, it ensures that updates are visible across all sites
containing copies (replicas) of the data item. For ABORT operations, the manager
ensures that no effects of the transaction are reflected in any site of the distributed
database. For COMMIT operations, it ensures that the effects of a write are persistently
recorded on all databases containing copies of the data item. Atomic termination
(COMMIT/ ABORT) of distributed transactions is commonly implemented using the
two-phase commit protocol (see Section 22.6).

The transaction manager passes to the concurrency controller module the database
operations and associated information. The controller is responsible for acquisition
and release of associated locks. If the transaction requires access to a locked
resource, it is blocked until the lock is acquired. Once the lock is acquired, the oper-
ation is sent to the runtime processor, which handles the actual execution of the

858 Chapter 23 Distributed Database Concepts

database operation. Once the operation is completed, locks are released and the
transaction manager is updated with the result of the operation.

23.4.1 Two-Phase Commit Protocol
In Section 22.6, we described the two-phase commit protocol (2PC), which requires
a global recovery manager, or coordinator, to maintain information needed for
recovery, in addition to the local recovery managers and the information they
maintain (log, tables). The two-phase commit protocol has certain drawbacks that
led to the development of the three-phase commit protocol, which we discuss next.

23.4.2 Three-Phase Commit Protocol
The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordi-
nator blocks all participating sites, causing them to wait until the coordinator
recovers. This can cause performance degradation, especially if participants are
holding locks to shared resources. Other types of problems may also occur that
make the outcome of the transaction nondeterministic.

These problems are solved by the three-phase commit (3PC) protocol, which essen-
tially divides the second commit phase into two subphases called prepare-to-commit
and commit. The prepare-to-commit phase is used to communicate the result of
the vote phase to all participants. If all participants vote yes, then the coordinator
instructs them to move into the prepare-to-commit state. The commit subphase is
identical to its two-phase counterpart. Now, if the coordinator crashes during this
subphase, another participant can see the transaction through to completion. It can
simply ask a crashed participant if it received a prepare-to-commit message. If it
did not, then it safely assumes to abort. Thus the state of the protocol can be recov-
ered irrespective of which participant crashes. Also, by limiting the time required
for a transaction to commit or abort to a maximum time-out period, the protocol
ensures that a transaction attempting to commit via 3PC releases locks on time-out.

The main idea is to limit the wait time for participants who have prepared to com-
mit and are waiting for a global commit or abort from the coordinator. When a
participant receives a precommit message, it knows that the rest of the participants
have voted to commit. If a precommit message has not been received, then the par-
ticipant will abort and release all locks.

23.4.3 Operating System Support for Transaction Management
The following are the main benefits of operating system (OS)-supported transaction
management:

 ■ Typically, DBMSs use their own semaphores2 to guarantee mutually exclu-
sive access to shared resources. Since these semaphores are implemented in

2Semaphores are data structures used for synchronized and exclusive access to shared resources for
preventing race conditions in a parallel computing system.

 23.5 Query Processing and Optimization in Distributed Databases 859

user space at the level of the DBMS application software, the OS has no
knowledge about them. Hence if the OS deactivates a DBMS process hold-
ing a lock, other DBMS processes wanting this locked resource get blocked.
Such a situation can cause serious performance degradation. OS-level
knowledge of semaphores can help eliminate such situations.

 ■ Specialized hardware support for locking can be exploited to reduce associ-
ated costs. This can be of great importance, since locking is one of the most
common DBMS operations.

 ■ Providing a set of common transaction support operations though the kernel
allows application developers to focus on adding new features to their prod-
ucts as opposed to reimplementing the common functionality for each appli-
cation. For example, if different DDBMSs are to coexist on the same machine
and they chose the two-phase commit protocol, then it is more beneficial to
have this protocol implemented as part of the kernel so that the DDBMS
developers can focus more on adding new features to their products.

23.5 Query Processing and Optimization in
Distributed Databases

Now we give an overview of how a DDBMS processes and optimizes a query. First
we discuss the steps involved in query processing and then elaborate on the commu-
nication costs of processing a distributed query. Then we discuss a special operation,
called a semijoin, which is used to optimize some types of queries in a DDBMS. A
detailed discussion about optimization algorithms is beyond the scope of this text.
We attempt to illustrate optimization principles using suitable examples.3

23.5.1 Distributed Query Processing
A distributed database query is processed in stages as follows:

 1. Query Mapping. The input query on distributed data is specified formally
using a query language. It is then translated into an algebraic query on global
relations. This translation is done by referring to the global conceptual
schema and does not take into account the actual distribution and replica-
tion of data. Hence, this translation is largely identical to the one performed
in a centralized DBMS. It is first normalized, analyzed for semantic errors,
simplified, and finally restructured into an algebraic query.

 2. Localization. In a distributed database, fragmentation results in relations
being stored in separate sites, with some fragments possibly being repli-
cated. This stage maps the distributed query on the global schema to sepa-
rate queries on individual fragments using data distribution and replication
information.

3For a detailed discussion of optimization algorithms, see Ozsu and Valduriez (1999).

860 Chapter 23 Distributed Database Concepts

 3. Global Query Optimization. Optimization consists of selecting a strategy
from a list of candidates that is closest to optimal. A list of candidate queries
can be obtained by permuting the ordering of operations within a fragment
query generated by the previous stage. Time is the preferred unit for mea-
suring cost. The total cost is a weighted combination of costs such as CPU
cost, I/O costs, and communication costs. Since DDBs are connected by a
network, often the communication costs over the network are the most sig-
nificant. This is especially true when the sites are connected through a wide
area network (WAN).

 4. Local Query Optimization. This stage is common to all sites in the DDB.
The techniques are similar to those used in centralized systems.

The first three stages discussed above are performed at a central control site,
whereas the last stage is performed locally.

23.5.2 Data Transfer Costs of Distributed Query Processing
We discussed the issues involved in processing and optimizing a query in a central-
ized DBMS in Chapter 19. In a distributed system, several additional factors further
complicate query processing. The first is the cost of transferring data over the net-
work. This data includes intermediate files that are transferred to other sites for
further processing, as well as the final result files that may have to be transferred to
the site where the query result is needed. Although these costs may not be very high
if the sites are connected via a high-performance local area network, they become
significant in other types of networks. Hence, DDBMS query optimization algo-
rithms consider the goal of reducing the amount of data transfer as an optimization
criterion in choosing a distributed query execution strategy.

We illustrate this with two simple sample queries. Suppose that the EMPLOYEE and
DEPARTMENT relations in Figure 3.5 are distributed at two sites as shown in Fig-
ure 23.4. We will assume in this example that neither relation is fragmented. Accord-
ing to Figure 23.4, the size of the EMPLOYEE relation is 100 * 10,000 = 106 bytes, and
the size of the DEPARTMENT relation is 35 * 100 = 3,500 bytes. Consider the query Q:
For each employee, retrieve the employee name and the name of the department for
which the employee works. This can be stated as follows in the relational algebra:

Q: πFname,Lname,Dname(EMPLOYEE Dno=Dnumber DEPARTMENT)

The result of this query will include 10,000 records, assuming that every employee
is related to a department. Suppose that each record in the query result is 40 bytes
long. The query is submitted at a distinct site 3, which is called the result site
because the query result is needed there. Neither the EMPLOYEE nor the
 DEPARTMENT relations reside at site 3. There are three simple strategies for execut-
ing this distributed query:

 1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =
1,003,500 bytes must be transferred.

 23.5 Query Processing and Optimization in Distributed Databases 861

 2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send
the result to site 3. The size of the query result is 40 * 10,000 = 400,000 bytes,
so 400,000 + 1,000,000 = 1,400,000 bytes must be transferred.

 3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and
send the result to site 3. In this case, 400,000 + 3,500 = 403,500 bytes must be
transferred.

If minimizing the amount of data transfer is our optimization criterion, we should
choose strategy 3. Now consider another query Q′: For each department, retrieve the
department name and the name of the department manager. This can be stated as
follows in the relational algebra:

Q′: πFname,Lname,Dname(DEPARTMENT Mgr_ssn=Ssn EMPLOYEE)

Again, suppose that the query is submitted at site 3. The same three strategies for
executing query Q apply to Q′, except that the result of Q′ includes only 100 records,
assuming that each department has a manager:

 1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =
1,003,500 bytes must be transferred.

 2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send
the result to site 3. The size of the query result is 40 * 100 = 4,000 bytes, so
4,000 + 1,000,000 = 1,004,000 bytes must be transferred.

 3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and
send the result to site 3. In this case, 4,000 + 3,500 = 7,500 bytes must be
transferred.

Again, we would choose strategy 3—this time by an overwhelming margin over
strategies 1 and 2. The preceding three strategies are the most obvious ones for the

Fname

EMPLOYEE

Site 1:

10,000 records
each record is 100 bytes long
Ssn field is 9 bytes long
Dno field is 4 bytes long

Site 2:

Minit Lname Ssn Salary Super_ssn DnoBdate Address Sex

Dname

DEPARTMENT

Dnumber Mgr_ssn Mgr_start_date

Fname field is 15 bytes long
Lname field is 15 bytes long

100 records
each record is 35 bytes long
Dnumber field is 4 bytes long
Mgr_ssn field is 9 bytes long

Dname field is 10 bytes long

Figure 23.4
Example to illustrate
volume of data
transferred.

862 Chapter 23 Distributed Database Concepts

case where the result site (site 3) is different from all the sites that contain files
involved in the query (sites 1 and 2). However, suppose that the result site is site 2;
then we have two simple strategies:

 1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the
result to the user at site 2. Here, the same number of bytes—1,000,000—
must be transferred for both Q and Q′.

 2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, and
send the result back to site 2. In this case 400,000 + 3,500 = 403,500 bytes
must be transferred for Q and 4,000 + 3,500 = 7,500 bytes for Q′.

A more complex strategy, which sometimes works better than these simple strate-
gies, uses an operation called semijoin. We introduce this operation and discuss
distributed execution using semijoins next.

23.5.3 Distributed Query Processing Using Semijoin
The idea behind distributed query processing using the semijoin operation is to
reduce the number of tuples in a relation before transferring it to another site.
Intuitively, the idea is to send the joining column of one relation R to the site where
the other relation S is located; this column is then joined with S. Following that,
the join attributes, along with the attributes required in the result, are projected
out and shipped back to the original site and joined with R. Hence, only the join-
ing column of R is transferred in one direction, and a subset of S with no extrane-
ous tuples or attributes is transferred in the other direction. If only a small fraction
of the tuples in S participate in the join, this can be an efficient solution to mini-
mizing data transfer.

To illustrate this, consider the following strategy for executing Q or Q′:

 1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site 1.
For Q, we transfer F = πDnumber(DEPARTMENT), whose size is 4 * 100 = 400
bytes, whereas for Q′, we transfer F′ = πMgr_ssn(DEPARTMENT), whose size is
9 * 100 = 900 bytes.

 2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer
the required attributes from the resulting file to site 2. For Q, we transfer
R = πDno, Fname, Lname(F Dnumber=Dno EMPLOYEE), whose size is 34 * 10,000 =
340,000 bytes, whereas for Q′, we transfer R′ = πMgr_ssn, Fname, Lname
(F′ Mgr_ssn=Ssn EMPLOYEE), whose size is 39 * 100 = 3,900 bytes.

 3. Execute the query by joining the transferred file R or R′ with DEPARTMENT,
and present the result to the user at site 2.

Using this strategy, we transfer 340,400 bytes for Q and 4,800 bytes for Q′. We lim-
ited the EMPLOYEE attributes and tuples transmitted to site 2 in step 2 to only those
that will actually be joined with a DEPARTMENT tuple in step 3. For query Q, this
turned out to include all EMPLOYEE tuples, so little improvement was achieved.
However, for Q′ only 100 out of the 10,000 EMPLOYEE tuples were needed.

 23.5 Query Processing and Optimization in Distributed Databases 863

The semijoin operation was devised to formalize this strategy. A semijoin operation
R A=B S, where A and B are domain-compatible attributes of R and S, respectively,
produces the same result as the relational algebra expression πR(R A=B S). In a dis-
tributed environment where R and S reside at different sites, the semijoin is typically
implemented by first transferring F = πB(S) to the site where R resides and then join-
ing F with R, thus leading to the strategy discussed here.

Notice that the semijoin operation is not commutative; that is,

R S ≠S R

23.5.4 Query and Update Decomposition
In a DDBMS with no distribution transparency, the user phrases a query directly in
terms of specific fragments. For example, consider another query Q: Retrieve the
names and hours per week for each employee who works on some project controlled
by department 5, which is specified on the distributed database where the relations
at sites 2 and 3 are shown in Figure 23.2, and those at site 1 are shown in Fig-
ure 5.6, as in our earlier example. A user who submits such a query must specify
whether it references the PROJS_5 and WORKS_ON_5 relations at site 2 (Fig-
ure 23.2) or the PROJECT and WORKS_ON relations at site 1 (Figure 5.6). The user
must also maintain consistency of replicated data items when updating a DDBMS
with no replication transparency.

On the other hand, a DDBMS that supports full distribution, fragmentation, and
replication transparency allows the user to specify a query or update request on
the schema in Figure 5.5 just as though the DBMS were centralized. For updates,
the DDBMS is responsible for maintaining consistency among replicated items
by using one of the distributed concurrency control algorithms discussed in
 Section 23.3. For queries, a query decomposition module must break up or
 decompose a query into subqueries that can be executed at the individual sites.
Additionally, a strategy for combining the results of the subqueries to form the
query result must be generated. Whenever the DDBMS determines that an item
referenced in the query is replicated, it must choose or materialize a particular
replica during query execution.

To determine which replicas include the data items referenced in a query, the
DDBMS refers to the fragmentation, replication, and distribution information
stored in the DDBMS catalog. For vertical fragmentation, the attribute list for
each fragment is kept in the catalog. For horizontal fragmentation, a condition,
sometimes called a guard, is kept for each fragment. This is basically a selection
condition that specifies which tuples exist in the fragment; it is called a guard
because only tuples that satisfy this condition are permitted to be stored in the
fragment. For mixed fragments, both the attribute list and the guard condition
are kept in the catalog.

In our earlier example, the guard conditions for fragments at site 1 (Figure 5.6) are
TRUE (all tuples), and the attribute lists are * (all attributes). For the fragments

864 Chapter 23 Distributed Database Concepts

shown in Figure 23.2, we have the guard conditions and attribute lists shown in
Figure 23.5. When the DDBMS decomposes an update request, it can determine
which fragments must be updated by examining their guard conditions. For exam-
ple, a user request to insert a new EMPLOYEE tuple <‘Alex’, ‘B’, ‘Coleman’,
‘345671239’, ‘22-APR-64’, ‘3306 Sandstone, Houston, TX’, M, 33000, ‘987654321’,
4> would be decomposed by the DDBMS into two insert requests: the first inserts
the preceding tuple in the EMPLOYEE fragment at site 1, and the second inserts the
projected tuple <‘Alex’, ‘B’, ‘Coleman’, ‘345671239’, 33000, ‘987654321’, 4> in the
EMPD4 fragment at site 3.

For query decomposition, the DDBMS can determine which fragments may contain
the required tuples by comparing the query condition with the guard conditions. For

Figure 23.5
Guard conditions and
attributes lists for
fragments.
(a) Site 2 fragments.
(b) Site 3 fragments.

(a) EMPD5
 attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno
 guard condition: Dno = 5
 DEP5
 attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
 guard condition: Dnumber = 5
 DEP5_LOCS
 attribute list: * (all attributes Dnumber, Location)
 guard condition: Dnumber = 5
 PROJS5
 attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
 guard condition: Dnum = 5
 WORKS_ON5
 attribute list: * (all attributes Essn, Pno,Hours)
 guard condition: Essn IN (πSsn (EMPD5)) OR Pno IN (πPnumber (PROJS5))

(b) EMPD4
 attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno
 guard condition: Dno = 4
 DEP4
 attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
 guard condition: Dnumber = 4
 DEP4_LOCS
 attribute list: * (all attributes Dnumber, Location)
 guard condition: Dnumber = 4
 PROJS4
 attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
 guard condition: Dnum = 4
 WORKS_ON4
 attribute list: * (all attributes Essn, Pno, Hours)
 guard condition: Essn IN (πSsn (EMPD4))
 OR Pno IN (πPnumber (PROJS4))

 23.6 Types of Distributed Database Systems 865

example, consider the query Q: Retrieve the names and hours per week for each
employee who works on some project controlled by department 5. This can be speci-
fied in SQL on the schema in Figure 5.5 as follows:

Q: SELECT Fname, Lname, Hours
 FROM EMPLOYEE, PROJECT, WORKS_ON
 WHERE Dnum=5 AND Pnumber=Pno AND Essn=Ssn;

Suppose that the query is submitted at site 2, which is where the query result will be
needed. The DDBMS can determine from the guard condition on PROJS5 and
WORKS_ON5 that all tuples satisfying the conditions (Dnum = 5 AND Pnumber = Pno)
reside at site 2. Hence, it may decompose the query into the following relational alge-
bra subqueries:

T1 ← πEssn(PROJS5 Pnumber=PnoWORKS_ON5)

T2 ← πEssn, Fname, Lname(T1 Essn=SsnEMPLOYEE)

RESULT ← πFname, Lname, Hours(T2* WORKS_ON5)

This decomposition can be used to execute the query by using a semijoin strategy.
The DDBMS knows from the guard conditions that PROJS5 contains exactly those
tuples satisfying (Dnum = 5) and that WORKS_ON5 contains all tuples to be joined
with PROJS5; hence, subquery T1 can be executed at site 2, and the projected column
Essn can be sent to site 1. Subquery T2 can then be executed at site 1, and the result
can be sent back to site 2, where the final query result is calculated and displayed to
the user. An alternative strategy would be to send the query Q itself to site 1, which
includes all the database tuples, where it would be executed locally and from which
the result would be sent back to site 2. The query optimizer would estimate the costs
of both strategies and would choose the one with the lower cost estimate.

23.6 Types of Distributed Database Systems
The term distributed database management system can describe various systems
that differ from one another in many respects. The main thing that all such systems
have in common is the fact that data and software are distributed over multiple sites
connected by some form of communication network. In this section, we discuss a
number of types of DDBMSs and the criteria and factors that make some of these
systems different.

The first factor we consider is the degree of homogeneity of the DDBMS software. If
all servers (or individual local DBMSs) use identical software and all users (clients) use
identical software, the DDBMS is called homogeneous; otherwise, it is called hetero-
geneous. Another factor related to the degree of homogeneity is the degree of local
autonomy. If there is no provision for the local site to function as a standalone DBMS,
then the system has no local autonomy. On the other hand, if direct access by local
transactions to a server is permitted, the system has some degree of local autonomy.

Figure 23.6 shows classification of DDBMS alternatives along orthogonal axes of
distribution, autonomy, and heterogeneity. For a centralized database, there is

866 Chapter 23 Distributed Database Concepts

complete autonomy but a total lack of distribution and heterogeneity (point A in
the figure). We see that the degree of local autonomy provides further ground for
classification into federated and multidatabase systems. At one extreme of the
autonomy spectrum, we have a DDBMS that looks like a centralized DBMS to the
user, with zero autonomy (point B). A single conceptual schema exists, and all
access to the system is obtained through a site that is part of the DDBMS—which
means that no local autonomy exists. Along the autonomy axis we encounter two
types of DDBMSs called federated database system (point C) and multidatabase
system (point D). In such systems, each server is an independent and autonomous
centralized DBMS that has its own local users, local transactions, and DBA, and
hence has a very high degree of local autonomy. The term federated database
 system (FDBS) is used when there is some global view or schema of the federation
of databases that is shared by the applications (point C). On the other hand, a
 multidatabase system has full local autonomy in that it does not have a global
schema but interactively constructs one as needed by the application (point D).
Both systems are hybrids between distributed and centralized systems, and the
distinction we made between them is not strictly followed. We will refer to them as
FDBSs in a generic sense. Point D in the diagram may also stand for a system with
full local autonomy and full heterogeneity—this could be a peer-to-peer database
system. In a heterogeneous FDBS, one server may be a relational DBMS, another a
network DBMS (such as Computer Associates’ IDMS or HP’S IMAGE/3000), and

B

Distribution

Heterogeneity

Legend:

A: Traditional centralized database
 systems

B: Pure distributed database systems

C: Federated database systems

D: Multidatabase or peer-to-peer
 database systems

C D

A
Autonomy

Figure 23.6
Classification
of distributed
databases.

 23.6 Types of Distributed Database Systems 867

a third an object DBMS (such as Object Design’s ObjectStore) or hierarchical
DBMS (such as IBM’s IMS); in such a case, it is necessary to have a canonical system
 language and to include language translators to translate subqueries from the
canonical language to the language of each server.

We briefly discuss the issues affecting the design of FDBSs next.

23.6.1 Federated Database Management Systems Issues
The type of heterogeneity present in FDBSs may arise from several sources. We
discuss these sources first and then point out how the different types of autonomies
contribute to a semantic heterogeneity that must be resolved in a heterogeneous
FDBS.

 ■ Differences in data models. Databases in an organization come from a vari-
ety of data models, including the so-called legacy models (hierarchical and
network), the relational data model, the object data model, and even files.
The modeling capabilities of the models vary. Hence, to deal with them uni-
formly via a single global schema or to process them in a single language is
challenging. Even if two databases are both from the RDBMS environment,
the same information may be represented as an attribute name, as a relation
name, or as a value in different databases. This calls for an intelligent query-
processing mechanism that can relate information based on metadata.

 ■ Differences in constraints. Constraint facilities for specification and imple-
mentation vary from system to system. There are comparable features that
must be reconciled in the construction of a global schema. For example, the
relationships from ER models are represented as referential integrity con-
straints in the relational model. Triggers may have to be used to implement
certain constraints in the relational model. The global schema must also deal
with potential conflicts among constraints.

 ■ Differences in query languages. Even with the same data model, the lan-
guages and their versions vary. For example, SQL has multiple versions like
SQL-89, SQL-92, SQL-99, and SQL:2008, and each system has its own set of
data types, comparison operators, string manipulation features, and so on.

Semantic Heterogeneity. Semantic heterogeneity occurs when there are differ-
ences in the meaning, interpretation, and intended use of the same or related data.
Semantic heterogeneity among component database systems (DBSs) creates the
biggest hurdle in designing global schemas of heterogeneous databases. The design
autonomy of component DBSs refers to their freedom of choosing the following
design parameters; the design parameters in turn affect the eventual complexity of
the FDBS:

 ■ The universe of discourse from which the data is drawn. For example, for
two customer accounts, databases in the federation may be from the United
States and Japan and have entirely different sets of attributes about customer
accounts required by the accounting practices. Currency rate fluctuations

868 Chapter 23 Distributed Database Concepts

would also present a problem. Hence, relations in these two databases that
have identical names—CUSTOMER or ACCOUNT—may have some common
and some entirely distinct information.

 ■ Representation and naming. The representation and naming of data ele-
ments and the structure of the data model may be prespecified for each local
database.

 ■ The understanding, meaning, and subjective interpretation of data. This
is a chief contributor to semantic heterogeneity.

 ■ Transaction and policy constraints. These deal with serializability criteria,
compensating transactions, and other transaction policies.

 ■ Derivation of summaries. Aggregation, summarization, and other data-
processing features and operations supported by the system.

The above problems related to semantic heterogeneity are being faced by all major
multinational and governmental organizations in all application areas. In today’s
commercial environment, most enterprises are resorting to heterogeneous FDBSs,
having heavily invested in the development of individual database systems using
diverse data models on different platforms over the last 20 to 30 years. Enterprises
are using various forms of software—typically called the middleware; or Web-
based packages called application servers (for example, WebLogic or WebSphere);
and even generic systems, called enterprise resource planning (ERP) systems (for
example, SAP, J. D. Edwards ERP)—to manage the transport of queries and trans-
actions from the global application to individual databases (with possible additional
processing for business rules) and the data from the heterogeneous database servers
to the global application. Detailed discussion of these types of software systems is
outside the scope of this text.

Just as providing the ultimate transparency is the goal of any distributed database
architecture, local component databases strive to preserve autonomy.
 Communication autonomy of a component DBS refers to its ability to decide
whether to communicate with another component DBS. Execution autonomy
refers to the ability of a component DBS to execute local operations without inter-
ference from external operations by other component DBSs and its ability to decide
the order in which to execute them. The association autonomy of a component
DBS implies that it has the ability to decide whether and how much to share its
functionality (operations it supports) and resources (data it manages) with other
component DBSs. The major challenge of designing FDBSs is to let component
DBSs interoperate while still providing the above types of autonomies to them.

23.7 Distributed Database Architectures
In this section, we first briefly point out the distinction between parallel and distrib-
uted database architectures. Although both are prevalent in industry today, there are
various manifestations of the distributed architectures that are continuously evolv-
ing among large enterprises. The parallel architecture is more common in high-per-

 23.7 Distributed Database Architectures 869

formance computing, where there is a need for multiprocessor architectures to cope
with the volume of data undergoing transaction processing and warehousing
 applications. We then introduce a generic architecture of a distributed database.
This is followed by discussions on the architecture of three-tier client/server and
federated database systems.

23.7.1 Parallel versus Distributed Architectures
There are two main types of multiprocessor system architectures that are com-
monplace:

 ■ Shared memory (tightly coupled) architecture. Multiple processors share
secondary (disk) storage and also share primary memory.

 ■ Shared disk (loosely coupled) architecture. Multiple processors share sec-
ondary (disk) storage but each has their own primary memory.

These architectures enable processors to communicate without the overhead of
exchanging messages over a network.4 Database management systems developed
using the above types of architectures are termed parallel database management
systems rather than DDBMSs, since they utilize parallel processor technology.
Another type of multiprocessor architecture is called shared-nothing architecture.
In this architecture, every processor has its own primary and secondary (disk)
memory, no common memory exists, and the processors communicate over a high-
speed interconnection network (bus or switch). Although the shared-nothing
architecture resembles a distributed database computing environment, major dif-
ferences exist in the mode of operation. In shared-nothing multiprocessor systems,
there is symmetry and homogeneity of nodes; this is not true of the distributed
database environment, where heterogeneity of hardware and operating system at
each node is very common. Shared-nothing architecture is also considered as an
environment for parallel databases. Figure 23.7(a) illustrates a parallel database
(shared nothing), whereas Figure 23.7(b) illustrates a centralized database with dis-
tributed access and Figure 23.7(c) shows a pure distributed database. We will not
expand on parallel architectures and related data management issues here.

23.7.2 General Architecture of Pure Distributed Databases
In this section, we discuss both the logical and component architectural models of a
DDB. In Figure 23.8, which describes the generic schema architecture of a DDB, the
enterprise is presented with a consistent, unified view showing the logical structure
of underlying data across all nodes. This view is represented by the global concep-
tual schema (GCS), which provides network transparency (see Section 23.1.2). To
accommodate potential heterogeneity in the DDB, each node is shown as having its
own local internal schema (LIS) based on physical organization details at that

4If both primary and secondary memories are shared, the architecture is also known as shared- every-

thing architecture.

870 Chapter 23 Distributed Database Concepts

 particular site. The logical organization of data at each site is specified by the local
conceptual schema (LCS). The GCS, LCS, and their underlying mappings provide
the fragmentation and replication transparency discussed in Section 23.1.2. Fig-
ure 23.8 shows the component architecture of a DDB. It is an extension of its cen-
tralized counterpart (Figure 2.3) in Chapter 2. For the sake of simplicity, common

(a)

(b)

Switch

CPU

Computer System 1

Memory

DB CPU

Computer System 2

Memory

DB

CPU

Memory

DB

Computer System n

Central Site
(Chicago)

Site
(New York)

Site
(Los Angeles)

Site
(Atlanta)

Site
(San Francisco)

DB1 DB2

Communications
Network

(c)
Site 5

Site 1

Site 2

Site 4

Site 3

Communications
Network

Figure 23.7
Some different database system architectures. (a) Shared-nothing architecture. (b) A networked architecture with a
centralized database at one of the sites. (c) A truly distributed database architecture.

 23.7 Distributed Database Architectures 871

elements are not shown here. The global query compiler references the global
 conceptual schema from the global system catalog to verify and impose defined
constraints. The global query optimizer references both global and local conceptual
schemas and generates optimized local queries from global queries. It evaluates all
candidate strategies using a cost function that estimates cost based on response
time (CPU, I/O, and network latencies) and estimated sizes of intermediate results.
The latter is particularly important in queries involving joins. Having computed the
cost for each candidate, the optimizer selects the candidate with the minimum cost
for execution. Each local DBMS would have its local query optimizer, transaction
manager, and execution engines as well as the local system catalog, which houses the
local schemas. The global transaction manager is responsible for coordinating the
execution across multiple sites in conjunction with the local transaction manager at
those sites.

23.7.3 Federated Database Schema Architecture
Typical five-level schema architecture to support global applications in the FDBS
environment is shown in Figure 23.9. In this architecture, the local schema is the

User

Stored
Data

Global Conceptual Schema (GCS)

External
View

User

External
View

Local Conceptual Schema (LCS) Local Conceptual Schema (LCS)

Local Internal Schema (LIS) Local Internal Schema (LIS)

Stored
Data

Site 1 Site nSites 2 to n–1

Figure 23.8
Schema architecture of
distributed databases.

872 Chapter 23 Distributed Database Concepts

conceptual schema (full database definition) of a component database, and the
component schema is derived by translating the local schema into a canonical data
model or common data model (CDM) for the FDBS. Schema translation from the
local schema to the component schema is accompanied by generating mappings to
transform commands on a component schema into commands on the correspond-
ing local schema. The export schema represents the subset of a component schema
that is available to the FDBS. The federated schema is the global schema or view,
which is the result of integrating all the shareable export schemas. The external
schemas define the schema for a user group or an application, as in the three-level
schema architecture.

All the problems related to query processing, transaction processing, and directory
and metadata management and recovery apply to FDBSs with additional consider-
ations. It is not within our scope to discuss them in detail here.

23.7.4 An Overview of Three-Tier Client/Server Architecture
As we pointed out in the chapter introduction, full-scale DDBMSs have not been
developed to support all the types of functionalities that we have discussed so far.
Instead, distributed database applications are being developed in the context of the
client/server architectures. We introduced the two-tier client/server architecture in

External
schema

Federated
schema

. . .

. . .

. . .

. . .

. . .

Component
schema

Local
schema

Component
DBS

External
schema

External
schema

Federated
schema

Export
schema

Component
schema

Local
schema

Component
DBS

Export
schema

Export
schema

Figure 23.9
The five-level schema architecture
in a federated database system
(FDBS).

Source: Adapted from Sheth and
Larson, “Federated Database Systems
for Managing Distributed,
Heterogeneous, and Autonomous
Databases.” ACM Computing Surveys
(Vol. 22: No. 3, September 1990).

 23.7 Distributed Database Architectures 873

Section 2.5. It is now more common to use a three-tier architecture rather than a
two-tier architecture, particularly in Web applications. This architecture is illus-
trated in Figure 23.10.

In the three-tier client/server architecture, the following three layers exist:

 1. Presentation layer (client). This provides the user interface and interacts
with the user. The programs at this layer present Web interfaces or forms to
the client in order to interface with the application. Web browsers are often
utilized, and the languages and specifications used include HTML, XHTML,
CSS, Flash, MathML, Scalable Vector Graphics (SVG), Java, JavaScript,
Adobe Flex, and others. This layer handles user input, output, and naviga-
tion by accepting user commands and displaying the needed information,
usually in the form of static or dynamic Web pages. The latter are employed
when the interaction involves database access. When a Web interface is
used, this layer typically communicates with the application layer via the
HTTP protocol.

 2. Application layer (business logic). This layer programs the application
logic. For example, queries can be formulated based on user input from the
client, or query results can be formatted and sent to the client for presenta-
tion. Additional application functionality can be handled at this layer, such
as security checks, identity verification, and other functions. The application
layer can interact with one or more databases or data sources as needed by
connecting to the database using ODBC, JDBC, SQL/CLI, or other database
access techniques.

Client
User interface or presentation tier

(Web browser, HTML, JavaScript, Visual Basic, . . .)

HTTP Protocol

Application server
Application (business) logic tier

(Application program, JAVA, C/C++, C#, . . .)

Database server
Query and transaction processing tier

(Database access, SQL, PSM, XML, . . .)

ODBC, JDBC, SQL/CLI, SQLJ

Figure 23.10
The three-tier client/server
architecture.

874 Chapter 23 Distributed Database Concepts

 3. Database server. This layer handles query and update requests from the
application layer, processes the requests, and sends the results. Usually SQL
is used to access the database if it is relational or object-relational, and stored
database procedures may also be invoked. Query results (and queries) may
be formatted into XML (see Chapter 13) when transmitted between the
application server and the database server.

Exactly how to divide the DBMS functionality among the client, application server,
and database server may vary. The common approach is to include the functional-
ity of a centralized DBMS at the database server level. A number of relational DBMS
products have taken this approach, in which an SQL server is provided. The appli-
cation server must then formulate the appropriate SQL queries and connect to the
database server when needed. The client provides the processing for user interface
interactions. Since SQL is a relational standard, various SQL servers, possibly pro-
vided by different vendors, can accept SQL commands through standards such as
ODBC, JDBC, and SQL/CLI (see Chapter 10).

In this architecture, the application server may also refer to a data dictionary
that includes information on the distribution of data among the various SQL
servers, as well as modules for decomposing a global query into a number of
local queries that can be executed at the various sites. Interaction between an
application server and database server might proceed as follows during the pro-
cessing of an SQL query:

 1. The application server formulates a user query based on input from the cli-
ent layer and decomposes it into a number of independent site queries. Each
site query is sent to the appropriate database server site.

 2. Each database server processes the local query and sends the results to the
application server site. Increasingly, XML is being touted as the standard for
data exchange (see Chapter 13), so the database server may format the query
result into XML before sending it to the application server.

 3. The application server combines the results of the subqueries to produce the
result of the originally required query, formats it into HTML or some other
form accepted by the client, and sends it to the client site for display.

The application server is responsible for generating a distributed execution plan for
a multisite query or transaction and for supervising distributed execution by send-
ing commands to servers. These commands include local queries and transactions
to be executed, as well as commands to transmit data to other clients or servers.
Another function controlled by the application server (or coordinator) is that of
ensuring consistency of replicated copies of a data item by employing distributed
(or global) concurrency control techniques. The application server must also ensure
the atomicity of global transactions by performing global recovery when certain
sites fail.

If the DDBMS has the capability to hide the details of data distribution from the
application server, then it enables the application server to execute global queries
and transactions as though the database were centralized, without having to specify

 23.8 Distributed Catalog Management 875

the sites at which the data referenced in the query or transaction resides. This
 property is called distribution transparency. Some DDBMSs do not provide distri-
bution transparency, instead requiring that applications are aware of the details of
data distribution.

23.8 Distributed Catalog Management
Efficient catalog management in distributed databases is critical to ensure satisfac-
tory performance related to site autonomy, view management, and data distribu-
tion and replication. Catalogs are databases themselves containing metadata about
the distributed database system.

Three popular management schemes for distributed catalogs are centralized cata-
logs, fully replicated catalogs, and partitioned catalogs. The choice of the scheme
depends on the database itself as well as the access patterns of the applications to
the underlying data.

Centralized Catalogs. In this scheme, the entire catalog is stored in one single
site. Due to its central nature, it is easy to implement. On the other hand, the
advantages of reliability, availability, autonomy, and distribution of processing
load are adversely impacted. For read operations from noncentral sites, the
requested catalog data is locked at the central site and is then sent to the
requesting site. On completion of the read operation, an acknowledgment is
sent to the central site, which in turn unlocks this data. All update operations
must be processed through the central site. This can quickly become a perfor-
mance bottleneck for write-intensive applications.

Fully Replicated Catalogs. In this scheme, identical copies of the complete
catalog are present at each site. This scheme facilitates faster reads by allowing
them to be answered locally. However, all updates must be broadcast to all
sites. Updates are treated as transactions, and a centralized two-phase commit
scheme is employed to ensure catalog consistency. As with the centralized
scheme, write-intensive applications may cause increased network traffic due
to the broadcast associated with the writes.

Partially Replicated Catalogs. The centralized and fully replicated schemes
restrict site autonomy since they must ensure a consistent global view of the
catalog. Under the partially replicated scheme, each site maintains complete
catalog information on data stored locally at that site. Each site is also permit-
ted to cache entries retrieved from remote sites. However, there are no guaran-
tees that these cached copies will be the most recent and updated. The system
tracks catalog entries for sites where the object was created and for sites that
contain copies of this object. Any changes to copies are propagated immedi-
ately to the original (birth) site. Retrieving updated copies to replace stale data
may be delayed until an access to this data occurs. In general, fragments of rela-
tions across sites should be uniquely accessible. Also, to ensure data distribu-
tion transparency, users should be allowed to create synonyms for remote
objects and use these synonyms for subsequent referrals.

876 Chapter 23 Distributed Database Concepts

23.9 Summary
In this chapter, we provided an introduction to distributed databases. This is a very
broad topic, and we discussed only some of the basic techniques used with distrib-
uted databases. First in Section 23.1 we discussed the reasons for distribution and
DDB concepts in Section 23.1.1. Then we defined the concept of distribution trans-
parency and the related concepts of fragmentation transparency and replication
transparency in Section 23.1.2. We discussed the concepts of distributed availability
and reliability in Section 23.1.3, and gave an overview of scalability and partition
tolerance issues in Section 23.1.4. We discussed autonomy of nodes in a distributed
system in Section 23.1.5 and the potential advantages of distributed databases over
centralized system in Section 23.1.6.

In Section 23.2, we discussed the design issues related to data fragmentation,
replication, and distribution. We distinguished between horizontal fragmenta-
tion (sharding) and vertical fragmentation of relations in Section 23.2.1. We
then discussed in Section 23.2.2 the use of data replication to improve system
reliability and availability. In Section 23.3, we briefly discussed the concur-
rency control and recovery techniques used in DDBMSs, and then reviewed
some of the additional problems that must be dealt with in a distributed envi-
ronment that do not appear in a centralized environment. Then in Section 23.4
we discussed transaction management, including different commit protocols
(2-phase commit, 3-phase commit) and operating system support for transac-
tion management.

We then illustrated some of the techniques used in distributed query processing in
Section 23.5, and discussed the cost of communication among sites, which is con-
sidered a major factor in distributed query optimization. We compared the differ-
ent techniques for executing joins, and we then presented the semijoin technique
for joining relations that reside on different sites in Section 23.5.3.

Following that, in Section 23.6, we categorized DDBMSs by using criteria such as
the degree of homogeneity of software modules and the degree of local autonomy.
In Section 23.7 we distinguished between parallel and distributed system architec-
tures and then introduced the generic architecture of distributed databases from
both a component as well as a schematic architectural perspective. In Section 23.7.3
we discussed in some detail issues of federated database management, and we
focused on the needs of supporting various types of autonomies and dealing with
semantic heterogeneity. We also reviewed the client/server architecture concepts
and related them to distributed databases in Section 23.7.4. We reviewed catalog
management in distributed databases and summarized their relative advantages
and disadvantages in Section 23.8.

Chapters 24 and 25 will describe recent advances in distributed databases and dis-
tributed computing related to big data. Chapter 24 describes the so-called NOSQL
systems, which are highly scalable, distributed database systems that handle large
volumes of data. Chapter 25 discusses cloud computing and distributed computing
technologies that are needed to process big data.

 Review Questions 877

Review Questions
 23.1. What are the main reasons for and potential advantages of distributed

 databases?

 23.2. What additional functions does a DDBMS have over a centralized DBMS?

 23.3. Discuss what is meant by the following terms: degree of homogeneity of a
DDBMS, degree of local autonomy of a DDBMS, federated DBMS, distribu-
tion transparency, fragmentation transparency, replication transparency,
multidatabase system.

 23.4. Discuss the architecture of a DDBMS. Within the context of a centralized
DBMS, briefly explain new components introduced by the distribution of
data.

 23.5. What are the main software modules of a DDBMS? Discuss the main
functions of each of these modules in the context of the client/server
architecture.

 23.6. Compare the two-tier and three-tier client/server architectures.

 23.7. What is a fragment of a relation? What are the main types of fragments?
Why is fragmentation a useful concept in distributed database design?

 23.8. Why is data replication useful in DDBMSs? What typical units of data are
replicated?

 23.9. What is meant by data allocation in distributed database design? What typi-
cal units of data are distributed over sites?

 23.10. How is a horizontal partitioning of a relation specified? How can a relation
be put back together from a complete horizontal partitioning?

 23.11. How is a vertical partitioning of a relation specified? How can a relation be
put back together from a complete vertical partitioning?

 23.12. Discuss the naming problem in distributed databases.

 23.13. What are the different stages of processing a query in a DDBMS?

 23.14. Discuss the different techniques for executing an equijoin of two files located
at different sites. What main factors affect the cost of data transfer?

 23.15. Discuss the semijoin method for executing an equijoin of two files located at
different sites. Under what conditions is an equijoin strategy efficient?

 23.16. Discuss the factors that affect query decomposition. How are guard condi-
tions and attribute lists of fragments used during the query decomposition
process?

 23.17. How is the decomposition of an update request different from the decompo-
sition of a query? How are guard conditions and attribute lists of fragments
used during the decomposition of an update request?

878 Chapter 23 Distributed Database Concepts

 23.18. List the support offered by operating systems to a DDBMS and also the ben-
efits of these supports.

 23.19. Discuss the factors that do not appear in centralized systems but that affect
concurrency control and recovery in distributed systems.

 23.20. Discuss the two-phase commit protocol used for transaction management
in a DDBMS. List its limitations and explain how they are overcome using
the three-phase commit protocol.

 23.21. Compare the primary site method with the primary copy method for dis-
tributed concurrency control. How does the use of backup sites affect each?

 23.22. When are voting and elections used in distributed databases?

 23.23. Discuss catalog management in distributed databases.

 23.24. What are the main challenges facing a traditional DDBMS in the context of
today’s Internet applications? How does cloud computing attempt to address
them?

 23.25. Discuss briefly the support offered by Oracle for homogeneous, heteroge-
neous, and client/server-based distributed database architectures.

 23.26. Discuss briefly online directories, their management, and their role in dis-
tributed databases.

Exercises
 23.27. Consider the data distribution of the COMPANY database, where the frag-

ments at sites 2 and 3 are as shown in Figure 23.3 and the fragments at site 1
are as shown in Figure 3.6. For each of the following queries, show at least
two strategies of decomposing and executing the query. Under what condi-
tions would each of your strategies work well?

a. For each employee in department 5, retrieve the employee name and the
names of the employee's dependents.

b. Print the names of all employees who work in department 5 but who
work on some project not controlled by department 5.

 23.28. Consider the following relations:

BOOKS(Book#, Primary_author, Topic, Total_stock, $price)
BOOKSTORE(Store#, City, State, Zip, Inventory_value)
STOCK(Store#, Book#, Qty)

 Total_stock is the total number of books in stock, and Inventory_value is the
total inventory value for the store in dollars.

a. Give an example of two simple predicates that would be meaningful for
the BOOKSTORE relation for horizontal partitioning.

 Exercises 879

b. How would a derived horizontal partitioning of STOCK be defined based
on the partitioning of BOOKSTORE?

c. Show predicates by which BOOKS may be horizontally partitioned by
topic.

d. Show how the STOCK may be further partitioned from the partitions in
(b) by adding the predicates in (c).

 23.29. Consider a distributed database for a bookstore chain called National Books
with three sites called EAST, MIDDLE, and WEST. The relation schemas are
given in Exercise 23.28. Consider that BOOKS are fragmented by $price
amounts into:

B1: BOOK1: $price up to $20

B2: BOOK2: $price from $20.01 to $50

B3: BOOK3: $price from $50.01 to $100

B4: BOOK4: $price $100.01 and above

 Similarly, BOOK_STORES are divided by zip codes into:

S1: EAST: Zip up to 35000

S2: MIDDLE: Zip 35001 to 70000

S3: WEST: Zip 70001 to 99999

 Assume that STOCK is a derived fragment based on BOOKSTORE only.

a. Consider the query:

SELECT Book#, Total_stock
FROM Books
WHERE $price > 15 AND $price < 55;

 Assume that fragments of BOOKSTORE are nonreplicated and assigned
based on region. Assume further that BOOKS are allocated as:

EAST: B1, B4

MIDDLE: B1, B2

WEST: B1, B2, B3, B4

 Assuming the query was submitted in EAST, what remote subqueries does it
generate? (Write in SQL.)

b. If the price of Book# = 1234 is updated from $45 to $55 at site MIDDLE,
what updates does that generate? Write in English and then in SQL.

c. Give a sample query issued at WEST that will generate a subquery for
 MIDDLE.

d. Write a query involving selection and projection on the above rela-
tions and show two possible query trees that denote different ways of
execution.

 23.70. Consider that you have been asked to propose a database architecture in a
large organization (General Motors, for example) to consolidate all data

880 Chapter 23 Distributed Database Concepts

including legacy databases (from hierarchical and network models; no spe-
cific knowledge of these models is needed) as well as relational databases,
which are geographically distributed so that global applications can be sup-
ported. Assume that alternative 1 is to keep all databases as they are, whereas
alternative 2 is to first convert them to relational and then support the appli-
cations over a distributed integrated database.

a. Draw two schematic diagrams for the above alternatives showing the
linkages among appropriate schemas. For alternative 1, choose the
approach of providing export schemas for each database and construct-
ing unified schemas for each application.

b. List the steps that you would have to go through under each alternative
from the present situation until global applications are viable.

c. Compare these alternatives from the issues of:
 i. design time considerations
ii. runtime considerations

Selected Bibliography
The textbooks by Ceri and Pelagatti (1984a) and Ozsu and Valduriez (1999) are
devoted to distributed databases. Peterson and Davie (2008), Tannenbaum (2003),
and Stallings (2007) cover data communications and computer networks. Comer
(2008) discusses networks and internets. Ozsu et al. (1994) has a collection of papers
on distributed object management.

Most of the research on distributed database design, query processing, and optimi-
zation occurred in the 1980s and 1990s; we quickly review the important references
here. Distributed database design has been addressed in terms of horizontal and
vertical fragmentation, allocation, and replication. Ceri et al. (1982) defined the
concept of minterm horizontal fragments. Ceri et al. (1983) developed an integer
programming-based optimization model for horizontal fragmentation and alloca-
tion. Navathe et al. (1984) developed algorithms for vertical fragmentation based
on attribute affinity and showed a variety of contexts for vertical fragment alloca-
tion. Wilson and Navathe (1986) present an analytical model for optimal allocation
of fragments. Elmasri et al. (1987) discuss fragmentation for the ECR model; Karla-
palem et al. (1996) discuss issues for distributed design of object databases. Navathe
et al. (1996) discuss mixed fragmentation by combining horizontal and vertical
fragmentation; Karlapalem et al. (1996) present a model for redesign of distributed
databases.

Distributed query processing, optimization, and decomposition are discussed in
Hevner and Yao (1979), Kerschberg et al. (1982), Apers et al. (1983), Ceri and Pela-
gatti (1984), and Bodorick et al. (1992). Bernstein and Goodman (1981) discuss the
theory behind semijoin processing. Wong (1983) discusses the use of relationships
in relation fragmentation. Concurrency control and recovery schemes are discussed
in Bernstein and Goodman (1981a). Kumar and Hsu (1998) compile some articles

 Selected Bibliography 881

related to recovery in distributed databases. Elections in distributed systems are
discussed in Garcia-Molina (1982). Lamport (1978) discusses problems with gener-
ating unique timestamps in a distributed system. Rahimi and Haug (2007) discuss a
more flexible way to construct query critical metadata for P2P databases. Ouzzani
and Bouguettaya (2004) outline fundamental problems in distributed query pro-
cessing over Web-based data sources.

A concurrency control technique for replicated data that is based on voting is pre-
sented by Thomas (1979). Gifford (1979) proposes the use of weighted voting, and
Paris (1986) describes a method called voting with witnesses. Jajodia and Mutchler
(1990) discuss dynamic voting. A technique called available copy is proposed by
Bernstein and Goodman (1984), and one that uses the idea of a group is presented
in ElAbbadi and Toueg (1988). Other work that discusses replicated data includes
Gladney (1989), Agrawal and ElAbbadi (1990), ElAbbadi and Toueg (1989), Kumar
and Segev (1993), Mukkamala (1989), and Wolfson and Milo (1991). Bassiouni
(1988) discusses optimistic protocols for DDB concurrency control. Garcia-Molina
(1983) and Kumar and Stonebraker (1987) discuss techniques that use the seman-
tics of the transactions. Distributed concurrency control techniques based on lock-
ing and distinguished copies are presented by Menasce et al. (1980) and Minoura
and Wiederhold (1982). Obermark (1982) presents algorithms for distributed
deadlock detection. In more recent work, Vadivelu et al. (2008) propose using
backup mechanism and multilevel security to develop algorithms for improving
concurrency. Madria et al. (2007) propose a mechanism based on a multiversion
two-phase locking scheme and timestamping to address concurrency issues specific
to mobile database systems. Boukerche and Tuck (2001) propose a technique that
allows transactions to be out of order to a limited extent. They attempt to ease the
load on the application developer by exploiting the network environment and pro-
ducing a schedule equivalent to a temporally ordered serial schedule. Han et al.
(2004) propose a deadlock-free and serializable extended Petri net model for Web-
based distributed real-time databases.

A survey of recovery techniques in distributed systems is given by Kohler (1981).
Reed (1983) discusses atomic actions on distributed data. Bhargava (1987) presents
an edited compilation of various approaches and techniques for concurrency and
reliability in distributed systems.

Federated database systems were first defined in McLeod and Heimbigner (1985).
Techniques for schema integration in federated databases are presented by Elmasri
et al. (1986), Batini et al. (1987), Hayne and Ram (1990), and Motro (1987).
Elmagarmid and Helal (1988) and Gamal-Eldin et al. (1988) discuss the update
problem in heterogeneous DDBSs. Heterogeneous distributed database issues are
discussed in Hsiao and Kamel (1989). Sheth and Larson (1990) present an exhaus-
tive survey of federated database management.

Since the late 1980s, multidatabase systems and interoperability have become
important topics. Techniques for dealing with semantic incompatibilities among
multiple databases are examined in DeMichiel (1989), Siegel and Madnick (1991),
Krishnamurthy et al. (1991), and Wang and Madnick (1989). Castano et al. (1998)

882 Chapter 23 Distributed Database Concepts

present an excellent survey of techniques for analysis of schemas. Pitoura et al.
(1995) discuss object orientation in multidatabase systems. Xiao et al. (2003) pro-
pose an XML-based model for a common data model for multidatabase systems
and present a new approach for schema mapping based on this model. Lakshmanan
et al. (2001) propose extending SQL for interoperability and describe the architec-
ture and algorithms for achieving the same.

Transaction processing in multidatabases is discussed in Mehrotra et al. (1992),
Georgakopoulos et al. (1991), Elmagarmid et al. (1990), and Brietbart et al.
(1990), among others. Elmagarmid (1992) discusses transaction processing for
advanced applications, including engineering applications that are discussed in
Heiler et al. (1992).

The workflow systems, which are becoming popular for managing information in
complex organizations, use multilevel and nested transactions in conjunction with
distributed databases. Weikum (1991) discusses multilevel transaction manage-
ment. Alonso et al. (1997) discuss limitations of current workflow systems. Lopes et
al. (2009) propose that users define and execute their own workflows using a client-
side Web browser. They attempt to leverage Web 2.0 trends to simplify the user’s
work for workflow management. Jung and Yeom (2008) exploit data workflow to
develop an improved transaction management system that provides simultaneous,
transparent access to the heterogeneous storages that constitute the HVEM
DataGrid. Deelman and Chervanak (2008) list the challenges in data-intensive sci-
entific workflows. Specifically, they look at automated management of data, effi-
cient mapping techniques, and user feedback issues in workflow mapping. They
also argue for data reuse as an efficient means to manage data and present the chal-
lenges therein.

A number of experimental distributed DBMSs have been implemented. These
include distributed INGRES by Epstein et al. (1978), DDTS by Devor and Weel-
dreyer (1980), SDD-1 by Rothnie et al. (1980), System R* by Lindsay et al. (1984),
SIRIUS-DELTA by Ferrier and Stangret (1982), and MULTIBASE by Smith et al.
(1981). The OMNIBASE system by Rusinkiewicz et al. (1988) and the Federated
Information Base developed using the Candide data model by Navathe et al. (1994)
are examples of federated DDBMSs. Pitoura et al. (1995) present a comparative
survey of the federated database system prototypes. Most commercial DBMS ven-
dors have products using the client/server approach and offer distributed versions
of their systems. Some system issues concerning client/server DBMS architectures
are discussed in Carey et al. (1991), DeWitt et al. (1990), and Wang and Rowe
(1991). Khoshafian et al. (1992) discuss design issues for relational DBMSs in the
client/server environment. Client/server management issues are discussed in many
books, such as Zantinge and Adriaans (1996). Di Stefano (2005) discusses data dis-
tribution issues specific to grid computing. A major part of this discussion may also
apply to cloud computing.

883

24
NOSQL Databases

and Big Data Storage Systems

We now turn our attention to the class of sys-
tems developed to manage large amounts of

data in organizations such as Google, Amazon, Facebook, and Twitter and in
applications such as social media, Web links, user profiles, marketing and sales,
posts and tweets, road maps and spatial data, and e-mail. The term NOSQL is
generally interpreted as Not Only SQL—rather than NO to SQL—and is meant
to convey that many applications need systems other than traditional relational
SQL systems to augment their data management needs. Most NOSQL systems
are distributed databases or distributed storage systems, with a focus on semis-
tructured data storage, high performance, availability, data replication, and scal-
ability as opposed to an emphasis on immediate data consistency, powerful
query languages, and structured data storage.

We start in Section 24.1 with an introduction to NOSQL systems, their character-
istics, and how they differ from SQL systems. We also describe four general cate-
gories of NOSQL systems—document-based, key-value stores, column-based,
and graph-based. Section 24.2 discusses how NOSQL systems approach the issue
of consistency among multiple replicas (copies) by using the paradigm known as
eventual consistency. We discuss the CAP theorem, which can be used to under-
stand the emphasis of NOSQL systems on availability. In Sections 24.3 through
24.6, we present an overview of each category of NOSQL systems—starting with
document-based systems, followed by key-value stores, then column-based, and
finally graph-based. Some systems may not fall neatly into a single category, but
rather use techniques that span two or more categories of NOSQL systems.
Finally, Section 24.7 is the chapter summary.

chapter 24

884 Chapter 24 NOSQL Databases and Big Data Storage Systems

24.1 Introduction to NOSQL Systems

24.1.1 Emergence of NOSQL Systems
Many companies and organizations are faced with applications that store vast
amounts of data. Consider a free e-mail application, such as Google Mail or Yahoo
Mail or other similar service—this application can have millions of users, and each
user can have thousands of e-mail messages. There is a need for a storage system
that can manage all these e-mails; a structured relational SQL system may not be
appropriate because (1) SQL systems offer too many services (powerful query lan-
guage, concurrency control, etc.), which this application may not need; and (2) a
structured data model such the traditional relational model may be too restrictive.
Although newer relational systems do have more complex object-relational model-
ing options (see Chapter 12), they still require schemas, which are not required by
many of the NOSQL systems.

As another example, consider an application such as Facebook, with millions of
users who submit posts, many with images and videos; then these posts must be
displayed on pages of other users using the social media relationships among the
users. User profiles, user relationships, and posts must all be stored in a huge collec-
tion of data stores, and the appropriate posts must be made available to the sets of
users that have signed up to see these posts. Some of the data for this type of appli-
cation is not suitable for a traditional relational system and typically needs multiple
types of databases and data storage systems.

Some of the organizations that were faced with these data management and storage
applications decided to develop their own systems:

 ■ Google developed a proprietary NOSQL system known as BigTable, which is
used in many of Google’s applications that require vast amounts of data stor-
age, such as Gmail, Google Maps, and Web site indexing. Apache Hbase is an
open source NOSQL system based on similar concepts. Google’s innovation
led to the category of NOSQL systems known as column-based or wide
column stores; they are also sometimes referred to as column family stores.

 ■ Amazon developed a NOSQL system called DynamoDB that is available
through Amazon’s cloud services. This innovation led to the category known
as key-value data stores or sometimes key-tuple or key-object data stores.

 ■ Facebook developed a NOSQL system called Cassandra, which is now open
source and known as Apache Cassandra. This NOSQL system uses concepts
from both key-value stores and column-based systems.

 ■ Other software companies started developing their own solutions and making
them available to users who need these capabilities—for example, MongoDB
and CouchDB, which are classified as document-based NOSQL systems or
document stores.

 ■ Another category of NOSQL systems is the graph-based NOSQL systems,
or graph databases; these include Neo4J and GraphBase, among others.

 24.1 Introduction to NOSQL Systems 885

 ■ Some NOSQL systems, such as OrientDB, combine concepts from many of
the categories discussed above.

 ■ In addition to the newer types of NOSQL systems listed above, it is also pos-
sible to classify database systems based on the object model (see Chapter 12)
or on the native XML model (see Chapter 13) as NOSQL systems, although
they may not have the high-performance and replication characteristics of
the other types of NOSQL systems.

These are just a few examples of NOSQL systems that have been developed. There
are many systems, and listing all of them is beyond the scope of our presentation.

24.1.2 Characteristics of NOSQL Systems
We now discuss the characteristics of many NOSQL systems, and how these sys-
tems differ from traditional SQL systems. We divide the characteristics into two
categories—those related to distributed databases and distributed systems, and
those related to data models and query languages.

NOSQL characteristics related to distributed databases and distributed
systems. NOSQL systems emphasize high availability, so replicating the data is
inherent in many of these systems. Scalability is another important characteristic,
because many of the applications that use NOSQL systems tend to have data that
keeps growing in volume. High performance is another required characteristic,
whereas serializable consistency may not be as important for some of the NOSQL
applications. We discuss some of these characteristics next.

 1. Scalability: As we discussed in Section 23.1.4, there are two kinds of scal-
ability in distributed systems: horizontal and vertical. In NOSQL systems,
horizontal scalability is generally used, where the distributed system is
expanded by adding more nodes for data storage and processing as the vol-
ume of data grows. Vertical scalability, on the other hand, refers to expand-
ing the storage and computing power of existing nodes. In NOSQL systems,
horizontal scalability is employed while the system is operational, so tech-
niques for distributing the existing data among new nodes without inter-
rupting system operation are necessary. We will discuss some of these
techniques in Sections 24.3 through 24.6 when we discuss specific systems.

 2. Availability, Replication and Eventual Consistency: Many applications
that use NOSQL systems require continuous system availability. To accom-
plish this, data is replicated over two or more nodes in a transparent man-
ner, so that if one node fails, the data is still available on other nodes.
Replication improves data availability and can also improve read perfor-
mance, because read requests can often be serviced from any of the repli-
cated data nodes. However, write performance becomes more cumbersome
because an update must be applied to every copy of the replicated data items;
this can slow down write performance if serializable consistency is required
(see Section 23.3). Many NOSQL applications do not require serializable

886 Chapter 24 NOSQL Databases and Big Data Storage Systems

consistency, so more relaxed forms of consistency known as eventual
consistency are used. We discuss this in more detail in Section 24.2.

 3. Replication Models: Two major replication models are used in NOSQL sys-
tems: master-slave and master-master replication. Master-slave replication
requires one copy to be the master copy; all write operations must be applied
to the master copy and then propagated to the slave copies, usually using
eventual consistency (the slave copies will eventually be the same as the mas-
ter copy). For read, the master-slave paradigm can be configured in various
ways. One configuration requires all reads to also be at the master copy, so
this would be similar to the primary site or primary copy methods of distrib-
uted concurrency control (see Section 23.3.1), with similar advantages and
disadvantages. Another configuration would allow reads at the slave copies
but would not guarantee that the values are the latest writes, since writes to
the slave nodes can be done after they are applied to the master copy. The
master-master replication allows reads and writes at any of the replicas but
may not guarantee that reads at nodes that store different copies see the
same values. Different users may write the same data item concurrently at
different nodes of the system, so the values of the item will be temporarily
inconsistent. A reconciliation method to resolve conflicting write operations
of the same data item at different nodes must be implemented as part of the
master-master replication scheme.

 4. Sharding of Files: In many NOSQL applications, files (or collections of data
objects) can have many millions of records (or documents or objects), and
these records can be accessed concurrently by thousands of users. So it is not
practical to store the whole file in one node. Sharding (also known as
 horizontal partitioning ; see Section 23.2) of the file records is often
employed in NOSQL systems. This serves to distribute the load of accessing
the file records to multiple nodes. The combination of sharding the file
records and replicating the shards works in tandem to improve load
 balancing as well as data availability. We will discuss some of the sharding
techniques in Sections 24.3 through 24.6 when we discuss specific systems.

 5. High-Performance Data Access: In many NOSQL applications, it is neces-
sary to find individual records or objects (data items) from among the mil-
lions of data records or objects in a file. To achieve this, most systems use
one of two techniques: hashing or range partitioning on object keys. The
majority of accesses to an object will be by providing the key value rather
than by using complex query conditions. The object key is similar to the
concept of object id (see Section 12.1). In hashing, a hash function h(K) is
applied to the key K, and the location of the object with key K is determined
by the value of h(K). In range partitioning, the location is determined via a
range of key values; for example, location i would hold the objects whose key
values K are in the range Kimin ≤ K ≤ Kimax. In applications that require
range queries, where multiple objects within a range of key values are
retrieved, range partitioned is preferred. Other indexes can also be used to
locate objects based on attribute conditions different from the key K. We

 24.1 Introduction to NOSQL Systems 887

will discuss some of the hashing, partitioning, and indexing techniques in
Sections 24.3 through 24.6 when we discuss specific systems.

NOSQL characteristics related to data models and query languages.
NOSQL systems emphasize performance and flexibility over modeling power and
complex querying. We discuss some of these characteristics next.

 1. Not Requiring a Schema: The flexibility of not requiring a schema is
achieved in many NOSQL systems by allowing semi-structured, self-
describing data (see Section 13.1). The users can specify a partial schema in
some systems to improve storage efficiency, but it is not required to have a
schema in most of the NOSQL systems. As there may not be a schema to
specify constraints, any constraints on the data would have to be pro-
grammed in the application programs that access the data items. There are
various languages for describing semistructured data, such as JSON (JavaScript
Object Notation) and XML (Extensible Markup Language; see Chapter 13).
JSON is used in several NOSQL systems, but other methods for describing
semi-structured data can also be used. We will discuss JSON in Section 24.3
when we present document-based NOSQL systems.

 2. Less Powerful Query Languages: Many applications that use NOSQL sys-
tems may not require a powerful query language such as SQL, because
search (read) queries in these systems often locate single objects in a single
file based on their object keys. NOSQL systems typically provide a set of
functions and operations as a programming API (application programming
interface), so reading and writing the data objects is accomplished by calling
the appropriate operations by the programmer. In many cases, the opera-
tions are called CRUD operations, for Create, Read, Update, and Delete. In
other cases, they are known as SCRUD because of an added Search (or Find)
operation. Some NOSQL systems also provide a high-level query language,
but it may not have the full power of SQL; only a subset of SQL querying
capabilities would be provided. In particular, many NOSQL systems do not
provide join operations as part of the query language itself; the joins need to
be implemented in the application programs.

 3. Versioning: Some NOSQL systems provide storage of multiple versions of
the data items, with the timestamps of when the data version was created.
We will discuss this aspect in Section 24.5 when we present column-based
NOSQL systems.

In the next section, we give an overview of the various categories of NOSQL
systems.

24.1.3 Categories of NOSQL Systems
NOSQL systems have been characterized into four major categories, with some
additional categories that encompass other types of systems. The most common
categorization lists the following four major categories:

888 Chapter 24 NOSQL Databases and Big Data Storage Systems

 1. Document-based NOSQL systems: These systems store data in the form of
documents using well-known formats, such as JSON (JavaScript Object
Notation). Documents are accessible via their document id, but can also be
accessed rapidly using other indexes.

 2. NOSQL key-value stores: These systems have a simple data model based
on fast access by the key to the value associated with the key; the value can
be a record or an object or a document or even have a more complex data
structure.

 3. Column-based or wide column NOSQL systems: These systems partition a
table by column into column families (a form of vertical partitioning; see
Section 23.2), where each column family is stored in its own files. They also
allow versioning of data values.

 4. Graph-based NOSQL systems: Data is represented as graphs, and related
nodes can be found by traversing the edges using path expressions.

Additional categories can be added as follows to include some systems that are not
easily categorized into the above four categories, as well as some other types of sys-
tems that have been available even before the term NOSQL became widely used.

 5. Hybrid NOSQL systems: These systems have characteristics from two or
more of the above four categories.

 6. Object databases: These systems were discussed in Chapter 12.

 7. XML databases: We discussed XML in Chapter 13.

Even keyword-based search engines store large amounts of data with fast search
access, so the stored data can be considered as large NOSQL big data stores.

The rest of this chapter is organized as follows. In each of Sections 24.3 through
24.6, we will discuss one of the four main categories of NOSQL systems, and elabo-
rate further on which characteristics each category focuses on. Before that, in Sec-
tion 24.2, we discuss in more detail the concept of eventual consistency, and we
discuss the associated CAP theorem.

24.2 The CAP Theorem
When we discussed concurrency control in distributed databases in Section 23.3,
we assumed that the distributed database system (DDBS) is required to enforce the
ACID properties (atomicity, consistency, isolation, durability) of transactions that
are running concurrently (see Section 20.3). In a system with data replication, con-
currency control becomes more complex because there can be multiple copies of
each data item. So if an update is applied to one copy of an item, it must be applied
to all other copies in a consistent manner. The possibility exists that one copy of an
item X is updated by a transaction T1 whereas another copy is updated by a transac-
tion T2, so two inconsistent copies of the same item exist at two different nodes in
the distributed system. If two other transactions T3 and T4 want to read X, each may
read a different copy of item X.

 24.2 The CAP Theorem 889

We saw in Section 23.3 that there are distributed concurrency control methods that
do not allow this inconsistency among copies of the same data item, thus enforcing
serializability and hence the isolation property in the presence of replication. How-
ever, these techniques often come with high overhead, which would defeat the pur-
pose of creating multiple copies to improve performance and availability in
distributed database systems such as NOSQL. In the field of distributed systems,
there are various levels of consistency among replicated data items, from weak con-
sistency to strong consistency. Enforcing serializability is considered the strongest
form of consistency, but it has high overhead so it can reduce performance of read
and write operations and hence adversely affect system performance.

The CAP theorem, which was originally introduced as the CAP principle, can be
used to explain some of the competing requirements in a distributed system with
replication. The three letters in CAP refer to three desirable properties of distributed
systems with replicated data: consistency (among replicated copies), availability (of
the system for read and write operations) and partition tolerance (in the face of the
nodes in the system being partitioned by a network fault). Availability means that
each read or write request for a data item will either be processed successfully or will
receive a message that the operation cannot be completed. Partition tolerance means
that the system can continue operating if the network connecting the nodes has a
fault that results in two or more partitions, where the nodes in each partition can
only communicate among each other. Consistency means that the nodes will have
the same copies of a replicated data item visible for various transactions.

It is important to note here that the use of the word consistency in CAP and its use
in ACID do not refer to the same identical concept. In CAP, the term consistency
refers to the consistency of the values in different copies of the same data item in a
replicated distributed system. In ACID, it refers to the fact that a transaction will
not violate the integrity constraints specified on the database schema. However, if
we consider that the consistency of replicated copies is a specified constraint, then
the two uses of the term consistency would be related.

The CAP theorem states that it is not possible to guarantee all three of the desirable
properties—consistency, availability, and partition tolerance—at the same time in a
distributed system with data replication. If this is the case, then the distributed sys-
tem designer would have to choose two properties out of the three to guarantee. It
is generally assumed that in many traditional (SQL) applications, guaranteeing
consistency through the ACID properties is important. On the other hand, in a
NOSQL distributed data store, a weaker consistency level is often acceptable, and
guaranteeing the other two properties (availability, partition tolerance) is impor-
tant. Hence, weaker consistency levels are often used in NOSQL system instead of
guaranteeing serializability. In particular, a form of consistency known as eventual
consistency is often adopted in NOSQL systems. In Sections 24.3 through 24.6, we
will discuss some of the consistency models used in specific NOSQL systems.

The next four sections of this chapter discuss the characteristics of the four main cat-
egories of NOSQL systems. We discuss document-based NOSQL systems in Sec-
tion 24.3, and we use MongoDB as a representative system. In Section 24.4, we discuss

890 Chapter 24 NOSQL Databases and Big Data Storage Systems

NOSQL systems known as key-value stores. In Section 24.5, we give an overview of
column-based NOSQL systems, with a discussion of Hbase as a representative sys-
tem. Finally, we introduce graph-based NOSQL systems in Section 24.6.

24.3 Document-Based NOSQL Systems
and MongoDB

Document-based or document-oriented NOSQL systems typically store data as
collections of similar documents. These types of systems are also sometimes known
as document stores. The individual documents somewhat resemble complex objects
(see Section 12.3) or XML documents (see Chapter 13), but a major difference
between document-based systems versus object and object-relational systems and
XML is that there is no requirement to specify a schema—rather, the documents are
specified as self-describing data (see Section 13.1). Although the documents in a
collection should be similar, they can have different data elements (attributes), and
new documents can have new data elements that do not exist in any of the current
documents in the collection. The system basically extracts the data element names
from the self-describing documents in the collection, and the user can request that
the system create indexes on some of the data elements. Documents can be speci-
fied in various formats, such as XML (see Chapter 13). A popular language to spec-
ify documents in NOSQL systems is JSON (JavaScript Object Notation).

There are many document-based NOSQL systems, including MongoDB and
CouchDB, among many others. We will give an overview of MongoDB in this sec-
tion. It is important to note that different systems can use different models, lan-
guages, and implementation methods, but giving a complete survey of all
document-based NOSQL systems is beyond the scope of our presentation.

24.3.1 MongoDB Data Model
MongoDB documents are stored in BSON (Binary JSON) format, which is a varia-
tion of JSON with some additional data types and is more efficient for storage than
JSON. Individual documents are stored in a collection. We will use a simple exam-
ple based on our COMPANY database that we used throughout this book. The
operation createCollection is used to create each collection. For example, the fol-
lowing command can be used to create a collection called project to hold PROJECT
objects from the COMPANY database (see Figures 5.5 and 5.6):

db.createCollection(“project”, { capped : true, size : 1310720, max : 500 })

The first parameter “project” is the name of the collection, which is followed by an
optional document that specifies collection options. In our example, the collection
is capped; this means it has upper limits on its storage space (size) and number of
documents (max). The capping parameters help the system choose the storage
options for each collection. There are other collection options, but we will not dis-
cuss them here.

 24.3 Document-Based NOSQL Systems and MongoDB 891

For our example, we will create another document collection called worker to
hold information about the EMPLOYEEs who work on each project; for
example:

db.createCollection(“worker”, { capped : true, size : 5242880, max : 2000 }))

Each document in a collection has a unique ObjectId field, called _id, which is
automatically indexed in the collection unless the user explicitly requests no index
for the _id field. The value of ObjectId can be specified by the user, or it can be
system-generated if the user does not specify an _id field for a particular document.
System-generated ObjectIds have a specific format, which combines the timestamp
when the object is created (4 bytes, in an internal MongoDB format), the node id
(3 bytes), the process id (2 bytes), and a counter (3 bytes) into a 16-byte Id value.
User-generated ObjectsIds can have any value specified by the user as long as it
uniquely identifies the document and so these Ids are similar to primary keys in
relational systems.

A collection does not have a schema. The structure of the data fields in documents
is chosen based on how documents will be accessed and used, and the user can
choose a normalized design (similar to normalized relational tuples) or a denor-
malized design (similar to XML documents or complex objects). Interdocument
references can be specified by storing in one document the ObjectId or ObjectIds of
other related documents. Figure 24.1(a) shows a simplified MongoDB document
showing some of the data from Figure 5.6 from the COMPANY database example
that is used throughout the book. In our example, the _id values are user-defined,
and the documents whose _id starts with P (for project) will be stored in the “project”
collection, whereas those whose _id starts with W (for worker) will be stored in the
“worker” collection.

In Figure 24.1(a), the workers information is embedded in the project document; so
there is no need for the “worker” collection. This is known as the denormalized pat-
tern, which is similar to creating a complex object (see Chapter 12) or an XML
document (see Chapter 13). A list of values that is enclosed in square brackets […]
within a document represents a field whose value is an array.

Another option is to use the design in Figure 24.1(b), where worker references are
embedded in the project document, but the worker documents themselves are
stored in a separate “worker” collection. A third option in Figure 24.1(c) would
use a normalized design, similar to First Normal Form relations (see Sec-
tion 14.3.4). The choice of which design option to use depends on how the data
will be accessed.

It is important to note that the simple design in Figure 24.1(c) is not the general nor-
malized design for a many-to-many relationship, such as the one between employees
and projects; rather, we would need three collections for “project”, “employee”, and
“works_on”, as we discussed in detail in Section 9.1. Many of the design tradeoffs
that were discussed in Chapters 9 and 14 (for first normal form relations and for ER-
to-relational mapping options), and Chapters 12 and 13 (for complex objects and
XML) are applicable for choosing the appropriate design for document structures

892 Chapter 24 NOSQL Databases and Big Data Storage Systems

(a) project document with an array of embedded workers:
 {
 _id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”,
 Workers: [
 { Ename: “John Smith”,
 Hours: 32.5
 },
 { Ename: “Joyce English”,
 Hours: 20.0
 }
]
);

(b) project document with an embedded array of worker ids:

 {
 _id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”,
 WorkerIds: [“W1”, “W2”]
 }
 { _id: “W1”,
 Ename: “John Smith”,
 Hours: 32.5
 }
 { _id: “W2”,
 Ename: “Joyce English”,
 Hours: 20.0
 }

(c) normalized project and worker documents (not a fully normalized design
for M:N relationships):

 {
 _id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”
 }
 { _id: “W1”,
 Ename: “John Smith”,
 ProjectId: “P1”,
 Hours: 32.5
 }

Figure 24.1
Example of simple
documents in
MongoDB.
(a) Denormalized
document design
with embedded
subdocuments.
(b) Embedded array of
document references.
(c) Normalized
documents.

 24.3 Document-Based NOSQL Systems and MongoDB 893

and document collections, so we will not repeat the discussions here. In the design
in Figure 24.1(c), an EMPLOYEE who works on several projects would be repre-
sented by multiple worker documents with different _id values; each document
would represent the employee as worker for a particular project. This is similar to
the design decisions for XML schema design (see Section 13.6). However, it is again
important to note that the typical document-based system does not have a schema,
so the design rules would have to be followed whenever individual documents are
inserted into a collection.

24.3.2 MongoDB CRUD Operations
MongoDb has several CRUD operations, where CRUD stands for (create, read,
update, delete). Documents can be created and inserted into their collections using
the insert operation, whose format is:

db.<collection_name>.insert(<document(s)>)

The parameters of the insert operation can include either a single document or an
array of documents, as shown in Figure 24.1(d). The delete operation is called
remove, and the format is:

db.<collection_name>.remove(<condition>)

The documents to be removed from the collection are specified by a Boolean con-
dition on some of the fields in the collection documents. There is also an update
operation, which has a condition to select certain documents, and a $set clause to
specify the update. It is also possible to use the update operation to replace an
existing document with another one but keep the same ObjectId.

For read queries, the main command is called find, and the format is:

db.<collection_name>.find(<condition>)

General Boolean conditions can be specified as <condition>, and the documents in
the collection that return true are selected for the query result. For a full discussion
of the MongoDb CRUD operations, see the MongoDB online documentation in the
chapter references.

 { _id: “W2”,
 Ename: “Joyce English”,
 ProjectId: “P1”,
 Hours: 20.0
 }

(d) inserting the documents in (c) into their collections “project” and “worker”:
 db.project.insert({ _id: “P1”, Pname: “ProductX”, Plocation: “Bellaire” })
 db.worker.insert([{ _id: “W1”, Ename: “John Smith”, ProjectId: “P1”, Hours: 32.5 },
 { _id: “W2”, Ename: “Joyce English”, ProjectId: “P1”,

 Hours: 20.0 }])

Figure 24.1
(continued)
Example of simple
documents in
MongoDB. (d) Inserting
the documents in
 Figure 24.1(c) into
their collections.

894 Chapter 24 NOSQL Databases and Big Data Storage Systems

24.3.3 MongoDB Distributed Systems Characteristics
Most MongoDB updates are atomic if they refer to a single document, but MongoDB
also provides a pattern for specifying transactions on multiple documents. Since
MongoDB is a distributed system, the two-phase commit method is used to ensure
atomicity and consistency of multidocument transactions. We discussed the atomi-
city and consistency properties of transactions in Section 20.3, and the two-phase
commit protocol in Section 22.6.

Replication in MongoDB. The concept of replica set is used in MongoDB to create
multiple copies of the same data set on different nodes in the distributed system, and
it uses a variation of the master-slave approach for replication. For example, suppose
that we want to replicate a particular document collection C. A replica set will have
one primary copy of the collection C stored in one node N1, and at least one
 secondary copy (replica) of C stored at another node N2. Additional copies can be
stored in nodes N3, N4, etc., as needed, but the cost of storage and update (write)
increases with the number of replicas. The total number of participants in a replica set
must be at least three, so if only one secondary copy is needed, a participant in the
 replica set known as an arbiter must run on the third node N3. The arbiter does not
hold a replica of the collection but participates in elections to choose a new primary if
the node storing the current primary copy fails. If the total number of members in a rep-
lica set is n (one primary plus i secondaries, for a total of n = i + 1), then n must be an odd
number; if it is not, an arbiter is added to ensure the election process works correctly if
the primary fails. We discussed elections in distributed systems in Section 23.3.1.

In MongoDB replication, all write operations must be applied to the primary copy
and then propagated to the secondaries. For read operations, the user can choose
the particular read preference for their application. The default read preference
processes all reads at the primary copy, so all read and write operations are per-
formed at the primary node. In this case, secondary copies are mainly to make sure
that the system continues operation if the primary fails, and MongoDB can ensure
that every read request gets the latest document value. To increase read perfor-
mance, it is possible to set the read preference so that read requests can be processed
at any replica (primary or secondary); however, a read at a secondary is not guaran-
teed to get the latest version of a document because there can be a delay in propa-
gating writes from the primary to the secondaries.

Sharding in MongoDB. When a collection holds a very large number of docu-
ments or requires a large storage space, storing all the documents in one node can
lead to performance problems, particularly if there are many user operations
accessing the documents concurrently using various CRUD operations. Sharding
of the documents in the collection—also known as horizontal partitioning—
divides the documents into disjoint partitions known as shards. This allows the
system to add more nodes as needed by a process known as horizontal scaling of
the distributed system (see Section 23.1.4), and to store the shards of the collection
on different nodes to achieve load balancing. Each node will process only those
operations pertaining to the documents in the shard stored at that node. Also, each

 24.4 NOSQL Key-Value Stores 895

shard will contain fewer documents than if the entire collection were stored at one
node, thus further improving performance.

There are two ways to partition a collection into shards in MongoDB—range
 partitioning and hash partitioning. Both require that the user specify a particular
document field to be used as the basis for partitioning the documents into shards.
The partitioning field—known as the shard key in MongoDB—must have two
characteristics: it must exist in every document in the collection, and it must have an
index. The ObjectId can be used, but any other field possessing these two character-
istics can also be used as the basis for sharding. The values of the shard key are
divided into chunks either through range partitioning or hash partitioning, and the
documents are partitioned based on the chunks of shard key values.

Range partitioning creates the chunks by specifying a range of key values; for example,
if the shard key values ranged from one to ten million, it is possible to create ten
ranges—1 to 1,000,000; 1,000,001 to 2,000,000; … ; 9,000,001 to 10,000,000—and
each chunk would contain the key values in one range. Hash partitioning applies a
hash function h(K) to each shard key K, and the partitioning of keys into chunks is
based on the hash values (we discussed hashing and its advantages and disadvantages
in Section 16.8). In general, if range queries are commonly applied to a collection (for
example, retrieving all documents whose shard key value is between 200 and 400),
then range partitioning is preferred because each range query will typically be submit-
ted to a single node that contains all the required documents in one shard. If most
searches retrieve one document at a time, hash partitioning may be preferable because
it randomizes the distribution of shard key values into chunks.

When sharding is used, MongoDB queries are submitted to a module called the query
router, which keeps track of which nodes contain which shards based on the particu-
lar partitioning method used on the shard keys. The query (CRUD operation) will be
routed to the nodes that contain the shards that hold the documents that the query is
requesting. If the system cannot determine which shards hold the required docu-
ments, the query will be submitted to all the nodes that hold shards of the collection.
Sharding and replication are used together; sharding focuses on improving perfor-
mance via load balancing and horizontal scalability, whereas replication focuses on
ensuring system availability when certain nodes fail in the distributed system.

There are many additional details about the distributed system architecture and com-
ponents of MongoDB, but a full discussion is outside the scope of our presentation.
MongoDB also provides many other services in areas such as system administration,
indexing, security, and data aggregation, but we will not discuss these features here.
Full documentation of MongoDB is available online (see the bibliographic notes).

24.4 NOSQL Key-Value Stores
Key-value stores focus on high performance, availability, and scalability by storing
data in a distributed storage system. The data model used in key-value stores is rela-
tively simple, and in many of these systems, there is no query language but rather a

896 Chapter 24 NOSQL Databases and Big Data Storage Systems

set of operations that can be used by the application programmers. The key is a
unique identifier associated with a data item and is used to locate this data item
rapidly. The value is the data item itself, and it can have very different formats for
different key-value storage systems. In some cases, the value is just a string of bytes
or an array of bytes, and the application using the key-value store has to interpret
the structure of the data value. In other cases, some standard formatted data is
allowed; for example, structured data rows (tuples) similar to relational data, or
semistructured data using JSON or some other self-describing data format. Differ-
ent key-value stores can thus store unstructured, semistructured, or structured data
items (see Section 13.1). The main characteristic of key-value stores is the fact that
every value (data item) must be associated with a unique key, and that retrieving the
value by supplying the key must be very fast.

There are many systems that fall under the key-value store label, so rather than pro-
vide a lot of details on one particular system, we will give a brief introductory over-
view for some of these systems and their characteristics.

24.4.1 DynamoDB Overview
The DynamoDB system is an Amazon product and is available as part of Amazon’s
AWS/SDK platforms (Amazon Web Services/Software Development Kit). It can be
used as part of Amazon’s cloud computing services, for the data storage component.

DynamoDB data model. The basic data model in DynamoDB uses the concepts
of tables, items, and attributes. A table in DynamoDB does not have a schema; it
holds a collection of self-describing items. Each item will consist of a number of
(attribute, value) pairs, and attribute values can be single-valued or multivalued. So
basically, a table will hold a collection of items, and each item is a self-describing
record (or object). DynamoDB also allows the user to specify the items in JSON for-
mat, and the system will convert them to the internal storage format of DynamoDB.

When a table is created, it is required to specify a table name and a primary key;
the primary key will be used to rapidly locate the items in the table. Thus, the pri-
mary key is the key and the item is the value for the DynamoDB key-value store.
The primary key attribute must exist in every item in the table. The primary key can
be one of the following two types:

 ■ A single attribute. The DynamoDB system will use this attribute to build a
hash index on the items in the table. This is called a hash type primary key.
The items are not ordered in storage on the value of the hash attribute.

 ■ A pair of attributes. This is called a hash and range type primary key. The
primary key will be a pair of attributes (A, B): attribute A will be used for hash-
ing, and because there will be multiple items with the same value of A, the B
values will be used for ordering the records with the same A value. A table
with this type of key can have additional secondary indexes defined on its
attributes. For example, if we want to store multiple versions of some type of
items in a table, we could use ItemID as hash and Date or Timestamp (when
the version was created) as range in a hash and range type primary key.

 24.4 NOSQL Key-Value Stores 897

DynamoDB Distributed Characteristics. Because DynamoDB is proprietary, in
the next subsection we will discuss the mechanisms used for replication, sharding,
and other distributed system concepts in an open source key-value system called
Voldemort. Voldemort is based on many of the techniques proposed for DynamoDB.

24.4.2 Voldemort Key-Value Distributed Data Store
Voldemort is an open source system available through Apache 2.0 open source licens-
ing rules. It is based on Amazon’s DynamoDB. The focus is on high performance and
horizontal scalability, as well as on providing replication for high availability and
sharding for improving latency (response time) of read and write requests. All three
of those features—replication, sharding, and horizontal scalability—are realized
through a technique to distribute the key-value pairs among the nodes of a distrib-
uted cluster; this distribution is known as consistent hashing. Voldemort has been
used by LinkedIn for data storage. Some of the features of Voldemort are as follows:

 ■ Simple basic operations. A collection of (key, value) pairs is kept in a
Voldemort store. In our discussion, we will assume the store is called s. The
basic interface for data storage and retrieval is very simple and includes
three operations: get, put, and delete. The operation s.put(k, v) inserts an
item as a key-value pair with key k and value v. The operation s.delete(k)
deletes the item whose key is k from the store, and the operation v = s.get(k)
retrieves the value v associated with key k. The application can use these
basic operations to build its own requirements. At the basic storage level,
both keys and values are arrays of bytes (strings).

 ■ High-level formatted data values. The values v in the (k, v) items can be
specified in JSON (JavaScript Object Notation), and the system will convert
between JSON and the internal storage format. Other data object formats can
also be specified if the application provides the conversion (also known as
serialization) between the user format and the storage format as a Serializer
class. The Serializer class must be provided by the user and will include oper-
ations to convert the user format into a string of bytes for storage as a value,
and to convert back a string (array of bytes) retrieved via s.get(k) into the user
format. Voldemort has some built-in serializers for formats other than JSON.

 ■ Consistent hashing for distributing (key, value) pairs. A variation of the
data distribution algorithm known as consistent hashing is used in Volde-
mort for data distribution among the nodes in the distributed cluster of
nodes. A hash function h(k) is applied to the key k of each (k, v) pair, and
h(k) determines where the item will be stored. The method assumes that
h(k) is an integer value, usually in the range 0 to Hmax = 2n−1, where n is
chosen based on the desired range for the hash values. This method is best
visualized by considering the range of all possible integer hash values 0 to
Hmax to be evenly distributed on a circle (or ring). The nodes in the distrib-
uted system are then also located on the same ring; usually each node will
have several locations on the ring (see Figure 24.2). The positioning of the
points on the ring that represent the nodes is done in a psuedorandom manner.

898 Chapter 24 NOSQL Databases and Big Data Storage Systems

An item (k, v) will be stored on the node whose position in the ring follows
the position of h(k) on the ring in a clockwise direction. In Figure 24.2(a), we
assume there are three nodes in the distributed cluster labeled A, B, and C,
where node C has a bigger capacity than nodes A and B. In a typical system,
there will be many more nodes. On the circle, two instances each of A and B
are placed, and three instances of C (because of its higher capacity), in a
pseudorandom manner to cover the circle. Figure 24.2(a) indicates which
(k, v) items are placed in which nodes based on the h(k) values.

C

C

A

B

C

A

B

Range 3

Range 1

Range 2

Range 3

Range 3

Range 2

Range 1

C

C

A

D

B

C

A

D

B

Range 3

Range 1

Range 4

Range 3

Range 4

Range 3
(reduced)

Range 2
(reduced)

Range 2

Range 1

Figure 24.2
Example of consistent
hashing. (a) Ring
 having three nodes A,
B, and C, with C having
greater capacity. The
h(K) values that map to
the circle points in
range 1 have their (k, v)
items stored in node A,
range 2 in node B,
range 3 in node C.
(b) Adding a node D to
the ring. Items in
range 4 are moved to
the node D from node
B (range 2 is reduced)
and node C (range 3 is
reduced).

 24.4 NOSQL Key-Value Stores 899

 ■ The h(k) values that fall in the parts of the circle marked as range 1 in Fig-
ure 24.2(a) will have their (k, v) items stored in node A because that is the node
whose label follows h(k) on the ring in a clockwise direction; those in range 2
are stored in node B; and those in range 3 are stored in node C. This scheme
allows horizontal scalability because when a new node is added to the distrib-
uted system, it can be added in one or more locations on the ring depending
on the node capacity. Only a limited percentage of the (k, v) items will be reas-
signed to the new node from the existing nodes based on the consistent hash-
ing placement algorithm. Also, those items assigned to the new node may not
all come from only one of the existing nodes because the new node can have
multiple locations on the ring. For example, if a node D is added and it has two
placements on the ring as shown in Figure 24.2(b), then some of the items
from nodes B and C would be moved to node D. The items whose keys hash to
range 4 on the circle (see Figure 24.2(b)) would be migrated to node D. This
scheme also allows replication by placing the number of specified replicas of
an item on successive nodes on the ring in a clockwise direction. The sharding
is built into the method, and different items in the store (file) are located on
different nodes in the distributed cluster, which means the items are horizon-
tally partitioned (sharded) among the nodes in the distributed system. When
a node fails, its load of data items can be distributed to the other existing nodes
whose labels follow the labels of the failed node in the ring. And nodes with
higher capacity can have more locations on the ring, as illustrated by node C
in Figure 24.2(a), and thus store more items than smaller-capacity nodes.

 ■ Consistency and versioning. Voldemort uses a method similar to the one
developed for DynamoDB for consistency in the presence of replicas. Basi-
cally, concurrent write operations are allowed by different processes so there
could exist two or more different values associated with the same key at dif-
ferent nodes when items are replicated. Consistency is achieved when the
item is read by using a technique known as versioning and read repair. Con-
current writes are allowed, but each write is associated with a vector clock
value. When a read occurs, it is possible that different versions of the same
value (associated with the same key) are read from different nodes. If the
system can reconcile to a single final value, it will pass that value to the read;
otherwise, more than one version can be passed back to the application,
which will reconcile the various versions into one version based on the
application semantics and give this reconciled value back to the nodes.

24.4.3 Examples of Other Key-Value Stores
In this section, we briefly review three other key-value stores. It is important to note
that there are many systems that can be classified in this category, and we can only
mention a few of these systems.

Oracle key-value store. Oracle has one of the well-known SQL relational data-
base systems, and Oracle also offers a system based on the key-value store concept;
this system is called the Oracle NoSQL Database.

900 Chapter 24 NOSQL Databases and Big Data Storage Systems

Redis key-value cache and store. Redis differs from the other systems dis-
cussed here because it caches its data in main memory to further improve perfor-
mance. It offers master-slave replication and high availability, and it also offers
persistence by backing up the cache to disk.

Apache Cassandra. Cassandra is a NOSQL system that is not easily categorized
into one category; it is sometimes listed in the column-based NOSQL category (see
Section 24.5) or in the key-value category. If offers features from several NOSQL
categories and is used by Facebook as well as many other customers.

24.5 Column-Based or Wide Column
NOSQL Systems

Another category of NOSQL systems is known as column-based or wide column
systems. The Google distributed storage system for big data, known as BigTable, is
a well-known example of this class of NOSQL systems, and it is used in many
Google applications that require large amounts of data storage, such as Gmail. Big-
Table uses the Google File System (GFS) for data storage and distribution. An
open source system known as Apache Hbase is somewhat similar to Google Big-
Table, but it typically uses HDFS (Hadoop Distributed File System) for data stor-
age. HDFS is used in many cloud computing applications, as we shall discuss in
Chapter 25. Hbase can also use Amazon’s Simple Storage System (known as S3)
for data storage. Another well-known example of column-based NOSQL systems is
Cassandra, which we discussed briefly in Section 24.4.3 because it can also be char-
acterized as a key-value store. We will focus on Hbase in this section as an example
of this category of NOSQL systems.

BigTable (and Hbase) is sometimes described as a sparse multidimensional distrib-
uted persistent sorted map, where the word map means a collection of (key, value)
pairs (the key is mapped to the value). One of the main differences that distinguish
column-based systems from key-value stores (see Section 24.4) is the nature of the
key. In column-based systems such as Hbase, the key is multidimensional and so
has several components: typically, a combination of table name, row key, column,
and timestamp. As we shall see, the column is typically composed of two compo-
nents: column family and column qualifier. We discuss these concepts in more
detail next as they are realized in Apache Hbase.

24.5.1 Hbase Data Model and Versioning
Hbase data model. The data model in Hbase organizes data using the concepts
of namespaces, tables, column families, column qualifiers, columns, rows, and data
cells. A column is identified by a combination of (column family:column qualifier).
Data is stored in a self-describing form by associating columns with data values,
where data values are strings. Hbase also stores multiple versions of a data item,
with a timestamp associated with each version, so versions and timestamps are also

 24.5 Column-Based or Wide Column NOSQL Systems 901

part of the Hbase data model (this is similar to the concept of attribute versioning in
temporal databases, which we shall discuss in Section 26.2). As with other NOSQL
systems, unique keys are associated with stored data items for fast access, but the
keys identify cells in the storage system. Because the focus is on high performance
when storing huge amounts of data, the data model includes some storage-related
concepts. We discuss the Hbase data modeling concepts and define the terminol-
ogy next. It is important to note that the use of the words table, row, and column is
not identical to their use in relational databases, but the uses are related.

 ■ Tables and Rows. Data in Hbase is stored in tables, and each table has a
table name. Data in a table is stored as self-describing rows. Each row has a
unique row key, and row keys are strings that must have the property that
they can be lexicographically ordered, so characters that do not have a lexi-
cographic order in the character set cannot be used as part of a row key.

 ■ Column Families, Column Qualifiers, and Columns. A table is associated
with one or more column families. Each column family will have a name,
and the column families associated with a table must be specified when the
table is created and cannot be changed later. Figure 24.3(a) shows how a table
may be created; the table name is followed by the names of the column fami-
lies associated with the table. When the data is loaded into a table, each col-
umn family can be associated with many column qualifiers, but the column
qualifiers are not specified as part of creating a table. So the column qualifiers
make the model a self-describing data model because the qualifiers can be
dynamically specified as new rows are created and inserted into the table. A
column is specified by a combination of ColumnFamily:ColumnQualifier.
Basically, column families are a way of grouping together related columns
(attributes in relational terminology) for storage purposes, except that the
column qualifier names are not specified during table creation. Rather, they
are specified when the data is created and stored in rows, so the data is self-
describing since any column qualifier name can be used in a new row of data
(see Figure 24.3(b)). However, it is important that the application program-
mers know which column qualifiers belong to each column family, even
though they have the flexibility to create new column qualifiers on the fly
when new data rows are created. The concept of column family is somewhat
similar to vertical partitioning (see Section 23.2), because columns (attri-
butes) that are accessed together because they belong to the same column
family are stored in the same files. Each column family of a table is stored in
its own files using the HDFS file system.

 ■ Versions and Timestamps. Hbase can keep several versions of a data item,
along with the timestamp associated with each version. The timestamp is a
long integer number that represents the system time when the version was
created, so newer versions have larger timestamp values. Hbase uses mid-
night ‘January 1, 1970 UTC’ as timestamp value zero, and uses a long integer
that measures the number of milliseconds since that time as the system
timestamp value (this is similar to the value returned by the Java utility
java.util.Date.getTime() and is also used in MongoDB). It is also possible for

902 Chapter 24 NOSQL Databases and Big Data Storage Systems

the user to define the timestamp value explicitly in a Date format rather than
using the system-generated timestamp.

 ■ Cells. A cell holds a basic data item in Hbase. The key (address) of a cell is
specified by a combination of (table, rowid, columnfamily, columnqualifier,
timestamp). If timestamp is left out, the latest version of the item is retrieved
unless a default number of versions is specified, say the latest three versions.
The default number of versions to be retrieved, as well as the default number
of versions that the system needs to keep, are parameters that can be speci-
fied during table creation.

 ■ Namespaces. A namespace is a collection of tables. A namespace basically
specifies a collection of one or more tables that are typically used together by
user applications, and it corresponds to a database that contains a collection
of tables in relational terminology.

(a) creating a table:
 create ‘EMPLOYEE’, ‘Name’, ‘Address’, ‘Details’
(b) inserting some row data in the EMPLOYEE table:
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Fname’, ‘John’
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Lname’, ‘Smith’
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Nickname’, ‘Johnny’
 put ‘EMPLOYEE’, ‘row1’, ‘Details:Job’, ‘Engineer’
 put ‘EMPLOYEE’, ‘row1’, ‘Details:Review’, ‘Good’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:Fname’, ‘Alicia’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:Lname’, ‘Zelaya’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:MName’, ‘Jennifer’
 put ‘EMPLOYEE’, ‘row2’, ‘Details:Job’, ‘DBA’
 put ‘EMPLOYEE’, ‘row2’, ‘Details:Supervisor’, ‘James Borg’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Fname’, ‘James’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Minit’, ‘E’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Lname’, ‘Borg’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Suffix’, ‘Jr.’
 put ‘EMPLOYEE’, ‘row3’, ‘Details:Job’, ‘CEO’
 put ‘EMPLOYEE’, ‘row3’, ‘Details:Salary’, ‘1,000,000’

(c) Some Hbase basic CRUD operations:
 Creating a table: create <tablename>, <column family>, <column family>, …
 Inserting Data: put <tablename>, <rowid>, <column family>:<column qualifier>, <value>
 Reading Data (all data in a table): scan <tablename>
 Retrieve Data (one item): get <tablename>,<rowid>

Figure 24.3
Examples in Hbase. (a) Creating a table called EMPLOYEE with three column families: Name, Address, and Details.
(b) Inserting some in the EMPLOYEE table; different rows can have different self-describing column qualifiers
(Fname, Lname, Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor, Salary
for column family Details). (c) Some CRUD operations of Hbase.

 24.6 NOSQL Graph Databases and Neo4j 903

24.5.2 Hbase CRUD Operations
Hbase has low-level CRUD (create, read, update, delete) operations, as in many of
the NOSQL systems. The formats of some of the basic CRUD operations in Hbase
are shown in Figure 24.3(c).

Hbase only provides low-level CRUD operations. It is the responsibility of the
application programs to implement more complex operations, such as joins
between rows in different tables. The create operation creates a new table and spec-
ifies one or more column families associated with that table, but it does not specify
the column qualifiers, as we discussed earlier. The put operation is used for insert-
ing new data or new versions of existing data items. The get operation is for retriev-
ing the data associated with a single row in a table, and the scan operation retrieves
all the rows.

24.5.3 Hbase Storage and Distributed System Concepts
Each Hbase table is divided into a number of regions, where each region will hold a
range of the row keys in the table; this is why the row keys must be lexicographically
ordered. Each region will have a number of stores, where each column family is
assigned to one store within the region. Regions are assigned to region servers
(storage nodes) for storage. A master server (master node) is responsible for moni-
toring the region servers and for splitting a table into regions and assigning regions
to region servers.

Hbase uses the Apache Zookeeper open source system for services related to man-
aging the naming, distribution, and synchronization of the Hbase data on the dis-
tributed Hbase server nodes, as well as for coordination and replication services.
Hbase also uses Apache HDFS (Hadoop Distributed File System) for distributed
file services. So Hbase is built on top of both HDFS and Zookeeper. Zookeeper can
itself have several replicas on several nodes for availability, and it keeps the data it
needs in main memory to speed access to the master servers and region servers.

We will not cover the many additional details about the distributed system architecture
and components of Hbase; a full discussion is outside the scope of our presentation. Full
documentation of Hbase is available online (see the bibliographic notes).

24.6 NOSQL Graph Databases and Neo4j
Another category of NOSQL systems is known as graph databases or graph-
oriented NOSQL systems. The data is represented as a graph, which is a collection
of vertices (nodes) and edges. Both nodes and edges can be labeled to indicate the
types of entities and relationships they represent, and it is generally possible to
store data associated with both individual nodes and individual edges. Many sys-
tems can be categorized as graph databases. We will focus our discussion on one
particular system, Neo4j, which is used in many applications. Neo4j is an open
source system, and it is implemented in Java. We will discuss the Neo4j data model

904 Chapter 24 NOSQL Databases and Big Data Storage Systems

in Section 24.6.1, and give an introduction to the Neo4j querying capabilities in
Section 24.6.2. Section 24.6.3 gives an overview of the distributed systems and
some other characteristics of Neo4j.

24.6.1 Neo4j Data Model
The data model in Neo4j organizes data using the concepts of nodes and relation-
ships. Both nodes and relationships can have properties, which store the data items
associated with nodes and relationships. Nodes can have labels; the nodes that have
the same label are grouped into a collection that identifies a subset of the nodes in
the database graph for querying purposes. A node can have zero, one, or several
labels. Relationships are directed; each relationship has a start node and end node as
well as a relationship type, which serves a similar role to a node label by identifying
similar relationships that have the same relationship type. Properties can be speci-
fied via a map pattern, which is made of one or more “name : value” pairs enclosed
in curly brackets; for example {Lname : ‘Smith’, Fname : ‘John’, Minit : ‘B’}.

In conventional graph theory, nodes and relationships are generally called vertices
and edges. The Neo4j graph data model somewhat resembles how data is repre-
sented in the ER and EER models (see Chapters 3 and 4) , but with some notable
differences. Comparing the Neo4j graph model with ER/EER concepts, nodes cor-
respond to entities, node labels correspond to entity types and subclasses, relation-
ships correspond to relationship instances, relationship types correspond to
relationship types, and properties correspond to attributes. One notable difference
is that a relationship is directed in Neo4j, but is not in ER/EER. Another is that a
node may have no label in Neo4j, which is not allowed in ER/EER because every
entity must belong to an entity type. A third crucial difference is that the graph
model of Neo4j is used as a basis for an actual high-performance distributed data-
base system whereas the ER/EER model is mainly used for database design.

Figure 24.4(a) shows how a few nodes can be created in Neo4j. There are various
ways in which nodes and relationships can be created; for example, by calling appro-
priate Neo4j operations from various Neo4j APIs. We will just show the high-level
syntax for creating nodes and relationships; to do so, we will use the Neo4j CREATE
command, which is part of the high-level declarative query language Cypher. Neo4j
has many options and variations for creating nodes and relationships using various
scripting interfaces, but a full discussion is outside the scope of our presentation.

 ■ Labels and properties. When a node is created, the node label can be speci-
fied. It is also possible to create nodes without any labels. In Figure 24.4(a), the
node labels are EMPLOYEE, DEPARTMENT, PROJECT, and LOCATION,
and the created nodes correspond to some of the data from the COMPANY
database in Figure 5.6 with a few modifications; for example, we use EmpId
instead of SSN, and we only include a small subset of the data for illustration
purposes. Properties are enclosed in curly brackets { … }. It is possible that
some nodes have multiple labels; for example the same node can be labeled as
PERSON and EMPLOYEE and MANAGER by listing all the labels separated
by the colon symbol as follows: PERSON:EMPLOYEE:MANAGER. Having
multiple labels is similar to an entity belonging to an entity type (PERSON)

 24.6 NOSQL Graph Databases and Neo4j 905

plus some subclasses of PERSON (namely EMPLOYEE and MANAGER) in
the EER model (see Chapter 4) but can also be used for other purposes.

 ■ Relationships and relationship types. Figure 24.4(b) shows a few example
relationships in Neo4j based on the COMPANY database in Figure 5.6.
The → specifies the direction of the relationship, but the relationship can be
traversed in either direction. The relationship types (labels) in Figure 24.4(b)
are WorksFor, Manager, LocatedIn, and WorksOn; only relationships with
the relationship type WorksOn have properties (Hours) in Figure 24.4(b).

 ■ Paths. A path specifies a traversal of part of the graph. It is typically used as
part of a query to specify a pattern, where the query will retrieve from the
graph data that matches the pattern. A path is typically specified by a start
node, followed by one or more relationships, leading to one or more end
nodes that satisfy the pattern. It is somewhat similar to the concepts of path
expressions that we discussed in Chapters 12 and 13 in the context of query
languages for object databases (OQL) and XML (XPath and XQuery).

 ■ Optional Schema. A schema is optional in Neo4j. Graphs can be created
and used without a schema, but in Neo4j version 2.0, a few schema-related
functions were added. The main features related to schema creation involve
creating indexes and constraints based on the labels and properties. For
example, it is possible to create the equivalent of a key constraint on a prop-
erty of a label, so all nodes in the collection of nodes associated with the label
must have unique values for that property.

 ■ Indexing and node identifiers. When a node is created, the Neo4j system
creates an internal unique system-defined identifier for each node. To
retrieve individual nodes using other properties of the nodes efficiently, the
user can create indexes for the collection of nodes that have a particular
label. Typically, one or more of the properties of the nodes in that collection
can be indexed. For example, Empid can be used to index nodes with the
EMPLOYEE label, Dno to index the nodes with the DEPARTMENT label,
and Pno to index the nodes with the PROJECT label.

24.6.2 The Cypher Query Language of Neo4j
Neo4j has a high-level query language, Cypher. There are declarative commands for
creating nodes and relationships (see Figures 24.4(a) and (b)), as well as for finding
nodes and relationships based on specifying patterns. Deletion and modification of
data is also possible in Cypher. We introduced the CREATE command in the previous
section, so we will now give a brief overview of some of the other features of Cypher.

A Cypher query is made up of clauses. When a query has several clauses, the result
from one clause can be the input to the next clause in the query. We will give a fla-
vor of the language by discussing some of the clauses using examples. Our presenta-
tion is not meant to be a detailed presentation on Cypher, just an introduction to
some of the languages features. Figure 24.4(c) summarizes some of the main clauses
that can be part of a Cyber query. The Cyber language can specify complex queries
and updates on a graph database. We will give a few of examples to illustrate simple
Cyber queries in Figure 24.4(d).

906 Chapter 24 NOSQL Databases and Big Data Storage Systems

(a) creating some nodes for the COMPANY data (from Figure 5.6):
 CREATE (e1: EMPLOYEE, {Empid: ‘1’, Lname: ‘Smith’, Fname: ‘John’, Minit: ‘B’})
 CREATE (e2: EMPLOYEE, {Empid: ‘2’, Lname: ‘Wong’, Fname: ‘Franklin’})
 CREATE (e3: EMPLOYEE, {Empid: ‘3’, Lname: ‘Zelaya’, Fname: ‘Alicia’})
 CREATE (e4: EMPLOYEE, {Empid: ‘4’, Lname: ‘Wallace’, Fname: ‘Jennifer’, Minit: ‘S’})
 …
 CREATE (d1: DEPARTMENT, {Dno: ‘5’, Dname: ‘Research’})
 CREATE (d2: DEPARTMENT, {Dno: ‘4’, Dname: ‘Administration’})
 …
 CREATE (p1: PROJECT, {Pno: ‘1’, Pname: ‘ProductX’})
 CREATE (p2: PROJECT, {Pno: ‘2’, Pname: ‘ProductY’})
 CREATE (p3: PROJECT, {Pno: ‘10’, Pname: ‘Computerization’})
 CREATE (p4: PROJECT, {Pno: ‘20’, Pname: ‘Reorganization’})
 …
 CREATE (loc1: LOCATION, {Lname: ‘Houston’})
 CREATE (loc2: LOCATION, {Lname: ‘Stafford’})
 CREATE (loc3: LOCATION, {Lname: ‘Bellaire’})
 CREATE (loc4: LOCATION, {Lname: ‘Sugarland’})
 …

(b) creating some relationships for the COMPANY data (from Figure 5.6):
 CREATE (e1) – [: WorksFor] –> (d1)
 CREATE (e3) – [: WorksFor] –> (d2)
 …
 CREATE (d1) – [: Manager] –> (e2)
 CREATE (d2) – [: Manager] –> (e4)
 …
 CREATE (d1) – [: LocatedIn] –> (loc1)
 CREATE (d1) – [: LocatedIn] –> (loc3)
 CREATE (d1) – [: LocatedIn] –> (loc4)
 CREATE (d2) – [: LocatedIn] –> (loc2)
 …
 CREATE (e1) – [: WorksOn, {Hours: ‘32.5’}] –> (p1)
 CREATE (e1) – [: WorksOn, {Hours: ‘7.5’}] –> (p2)
 CREATE (e2) – [: WorksOn, {Hours: ‘10.0’}] –> (p1)
 CREATE (e2) – [: WorksOn, {Hours: 10.0}] –> (p2)
 CREATE (e2) – [: WorksOn, {Hours: ‘10.0’}] –> (p3)
 CREATE (e2) – [: WorksOn, {Hours: 10.0}] –> (p4)
 …

Figure 24.4
Examples in Neo4j using the Cypher language. (a) Creating some nodes. (b) Creating some relationships.

 24.6 NOSQL Graph Databases and Neo4j 907

(c) Basic simplified syntax of some common Cypher clauses:
 Finding nodes and relationships that match a pattern: MATCH <pattern>
 Specifying aggregates and other query variables: WITH <specifications>
 Specifying conditions on the data to be retrieved: WHERE <condition>
 Specifying the data to be returned: RETURN <data>
 Ordering the data to be returned: ORDER BY <data>
 Limiting the number of returned data items: LIMIT <max number>
 Creating nodes: CREATE <node, optional labels and properties>
 Creating relationships: CREATE <relationship, relationship type and optional properties>
 Deletion: DELETE <nodes or relationships>
 Specifying property values and labels: SET <property values and labels>
 Removing property values and labels: REMOVE <property values and labels>

(d) Examples of simple Cypher queries:
1. MATCH (d : DEPARTMENT {Dno: ‘5’}) – [: LocatedIn] → (loc)
 RETURN d.Dname , loc.Lname
2. MATCH (e: EMPLOYEE {Empid: ‘2’}) – [w: WorksOn] → (p)
 RETURN e.Ename , w.Hours, p.Pname
3. MATCH (e) – [w: WorksOn] → (p: PROJECT {Pno: 2})
 RETURN p.Pname, e.Ename , w.Hours
4. MATCH (e) – [w: WorksOn] → (p)
 RETURN e.Ename , w.Hours, p.Pname
 ORDER BY e.Ename
5. MATCH (e) – [w: WorksOn] → (p)
 RETURN e.Ename , w.Hours, p.Pname
 ORDER BY e.Ename
 LIMIT 10
6. MATCH (e) – [w: WorksOn] → (p)
 WITH e, COUNT(p) AS numOfprojs
 WHERE numOfprojs > 2
 RETURN e.Ename , numOfprojs
 ORDER BY numOfprojs
7. MATCH (e) – [w: WorksOn] → (p)
 RETURN e , w, p
 ORDER BY e.Ename
 LIMIT 10
8. MATCH (e: EMPLOYEE {Empid: ‘2’})
 SET e.Job = ‘Engineer’

Figure 24.4 (continued)
Examples in Neo4j using the Cypher language. (c) Basic syntax of Cypher queries. (d) Examples of Cypher queries.

Query 1 in Figure 24.4(d) shows how to use the MATCH and RETURN clauses in a
query, and the query retrieves the locations for department number 5. Match speci-
fies the pattern and the query variables (d and loc) and RETURN specifies the query
result to be retrieved by refering to the query variables. Query 2 has three variables
(e, w, and p), and returns the projects and hours per week that the employee with

908 Chapter 24 NOSQL Databases and Big Data Storage Systems

Empid = 2 works on. Query 3, on the other hand, returns the employees and hours
per week who work on the project with Pno = 2. Query 4 illustrates the ORDER BY
clause and returns all employees and the projects they work on, sorted by Ename. It
is also possible to limit the number of returned results by using the LIMIT clause as
in query 5, which only returns the first 10 answers.

Query 6 illustrates the use of WITH and aggregation, although the WITH clause can
be used to separate clauses in a query even if there is no aggregation. Query 6 also illus-
trates the WHERE clause to specify additional conditions, and the query returns the
employees who work on more than two projects, as well as the number of projects each
employee works on. It is also common to return the nodes and relationships them-
selves in the query result, rather than the property values of the nodes as in the previ-
ous queries. Query 7 is similar to query 5 but returns the nodes and relationships only,
and so the query result can be displayed as a graph using Neo4j’s visualization tool. It is
also possible to add or remove labels and properties from nodes. Query 8 shows how to
add more properties to a node by adding a Job property to an employee node.

The above gives a brief flavor for the Cypher query language of Neo4j. The full lan-
guage manual is available online (see the bibliographic notes).

24.6.3 Neo4j Interfaces and Distributed System Characteristics
Neo4j has other interfaces that can be used to create, retrieve, and update nodes and
relationships in a graph database. It also has two main versions: the enterprise edi-
tion, which comes with additional capabilities, and the community edition. We dis-
cuss some of the additional features of Neo4j in this subsection.

 ■ Enterprise edition vs. community edition. Both editions support the Neo4j
graph data model and storage system, as well as the Cypher graph query
language, and several other interfaces, including a high-performance native
API, language drivers for several popular programming languages, such as
Java, Python, PHP, and the REST (Representational State Transfer) API. In
addition, both editions support ACID properties. The enterprise edition
supports additional features for enhancing performance, such as caching
and clustering of data and locking.

 ■ Graph visualization interface. Neo4j has a graph visualization interface, so
that a subset of the nodes and edges in a database graph can be displayed as a
graph. This tool can be used to visualize query results in a graph representation.

 ■ Master-slave replication. Neo4j can be configured on a cluster of distrib-
uted system nodes (computers), where one node is designated the master
node. The data and indexes are fully replicated on each node in the cluster.
Various ways of synchronizing the data between master and slave nodes can
be configured in the distributed cluster.

 ■ Caching. A main memory cache can be configured to store the graph data
for improved performance.

 ■ Logical logs. Logs can be maintained to recover from failures.

 Review Questions 909

A full discussion of all the features and interfaces of Neo4j is outside the scope of
our presentation. Full documentation of Neo4j is available online (see the biblio-
graphic notes).

24.7 Summary
In this chapter, we discussed the class of database systems known as NOSQL sys-
tems, which focus on efficient storage and retrieval of large amounts of “big data.”
Applications that use these types of systems include social media, Web links, user
profiles, marketing and sales, posts and tweets, road maps and spatial data, and
e-mail. The term NOSQL is generally interpreted as Not Only SQL—rather than
NO to SQL—and is meant to convey that many applications need systems other
than traditional relational SQL systems to augment their data management needs.
These systems are distributed databases or distributed storage systems, with a focus
on semistructured data storage, high performance, availability, data replication,
and scalability rather than an emphasis on immediate data consistency, powerful
query languages, and structured data storage.

In Section 24.1, we started with an introduction to NOSQL systems, their charac-
teristics, and how they differ from SQL systems. Four general categories of NOSQL
systems are document-based, key-value stores, column-based, and graph-based.
In Section 24.2, we discussed how NOSQL systems approach the issue of consis-
tency among multiple replicas (copies) by using the paradigm known as eventual
consistency. We discussed the CAP theorem, which can be used to understand the
emphasis of NOSQL systems on availability. In Sections 24.3 through 24.6, we
presented an overview of each of the four main categories of NOSQL systems—
starting with document-based systems in Section 24.3, followed by key-value
stores in Section 24.4, then column-based systems in Section 24.5, and finally
graph-based systems in Section 24.6. We also noted that some NOSQL systems
may not fall neatly into a single category but rather use techniques that span two
or more categories.

Review Questions
 24.1. For which types of applications were NOSQL systems developed?

 24.2. What are the main categories of NOSQL systems? List a few of the NOSQL
systems in each category.

 24.3. What are the main characteristics of NOSQL systems in the areas related to
data models and query languages?

 24.4. What are the main characteristics of NOSQL systems in the areas related to
distributed systems and distributed databases?

 24.5. What is the CAP theorem? Which of the three properties (consistency,
availability, partition tolerance) are most important in NOSQL systems?

910 Chapter 24 NOSQL Databases and Big Data Storage Systems

 24.6. What are the similarities and differences between using consistency in CAP
versus using consistency in ACID?

 24.7. What are the data modeling concepts used in MongoDB? What are the main
CRUD operations of MongoDB?

 24.8. Discuss how replication and sharding are done in MongoDB.

 24.9. Discuss the data modeling concepts in DynamoDB.

 24.10. Describe the consistent hashing schema for data distribution, replication,
and sharding. How are consistency and versioning handled in Voldemort?

 24.11. What are the data modeling concepts used in column-based NOSQL sys-
tems and Hbase?

 24.12. What are the main CRUD operations in Hbase?

 24.13. Discuss the storage and distributed system methods used in Hbase.

 24.14. What are the data modeling concepts used in the graph-oriented NOSQL
system Neo4j?

 24.15. What is the query language for Neo4j?

 24.16. Discuss the interfaces and distributed systems characteristics of Neo4j.

Selected Bibliography
The original paper that described the Google BigTable distributed storage system
is Chang et al. (2006), and the original paper that described the Amazon Dynamo
key-value store system is DeCandia et al. (2007). There are numerous papers that
compare various NOSQL systems with SQl (relational systems); for example,
Parker et al. (2013). Other papers compare NOSQL systems to other NOSQL sys-
tems; for example Cattell (2010), Hecht and Jablonski (2011), and Abramova and
Bernardino (2013).

The documentation, user manuals, and tutorials for many NOSQL systems can be
found on the Web. Here are a few examples:

MongoDB tutorials: docs.mongodb.org/manual/tutorial/

MongoDB manual: docs.mongodb.org/manual/

Voldemort documentation: docs.project-voldemort.com/voldemort/

Cassandra Web site: cassandra.apache.org

Hbase Web site: hbase.apache.org

Neo4j documentation: neo4j.com/docs/

In addition, numerous Web sites categorize NOSQL systems into additional sub-
categories based on purpose; nosql-database.org is one example of such a site.

911

25
Big Data Technologies Based
on MapReduce and Hadoop1

The amount of data worldwide has been growing
ever since the advent of the World Wide Web

around 1994. The early search engines—namely, AltaVista (which was acquired by
Yahoo in 2003 and which later became the Yahoo! search engine) and Lycos (which
was also a search engine and a Web portal—were established soon after the Web
came along. They were later overshadowed by the likes of Google and Bing. Then
came an array of social networks such as Facebook, launched in 2004, and Twitter,
founded in 2006. LinkedIn, a professional network launched in 2003, boasts over
250 million users worldwide. Facebook has over 1.3 billion users worldwide today;
of these, about 800 million are active on Facebook daily. Twitter had an estimated
980 million users in early 2014 and it was reported to have reached the rate of 1 bil-
lion tweets per day in October 2012. These statistics are updated continually and
are easily available on the Web.

One major implication of the establishment and exponential growth of the Web,
which brought computing to laypeople worldwide, is that ordinary people started
creating all types of transactions and content that generate new data. These users
and consumers of multimedia data require systems to deliver user-specific data
instantaneously from mammoth stores of data at the same time that they create huge
amounts of data themselves. The result is an explosive growth in the amount of data
generated and communicated over networks worldwide; in addition, businesses and
governmental institutions electronically record every transaction of each customer,
vendor, and supplier and thus have been accumulating data in so-called data ware-
houses (to be discussed in Chapter 29). Added to this mountain of data is the data

chapter 25

1We acknowledge the significant contribution of Harish Butani, member of the Hive Program Management
Committee, and Balaji Palanisamy, University of Pittsburgh, to this chapter.

912 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

generated by sensors embedded in devices such as smartphones, energy smart
meters, automobiles, and all kinds of gadgets and machinery that sense, create, and
communicate data in the internet of things. And, of course, we must consider the
data generated daily from satellite imagery and communication networks.

This phenomenal growth of data generation means that the amount of data in a single
repository can be numbered in petabytes (10**15 bytes, which approximates to 2**50
bytes) or terabytes (e.g., 1,000 terabytes). The term big data has entered our common
parlance and refers to such massive amounts of data. The McKinsey report2 defines
the term big data as datasets whose size exceeds the typical reach of a DBMS to capture,
store, manage, and analyze that data. The meaning and implications of this data
onslaught are reflected in some of the facts mentioned in the McKinsey report:

 ■ A $600 disk can store all of the world’s music today.

 ■ Every month, 30 billion of items of content are stored on Facebook.

 ■ More data is stored in 15 of the 17 sectors of the U.S. economy than is stored
in the Library of Congress, which, as of 2011, stored 235 terabytes of data.

 ■ There is currently a need for over 140,000 deep-data-analysis positions and
over 1.5 million data-savvy managers in the United States. Deep data analy-
sis involves more knowledge discovery type analyses.

Big data is everywhere, so every sector of the economy stands to benefit by harness-
ing it appropriately with technologies that will help data users and managers make
better decisions based on historical evidence. According to the Mckinsey report,

If the U.S. healthcare [system] could use the big data creatively and effectively to
drive efficiency and quality, we estimate that the potential value from data in the
sector could be more than $300 billion in value every year.

Big data has created countless opportunities to give consumers information in a
timely manner—information that will prove useful in making decisions, discover-
ing needs and improving performance, customizing products and services, giving
decision makers more effective algorithmic tools, and creating value by innovations
in terms of new products, services, and business models. IBM has corroborated this
statement in a recent book,3 which outlines why IBM has embarked on a worldwide
mission of enterprise-wide big data analytics. The IBM book describes various types
of analytics applications:

 ■ Descriptive and predictive analytics: Descriptive analytics relates to report-
ing what has happened, analyzing the data that contributed to it to figure
out why it happened, and monitoring new data to find out what is happen-
ing now. Predictive analytics uses statistical and data mining techniques (see
Chapter 28) to make predictions about what will happen in the future.

2The introduction is largely based on the McKinsey (2012) report on big data from the McKinsey Global
Institute.
3See IBM (2014): Analytics Across the Enterprise: How IBM Realizes Business Value from Big Data and

Analytics.

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop 913

 ■ Prescriptive analytics: Refers to analytics that recommends actions.

 ■ Social media analytics: Refers to doing a sentiment analysis to assess public
opinion on topics or events. It also allows users to discover the behavior pat-
terns and tastes of individuals, which can help industry target goods and
services in a customized way.

 ■ Entity analytics: This is a somewhat new area that groups data about enti-
ties of interest and learns more about them.

 ■ Cognitive computing: Refers to an area of developing computing systems
that will interact with people to give them better insight and advice.

In another book, Bill Franks of Teradata4 voices a similar theme; he states that tap-
ping big data for better analytics is essential for a competitive advantage in any
industry today, and he shows how to develop a “big data advanced analytics ecosys-
tem” in any organization to uncover new opportunities in business.

As we can see from all these industry-based publications by experts, big data is
entering a new frontier in which big data will be harnessed to provide analytics-
oriented applications that will lead to increased productivity, higher quality, and
growth in all businesses. This chapter discusses the technology that has been created
over the last decade to harness big data. We focus on those technologies that can be
attributed to the MapReduce/Hadoop ecosystem, which covers most of the ground
of open source projects for big data applications. We will not be able to get into the
applications of the big data technology for analytics. That is a vast area by itself.
Some of the basic data mining concepts are mentioned in Chapter 28; however,
today’s analytics offerings go way beyond the basic concepts we have outlined there.

In Section 25.1, we introduce the essential features of big data. In Section 25.2, we
will give the historical background behind the MapReduce/Hadoop technology
and comment on the various releases of Hadoop. Section 25.3 discusses the
underlying file system called Hadoop Distributed File System for Hadoop. We
discuss its architecture, the I/O operations it supports, and its scalability. Sec-
tion 25.4 provides further details on MapReduce (MR), including its runtime
environment and high-level interfaces called Pig and Hive. We also show the
power of MapReduce in terms of the relational join implemented in various ways.
Section 25.5 is devoted to the later development called Hadoop v2 or MRv2 or
YARN, which separates resource management from job management. Its rationale
is explained first, and then its architecture and other frameworks being developed
on YARN are explained. In Section 25.6 we discuss some general issues related to
the MapReduce/Hadoop technology. First we discuss this technology vis-à-vis
the parallel DBMS technology. Then we discuss it in the context of cloud comput-
ing, and we mention the data locality issues for improving performance. YARN
as a data service platform is discussed next, followed by the challenges for big data
technology in general. We end this chapter in Section 25.7 by mentioning some
ongoing projects and summarizing the chapter.

4See Franks (2013) : Taming The Big Data Tidal Wave.

914 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

25.1 What Is Big Data?
Big data is becoming a popular and even a fashionable term. People use this term
whenever a large amount of data is involved with some analysis; they think that
using this term will make the analysis look like an advanced application. However,
the term big data legitimately refers to datasets whose size is beyond the ability of
typical database software tools to capture, store, manage, and analyze. In today’s
environment, the size of datasets that may be considered as big data ranges from
terabytes (10**12 bytes), or petabytes (10**15 bytes), to exabytes (10**18 bytes).
The notion of what is Big data will depend on the industry, how data is used, how
much historical data is involved and many other characteristics. The Gartner
Group, a popular enterprise-level organization that industry looks up to for learn-
ing about trends, characterized big data in 2011 by the three V’s: volume, velocity,
and variety. Other characteristics, such as veracity and value, have been added to
the definition by other researchers. Let us briefly see what these stand for.

Volume. The volume of data obviously refers to the size of data managed by the
system. Data that is somewhat automatically generated tends to be voluminous.
Examples include sensor data, such as the data in manufacturing or processing
plants generated by sensors; data from scanning equipment, such as smart card and
credit card readers; and data from measurement devices, such as smart meters or
environmental recording devices.

The industrial internet of things (IIOT or IOT) is expected to bring about a revo-
lution that will improve the operational efficiency of enterprises and open up new
frontiers for harnessing intelligent technologies. The IOT will cause billions of
devices to be connected to the Internet because these devices generate data continu-
ously. For example, in gene sequencing, next generation sequencing (NGS) tech-
nology means that the volume of gene sequence data will be increased exponentially.

Many additional applications are being developed and are slowly becoming a real-
ity. These applications include using remote sensing to detect underground sources
of energy, environmental monitoring, traffic monitoring and regulation by auto-
matic sensors mounted on vehicles and roads, remote monitoring of patients using
special scanners and equipment, and tighter control and replenishment of invento-
ries using radio-frequency identification (RFID) and other technologies. All these
developments will have associated with them a large volume of data. Social net-
works such as Twitter and Facebook have hundreds of millions of subscribers
worldwide who generate new data with every message they send or post they make.
Twitter hit a half billion tweets daily in October 2012.5 The amount of data required
to store one second of high-definition video may equal 2,000 pages of text data.
Thus, the multimedia data being uploaded on YouTube and similar video hosting
platforms is significantly more voluminous than simple numeric or text data. In
2010, enterprises stored over 13 exabytes (10**18 bytes) of data, which amounts to
over 50,000 times the amount of data stored by the Library of Congress.6

5See Terdiman (2012): http://www.cnet.com/news/report-twitter-hits-half-a-billion-tweets-a-day/
6From Jagadish et al. (2014).

 25.1 What Is Big Data? 915

Velocity. The definition of big data goes beyond the dimension of volume; it
includes the types and frequency of data that are disruptive to traditional database
management tools. The Mckinsey report on big data7 described velocity as the
speed at which data is created, accumulated, ingested, and processed. High velocity
is attributed to data when we consider the typical speed of transactions on stock
exchanges; this speed reaches billions of transactions per day on certain days. If we
must process these transactions to detect potential fraud or we must process bil-
lions of call records on cell phones daily to detect malicious activity, we face the
velocity dimension. Real-time data and streaming data are accumulated by the likes
of Twitter and Facebook at a very high velocity. Velocity is helpful in detecting
trends among people that are tweeting a million tweets every three minutes. Pro-
cessing of streaming data for analysis also involves the velocity dimension.

Variety. Sources of data in traditional applications were mainly transactions
involving financial, insurance, travel, healthcare, retail industries, and governmen-
tal and judicial processing. The types of sources have expanded dramatically and
include Internet data (e.g., clickstream and social media), research data (e.g., sur-
veys and industry reports), location data (e.g., mobile device data and geospatial
data), images (e.g., surveillance, satellites and medical scanning), e-mails, supply
chain data (e.g., EDI—electronic data interchange, vendor catalogs), signal data
(e.g., sensors and RFID devices), and videos (YouTube enters hundreds of minutes
of video every minute). Big data includes structured, semistructured, and unstruc-
tured data (see discussion in Chapter 26) in different proportions based on context.

Structured data feature a formally structured data model, such as the relational
model, in which data are in the form of tables containing rows and columns, and a
hierarchical database in IMS, which features record types as segments and fields
within a record.

Unstructured data have no identifiable formal structure. We discussed systems like
MongoDB (in Chapter 24), which stores unstructured document-oriented data,
and Neo4j, which stores data in the form of a graph. Other forms of unstructured
data include e-mails and blogs, PDF files, audio, video, images, clickstreams, and
Web contents. The advent of the World Wide Web in 1993–1994 led to tremen-
dous growth in unstructured data. Some forms of unstructured data may fit into a
format that allows well-defined tags that separate semantic elements; this format
may include the capability to enforce hierarchies within the data. XML is hierarchi-
cal in its descriptive mechanism, and various forms of XML have come about in
many domains; for example, biology (bioML—biopolymer markup language), GIS
(gML—geography markup language), and brewing (BeerXML—language for
exchange of brewing data), to name a few. Unstructured data constitutes the major
challenge in today’s big data systems.

Veracity. The veracity dimension of big data is a more recent addition than the
advent of the Internet. Veracity has two built-in features: the credibility of the
source, and the suitability of data for its target audience. It is closely related to trust;

7See Mckinsey (2013).

916 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

listing veracity as one of the dimensions of big data amounts to saying that data
coming into the so-called big data applications have a variety of trustworthiness,
and therefore before we accept the data for analytical or other applications, it must
go through some degree of quality testing and credibility analysis. Many sources of
data generate data that is uncertain, incomplete, and inaccurate, therefore making
its veracity questionable.

We now turn our attention to the technologies that are considered the pillars of big
data technologies. It is anticipated that by 2016, more than half of the data in the
world may be processed by Hadoop-related technologies. It is therefore important
for us to trace the MapReduce/Hadoop revolution and understand how this tech-
nology is positioned today. The historical development starts with the program-
ming paradigm called MapReduce programming.

25.2 Introduction to MapReduce and Hadoop
In this section, we will introduce the technology for big data analytics and data pro-
cessing known as Hadoop, an open source implementation of the MapReduce pro-
gramming model. The two core components of Hadoop are the MapReduce
programming paradigm and HDFS, the Hadoop Distributed File System. We will
briefly explain the background behind Hadoop and then MapReduce. Then we will
make some brief remarks about the Hadoop ecosystem and the Hadoop releases.

25.2.1 Historical Background
Hadoop has originated from the quest for an open source search engine. The first
attempt was made by the then Internet archive director Doug Cutting and Univer-
sity of Washington graduate student Mike Carafella. Cutting and Carafella devel-
oped a system called Nutch that could crawl and index hundreds of millions of Web
pages. It is an open source Apache project.8 After Google released the Google File
System9 paper in October 2003 and the MapReduce programming paradigm
paper10 in December 2004, Cutting and Carafella realized that a number of things
they were doing could be improved based on the ideas in these two papers. They
built an underlying file system and a processing framework that came to be known
as Hadoop (which used Java as opposed to the C++ used in MapReduce) and ported
Nutch on top of it. In 2006, Cutting joined Yahoo, where there was an effort under
way to build open source technologies using ideas from the Google File System and
the MapReduce programming paradigm. Yahoo wanted to enhance its search pro-
cessing and build an open source infrastructure based on the Google File System
and MapReduce. Yahoo spun off the storage engine and the processing parts
of Nutch as Hadoop (named after the stuffed elephant toy of Cutting’s son). The

8For documentation on Nutch, see http:nutch.apache.org
9Ghemawat, Gbioff, and Leung (2003).
10Dean and Ghemawat (2004).

 25.2 Introduction to MapReduce and Hadoop 917

initial requirements for Hadoop were to run batch processing using cases with a
high degree of scalability. However, the circa 2006 Hadoop could only run on a
handful of nodes. Later, Yahoo set up a research forum for the company’s data sci-
entists; doing so improved the search relevance and ad revenue of the search engine
and at the same time helped to mature the Hadoop technology. In 2011, Yahoo
spun off Hortonworks as a Hadoop-centered software company. By then, Yahoo’s
infrastructure contained hundreds of petabytes of storage and 42,000 nodes in the
cluster. In the years since Hadoop became an open source Apache project, thou-
sands of developers worldwide have contributed to it. A joint effort by Google,
IBM, and NSF used a 2,000-node Hadoop cluster at a Seattle data center and helped
further universities’ research on Hadoop. Hadoop has seen tremendous growth
since the 2008 launch of Cloudera as the first commercial Hadoop company and
the subsequent mushrooming of a large number of startups. IDC, a software indus-
try market analysis firm, predicts that the Hadoop market will surpass $800 million
in 2016; IDC predicts that the big data market will hit $23 billion in 2016. For more
details about the history of Hadoop, consult a four-part article by Harris.11

An integral part of Hadoop is the MapReduce programming framework. Before we
go any further, let us try to understand what the MapReduce programming paradigm
is all about. We defer a detailed discussion of the HDFS file system to Section 25.3.

25.2.2 MapReduce
The MapReduce programming model and runtime environment was first described
by Jeffrey Dean and Sanjay Ghemawat (Dean & Ghemawat (2004)) based on their
work at Google. Users write their programs in a functional style of map and reduce
tasks, which are automatically parallelized and executed on large clusters of com-
modity hardware. The programming paradigm has existed as far back as the lan-
guage LISP, which was designed by John McCarthy in late 1950s. However, the
reincarnation of this way of doing parallel programming and the way this paradigm
was implemented at Google gave rise to a new wave of thinking that contributed to
the subsequent developments of technologies such as Hadoop. The runtime system
handles many of the messy engineering aspects of parallelization, fault tolerance,
data distribution, load balancing, and management of task communication. As long
as users adhere to the contracts laid out by the MapReduce system, they can just
focus on the logical aspects of this program; this allows programmers without dis-
tributed systems experience to perform analysis on very large datasets.

The motivation behind the MapReduce system was the years spent by the authors
and others at Google implementing hundreds of special-purpose computations on
large datasets (e.g., computing inverted indexes from Web content collected via
Web crawling; building Web graphs; and extracting statistics from Web logs, such
as frequency distribution of search requests by topic, by region, by type of user,
etc.). Conceptually, these tasks are not difficult to express; however, given the scale

11Derreck Harris : ‘The history of Hadoop: from 4 nodes to the future of data,” at https://gigaom.com/
2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/

918 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

of data in billions of Web pages and with the data spread over thousands of
machines, the execution task was nontrivial. Issues of program control and data
management, data distribution, parallelization of computation, and handling of
failures became critically important.

The MapReduce programming model and runtime environment was designed to
cope with the above complexity. The abstraction is inspired by the map and reduce
primitives present in LISP and many other functional languages. An underlying
model of data is assumed; this model treats an object of interest in the form of a
unique key that has associated content or value. This is the key-value pair. Surpris-
ingly, many computations can be expressed as applying a map operation to each
logical “record” that produces a set of intermediate key-value pairs and then apply-
ing a reduce operation to all the values that shared the same key (the purpose of
sharing is to combine the derived data). This model allows the infrastructure to
parallelize large computations easily and to use re-execution as the primary mecha-
nism for fault tolerance. The idea of providing a restricted programming model so
that the runtime can parallelize computations automatically is not new. MapReduce
is the enhancement of those existing ideas. As it is understood today, MapReduce is
a fault-tolerant implementation and a runtime environment that scales to thousands
of processors. The programmer is spared the worry of handling failures. In sub-
sequent sections, we will abbreviate MapReduce as MR.

The MapReduce Programming Model In the following description, we use the
formalism and description as it was originally described by Dean and Ghemawat
(2010).12 The map and reduce functions have the following general form:

map[K1,V1] which is (key, value) : List[K2,V2] and
reduce(K2, List[V2]) : List[K3,V3]

Map is a generic function that takes a key of type K1 and a value of type V1 and
returns a list of key-value pairs of type K2 and V2. Reduce is a generic function that
takes a key of type K2 and a list of values of type V2 and returns pairs of type
(K3,V3). In general, the types K1, K2, K3, etc., are different, with the only require-
ment that the output types from the Map function must match the input type of the
Reduce function.

The basic execution workflow of MapReduce is shown in Figure 25.1.

Assume that we have a document and we want to make a list of words in it with
their corresponding frequencies. This ubiquitous word count example quoted
directly from Dean and Ghemawat (2004) above goes as follows in pseudocode:

Map (String key, String value):
for each word w in value Emitintermediate (w, “1”);

Here key is the document name, and value is the text content of the document.

12Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in
OSDI (2004).

 25.2 Introduction to MapReduce and Hadoop 919

Then the above lists of (word, 1) pairs are added up to output total counts of all
words found in the document as follows:

Reduce (String key, Iterator values) : // here the key is a word and values are
lists of its counts //
 Int result =0;
 For each v in values :
 result += Parseint (v);
 Emit (key, Asstring (result));

The above example in MapReduce programming appears as:

map[LongWritable,Text](key, value) : List[Text, LongWritable] = {
 String[] words = split(value)
 for(word : words) {
 context.out(Text(word), LongWritable(1))
 }
}
reduce[Text, Iterable[LongWritable]](key, values) : List[Text, LongWritable] = {
 LongWritable c = 0
 for(v : values) {
 c += v
 }
 context.out(key,c)
 }

The data types used in the above example are LongWritable and Text. Each
MapReduce job must register a Map and Reduce function. The Map function
receives each key-value pair and on each call can output 0 or more key-value pairs.
The signature of the Map function specifies the data types of its input and output

Split 0 Map

Sort
Copy

Merge

Reduce Output
file 0

Output

Input

Reduce

Merge
Map

Map

Split 1

Split 2

Output
file 1

Figure 25.1
Overview of MapReduce
execution. (Adapted
from T. White, 2012)

920 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

key-value pairs. The Reduce function receives a key and an iterator of values asso-
ciated with that key. It can output one or more key-value pairs on each invocation.
Again, the signature of the Reduce function indicates the data types of its inputs
and outputs. The output type of the Map must match the input type of the Reduce
function. In the wordcount example, the map function receives each line as a
value, splits it into words, and emits (via the function context.out) a row for each
word with frequency 1. Each invocation of the Reduce function receives for a given
word the list of frequencies computed on the Map side. It adds these and emits
each word and its frequency as output. The functions interact with a context. The
context is used to interact with the framework. It is used by clients to send config-
uration information to tasks; and tasks can use it to get access to HDFS and read
data directly from HDFS, to output key-value pairs, and to send status (e.g., task
counters) back to the client.

The MapReduce way of implementing some other functions based on Dean and
Ghemawat (2004) is as follows:

Distributed Grep

Grep looks for a given pattern in a file. The Map function emits a line if it
matches a supplied pattern. The Reduce function is an identity function that
copies the supplied intermediate data to the output. This is an example of a
Map only task; there is no need to incur the cost of a Shuffle. We will provide
more information when we explain the MapReduce runtime.

Reverse Web-Link Graph

The purpose here is to output (target URL, source URL) pairs for each link to a
target page found in a page named source. The Reduce function concatenates
the list of all source URLs associated with a given target URL and emits the pair
<target, list(source)>.

Inverted Index

The purpose is to build an inverted index based on all words present in a docu-
ment repository. The Map function parses each document and emits a sequence
of (word, document_id) pairs. The Reduce function takes all pairs for a given
word, sorts them by document_id and emits a (word, list (document_id)) pair.
The set of all these pairs forms an inverted index.

These illustrative applications give a sense of the MapReduce programming model’s
broad applicability and the ease of expressing the application’s logic using the Map
and Reduce phases.

A Job in MapReduce comprises the code for the Map and Reduce (usually pack-
aged as a jar) phases, a set of artifacts needed to run the tasks (such as files, other
jars, and archives) and, most importantly, a set of properties specified in a configu-
ration. There are hundreds of properties that can be specified, but the core ones are
as follows:

 ■ the Map task

 ■ the Reduce task

 25.3 Hadoop Distributed File System (HDFS) 921

 ■ the Input that the Job is to run on: typically specified as an HDFS path(s)

 ■ the Format(Structure) of the Input

 ■ the Output path

 ■ the Output Structure

 ■ the Reduce-side parallelism

A Job is submitted to the JobTracker, which then schedules and manages the exe-
cution of the Job. It provides a set of interfaces to monitor running Jobs. See the
Hadoop Wiki13 for further details about the workings of the JobTracker.

25.2.3 Hadoop Releases
Since the advent of Hadoop as a new distributed framework to run MapReduce
programs, various releases have been produced:

The 1.x releases of Hadoop are a continuation of the original 0.20 code base.
Subreleases with this line have added Security, additional HDFS and MapReduce
improvements to support HBase, a better MR programming model, as well as
other improvements.

The 2.x releases include the following major features:

 � YARN (Yet Another Resource Navigator) is a general resource manager
extracted out of the JobTracker from MR version1.

 � A new MR runtime that runs on top of YARN.

 � Improved HDFS that supports federation and increased availability.

At the time of this writing, Hadoop 2.0 has been around for about a year. The
adoption is rapidly picking up; but a significant percentage of Hadoop deployments
still run on Hadoop v1.

25.3 Hadoop Distributed File System (HDFS)
As we said earlier, in addition to MapReduce, the other core component of Hadoop
is the underlying file system HDFS. In this section, we will first explain the architec-
ture of HDFS, then describe the file input/output operations supported in HDFS,
and finally comment on the scalability of HDFS.

25.3.1 HDFS Preliminaries
The Hadoop Distributed File System (HDFS) is the file system component of
Hadoop and is designed to run on a cluster of commodity hardware. HDFS is pat-
terned after the UNIX file system; however, it relaxes a few POSIX (portable oper-
ating system interface) requirements to enable streaming access to file system data.
HDFS provides high-throughput access to large datasets. HDFS stores file system

13Hadoop Wiki is at http://hadoop.apache.org/

922 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

metadata and application data separately. Whereas the metadata is stored on a
dedicated server, called the NameNode, the application data is stored on other
servers, called DataNodes. All servers are fully connected and communicate with
each other using TCP-based protocols. To make data durable, the file content is
replicated on multiple DataNodes, as in the Google File System. This not only
increases reliability, but it also multiplies the bandwidth for data transfer and
enables colocation of computation with data. It was designed with the following
assumptions and goals:

Hardware failure: Using commodity hardware, failure of hardware is the
norm rather than an exception. Therefore, with thousands of nodes, automatic
detection and recovery from failures becomes a must.

Batch processing: HDFS has been primarily designed for batch rather than
interactive use. High throughput is emphasized over low latency of data access.
Full scans of files are typical.

Large datasets: HDFS was designed to support huge files in the hundreds of
gigabytes to terabytes range.

Simple coherency model: HDFS applications need a one writer and many
reader access models for files. File content cannot be updated, but only
appended. This model alleviates coherency issues among copies of data.

25.3.2 Architecture of HDFS
HDFS has a master-slave architecture. The master server, called the NameNode,
manages the file system storage area or namespace; Clients access the namespace
through the Namenode. The slaves called DataNodes run on a cluster of commod-
ity machines, usually one per machine. They manage the storage attached to the
node that they run on. The namespace itself comprises Files and Directories. The
Namenodes maintain inodes (index nodes) about File and Directories with attri-
butes like ownership, permissions, creation and access times, and disk space quotas.
Using inodes, the mapping of File blocks to DataNodes is determined. DataNodes
are responsible for serving read and write requests from clients. DataNodes per-
form block creation, deletion, and replication operations as instructed by the
NameNode. A cluster can have thousands of DataNodes and tens of thousands of
HDFS clients simultaneously connected.

To read a file, a client first connects to the NameNode and obtains the locations of
the data blocks in the file it wants to access; it then connects directly with the
DataNodes that house the blocks and reads the data.

The architecture of HDFS has the following highlights:

 1. HDFS allows a decoupling of metadata from data operations. Metadata
operations are fast whereas data transfers are much slower. If the location
of metadata and transfer of data are not decoupled, speed suffers in a dis-
tributed environment because data transfer dominates and slows the
response.

 25.3 Hadoop Distributed File System (HDFS) 923

 2. Replication is used to provide reliability and high availability. Each block is
replicated (default is three copies) to a number of nodes in the cluster. The
highly contentious files like MapReduce job libraries would have a higher
number of replicas to reduce network traffic.

 3. The network traffic is kept to a minimum. For reads, clients are directed to
the closest DataNode. As far as possible, a local file system read is attempted
and involves no network traffic; the next choice is a copy on a node on the
same rack before going to another rack. For writes, to reduce network band-
width utilization, the first copy is written to the same node as the client. For
other copies, travel across racks is minimized.

NameNode. The NameNode maintains an image of the file system comprising
i-nodes and corresponding block locations. Changes to the file system are main-
tained in a Write-ahead commit log (see the discussion of Write-ahead logs in
Chapter 22) called the Journal. Checkpoints are taken for purposes of recovery;
they represent a persistent record of the image without the dynamic information
related to the block placement. Block placement information is obtained from
the DataNodes periodically as described below. During Restart, the image is
restored to the last checkpoint and the journal entries are applied to that image.
A new checkpoint and empty journal are created so that the NameNode can start
accepting new client requests. The startup time of a NameNode is proportional
to the Journal file’s size. Merging the checkpoint with the Journal periodically
reduces restart time.

Note that with the above architecture, it is catastrophic to have any corruption of
the Checkpoint or the Journal. To guard against corruption, both are written to
multiple directories on different volumes.

Secondary NameNodes. These are additional NameNodes that can be created
to perform either the checkpointing role or a backup role. A Checkpoint node peri-
odically combines existing checkpoint and journal files. In backup mode, it acts like
another storage location for the Journal for the primary NameNode. The backup
NameNode remains up-to-date with the file system and can take over on failure. In
Hadoop V1, this takeover must be done manually.

DataNodes: Blocks are stored on a DataNode in the node’s native file system. The
NameNode directs clients to the DataNodes that contain a copy of the block they
want to read. Each block has its representation in two files in the native file system:
a file containing the data and a second file containing the metadata, which includes
the checksums for the block data and the block’s generation stamp. DataNodes and
NameNodes do not communicate directly but via a so-called heartbeat mechanism,
which refers to a periodic reporting of the state by the DataNode to the NameNode;
the report is called a Block Report. The report contains the block id, the generation
stamp, and the length for each block. The block locations are not part of the
namespace image. They must be obtained from the block reports, and they change
as blocks are moved around. The MapReduce Job Tracker, along with the

924 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

NameNode, uses the latest block report information for scheduling purposes. In
response to a heartbeat from the DataNode, the NameNode sends one of the following
types of commands to the DataNode:

 ■ Replicate a block to another node.

 ■ Remove a block replica.

 ■ Reregister the node or shut down the node.

 ■ Send an immediate block report.

25.3.3 File I/O Operations and Replica Management in HDFS
HDFS provides a single-writer, multiple-reader model. Files cannot be updated, but
only appended. A file consists of blocks. Data is written in 64-KB packets in a write
pipeline, which is set up to minimize network utilization, as we described above.
Data written to the last block becomes available only after an explicit hflush opera-
tion. Simultaneous reading by clients is possible while data is being written. A
checksum is generated and stored for each block and is verified by the client to
detect corruption of data. Upon detection of a corrupt block, the Namenode is noti-
fied; it initiates a process to replicate the block and instructs the Datanode to remove
the corrupt block. During the read operation, an attempt is made to fetch a replica
from as close a node as possible by ordering the nodes in ascending order of dis-
tance from the client. A read fails when the Datanode is unavailable, when the
checksum test fails, or when the replica is no longer on the Datanode. HDFS has
been optimized for batch processing similar to MapReduce.

Block Placement. Nodes of a Hadoop cluster are typically spread across many
racks. They are normally organized such that nodes on a rack share a switch, and
rack switches are connected to a high-speed switch at the upper level. For example,
the rack level may have a 1-Gb switch, whereas at the top level there may be a 10-Gb
switch. HDFS estimates the network bandwidth between Datanodes based on their
distance. Datanodes on the same physical node have a distance of 0, on the same
rack are distance 2 away, and on different racks are distance 4 away. The default
HDFS block placement policy balances between minimizing the write cost and
maximizing data reliability and availability as well as aggregate read bandwidth.
Network bandwidth consumed is estimated based on distance among DataNodes.
Thus, for DataNodes on the same physical node, the distance is 0, whereas on the
same rack it is 2 and on a different rack it is 4. The ultimate goal of block placement
is to minimize the write cost while maximizing data availability and reliability as
well as available bandwidth for reading. Replicas are managed so that there is at
least one on the original node of the client that created it, and others are distributed
among other racks. Tasks are preferred to be run on nodes where the data resides;
three replicas gives the scheduler enough leeway to place tasks where the data is.

Replica Management. Based on the block reports from the DataNodes, the
NameNode tracks the number of replicas and the location of each block. A replica-
tion priority queue contains blocks that need to be replicated. A background thread

 25.3 Hadoop Distributed File System (HDFS) 925

monitors this queue and instructs a DataNode to create replicas and distribute
them across racks. NameNode prefers to have as many different racks as possible to
host replicas of a block. Overreplicated blocks cause some replicas to be removed
based on space utilization of the DataNodes.

25.3.4 HDFS Scalability
Since we are discussing big data technologies in this chapter, it is apropos to discuss
some limits of scalability in HDFS. Hadoop program management committee
member Shvachko commented that the Yahoo HDFS cluster had achieved the fol-
lowing levels as opposed to the intended targets (Shvachko, 2010). The numbers in
parentheses are the targets he listed. Capacity: 14 petabytes (vs. 10 petabytes); num-
ber of nodes: 4,000 (vs. 10,000); clients:15,000 (vs. 100,000); and files: 60 million
(vs. 100 million). Thus, Yahoo had come very close to its intended targets in 2010,
with a smaller cluster of 4,000 nodes and fewer clients; but Yahoo had actually
exceeded the target with respect to total amount of data handled.

Some of the observations made by Shvachko (2010) are worth mentioning. They
are based on the HDFS configuration used at Yahoo in 2010. We present the actual
and estimated numbers below to give the reader a sense of what is involved in these
gigantic data processing environments.

 ■ The blocksize used was 128K, and an average file contained 1.5 blocks.
NameNode used about 200 bytes per block and an additional 200 bytes for
an i-node. 100 million files referencing 200 million blocks would require
RAM capacity exceeding 60 GB.

 ■ For 100 million files with size of 200 million blocks and a replication factor
of 3, the disk space required is 60 PB. Thus a rule of thumb was proposed
that 1 GB of RAM in NameNode roughly corresponds to 1 PB of data stor-
age based on the assumption of 128K blocksize and 1.5 blocks per file.

 ■ In order to hold 60 PB of data on a 10,000-node cluster, each node needs a
capacity of 6 TB. This can be achieved by having eight 0.75-TB drives.

 ■ The internal workload for the NameNode is block reports. About 3 reports
per second containing block information on 60K blocks per report were
received by the NameNode.

 ■ The external load on the NameNode consisted of external connections and
tasks from MapReduce jobs. This resulted in tens of thousands of simultane-
ous connections.

 ■ The Client Read consisted of performing a block lookup to get block loca-
tions from the NameNode, followed by accessing the nearest replica of the
block. A typical client (the Map job from an MR task) would read data from
1,000 files with an average reading of half a file each, amounting to 96 MB of
data. This was estimated to take 1.45 seconds. At that rate, 100,000 clients
would send 68,750 block-location requests per second to the NameNode.
This was considered to be well within the capacity of the NameNode, which
was rated at handling 126K requests per second.

926 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 ■ The write workload: Given a write throughtput of 40 MB/sec, an average cli-
ent writes 96 MB in 2.4 sec. That creates over 41K “create block” requests
from 100,000 nodes at the NameNode. This was considered far above the
NameNode capacity.

The above analysis assumed that there was only one task per node. In reality, there
could be multiple tasks per node as in the real system at Yahoo, which ran 4 MapReduce
(MR)tasks per node. The net result was a bottleneck at the NameNode. Issues such
as these have been handled in Hadoop v2, which we discuss in the next section.

25.3.5 The Hadoop Ecosystem
Hadoop is best known for the MapReduce programming model, its runtime infrastruc-
ture, and the Hadoop Distributed File System (HDFS). However, the Hadoop ecosys-
tem has a set of related projects that provide additional functionality on top of these core
projects. Many of them are top-level open source Apache projects and have a very large
contributing user community of their own. We list a few important ones here:

Pig and Hive: These provide a higher level interface for working with the
Hadoop framework.

 � Pig provides a dataflow language. A script written in PigScript translates
into a directed acyclic graph (DAG) of MapReduce jobs.

 � Hive provides an SQL interface on top of MapReduce. Hive’s SQL support
includes most of the SQL-92 features and many of the advanced analytics
features from later SQL standards. Hive also defines the SerDe (Serializa-
tion/ Deserialization) abstraction, which defines a way of modeling the
record structure on datasets in HDFS beyond just key-value pairs. We will
discuss both of these in detail in Section 25.4.4.

Oozie: This is a service for scheduling and running workflows of Jobs; indi-
vidual steps can be MR jobs, Hive queries, Pig scripts, and so on.

Sqoop: This is a library and a runtime environment for efficiently moving data
between relational databases and HDFS.

HBase: This is a column-oriented key-value store that uses HDFS as its under-
lying store. (See Chapter 24 for a more detailed discussion of HBase.) It sup-
ports both batch processing using MR and key-based lookups. With proper
design of the key-value scheme, a variety of applications are implemented using
HBase. They include time series analysis, data warehousing, generation of
cubes and multi-dimensional lookups, and data streaming.

25.4 MapReduce: Additional Details
We introduced the MapReduce paradigm in Section 25.2.2. We now elaborate further
on it in terms of the MapReduce runtime. We discuss how the relational operation of
join can be handled using MapReduce. We examine the high-level interfaces of Pig
and Hive. Finally, we discuss the advantages of the combined MapReduce/Hadoop.

 25.4 MapReduce: Additional Details 927

25.4.1 MapReduce Runtime
The purpose of this section is to give a broad overview of the MapReduce runtime
environment. For a detailed description, the reader is encouraged to consult White
(2012). MapReduce is a master-slave system that usually runs on the same cluster as
HDFS. Typically, medium to large Hadoop clusters consist of a two- or three-level
architecture built with rack-mounted servers.

JobTracker. The master process is called the JobTracker. It is responsible for man-
aging the life cycle of Jobs and scheduling Tasks on the cluster. It is responsible for:

 ■ Job submission, initializing a Job, providing Job status and state to both cli-
ents and TaskTrackers (the slaves), and Job completion.

 ■ Scheduling Map and Reduce tasks on the cluster. It does this using a plug-
gable Scheduler.

TaskTracker. The slave process is called a TaskTracker. There is one running on
all Worker nodes of the cluster. The Map-Reduce tasks run on Worker nodes.
TaskTracker daemons running on these nodes register with the JobTracker on
startup. They run tasks that the JobTracker assigns to them. Tasks are run in a sepa-
rate process on the node; the life cycle of the process is managed by the TaskTracker.
The TaskTracker creates the task process, monitors its execution, sends periodic
status heartbeats to the JobTracker, and under failure conditions can kill the pro-
cess at the request of the JobTracker. The TaskTracker provides services to the
Tasks, the most important of which is the Shuffle, which we describe in a sub-
section below.

A. Overall flow of a MapReduce Job

A MapReduce job goes through the processes of Job Submission, Job Initializa-
tion, Task Assignment, Task Execution, and finally Job Completion. The Job
Tracker and Task Tracker we described above are both involved in these. We
briefly review them below.

Job submission A client submits a Job to the JobTracker. The Job package con-
tains the executables (as a jar), any other components (files, jars archives)
needed to execute the Job, and the InputSplits for the Job.

Job initialization The JobTracker accepts the Job and places it on a Job Queue.
Based on the input splits, it creates map tasks for each split. A number of reduce
tasks are created based on the Job configuration.

Task assignment The JobTracker’s scheduler assigns Task to the TaskTracker
from one of the running Jobs. In Hadoop v1, TaskTrackers have a fixed number of
slots for map tasks and for reduce tasks. The Scheduler takes the location informa-
tion of the input files into account when scheduling tasks on cluster nodes.

Task execution Once a task has been scheduled on a slot, the TaskTracker
manages the execution of the task: making all Task artifacts available to the

928 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

Task process, launching the Task JVM, monitoring the process and coordinat-
ing with the JobTracker to perform management operations like cleanup on
Task exit, and killing Tasks on failure conditions. The TaskTracker also pro-
vides the Shuffle Service to Tasks; we describe this when we discuss the Shuffle
Procedure below.

Job completion Once the last Task in a Job is completed, the JobTracker runs
the Job cleanup task (which is used to clean up intermediate files in both HDFS
and the local file systems of TaskTrackers).

B. Fault Tolerance in MapReduce

There are three kinds of failures: failure of the Task, failure of the TaskTracker,
and failure of the JobTracker.

Task failure This can occur if the Task code throws a Runtime exception, or if
the Java Virtual Machine crashes unexpectedly. Another issue is when the Task-
Tracker does not receive any updates from the Task process for a while (the time
period is configurable). In all these cases the TaskTracker notifies the JobTracker
that the Task has failed. When the JobTracker is notified of the failure, it will
reschedule execution of the task.

TaskTracker failure A TaskTracker process may crash or become disconnected
from the JobTracker. Once the JobTracker marks a TaskTracker as failed, any
map tasks completed by the TaskTracker are put back on the queue to be
rescheduled. Similarly, any map task or reduce task in progress on a failed Task-
Tracker is also rescheduled.

JobTracker failure In Hadoop v1, JobTracker failure is not a recoverable failure.
The JobTracker is a Single Point of Failure. The JobTracker has to be manually
restarted. On restart all the running jobs have to be resubmitted. This is one of
the drawbacks of Hadoop v1 that have been addressed by the next generation of
Hadoop MapReduce called YARN.

Semantics in the presence of failure When the user-supplied map and reduce
operators are deterministic functions of their input values, the MapReduce sys-
tem produces the same output as would have been produced by a nonfaulting
sequential execution of the entire program. Each task writes its output to a pri-
vate task directory. If the JobTracker receives multiple completions for the same
Task, it ignores all but the first one. When a Job is completed, Task outputs are
moved to the Job output directory.

C. The Shuffle Procedure

A key feature of the MapReduce (MR) programming model is that the reducers
get all the rows for a given key together. This is delivered by what is called the
MR shuffle. The shuffle is divided into the Map, Copy, and Reduce phases.

Map phase: When rows are processed in Map tasks, they are initially held in an
in-memory buffer, the size of which is configurable (the default is 100 MB). A

 25.4 MapReduce: Additional Details 929

background thread partitions the buffered rows based on the number of Reduc-
ers in the job and the Partitioner. The Partitioner is a pluggable interface that is
asked to choose a Reducer for a given Key value and the number of reducers in
the Job. The partitioned rows are sorted on their key values. They can further be
sorted on a provided Comparator so that rows with the same key have a stable
sort order. This is used for Joins to ensure that for rows with the same key value,
rows from the same table are bunched together. Another interface that can be
plugged in is the Combiner interface. This is used to reduce the number of rows
output per key from a mapper and is done by applying a reduce operation on
each Mapper for all rows with the same key. During the Map phase, several
iterations of partitioning, sorting, and combining may happen. The end result is
a single local file per reducer that is sorted on the Key.

Copy phase: The Reducers pull their files from all the Mappers as they become
available. These are provided by the JobTracker in Heartbeat responses. Each
Mapper has a set of listener threads that service Reducer requests for these files.

Reduce phase: The Reducer reads all its files from the Mappers. All files are
merged before streaming them to the Reduce function. There may be multiple
stages of merging, depending on how the Mapper files become available. The
Reducer will avoid unnecessary merges; for example, the last N files will be
merged as the rows are being streamed to the Reduce function.

D. Job Scheduling

The JobTracker in MR 1.0 is responsible for scheduling work on cluster nodes.
Clients’ submitted jobs are added to the Job Queue of the JobTracker. The initial
versions of Hadoop used a FIFO scheduler that scheduled jobs sequentially as
they were submitted. At any given time, the cluster would run the tasks of a
single Job. This caused undue delays for short jobs like ad-hoc hive queries if
they had to wait for long-running machine learning–type jobs. The wait times
would exceed runtimes, and the throughput on the cluster would suffer. Addi-
tionally, the cluster also would remain underutilized. We briefly describe two
other types of schedulers, called the Fair Scheduler and Capacity Scheduler, that
alleviate this situation.

Fair Scheduler: The goal of Fair Scheduler is to provide fast response time to
small jobs in a Hadoop shared cluster. For this scheduler, jobs are grouped into
Pools. The capacity of the cluster is evenly shared among the Pools. At any given
time the resources of the cluster are evenly divided among the Pools, thereby
utilizing the capacity of the cluster evenly. A typical way to set up Pools is to
assign each user a Pool and assign certain Pools a minimum number of slots.

Capacity Scheduler: The Capacity Scheduler is geared to meet the needs of
large Enterprise customers. It is designed to allow multiple tenants to share
resources of a large Hadoop cluster by allocating resources in a timely manner
under a given set of capacity constraints. In large enterprises, individual depart-
ments are apprehensive of using one centralized Hadoop cluster for concerns

930 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

that they may not be able to meet the service-level agreements (SLAs) of their
applications. The Capacity Scheduler is designed to give each tenant guarantees
about cluster capacity using the following provisions:

 � There is support for multiple queues, with hard and soft limits in terms of
fraction of resources.

 � Access control lists (ACLs) are used that determine who can submit, view,
and modify the Jobs in a queue.

 � Excess capacity is evenly distributed among active Queues.

 � Tenants have usage limits; such limits prevent tenants from monopoliz-
ing the cluster.

25.4.2 Example: Achieving Joins in MapReduce
To understand the power and utility of the MapReduce programming model, it is
instructive to consider the most important operation of relational algebra, called
Join, which we introduced in Chapter 6. We discussed its use via SQL queries
(Chapters 7 and 8) and its optimization (Chapters 18 and 19). Let us consider the
problem of joining two relations R(A, B) with S(B, C) with the join condition
R.A = S.B. Assume both tables reside on HDFS. Here we list the many strategies
that have been devised to do equi-joins in the MapReduce environment.

Sort-Merge Join. The broadest strategy for performing a join is to utilize the Shuffle
to partition and sort the data and have the reducers merge and generate the output.
We can set up an MR job that reads blocks from both tables in the Map phase. We
set up a Partitioner to hash partition rows from R and S on the value of the B column.
The key output from the Map phase includes a table tag. So the key has the form
(tag, (key)). In MR, we can configure a custom Sort for the Job’s shuffle; the custom
Sort sorts the rows that have the same key. In this case, we Sort rows with the same
B value based on the tag. We give the smaller table a tag of 0 and the larger table a tag
of 1. So a reducer will see all rows with the same B value in the order: smaller table rows
first, then larger table rows. The Reducer can buffer smaller table rows; once it starts to
receive large table rows, it can do an in-memory cross-product with the buffered small
table rows to generate the join output. The cost of this strategy is dominated by the
shuffle cost, which will write and read each row multiple times.

Map-Side Hash Join. For the case when one of R or S is a small table that can be
loaded in the memory of each task, we can have the Map phase operate only on the
large table splits. Each Map task can read the entire small table and create an in-
memory hash map based on B as the hash key. Then it can perform a hash join. This
is similar to Hash Joins in databases. The cost of this task is roughly the cost of read-
ing the large table.

Partition Join. Assume that both R and S are stored in such a way that they are
partitioned on the join keys. Then all rows in each Split belong to a certain identifi-
able range of the domain of the join field, which is B in our example. Assume both
R and S are stored as p files. Suppose file (i) contains rows such that (Value B)mod

 25.4 MapReduce: Additional Details 931

p = i. Then we only need to join the ith file of \(R\) R with the corresponding ith file
of S. One way to do this is to perform a variation of the Map-Side join we discussed
above: have the Mapper handling the ith partition of the larger table read the ith
partition from the smaller table. This strategy can be expanded to work even when
the two tables do not have the same number of partitions. It is sufficient for one to
be a multiple of the other. For example, if table A is divided into two partitions and
table B is divided into four partitions, then partition 1 from table A needs to join
with partitions 1 and 3 of B, and partition 2 of A needs to join with partitions 2 and 4
of B. The opportunity to perform Bucketed Join (see below) is also common: for
example, assume R and S are outputs of previous sort-merge joins. The output of
the sort-merge join is partitioned in the joining expressions. Further joining this
dataset allows us to avoid a shuffle.

Bucket Joins. This is a combination of Map-Side and Partition Joins. In this case
only one relation, say the right side relation, is Partitioned. We can then run Map-
pers on the left side relation and perform a Map Join against each Partition from
the right side.

N-Way Map-Side Joins. A join on R(A, B, C, D), S(B, E), and T(C, F) can be
achieved in one MR job provided the rows for a key for all small tables can be buffered
in memory. The join is typical in Data Warehouses (see Chapter 29), where R is a fact
table and S and T are dimension tables whose keys are B and C, respectively. Typi-
cally, in a Data Warehouse query filters are specified on Dimensional Attributes.
Hence each Map task has enough memory to hold the hash map of several small
Dimensional tables. As Fact table rows are being read into the Map task, they can be
hash joined with all the dimensional tables that the Map task has read into memory.

Simple N-Way Joins. A join on R(A, B), S(B, C), and T(B, D) can be achieved in
one MR job provided the rows for a key for all small tables can be buffered in mem-
ory. Suppose R is a large table and S and T are relatively smaller tables. Then it is
typically the case that for any given key value B, the number of rows in S or T will fit
in a Task’s memory. Then, by giving the large table the largest tag, it is easy to gen-
eralize the Sort-Merge join to an N-way join where the joining expressions are the
same. In a Reducer for a key value of B, the reducer will first receive the S rows, then
the T rows, and finally the R rows. Since the assumption is that there aren’t a large
number of S and T rows, the reducer can cache them. As it receives R rows, it can do
a cross product with the cached S and T rows and output the result of join.

In addition to the above strategies for performing joins using the MapReduce para-
digm, algorithms have been proposed for other types joins (e.g., the general multi-
way natural join with special cases of chain-join or star-join in data warehouses have
been shown to be handled as a single MR job).14 Similarly, algorithms have been
proposed to deal with skew in the join attributes (e.g., in a sales fact table, certain
days may have a disproportionate number of transactions). For joins on attributes
with skew, a modified algorithm would let the Partitioner assign unique values to the

14See Afrati and Ullman (2010).

932 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

data having a large number of entries and let them be handled by Reduce tasks,
whereas the rest of the values may undergo hash partitioning as usual.

This discussion should provide the reader with a good sense of the many possibili-
ties of implementing Join strategies on top of MapReduce. There are other factors
affecting performance, such as row versus columnar storage and pushing predicates
down to storage handlers. These are beyond our scope of discussion here. Inter-
ested readers will find ongoing research publications in this area that are similar to
Afrati and Ullman (2010).

The purpose of this section is to highlight two major developments that have
impacted the big data community by providing high-level interfaces on top of the
core technology of Hadoop and MapReduce. We will give a brief overview of the
language Pig Latin and the system Hive.

Apache Pig. Pig15 was a system that was designed at Yahoo Research to bridge the
gap between declarative-style interfaces such as SQL, which we studied in the con-
text of the relational model, and the more rigid low-level procedural-style program-
ming style required by MapReduce that we described in Section 25.2.2. Whereas it
is possible to express very complex analysis in MR, the user must express programs
as a one-input, two-stage (map and reduce) process. Furthermore, MR provides no
methods for describing a complex data flow that applies a sequence of transforma-
tions on the input. There is no standard way to do common data transformation
operations like Projections, Filtering, Grouping, and Joining. We saw all these
operations being expressed declaratively in SQL in Chapters 7 and 8. However,
there is a community of users and programmers that thinks more procedurally. So
the developers of Pig invented the language Pig Latin to fill in the “sweet spot”
between SQL and MR. We show an example of a simple Group By query expressed
in Pig Latin in Olston et al. (2008):

There is a table of urls: (url,category.pagerank).

We wish to find, for categories having a large number of URLs, the average page-
rank of the high-pagerank URLs in that category. This requires a grouping of URLs
by category. The SQL query that expresses this requirement may look like:

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10**6

The same query in Pig Latin is written as:

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)> 10**6;
output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank);

15See Olston et al. (2008).

 25.4 MapReduce: Additional Details 933

As shown by this example, a Pigscript written using the scripting language Pig Latin
is a sequence of data transformation steps. On each step, a basic transformation like
Filter, Group By, or Projection is expressed. The script resembles a query plan for
the SQL query similar to the plans we discussed in Chapter 19. The language sup-
ports operating on nested data structures like JSON (Java Script Object Notation)
and XML. It has an extensive and extendible function library, and also an ability to
bind schema to data very late or not at all.

Pig was designed to solve problems such as ad hoc analyses of Web logs and click-
streams. The logs and clickstreams typically require custom processing at row level
as well as at an aggregate level. Pig accommodates user-defined functions (UDFs)
extensively. It also supports a nested data model with the following four types:

Atoms: Simple atomic values such as a number or a string

Tuples: A sequence of fields, each of which can be of any permissible type

Bag: A collection of tuples with possible duplicates

Map: A collection of data items where each item has a key that allows direct
access to it

Olston et al. (2008) demonstrates interesting applications on logs using Pig. An
example is analysis of activity logs for a search engine over any time period (day,
week, month, etc.) to calculate frequency of search terms by a user’s geographic loca-
tion. Here the functions needed include mapping IP addresses to geo-locations and
using n-gram extraction. Another application involves co-grouping search queries
of one period with those of another period in the past based on search terms.

Pig was architected so that it could run on different execution environments. In
implementing Pig, Pig Latin was compiled into physical plans that were translated
into a series of MR jobs and run in Hadoop. Pig has been a useful tool for enhanc-
ing programmers’ productivity in the Hadoop environment.

25.4.3 Apache Hive
Hive was developed at Facebook16 with a similar intent—to provide a higher level
interface to Hadoop using SQL-like queries and to support the processing of aggre-
gate analytical queries that are typical in data warehouses (see Chapter 29). Hive
remains a primary interface for accessing data in Hadoop at Facebook; it has been
adopted widely in the open source community and is undergoing continuous
improvements. Hive went beyond Pig Latin in that it provided not only a high-level
language interface to Hadoop, but a layer that makes Hadoop look like a DBMS
with DDL, metadata repository, JDBC/ODBC access, and an SQL compiler. The
architecture and components of Hive are shown in Figure 25.2.

Figure 25.2 shows Apache Thrift as interface in Hive. Apache Thrift defines an
Interface Definition Language (IDL) and Communication Protocol used to develop

16See Thusoo et al. (2010).

934 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

remote services. It comes with a runtime and code generation engine that can be
used to develop remote services in many languages, including Java, C++, Python,
and Ruby. Apache Thrift supports JSON-based and binary protocols; it supports
http, socket, and file transports.

The Hive query language HiveQL includes a subset of SQL that includes all types of
joins, Group By operations, as well as useful functions related to primitive and com-
plex data types. We comment below on some of the highlights of the Hive system.

Interfacing with HDFS:

 ■ Tables in Hive are linked to directories in HDFS. Users can define parti-
tions within tables. For example, a Web log table can be partitioned by day
and within day by the hour. Each partition level introduces a level of direc-
tories in HDFS. A table may also be stored as bucketed on a set of columns.
This means that the stored data is physically partitioned by the column(s).
For example, within an hour directory, the data may be bucketed by Userid;
this means that each hour’s data is stored in a set of files, each file rep-
resents a bucket of Users, and the bucket is based on the hashing of the
Userid column. Users can specify how many buckets the data should be
divided into.

 ■ The SerDe (Serialization/Deserialization) plugin architecture lets users
specify how data in native file formats is exposed as rows to Hive SQL oper-
ators. Hive comes with a rich set of SerDe functions and supported File
formats (e.g., CSV, JSON, SequenceFile); columnar formats (e.g., RCFile,
ORCFile, Parquet); and support for Avro—another data serialization sys-
tem. The different StorageHandlers expand on the SerDe mechanism to
allow pluggable behavior for how data is read/written and the ability to
push predicates down to the Storage Handler for early evaluation. For

Command Line
Interface (CLI)

HIVE

JDBC

Thrift Interface

Query Engine
Parse Compile

ODBC

Metadata
Store

Optimize
Meta Data

Service

HADOOP CLUSTER
(MAP REDUCE + HDFS)

Execute

Figure 25.2
Hive system architecture
and components.

 25.4 MapReduce: Additional Details 935

example, the JDBC StorageHandler allows a Hive user to define a table that
is in fact stored in some relational DBMS and accessed using the JDBC pro-
tocol (see Chapter 10) during query execution.

Support of SQL and Optimizations in Hive: Hive incorporated the concepts of
Logical and Physical Optimizations similar to those used in optimization of SQL que-
ries, which we discussed in Chapters 18 and 19. Early on, there was support for logical
optimizations such as pruning unneeded columns and pushing selection predicates
down into the query tree. Physical optimizations of converting sort-merge joins to
Map-side joins based on user hints and data file sizes have also been incorporated.
Hive started with support for a subset of SQL-92 that included SELECT, JOIN,
GROUP BY, and filters based on conditions in the WHERE clause. Hive users can
express complex SQL commands in Hive. Early in its development, Hive was able to
run the 22 TPCH benchmark queries (Transaction Processing Performance Council
benchmark for decision support), although with considerable manual rewriting.

Significant strides have been made in language support and in optimizer and run-
time techniques. Here is a sampling of those improvements:

 ■ Hive SQL has added many analytic features of SQL, such as subquery predicates,
Common Table expressions (this is the WITH clause in SQL that allows users to
name common subquery blocks and reference them multiple times in the query;
these expressions can be considered query-level views), aggregates over a certain
window within the data, Rollups (which refer to higher aggregation levels), and
Grouping sets (this capability allows you to express multiple levels of aggrega-
tion in one Group By level). Consider, for example, Group By Grouping Sets
((year, month), (dayofweek)); this expresses aggregates both at the (Year,
Month) level and also by DayOfWeek. A full set of SQL data types, including
varchars, numeric types, and dates, is now supported. Hive also supports the
common Change Data Capture ETL flow via Insert and Update statements. In a
Data Warehouse, the process of delivering slowly changing Dimensions (e.g.,
customers in a Retail Data Warehouse) requires a complex dataflow of identi-
fying new and updated records in that Dimension. This is called the Change
Data Capture (CDC) process. By adding Insert and Update statements in Hive,
it is possible to model and execute CDC processes in Hive SQL.

 ■ Hive now has a greatly expanded set of DDLs for expressing grants and priv-
ileges in terms of discretionary access control (see Section 30.2).

 ■ Several standard database optimizations have been incorporated, including
Partition pruning, Join reordering, Index rewrite, and Reducing the number
of MR jobs. Very large tables, like Fact tables in Data Warehouses, are typi-
cally partitioned. Time is probably the most common attribute used for parti-
tioning. With HDFS being used as the storage layer, users tend to retain data
for long time periods. But a typical Warehouse will only include the most cur-
rent time periods (e.g., the last quarter or current year). The time periods are
specified as filters in the Query. Partition Pruning is the technique of extracting
relevant predicates from the Query filters and translating them to a list of

936 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

Table partitions that need to be read. Obviously, this has a huge impact on
performance and cluster utilization: Instead of scanning all partitions retained
for the last N years, only the partitions from the last few weeks/months are
scanned. Work in progress includes collecting column- and table-level statis-
tics and generating plans based on a cost model that uses these statistics (simi-
lar to what we considered for RDBMSs in Chapter 19).

 ■ Hive now supports Tez as a runtime environment that has significant advan-
tages over MR, including that there is no need to write to disk between jobs;
and there is no restriction on one-input, two-stage processes. There is also
active work to support Hive on Spark, a new technology that we briefly
mention in Section 25.6.

25.4.4 Advantages of the Hadoop/MapReduce Technology
Hadoop version 1 was optimized for batch processing on very large datasets. Vari-
ous factors contribute to its success:

 1. The disk seek rate is a limiting factor when we deal with petabyte-level work-
loads. Seek is limited by the disk mechanical structure, whereas the transfer
speed is an electronic feature and increasing steadily. (See Section 16.2 for a
discussion of disk drives.) The MapReduce model of scanning datasets in
parallel alleviates this situation. For instance, scanning a 100-TB dataset
sequentially using 1 machine at a rate of 50 Mbps will take about 24 days to
complete. On the other hand, scanning the same data using 1,000 machines
in parallel will just take 35 minutes. Hadoop recommends very large block
sizes, 64 MB or higher. So when scanning datasets, the percentage of time
spent on disk seeks is negligible. Unlimited disk seek rates combined with
processing large datasets in chunks and in parallel is what drives the scal-
ability and speed of the MapReduce model.

 2. The MapReduce model allows handling of semistructured data and key-
value datasets more easily compared to traditional RDBMSs, which require
a predefined schema. Files such as very large logfiles present a particular
problem in RDBMSs because they need to be parsed in multiple ways before
they can be analyzed.

 3. The MapReduce model has linear scalability in that resources can be added
to improve job latency and throughput in a linear fashion. The failure model
is simple, and individual failed jobs can be rerun without a major impact on
the whole job.

25.5 Hadoop v2 alias YARN
In previous sections, we discussed Hadoop development in detail. Our discussion
included the core concepts of the MapReduce paradigm for programming and the
HDFS underlying storage infrastructure. We also discussed high-level interfaces
like Pig and Hive that are making it possible to do SQL-like, high level data process-
ing on top of the Hadoop framework. Now we turn our attention to subsequent
developments, which are broadly called Hadoop v2 or MRv2 or YARN (Yet Another

 25.5 Hadoop v2 alias YARN 937

Resource Negotiator). First, we point out the shortcomings of the Hadoop v1 plat-
form and the rationale behind YARN.

25.5.1 Rationale behind YARN
Despite the success of Hadoop v1, user experience with Hadoop v1 in enterprise
applications highlighted some shortcomings and suggested that an upgrade of
Hadoop v1 might be necessary:

 ■ As cluster sizes and the number of users grew, the JobTracker became a bot-
tleneck. It was always known to be the Single Point of Failure.

 ■ With a static allocation of resources to map and reduce functions, utilization
of the cluster of nodes was less than desirable

 ■ HDFS was regarded as a single storage system for data in the enterprise.
Users wanted to run different types of applications that would not easily fit
into the MR model. Users tended to get around this limitation by running
Map-only Jobs, but this only compounded scheduling and utilization issues.

 ■ On large clusters, it became problematic to keep up with new open source
versions of Hadoop, which were released every few months.

The above reasons explain the rationale for developing version 2 of Hadoop. Some
of the points mentioned in the previous list warrant a more detailed discussion,
which we provide next.

Multitenancy: Multitenancy refers to accommodating multiple tenants/users con-
currently so that they can share resources. As the cluster sizes grew and the number
of users increased, several communities of users shared the Hadoop cluster. At
Yahoo, the original solution to this problem was Hadoop on Demand, which was
based on the Torque resource manager and Maui scheduler. Users could set up a
separate cluster for each Job or set of Jobs. This had several advantages:

 ■ Each cluster could run its own version of Hadoop.

 ■ JobTracker failures were isolated to a single cluster.

 ■ Each user/organization could make independent decisions on the size and
configuration of its cluster depending on expected workloads.

But Yahoo abandoned Hadoop on Demand for the following reasons:

 ■ Resource allocation was not based on data locality. So most reads and writes
from HDFS were remote accesses, which negated one of the key benefits of
the MR model of mostly local data accesses.

 ■ The allocation of a cluster was static. This meant large parts of a cluster were
mostly idle:

 � Within an MR job, the reduce slots were not usable during the Map phase
and the map slots were not usable during the Reduce phase. When using
higher level languages like Pig and Hive, each script or query spawned
multiple Jobs. Since cluster allocation was static, the maximum nodes
needed in any Job had to be acquired upfront.

938 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 � Even with the use of Fair or Capacity scheduling (see our discussion in
Section 25.4.2), dividing the cluster into fixed map and reduce slots meant
the cluster was underutilized.

 ■ The latency involved in acquiring a cluster was high—a cluster would be
granted only when enough nodes were available. Users started extending the
lifetime of clusters and holding the clusters longer than they needed. This
affected cluster utilization negatively.

JobTracker Scalability. As the cluster sizes increased beyond 4,000 nodes, issues
with memory management and locking made it difficult to enhance JobTracker to
handle the workload. Multiple options were considered, such as holding data about
Jobs in memory, limiting the number of tasks per Job, limiting the number of Jobs
submitted per user, and limiting the number of concurrently running jobs. None of
these seemed to fully satisfy all users; JobTracker often ran out of memory.

A related issue concerned completed Jobs. Completed jobs were held in JobTracker
and took up memory. Many schemes attempted to reduce the number and memory
footprint of completed Jobs. Eventually, a viable solution was to offload this func-
tion to a separate Job History daemon.

As the number of TaskTrackers grew, the latencies for heartbeats (signals from
TaskTracker to JobTracker) were almost 200 ms. This meant that heartbeat intervals
for TaskTrackers could be 40 seconds or more when there were more than 200 task
trackers in the cluster. Efforts were made to fix this but were eventually abandoned.

JobTracker: Single Point of Failure. The recovery model of Hadoop v1 was
very weak. A failure of JobTracker would bring down the entire cluster. In this
event, the state of running Jobs was lost, and all jobs would have to be resubmitted
and JobTracker restarted. Efforts to make the information about completed jobs
persist did not succeed. A related issue was to deploy new versions of the software.
This required scheduling a cluster downtime, which resulted in backlogs of jobs
and a subsequent strain on JobTracker upon restart.

Misuse of the MapReduce Programming Model. MR runtime was not a great
fit for iterative processing; this was particularly true for machine learning algo-
rithms in analytical workloads. Each iteration is treated as an MR job. Graph algo-
rithms are better expressed using a bulk synchronous parallel (BSP) model, which
uses message passing as opposed to the Map and Reduce primitives. Users got
around these impediments by inefficient alternatives such as implementing
machine learning algorithms as long-running Map-only jobs. These types of jobs
initially read data from HDFS and executed the first pass in parallel; but then
exchanged data with each other outside the control of the framework. Also, the
fault tolerance was lost. The JobTracker was not aware of how these jobs operated;
this lack of awareness led to poor utilization and instability in the cluster.

Resource Model Issues. In Hadoop v1, a node is divided into a fixed number of
Map and Reduce slots. This led to cluster underutilization because idle slots could

 25.5 Hadoop v2 alias YARN 939

not be used. Jobs other than MR could not run easily on the nodes because the node
capacity remained unpredictable.

The aforementioned issues illustrate why Hadoop v1 needed upgrading.
Although attempts were made to fix in Hadoop v1 many of the issues listed
above, it became clear that a redesign was needed. The goals of the new design
were set as follows:

 ■ To carry forward the scalibility and locality awareness of Hadoop v1.

 ■ To have multitenancy and high cluster utilization.

 ■ To have no single point of failure and to be highly available.

 ■ To support more than just MapReduce jobs. The cluster resources should
not be modeled as static map and reduce slots.

 ■ To be backward compatible, so existing jobs should run as they are and pos-
sibly without any recompilation.

The outcome of these was YARN or Hadoop v2, which we discuss in the next section.

25.5.2 YARN Architecture
Overview. Having provided the motivation behind upgrading Hadoop v1, we
now discuss the detailed architecture of the next generation of Hadoop, which is
popularly known as MRv2, MapReduce 2.0, Hadoop v2, or YARN.17 The central
idea of YARN is the separation of cluster Resource Management from Jobs man-
agement. Additionally, YARN introduces the notion of an ApplicationMaster,
which is now responsible for managing work (task data flows, task lifecycles,
task failover, etc.). MapReduce is now available as a service/application provided
by the MapReduce ApplicationMaster. The implications of these two decisions
are far-reaching and are central to the notion of a data service operating system.
Figure 25.3 shows a high-level schematic diagram of Hadoop v1 and Hadoop v2
side by side.

The ResourceManager and the per worker node NodeManager together form the
platform on which any Application can be hosted on YARN. The Resource Manager
manages the cluster, doling out Resources based on a pluggable scheduling policy
(such as a fairness policy or optimizing cluster utilization policy). It is also respon-
sible for the lifecycle of nodes in the cluster in that it will track when nodes go
down, when nodes become unreachable, or when new nodes join. Node failures are
reported to the ApplicationMasters that had containers on the failed node. New
nodes become available for use by ApplicationMasters.

ApplicationMasters send ResourceRequests to the ResourceManager which then
responds with cluster Container leases. A Container is a lease by the Resource-
Manager to the ApplicationManager to use certain amount of resources on a node

17See the Apache website: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html for up-to-date documentation on YARN.

940 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

of the cluster. The ApplicationMaster presents a Container Launch Context to the
NodeManager for the node that this lease references. The Launch Context, in
addition to containing the lease, also specifies how to run the process for the task
and how to get any resources like jars, libs for the process, environment variables,
and security tokens. A node has a certain processing power in terms of number of
cores, memory, network bandwidth, etc. Currently, YARN only considers mem-
ory. Based on its processing power, a node can be divided into an interchangeable
set of containers. Once an ApplicationMaster receives a container lease, it is free to
schedule work on it as it pleases. ApplicationMasters, based on their workload, can
continuously change their Resource requirements. The ResourceManager bases its
scheduling decisions purely on these requests, on the state of the cluster, and on
the cluster’s scheduling policy. It is not aware of the actual tasks being carried out
on the nodes. The responsibility of managing and analyzing the actual work is left
to ApplicationMasters.

The NodeManager is responsible for managing Containers on their nodes. Con-
tainers are responsible for reporting on the node health. They also handle the pro-
cedure for nodes joining the cluster. Containers provide the Container Launch
service to ApplicationMasters. Other services available include a Local cache, which
could be User level, Application level, or Container level. Containers also can be
configured to provide other services to Tasks running on them. For example, for
MR tasks, the shuffle is now provided as a Node-level service.

The ApplicationMaster is now responsible for running jobs on the cluster. Based on
their job(s) the clusters negotiate for Resources with the ResourceManager. The
ApplicationMaster itself runs on the cluster; at startup time a client submits an
Application to the ResourceManager, which then allocates a container for the
ApplicationMaster and launches it in that container. In the case of MR, the
 ApplicationMaster takes over most of the tasks of the JobTracker: it launches Map
and Reduce tasks, makes decisions on their placement, manages failover of tasks,
maintains counters similar to Job state counters, and provides a monitoring inter-
face for running Jobs. The management and interface for completed jobs has been
moved to a separate Job History Server.

Hadoop v1

HDFS

Map Reduce
Cluster

Resource Management
+

Job Management

Pig Hive

Hadoop v2

HDFS

Map Reduce
Application Mstr

YARN
RESOURCE MANAGEMENT

Tez
Application Mstr

Pig Hive

Figure 25.3
The Hadoop v1 vs.
Hadoop v2
 schematic.

 25.5 Hadoop v2 alias YARN 941

The following advantages accrue from the separation of Resource Management
from Application Management in the YARN architecture:

 ■ A rich diversity of Data Services is available to utilize the cluster. Each of
these can expose its own programming model.

 ■ Application Masters are free to negotiate resources in patterns that are opti-
mized for their work: for example, machine learning Apps may hold Con-
tainers for long durations.

 ■ The Resource and Container model allows nodes to be utilized in a dynamic
manner, which increases the overall utilization of the cluster.

 ■ The ResourceManager does only one thing—manage resources; hence it is
highly scalable to tens of thousands of nodes.

 ■ With ApplicationMasters managing Jobs, it is possible to have multiple ver-
sions of an Application running on the cluster. There is no need for a global
cluster update, which would require that all Jobs be stopped.

Failure of an ApplicationMaster affects only Jobs managed by it. The Resource-
Manager provides some degree of management of ApplicationMasters. Let us
briefly consider each of the components of the YARN environment.

Resource Manager (RM). The Resource Manager is only concerned with allo-
cating resources to Applications, and not with optimizing the processing within
Applications. The policy of resource allocation is pluggable. Application Masters
are supposed to request resources that would optimize their workload.

The Resource Manager exposes the following interfaces:

 1. An API for clients to start ApplicationMasters

 2. A protocol for ApplicationMasters to negotiate for cluster resources

 3. A protocol for NodeManagers to report on node resources and be managed
by the Resource Manager

The scheduler in the ResourceManager matches the Resource Requirements sub-
mitted by Applications against the global state of the cluster resources. The alloca-
tion is based on the policies of the pluggable Scheduler (such as capacity or fairness).
Resources are requested by ApplicationMasters as Resource Requests. A Resource
Request specifies:

 ■ The number of containers needed

 ■ The physical resources (CPU, memory) needed per container

 ■ The locality preferences (physical node, rack) of the containers

 ■ The priority of the request for the Application

The scheduler satisfies these requests based on the state of the cluster as reported by
the NodeManager heartbeats. The locality and priority guides the scheduler toward
alternatives: for example, if a requested node is busy, the next best alternative is
another node on the same rack.

942 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

The scheduler also has the ability to request resources back from an Application if
needed and can even take back the resources forcibly. Applications, in returning a
container, can migrate the work to another container, or checkpoint the state and
restore it on another container. It is important to point out what the Resource man-
ager is not responsible for: handling the execution of tasks within an application,
providing any status information about applications, providing history of finished
jobs, and providing any recovery for failed tasks.

ApplicationMaster (AM). The ApplicationMaster is responsible for coordinating
the execution of an Application on the cluster. An Application can be a set of pro-
cesses like an MR Job, or it can be a long-running service like a Hadoop on demand
(HOD) cluster serving multiple MR jobs. This is left to the Application Writer.

The ApplicationMaster will periodically notify the ResourceManager of its current
Resource Requirements through a heartbeat mechanism. Resources are handed to
the ApplicationMaster as Container leases. Resources used by an Application are
dynamic: they are based on the progress of the application and the state of the clus-
ter. Consider an example: the MR ApplicationMaster running an MR job will ask
for a container on each of the m nodes where an InputSplit resides. If it gets a con-
tainer on one of the nodes, the ApplicationMaster will either remove the request for
containers on the rest of the m-1 nodes or at least reduce their priority. On the
other hand, if the map task fails, it is AM that tracks this failure and requests con-
tainers on other nodes that have a replica of the same InputSplit.

NodeManager. A NodeManager runs on every worker node of the cluster. It
 manages Containers and provides pluggable services for Containers. Based on a
detailed Container Launch Context specification, a NodeManager can launch a pro-
cess on its node with the environment and local directories set up. It also monitors to
make sure the resource utilization does not exceed specifications. It also periodically
reports on the state of the Containers and the node health. A NodeManager provides
local services to all Containers running on it. The Log Aggregation service is used to
upload each task’s standard output and standard error (stdout and stderr) to HDFS.
A NodeManager may be configured to run a set of pluggable auxillary services. For
example, the MR Shuffle is provided as a NodeManager service. A Container run-
ning a Map task produces the Map output and writes to local disk.The output is
made available to Reducers of the Job via the Shuffle service running on the Node.

Fault tolerance and availability. The RM remains the single point of failure in
YARN. On restart, the RM can recover its state from a persistent store. It kills all
containers in the cluster and restarts each ApplicationMaster. There is currently a
push to provide an active/passive mode for RMs. The failure of an Application-
Master is not a catastrophic event; it only affects one Application. It is responsible
for recovering the state of its Application. For example, the MR ApplicationMaster
will recover its completed task and rerun any running tasks.

Failure of a Container because of issues with the Node or because of Application
code is tracked by the framework and reported to the ApplicationMaster. It is the
responsibility of the ApplicationMaster to recover from the failure.

 25.5 Hadoop v2 alias YARN 943

25.5.3 Other Frameworks on YARN
The YARN architecture described above has made it possible for other application
frameworks to be developed as well as other programming models to be supported
that can provide additional services on the shared Hadoop cluster. Here we list
some of the Frameworks that have become available in YARN at the time this text
was written.

Apache Tez. Tez is an extensible framework being developed at Hortonworks for
building high-performance applications in YARN; these applications will handle
large datasets up to petabytes. Tez allows users to express their workflow as a
directed acyclic graph (DAG) of tasks. Jobs are modeled as DAGs, where Vertices
are tasks or operations and Edges represent interoperation dependencies or flows
of data. Tez supports the standard dataflow patterns like pipeline, scatter-gather,
and broadcast. Users can specify the concurrency in a DAG, as well as the failover
characteristics, such as whether to store task output in persistent storage or to
recompute it. The DAG can be changed at runtime based on job and cluster state.
The DAG model is a more natural fit (than executing as one or more MapReduce
jobs) for Pig scripts and SQL physical plans. Both Hive and Pig now provide a mode
in which they run on Tez. Both have benefitted in terms of simpler plans and sig-
nificant performance improvements. An often cited performance optimization is
the Map-Reduce-Reduce pattern; an SQL query that has a Join followed by a Group-
By normally is translated to two MR jobs: one for the Join and one for the Group-
By. In the first MR stage, the output of the join will be written to HDFS and read
back in the Map phase of the second MR for the Group-By Job. In Tez, this extra
write and read to/from HDFS can be avoided by having the Join Vertex of the DAG
stream resulting rows to the Group-By Vertex.

Apache Giraph. Apache Giraph is the open source implementation of Google’s
Pregel system,18 which was a large-scale graph processing system used to calculate
Page-Rank. (See Section 27.7.3 for a definition of Page-Rank.) Pregel was based on
the bulk synchronous processing (BSP) model of computation.19 Giraph added sev-
eral features to Pregel, including sharded aggregators (sharding, as defined in
Chapter 24, refers to a form of partitioning) and edge-oriented input. The Hadoop
v1 version of Giraph ran as MR jobs, which was not a very good fit. It did this by
running long-running Map-only Jobs. On YARN, the Giraph implementation
exposes an iterative processing model. Giraph is currently used at Facebook to ana-
lyze the social network users’ graph, which has users as nodes and their connections
as edges; the current number of users is approximately 1.3 billion.

Hoya: HBase on YARN. The Hortonworks Hoya (HBase on YARN) project pro-
vides for elastic HBase clusters running on YARN with the goal of more flexibility
and improved utilization of the cluster. We discussed HBase in Section 24.5 as a

18Pregel is described in Malewicz et al. (2010).
19BSP is a model for designing parallel algorithms and was originally proposed by Valiant (1990).

944 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

distributed, open source, nonrelational database that manages tables with billions of
rows and millions of columns. HBase is patterned after BigTable from Google20 but is
implemented using Hadoop and HDFS. Hoya is being developed to address the need
for creating on-demand clusters of HBase, with possibly different versions of HBase
running on the same cluster. Each of the HBase instances can be individually config-
ured. The Hoya ApplicationMaster launches the HBase Master locally. The Hoya AM
also asks the YARN RM for a set of containers to launch HBase RegionServers on the
cluster. HBase RegionServers are the worker processes of Hbase; each ColumnFamily
(which is like a set of Columns in a relational table) is distributed across a set of
RegionServers. This can be used to start one or more HBase instances on the cluster,
on demand. The clusters are elastic and can grow or shrink based on demand.

The above three examples of the applications developed on YARN should give
the reader a sense of the possibilities that have been opened up by the decoupling
of Resource Management from Application Management in the overall
Hadoop/MapReduce architecture by YARN.

25.6 General Discussion
So far, we have discussed the big data technology development that has occurred
roughly in the 2004–2014 time frame, and we have emphasized Hadoop v1 and
YARN (also referred to as Hadoop v2 or MRv2). In this section, we must first state
the following disclaimer: there are a number of ongoing projects under Apache open
source banner as well as in companies devoted to developing products in this area
(e.g., Hortonworks, Cloudera, MapR) as well as many private startup companies.
Similarly, the Amplab at University of California and other academic institutions are
contributing heavily to developing technology that we have not been able to cover in
detail. There is also a series of issues associated with the cloud concept, with running
MapReduce in the cloud environment, and with data warehousing in the cloud that
we have not discussed. Given this background, we now cover a few general topics
that are worth mentioning in the context of the elaborate descriptions we presented
so far in this chapter. We present issues related to the tussle between the traditional
approach to high performance applications in parallel RDBMS implementations vis-
à-vis Hadoop- and YARN-based technologies. Then we present a few points related
to how big data and cloud technologies will be complementary in nature. We outline
issues related to the locality of data and the optimization issues inherent in the stor-
age clouds and the compute clouds. We also discuss YARN as a data services plat-
form and the ongoing movement to harness big data for analytics. Finally, we present
some current challenges facing the entire big data movement.

25.6.1 Hadoop/MapReduce vs. Parallel RDBMS
A team of data experts, including Abadi, DeWitt, Madden, and Stonebracker, have
done a methodological study comparing a couple of parallel database systems with

20BigTable is described in Chang et al. (2006).

 25.6 General Discussion 945

the open source version of Hadoop/MR (see, for example, Pavlo et al. (2009)).
These experts measure the performance of these two approaches on the same
benchmark using a 100-node cluster. They admit that the parallel database took
longer to load and tune compared to MR, but the performance of parallel DBMSs
was “strikingly better.” We list the areas the experts compared in the study and
attempt to show the progress made in both DBMSs and Hadoop since then.

Performance. In their paper, Pavlo et al. concluded that parallel DBMSs were
three to six times faster than MR. The paper lists many reasons why the DBMSs
gave better performance. Among the reasons given are the following: (i) indexing
with B+-trees, which expedites selection and filtering; (ii) novel storage orientation
(e.g., column-based storage has certain advantages); (iii) techniques that allow
operations on compressed data directly; and (iv) parallel query optimization tech-
niques common in parallel DBMSs.

Since the time of Pavlo et al.’s comparison, which involved Hadoop version 0.19,
huge strides have been made in the MR runtime, the storage formats, and the plan-
ning capabilities for job scheduling and for optimizing complex data flows in the
Hadoop ecosystem. ORC and Parquet file formats are sophisticated Columnar file
formats that have the same aggressive compression techniques, the ability to push
predicates to the storage layer, and the ability to answer aggregate queries without
scanning data. We will briefly talk about the improvements in HDFS and MR;
Apache Hive has made huge strides in both the runtime and Cost-based optimiza-
tions of complex SQLs. In their move to transform Hadoop from batch into real-
time and interactive query mode, Hortonworks (2014) reports orders-of-magnitude
gains in performance of queries on a TPC-DS (decision support)–style bench-
mark. Cloudera’s Impala product, as reported in Cloudera (2014), uses Parquet
(the open source columnar data format) and is claimed to perform comparably to
traditional RDBMSs.

Upfront Cost advantage. Hadoop has maintained its cost advantage. With few
exceptions, Hadoop continues to be primarily an open source platform. YARN,
Hive, and Spark are all developed as Apache projects and are available as freely
downloadable packages.

Handling Unstructured/Semistructured data. MR reads data by applying the
schema definition to it; doing so allows it to handle semistructured datasets like
CSVS, JSON, and XML documents. The loading process is relatively inexpensive
for the Hadoop/MR systems. However, the support for unstructured data is defi-
nitely on the rise in RDBMSs. PostgreSQL now supports key-value stores and json;
most RDBMSs have a support for XML. On the other hand, one of the reasons for
the performance gains on the Hadoop side has been the use of specialized data for-
mats like ORC (Optimized Row Columnar) and Parquet (another open source
columnar format). The latter may not remain a strongly differentiating feature
among RDBMSs and Hadoop-based systems for too long because RDBMSs may
also incorporate special data formats.

946 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

Higher level language support. SQL was a distinguishing feature that was in
favor for RDBMSs for writing complex analytical queries. However, Hive has
incorporated a large number of SQL features in HiveQL, including grouping and
aggregation as well as nested subqueries and multiple functions that are useful in
data warehouses, as we discussed previously. Hive 0.13 is able to execute about 50
queries from the TPC-DS benchmark without any manual rewriting. New machine
learning–oriented function libraries are emerging (e.g., the function library at
madlib.net supports traditional RDBMSs like PostgreSql as well as the Pivotal dis-
tribution of Hadoop database (PHD)). Pivotal’s HAWQ claims to be the latest and
most powerful parallel SQL engine combining the advantages of SQL and Hadoop.
Furthermore, the YARN plugin architecture that we discussed simplifies the pro-
cess of extending the fabric with new components and new functions. Pig and
Hive have extendibility with UDFs (user-defined functions). Several data services
are now available on YARN, such as Revolution R and Apache Mahout for machine
learning and Giraph for graph processing. Many traditional DBMSs now run on
the YARN platform; for example, the Vortex analytic platform from Actian21 and
BigSQL 3.0 from IBM.22

Fault tolerance. Fault tolerance remains a decided advantage of MR-based sys-
tems. The panel of authors in Pavlo et al. (2009) also acknowledged that “MR does
a superior job of minimizing the amount of work lost when a hardware failure
occurs.” As pointed out by these authors, this capability comes at the cost of mate-
rializing intermediate files between Map and Reduce phases. But as Hadoop begins
to handle very complex data flows (such as in Apache Tez) and as the need for
latencies decreases, users can trade off performance for fault tolerance. For exam-
ple, in Apache Spark one can configure an intermediate Resilient Distributed
Dataset (RDD)23 to be either materialized on disk or in memory, or even to be
recomputed from its input.

As we can see from this discussion, even though MR started with a goal of sup-
porting batch-oriented workloads, it could not keep up with traditional parallel
RDBMSs in terms of interactive query workloads, as exemplified by Pavlo et al.
(2009). However, the two camps have moved much closer to each other in capa-
bilities. Market forces, such as the need for venture capital for new startups, require
an SQL engine for new applications that largely deal with very large semistruc-
tured datasets; and the research community’s interest and involvement have
brought about substantial improvements in Hadoop’s capability to handle tradi-
tional analytical workloads. But there is still significant catching up to be done in
all the areas pointed out in Pavlo et al. (2009): runtime, planning and optimiza-
tion, and analytic feature-sets.

21See http://www.actian.com/about-us/blog/sql-hadoop-real-deal/ for a current description.
22See Presentation at http://www.slideshare.net/Hadoop_Summit/w-325p230-azubirigrayatv4 for a
current description.
23See Zaharia et al. (2012).

 25.6 General Discussion 947

25.6.2 Big Data in Cloud Computing
The cloud computing movement and the big data movement have been proceeding
concurrently for more than a decade. It is not possible to address the details of
cloud computing issues in the present context. However, we state some compelling
reasons why big data technology is in some sense dependent on cloud technology
not only for its further expansion, but for its continued existence.

 ■ The cloud model affords a high degree of flexibility in terms of management
of resources: “scaling out,” which refers to adding more nodes or resources;
“scaling up,” which refers to adding more resources to a node in the system;
or even downgrading are easily handled almost instantaneously.

 ■ The resources are interchangeable; this fact, coupled with the design of dis-
tributed software, creates a good ecosystem where failure can be absorbed
easily and where virtual computing instances can be left unperturbed. For
the cost of a few hundred dollars, it is possible to perform data mining oper-
ations that involve complete scans of terabyte databases, and to crawl huge
Web sites that contain millions of pages.

 ■ It is not uncommon for big data projects to exhibit unpredictable or peak
computing power and storage needs. These projects are faced with the chal-
lenge of providing for this peak demand on an as-needed and not necessar-
ily continuous basis. At the same time, business stakeholders expect swift,
inexpensive, and dependable products and project outcomes. To meet with
these conflicting requirements, cloud services offer an ideal solution.

 ■ A common situation in which cloud services and big data go hand-in-hand
is as follows: Data is transferred to or collected in a cloud data storage sys-
tem, like Amazon’s S3, for the purpose of collecting log files or exporting
text-formatted data. Alternatively, database adapters can be utilized to
access data from databases in the cloud. Data processing frameworks like
Pig, Hive, and MapReduce, which we described above in Section 25.4, are
used to analyze raw data (which may have originated in the cloud).

 ■ Big data projects and startup companies benefit a great deal from using a
cloud storage service. They can trade capital expenditure for operational
expenditure; this is an excellent trade because it requires no capital outlay or
risk. Cloud storage provides reliable and scalable storage solutions of a qual-
ity otherwise unachievable.

 ■ Cloud services and resources are globally distributed. They ensure high avail-
ability and durability unattainable by most but the largest organizations.

The Netflix Case for Marrying Cloud and Big Data.24 Netflix is a large orga-
nization characterized by a very profitable business model and an extremely inex-
pensive and reliable service for consumers. Netflix provides video streaming
services to millions of customers today thanks to a highly efficient information

24Based on http://techblog.netflix.com/2013/01/hadoop-platform-as-service-in-cloud.html

948 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

system and data warehouse. Netflix uses Amazon S3 rather than HDFS as the data
processing and analysis platform for several reasons. Netflix presently uses Ama-
zon’s Elastic MapReduce (EMR) distribution of Hadoop. Netflix cites the main
reason for its choice as the following: S3 is designed for 99.999999999% durability
and 99.99% availability of objects over a given year, and S3 can sustain concurrent
loss of data in two facilities. S3 provides bucket versioning, which allows Netflix to
recover inadvertently deleted data. The elasticity of S3 has allowed Netflix a practi-
cally unlimited storage capacity; this capacity has enabled Netflix to grow its storage
from a few hundred terabytes to petabytes without any difficulty or prior planning.
Using S3 as the data warehouse enables Netflix to run multiple Hadoop clusters that
are fault-tolerant and can sustain excess load. Netflix executives claim that they have
no concerns about data redistribution or loss during expansion or shrinking of the
warehouse. Although Netflix’s production and query clusters are long-running clus-
ters in the cloud, they can be essentially treated as completely transient. If a cluster
goes down, Netflix can simply substitute with another identically sized cluster, pos-
sibly in a different geographic zone, in a few minutes and not sustain any data loss.

25.6.3 Data Locality Issues and Resource Optimization
for Big Data Applications in a Cloud

The increasing interest in cloud computing combined with the demands of big data
technology means that data centers must be increasingly cost-effective and con-
sumer-driven. Also, many cloud infrastructures are not intrinsically designed to
handle the scale of data required for present-day data analytics. Cloud service pro-
viders are faced with daunting challenges in terms of resource management and
capacity planning to provide for big data technology applications.

The network load of many big data applications, including Hadoop/MapReduce, is of
special concern in a data center because large amounts of data can be generated dur-
ing job execution. For instance, in a MapReduce job, each reduce task needs to read
the output of all map tasks, and a sudden explosion of network traffic can signifi-
cantly deteriorate cloud performance. Also, when data is located in one infrastructure
(say, in a storage cloud like Amazon S3) and processed in a compute cloud (such as
Amazon EC2), job performance suffers significant delays due to data loading.

Research projects have proposed25 a self-configurable, locality-based data and vir-
tual machine management framework based on the storage-compute model. This
framework enables MapReduce jobs to access most of their data either locally or
from close-by nodes, including all input, output, and intermediate data generated
during map and reduce phases of the jobs. Such frameworks categorize jobs using a
data-size sensitive classifier into four classes based on a data size–based footprint.
Then they provision virtual MapReduce clusters in a locality-aware manner, which
enables efficient pairing and allocation of MapReduce virtual machines (VMs) to
reduce the network distance between storage and compute nodes for both map and
reduce processing.

25See Palanisamy et al. (2011).

 25.6 General Discussion 949

Recently, caching techniques have been shown to improve the performance of
MapReduce jobs for various workloads.26 The PACMan framework provides sup-
port for in-memory caching, and the MixApart system provides support for disk-
based caching when the data is stored in an enterprise storage server within the
same site. Caching techniques allow flexibility in that data is stored in a separate
storage infrastructure that allows prefetching and caching of the most essential
data. Recent work27 has addressed the big data caching problem in the context of
privacy-conscious scenarios, wherein data stored in encrypted form in a public
cloud must be processed in a separate, secure enterprise site.

In addition to the data locality problem, one of the most challenging goals for cloud
providers is to optimally provision virtual clusters for jobs while minimizing the
overall consumption cost of the cloud data center.

An important focus of cloud resource optimization is to optimize globally across all
jobs in the cloud as opposed to per-job resource optimizations. A good example of
a globally optimized cloud- managed system is the recent Google BigQuery sys-
tem,28 which allows Google to run SQL-like queries against very large datasets with
potentially billions of rows using an Excel-like interface. In the BigQuery service,
customers only submit the queries to be processed on the large datasets, and the
cloud system intelligently manages the resources for the SQL-like queries. Simi-
larly, the Cura resource optimization model29 proposed for MapReduce in a cloud
achieves global resource optimization by minimizing the overall resource utiliza-
tion in the cloud as opposed to per-job or per-customer resource optimization.

25.6.4 YARN as a Data Service Platform
The separation of resource management from application management has taken
Hadoop to another level as a platform. Hadoop v1 was all about MapReduce. In
Hadoop v2, MapReduce is one of the many application frameworks that can run on
the cluster. As we discussed in Section 25.5, this has opened the door for many services
(with their own programming models) to be provided on YARN. There is no need to
translate all data processing techniques and algorithms into a set of MapReduce jobs.
MapReduce is presently being used only for batch-oriented processing such as the
ETL (extract, transform, load) process in data warehouses (see Chapter 29). The
emerging trend is to see Hadoop as a data lake, where a significant portion of enter-
prise data resides and where processing happens. Traditionally, HDFS has been
where an enterprise’s historical data resides because HDFS can handle the scale of
such data. Most new sources of data, which in today’s search and social networking
applications come from Web and machine logs, clickstream data, message data (as
in Twitter) and sensor data, also is being stored largely in HDFS.

26See the PACMAN framework by Ananthanarayanan et al. (2012) and the MixApart system by
 Mihailescu et al. (2013).
27See Palanisamy et al. (2014a).
28For the Google BigQuery system, see https://developers.google.com/bigquery/
29Palanisamy et al. (2014b).

950 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

The Hadoop v1 model was the federation model: although HDFS was the storage
layer for the enterprise, processing was a mixture of MapReduce and other engines.
One alternative was to extract data from HDFS store to engines running outside
the cluster in their own silos; such data was moved to graph engines, machine
learning analytical applications, and so forth. The same machines as those used for
the Hadoop cluster were being used for entirely different applications, such as
stream processing outside of Hadoop. This scenario was far from ideal since phys-
ical resources had to be divvied up in a static manner and it was difficult to migrate
and upgrade to new versions when multiple frameworks ran on the same machines.
With YARN, the above issues are addressed. Traditional services are taking advan-
tage of the YARN ResourceManager and are providing their service on the same
Hadoop cluster where the data resides.

Whereas support for SQL in Hadoop was promised by multiple vendors, the actual
support has been less than completely desirable. Some vendors required the HDFS
data to be moved out to another database to run SQL; some required wrappers to
read the HDFS data before an SQL query ran on it. A new trend among RDBMSs
and traditional database systems considers a YARN cluster as a viable platform.
One example is Actian’s analytics platform, which provides SQL in Hadoop30 and
which is claimed to be a complete and robust implementation of SQL using the
Actian Vectorwise columnar database (which runs as a YARN application). IBM’s
Big SQL 3.031 is a project that makes an existing IBM shared-nothing DBMS run
on a YARN cluster.

Apache Storm is a distributed scalable streaming engine that allows users to pro-
cess real-time data feeds. It is widely used by Twitter. Storm on YARN (http://
hortonworks.com/labs/storm/) and SAS on YARN (http://hortonworks.com/
partner/sas/) are applications that treat Storm (a distributed stream processing
application) and SAS (statistical analysis software) as applications on the YARN
platform. As we discussed previously, Giraph and HBase Hoya are ongoing efforts
that are rapidly adopting YARN. A wide range of application systems uses the
Hadoop cluster for storage; examples include services like streaming, machine
learning/statistics, graph processing, OLAP, and key-value stores. These services
go well beyond MapReduce. The goal/promise of YARN is for these services to
coexist on the same cluster and take advantage of the locality of data in HDFS
while YARN orchestrates their use of cluster resources.

25.6.5 Challenges Faced by Big Data Technologies
In a recent article,32 several database experts voiced their concerns about the
impending challenges faced by big data technologies when such technologies

30Current documentation is available at http://www.actian.com/about-us/blog/sql-hadoop-real-deal/
31Current information is available at: http://www.slideshare.net/Hadoop_
Summit/w-325p230-azubirigrayatv4
32See Jagadish et al. (2014).

 25.6 General Discussion 951

are used primarily for analytics applications. These concerns include the
 following:

 ■ Heterogeneity of information: Heterogeneity in terms of data types, data
formats, data representation, and semantics is unavoidable when it comes to
sources of data. One of the phases in the big data life cycle involves integra-
tion of this data. The cost of doing a clean job of integration to bring all data
into a single structure is prohibitive for most applications, such as health-
care, energy, transportation, urban planning, and environmental modeling.
Most machine learning algorithms expect data to be fed into them in a uni-
form structure. The data provenance (which refers to the information about
the origin and ownership of data) is typically not maintained in most analyt-
ics applications. Proper interpretation of data analysis results requires large
amounts of metadata.

 ■ Privacy and confidentiality: Regulations and laws regarding protection of
confidential information are not always available and hence not applied
strictly during big data analysis. Enforcement of HIPAA regulations in the
healthcare environment is one of few instances where privacy and confiden-
tiality are strictly enforced. Location-based applications (such as on smart
phones and other GPS-equipped devices), logs of user transactions, and
clickstreams that capture user behavior all reveal confidential information.
User movement and buying patterns can be tracked to reveal personal iden-
tity. Because it is now possible to harness and analyze billions of users’ records
via the technologies described in this chapter, there is widespread concern
about personal information being compromised (e.g., data about individuals
could be leaked from social data networks that are in some way linked to
other data networks). Data about customers, cardholders, and employees is
held by organizations and thus is subject to breaches of confidentiality. Jag-
adish et al. (2014) voiced a need for stricter control over digital rights man-
agement of data similar to the control exercised in the music industry.

 ■ Need for visualization and better human interfaces: Huge volumes of data
are crunched by big data systems, and the results of analyses must be inter-
preted and understood by humans. Human preferences must be accounted
for and data must be presented in a properly digestible form. Humans are
experts at detecting patterns and have great intuition about data they are
familiar with. Machines cannot match humans in this regard. It should be
possible to bring together multiple human experts to share and interpret
results of analysis and thereby increase understanding of those results. Mul-
tiple modes of visual exploration must be possible to make the best use of
data and to properly interpret results that are out of range and thus are clas-
sified as outlier values.

 ■ Inconsistent and incomplete information: This has been a perennial prob-
lem in data collection and management. Future big data systems will allow
multiple sources to be handled by multiple coexisting applications, so prob-
lems due to missing data, erroneous data, and uncertain data will be com-
pounded. The large volume and built-in redundancy of data in fault-tolerant

952 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

systems may compensate to some extent for the missing values, conflicting
values, hidden relationships, and the like. There is an inherent uncertainty
about data collected from regular users using normal devices when such
data comes in multiple forms (e.g., images, rates of speed, direction of
travel). There is still a lot to be learned about how to use crowdsourcing data
to generate effective decision making.

The aforementioned issues are not new to information systems. However, the large
volume and wide variety of information inherent in big data systems compounds
these issues.

25.6.6 Moving Forward
YARN makes it feasible for enterprises to run and manage many services on one
cluster. But building data solutions on Hadoop is still a daunting challenge. A solu-
tion may involve assembling ETL (extract, transform, load) processing, machine
learning, graph processing, and/or report creation. Although these different func-
tional engines all run on the same cluster, their programming models and metadata
are not unified. Analytics application developers must try to integrate all these ser-
vices into a coherent solution.

On current hardware, each node contains a significant amount of main memory
and flash memory storage. The cluster thus becomes a vast resource of main mem-
ory and flash storage. Significant innovation has demonstrated the performance
gains of in-memory data engines; for example, SAP HANA is an in-memory,
columnar scale-out RDBMS that is gaining a wide following.33

The Spark platform from Databricks (https://databricks.com/), which is an off-
shoot of the Berkeley Data Analytics Stack from AMPLabs at Berkeley,34addresses
both of the advances mentioned above—namely, the ability to house diverse
applica tions in one cluster and the ability to use vast amounts of main memory
for faster response. Matei Zaharia developed the Resilient Distributed Datasets
(RDD) concept35 as a part of his Ph.D. work at the University of California–Berkeley
that gave rise to the Spark system. The concept is generic enough to be used across
all Spark’s engines: Spark core (data flow), Spark-SQL, GraphX, (graph process-
ing), MLLib (machine learning), and Spark-Streaming (stream processing). For
example, it is possible to write a script in Spark that expresses a data flow that
reads data from HDFS, reshapes the data using a Spark-SQL query, passes that
information to an MLLib function for machine learning–type analysis, and then
stores the result back in HDFS.36

34See https://amplab.cs.berkeley.edu/software/ for projects at Amplab from the University of California–
Berkeley.
35The RDD concept was first proposed in Zaharia et al. (2012).
36See an example of the use of Spark at https://databricks.com/blog/2014/03/26/spark-sql-
manipulating-structured-data-using-spark-2.html

33See http://www.saphana.com/welcome for a variety of documentation on SAP’s HANA system.

 25.7 Summary 953

RDDs are built on the capabilities of Scala language collections37 that are able to
re-create themselves from their input. RDDs can be configured based on how their
data is distributed and how their data is represented: it can be always re-created
from input, and it can be cached on disk or in memory. In-memory representa-
tions vary from serialized Java objects to highly optimized columnar formats that
have all the advantages of columnar databases (e.g., speed, footprint, operating in
serialized form).

The capabilities of a unified programming model and in-memory datasets will
likely be incorporated into the Hadoop ecosystem. Spark is already available as a
service in YARN (http://spark.apache.org/docs/1.0.0/running-on-yarn.html).
Detailed discussion of Spark and related technologies in the Berkeley Data Analysis
Stack is beyond our scope here. Agneeswaran (2014) discusses the potential of
Spark and related products; interested readers should consult that source.

25.7 Summary
In this chapter, we discussed big data technologies. Reports from IBM, Mckinsey,
and Tearadata scientist Bill Franks all predict a vibrant future for this technology,
which will be at the center of future data analytics and machine learning applications
and which is predicted to save businesses billions of dollars in the coming years.

We began our discussion by focusing on developments at Google with the Google
file system and MapReduce (MR), a programming paradigm for distributed pro-
cessing that is scalable to huge quantities of data reaching into the petabytes. After
giving a historical development of the technology and mentioning the Hadoop eco-
system, which spans a large number of currently active Apache projects, we dis-
cussed the Hadoop distributed file system (HDFS) by outlining its architecture and
its handling of file operations; we also touched on the scalability studies done on
HDFS. We then gave details of the MapReduce runtime environment. We provided
examples of how the MapReduce paradigm can be applied to a variety of contexts;
we gave a detailed example of its application to optimizing various relational join
algorithms. We then presented briefly the developments of Pig and Hive, the sys-
tems that provide an SQL-like interface with Pig Latin and HiveQL on top of the
low-level MapReduce programming. We also mentioned the advantages of the
joint Hadoop/MapReduce technology.

Hadoop/MapReduce is undergoing further development and is being repositioned
as version 2, known as MRv2 or YARN; version 2 separates resource management
from task/job management. We discussed the rationale behind YARN, its architec-
ture, and other ongoing frameworks based on YARN, including Apache Tez, a
workflow modeling environment; Apache Giraph, a large-scale graph processing
system based on Pregel of Google; and Hoya, a Hortonworks rendering of HBase
elastic clusters on YARN.

37See http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html for more information
on Scala Collections.

954 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

Finally, we presented a general discussion of some issues related to MapReduce/Hadoop
technology. We briefly commented on the study done for this architecture vis-à-vis
parallel DBMSs. There are circumstances where one is superior over the other, and
claims about the superiority of parallel DBMSs for batch jobs are becoming less rele-
vant due to architectural advancements in the form of YARN-related developments.
We discussed the relationship between big data and cloud technologies and the work
being done to address data locality issues in cloud storage for big data analytics. We
stated that YARN is being considered as a generic data services platform, and we
listed the challenges for this technology as outlined in a paper authored by a group of
database experts. We concluded with a summary of ongoing projects in the field of
big data.

Review Questions
 25.1. What is data analytics and what is its role in science and industry?

 25.2. How will the big data movement support data analytics?

 25.3. What are the important points made in the McKinsey Global Institute report
of 2012?

 25.4. How do you define big data?

 25.5. What are the various types of analytics mentioned in the IBM (2014) book?

 25.6. What are the four major characteristics of big data? Provide examples drawn
from current practice of each characteristic.

 25.7. What is meant by veracity of data?

 25.8. Give the chronological history of the development of MapReduce/Hadoop
technology.

 25.9. Describe the execution workflow of the MapReduce programming envi-
ronment.

 25.10. Give some examples of MapReduce applications.

 25.11. What are the core properties of a job in MapReduce?

 25.12. What is the function of JobTracker?

 25.13. What are the different releases of Hadoop?

 25.14. Describe the architecture of Hadoop in your own words.

 25.15. What is the function of the NameNode and secondary NameNode in HDFS?

 25.16. What does the Journal in HDFS refer to? What data is kept in it?

 25.17. Describe the heartbeat mechanism in HDFS.

 25.18. How are copies of data (replicas) managed in HDFS?

 Review Questions 955

 25.19. Shvachko (2012) reported on HDFS performance. What did he find? Can
you list some of his results?

 25.20. What other projects are included in the open source Hadoop ecosystem?

 25.21. Describe the workings of the JobTracker and TaskTracker in MapReduce.

 25.22. Describe the overall flow of the job in MapReduce.

 25.23. What are the different ways in which MapReduce provides fault tolerance?

 25.24. What is the Shuffle procedure in MapReduce?

 25.25. Describe how the various job schedulers for MapReduce work.

 25.26. What are the different types of joins that can be optimized using
MapReduce?

 25.27. Describe the MapReduce join procedures for Sort-Merge join, Partition
Join, N-way Map-side join, and Simple N-way join.

 25.28. What is Apache Pig, and what is Pig Latin? Give an example of a query in
Pig Latin.

 25.29. What are the main features of Apache Hive? What is its high-level query
language?

 25.30. What is the SERDE architecture in Hive?

 25.31. List some of the optimizations in Hive and its support of SQL.

 25.32. Name some advantages of the MapReduce/Hadoop technology.

 25.33. Give the rationale in moving from Hadoop v1 to Hadoop v2 (YARN).

 25.34. Give an overview of the YARN architecture.

 25.35. How does Resource Manager work in YARN?

 25.36. What are Apache Tez, Apache Giraph, and Hoya?

 25.37. Compare parallel relational DBMSs and the MapReduce/Hadoop systems.

 25.38. In what way are big data and cloud technology complementary to one
another?

 25.39. What are the data locality issues related to big data applications in cloud
storage?

 25.40. What services can YARN offer beyond MapReduce?

 25.41. What are some of the challenges faced by big data technologies today?

 25.42. Discuss the concept of RDDs (resilient distributed datasets).

 25.43. Find out more about ongoing projects such as Spark, Mesos, Shark, and
BlinkDB as they relate to the Berkeley Data Analysis Stack.

956 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

Selected Bibliography
The technologies for big data discussed in this chapter have mostly sprung up in the
last ten years or so. The origin of this wave is traced back to the seminal papers from
Google, including the Google file system (Ghemawat, Gobioff, & Leung, 2003) and
the MapReduce programming paradigm (Dean & Ghemawat, 2004). The Nutch
system with follow-on work at Yahoo is a precursor of the Hadoop technology and
continues as an Apache open source project (nutch.apache.org). The BigTable sys-
tem from Google (Fay Chang et al., 2006) describes a distributed scalable storage
system for managing structured data in the petabytes range over thousands of com-
modity servers.

It is not possible to name a specific single publication as “the” Hadoop paper. Many
studies related to MapReduce and Hadoop have been published in the past decade.
We will list only a few landmark developments here. Schvachko (2012) outlines the
limitations of the HDFS file system. Afrati and Ullman (2010) is a good example of
using MapReduce programming in various contexts and applications; they demon-
strate how to optimize relational join operations in MapReduce. Olston et al. (2008)
describe the Pig system and introduce Pig Latin as a high-level programming lan-
guage. Thusoo et al. (2010) describe Hive as a petabyte- scale data warehouse on top
of Hadoop. A system for large-scale graph processing called Pregel at Google is
described in Malewicz et al. (2010). It uses the bulk synchronous parallel (BSP)
model of parallel computation originally proposed by Valiant (1990). In Pavlo et al.
(2009), a number of database technology experts compared two parallel RDBMSs
with Hadoop/MapReduce and showed how the parallel DBMS can actually per-
form better under certain conditions. The results of this study must not be consid-
ered definitive because of the significant performance improvements achieved in
Hadoop v2 (YARN). The approach of resilient distributed datasets (RDDs) for in-
memory cluster computing is at the heart of the Berkeley’s Spark system, developed
by Zaharia et al. (2013). A recent paper by Jagadish et al. (2014) gives the collective
opinion of a number of database experts about the challenges faced by the current
big data technologies.

The definitive resource for Hadoop application developers is the book Hadoop: The
Definitive Guide, by Tom White (2012), which is in its third edition. A book by
YARN project founder Arun Murthy with Vavilapalli (2014) describes how YARN
increases scalability and cluster utilization, enables new programming models and
services, and extends applicability beyond batch applications and Java. Agneeswaran
(2014) has written about going beyond Hadoop, and he describes the Berkeley Data
Analysis Stack (BDAS) for real-time analytics and machine learning; the Stack
includes Spark, Mesos, and Shark. He also describes Storm, a complex event-pro-
cessing engine from Twitter widely used in industry today for real-time computing
and analytics.

The Hadoop wiki is at Hadoop.apache.org. There are many open source, big data
projects under Apache, such as Hive, Pig, Oozie, Sqoop, Storm, and HBase. Up-to-
date information about these projects can be found in the documentation at the
projects’ Apache Web sites and wikis. The companies Cloudera, MapR, and Hor-

 Selected Bibliography 957

tonworks include on their Web sites documentation about their own distributions
of MapReduce/Hadoop-related technologies. The Berkeley Amplab (https://
amplab.cs.berkeley.edu/) provides documentation about the Berkeley Data Analy-
sis Stack (BDAS), including ongoing projects such as GraphX, MLbase, and
BlinkDB.

There are some good references that outline the promise of big data technology and
large scale data management. Bill Franks (2012) talks about how to leverage big
data technologies for advanced analytics and provides insights that will help practi-
tioners make better decisions. Schmarzo (2013) discusses how the big data analytics
can empower businesses. Dietrich et al. (2014) describe how IBM has applied the
power of big data analytics across the enterprise in applications worldwide. A book
published by McKinsey Global Institute (2012) gives a strategic angle on big data
technologies by focusing on productivity, competitiveness, and growth.

There has been a parallel development in the cloud technologies that we have not
been able to discuss in detail in this chapter. We refer the reader to recent books on
cloud computing. Erl et al. (2013) discusses models, architectures, and business
practices and desccribes how this technology has matured in practice. Kavis (2014)
presents the various service models, including software as a service (SaaS), platform
as a service (PaaS), and infrastructure as a service (IaaS). Bahga and Madisetti
(2013) offer a practical, hands-on introduction to cloud computing. They describe
how to develop cloud applications on various cloud platforms, such as Amazon
Web Service (AWS), Google Cloud, and Microsoft’s Windows Azure.

This page intentionally left blank

Advanced Database Models,
Systems, and Applications

part 11

This page intentionally left blank

961

26
Enhanced Data Models:
Introduction to Active,

Temporal, Spatial, Multimedia,
and Deductive Databases

As the use of database systems has grown, users
have demanded additional functionality from

these software packages; increased functionality would make it easier to implement
more advanced and complex user applications. Object-oriented databases and
object-relational systems do provide features that allow users to extend their sys-
tems by specifying additional abstract data types for each application. However, it is
useful to identify certain common features for some of these advanced applications
and to create models that can represent them. Additionally, specialized storage
structures and indexing methods can be implemented to improve the performance
of these common features. Then the features can be implemented as abstract data
types or class libraries and purchased separately from the basic DBMS software
package. The term data blade has been used in Informix and cartridge in Oracle to
refer to such optional submodules that can be included in a DBMS package. Users
can utilize these features directly if they are suitable for their applications, without
having to reinvent, reimplement, and reprogram such common features.

This chapter introduces database concepts for some of the common features that
are needed by advanced applications and are being used widely. We will cover
active rules that are used in active database applications, temporal concepts that
are used in temporal database applications, and, briefly, some of the issues involv-
ing spatial databases and multimedia databases. We will also discuss deductive
databases. It is important to note that each of these topics is very broad, and we give

chapter 26

962 Chapter 26 Enhanced Data Models

only a brief introduction to each. In fact, each of these areas can serve as the sole
topic of a complete book.

In Section 26.1, we introduce the topic of active databases, which provide addi-
tional functionality for specifying active rules. These rules can be automatically
triggered by events that occur, such as database updates or certain times being
reached, and can initiate certain actions that have been specified in the rule declara-
tion to occur if certain conditions are met. Many commercial packages include
some of the functionality provided by active databases in the form of triggers.
Triggers are now part of the SQL-99 and later standards.

In Section 26.2, we introduce the concepts of temporal databases, which permit
the database system to store a history of changes and allow users to query both cur-
rent and past states of the database. Some temporal database models also allow
users to store future expected information, such as planned schedules. It is impor-
tant to note that many database applications are temporal, but they are often imple-
mented without having much temporal support from the DBMS package—that is,
the temporal concepts are implemented in the application programs that access the
database. The ability to create and query temporal data has been added to the SQL
standard in SQL:2011 and is available in the DB2 system, but we do not discuss it
here. The interested reader is referred to the end-of-chapter bibliography.

Section 26.3 gives a brief overview of spatial database concepts. We discuss types of
spatial data, different kinds of spatial analyses, operations on spatial data, types of
spatial queries, spatial data indexing, spatial data mining, and applications of spatial
databases. Most commercial and open source relational systems provide spatial
support in their data types and query languages as well as providing indexing and
efficient query processing for common spatial operations.

Section 26.4 is devoted to multimedia database concepts. Multimedia databases
provide features that allow users to store and query different types of multimedia
information, which includes images (such as pictures and drawings), video clips
(such as movies, newsreels, and home videos), audio clips (such as songs, phone
messages, and speeches), and documents (such as books and articles). We discuss
automatic analysis of images, object recognition in images, and semantic tagging
of images.

In Section 26.5, we discuss deductive databases,1 an area that is at the intersection of
databases, logic, and artificial intelligence or knowledge bases. A deductive
 database system includes capabilities to define (deductive) rules, which can deduce
or infer additional information from the facts that are stored in a database. Because
part of the theoretical foundation for some deductive database systems is mathe-
matical logic, such rules are often referred to as logic databases. Other types of
systems, referred to as expert database systems or knowledge-based systems, also
incorporate reasoning and inferencing capabilities; such systems use techniques

1Section 26.5 is a summary of Deductive Databases. The full chapter from the third edition, which provides
a more comprehensive introduction, is available on the book’s Web site.

 26.1 Active Database Concepts and Triggers 963

that were developed in the field of artificial intelligence, including semantic net-
works, frames, production systems, or rules for capturing domain-specific knowl-
edge. Section 26.6 summarizes the chapter.

Readers may choose to peruse the particular topics they are interested in, as the sec-
tions in this chapter are practically independent of one another.

26.1 Active Database Concepts and Triggers
Rules that specify actions that are automatically triggered by certain events have
been considered important enhancements to database systems for quite some time.
In fact, the concept of triggers—a technique for specifying certain types of active
rules—has existed in early versions of the SQL specification for relational databases,
and triggers are now part of the SQL-99 and later standards. Commercial relational
DBMSs—such as Oracle, DB2, and Microsoft SQLServer—have various versions of
triggers available. However, much research into what a general model for active
databases should look like has been done since the early models of triggers were
proposed. In Section 26.1.1, we will present the general concepts that have been
proposed for specifying rules for active databases. We will use the syntax of the
Oracle commercial relational DBMS to illustrate these concepts with specific exam-
ples, since Oracle triggers are close to the way rules are specified in the SQL stan-
dard. Section 26.1.2 will discuss some general design and implementation issues for
active databases. We give examples of how active databases are implemented in the
STARBURST experimental DBMS in Section 26.1.3, since STARBURST provides
for many of the concepts of generalized active databases within its framework. Sec-
tion 26.1.4 discusses possible applications of active databases. Finally, Section 26.1.5
describes how triggers are declared in the SQL-99 standard.

26.1.1 Generalized Model for Active Databases
and Oracle Triggers

The model that has been used to specify active database rules is referred to as
the event-condition-action (ECA) model. A rule in the ECA model has three
components:

 1. The event(s) that triggers the rule: These events are usually database
update operations that are explicitly applied to the database. However, in
the general model, they could also be temporal events2 or other kinds of
external events.

 2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event

2An example would be a temporal event specified as a periodic time, such as: Trigger this rule every day
at 5:30 a.m.

964 Chapter 26 Enhanced Data Models

occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed.

 3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed.

Let us consider some examples to illustrate these concepts. The examples are
based on a much simplified variation of the COMPANY database application
from Figure 5.5 and are shown in Figure 26.1, with each employee having a
name (Name), Social Security number (Ssn), salary (Salary), department to
which she is currently assigned (Dno, a foreign key to DEPARTMENT), and a
direct supervisor (Supervisor_ssn, a (recursive) foreign key to EMPLOYEE). For
this example, we assume that NULL is allowed for Dno, indicating that an
employee may be temporarily unassigned to any department. Each department
has a name (Dname), number (Dno), the total salary of all employees assigned to
the department (Total_sal), and a manager (Manager_ssn, which is a foreign key
to EMPLOYEE).

Notice that the Total_sal attribute is really a derived attribute whose value should be
the sum of the salaries of all employees who are assigned to the particular depart-
ment. Maintaining the correct value of such a derived attribute can be done via an
active rule. First we have to determine the events that may cause a change in the
value of Total_sal, which are as follows:

 1. Inserting (one or more) new employee tuples

 2. Changing the salary of (one or more) existing employees

 3. Changing the assignment of existing employees from one department to
another

 4. Deleting (one or more) employee tuples

In the case of event 1, we only need to recompute Total_sal if the new employee is
immediately assigned to a department—that is, if the value of the Dno attribute for
the new employee tuple is not NULL (assuming NULL is allowed for Dno). Hence, this
would be the condition to be checked. A similar condition could be checked for
event 2 (and 4) to determine whether the employee whose salary is changed (or
who is being deleted) is currently assigned to a department. For event 3, we will
always execute an action to maintain the value of Total_sal correctly, so no condition
is needed (the action is always executed).

Name Ssn Salary Dno Supervisor_ssn

EMPLOYEE

Dname Dno Total_sal Manager_ssn

DEPARTMENT
Figure 26.1
A simplified COMPANY
database used for active
rule examples.

 26.1 Active Database Concepts and Triggers 965

The action for events 1, 2, and 4 is to automatically update the value of Total_sal for
the employee’s department to reflect the newly inserted, updated, or deleted
employee’s salary. In the case of event 3, a twofold action is needed: one to update
the Total_sal of the employee’s old department and the other to update the Total_sal
of the employee’s new department.

The four active rules (or triggers) R1, R2, R3, and R4—corresponding to the above
situation—can be specified in the notation of the Oracle DBMS as shown in Fig-
ure 26.2(a). Let us consider rule R1 to illustrate the syntax of creating triggers in
Oracle. The CREATE TRIGGER statement specifies a trigger (or active rule) name—
Total_sal1 for R1. The AFTER clause specifies that the rule will be triggered after the
events that trigger the rule occur. The triggering events—an insert of a new
employee in this example—are specified following the AFTER keyword.3

The ON clause specifies the relation on which the rule is specified—EMPLOYEE for
R1. The optional keywords FOR EACH ROW specify that the rule will be triggered
once for each row that is affected by the triggering event.4

The optional WHEN clause is used to specify any conditions that need to be checked
after the rule is triggered, but before the action is executed. Finally, the action(s) to
be taken is (are) specified as a PL/SQL block, which typically contains one or more
SQL statements or calls to execute external procedures.

The four triggers (active rules) R1, R2, R3, and R4 illustrate a number of features of
active rules. First, the basic events that can be specified for triggering the rules are the
standard SQL update commands: INSERT, DELETE, and UPDATE. They are specified by
the keywords INSERT, DELETE, and UPDATE in Oracle notation. In the case of UPDATE,
one may specify the attributes to be updated—for example, by writing UPDATE OF
Salary, Dno. Second, the rule designer needs to have a way to refer to the tuples that have
been inserted, deleted, or modified by the triggering event. The keywords NEW and OLD
are used in Oracle notation; NEW is used to refer to a newly inserted or newly updated
tuple, whereas OLD is used to refer to a deleted tuple or to a tuple before it was updated.

Thus, rule R1 is triggered after an INSERT operation is applied to the EMPLOYEE
relation. In R1, the condition (NEW.Dno IS NOT NULL) is checked, and if it evaluates
to true, meaning that the newly inserted employee tuple is related to a department,
then the action is executed. The action updates the DEPARTMENT tuple(s) related to
the newly inserted employee by adding their salary (NEW.Salary) to the Total_sal
attribute of their related department.

Rule R2 is similar to R1, but it is triggered by an UPDATE operation that updates the
SALARY of an employee rather than by an INSERT. Rule R3 is triggered by an update
to the Dno attribute of EMPLOYEE, which signifies changing an employee’s assign-
ment from one department to another. There is no condition to check in R3, so the

3As we will see, it is also possible to specify BEFORE instead of AFTER, which indicates that the rule is
triggered before the triggering event is executed.

4Again, we will see that an alternative is to trigger the rule only once even if multiple rows (tuples) are
affected by the triggering event.

966 Chapter 26 Enhanced Data Models

(a) R1: CREATE TRIGGER Total_sal1
 AFTER INSERT ON EMPLOYEE
 FOR EACH ROW
 WHEN (NEW.Dno IS NOT NULL)
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal + NEW.Salary
 WHERE Dno = NEW.Dno;

 R2: CREATE TRIGGER Total_sal2
 AFTER UPDATE OF Salary ON EMPLOYEE
 FOR EACH ROW
 WHEN (NEW.Dno IS NOT NULL)
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal + NEW.Salary – OLD.Salary
 WHERE Dno = NEW.Dno;

 R3: CREATE TRIGGER Total_sal3
 AFTER UPDATE OF Dno ON EMPLOYEE
 FOR EACH ROW
 BEGIN
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal + NEW.Salary
 WHERE Dno = NEW.Dno;
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal – OLD.Salary
 WHERE Dno = OLD.Dno;
 END;

 R4: CREATE TRIGGER Total_sal4
 AFTER DELETE ON EMPLOYEE
 FOR EACH ROW
 WHEN (OLD.Dno IS NOT NULL)
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal – OLD.Salary
 WHERE Dno = OLD.Dno;

(b) R5: CREATE TRIGGER Inform_supervisor1
 BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn
 ON EMPLOYEE
 FOR EACH ROW
 WHEN (NEW.Salary > (SELECT Salary FROM EMPLOYEE
 WHERE Ssn = NEW.Supervisor_ssn))
 inform_supervisor(NEW.Supervisor_ssn, NEW.Ssn);

Figure 26.2
Specifying active rules
as triggers in Oracle
notation. (a) Triggers
for automatically
 maintaining the
 consistency of Total_sal
of DEPARTMENT.
(b) Trigger for
 comparing an
 employee’s salary with
that of his or her
supervisor.

 26.1 Active Database Concepts and Triggers 967

action is executed whenever the triggering event occurs. The action updates both
the old department and new department of the reassigned employees by adding
their salary to Total_sal of their new department and subtracting their salary from
Total_sal of their old department. Note that this should work even if the value of Dno
is NULL, because in this case no department will be selected for the rule action.5

It is important to note the effect of the optional FOR EACH ROW clause, which sig-
nifies that the rule is triggered separately for each tuple. This is known as a row-
level trigger. If this clause was left out, the trigger would be known as a
statement-level trigger and would be triggered once for each triggering statement.
To see the difference, consider the following update operation, which gives a 10%
raise to all employees assigned to department 5. This operation would be an event
that triggers rule R2:

UPDATE EMPLOYEE
SET Salary = 1.1 * Salary
WHERE Dno = 5;

Because the above statement could update multiple records, a rule using row-level
semantics, such as R2 in Figure 26.2, would be triggered once for each row, whereas
a rule using statement-level semantics is triggered only once. The Oracle system
allows the user to choose which of the above options is to be used for each rule.
Including the optional FOR EACH ROW clause creates a row-level trigger, and leav-
ing it out creates a statement-level trigger. Note that the keywords NEW and OLD
can only be used with row-level triggers.

As a second example, suppose we want to check whenever an employee’s salary is
greater than the salary of his or her direct supervisor. Several events can trigger this
rule: inserting a new employee, changing an employee’s salary, or changing an
employee’s supervisor. Suppose that the action to take would be to call an external
procedure inform_supervisor,6 which will notify the supervisor. The rule could then
be written as in R5 (see Figure 26.2(b)).

Figure 26.3 shows the syntax for specifying some of the main options available in
Oracle triggers. We will describe the syntax for triggers in the SQL-99 standard in
Section 26.1.5.

26.1.2 Design and Implementation Issues
for Active Databases

The previous section gave an overview of some of the main concepts for speci-
fying active rules. In this section, we discuss some additional issues concerning
how rules are designed and implemented. The first issue concerns activation,

5R1, R2, and R4 can also be written without a condition. However, it may be more efficient to execute
them with the condition since the action is not invoked unless it is required.
6Assuming that an appropriate external procedure has been declared. This is a feature that is available
in SQL-99 and later standards.

968 Chapter 26 Enhanced Data Models

<trigger> ::= CREATE TRIGGER <trigger name>
 (AFTER I BEFORE) <triggering events> ON <table name>
 [FOR EACH ROW]
 [WHEN <condition>]
 <trigger actions> ;
<triggering events> ::= <trigger event> {OR <trigger event> }
<trigger event> ::= INSERT I DELETE I UPDATE [OF <column name> { , <column name> }]
<trigger action> ::= <PL/SQL block>

Figure 26.3
A syntax summary for specifying triggers in the Oracle system (main options only).

deactivation, and grouping of rules. In addition to creating rules, an active
database system should allow users to activate, deactivate, and drop rules by
referring to their rule names. A deactivated rule will not be triggered by the
triggering event. This feature allows users to selectively deactivate rules for cer-
tain periods of time when they are not needed. The activate command will
make the rule active again. The drop command deletes the rule from the sys-
tem. Another option is to group rules into named rule sets, so the whole set of
rules can be activated, deactivated, or dropped. It is also useful to have a com-
mand that can trigger a rule or rule set via an explicit PROCESS RULES com-
mand issued by the user.

The second issue concerns whether the triggered action should be executed before,
after, instead of, or concurrently with the triggering event. A before trigger exe-
cutes the trigger before executing the event that caused the trigger. It can be used
in applications such as checking for constraint violations. An after trigger exe-
cutes the trigger after executing the event, and it can be used in applications such
as maintaining derived data and monitoring for specific events and conditions. An
instead of trigger executes the trigger instead of executing the event, and it can be
used in applications such as executing corresponding updates on base relations in
response to an event that is an update of a view.

A related issue is whether the action being executed should be considered as a
separate transaction or whether it should be part of the same transaction that
triggered the rule. We will try to categorize the various options. It is important
to note that not all options may be available for a particular active database sys-
tem. In fact, most commercial systems are limited to one or two of the options
that we will now discuss.

Let us assume that the triggering event occurs as part of a transaction execution.
We should first consider the various options for how the triggering event is related
to the evaluation of the rule’s condition. The rule condition evaluation is also
known as rule consideration, since the action is to be executed only after consid-
ering whether the condition evaluates to true or false. There are three main possi-
bilities for rule consideration:

 26.1 Active Database Concepts and Triggers 969

 1. Immediate consideration. The condition is evaluated as part of the same
transaction as the triggering event and is evaluated immediately. This case
can be further categorized into three options:

 � Evaluate the condition before executing the triggering event.

 � Evaluate the condition after executing the triggering event.

 � Evaluate the condition instead of executing the triggering event.

 2. Deferred consideration. The condition is evaluated at the end of the trans-
action that included the triggering event. In this case, there could be many
triggered rules waiting to have their conditions evaluated.

 3. Detached consideration. The condition is evaluated as a separate transac-
tion, spawned from the triggering transaction.

The next set of options concerns the relationship between evaluating the rule
condition and executing the rule action. Here, again, three options are possible:
immediate, deferred, or detached execution. Most active systems use the first
option. That is, as soon as the condition is evaluated, if it returns true, the action
is immediately executed.

The Oracle system (see Section 26.1.1) uses the immediate consideration model, but
it allows the user to specify for each rule whether the before or after option is to be
used with immediate condition evaluation. It also uses the immediate execution
model. The STARBURST system (see Section 26.1.3) uses the deferred consider-
ation option, meaning that all rules triggered by a transaction wait until the trigger-
ing transaction reaches its end and issues its COMMIT WORK command before the
rule conditions are evaluated.7

Another issue concerning active database rules is the distinction between row-level
rules and statement-level rules. Because SQL update statements (which act as trig-
gering events) can specify a set of tuples, one must distinguish between whether the
rule should be considered once for the whole statement or whether it should be
considered separately for each row (that is, tuple) affected by the statement. The
SQL-99 standard (see Section 26.1.5) and the Oracle system (see Section 26.1.1)
allow the user to choose which of the options is to be used for each rule, whereas
STARBURST uses statement-level semantics only. We will give examples of how
statement-level triggers can be specified in Section 26.1.3.

One of the difficulties that may have limited the widespread use of active rules, in
spite of their potential to simplify database and software development, is that there
are no easy-to-use techniques for designing, writing, and verifying rules. For exam-
ple, it is difficult to verify that a set of rules is consistent, meaning that two or more
rules in the set do not contradict one another. It is also difficult to guarantee
 termination of a set of rules under all circumstances. To illustrate the termination
problem briefly, consider the rules in Figure 26.4. Here, rule R1 is triggered by an
INSERT event on TABLE1 and its action includes an update event on Attribute1 of

7STARBURST also allows the user to start rule consideration explicitly via a PROCESS RULES command.

970 Chapter 26 Enhanced Data Models

TABLE2. However, rule R2’s triggering event is an UPDATE event on Attribute1 of
TABLE2, and its action includes an INSERT event on TABLE1. In this example, it is
easy to see that these two rules can trigger one another indefinitely, leading to non-
termination. However, if dozens of rules are written, it is very difficult to determine
whether termination is guaranteed or not.

If active rules are to reach their potential, it is necessary to develop tools for the
design, debugging, and monitoring of active rules that can help users design and
debug their rules.

26.1.3 Examples of Statement-Level Active Rules
in STARBURST

We now give some examples to illustrate how rules can be specified in the STARBURST
experimental DBMS. This will allow us to demonstrate how statement-level rules can
be written, since these are the only types of rules allowed in STARBURST.

The three active rules R1S, R2S, and R3S in Figure 26.5 correspond to the first three
rules in Figure 26.2, but they use STARBURST notation and statement-level seman-
tics. We can explain the rule structure using rule R1S. The CREATE RULE statement
specifies a rule name—Total_sal1 for R1S. The ON clause specifies the relation on
which the rule is specified—EMPLOYEE for R1S. The WHEN clause is used to specify
the events that trigger the rule.8 The optional IF clause is used to specify any
 conditions that need to be checked. Finally, the THEN clause is used to specify the
actions to be taken, which are typically one or more SQL statements.

In STARBURST, the basic events that can be specified for triggering the rules are
the standard SQL update commands: INSERT, DELETE, and UPDATE. These are
specified by the keywords INSERTED, DELETED, and UPDATED in STARBURST
notation. Second, the rule designer needs to have a way to refer to the tuples that
have been modified. The keywords INSERTED, DELETED, NEW-UPDATED, and
OLD-UPDATED are used in STARBURST notation to refer to four transition tables
(relations) that include the newly inserted tuples, the deleted tuples, the updated

R1: CREATE TRIGGER T1
 AFTER INSERT ON TABLE1
 FOR EACH ROW
 UPDATE TABLE2
 SET Attribute1 = … ;

R2: CREATE TRIGGER T2
 AFTER UPDATE OF Attribute1 ON TABLE2
 FOR EACH ROW
 INSERT INTO TABLE1 VALUES (…);

Figure 26.4
An example to illustrate
the termination problem
for active rules.

8Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule condition
in SQL and Oracle triggers.

 26.1 Active Database Concepts and Triggers 971

R1S: CREATE RULE Total_sal1 ON EMPLOYEE
 WHEN INSERTED
 IF EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL)
 THEN UPDATE DEPARTMENT AS D
 SET D.Total_sal = D.Total_sal +
 (SELECT SUM (I.Salary) FROM INSERTED AS I WHERE D.Dno = I.Dno)
 WHERE D.Dno IN (SELECT Dno FROM INSERTED);

R2S: CREATE RULE Total_sal2 ON EMPLOYEE
 WHEN UPDATED (Salary)
 IF EXISTS (SELECT * FROM NEW-UPDATED WHERE Dno IS NOT NULL)
 OR EXISTS (SELECT * FROM OLD-UPDATED WHERE Dno IS NOT NULL)
 THEN UPDATE DEPARTMENT AS D
 SET D.Total_sal = D.Total_sal +
 (SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
 WHERE D.Dno = N.Dno) –
 (SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
 WHERE D.Dno = O.Dno)
 WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED) OR
 D.Dno IN (SELECT Dno FROM OLD-UPDATED);

R3S: CREATE RULE Total_sal3 ON EMPLOYEE
 WHEN UPDATED (Dno)
 THEN UPDATE DEPARTMENT AS D
 SET D.Total_sal = D.Total_sal +
 (SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
 WHERE D.Dno = N.Dno)
 WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED);
 UPDATE DEPARTMENT AS D
 SET D.Total_sal = Total_sal –
 (SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
 WHERE D.Dno = O.Dno)
 WHERE D.Dno IN (SELECT Dno FROM OLD-UPDATED);

Figure 26.5
Active rules using statement-level semantics in STARBURST notation.

tuples before they were updated, and the updated tuples after they were updated,
respectively. Obviously, depending on the triggering events, only some of these
transition tables may be available. The rule writer can refer to these tables when
writing the condition and action parts of the rule. Transition tables contain tuples
of the same type as those in the relation specified in the ON clause of the rule—for
R1S, R2S, and R3S, this is the EMPLOYEE relation.

In statement-level semantics, the rule designer can only refer to the transition tables
as a whole and the rule is triggered only once, so the rules must be written differ-
ently than for row-level semantics. Because multiple employee tuples may be

972 Chapter 26 Enhanced Data Models

inserted in a single insert statement, we have to check if at least one of the newly
inserted employee tuples is related to a department. In R1S, the condition

EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL)

is checked, and if it evaluates to true, then the action is executed. The action updates in
a single statement the DEPARTMENT tuple(s) related to the newly inserted employee(s)
by adding their salaries to the Total_sal attribute of each related department. Because
more than one newly inserted employee may belong to the same department, we use
the SUM aggregate function to ensure that all their salaries are added.

Rule R2S is similar to R1S, but is triggered by an UPDATE operation that updates
the salary of one or more employees rather than by an INSERT. Rule R3S is triggered
by an update to the Dno attribute of EMPLOYEE, which signifies changing one or
more employees’ assignment from one department to another. There is no condi-
tion in R3S, so the action is executed whenever the triggering event occurs.9 The
action updates both the old department(s) and new department(s) of the reassigned
employees by adding their salary to Total_sal of each new department and subtract-
ing their salary from Total_sal of each old department.

In our example, it is more complex to write the statement-level rules than the row-
level rules, as can be illustrated by comparing Figures 26.2 and 26.5. However, this
is not a general rule, and other types of active rules may be easier to specify when
using statement-level notation than when using row-level notation.

The execution model for active rules in STARBURST uses deferred consideration.
That is, all the rules that are triggered within a transaction are placed in a set—
called the conflict set—which is not considered for evaluation of conditions and
execution until the transaction ends (by issuing its COMMIT WORK command).
STARBURST also allows the user to explicitly start rule consideration in the middle
of a transaction via an explicit PROCESS RULES command. Because multiple rules
must be evaluated, it is necessary to specify an order among the rules. The syntax
for rule declaration in STARBURST allows the specification of ordering among the
rules to instruct the system about the order in which a set of rules should be consid-
ered.10 Additionally, the transition tables—INSERTED, DELETED, NEW-UPDATED,
and OLD-UPDATED—contain the net effect of all the operations within the transac-
tion that affected each table, since multiple operations may have been applied to
each table during the transaction.

26.1.4 Potential Applications for Active Databases
We now briefly discuss some of the potential applications of active rules. Obvi-
ously, one important application is to allow notification of certain conditions that

9As in the Oracle examples, rules R1S and R2S can be written without a condition. However, it may be
more efficient to execute them with the condition since the action is not invoked unless it is required.
10If no order is specified between a pair of rules, the system default order is based on placing the rule
declared first ahead of the other rule.

 26.1 Active Database Concepts and Triggers 973

occur. For example, an active database may be used to monitor, say, the tempera-
ture of an industrial furnace. The application can periodically insert in the database
the temperature reading records directly from temperature sensors, and active rules
can be written that are triggered whenever a temperature record is inserted, with a
condition that checks if the temperature exceeds the danger level and results in the
action to raise an alarm.

Active rules can also be used to enforce integrity constraints by specifying the
types of events that may cause the constraints to be violated and then evaluating
appropriate conditions that check whether the constraints are actually violated by
the event or not. Hence, complex application constraints, often known as business
rules, may be enforced that way. For example, in the UNIVERSITY database applica-
tion, one rule may monitor the GPA of students whenever a new grade is entered,
and it may alert the advisor if the GPA of a student falls below a certain threshold;
another rule may check that course prerequisites are satisfied before allowing a stu-
dent to enroll in a course; and so on.

Other applications include the automatic maintenance of derived data, such as the
examples of rules R1 through R4 that maintain the derived attribute Total_sal when-
ever individual employee tuples are changed. A similar application is to use active
rules to maintain the consistency of materialized views (see Section 5.3) whenever
the base relations are modified. Alternately, an update operation specified on a view
can be a triggering event, which can be converted to updates on the base relations
by using an instead of trigger. These applications are also relevant to the new data
warehousing technologies (see Chapter 29). A related application maintains that
replicated tables are consistent by specifying rules that modify the replicas when-
ever the master table is modified.

26.1.5 Triggers in SQL-99
Triggers in the SQL-99 and later standards are similar to the examples we dis-
cussed in Section 26.1.1, with some minor syntactic differences. The basic events
that can be specified for triggering the rules are the standard SQL update com-
mands: INSERT, DELETE, and UPDATE. In the case of UPDATE, one may specify the
attributes to be updated. Both row-level and statement-level triggers are allowed,
indicated in the trigger by the clauses FOR EACH ROW and FOR EACH STATEMENT,
respectively. One syntactic difference is that the trigger may specify particular
tuple variable names for the old and new tuples instead of using the keywords
NEW and OLD, as shown in Figure 26.1. Trigger T1 in Figure 26.6 shows how the
row-level trigger R2 from Figure 26.1(a) may be specified in SQL-99. Inside the
REFERENCING clause, we named tuple variables (aliases) O and N to refer to the OLD
tuple (before modification) and NEW tuple (after modification), respectively. Trigger
T2 in Figure 26.6 shows how the statement-level trigger R2S from Figure 26.5 may
be specified in SQL-99. For a statement-level trigger, the REFERENCING clause is
used to refer to the table of all new tuples (newly inserted or newly updated) as N,
whereas the table of all old tuples (deleted tuples or tuples before they were
updated) is referred to as O.

974 Chapter 26 Enhanced Data Models

26.2 Temporal Database Concepts
Temporal databases, in the broadest sense, encompass all database applications that
require some aspect of time when organizing their information. Hence, they pro-
vide a good example to illustrate the need for developing a set of unifying concepts
for application developers to use. Temporal database applications have been devel-
oped since the early days of database usage. However, in creating these applications,
it is mainly left to the application designers and developers to discover, design, pro-
gram, and implement the temporal concepts they need. There are many examples
of applications where some aspect of time is needed to maintain the information in
a database. These include healthcare, where patient histories need to be maintained;
insurance, where claims and accident histories are required as well as information
about the times when insurance policies are in effect; reservation systems in general
(hotel, airline, car rental, train, and so on), where information on the dates and
times when reservations are in effect are required; scientific databases, where data
collected from experiments includes the time when each data is measured; and so
on. Even the two examples used in this book may be easily expanded into temporal
applications. In the COMPANY database, we may wish to keep SALARY, JOB, and
PROJECT histories on each employee. In the UNIVERSITY database, time is already
included in the SEMESTER and YEAR of each SECTION of a COURSE, the grade his-
tory of a STUDENT, and the information on research grants. In fact, it is realistic to
conclude that the majority of database applications have some temporal informa-
tion. However, users often attempt to simplify or ignore temporal aspects because
of the complexity that they add to their applications.

T1: CREATE TRIGGER Total_sal1
 AFTER UPDATE OF Salary ON EMPLOYEE
 REFERENCING OLD ROW AS O, NEW ROW AS N
 FOR EACH ROW
 WHEN (N.Dno IS NOT NULL)
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal + N.salary – O.salary
 WHERE Dno = N.Dno;

T2: CREATE TRIGGER Total_sal2
 AFTER UPDATE OF Salary ON EMPLOYEE
 REFERENCING OLD TABLE AS O, NEW TABLE AS N
 FOR EACH STATEMENT
 WHEN EXISTS (SELECT *FROM N WHERE N.Dno IS NOT NULL) OR
 EXISTS (SELECT * FROM O WHERE O.Dno IS NOT NULL)
 UPDATE DEPARTMENT AS D
 SET D.Total_sal = D.Total_sal
 + (SELECT SUM (N.Salary) FROM N WHERE D.Dno=N.Dno)
 – (SELECT SUM (O.Salary) FROM O WHERE D.Dno=O.Dno)
 WHERE Dno IN ((SELECT Dno FROM N) UNION (SELECT Dno FROM O));

Figure 26.6
Trigger T1 illustrating
the syntax for defining
triggers in SQL-99.

 26.2 Temporal Database Concepts 975

In this section, we will introduce some of the concepts that have been developed to deal
with the complexity of temporal database applications. Section 26.2.1 gives an over-
view of how time is represented in databases, the different types of temporal informa-
tion, and some of the different dimensions of time that may be needed. Section 26.2.2
discusses how time can be incorporated into relational databases. Section 26.2.3 gives
some additional options for representing time that are possible in database models that
allow complex-structured objects, such as object databases. Section 26.2.4 introduces
operations for querying temporal databases and gives a brief overview of the TSQL2
language, which extends SQL with temporal concepts. Section 26.2.5 focuses on time
series data, which is a type of temporal data that is very important in practice.

26.2.1 Time Representation, Calendars,
and Time Dimensions

For temporal databases, time is considered to be an ordered sequence of points in
some granularity that is determined by the application. For example, suppose that
some temporal application never requires time units that are less than one second.
Then, each time point represents one second using this granularity. In reality, each
second is a (short) time duration, not a point, since it may be further divided into
milliseconds, microseconds, and so on. Temporal database researchers have used
the term chronon instead of point to describe this minimal granularity for a par-
ticular application. The main consequence of choosing a minimum granularity—
say, one second—is that events occurring within the same second will be considered
to be simultaneous events, even though in reality they may not be.

Because there is no known beginning or ending of time, one needs a reference point
from which to measure specific time points. Various calendars are used by various
cultures (such as Gregorian (Western), Chinese, Islamic, Hindu, Jewish, Coptic, and
so on) with different reference points. A calendar organizes time into different time
units for convenience. Most calendars group 60 seconds into a minute, 60 minutes
into an hour, 24 hours into a day (based on the physical time of earth’s rotation
around its axis), and 7 days into a week. Further groupings of days into months and
months into years either follow solar or lunar natural phenomena and are generally
irregular. In the Gregorian calendar, which is used in most Western countries, days
are grouped into months that are 28, 29, 30, or 31 days, and 12 months are grouped
into a year. Complex formulas are used to map the different time units to one another.

In SQL2, the temporal data types (see Chapter 4) include DATE (specifying Year,
Month, and Day as YYYY-MM-DD), TIME (specifying Hour, Minute, and Second
as HH:MM:SS), TIMESTAMP (specifying a Date/Time combination, with options for
including subsecond divisions if they are needed), INTERVAL (a relative time
 duration, such as 10 days or 250 minutes), and PERIOD (an anchored time duration
with a fixed starting point, such as the 10-day period from January 1, 2009, to Jan-
uary 10, 2009, inclusive).11

11Unfortunately, the terminology has not been used consistently. For example, the term interval is often
used to denote an anchored duration. For consistency, we will use the SQL terminology.

976 Chapter 26 Enhanced Data Models

Event Information versus Duration (or State) Information. A temporal data-
base will store information concerning when certain events occur, or when certain
facts are considered to be true. There are several different types of temporal infor-
mation. Point events or facts are typically associated in the database with a single
time point in some granularity. For example, a bank deposit event may be associ-
ated with the timestamp when the deposit was made, or the total monthly sales of a
product (fact) may be associated with a particular month (say, February 2010).
Note that even though such events or facts may have different granularities, each is
still associated with a single time value in the database. This type of information is
often represented as time series data, as we will discuss in Section 26.2.5. Duration
events or facts, on the other hand, are associated with a specific time period in the
database.12 For example, an employee may have worked in a company from Aug-
ust 15, 2003 until November 20, 2008.

A time period is represented by its start and end time points [START-TIME,
 ENDTIME]. For example, the above period is represented as [2003-08-15, 2008-11-20].
Such a time period is often interpreted to mean the set of all time points from start-
time to end-time, inclusive, in the specified granularity. Hence, assuming day gran-
ularity, the period [2003-08-15, 2008-11-20] represents the set of all days from
August 15, 2003, until November 20, 2008, inclusive.13

Valid Time and Transaction Time Dimensions. Given a particular event or
fact that is associated with a particular time point or time period in the database, the
association may be interpreted to mean different things. The most natural interpre-
tation is that the associated time is the time that the event occurred, or the period
during which the fact was considered to be true in the real world. If this interpreta-
tion is used, the associated time is often referred to as the valid time. A temporal
database using this interpretation is called a valid time database.

However, a different interpretation can be used, where the associated time refers to
the time when the information was actually stored in the database; that is, it is the
value of the system time clock when the information is valid in the system.14 In this
case, the associated time is called the transaction time. A temporal database using
this interpretation is called a transaction time database.

Other interpretations can also be intended, but these are considered to be the most
common ones, and they are referred to as time dimensions. In some applications,
only one of the dimensions is needed and in other cases both time dimensions are
required, in which case the temporal database is called a bitemporal database. If

12This is the same as an anchored duration. It has also been frequently called a time interval, but to avoid
confusion we will use period to be consistent with SQL terminology.
13The representation [2003-08-15, 2008-11-20] is called a closed interval representation. One can
also use an open interval, denoted [2003-08-15, 2008-11-21), where the set of points does not include
the end point. Although the latter representation is sometimes more convenient, we shall use closed
intervals except where indicated.
14The explanation is more involved, as we will see in Section 26.2.3.

 26.2 Temporal Database Concepts 977

other interpretations are intended for time, the user can define the semantics and
program the applications appropriately, and this interpretation of time is called a
user-defined time.

The next section shows how these concepts can be incorporated into relational
databases, and Section 26.2.3 shows an approach to incorporate temporal concepts
into object databases.

26.2.2 Incorporating Time in Relational Databases
Using Tuple Versioning

Valid Time Relations. Let us now see how the different types of temporal databases
may be represented in the relational model. First, suppose that we would like to include
the history of changes as they occur in the real world. Consider again the database in
Figure 26.1, and let us assume that, for this application, the granularity is day. Then,
we could convert the two relations EMPLOYEE and DEPARTMENT into valid time
 relations by adding the attributes Vst (Valid Start Time) and Vet (Valid End Time),
whose data type is DATE in order to provide day granularity. This is shown in Fig-
ure 26.7(a), where the relations have been renamed EMP_VT and DEPT_VT, respectively.

Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE rela-
tion (Figure 26.1).15 In EMP_VT, each tuple V represents a version of an employee’s

15A nontemporal relation is also called a snapshot relation because it shows only the current snapshot
or current state of the database.

(a)

Name

EMP_VT

Salary DnoSsn Supervisor_ssn Vst Vet

Name Salary Supervisor_ssnSsn Tst Tet

(b)

(c)

Dname

DEPT_VT

EMP_TT

Dname Total_sal Manager_ssnDno

Dno

Tst Tet

DEPT_TT

Total_salDno Manager_ssn Vst Vet

Name Salary Supervisor_ssnSsn Dno Tst Tet

EMP_BT

Dname Total_sal Manager_ssnDno Tst Tet

DEPT_BT

Vst Vet

Vst Vet

Figure 26.7
Different types of temporal
relational databases. (a) Valid
time database schema.
(b) Transaction time database
schema. (c) Bitemporal
 database schema.

978 Chapter 26 Enhanced Data Models

information that is valid (in the real world) only during the time period [V.Vst,
V.Vet], whereas in EMPLOYEE each tuple represents only the current state or current
version of each employee. In EMP_VT, the current version of each employee typi-
cally has a special value, now, as its valid end time. This special value, now, is a
temporal variable that implicitly represents the current time as time progresses.
The nontemporal EMPLOYEE relation would only include those tuples from the
EMP_VT relation whose Vet is now.

Figure 26.8 shows a few tuple versions in the valid-time relations EMP_VT and
DEPT_VT. There are two versions of Smith, three versions of Wong, one version of
Brown, and one version of Narayan. We can now see how a valid time relation
should behave when information is changed. Whenever one or more attributes of
an employee are updated, rather than actually overwriting the old values, as would
happen in a nontemporal relation, the system should create a new version and close
the current version by changing its Vet to the end time. Hence, when the user issued
the command to update the salary of Smith effective on June 1, 2003, to $30000, the
second version of Smith was created (see Figure 26.8). At the time of this update,
the first version of Smith was the current version, with now as its Vet, but after the
update now was changed to May 31, 2003 (one less than June 1, 2003, in day granu-
larity), to indicate that the version has become a closed or history version and that
the new (second) version of Smith is now the current one.

It is important to note that in a valid time relation, the user must generally provide
the valid time of an update. For example, the salary update of Smith may have been

Name

Smith 123456789 25000 5 333445555 2002-06-15 2003-05-31

Smith 123456789 30000 5 333445555 2003-06-01 Now

333445555 25000 4 999887777 1999-08-20 2001-01-31

333445555 30000 5 999887777 2001-02-01 2002-03-31

333445555 40000 5 888665555 2002-04-01 Now

222447777 28000 4 999887777 2001-05-01 2002-08-10

666884444 38000 5 333445555 2003-08-01 Now

Wong

Wong

Wong

Brown

Narayan

. . .

. . .

EMP_VT

Ssn Salary Dno Supervisor_ssn Vst Vet

Dname

Research

Research

DEPT_VT

5 888665555 2002-03-312001-09-20

333445555 2002-04-015 Now

Dno Manager_ssn Vst Vet

Figure 26.8
Some tuple versions in the valid time relations EMP_VT and DEPT_VT.

 26.2 Temporal Database Concepts 979

entered in the database on May 15, 2003, at 8:52:12 a.m., say, even though the salary
change in the real world is effective on June 1, 2003. This is called a proactive
update, since it is applied to the database before it becomes effective in the real
world. If the update is applied to the database after it becomes effective in the real
world, it is called a retroactive update. An update that is applied at the same time
as it becomes effective is called a simultaneous update.

The action that corresponds to deleting an employee in a nontemporal database
would typically be applied to a valid time database by closing the current version of
the employee being deleted. For example, if Smith leaves the company effective
January 19, 2004, then this would be applied by changing Vet of the current version
of Smith from now to 2004-01-19. In Figure 26.8, there is no current version for
Brown, because he presumably left the company on 2002-08-10 and was logically
deleted. However, because the database is temporal, the old information on Brown
is still there.

The operation to insert a new employee would correspond to creating the first tuple
version for that employee and making it the current version, with the Vst being the
effective (real world) time when the employee starts work. In Figure 26.7, the tuple
on Narayan illustrates this, since the first version has not been updated yet.

Notice that in a valid time relation, the nontemporal key, such as Ssn in EMPLOYEE,
is no longer unique in each tuple (version). The new relation key for EMP_VT is a
combination of the nontemporal key and the valid start time attribute Vst,16 so we
use (Ssn, Vst) as primary key. This is because, at any point in time, there should be
at most one valid version of each entity. Hence, the constraint that any two tuple
versions representing the same entity should have nonintersecting valid time periods
should hold on valid time relations. Notice that if the nontemporal primary key value
may change over time, it is important to have a unique surrogate key attribute,
whose value never changes for each real-world entity, in order to relate all versions of
the same real-world entity.

Valid time relations basically keep track of the history of changes as they become
effective in the real world. Hence, if all real-world changes are applied, the database
keeps a history of the real-world states that are represented. However, because updates,
insertions, and deletions may be applied retroactively or proactively, there is no
record of the actual database state at any point in time. If the actual database states are
important to an application, then one should use transaction time relations.

Transaction Time Relations. In a transaction time database, whenever a change
is applied to the database, the actual timestamp of the transaction that applied the
change (insert, delete, or update) is recorded. Such a database is most useful when
changes are applied simultaneously in the majority of cases—for example, real-time
stock trading or banking transactions. If we convert the nontemporal database in
Figure 26.1 into a transaction time database, then the two relations EMPLOYEE and
DEPARTMENT are converted into transaction time relations by adding the attri-
butes Tst (Transaction Start Time) and Tet (Transaction End Time), whose data

16A combination of the nontemporal key and the valid end time attribute Vet could also be used.

980 Chapter 26 Enhanced Data Models

type is typically TIMESTAMP. This is shown in Figure 26.7(b), where the relations
have been renamed EMP_TT and DEPT_TT, respectively.

In EMP_TT, each tuple V represents a version of an employee’s information that was
created at actual time V.Tst and was (logically) removed at actual time V.Tet (because
the information was no longer correct). In EMP_TT, the current version of each
employee typically has a special value, uc (Until Changed), as its transaction end
time, which indicates that the tuple represents correct information until it is
changed by some other transaction.17 A transaction time database has also been
called a rollback database,18 because a user can logically roll back to the actual
database state at any past point in time T by retrieving all tuple versions V whose
transaction time period [V.Tst, V.Tet] includes time point T.

Bitemporal Relations. Some applications require both valid time and transac-
tion time, leading to bitemporal relations. In our example, Figure 26.7(c) shows
how the EMPLOYEE and DEPARTMENT nontemporal relations in Figure 26.1 would
appear as bitemporal relations EMP_BT and DEPT_BT, respectively. Figure 26.9
shows a few tuples in these relations. In these tables, tuples whose transaction end
time Tet is uc are the ones representing currently valid information, whereas tuples
whose Tet is an absolute timestamp are tuples that were valid until (just before) that
timestamp. Hence, the tuples with uc in Figure 26.9 correspond to the valid time
tuples in Figure 26.7. The transaction start time attribute Tst in each tuple is the
timestamp of the transaction that created that tuple.

Now consider how an update operation would be implemented on a bitemporal
relation. In this model of bitemporal databases,19 no attributes are physically changed
in any tuple except for the transaction end time attribute Tet with a value of uc.20 To
illustrate how tuples are created, consider the EMP_BT relation. The current version
V of an employee has uc in its Tet attribute and now in its Vet attribute. If some attri-
bute—say, Salary—is updated, then the transaction T that performs the update
should have two parameters: the new value of Salary and the valid time VT when the
new salary becomes effective (in the real world). Assume that VT− is the time point
before VT in the given valid time granularity and that transaction T has a timestamp
TS(T). Then, the following physical changes would be applied to the EMP_BT table:

 1. Make a copy V2 of the current version V; set V2.Vet to VT−, V2.Tst to TS(T),
V2.Tet to uc, and insert V2 in EMP_BT; V2 is a copy of the previous current
version V after it is closed at valid time VT−.

17The uc variable in transaction time relations corresponds to the now variable in valid time relations.
However, the semantics are slightly different.
18Here, the term rollback does not have the same meaning as transaction rollback (see Chapter 23)
during recovery, where the transaction updates are physically undone. Rather, here the updates can be
logically undone, allowing the user to examine the database as it appeared at a previous time point.
19There have been many proposed temporal database models. We describe specific models here as
examples to illustrate the concepts.
20Some bitemporal models allow the Vet attribute to be changed also, but the interpretations of the
tuples are different in those models.

 26.2 Temporal Database Concepts 981

 2. Make a copy V3 of the current version V; set V3.Vst to VT, V3.Vet to now, V3.
Salary to the new salary value, V3.Tst to TS(T), V3.Tet to uc, and insert V3 in
EMP_BT; V3 represents the new current version.

 3. Set V.Tet to TS(T) since the current version is no longer representing correct
information.

As an illustration, consider the first three tuples V1, V2, and V3 in EMP_BT in Fig-
ure 26.9. Before the update of Smith’s salary from 25000 to 30000, only V1 was in
EMP_BT and it was the current version and its Tet was uc. Then, a transaction T whose
timestamp TS(T) is ‘2003-06-04,08:56:12’ updates the salary to 30000 with the effec-
tive valid time of ‘2003-06-01’. The tuple V2 is created, which is a copy of V1 except
that its Vet is set to ‘2003-05-31’, one day less than the new valid time, and its Tst is the
timestamp of the updating transaction. The tuple V3 is also created, which has the
new salary, its Vst is set to ‘2003-06-01’, and its Tst is also the timestamp of the updat-
ing transaction. Finally, the Tet of V1 is set to the timestamp of the updating transac-
tion, ‘2003-06-04,08:56:12’. Note that this is a retroactive update, since the updating
transaction ran on June 4, 2003, but the salary change is effective on June 1, 2003.

Similarly, when Wong’s salary and department are updated (at the same time) to
30000 and 5, the updating transaction’s timestamp is ‘2001-01-07,14:33:02’ and the
effective valid time for the update is ‘2001-02-01’. Hence, this is a proactive update
because the transaction ran on January 7, 2001, but the effective date was Feb-
ruary 1, 2001. In this case, tuple V4 is logically replaced by V5 and V6.

Name

Smith 123456789 25000 5 333445555 2002-06-15

Smith 123456789 25000 5 333445555 2002-06-15

123456789 30000 5 333445555 2003-06-01

333445555 25000 4 999887777 1999-08-20

333445555 25000 4 999887777 1999-08-20

333445555 30000 5 999887777 2001-02-01

333445555 30000 5

5

4

4

5

999887777

888667777

999887777

999887777

333445555

2001-02-01

2002-04-01

2001-05-01

2001-05-01

2003-08-01

2002-06-08, 13:05:58

2003-06-04, 08:56:12

2003-06-04, 08:56:12

1999-08-20, 11:18:23

2001-01-07, 14:33:02

2001-01-07, 14:33:02

2002-03-28, 09:23:57

2002-03-28, 09:23:57

2001-04-27, 16:22:05

2002-08-12, 10:11:07

2003-07-28, 09:25:37

2003-06-04,08:56:12

uc

uc

2001-01-07,14:33:02

uc

2002-03-28,09:23:57

uc

uc

2002-08-12,10:11:07

uc

uc

Now

2003-05-31

Now

Now

2001-01-31

Now

2002-03-31

Now

Now

2002-08-10

Now

Smith

Wong

Wong

Wong

Wong

Wong 333445555

Brown 222447777

Brown 222447777

Narayan

. . .

40000

28000

28000

38000666884444

EMP_BT

Ssn Salary Dno Supervisor_ssn Vst Vet Tst Tet

Dname

Research

Research

DEPT_VT

5 888665555 Now2001-09-20

888665555 2001-09-205 1997-03-31

Dno Manager_ssn Vst Vet

2001-09-15,14:52:12

2002-03-28,09:23:57

Tst

2001-03-28,09:23:57

uc

Research 333445555 2002-04-015 Now 2002-03-28,09:23:57 uc

Tet

Figure 26.9
Some tuple versions in the bitemporal relations EMP_BT and DEPT_BT.

982 Chapter 26 Enhanced Data Models

Next, let us illustrate how a delete operation would be implemented on a bitempo-
ral relation by considering the tuples V9 and V10 in the EMP_BT relation of Fig-
ure 26.9. Here, employee Brown left the company effective August 10, 2002, and the
logical delete is carried out by a transaction T with TS(T) = 2002-08-12,10:11:07.
Before this, V9 was the current version of Brown, and its Tet was uc. The logical
delete is implemented by setting V9.Tet to 2002-08-12,10:11:07 to invalidate it, and
creating the final version V10 for Brown, with its Vet = 2002-08-10 (see Figure 26.9).
Finally, an insert operation is implemented by creating the first version as illus-
trated by V11 in the EMP_BT table.

Implementation Considerations. There are various options for storing the
tuples in a temporal relation. One is to store all the tuples in the same table, as
shown in Figures 26.8 and 26.9. Another option is to create two tables: one for the
currently valid information and the other for the rest of the tuples. For example, in
the bitemporal EMP_BT relation, tuples with uc for their Tet and now for their Vet
would be in one relation, the current table, since they are the ones currently valid
(that is, represent the current snapshot), and all other tuples would be in another
relation. This allows the database administrator to have different access paths, such
as indexes for each relation, and keeps the size of the current table reasonable.
Another possibility is to create a third table for corrected tuples whose Tet is not uc.

Another option that is available is to vertically partition the attributes of the temporal
relation into separate relations so that if a relation has many attributes, a whole new
tuple version is created whenever any one of the attributes is updated. If the attributes
are updated asynchronously, each new version may differ in only one of the attri-
butes, thus needlessly repeating the other attribute values. If a separate relation is cre-
ated to contain only the attributes that always change synchronously, with the primary
key replicated in each relation, the database is said to be in temporal normal form.
However, to combine the information, a variation of join known as temporal
 intersection join would be needed, which is generally expensive to implement.

It is important to note that bitemporal databases allow a complete record of changes.
Even a record of corrections is possible. For example, it is possible that two tuple
versions of the same employee may have the same valid time but different attribute
values as long as their transaction times are disjoint. In this case, the tuple with the
later transaction time is a correction of the other tuple version. Even incorrectly
entered valid times may be corrected this way. The incorrect state of the database
will still be available as a previous database state for querying purposes. A database
that keeps such a complete record of changes and corrections is sometimes called
an append-only database.

26.2.3 Incorporating Time in Object-Oriented Databases
Using Attribute Versioning

The previous section discussed the tuple versioning approach to implementing
temporal databases. In this approach, whenever one attribute value is changed, a
whole new tuple version is created, even though all the other attribute values will

 26.2 Temporal Database Concepts 983

be identical to the previous tuple version. An alternative approach can be used
in database systems that support complex structured objects, such as object
databases (see Chapter 11) or object-relational systems. This approach is called
attribute versioning.

In attribute versioning, a single complex object is used to store all the temporal
changes of the object. Each attribute that changes over time is called a time-
varying attribute, and it has its values versioned over time by adding temporal
periods to the attribute. The temporal periods may represent valid time, transac-
tion time, or bitemporal, depending on the application requirements. Attributes
that do not change over time are called non-time-varying and are not associated
with the temporal periods. To illustrate this, consider the example in Fig-
ure 26.10, which is an attribute-versioned valid time representation of EMPLOYEE

class TEMPORAL_SALARY
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute float Salary;
};

class TEMPORAL_DEPT
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute DEPARTMENT_VT Dept;
};

class TEMPORAL_SUPERVISOR
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute EMPLOYEE_VT Supervisor;
};

class TEMPORAL_LIFESPAN
{ attribute Date Valid_ start time;
 attribute Date Valid end time;
};

class EMPLOYEE_VT
(extent EMPLOYEES)
{ attribute list<TEMPORAL_LIFESPAN> lifespan;
 attribute string Name;
 attribute string Ssn;
 attribute list<TEMPORAL_SALARY> Sal_history;
 attribute list<TEMPORAL_DEPT> Dept_history;
 attribute list <TEMPORAL_SUPERVISOR> Supervisor_history;
};

Figure 26.10
Possible ODL schema
for a temporal valid
time EMPLOYEE_VT
object class using
attribute versioning.

984 Chapter 26 Enhanced Data Models

using the object definition language (ODL) notation for object databases (see
Chapter 11). Here, we assumed that name and Social Security number are non-
time-varying attributes, whereas salary, department, and supervisor are time-
varying attributes (they may change over time). Each time-varying attribute is
represented as a list of tuples <Valid_start_time, Valid_end_time, Value>, ordered by
valid start time.

Whenever an attribute is changed in this model, the current attribute version is
closed and a new attribute version for this attribute only is appended to the list.
This allows attributes to change asynchronously. The current value for each attri-
bute has now for its Valid_end_time. When using attribute versioning, it is useful to
include a lifespan temporal attribute associated with the whole object whose value
is one or more valid time periods that indicate the valid time of existence for the
whole object. Logical deletion of the object is implemented by closing the lifespan.
The constraint that any time period of an attribute within an object should be a
subset of the object’s lifespan should be enforced.

For bitemporal databases, each attribute version would have a tuple with five
components:

<Valid_start_time, Valid_end_time, Trans_start_time, Trans_end_time, Value>

The object lifespan would also include both valid and transaction time dimensions.
Therefore, the full capabilities of bitemporal databases can be available with attri-
bute versioning. Mechanisms similar to those discussed earlier for updating tuple
versions can be applied to updating attribute versions.

26.2.4 Temporal Querying Constructs
and the TSQL2 Language

So far, we have discussed how data models may be extended with temporal con-
structs. Now we give a brief overview of how query operations need to be extended
for temporal querying. We will briefly discuss the TSQL2 language, which extends
SQL for querying valid time and transaction time tables, as well as for querying of
bitemporal relational tables.

In nontemporal relational databases, the typical selection conditions involve attri-
bute conditions, and tuples that satisfy these conditions are selected from the set of
current tuples. Following that, the attributes of interest to the query are specified by
a projection operation (see Chapter 6). For example, in the query to retrieve the
names of all employees working in department 5 whose salary is greater than 30000,
the selection condition would be as follows:

((Salary > 30000) AND (Dno = 5))

The projected attribute would be Name. In a temporal database, the conditions
may involve time in addition to attributes. A pure time condition involves only
time—for example, to select all employee tuple versions that were valid on a cer-
tain time point T or that were valid during a certain time period [T1, T2]. In this

 26.2 Temporal Database Concepts 985

case, the specified time period is compared with the valid time period of each tuple
version [T.Vst, T.Vet], and only those tuples that satisfy the condition are selected.
In these operations, a period is considered to be equivalent to the set of time points
from T1 to T2 inclusive, so the standard set comparison operations can be used.
Additional operations, such as whether one time period ends before another starts,
are also needed.21

Some of the more common operations used in queries are as follows:

[T.Vst, T.Vet] INCLUDES [T1, T2] Equivalent to T1 ≥ T.Vst AND T2 ≤ T.Vet

[T.Vst, T.Vet] INCLUDED_IN [T1, T2] Equivalent to T1 ≤ T.Vst AND T2 ≥ T.Vet

[T.Vst, T.Vet] OVERLAPS [T1, T2] Equivalent to (T1 ≤ T.Vet AND T2 ≥ T.Vst)22

[T.Vst, T.Vet] BEFORE [T1, T2] Equivalent to T1 ≥ T.Vet

[T.Vst, T.Vet] AFTER [T1, T2] Equivalent to T2 ≤ T.Vst

[T.Vst, T.Vet] MEETS_BEFORE [T1, T2] Equivalent to T1 = T.Vet + 123

[T.Vst, T.Vet] MEETS_AFTER [T1, T2] Equivalent to T2 + 1 = T.Vst

Additionally, operations are needed to manipulate time periods, such as computing
the union or intersection of two time periods. The results of these operations may
not themselves be periods, but rather temporal elements—a collection of one or
more disjoint time periods such that no two time periods in a temporal element are
directly adjacent. That is, for any two time periods [T1, T2] and [T3, T4] in a tempo-
ral element, the following three conditions must hold:

 ■ [T1, T2] intersection [T3, T4] is empty.

 ■ T3 is not the time point following T2 in the given granularity.

 ■ T1 is not the time point following T4 in the given granularity.

The latter conditions are necessary to ensure unique representations of temporal
elements. If two time periods [T1, T2] and [T3, T4] are adjacent, they are combined
into a single time period [T1, T4]. This is called coalescing of time periods. Coalesc-
ing also combines intersecting time periods.

To illustrate how pure time conditions can be used, suppose a user wants to select
all employee versions that were valid at any point during 2002. The appropriate
selection condition applied to the relation in Figure 26.8 would be

[T.Vst, T.Vet] OVERLAPS [2002-01-01, 2002-12-31]

Typically, most temporal selections are applied to the valid time dimension. For a
bitemporal database, one usually applies the conditions to the currently correct

21A complete set of operations, known as Allen’s algebra (Allen, 1983), has been defined for comparing
time periods.
22This operation returns true if the intersection of the two periods is not empty; it has also been called
INTERSECTS_WITH.
23Here, 1 refers to one time point in the specified granularity. The MEETS operations basically specify if
one period starts immediately after another period ends.

986 Chapter 26 Enhanced Data Models

tuples with uc as their transaction end times. However, if the query needs to be
applied to a previous database state, an AS_OF T clause is appended to the query,
which means that the query is applied to the valid time tuples that were correct in
the database at time T.

In addition to pure time conditions, other selections involve attribute and time
conditions. For example, suppose we wish to retrieve all EMP_VT tuple versions T
for employees who worked in department 5 at any time during 2002. In this case,
the condition is

[T.Vst, T.Vet]OVERLAPS [2002-01-01, 2002-12-31] AND (T.Dno = 5)

Finally, we give a brief overview of the TSQL2 query language, which extends SQL
with constructs for temporal databases. The main idea behind TSQL2 is to allow
users to specify whether a relation is nontemporal (that is, a standard SQL relation)
or temporal. The CREATE TABLE statement is extended with an optional AS clause
to allow users to declare different temporal options. The following options are
available:

 ■ AS VALID STATE <GRANULARITY> (valid time relation with valid time
period)

 ■ AS VALID EVENT <GRANULARITY> (valid time relation with valid time
point)

 ■ AS TRANSACTION (transaction time relation with transaction time period)

 ■ AS VALID STATE <GRANULARITY> AND TRANSACTION (bitemporal relation,
valid time period)

 ■ AS VALID EVENT <GRANULARITY> AND TRANSACTION (bitemporal relation,
valid time point)

The keywords STATE and EVENT are used to specify whether a time period or time
point is associated with the valid time dimension. In TSQL2, rather than have the
user actually see how the temporal tables are implemented (as we discussed in the
previous sections), the TSQL2 language adds query language constructs to specify
various types of temporal selections, temporal projections, temporal aggregations,
transformation among granularities, and many other concepts. The book by Snod-
grass et al. (1995) describes the language.

26.2.5 Time Series Data
Time series data is used very often in financial, sales, and economics applications. They
involve data values that are recorded according to a specific predefined sequence of
time points. Therefore, they are a special type of valid event data, where the event’s
time points are predetermined according to a fixed calendar. Consider the example of
closing daily stock prices of a particular company on the New York Stock Exchange.
The granularity here is day, but the days that the stock market is open are known (non-
holiday weekdays). Hence, it has been common to specify a computational procedure
that calculates the particular calendar associated with a time series. Typical queries on

 26.3 Spatial Database Concepts 987

time series involve temporal aggregation over higher granularity intervals—for
example, finding the average or maximum weekly closing stock price or the maxi-
mum and minimum monthly closing stock price from the daily information.

As another example, consider the daily sales dollar amount at each store of a chain
of stores owned by a particular company. Again, typical temporal aggregates would
be retrieving the weekly, monthly, or yearly sales from the daily sales information
(using the sum aggregate function), or comparing same store monthly sales with
previous monthly sales, and so on.

Because of the specialized nature of time series data and the lack of support for it in
older DBMSs, it has been common to use specialized time series management
 systems rather than general-purpose DBMSs for managing such information. In
such systems, it has been common to store time series values in sequential order in
a file and apply specialized time series procedures to analyze the information. The
problem with this approach is that the full power of high-level querying in languages
such as SQL will not be available in such systems.

More recently, some commercial DBMS packages began offering time series exten-
sions, such as the Oracle time cartridge and the time series data blade of Informix
Universal Server. In addition, the TSQL2 language provides some support for time
series in the form of event tables.

26.3 Spatial Database Concepts24

26.3.1 Introduction to Spatial Databases
Spatial databases incorporate functionality that provides support for databases that
keep track of objects in a multidimensional space. For example, cartographic data-
bases that store maps include two-dimensional spatial descriptions of their objects—
from countries and states to rivers, cities, roads, seas, and so on. The systems
that manage geographic data and related applications are known as geographic
 information systems (GISs), and they are used in areas such as environmental
applications, transportation systems, emergency response systems, and battle man-
agement. Other databases, such as meteorological databases for weather information,
are three-dimensional, since temperatures and other meteorological information are
related to three-dimensional spatial points. In general, a spatial database stores
objects that have spatial characteristics that describe them and that have spatial rela-
tionships among them. The spatial relationships among the objects are important,
and they are often needed when querying the database. Although a spatial database
can in general refer to an n-dimensional space for any n, we will limit our discussion
to two dimensions as an illustration.

A spatial database is optimized to store and query data related to objects in space,
including points, lines and polygons. Satellite images are a prominent example of

24The contribution of Pranesh Parimala Ranganathan to this section is appreciated.

988 Chapter 26 Enhanced Data Models

spatial data. Queries posed on these spatial data, where predicates for selection deal
with spatial parameters, are called spatial queries. For example, “What are the
names of all bookstores within five miles of the College of Computing building at
Georgia Tech?” is a spatial query. Whereas typical databases process numeric and
character data, additional functionality needs to be added for databases to process
spatial data types. A query such as “List all the customers located within twenty
miles of company headquarters” will require the processing of spatial data types
typically outside the scope of standard relational algebra and may involve consult-
ing an external geographic database that maps the company headquarters and each
customer to a 2-D map based on their address. Effectively, each customer will be
associated to a <latitude, longitude> position. A traditional B+-tree index based on
customers’ zip codes or other nonspatial attributes cannot be used to process this
query since traditional indexes are not capable of ordering multidimensional coor-
dinate data. Therefore, there is a special need for databases tailored for handling
spatial data and spatial queries.

Table 26.1 shows the common analytical operations involved in processing geo-
graphic or spatial data.25 Measurement operations are used to measure some
global properties of single objects (such as the area, the relative size of an object’s
parts, compactness, or symmetry) and to measure the relative position of different
objects in terms of distance and direction. Spatial analysis operations, which often
use statistical techniques, are used to uncover spatial relationships within and
among mapped data layers. An example would be to create a map—known as a
prediction map—that identifies the locations of likely customers for particular
products based on the historical sales and demographic information. Flow analysis
operations help in determining the shortest path between two points and also the
connectivity among nodes or regions in a graph. Location analysis aims to find if
the given set of points and lines lie within a given polygon (location). The process
involves generating a buffer around existing geographic features and then identify-
ing or selecting features based on whether they fall inside or outside the boundary
of the buffer. Digital terrain analysis is used to build three-dimensional models,

Table 26.1 Common Types of Analysis for Spatial Data

Analysis Type Type of Operations and Measurements

Measurements Distance, perimeter, shape, adjacency, and direction

Spatial analysis/statistics Pattern, autocorrelation, and indexes of similarity and topology using
spatial and nonspatial data

Flow analysis Connectivity and shortest path

Location analysis Analysis of points and lines within a polygon

Terrain analysis Slope/aspect, catchment area, drainage network

Search Thematic search, search by region

25List of GIS analysis operations as proposed in Albrecht (1996).

 26.3 Spatial Database Concepts 989

where the topography of a geographical location can be represented with an x, y, z
data model known as Digital Terrain (or Elevation) Model (DTM/DEM). The x and
y dimensions of a DTM represent the horizontal plane, and z represents spot
heights for the respective x, y coordinates. Such models can be used for analysis of
environmental data or during the design of engineering projects that require ter-
rain information. Spatial search allows a user to search for objects within a particu-
lar spatial region. For example, thematic search allows us to search for objects
related to a particular theme or class, such as “Find all water bodies within 25 miles
of Atlanta” where the class is water.

There are also topological relationships among spatial objects. These are often
used in Boolean predicates to select objects based on their spatial relationships. For
example, if a city boundary is represented as a polygon and freeways are repre-
sented as multilines, a condition such as “Find all freeways that go through Arling-
ton, Texas” would involve an intersects operation, to determine which freeways
(lines) intersect the city boundary (polygon).

26.3.2 Spatial Data Types and Models
This section briefly describes the common data types and models for storing spatial
data. Spatial data comes in three basic forms. These forms have become a de facto
standard due to their wide use in commercial systems.

 ■ Map data26 includes various geographic or spatial features of objects in a
map, such as an object’s shape and the location of the object within the map.
The three basic types of features are points, lines, and polygons (or areas).
Points are used to represent spatial characteristics of objects whose loca-
tions correspond to a single 2-D coordinate (x, y, or longitude/latitude) in
the scale of a particular application. Depending on the scale, some examples
of point objects could be buildings, cellular towers, or stationary vehicles.
Moving vehicles and other moving objects can be represented by a sequence
of point locations that change over time. Lines represent objects having
length, such as roads or rivers, whose spatial characteristics can be approxi-
mated by a sequence of connected lines. Polygons are used to represent spa-
tial characteristics of objects that have a boundary, such as countries, states,
lakes, or cities. Notice that some objects, such as buildings or cities, can be
represented as either points or polygons, depending on the scale of detail.

 ■ Attribute data is the descriptive data that GIS systems associate with map
features. For example, suppose that a map contains features that represent
counties within a U.S. state (such as Texas or Oregon). Attributes for each
county feature (object) could include population, largest city/town, area in
square miles, and so on. Other attribute data could be included for other
features in the map, such as states, cities, congressional districts, census
tracts, and so on.

26These types of geographic data are based on ESRI’s guide to GIS. See www.gis.com/implementing_gis/
data/data_types.html

990 Chapter 26 Enhanced Data Models

 ■ Image data includes data such as satellite images and aerial photographs,
which are typically created by cameras. Objects of interest, such as buildings
and roads, can be identified and overlaid on these images. Images can also
be attributes of map features. One can add images to other map features so
that clicking on the feature would display the image. Aerial and satellite
images are typical examples of raster data.

Models of spatial information are sometimes grouped into two broad categories:
field and object. A spatial application (such as remote sensing or highway traffic con-
trol) is modeled using either a field- or an object-based model, depending on the
requirements and the traditional choice of model for the application. Field models
are often used to model spatial data that is continuous in nature, such as terrain eleva-
tion, temperature data, and soil variation characteristics, whereas object models have
traditionally been used for applications such as transportation networks, land parcels,
buildings, and other objects that possess both spatial and non-spatial attributes.

26.3.3 Spatial Operators and Spatial Queries
Spatial operators are used to capture all the relevant geometric properties of objects
embedded in the physical space and the relations between them, as well as to per-
form spatial analysis. Operators are classified into three broad categories.

 ■ Topological operators. Topological properties are invariant when topo-
logical transformations are applied. These properties do not change after
transformations like rotation, translation, or scaling. Topological operators
are hierarchically structured in several levels, where the base level offers
operators the ability to check for detailed topological relations between
regions with a broad boundary, and the higher levels offer more abstract
operators that allow users to query uncertain spatial data independent of
the underlying geometric data model. Examples include open (region),
close (region), and inside (point, loop).

 ■ Projective operators. Projective operators, such as convex hull, are used to
express predicates about the concavity/convexity of objects as well as other
spatial relations (for example, being inside the concavity of a given object).

 ■ Metric operators. Metric operators provide a more specific description of
the object’s geometry. They are used to measure some global properties of
single objects (such as the area, relative size of an object’s parts, compact-
ness, and symmetry), and to measure the relative position of different objects
in terms of distance and direction. Examples include length (arc) and dis-
tance (point, point).

Dynamic Spatial Operators. The operations performed by the operators men-
tioned above are static, in the sense that the operands are not affected by the appli-
cation of the operation. For example, calculating the length of the curve has no
effect on the curve itself. Dynamic operations alter the objects upon which the
operations act. The three fundamental dynamic operations are create, destroy, and

 26.3 Spatial Database Concepts 991

update. A representative example of dynamic operations would be updating a spa-
tial object that can be subdivided into translate (shift position), rotate (change ori-
entation), scale up or down, reflect (produce a mirror image), and shear (deform).

Spatial Queries. Spatial queries are requests for spatial data that require the
use of spatial operations. The following categories illustrate three typical types of
spatial queries:

 ■ Range queries. Find all objects of a particular type that are within a given
spatial area; for example, find all hospitals within the Metropolitan Atlanta
city area. A variation of this query is to find all objects within a particular
distance from a given location; for example, find all ambulances within a
five mile radius of an accident location.

 ■ Nearest neighbor queries. Finds an object of a particular type that is closest
to a given location; for example, find the police car that is closest to the loca-
tion of a crime. This can be generalized to find the k nearest neighbors, such
as the 5 closest ambulances to an accident location.

 ■ Spatial joins or overlays. Typically joins the objects of two types based on
some spatial condition, such as the objects intersecting or overlapping spa-
tially or being within a certain distance of one another. For example, find all
townships located on a major highway between two cities or find all homes
that are within two miles of a lake. The first example spatially joins township
objects and highway object, and the second example spatially joins lake
objects and home objects.

26.3.4 Spatial Data Indexing
A spatial index is used to organize objects into a set of buckets (which correspond
to pages of secondary memory), so that objects in a particular spatial region can be
easily located. Each bucket has a bucket region, a part of space containing all objects
stored in the bucket. The bucket regions are usually rectangles; for point data struc-
tures, these regions are disjoint and they partition the space so that each point
belongs to precisely one bucket. There are essentially two

 1. Specialized indexing structures that allow efficient search for data objects
based on spatial search operations are included in the database system.
These indexing structures would play a similar role to that performed by
B+-tree indexes in traditional database systems. Examples of these indexing
structures are grid files and R-trees. Special types of spatial indexes, known as
spatial join indexes, can be used to speed up spatial join operations.

 2. Instead of creating brand new indexing structures, the two-dimensional (2-D)
spatial data is converted to single-dimensional (1-D) data, so that traditional
indexing techniques (B+-tree) can be used. The algorithms for converting
from 2-D to 1-D are known as space filling curves. We will not discuss these
methods in detail (see the Selected Bibliography for further references).

We give an overview of some of the spatial indexing techniques next.

992 Chapter 26 Enhanced Data Models

Grid Files. We introduced grid files for indexing of data on multiple attributes in
Chapter 18. They can also be used for indexing two-dimensional and higher
n-dimensional spatial data. The fixed-grid method divides an n-dimensional
hyperspace into equal size buckets. The data structure that implements the fixed
grid is an n-dimensional array. The objects whose spatial locations lie within a cell
(totally or partially) can be stored in a dynamic structure to handle overflows. This
structure is useful for uniformly distributed data like satellite imagery. However,
the fixed-grid structure is rigid, and its directory can be sparse and large.

R-Trees. The R-tree is a height-balanced tree, which is an extension of the B+-tree
for k-dimensions, where k > 1. For two dimensions (2-D), spatial objects are
approximated in the R-tree by their minimum bounding rectangle (MBR), which
is the smallest rectangle, with sides parallel to the coordinate system (x and y) axis,
that contains the object. R-trees are characterized by the following properties,
which are similar to the properties for B+-trees (see Section 18.3) but are adapted to
2-D spatial objects. As in Section 18.3, we use M to indicate the maximum number
of entries that can fit in an R-tree node.

 1. The structure of each index entry (or index record) in a leaf node is (I, object-
identifier), where I is the MBR for the spatial object whose identifier is
object-identifier.

 2. Every node except the root node must be at least half full. Thus, a leaf
node that is not the root should contain m entries (I, object-identifier) where
M/2 ≤ m ≤ M. Similarly, a non-leaf node that is not the root should contain
m entries (I, child-pointer) where M/2 ≤ m ≤ M, and I is the MBR that con-
tains the union of all the rectangles in the node pointed at by child-pointer.

 3. All leaf nodes are at the same level, and the root node should have at least
two pointers unless it is a leaf node.

 4. All MBRs have their sides parallel to the axes of the global coordinate system.

Other spatial storage structures include quadtrees and their variations. Quadtrees
generally divide each space or subspace into equally sized areas and proceed with
the subdivisions of each subspace to identify the positions of various objects.
Recently, many newer spatial access structures have been proposed, and this
remains an active research area.

Spatial Join Index. A spatial join index precomputes a spatial join operation
and stores the pointers to the related object in an index structure. Join indexes
improve the performance of recurring join queries over tables that have low
update rates. Spatial join conditions are used to answer queries such as “Create a
list of highway-river combinations that cross.” The spatial join is used to identify
and retrieve these pairs of objects that satisfy the cross spatial relationship.
Because computing the results of spatial relationships is generally time consum-
ing, the result can be computed once and stored in a table that has the pairs of
object identifiers (or tuple ids) that satisfy the spatial relationship, which is essen-
tially the join index.

 26.3 Spatial Database Concepts 993

A join index can be described by a bipartite graph G = (V1, V2, E), where V1 contains
the tuple ids of relation R and V2 contains the tuple ids of relation S. Edge set con-
tains an edge (vr, vs) for vr in R and vs in S, if there is a tuple corresponding to (vr , vs)
in the join index. The bipartite graph models all of the related tuples as connected
vertices in the graphs. Spatial join indexes are used in operations (see Section 26.3.3)
that involve computation of relationships among spatial objects.

26.3.5 Spatial Data Mining
Spatial data tends to be highly correlated. For example, people with similar charac-
teristics, occupations, and backgrounds tend to cluster together in the same neigh-
borhoods. The three major spatial data mining techniques are spatial classification,
spatial association, and spatial clustering.

 ■ Spatial classification. The goal of classification is to estimate the value of an
attribute of a relation based on the value of the relation’s other attributes. An
example of the spatial classification problem is determining the locations of
nests in a wetland based on the value of other attributes (for example, vege-
tation durability and water depth); it is also called the location prediction
problem. Similarly, where to expect hotspots in crime activity is also a loca-
tion prediction problem.

 ■ Spatial association. Spatial association rules are defined in terms of spatial
predicates rather than items. A spatial association rule is of the form

P1 ∧ P2 ∧ … ∧ Pn ⇒ Q1 ∧ Q2 ∧ … ∧ Qm

where at least one of the Pi’s or Qj’s is a spatial predicate. For example, the
rule

is_a(x, country) ∧ touches(x, Mediterranean) ⇒ is_a (x, wine-exporter)

(that is, a country that is adjacent to the Mediterranean Sea is typically a wine
exporter) is an example of an association rule, which will have a certain sup-
port s and confidence c.27

Spatial colocation rules attempt to generalize association rules to point to collec-
tion data sets that are indexed by space. There are several crucial differences
between spatial and nonspatial associations, including the following:

 1. The notion of a transaction is absent in spatial situations, since data is
embedded in continuous space. Partitioning space into transactions would
lead to an overestimate or an underestimate of interest measures, for exam-
ple, support or confidence.

 2. Size of item sets in spatial databases is small, that is, there are many fewer
items in the item set in a spatial situation than in a nonspatial situation.

27Concepts of support and confidence for association rules are discussed as part of data mining in
Section 28.2.

994 Chapter 26 Enhanced Data Models

In most instances, spatial items are a discrete version of continuous variables. For
example, in the United States income regions may be defined as regions where the
mean yearly income is within certain ranges, such as, below $40,000, from $40,000
to $100,000, and above $100,000.

 ■ Spatial clustering attempts to group database objects so that the most similar
objects are in the same cluster, and objects in different clusters are as dissimi-
lar as possible. One application of spatial clustering is to group together seis-
mic events in order to determine earthquake faults. An example of a spatial
clustering algorithm is density-based clustering, which tries to find clusters
based on the density of data points in a region. These algorithms treat clus-
ters as dense regions of objects in the data space. Two variations of these
algorithms are density-based spatial clustering of applications with noise
(DBSCAN)28 and density-based clustering (DENCLUE).29 DBSCAN is a
density-based clustering algorithm because it finds a number of clusters
starting from the estimated density distribution of corresponding nodes.

26.3.6 Applications of Spatial Data
Spatial data management is useful in many disciplines, including geography, remote
sensing, urban planning, and natural resource management. Spatial database man-
agement is playing an important role in the solution of challenging scientific prob-
lems such as global climate change and genomics. Due to the spatial nature of
genome data, GIS and spatial database management systems have a large role to
play in the area of bioinformatics. Some of the typical applications include pattern
recognition (for example, to check if the topology of a particular gene in the genome
is found in any other sequence feature map in the database), genome browser devel-
opment, and visualization maps. Another important application area of spatial data
mining is the spatial outlier detection. A spatial outlier is a spatially referenced
object whose nonspatial attribute values are significantly different from those of
other spatially referenced objects in its spatial neighborhood. For example, if a
neighborhood of older houses has just one brand-new house, that house would be
an outlier based on the nonspatial attribute ‘house_age’. Detecting spatial outliers is
useful in many applications of geographic information systems and spatial data-
bases. These application domains include transportation, ecology, public safety,
public health, climatology, and location-based services.

26.4 Multimedia Database Concepts
Multimedia databases provide features that allow users to store and query differ-
ent types of multimedia information, which includes images (such as photos or
drawings), video clips (such as movies, newsreels, or home videos), audio clips

28DBSCAN was proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996).
29DENCLUE was proposed by Hinnenberg and Gabriel (2007).

 26.4 Multimedia Database Concepts 995

(such as songs, phone messages, or speeches), and documents (such as books or
articles). The main types of database queries that are needed involve locating mul-
timedia sources that contain certain objects of interest. For example, one may
want to locate all video clips in a video database that include a certain person, say
Michael Jackson. One may also want to retrieve video clips based on certain activ-
ities included in them, such as video clips where a soccer goal is scored by a certain
player or team.

The above types of queries are referred to as content-based retrieval, because the
multimedia source is being retrieved based on its containing certain objects or
activities. Hence, a multimedia database must use some model to organize and
index the multimedia sources based on their contents. Identifying the contents of
multimedia sources is a difficult and time-consuming task. There are two main
approaches. The first is based on automatic analysis of the multimedia sources to
identify certain mathematical characteristics of their contents. This approach uses
different techniques depending on the type of multimedia source (image, video,
audio, or text). The second approach depends on manual identification of the
objects and activities of interest in each multimedia source and on using this infor-
mation to index the sources. This approach can be applied to all multimedia
sources, but it requires a manual preprocessing phase in which a person must scan
each multimedia source to identify and catalog the objects and activities it contains
so that they can be used to index the sources.

In the first part of this section, we will briefly discuss some of the characteristics of
each type of multimedia source—images, video, audio, and text/documents. Then
we will discuss approaches for automatic analysis of images followed by the prob-
lem of object recognition in images. We end this section with some remarks on
analyzing audio sources.

An image is typically stored either in raw form as a set of pixel or cell values, or
in compressed form to save space. The image shape descriptor describes the geo-
metric shape of the raw image, which is typically a rectangle of cells of a certain
width and height. Hence, each image can be represented by an m by n grid of
cells. Each cell contains a pixel value that describes the cell content. In black-
and-white images, pixels can be one bit. In grayscale or color images, a pixel is
multiple bits. Because images may require large amounts of space, they are often
stored in compressed form. Compression standards, such as GIF, JPEG, or
MPEG, use various mathematical transformations to reduce the number of cells
stored but still maintain the main image characteristics. Applicable mathemati-
cal transforms include discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), and wavelet transforms.

To identify objects of interest in an image, the image is typically divided into
homogeneous segments using a homogeneity predicate. For example, in a color
image, adjacent cells that have similar pixel values are grouped into a segment.
The homogeneity predicate defines conditions for automatically grouping those
cells. Segmentation and compression can hence identify the main characteristics
of an image.

996 Chapter 26 Enhanced Data Models

A typical image database query would be to find images in the database that are
similar to a given image. The given image could be an isolated segment that con-
tains, say, a pattern of interest, and the query is to locate other images that contain
that same pattern. There are two main techniques for this type of search. The first
approach uses a distance function to compare the given image with the stored
images and their segments. If the distance value returned is small, the probability of
a match is high. Indexes can be created to group stored images that are close in the
distance metric so as to limit the search space. The second approach, called the
transformation approach, measures image similarity by having a small number of
transformations that can change one image’s cells to match the other image. Trans-
formations include rotations, translations, and scaling. Although the transforma-
tion approach is more general, it is also more time-consuming and difficult.

A video source is typically represented as a sequence of frames, where each frame is
a still image. However, rather than identifying the objects and activities in every
individual frame, the video is divided into video segments, where each segment
comprises a sequence of contiguous frames that includes the same objects/activi-
ties. Each segment is identified by its starting and ending frames. The objects and
activities identified in each video segment can be used to index the segments. An
indexing technique called frame segment trees has been proposed for video index-
ing. The index includes both objects, such as persons, houses, and cars, as well as
activities, such as a person delivering a speech or two people talking. Videos are also
often compressed using standards such as MPEG.

Audio sources include stored recorded messages, such as speeches, class presenta-
tions, or even surveillance recordings of phone messages or conversations by law
enforcement. Here, discrete transforms can be used to identify the main character-
istics of a certain person’s voice in order to have similarity-based indexing and
retrieval. We will briefly comment on their analysis in Section 26.4.4.

A text/document source is basically the full text of some article, book, or magazine.
These sources are typically indexed by identifying the keywords that appear in the
text and their relative frequencies. However, filler words or common words called
stopwords are eliminated from the process. Because there can be many keywords
when attempting to index a collection of documents, techniques have been devel-
oped to reduce the number of keywords to those that are most relevant to the col-
lection. A dimensionality reduction technique called singular value decomposition
(SVD), which is based on matrix transformations, can be used for this purpose. An
indexing technique called telescoping vector trees (TV-trees) can then be used to
group similar documents. Chapter 27 discusses document processing in detail.

26.4.1 Automatic Analysis of Images
Analysis of multimedia sources is critical to support any type of query or search
interface. We need to represent multimedia source data such as images in terms of
features that would enable us to define similarity. The work done so far in this area
uses low-level visual features such as color, texture, and shape, which are directly

 26.4 Multimedia Database Concepts 997

related to the perceptual aspects of image content. These features are easy to extract
and represent, and it is convenient to design similarity measures based on their
statistical properties.

Color is one of the most widely used visual features in content-based image retrieval
since it does not depend upon image size or orientation. Retrieval based on color
similarity is mainly done by computing a color histogram for each image that iden-
tifies the proportion of pixels within an image for the three color channels (red,
green, blue—RGB). However, RGB representation is affected by the orientation of
the object with respect to illumination and camera direction. Therefore, current
image retrieval techniques compute color histograms using competing invariant
representations such as HSV (hue, saturation, value). HSV describes colors as
points in a cylinder whose central axis ranges from black at the bottom to white at
the top with neutral colors between them. The angle around the axis corresponds to
the hue, the distance from the axis corresponds to the saturation, and the distance
along the axis corresponds to the value (brightness).

Texture refers to the patterns in an image that present the properties of homogene-
ity that do not result from the presence of a single color or intensity value. Examples
of texture classes are rough and silky. Examples of textures that can be identified
include pressed calf leather, straw matting, cotton canvas, and so on. Just as pictures
are represented by arrays of pixels (picture elements), textures are represented by
arrays of texels (texture elements). These textures are then placed into a number of
sets, depending on how many textures are identified in the image. These sets not only
contain the texture definition but also indicate where in the image the texture is
located. Texture identification is primarily done by modeling it as a two-dimensional,
gray-level variation. The relative brightness of pairs of pixels is computed to estimate
the degree of contrast, regularity, coarseness, and directionality.

Shape refers to the shape of a region within an image. It is generally determined by
applying segmentation or edge detection to an image. Segmentation is a region-
based approach that uses an entire region (sets of pixels), whereas edge detection is
a boundary-based approach that uses only the outer boundary characteristics of
entities. Shape representation is typically required to be invariant to translation,
rotation, and scaling. Some well-known methods for shape representation include
Fourier descriptors and moment invariants.

26.4.2 Object Recognition in Images
Object recognition is the task of identifying real-world objects in an image or a
video sequence. The system must be able to identify the object even when the
images of the object vary in viewpoints, size, scale, or even when they are rotated
or translated. Some approaches have been developed to divide the original image
into regions based on similarity of contiguous pixels. Thus, in a given image
showing a tiger in the jungle, a tiger subimage may be detected against the back-
ground of the jungle, and when compared with a set of training images, it may be
tagged as a tiger.

998 Chapter 26 Enhanced Data Models

The representation of the multimedia object in an object model is extremely impor-
tant. One approach is to divide the image into homogeneous segments using a
homogeneous predicate. For example, in a colored image, adjacent cells that have
similar pixel values are grouped into a segment. The homogeneity predicate defines
conditions for automatically grouping those cells. Segmentation and compression
can hence identify the main characteristics of an image. Another approach finds
measurements of the object that are invariant to transformations. It is impossible to
keep a database of examples of all the different transformations of an image. To deal
with this, object recognition approaches find interesting points (or features) in an
image that are invariant to transformations.

An important contribution to this field was made by Lowe,30 who used scale-invari-
ant features from images to perform reliable object recognition. This approach is
called scale-invariant feature transform (SIFT). The SIFT features are invariant to
image scaling and rotation, and partially invariant to change in illumination and
3D camera viewpoint. They are well localized in both the spatial and frequency
domains, reducing the probability of disruption by occlusion, clutter, or noise. In
addition, the features are highly distinctive, which allows a single feature to be cor-
rectly matched with high probability against a large database of features, providing
a basis for object and scene recognition.

For image matching and recognition, SIFT features (also known as keypoint fea-
tures) are first extracted from a set of reference images and stored in a database.
Object recognition is then performed by comparing each feature from the new
image with the features stored in the database and finding candidate matching fea-
tures based on the Euclidean distance of their feature vectors. Since the keypoint
features are highly distinctive, a single feature can be correctly matched with good
probability in a large database of features.

In addition to SIFT, there are a number of competing methods available for object
recognition under clutter or partial occlusion. For example, RIFT, a rotation invari-
ant generalization of SIFT, identifies groups of local affine regions (image features
having a characteristic appearance and elliptical shape) that remain approximately
affinely rigid across a range of views of an object, and across multiple instances of
the same object class.

26.4.3 Semantic Tagging of Images
The notion of implicit tagging is an important one for image recognition and com-
parison. Multiple tags may attach to an image or a subimage: for instance, in the
example we referred to above, tags such as “tiger,” “jungle,” “green,” and “stripes”
may be associated with that image. Most image search techniques retrieve images
based on user-supplied tags that are often not very accurate or comprehensive. To
improve search quality, a number of recent systems aim at automated generation of
these image tags. In case of multimedia data, most of its semantics is present in its

30See Lowe (2004), “Distinctive Image Features from Scale-Invariant Keypoints.”

 26.5 Introduction to Deductive Databases 999

content. These systems use image-processing and statistical-modeling techniques
to analyze image content to generate accurate annotation tags that can then be used
to retrieve images by content. Since different annotation schemes will use different
vocabularies to annotate images, the quality of image retrieval will be poor. To solve
this problem, recent research techniques have proposed the use of concept hierar-
chies, taxonomies, or ontologies using OWL (Web Ontology Language), in which
terms and their relationships are clearly defined. These can be used to infer higher-
level concepts based on tags. Concepts like “sky” and “grass” may be further divided
into “clear sky” and “cloudy sky” or “dry grass” and “green grass” in such a taxon-
omy. These approaches generally come under semantic tagging and can be used in
conjunction with the above feature-analysis and object-identification strategies.

26.4.4 Analysis of Audio Data Sources
Audio sources are broadly classified into speech, music, and other audio data. Each
of these is significantly different from the others; hence different types of audio data
are treated differently. Audio data must be digitized before it can be processed and
stored. Indexing and retrieval of audio data is arguably the toughest among all types
of media, because like video, it is continuous in time and does not have easily mea-
surable characteristics such as text. Clarity of sound recordings is easy to perceive
humanly but is hard to quantify for machine learning. Interestingly, speech data
often uses speech recognition techniques to aid the actual audio content, as this can
make indexing this data a lot easier and more accurate. This is sometimes referred
to as text-based indexing of audio data. The speech metadata is typically content
dependent, in that the metadata is generated from the audio content; for example,
the length of the speech, the number of speakers, and so on. However, some of the
metadata might be independent of the actual content, such as the length of the
speech and the format in which the data is stored. Music indexing, on the other
hand, is done based on the statistical analysis of the audio signal, also known as
content-based indexing. Content-based indexing often makes use of the key features
of sound: intensity, pitch, timbre, and rhythm. It is possible to compare different
pieces of audio data and retrieve information from them based on the calculation of
certain features, as well as application of certain transforms.

26.5 Introduction to Deductive Databases

26.5.1 Overview of Deductive Databases
In a deductive database system we typically specify rules through a declarative
 language—a language in which we specify what to achieve rather than how to
achieve it. An inference engine (or deduction mechanism) within the system can
deduce new facts from the database by interpreting these rules. The model used for
deductive databases is closely related to the relational data model, and particularly
to the domain relational calculus formalism (see Section 6.6). It is also related to the
field of logic programming and the Prolog language. The deductive database work

1000 Chapter 26 Enhanced Data Models

based on logic has used Prolog as a starting point. A variation of Prolog called
Datalog is used to define rules declaratively in conjunction with an existing set of
relations, which are themselves treated as literals in the language. Although the lan-
guage structure of Datalog resembles that of Prolog, its operational semantics—that
is, how a Datalog program is executed—is still different.

A deductive database uses two main types of specifications: facts and rules. Facts
are specified in a manner similar to the way relations are specified, except that it is
not necessary to include the attribute names. Recall that a tuple in a relation
describes some real-world fact whose meaning is partly determined by the attribute
names. In a deductive database, the meaning of an attribute value in a tuple is deter-
mined solely by its position within the tuple. Rules are somewhat similar to rela-
tional views. They specify virtual relations that are not actually stored but that can
be formed from the facts by applying inference mechanisms based on the rule spec-
ifications. The main difference between rules and views is that rules may involve
recursion and hence may yield virtual relations that cannot be defined in terms of
basic relational views.

The evaluation of Prolog programs is based on a technique called backward chain-
ing, which involves a top-down evaluation of goals. In the deductive databases that
use Datalog, attention has been devoted to handling large volumes of data stored in
a relational database. Hence, evaluation techniques have been devised that resemble
those for a bottom-up evaluation. Prolog suffers from the limitation that the order
of specification of facts and rules is significant in evaluation; moreover, the order of
literals (defined in Section 26.5.3) within a rule is significant. The execution tech-
niques for Datalog programs attempt to circumvent these problems.

26.5.2 Prolog/Datalog Notation
The notation used in Prolog/Datalog is based on providing predicates with unique
names. A predicate has an implicit meaning, which is suggested by the predicate
name, and a fixed number of arguments. If the arguments are all constant values,
the predicate simply states that a certain fact is true. If, on the other hand, the pred-
icate has variables as arguments, it is either considered as a query or as part of a rule
or constraint. In our discussion, we adopt the Prolog convention that all constant
values in a predicate are either numeric or character strings; they are represented as
identifiers (or names) that start with a lowercase letter, whereas variable names
always start with an uppercase letter.

Consider the example shown in Figure 26.11, which is based on the relational data-
base in Figure 3.6, but in a much simplified form. There are three predicate names:
supervise, superior, and subordinate. The SUPERVISE predicate is defined via a set of
facts, each of which has two arguments: a supervisor name, followed by the name of
a direct supervisee (subordinate) of that supervisor. These facts correspond to the
actual data that is stored in the database, and they can be considered as constituting
a set of tuples in a relation SUPERVISE with two attributes whose schema is

SUPERVISE(Supervisor, Supervisee)

 26.5 Introduction to Deductive Databases 1001

Thus, SUPERVISE(X, Y) states the fact that X supervises Y. Notice the omission of
the attribute names in the Prolog notation. Attribute names are only represented by
virtue of the position of each argument in a predicate: the first argument represents
the supervisor, and the second argument represents a direct subordinate.

The other two predicate names are defined by rules. The main contributions of
deductive databases are the ability to specify recursive rules and to provide a frame-
work for inferring new information based on the specified rules. A rule is of the
form head :– body, where :– is read as if and only if. A rule usually has a single
predicate to the left of the :– symbol—called the head or left-hand side (LHS) or
conclusion of the rule—and one or more predicates to the right of the :– symbol—
called the body or right-hand side (RHS) or premise(s) of the rule. A predicate
with constants as arguments is said to be ground; we also refer to it as an instantiated
predicate. The arguments of the predicates that appear in a rule typically include
a number of variable symbols, although predicates can also contain constants as
arguments. A rule specifies that, if a particular assignment or binding of constant
values to the variables in the body (RHS predicates) makes all the RHS predicates
true, it also makes the head (LHS predicate) true by using the same assignment of
constant values to variables. Hence, a rule provides us with a way of generating
new facts that are instantiations of the head of the rule. These new facts are
based on facts that already exist, corresponding to the instantiations (or
 bindings) of predicates in the body of the rule. Notice that by listing multiple
predicates in the body of a rule we implicitly apply the logical AND operator to
these predicates. Hence, the commas between the RHS predicates may be read
as meaning and.

Consider the definition of the predicate SUPERIOR in Figure 26.11, whose first argu-
ment is an employee name and whose second argument is an employee who is either
a direct or an indirect subordinate of the first employee. By indirect subordinate, we

Facts
SUPERVISE(franklin, john).
SUPERVISE(franklin, ramesh).
SUPERVISE(franklin, joyce).
SUPERVISE(jennifer, alicia).
SUPERVISE(jennifer, ahmad).
SUPERVISE(james, franklin).
SUPERVISE(james, jennifer).
. . .

Rules
SUPERIOR(X, Y) :– SUPERVISE(X, Y).
SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y).
SUBORDINATE(X, Y) :– SUPERIOR(Y, X).

Queries
SUPERIOR(james, Y)?
SUPERIOR(james, joyce)?

joyceramesh

franklin

james(b)(a)

john ahmad

jennifer

alicia

Figure 26.11
(a) Prolog notation.
(b) The supervisory tree.

1002 Chapter 26 Enhanced Data Models

mean the subordinate of some subordinate down to any number of levels. Thus
SUPERIOR(X, Y) stands for the fact that X is a superior of Y through direct or indirect
supervision. We can write two rules that together specify the meaning of the new
predicate. The first rule under Rules in the figure states that for every value of X and
Y, if SUPERVISE(X, Y)—the rule body—is true, then SUPERIOR(X, Y)—the rule
head—is also true, since Y would be a direct subordinate of X (at one level down).
This rule can be used to generate all direct superior/subordinate relationships from
the facts that define the SUPERVISE predicate. The second recursive rule states that if
SUPERVISE(X, Z) and SUPERIOR(Z, Y) are both true, then SUPERIOR(X, Y) is also
true. This is an example of a recursive rule, where one of the rule body predicates in
the RHS is the same as the rule head predicate in the LHS. In general, the rule body
defines a number of premises such that if they are all true, we can deduce that the
conclusion in the rule head is also true. Notice that if we have two (or more) rules
with the same head (LHS predicate), it is equivalent to saying that the predicate is
true (that is, that it can be instantiated) if either one of the bodies is true; hence, it is
equivalent to a logical OR operation. For example, if we have two rules X :– Y and
X :– Z, they are equivalent to a rule X :– Y OR Z. The latter form is not used in deduc-
tive systems, however, because it is not in the standard form of rule, called a Horn
clause, as we discuss in Section 26.5.4.

A Prolog system contains a number of built-in predicates that the system can inter-
pret directly. These typically include the equality comparison operator = (X, Y),
which returns true if X and Y are identical and can also be written as X = Y by using
the standard infix notation.31 Other comparison operators for numbers, such as
<, <=, >, and >=, can be treated as binary predicates. Arithmetic functions such as
+, –, *, and / can be used as arguments in predicates in Prolog. In contrast, Datalog
(in its basic form) does not allow functions such as arithmetic operations as argu-
ments; indeed, this is one of the main differences between Prolog and Datalog.
However, extensions to Datalog have been proposed that do include functions.

A query typically involves a predicate symbol with some variable arguments, and
its meaning (or answer) is to deduce all the different constant combinations that,
when bound (assigned) to the variables, can make the predicate true. For example,
the first query in Figure 26.11 requests the names of all subordinates of james at any
level. A different type of query, which has only constant symbols as arguments,
returns either a true or a false result, depending on whether the arguments pro-
vided can be deduced from the facts and rules. For example, the second query in
Figure 26.11 returns true, since SUPERIOR(james, joyce) can be deduced.

26.5.3 Datalog Notation
In Datalog, as in other logic-based languages, a program is built from basic objects
called atomic formulas. It is customary to define the syntax of logic-based lan-
guages by describing the syntax of atomic formulas and identifying how they can be
combined to form a program. In Datalog, atomic formulas are literals of the form

31A Prolog system typically has a number of different equality predicates that have different interpretations.

 26.5 Introduction to Deductive Databases 1003

p(a1, a2, … , an), where p is the predicate name and n is the number of arguments
for predicate p. Different predicate symbols can have different numbers of argu-
ments, and the number of arguments n of predicate p is sometimes called the arity
or degree of p. The arguments can be either constant values or variable names. As
mentioned earlier, we use the convention that constant values either are numeric
or start with a lowercase character, whereas variable names always start with an
uppercase character.

A number of built-in predicates are included in Datalog and can also be used to con-
struct atomic formulas. The built-in predicates are of two main types: the binary com-
parison predicates < (less), <= (less_or_equal), > (greater), and >= (greater_or_equal)
over ordered domains; and the comparison predicates = (equal) and /= (not_equal) over
ordered or unordered domains. These can be used as binary predicates with the same
functional syntax as other predicates—for example, by writing less(X, 3)—or they can
be specified by using the customary infix notation X<3. Note that because the domains
of these predicates are potentially infinite, they should be used with care in rule defini-
tions. For example, the predicate greater(X, 3), if used alone, generates an infinite set of
values for X that satisfy the predicate (all integer numbers greater than 3).

A literal is either an atomic formula as defined earlier—called a positive literal—or an
atomic formula preceded by not. The latter is a negated atomic formula, called a
 negative literal. Datalog programs can be considered to be a subset of the predicate
calculus formulas, which are somewhat similar to the formulas of the domain relational
calculus (see Section 6.7). In Datalog, however, these formulas are first converted into
what is known as clausal form before they are expressed in Datalog, and only formulas
given in a restricted clausal form, called Horn clauses,32 can be used in Datalog.

26.5.4 Clausal Form and Horn Clauses
Recall from Section 6.6 that a formula in the relational calculus is a condition that
includes predicates called atoms (based on relation names). Additionally, a formula
can have quantifiers—namely, the universal quantifier (for all) and the existential
quantifier (there exists). In clausal form, a formula must be transformed into
another formula with the following characteristics:

 ■ All variables in the formula are universally quantified. Hence, it is not neces-
sary to include the universal quantifiers (for all) explicitly; the quantifiers
are removed, and all variables in the formula are implicitly quantified by the
universal quantifier.

 ■ In clausal form, the formula is made up of a number of clauses, where each
clause is composed of a number of literals connected by OR logical connec-
tives only. Hence, each clause is a disjunction of literals.

 ■ The clauses themselves are connected by AND logical connectives only, to form
a formula. Hence, the clausal form of a formula is a conjunction of clauses.

32Named after the mathematician Alfred Horn.

1004 Chapter 26 Enhanced Data Models

It can be shown that any formula can be converted into clausal form. For our pur-
poses, we are mainly interested in the form of the individual clauses, each of which
is a disjunction of literals. Recall that literals can be positive literals or negative liter-
als. Consider a clause of the form:

NOT(P1) OR NOT(P2) OR … OR NOT(Pn) OR Q1 OR Q2 OR … OR Qm (1)

This clause has n negative literals and m positive literals. Such a clause can be trans-
formed into the following equivalent logical formula:

P1 AND P2 AND … AND Pn ⇒ Q1 OR Q2 OR … OR Qm (2)

where ⇒ is the implies symbol. The formulas (1) and (2) are equivalent, meaning
that their truth values are always the same. This is the case because if all the Pi
literals (i = 1, 2, … , n) are true, the formula (2) is true only if at least one of the
Qi’s is true, which is the meaning of the ⇒ (implies) symbol. For formula (1), if all
the Pi literals (i = 1, 2, … , n) are true, their negations are all false; so in this case
formula (1) is true only if at least one of the Qi’s is true. In Datalog, rules are
expressed as a restricted form of clauses called Horn clauses, in which a clause
can contain at most one positive literal. Hence, a Horn clause is either of the form

NOT (P1) OR NOT(P2) OR … OR NOT(Pn) OR Q (3)

or of the form

NOT (P1) OR NOT(P2) OR … OR NOT(Pn) (4)

The Horn clause in (3) can be transformed into the clause

P1 AND P2 AND … AND Pn ⇒ Q (5)

which is written in Datalog as the following rule:

Q :– P1, P2, … , Pn. (6)

The Horn clause in (4) can be transformed into

P1 AND P2 AND … AND Pn ⇒ (7)

which is written in Datalog as follows:

P1, P2, … , Pn. (8)

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based on form-
ula (5), is that if the predicates P1 AND P2 AND … AND Pn are all true for a particular
binding to their variable arguments, then Q is also true and can hence be inferred.
The Datalog expression (8) can be considered as an integrity constraint, where all
the predicates must be true to satisfy the query.

In general, a query in Datalog consists of two components:

 ■ A Datalog program, which is a finite set of rules

 ■ A literal P(X1, X2, … , Xn), where each Xi is a variable or a constant

A Prolog or Datalog system has an internal inference engine that can be used to
process and compute the results of such queries. Prolog inference engines typically

 26.5 Introduction to Deductive Databases 1005

return one result to the query (that is, one set of values for the variables in the
query) at a time and must be prompted to return additional results. On the con-
trary, Datalog returns results set-at-a-time.

26.5.5 Interpretations of Rules
There are two main alternatives for interpreting the theoretical meaning of rules:
proof-theoretic and model-theoretic. In practical systems, the inference mechanism
within a system defines the exact interpretation, which may not coincide with either
of the two theoretical interpretations. The inference mechanism is a computational
procedure and hence provides a computational interpretation of the meaning of
rules. In this section, first we discuss the two theoretical interpretations. Then we
briefly discuss inference mechanisms as a way of defining the meaning of rules.

In the proof-theoretic interpretation of rules, we consider the facts and rules to be
true statements, or axioms. Ground axioms contain no variables. The facts are
ground axioms that are given to be true. Rules are called deductive axioms, since
they can be used to deduce new facts. The deductive axioms can be used to construct
proofs that derive new facts from existing facts. For example, Figure 26.12 shows
how to prove the fact SUPERIOR(james, ahmad) from the rules and facts given in
Figure 26.11. The proof-theoretic interpretation gives us a procedural or computa-
tional approach for computing an answer to the Datalog query. The process of prov-
ing whether a certain fact (theorem) holds is known as theorem proving.

The second type of interpretation is called the model-theoretic interpretation.
Here, given a finite or an infinite domain of constant values,33 we assign to a predi-
cate every possible combination of values as arguments. We must then determine
whether the predicate is true or false. In general, it is sufficient to specify the combi-
nations of arguments that make the predicate true, and to state that all other com-
binations make the predicate false. If this is done for every predicate, it is called an
interpretation of the set of predicates. For example, consider the interpretation
shown in Figure 26.13 for the predicates SUPERVISE and SUPERIOR. This interpre-
tation assigns a truth value (true or false) to every possible combination of argu-
ment values (from a finite domain) for the two predicates.

An interpretation is called a model for a specific set of rules if those rules are always
true under that interpretation; that is, for any values assigned to the variables in the
rules, the head of the rules is true when we substitute the truth values assigned to

33The most commonly chosen domain is finite and is called the Herbrand Universe.

1. SUPERIOR(X, Y) :– SUPERVISE(X, Y). (rule 1)
2. SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y). (rule 2)
3. SUPERVISE(jennifer, ahmad). (ground axiom, given)
4. SUPERVISE(james, jennifer). (ground axiom, given)
5. SUPERIOR(jennifer, ahmad). (apply rule 1 on 3)
6. SUPERIOR(james, ahmad). (apply rule 2 on 4 and 5)

Figure 26.12
Proving a new fact.

1006 Chapter 26 Enhanced Data Models

the predicates in the body of the rule by that interpretation. Hence, whenever a
particular substitution (binding) to the variables in the rules is applied, if all the
predicates in the body of a rule are true under the interpretation, the predicate in
the head of the rule must also be true. The interpretation shown in Figure 26.13 is a
model for the two rules shown, since it can never cause the rules to be violated.
Notice that a rule is violated if a particular binding of constants to the variables
makes all the predicates in the rule body true but makes the predicate in the rule
head false. For example, if SUPERVISE(a, b) and SUPERIOR(b, c) are both true under
some interpretation, but SUPERIOR(a, c) is not true, the interpretation cannot be a
model for the recursive rule:

SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y)

In the model-theoretic approach, the meaning of the rules is established by provid-
ing a model for these rules. A model is called a minimal model for a set of rules if
we cannot change any fact from true to false and still get a model for these rules. For

Rules
SUPERIOR(X, Y) :– SUPERVISE(X, Y).
SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y).

Interpretation

Known Facts:
SUPERVISE(franklin, john) is true.
SUPERVISE(franklin, ramesh) is true.
SUPERVISE(franklin, joyce) is true.
SUPERVISE(jennifer, alicia) is true.
SUPERVISE(jennifer, ahmad) is true.
SUPERVISE(james, franklin) is true.
SUPERVISE(james, jennifer) is true.
SUPERVISE(X, Y) is false for all other possible (X, Y) combinations

Derived Facts:
SUPERIOR(franklin, john) is true.
SUPERIOR(franklin, ramesh) is true.
SUPERIOR(franklin, joyce) is true.
SUPERIOR(jennifer, alicia) is true.
SUPERIOR(jennifer, ahmad) is true.
SUPERIOR(james, franklin) is true.
SUPERIOR(james, jennifer) is true.
SUPERIOR(james, john) is true.
SUPERIOR(james, ramesh) is true.
SUPERIOR(james, joyce) is true.
SUPERIOR(james, alicia) is true.
SUPERIOR(james, ahmad) is true.
SUPERIOR(X, Y) is false for all other possible (X, Y) combinations

Figure 26.13
An interpretation that
is a minimal model.

 26.5 Introduction to Deductive Databases 1007

example, consider the interpretation in Figure 26.13, and assume that the SUPERVISE
predicate is defined by a set of known facts, whereas the SUPERIOR predicate is
defined as an interpretation (model) for the rules. Suppose that we add the predi-
cate SUPERIOR(james, bob) to the true predicates. This remains a model for the
rules shown, but it is not a minimal model, since changing the truth value of
SUPERIOR(james,bob) from true to false still provides us with a model for the rules.
The model shown in Figure 26.13 is the minimal model for the set of facts that are
defined by the SUPERVISE predicate.

In general, the minimal model that corresponds to a given set of facts in the model-
theoretic interpretation should be the same as the facts generated by the proof- theoretic
interpretation for the same original set of ground and deductive axioms. However, this
is generally true only for rules with a simple structure. Once we allow negation in the
specification of rules, the correspondence between interpretations does not hold. In
fact, with negation, numerous minimal models are possible for a given set of facts.

A third approach to interpreting the meaning of rules involves defining an inference
mechanism that is used by the system to deduce facts from the rules. This inference
mechanism would define a computational interpretation to the meaning of the
rules. The Prolog logic programming language uses its inference mechanism to define
the meaning of the rules and facts in a Prolog program. Not all Prolog programs cor-
respond to the proof-theoretic or model-theoretic interpretations; it depends on the
type of rules in the program. However, for many simple Prolog programs, the Prolog
inference mechanism infers the facts that correspond either to the proof-theoretic
interpretation or to a minimal model under the model-theoretic interpretation.

26.5.6 Datalog Programs and Their Safety
There are two main methods of defining the truth values of predicates in actual
Datalog programs. Fact-defined predicates (or relations) are defined by listing all
the combinations of values (the tuples) that make the predicate true. These corre-
spond to base relations whose contents are stored in a database system. Figure 26.14
shows the fact-defined predicates EMPLOYEE, MALE, FEMALE, DEPARTMENT,
SUPERVISE, PROJECT, and WORKS_ON, which correspond to part of the relational
database shown in Figure 5.6. Rule-defined predicates (or views) are defined by
being the head (LHS) of one or more Datalog rules; they correspond to virtual rela-
tions whose contents can be inferred by the inference engine. Figure 26.15 shows a
number of rule-defined predicates.

A program or a rule is said to be safe if it generates a finite set of facts. The general
theoretical problem of determining whether a set of rules is safe is undecidable.
However, one can determine the safety of restricted forms of rules. For example, the
rules shown in Figure 26.16 are safe. One situation where we get unsafe rules that
can generate an infinite number of facts arises when one of the variables in the rule
can range over an infinite domain of values, and that variable is not limited to rang-
ing over a finite relation. For example, consider the following rule:

BIG_SALARY(Y) :– Y>60000

1008 Chapter 26 Enhanced Data Models

EMPLOYEE(john). MALE(john).
EMPLOYEE(franklin). MALE(franklin).
EMPLOYEE(aIicia). MALE(ramesh).
EMPLOYEE(jennifer). MALE(ahmad).
EMPLOYEE(ramesh). MALE(james).
EMPLOYEE(joyce).
EMPLOYEE(ahmad). FEMALE(alicia).
EMPLOYEE(james). FEMALE(jennifer).
 FEMALE(joyce).
SALARY(john, 30000).
SALARY(franklin, 40000). PROJECT(productx).
SALARY(alicia, 25000). PROJECT(producty).
SALARY(jennifer, 43000). PROJECT(productz).
SALARY(ramesh, 38000). PROJECT(computerization).
SALARY(joyce, 25000). PROJECT(reorganization).
SALARY(ahmad, 25000). PROJECT(newbenefits).
SALARY(james, 55000).
 WORKS_ON(john, productx, 32).
DEPARTMENT(john, research). WORKS_ON(john, producty, 8).
DEPARTMENT(franklin, research). WORKS_ON(ramesh, productz, 40).
DEPARTMENT(alicia, administration). WORKS_ON(joyce, productx, 20).
DEPARTMENT(jennifer, administration). WORKS_ON(joyce, producty, 20).
DEPARTMENT(ramesh, research). WORKS_ON(franklin, producty, 10).
DEPARTMENT(joyce, research). WORKS_ON(franklin, productz, 10).
DEPARTMENT(ahmad, administration). WORKS_ON(franklin, computerization, 10).
DEPARTMENT(james, headquarters). WORKS_ON(franklin, reorganization, 10).
 WORKS_ON(alicia, newbenefits, 30).
SUPERVISE(franklln, john). WORKS_ON(alicia, computerization, 10).
SUPERVISE(franklln, ramesh) WORKS_ON(ahmad, computerization, 35).
SUPERVISE(frankin , joyce). WORKS_ON(ahmad, newbenefits, 5).
SUPERVISE(jennifer, aIicia). WORKS_ON(jennifer, newbenefits, 20).
SUPERVISE(jennifer, ahmad). WORKS_ON(jennifer, reorganization, 15).
SUPERVISE(james, franklin). WORKS_ON(james, reorganization, 10).
SUPERVISE(james, jennifer).

Figure 26.14
Fact-defined
predicates for part
of the database from
Figure 5.6.

SUPERIOR(X, Y) :– SUPERVISE(X, Y).
SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y).

SUBORDINATE(X, Y) :– SUPERIOR(Y, X).

SUPERVISOR(X) :– EMPLOYEE(X), SUPERVISE(X, Y).
OVER_40K_EMP(X) :– EMPLOYEE(X), SALARY(X, Y), Y >= 40000.
UNDER_40K_SUPERVISOR(X) :– SUPERVISOR(X), NOT(OVER_40_K_EMP(X)).
MAIN_PRODUCTX_EMP(X) :– EMPLOYEE(X), WORKS_ON(X, productx, Y), Y >=20.
PRESIDENT(X) :– EMPLOYEE(X), NOT(SUPERVISE(Y, X)).

Figure 26.15
Rule-defined
predicates.

 26.5 Introduction to Deductive Databases 1009

Here, we can get an infinite result if Y ranges over all possible integers. But suppose
that we change the rule as follows:

BIG_SALARY(Y) :– EMPLOYEE(X), Salary(X, Y), Y>60000

In the second rule, the result is not infinite, since the values that Y can be bound to
are now restricted to values that are the salary of some employee in the database—
presumably, a finite set of values. We can also rewrite the rule as follows:

BIG_SALARY(Y) :– Y>60000, EMPLOYEE(X), Salary(X, Y)

In this case, the rule is still theoretically safe. However, in Prolog or any other sys-
tem that uses a top-down, depth-first inference mechanism, the rule creates an
infinite loop, since we first search for a value for Y and then check whether it is a
salary of an employee. The result is generation of an infinite number of Y values,
even though these, after a certain point, cannot lead to a set of true RHS predi-
cates. One definition of Datalog considers both rules to be safe, since it does not
depend on a particular inference mechanism. Nonetheless, it is generally advisable
to write such a rule in the safest form, with the predicates that restrict possible
bindings of variables placed first. As another example of an unsafe rule, consider
the following rule:

HAS_SOMETHING(X, Y) :– EMPLOYEE(X)

REL_ONE(A, B, C).
REL_TWO(D, E, F).
REL_THREE(G, H, I, J).

SELECT_ONE_A_EQ_C(X, Y, Z) :– REL_ONE(C, Y, Z).
SELECT_ONE_B_LESS_5(X, Y, Z) :– REL_ONE(X, Y, Z), Y < 5.
SELECT_ONE_A_EQ_C_AND_B_LESS_5(X, Y, Z) :– REL_ONE(C, Y, Z), Y<5.

SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z) :– REL_ONE(C, Y, Z).
SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z) :– REL_ONE(X, Y, Z), Y<5.

PROJECT_THREE_ON_G_H(W, X) :– REL_THREE(W, X, Y, Z).

UNION_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z).
UNION_ONE_TWO(X, Y, Z) :– REL_TWO(X, Y, Z).

INTERSECT_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z), REL_TWO(X, Y, Z).

DIFFERENCE_TWO_ONE(X, Y, Z) :– _TWO(X, Y, Z) NOT(REL_ONE(X, Y, Z).

CART PROD _ONE_THREE(T, U, V, W, X, Y, Z) :–
REL_ONE(T, U, V), REL_THREE(W, X, Y, Z).

NATURAL_JOIN_ONE_THREE_C_EQ_G(U, V, W, X, Y, Z) :–
REL_ONE(U, V, W), REL_THREE(W, X, Y, Z).

Figure 26.16
Predicates for illustrating
relational operations.

1010 Chapter 26 Enhanced Data Models

Here, an infinite number of Y values can again be generated, since the variable Y
appears only in the head of the rule and hence is not limited to a finite set of values.
To define safe rules more formally, we use the concept of a limited variable. A vari-
able X is limited in a rule if (1) it appears in a regular (not built-in) predicate in the
body of the rule; (2) it appears in a predicate of the form X = c or c = X or (c1 <= X
and X <= c2) in the rule body, where c, c1, and c2 are constant values; or (3) it appears
in a predicate of the form X = Y or Y = X in the rule body, where Y is a limited vari-
able. A rule is said to be safe if all its variables are limited.

26.5.7 Use of Relational Operations
It is straightforward to specify many operations of the relational algebra in the form
of Datalog rules that define the result of applying these operations on the database
relations (fact predicates). This means that relational queries and views can easily
be specified in Datalog. The additional power that Datalog provides is in the speci-
fication of recursive queries, and views based on recursive queries. In this section,
we show how some of the standard relational operations can be specified as Datalog
rules. Our examples will use the base relations (fact-defined predicates) REL_ONE,
REL_TWO, and REL_THREE, whose schemas are shown in Figure 26.16. In Datalog,
we do not need to specify the attribute names as in Figure 26.16; rather, the arity
(degree) of each predicate is the important aspect. In a practical system, the domain
(data type) of each attribute is also important for operations such as UNION,
 INTERSECTION, and JOIN, and we assume that the attribute types are compatible for
the various operations, as discussed in Chapter 3.

Figure 26.16 illustrates a number of basic relational operations. Notice that if the
Datalog model is based on the relational model and hence assumes that predicates
(fact relations and query results) specify sets of tuples, duplicate tuples in the same
predicate are automatically eliminated. This may or may not be true, depending on
the Datalog inference engine. However, it is definitely not the case in Prolog, so any
of the rules in Figure 26.16 that involve duplicate elimination are not correct for
Prolog. For example, if we want to specify Prolog rules for the UNION operation
with duplicate elimination, we must rewrite them as follows:

UNION_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z).
UNION_ONE_TWO(X, Y, Z) :– REL_TWO(X, Y, Z), NOT(REL_ONE(X, Y, Z)).

However, the rules shown in Figure 26.16 should work for Datalog, if duplicates are
automatically eliminated. Similarly, the rules for the PROJECT operation shown in
Figure 26.16 should work for Datalog in this case, but they are not correct for Pro-
log, since duplicates would appear in the latter case.

26.5.8 Evaluation of Nonrecursive Datalog Queries
In order to use Datalog as a deductive database system, it is appropriate to define an
inference mechanism based on relational database query processing concepts. The
inherent strategy involves a bottom-up evaluation, starting with base relations; the
order of operations is kept flexible and subject to query optimization. In this section
we discuss an inference mechanism based on relational operations that can be

 26.5 Introduction to Deductive Databases 1011

applied to nonrecursive Datalog queries. We use the fact and rule base shown in
Figures 26.14 and 26.15 to illustrate our discussion.

If a query involves only fact-defined predicates, the inference becomes one of
searching among the facts for the query result. For example, a query such as

DEPARTMENT(X, Research)?

is a selection of all employee names X who work for the Research department. In
relational algebra, it is the query:

π$1 (σ$2 = “Research” (DEPARTMENT))

which can be answered by searching through the fact-defined predicate
department(X, Y). The query involves relational SELECT and PROJECT operations
on a base relation, and it can be handled by the database query processing and opti-
mization techniques discussed in Chapter 19.

When a query involves rule-defined predicates, the inference mechanism must
compute the result based on the rule definitions. If a query is nonrecursive and
involves a predicate p that appears as the head of a rule p :– p1, p2, … , pn, the strat-
egy is first to compute the relations corresponding to p1, p2, … , pn and then to
compute the relation corresponding to p. It is useful to keep track of the depen-
dency among the predicates of a deductive database in a predicate dependency
graph. Figure 26.17 shows the graph for the fact and rule predicates shown in Fig-
ures 26.14 and 26.15. The dependency graph contains a node for each predicate.
Whenever a predicate A is specified in the body (RHS) of a rule, and the head
(LHS) of that rule is the predicate B, we say that B depends on A, and we draw a
directed edge from A to B. This indicates that in order to compute the facts for the
predicate B (the rule head), we must first compute the facts for all the predicates A
in the rule body. If the dependency graph has no cycles, we call the rule set nonre-
cursive. If there is at least one cycle, we call the rule set recursive. In Figure 26.17,
there is one recursively defined predicate—namely, SUPERIOR—which has a
recursive edge pointing back to itself. Additionally, because the predicate subordi-
nate depends on SUPERIOR, it also requires recursion in computing its result.

A query that includes only nonrecursive predicates is called a nonrecursive query.
In this section we discuss only inference mechanisms for nonrecursive queries. In
Figure 26.17, any query that does not involve the predicates SUBORDINATE or
SUPERIOR is nonrecursive. In the predicate dependency graph, the nodes corre-
sponding to fact-defined predicates do not have any incoming edges, since all fact-
defined predicates have their facts stored in a database relation. The contents of a
fact-defined predicate can be computed by directly retrieving the tuples in the cor-
responding database relation.

The main function of an inference mechanism is to compute the facts that corre-
spond to query predicates. This can be accomplished by generating a relational
expression involving relational operators as SELECT, PROJECT, JOIN, UNION, and
SET DIFFERENCE (with appropriate provision for dealing with safety issues) that,
when executed, provides the query result. The query can then be executed by utilizing
the internal query processing and optimization operations of a relational database

1012 Chapter 26 Enhanced Data Models

management system. Whenever the inference mechanism needs to compute the fact
set corresponding to a nonrecursive rule-defined predicate p, it first locates all the
rules that have p as their head. The idea is to compute the fact set for each such rule
and then to apply the UNION operation to the results, since UNION corresponds to a
logical OR operation. The dependency graph indicates all predicates q on which each
p depends, and since we assume that the predicate is nonrecursive, we can always
determine a partial order among such predicates q. Before computing the fact set for
p, first we compute the fact sets for all predicates q on which p depends, based on their
partial order. For example, if a query involves the predicate UNDER_40K_SUPERVISOR,
we must first compute both SUPERVISOR and OVER_40K_EMP. Since the latter two
depend only on the fact-defined predicates EMPLOYEE, SALARY, and SUPERVISE,
they can be computed directly from the stored database relations.

This concludes our introduction to deductive databases. Additional material may be
found at the book’s Web site, where the complete Chapter 25 from the third edition is
available. Information on the Web site includes a discussion on algorithms for recur-
sive query processing. We have included an extensive bibliography of work in deduc-
tive databases, recursive query processing, magic sets, combination of relational
databases with deductive rules, and GLUE-NAIL! System, at the end of this chapter.

26.6 Summary
In this chapter, we introduced database concepts for some of the common features
that are needed by advanced applications: active databases, temporal databases,
spatial databases, multimedia databases, and deductive databases. It is important to
note that each of these is a broad topic and warrants a complete textbook.

SUPERVISOR UNDER_40K_SUPERVISOR

OVER_40K_EMP

PRESIDENT

MAIN_PRODUCT_EMP

WORKS_ON EMPLOYEE SALARY SUPERVISE

DEPARTMENT PROJECT FEMALE MALE

SUBORDINATE

SUPERIOR

Figure 26.17
Predicate dependency
graph for Figures 26.15
and 26.16.

 26.6 Summary 1013

First in Section 26.1 we introduced the topic of active databases, which provide addi-
tional functionality for specifying active rules. We introduced the event-condition-
action (ECA) model for active databases. The rules can be automatically triggered by
events that occur—such as a database update—and they can initiate certain actions
that have been specified in the rule declaration if certain conditions are true. Many
commercial packages have some of the functionality provided by active databases in
the form of triggers. We gave examples of row-level triggers in the Oracle commercial
system in Section 26.1.1. We discussed the different options for specifying triggers in
Section 26.1.2, such as row-level versus statement-level, before versus after, and
immediate versus deferred. Then in Section 26.1.3 we gave examples of statement-
level rules in the STARBURST experimental system. We briefly discussed some
design issues and some possible applications for active databases in Section 26.1.4.
The syntax for triggers in the SQL-99 standard was also discussed in Section 26.1.5.

Next in Section 26.2 we introduced some of the concepts of temporal databases,
which permit the database system to store a history of changes and allow users to
query both current and past states of the database. In Section 26.2.1, we discussed
how time is represented and distinguished between the valid time and transaction
time dimensions. In Section 26.2.2 we discussed how valid time, transaction time,
and bitemporal relations can be implemented using tuple versioning in the rela-
tional model, and we provided examples to illustrate how updates, inserts, and
deletes are implemented. We also showed how complex objects can be used to
implement temporal databases using attribute versioning in Section 26.2.3. We
looked at some of the querying operations for temporal relational databases and
gave a brief introduction to the TSQL2 language in Section 26.2.4.

Then we turned to spatial databases in Section 26.3. Spatial databases provide
concepts for databases that keep track of objects that have spatial characteristics.
We gave an introduction to spatial databases in Section 26.3.1. We discussed the
types of spatial data and spatial data models in Section 26.3.2, then the types of
operators for processing spatial data and the types of spatial queries in Sec-
tion 26.3.3. In Section 26.3.4, we gave an overview of spatial indexing techniques,
including the popular R-trees. Then we introduced some spatial data mining
techniques in Section 26.3.5, and discussed some applications that require spatial
databases in Section 26.3.6.

In Section 26.4 we discussed some basic types of multimedia databases and their
important characteristics. Multimedia databases provide features that allow users
to store and query different types of multimedia information, which includes
images (such as pictures and drawings), video clips (such as movies, newsreels, and
home videos), audio clips (such as songs, phone messages, and speeches), and doc-
uments (such as books and articles). We provided a brief overview of the various
types of media sources and how multimedia sources may be indexed. Images are an
extremely common type of data among databases today and are likely to occupy a
large proportion of stored data in databases. We therefore provided a more detailed
treatment of images: their automatic analysis (Section 26.4.1), recognition of objects
within images (Section 26.4.2), and their semantic tagging (Section 26.1.3)—all of
which contribute to developing better systems to retrieve images by content, which

1014 Chapter 26 Enhanced Data Models

still remains a challenging problem. We also commented on the analysis of audio
data sources in Section 26.4.4.

We concluded the chapter with an introduction to deductive databases in Section 26.5.
We introduced deductive databases in Section 26.5.1, and gave an overview of Prolog
and Datalog notation in Sections 26.5.2 and 26.5.3. We discussed the clausal form of
formulas in Section 26.5.4. Datalog rules are restricted to Horn clauses, which contain
at most one positive literal. We discussed the proof-theoretic and model-theoretic
interpretation of rules in Section 26.5.5. We briefly discussed the safety of Datalog rules
in Section 26.5.6 and the ways of expressing relational operators using Datalog rules in
Section 26.5.7. Finally, we discussed an inference mechanism based on relational oper-
ations that can be used to evaluate nonrecursive Datalog queries using relational query
optimization techniques in Section 26.5.8. Although Datalog has been a popular lan-
guage with some applications, implementations of deductive database systems such as
LDL or VALIDITY have not become widely commercially available.

Review Questions
 26.1. What are the differences between row-level and statement-level active rules?

 26.2. What are the differences among immediate, deferred, and detached consid-
eration of active rule conditions?

 26.3. What are the differences among immediate, deferred, and detached execu-
tion of active rule actions?

 26.4. Briefly discuss the consistency and termination problems when designing a
set of active rules.

 26.5. Discuss some applications of active databases.

 26.6. Discuss how time is represented in temporal databases and compare the dif-
ferent time dimensions.

 26.7. What are the differences among valid time, transaction time, and bitempo-
ral relations?

 26.8. Describe how the insert, delete, and update commands should be imple-
mented on a valid time relation.

 26.9. Describe how the insert, delete, and update commands should be imple-
mented on a bitemporal relation.

 26.10. Describe how the insert, delete, and update commands should be imple-
mented on a transaction time relation.

 26.11. What are the main differences between tuple versioning and attribute
versioning?

 26.12. How do spatial databases differ from regular databases?

 26.13. What are the different types of spatial data?

 Exercises 1015

 26.14. Name the main types of spatial operators and different classes of spatial queries.

 26.15. What are the properties of R-trees that act as an index for spatial data?

 26.16. Describe how a spatial join index between spatial objects can be constructed.

 26.17. What are the different types of spatial data mining?

 26.18. State the general form of a spatial association rule. Give an example of a spa-
tial association rule.

 26.19. What are the different types of multimedia sources?

 26.20. How are multimedia sources indexed for content-based retrieval?

 26.21. What important features of images are used to compare them?

 26.22. What are the different approaches to recognizing objects in images?

 26.23. How is semantic tagging of images used?

 26.24. What are the difficulties in analyzing audio sources?

 26.25. What are deductive databases?

 26.26. Write sample rules in Prolog to define that courses with course number
above CS5000 are graduate courses and that DBgrads are those graduate
students who enroll in CS6400 and CS8803.

 26.27. Define the clausal form of formulas and Horn clauses.

 26.28. What is theorem proving, and what is proof-theoretic interpretation of
rules?

 26.29. What is model-theoretic interpretation and how does it differ from proof-
theoretic interpretation?

 26.30. What are fact-defined predicates and rule-defined predicates?

 26.31. What is a safe rule?

 26.32. Give examples of rules that can define relational operations SELECT,
PROJECT, JOIN, and SET operations.

 26.33. Discuss the inference mechanism based on relational operations that can be
applied to evaluate nonrecursive Datalog queries.

Exercises
 26.34. Consider the COMPANY database described in Figure 5.6. Using the syntax

of Oracle triggers, write active rules to do the following:

a. Whenever an employee’s project assignments are changed, check if the
total hours per week spent on the employee’s projects are less than 30 or
greater than 40; if so, notify the employee’s direct supervisor.

1016 Chapter 26 Enhanced Data Models

b. Whenever an employee is deleted, delete the PROJECT tuples and
DEPENDENT tuples related to that employee, and if the employee man-
ages a department or supervises employees, set the Mgr_ssn for that
department to NULL and set the Super_ssn for those employees to NULL.

 26.35. Repeat Exercise 26.34 but use the syntax of STARBURST active rules.

 26.36. Consider the relational schema shown in Figure 26.18. Write active rules for
keeping the Sum_commissions attribute of SALES_PERSON equal to the sum
of the Commission attribute in SALES for each sales person. Your rules should
also check if the Sum_commissions exceeds 100000; if it does, call a procedure
Notify_manager(S_id). Write both statement-level rules in STARBURST nota-
tion and row-level rules in Oracle.

 26.37. Consider the UNIVERSITY EER schema in Figure 4.10. Write some rules (in
English) that could be implemented via active rules to enforce some com-
mon integrity constraints that you think are relevant to this application.

 26.38. Discuss which of the updates that created each of the tuples shown in Fig-
ure 26.9 were applied retroactively and which were applied proactively.

 26.39. Show how the following updates, if applied in sequence, would change the
contents of the bitemporal EMP_BT relation in Figure 26.9. For each update,
state whether it is a retroactive or proactive update.

a. On 2004-03-10,17:30:00, the salary of Narayan is updated to 40000, effec-
tive on 2004-03-01.

b. On 2003-07-30,08:31:00, the salary of Smith was corrected to show that it
should have been entered as 31000 (instead of 30000 as shown), effective
on 2003-06-01.

c. On 2004-03-18,08:31:00, the database was changed to indicate that
 Narayan was leaving the company (that is, logically deleted) effective on
2004-03-31.

d. On 2004-04-20,14:07:33, the database was changed to indicate the hiring
of a new employee called Johnson, with the tuple <‘Johnson’, ‘334455667’,
1, NULL > effective on 2004-04-20.

e. On 2004-04-28,12:54:02, the database was changed to indicate that Wong
was leaving the company (that is, logically deleted) effective on 2004-06-01.

f. On 2004-05-05,13:07:33, the database was changed to indicate the rehir-
ing of Brown, with the same department and supervisor but with salary
35000 effective on 2004-05-01.

S_id V_id Commission

SALES

Salesperson_id Name Title Phone Sum_commissions

SALES_PERSON
Figure 26.18
Database schema for sales
and salesperson commissions
in Exercise 26.36.

 Exercises 1017

 26.40. Show how the updates given in Exercise 26.39, if applied in sequence, would
change the contents of the valid time EMP_VT relation in Figure 26.8.

 26.41. Add the following facts to the sample database in Figure 26.11:

SUPERVISE(ahmad, bob), SUPERVISE(franklin, gwen)

First modify the supervisory tree in Figure 26.11(b) to reflect this change.
Then construct a diagram showing the top-down evaluation of the query
SUPERIOR(james, Y) using rules 1 and 2 from Figure 26.12.

 26.42. Consider the following set of facts for the relation PARENT(X, Y), where Y is
the parent of X:

PARENT(a, aa), PARENT(a, ab), PARENT(aa, aaa), PARENT(aa, aab),
PARENT(aaa, aaaa), PARENT(aaa, aaab)

Consider the rules

r1: ANCESTOR(X, Y) :– PARENT(X, Y)
r2: ANCESTOR(X, Y) :– PARENT(X, Z), ANCESTOR(Z, Y)

which define ancestor Y of X as above.

a. Show how to solve the Datalog query

ANCESTOR(aa, X)?

and show your work at each step.

b. Show the same query by computing only the changes in the ancestor rela-
tion and using that in rule 2 each time.

[This question is derived from Bancilhon and Ramakrishnan (1986).]

 26.43. Consider a deductive database with the following rules:

ANCESTOR(X, Y) :– FATHER(X, Y)
ANCESTOR(X, Y) :– FATHER(X, Z), ANCESTOR(Z, Y)

Notice that FATHER(X, Y) means that Y is the father of X; ANCESTOR(X, Y)
means that Y is the ancestor of X.

Consider the following fact base:

FATHER(Harry, Issac), FATHER(Issac, John), FATHER(John, Kurt)

a. Construct a model-theoretic interpretation of the above rules using the
given facts.

b. Consider that a database contains the above relations FATHER(X, Y),
another relation BROTHER(X, Y), and a third relation BIRTH(X, B), where
B is the birth date of person X. State a rule that computes the first cousins
of the following variety: their fathers must be brothers.

c. Show a complete Datalog program with fact-based and rule-based literals
that computes the following relation: list of pairs of cousins, where the
first person is born after 1960 and the second after 1970. You may use
greater than as a built-in predicate. (Note: Sample facts for brother, birth,
and person must also be shown.)

1018 Chapter 26 Enhanced Data Models

 26.44. Consider the following rules:

REACHABLE(X, Y) :– FLIGHT(X, Y)
REACHABLE(X, Y) :– FLIGHT(X, Z), REACHABLE(Z, Y)

 where REACHABLE(X, Y) means that city Y can be reached from city X, and
FLIGHT(X, Y) means that there is a flight to city Y from city X.

a. Construct fact predicates that describe the following:

Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore,
Sydney are cities.

The following flights exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt,
Frankfurt to Atlanta, Frankfurt to Singapore, and Singapore to Sydney.
(Note: No flight in reverse direction can be automatically assumed.)

b. Is the given data cyclic? If so, in what sense?

c. Construct a model-theoretic interpretation (that is, an interpretation
similar to the one shown in Figure 26.13) of the above facts and rules.

d. Consider the query

REACHABLE(Atlanta, Sydney)?

How will this query be executed? List the series of steps it will go through.

e. Consider the following rule-defined predicates:

ROUND-TRIP-REACHABLE(X, Y) :–
REACHABLE(X, Y), REACHABLE(Y, X)
DURATION(X, Y, Z)

Draw a predicate dependency graph for the above predicates. (Note:
DURATION(X, Y, Z) means that you can take a flight from X to Y in Z hours.)

f. Consider the following query: What cities are reachable in 12 hours from
Atlanta? Show how to express it in Datalog. Assume built-in predicates
like greater-than(X, Y). Can this be converted into a relational algebra
statement in a straightforward way? Why or why not?

g. Consider the predicate population(X, Y), where Y is the population of
city X. Consider the following query: List all possible bindings of the
predicate pair (X, Y), where Y is a city that can be reached in two flights
from city X, which has over 1 million people. Show this query in Datalog.
Draw a corresponding query tree in relational algebraic terms.

Selected Bibliography
The book by Zaniolo et al. (1997) consists of several parts, each describing an advanced
database concept such as active, temporal, and spatial/text/multimedia databases.
Widom and Ceri (1996) and Ceri and Fraternali (1997) focus on active database concepts
and systems. Snodgrass (1995) describes the TSQL2 language and data model. Khosha-
fian and Baker (1996), Faloutsos (1996), and Subrahmanian (1998) describe multimedia
database concepts. Tansel et al. (1993) is a collection of chapters on temporal databases.
The temporal extensions to SQL:2011 are discussed in Kulkarni and Michels (2012).

 Selected Bibliography 1019

STARBURST rules are described in Widom and Finkelstein (1990). Early work on
active databases includes the HiPAC project, discussed in Chakravarthy et al. (1989)
and Chakravarthy (1990). A glossary for temporal databases is given in Jensen et al.
(1994). Snodgrass (1987) focuses on TQuel, an early temporal query language.

Temporal normalization is defined in Navathe and Ahmed (1989). Paton (1999) and
Paton and Diaz (1999) survey active databases. Chakravarthy et al. (1994) describe
SENTINEL and object-based active systems. Lee et al. (1998) discuss time series
management.

The book by Shekhar and Chawla (2003) consists of all aspects of spatial databases includ-
ing spatial data models, spatial storage and indexing, and spatial data mining. Scholl et al.
(2001) is another textbook on spatial data management. Albrecht (1996) describes in
detail the various GIS analysis operations. Clementini and Di Felice (1993) give a detailed
description of the spatial operators. Güting (1994) describes the spatial data structures and
querying languages for spatial database systems. Guttman (1984) proposed R-trees for
spatial data indexing. Manolopoulos et al. (2005) is a book on the theory and applications
of R-trees. Papadias et al. (2003) discuss query processing using R-trees for spatial net-
works. Ester et al. (2001) provide a comprehensive discussion on the algorithms and appli-
cations of spatial data mining. Koperski and Han (1995) discuss association rule discovery
from geographic databases. Brinkhoff et al. (1993) provide a comprehensive overview of
the usage of R-trees for efficient processing of spatial joins. Rotem (1991) describes spatial
join indexes comprehensively. Shekhar and Xiong (2008) is a compilation of various
sources that discuss different aspects of spatial database management systems and GIS.
The density-based clustering algorithms DBSCAN and DENCLUE are proposed by Ester
et al. (1996) and Hinnenberg and Gabriel (2007), respectively.

Multimedia database modeling has a vast amount of literature—it is difficult to point
to all important references here. IBM’s QBIC (Query By Image Content) system
described in Niblack et al. (1998) was one of the first comprehensive approaches for
querying images based on content. It is now available as a part of IBM’s DB2 data-
base image extender. Zhao and Grosky (2002) discuss content-based image retrieval.
Carneiro and Vasconselos (2005) present a database-centric view of semantic image
annotation and retrieval. Content-based retrieval of subimages is discussed by Luo
and Nascimento (2004). Tuceryan and Jain (1998) discuss various aspects of texture
analysis. Object recognition using SIFT is discussed in Lowe (2004). Lazebnik et al.
(2004) describe the use of local affine regions to model 3D objects (RIFT). Among
other object recognition approaches, G-RIF is described in Kim et al. (2006). Bay et
al. (2006) discuss SURF, Ke and Sukthankar (2004) present PCA-SIFT, and Mikola-
jczyk and Schmid (2005) describe GLOH. Fan et al. (2004) present a technique for
automatic image annotation by using concept-sensitive objects. Fotouhi et al. (2007)
was the first international workshop on many faces of multimedia semantics, which
is continuing annually. Thuraisingham (2001) classifies audio data into different cat-
egories and, by treating each of these categories differently, elaborates on the use of
metadata for audio. Prabhakaran (1996) has also discussed how speech processing
techniques can add valuable metadata information to the audio piece.

The early developments of the logic and database approach are surveyed by Gallaire
et al. (1984). Reiter (1984) provides a reconstruction of relational database theory,

1020 Chapter 26 Enhanced Data Models

whereas Levesque (1984) provides a discussion of incomplete knowledge in light of
logic. Gallaire and Minker (1978) provide an early book on this topic. A detailed
treatment of logic and databases appears in Ullman (1989, Volume 2), and there is
a related chapter in Volume 1 (1988). Ceri, Gottlob, and Tanca (1990) present a
comprehensive yet concise treatment of logic and databases. Das (1992) is a com-
prehensive book on deductive databases and logic programming. The early history
of Datalog is covered in Maier and Warren (1988). Clocksin and Mellish (2003) is
an excellent reference on Prolog language.

Aho and Ullman (1979) provide an early algorithm for dealing with recursive queries,
using the least fixed-point operator. Bancilhon and Ramakrishnan (1986) give an
excellent and detailed description of the approaches to recursive query processing,
with detailed examples of the naive and seminaive approaches. Excellent survey arti-
cles on deductive databases and recursive query processing include Warren (1992)
and Ramakrishnan and Ullman (1995). A complete description of the seminaive
approach based on relational algebra is given in Bancilhon (1985). Other approaches
to recursive query processing include the recursive query/subquery strategy of Vieille
(1986), which is a top-down interpreted strategy, and the Henschen-Naqvi (1984)
top-down compiled iterative strategy. Balbin and Ramamohanrao (1987) discuss an
extension of the seminaive differential approach for multiple predicates.

The original paper on magic sets is by Bancilhon et al. (1986). Beeri and Ramakrish-
nan (1987) extend it. Mumick et al. (1990a) show the applicability of magic sets to
nonrecursive nested SQL queries. Other approaches to optimizing rules without
rewriting them appear in Vieille (1986, 1987). Kifer and Lozinskii (1986) propose a
different technique. Bry (1990) discusses how the top-down and bottom-up
approaches can be reconciled. Whang and Navathe (1992) describe an extended
disjunctive normal form technique to deal with recursion in relational algebra
expressions for providing an expert system interface over a relational DBMS.

Chang (1981) describes an early system for combining deductive rules with rela-
tional databases. The LDL system prototype is described in Chimenti et al. (1990).
Krishnamurthy and Naqvi (1989) introduce the choice notion in LDL. Zaniolo
(1988) discusses the language issues for the LDL system. A language overview of
CORAL is provided in Ramakrishnan et al. (1992), and the implementation is
described in Ramakrishnan et al. (1993). An extension to support object-oriented
features, called CORAL++, is described in Srivastava et al. (1993). Ullman (1985)
provides the basis for the NAIL! system, which is described in Morris et al. (1987).
Phipps et al. (1991) describe the GLUE-NAIL! deductive database system.

Zaniolo (1990) reviews the theoretical background and the practical importance of
deductive databases. Nicolas (1997) gives an excellent history of the developments
leading up to deductive object-oriented database (DOOD) systems. Falcone et al.
(1997) survey the DOOD landscape. References on the VALIDITY system include
Friesen et al. (1995), Vieille (1998), and Dietrich et al. (1999).

1021

27
Introduction to Information

Retrieval and Web Search

In most of the chapters in this book so far, we have
discussed techniques for modeling, designing, query-

ing, transaction processing of, and managing structured data. In Section 13.1, we
discussed the differences among structured, semistructured, and unstructured data.
Information retrieval deals mainly with unstructured data, and the techniques for
indexing, searching, and retrieving information from large collections of unstruc-
tured documents. In Chapter 24, on NOSQL technologies, we considered systems,
like MongoDB, that are suited to handling data in the form of documents. In this
chapter,1 we will provide an introduction to information retrieval. This is a very
broad topic, so we will focus on the similarities and differences between informa-
tion retrieval and database technologies, and on the indexing techniques that form
the basis of many information retrieval systems.

This chapter is organized as follows. In Section 27.1, we introduce information
retrieval (IR) concepts and discuss how IR differs from traditional databases. Sec-
tion 27.2 is devoted to a discussion of retrieval models, which form the basis for IR
search. Section 27.3 covers different types of queries in IR systems. Section 27.4
discusses text preprocessing, and Section 27.5 provides an overview of IR indexing,
which is at the heart of any IR system. In Section 27.6, we describe the various
evaluation metrics for IR systems performance. Section 27.7 details Web analysis
and its relationship to information retrieval, and Section 27.8 briefly introduces the
current trends in IR. Section 27.9 summarizes the chapter. For a limited overview of
IR, we suggest that students read Sections 27.1 through 27.6.

chapter 27

1This chapter is coauthored with Saurav Sahay, Intel Labs.

1022 Chapter 27 Introduction to Information Retrieval and Web Search

27.1 Information Retrieval (IR) Concepts
Information retrieval is the process of retrieving documents from a collection in
response to a query (or a search request) by a user. This section provides an over-
view of IR concepts. In Section 27.1.1, we introduce information retrieval in general
and then discuss the different kinds and levels of search that IR encompasses. In
Section 27.1.2, we compare IR and database technologies. Section 27.1.3 gives a
brief history of IR. We then present the different modes of user interaction with IR
systems in Section 27.1.4. In Section 27.1.5, we describe the typical IR process with
a detailed set of tasks and then with a simplified process flow, and we end with a
brief discussion of digital libraries and the Web.

27.1.1 Introduction to Information Retrieval
We first review the distinction between structured and unstructured data (see Sec-
tion 13.1) to see how information retrieval differs from structured data manage-
ment. Consider a relation (or table) called HOUSES with the attributes:

HOUSES(Lot#, Address, Square_footage, Listed_price)

This is an example of structured data. We can compare this relation with home-
buying contract documents, which are examples of unstructured data. These types
of documents can vary from city to city, and even county to county, within a given
state in the United States. Typically, a contract document in a particular state will
have a standard list of clauses described in paragraphs within sections of the docu-
ment, with some predetermined (fixed) text and some variable areas whose content
is to be supplied by the specific buyer and seller. Other variable information would
include interest rate for financing, down-payment amount, closing dates, and so
on. The documents could also include pictures taken during a home inspection.
The information content in such documents can be considered unstructured data
that can be stored in a variety of possible arrangements and formats. By unstructured
information, we generally mean information that does not have a well-defined
 formal model and corresponding formal language for representation and reason-
ing, but rather is based on understanding of natural language.

With the advent of the World Wide Web (or Web, for short), the volume of
unstructured information stored in messages and documents that contain textual
and multimedia information has exploded. These documents are stored in a variety
of standard formats, including HTML, XML (see Chapter 13), and several audio
and video formatting standards. Information retrieval deals with the problems of
storing, indexing, and retrieving (searching) such information to satisfy the needs
of users. The problems that IR deals with are exacerbated by the fact that the num-
ber of Web pages and the number of social interaction events is already in the bil-
lions and is growing at a phenomenal rate. All forms of unstructured data described
above are being added at the rates of millions per day, expanding the searchable
space on the Web at rapidly increasing rates.

Historically, information retrieval is “the discipline that deals with the structure,
analysis, organization, storage, searching, and retrieval of information” as defined

 27.1 Information Retrieval (IR) Concepts 1023

by Gerald Salton, an IR pioneer.2 We can enhance the definition slightly to say that
it applies in the context of unstructured documents to satisfy a user’s information
needs. This field has existed even longer than the database field and was originally
concerned with retrieval of cataloged information in libraries based on titles,
authors, topics, and keywords. In academic programs, the field of IR has long been
a part of Library and Information Science programs. Information in the context of
IR does not require machine-understandable structures, such as in relational data-
base systems. Examples of such information include written texts, abstracts, docu-
ments, books, Web pages, e-mails, instant messages, and collections from digital
libraries. Therefore, all loosely represented (unstructured) or semistructured infor-
mation is also part of the IR discipline.

We introduced XML modeling and retrieval in Chapter 13 and discussed advanced
data types, including spatial, temporal, and multimedia data, in Chapter 26. RDBMS
vendors are providing modules to support many of these data types, as well as XML
data, in the newer versions of their products. These newer versions are sometimes
referred to as extended RDBMSs, or object-relational database management systems
(ORDBMSs; see Chapter 12). The challenge of dealing with unstructured data is
largely an information retrieval problem, although database researchers have been
applying database indexing and search techniques to some of these problems.

IR systems go beyond database systems in that they do not limit the user to a spe-
cific query language, nor do they expect the user to know the structure (schema) or
content of a particular database. IR systems use a user’s information need expressed
as a free-form search request (sometimes called a keyword search query, or just
query) for interpretation by the system. Whereas the IR field historically dealt with
cataloging, processing, and accessing text in the form of documents for decades, in
today’s world the use of Web search engines is becoming the dominant way to find
information. The traditional problems of text indexing and making collections of
documents searchable have been transformed by making the Web itself into a
quickly accessible repository of human knowledge or a virtual digital library.

An IR system can be characterized at different levels: by types of users, types of data,
and the types of the information need, along with the size and scale of the informa-
tion repository it addresses. Different IR systems are designed to address specific
problems that require a combination of different characteristics. These characteris-
tics can be briefly described as follows:

Types of Users. Users can greatly vary in their abilities to interact with compu-
tational systems. This ability depends on a multitude of factors, such as educa-
tion, culture, and past exposure to computational environments. The user may
be an expert user (for example, a curator or a librarian) who is searching for
specific information that is clear in his/her mind, understands the scope and
the structure of the available repository, and forms relevant queries for the task,
or a layperson user with a generic information need. The latter cannot create
highly relevant queries for search (for example, students trying to find infor-
mation about a new topic, researchers trying to assimilate different points of

2See Salton’s 1968 book entitled Automatic Information Organization and Retrieval.

1024 Chapter 27 Introduction to Information Retrieval and Web Search

view about a historical issue, a scientist verifying a claim by another scientist, or
a person trying to shop for clothing). Designing systems suitable for different
types of users is an important topic of IR that is typically studied in a field
known as Human-Computer Information Retrieval.

Types of Data. Search systems can be tailored to specific types of data. For exam-
ple, the problem of retrieving information about a specific topic may be handled
more efficiently by customized search systems that are built to collect and retrieve
only information related to that specific topic. The information repository could
be hierarchically organized based on a concept or topic hierarchy. These topical
domain-specific or vertical IR systems are not as large as or as diverse as the generic
World Wide Web, which contains information on all kinds of topics. Given that
these domain-specific collections exist and may have been acquired through a
specific process, they can be exploited much more efficiently by a specialized sys-
tem. Types of data can have different dimensions, such as velocity, variety, vol-
ume, and veracity. We discussed these in Section 25.1.

Types of Information Need. In the context of Web search, users’ information
needs may be defined as navigational, informational, or transactional.3 Naviga-
tional search refers to finding a particular piece of information (such as the
Georgia Tech University Web site) that a user needs quickly. The purpose of
informational search is to find current information about a topic (such as
research activities in the college of computing at Georgia Tech—this is the clas-
sic IR system task). The goal of transactional search is to reach a site where
further interaction happens resulting in some transactional event (such as join-
ing a social network, shopping for products, making online reservations,
accessing databases, and so on).

Levels of Scale. In the words of Nobel Laureate Herbert Simon,

“What information consumes is rather obvious: it consumes the attention of its
recipients. Hence a wealth of information creates a poverty of attention, and a
need to allocate that attention efficiently among the overabundance of informa-
tion sources that might consume it.” 4

This overabundance of information sources in effect creates a high noise-to-signal
ratio in IR systems. Especially on the Web, where billions of pages are indexed, IR
interfaces are built with efficient scalable algorithms for distributed searching, index-
ing, caching, merging, and fault tolerance. IR search engines can be limited in level
to more specific collections of documents. Enterprise search systems offer IR solu-
tions for searching different entities in an enterprise’s intranet, which consists of the
network of computers within that enterprise. The searchable entities include e-mails,
corporate documents, manuals, charts, and presentations, as well as reports related
to people, meetings, and projects. Enterprise search systems still typically deal with
hundreds of millions of entities in large global enterprises. On a smaller scale, there
are personal information systems such as those on desktops and laptops, called

3See Broder (2002) for details.
4From Herbert A. Simon (1971), “Designing Organizations for an Information-Rich World.”

 27.1 Information Retrieval (IR) Concepts 1025

desktop search engines (for example, Google Desktop, OS X Spotlight), for retriev-
ing files, folders, and different kinds of entities stored on the computer. There are
other systems that use peer-to-peer technology, such as the BitTorrent protocol,
which allows sharing of music in the form of audio files, as well as specialized search
engines for audio, such as Lycos and Yahoo! audio search.

27.1.2 Databases and IR Systems: A Comparison
Within the computer science discipline, databases and IR systems are closely related
fields. Databases deal with structured information retrieval through well-defined
formal languages for representation and manipulation based on the theoretically
founded data models. Efficient algorithms have been developed for operators that
allow rapid execution of complex queries. IR, on the other hand, deals with unstruc-
tured search with possibly vague query or search semantics and without a well-
defined logical schematic representation. Some of the key differences between
databases and IR systems are listed in Table 27.1.

Whereas databases have fixed schemas defined in some data model such as the rela-
tional model, an IR system has no fixed data model; it views data or documents
according to some scheme, such as the vector space model, to aid in query process-
ing (see Section 27.2). Databases using the relational model employ SQL for queries
and transactions. The queries are mapped into relational algebra operations and
search algorithms (see Chapter 19) and return a new relation (table) as the query
result, providing an exact answer to the query for the current state of the database.
In IR systems, there is no fixed language for defining the structure (schema) of the
document or for operating on the document—queries tend to be a set of query
terms (keywords) or a free-form natural language phrase. An IR query result is a list
of document id’s, or some pieces of text or multimedia objects (images, videos, and
so on), or a list of links to Web pages.

The result of a database query is an exact answer; if no matching records (tuples)
are found in the relation, the result is empty (null). On the other hand, the answer

Table 27.1 A Comparison of Databases and IR Systems

Databases IR Systems

 ■ Structured data ■ Unstructured data

 ■ Schema driven
 ■ Relational (or object, hierarchical, and

network) model is predominant
 ■ Structured query model

 ■ No fixed schema; various data models
(e.g., vector space model)

 ■ Free-form query models
 ■ Rich data operations

 ■ Rich metadata operations
 ■ Query returns data

 ■ Search request returns list or pointers to
documents

 ■ Results are based on exact matching (always
correct)

 ■ Results are based on approximate matching
and measures of effectiveness (may be
imprecise and ranked)

1026 Chapter 27 Introduction to Information Retrieval and Web Search

to a user request in an IR query represents the IR system’s best attempt at retrieving
the information most relevant to that query. Whereas database systems maintain a
large amount of metadata and allow their use in query optimization, the operations
in IR systems rely on the data values themselves and their occurrence frequencies.
Complex statistical analysis is sometimes performed to determine the relevance of
each document or parts of a document to the user request.

27.1.3 A Brief History of IR
Information retrieval has been a common task since the times of ancient civiliza-
tions, which devised ways to organize, store, and catalog documents and records.
Media such as papyrus scrolls and stone tablets were used to record documented
information in ancient times. These efforts allowed knowledge to be retained and
transferred among generations. With the emergence of public libraries and the
printing press, large-scale methods for producing, collecting, archiving, and dis-
tributing documents and books evolved. As computers and automatic storage sys-
tems emerged, the need to apply these methods to computerized systems arose.
Several techniques emerged in the 1950s, such as the seminal work of H. P. Luhn,5

who proposed using words and their frequency counts as indexing units for docu-
ments, and using measures of word overlap between queries and documents as the
retrieval criterion. It was soon realized that storing large amounts of text was not
difficult. The harder task was to search for and retrieve that information selectively
for users with specific information needs. Methods that explored word distribution
statistics gave rise to the choice of keywords based on their distribution properties6

and also led to keyword-based weighting schemes.

The earlier experiments with document retrieval systems such as SMART7 in the 1960s
adopted the inverted file organization based on keywords and their weights as the
method of indexing (see Section 17.6.4 on inverted indexing). Serial (or sequential)
organization proved inadequate if queries required fast, near real-time response times.
Proper organization of these files became an important area of study; document clas-
sification and clustering schemes ensued. The scale of retrieval experiments remained
a challenge due to lack of availability of large text collections. This soon changed with
the World Wide Web. Also, the Text Retrieval Conference (TREC) was launched by
NIST (National Institute of Standards and Technology) in 1992 as a part of the
 TIPSTER program8 with the goal of providing a platform for evaluating information
retrieval methodologies and facilitating technology transfer to develop IR products.

A search engine is a practical application of information retrieval to large-scale docu-
ment collections. With significant advances in computers and communications tech-
nologies, people today have interactive access to enormous amounts of user-generated

5See Luhn (1957) “A statistical approach to mechanized encoding and searching of literary information.”
6See Salton, Yang, and Yu (1975).
7For details, see Buckley et al. (1993).
8For details, see Harman (1992).

 27.1 Information Retrieval (IR) Concepts 1027

distributed content on the Web. This has spurred the rapid growth in search engine
technology, where search engines are trying to discover different kinds of real-time
content found on the Web. The part of a search engine responsible for discovering,
analyzing, and indexing these new documents is known as a crawler. Other types of
search engines exist for specific domains of knowledge. For example, the biomedical
literature search database was started in the 1970s and is now supported by the
PubMed search engine,9 which gives access to over 24 million abstracts.

Although continuous progress is being made to tailor search results to the needs of
an end user, the challenge remains in providing high-quality, pertinent, and timely
information that is precisely aligned to the information needs of individual users.

27.1.4 Modes of Interaction in IR Systems
In the beginning of Section 27.1, we defined information retrieval as the process of
retrieving documents from a collection in response to a query (or a search request)
by a user. Typically the collection is made up of documents containing unstruc-
tured data. Other kinds of documents include images, audio recordings, video
strips, and maps. Data may be scattered nonuniformly in these documents with no
definitive structure. A query is a set of terms (also referred to as keywords) used by
the searcher to specify an information need (for example, the terms databases and
operating systems may be regarded as a query to a computer science bibliographic
database). An informational request or a search query may also be a natural lan-
guage phrase or a question (for example, “What is the currency of China?” or “Find
Italian restaurants in Sarasota, Florida.”).

There are two main modes of interaction with IR systems—retrieval and brows-
ing—which, although similar in goal, are accomplished through different interac-
tion tasks. Retrieval is concerned with the extraction of relevant information from
a repository of documents through an IR query, whereas browsing signifies the
exploratory activity of a user visiting or navigating through similar or related docu-
ments based on the user’s assessment of relevance. During browsing, a user’s infor-
mation need may not be defined a priori and is flexible. Consider the following
browsing scenario: A user specifies ‘Atlanta’ as a keyword. The information retrieval
system retrieves links to relevant result documents containing various aspects of
Atlanta for the user. The user comes across the term ‘Georgia Tech’ in one of the
returned documents and uses some access technique (such as clicking on the phrase
‘Georgia Tech’ in a document that has a built-in link) and visits documents about
Georgia Tech in the same or a different Web site (repository). There the user finds
an entry for ‘Athletics’ that leads the user to information about various athletic pro-
grams at Georgia Tech. Eventually, the user ends his search at the Fall schedule for
the Yellow Jackets football team, which he finds to be of great interest. This user
activity is known as browsing. Hyperlinks are used to interconnect Web pages and
are mainly used for browsing. Anchor texts are text phrases within documents used
to label hyperlinks and are very relevant to browsing.

9See www.ncbi.nlm.nih.gov/pubmed/

1028 Chapter 27 Introduction to Information Retrieval and Web Search

Web search combines both aspects—browsing and retrieval—and is one of the
main applications of information retrieval today. Web pages are analogous to docu-
ments. Web search engines maintain an indexed repository of Web pages, usually
using the technique of inverted indexing (see Section 27.5). They retrieve the most
relevant Web pages for the user in response to the user’s search request with a pos-
sible ranking in descending order of relevance. The rank of a Web page in a
retrieved set is the measure of its relevance to the query that generated the result set.

27.1.5 Generic IR Pipeline
As we mentioned earlier, documents are made up of unstructured natural language
text composed of character strings from English and other languages. Common
examples of documents include newswire services (such as AP or Reuters), corporate
manuals and reports, government notices, Web page articles, blogs, tweets, books,
and journal papers. There are two main approaches to IR: statistical and semantic.

In a statistical approach, documents are analyzed and broken down into chunks of
text (words, phrases, or n-grams, which are all subsequences of length n characters
in a text or document) and each word or phrase is counted, weighted, and mea-
sured for relevance or importance. These words and their properties are then com-
pared with the query terms for potential degree of match to produce a ranked list of
resulting documents that contain the words. Statistical approaches are further clas-
sified based on the method employed. The three main statistical approaches are
Boolean, vector space, and probabilistic (see Section 27.2).

Semantic approaches to IR use knowledge-based techniques of retrieval that
broadly rely on the syntactic, lexical, sentential, discourse-based, and pragmatic
levels of knowledge understanding. In practice, semantic approaches also apply
some form of statistical analysis to improve the retrieval process.

Figure 27.1 shows the various stages involved in an IR processing system. The steps
shown on the left in Figure 27.1 are typically offline processes, which prepare a set of
documents for efficient retrieval; these are document preprocessing, document
modeling, and indexing. The right side of Figure 27.1 deals with the process of a user
interacting with the IR system either during a querying, browsing, or searching. It
shows the steps involved; namely, query formation, query processing, searching
mechanism, document retrieval, and relevance feedback, In each box, we highlight
the important concepts and issues. The rest of this chapter describes some of the
concepts involved in the various tasks within the IR process shown in Figure 27.1.

Figure 27.2 shows a simplified IR processing pipeline. In order to perform retrieval
on documents, the documents are first represented in a form suitable for retrieval.
The significant terms and their properties are extracted from the documents and
are represented in a document index where the words/terms and their properties
are stored in a matrix that contains each individual document in a row and each
row contains the references to the words contained in those documents. This index
is then converted into an inverted index (see Figure 27.4) of a word/term versus
document matrix. Given the query words, the documents containing these words—

 27.2 Retrieval Models 1029

and the document properties, such as date of creation, author, and type of docu-
ment—are fetched from the inverted index and compared with the query. This
comparison results in a ranked list shown to the user. The user can then provide
feedback on the results that triggers implicit or explicit query modification and
expansion to fetch results that are more relevant for the user. Most IR systems allow
for an interactive search in which the query and the results are successively refined.

27.2 Retrieval Models
In this section, we briefly describe the important models of IR. These are the
three main statistical models—Boolean, vector space, and probabilistic—and the
semantic model.

Legend: Dashed lines indicate next iteration

Document 3
Document 2

Document 1
Document Corpus

Preprocessing

Modeling

Indexing

Stopword removal
Stemming
Thesaurus
Digits, hyphens,
 punctuation marks, cases
Information extraction

Retrieval models
Type of queries

Inverted index construction
Index vocabulary
Document statistics
Index maintenance

SEARCH INTENT
Information

Need/Search

Query Formation

Query Processing

Searching
Mechanism

Relevance
Feedback

Choice of search strategy
 (approximate vs. exact matches,
 exhaustive vs. top K)
Type of similarity measure

Keywords, Boolean, phrase,
proximity, wildcard queries, etc.

Conversion from humanly
 understandable to internal format
Situation assessment
Query expansion heuristics
 (users’s profile, related metadata,
 etc.)

Storing user’s
 feedback
Personalization
Pattern analysis
 of relevant
 results

Metadata
Integration

Ranking results
Showing useful
 metadata

External data
ontologies

Document
Retrieval

Figure 27.1
Generic IR framework.

1030 Chapter 27 Introduction to Information Retrieval and Web Search

27.2.1 Boolean Model
In this model, documents are represented as a set of terms. Queries are formulated
as a combination of terms using the standard Boolean logic set-theoretic operators
such as AND, OR and NOT. Retrieval and relevance are considered as binary con-
cepts in this model, so the retrieved elements are an “exact match” retrieval of rele-
vant documents. There is no notion of ranking of resulting documents. All retrieved
documents are considered equally important—a major simplification that does not
consider frequencies of document terms or their proximity to other terms com-
pared against the query terms.

Boolean retrieval models lack sophisticated ranking algorithms and are among the
earliest and simplest information retrieval models. These models make it easy to
associate metadata information and write queries that match the contents of the
documents as well as other properties of documents, such as date of creation,
author, and type of document.

Documents

EXTRACT

FEEDBACK
QUERY

FETCH

PROCESS

Inverted Index

COMPARE
Query x

Documents

RANK

Document #4Document #3Document #2Document #1

Result #3Result #2Result #1

Index

D1 1 1 0 1 1 0...
D2 1 1 1 0 1 1...
D3 1 1 0 1 1 1...
D4 0 1 0 0 1 0...
D5 0 0 0 1 0 1...
D6 1 0 1 0 0 0...

W1 1 1 1 0 0 1...

W1 W2 W3 W4 W5 W6

D1 D2 D3 D4 D5 D6

W2 1 1 1 1 0 0...
W3 0 1 0 0 0 1...
W4 1 0 1 0 1 0...
W5 1 1 1 1 0 0...
W6 0 1 1 0 1 0...

SEARCH INTENT

Figure 27.2
Simplified IR process pipeline.

 27.2 Retrieval Models 1031

27.2.2 Vector Space Model
The vector space model provides a framework in which term weighting, ranking of
retrieved documents, and determining the relevance of feedback are possible.
Using individual terms as dimensions, each document is represented by an
n-dimensional vector of values. The values themselves may be a Boolean value to
represent the existence or absence of the term in that document; alternately, they
may be a number representative of the weight or frequency in the document.
 Features are a subset of the terms in a set of documents that are deemed most relevant
to an IR search for this particular set of documents. The process of selecting these
important terms (features) and their properties as a sparse (limited) list out of the
very large number of available terms (the vocabulary can contain hundreds of thou-
sands of terms) is independent of the model specification. The query is also speci-
fied as a terms vector (vector of features), and this is compared to the document
vectors for similarity/relevance assessment.

The similarity assessment function that compares two vectors is not inherent to the
model—different similarity functions can be used. However, the cosine of the angle
between the query and document vector is a commonly used function for similarity
assessment. As the angle between the vectors decreases, the cosine of the angle
approaches one, meaning that the similarity of the query with a document vector
increases. Terms (features) are weighted proportional to their frequency counts to
reflect the importance of terms in the calculation of relevance measure. This is dif-
ferent from the Boolean model, which does not take into account the frequency of
words in the document for relevance match.

In the vector model, the document term weight wij (for term i in document j) is
represented based on some variation of the TF (term frequency) or TF-IDF (term
frequency–inverse document frequency) scheme (as we will describe below). TF-IDF
is a statistical weight measure that is used to evaluate the importance of a document
word in a collection of documents. The following formula is typically used:

cosine(,)
|| || || ||

| |

d q
d q

d q

w w

w
j

j

j

ij iqi

V

ij

=
×

×
=

×=∑ 1

22
1

2
1i

V
iqi

V
w= =∑ ∑×| | | |

In the formula given above, we use the following symbols:

 ■ dj is the document vector for document j.

 ■ q is the query vector.

 ■ wij is the weight of term i in document j.

 ■ wiq is the weight of term i in query vector q.

 ■ |V| is the number of dimensions in the vector that is the total number of
important keywords (or features).

TF-IDF uses the product of normalized frequency of a term i (TFij) in document
Dj and the inverse document frequency of the term i (IDFi) to weight a term in a

1032 Chapter 27 Introduction to Information Retrieval and Web Search

document. The idea is that terms that capture the essence of a document occur
frequently in the document (that is, their TF is high), but if such a term were to be
a good term that discriminates the document from others, it must occur in only a
few documents in the general population (that is, its IDF should be high as well).

IDF values can be easily computed for a fixed collection of documents. In case of
Web search engines, taking a representative sample of documents approximates
IDF computation. The following formulas can be used:

TF f f

IDF N n

ij ij ij
i V

i i

=

= ()
=
∑
1 to | |

log /

In these formulas, the meaning of the symbols is:

 ■ TFij is the normalized term frequency of term i in document Dj.

 ■ fij is the number of occurrences of term i in document Dj.

 ■ IDFi is the inverse document frequency weight for term i.

 ■ N is the number of documents in the collection.

 ■ ni is the number of documents in which term i occurs.

Note that if a term i occurs in all documents, then ni = N and hence IDFi = log(1)
becomes zero, nullifying its importance and creating a situation where division by
zero can occur. The weight of term i in document j, wij, is computed based on its
TF-IDF value in some techniques. To prevent division by zero, it is common to add
a 1 to the denominator in the formulae such as the cosine formula above.

Sometimes, the relevance of the document with respect to a query (rel(Dj,Q)) is
directly measured as the sum of the TF-IDF values of the terms in the query Q:

rel(,)D Q TF IDFj i Q ij i= ×∈∑
The normalization factor (similar to the denominator of the cosine formula) is
incorporated into the TF-IDF formula itself, thereby measuring relevance of a doc-
ument to the query by the computation of the dot product of the query and docu-
ment vectors.

The Rocchio10 algorithm is a well-known relevance feedback algorithm based on
the vector space model that modifies the initial query vector and its weights in
response to user-identified relevant documents. It expands the original query vec-
tor q to a new vector qe as follows:

q q
D

d
D

de
r

r
nrd D

nr
d D

r r nr nr

= + −
∈ ∈
∑ ∑�

� �

| | | |
,

10See Rocchio (1971).

 27.2 Retrieval Models 1033

Here, Dr stands for document–relevant (Dr) and Dnr stands for document–nonrelevant
(Dnr); these terms represent relevant and nonrelevant document sets, respectively.
Terms from relevant and nonrelevant documents get added to the original query
vector with positive and negative weights, respectively, to create the modified query
vector. a, b, and g are parameters of the equation. The summation over dr repre-
sents summation over all relevant terms of document dr. Similarly, summation over
dnr represents summation over all nonrelevant terms of document dnr. The values
of these parameters determine how the feedback affects the original query, and
these may be determined after a number of trial-and-error experiments.

27.2.3 Probabilistic Model
The similarity measures in the vector space model are somewhat ad hoc. For exam-
ple, the model assumes that those documents closer to the query in cosine space are
more relevant to the query vector. In the probabilistic model, a more concrete and
definitive approach is taken: ranking documents by their estimated probability of
relevance with respect to the query and the document. This is the basis of the prob-
ability ranking principle developed by Robertson.11

In the probabilistic framework, the IR system must decide whether the documents
belong to the relevant set or the nonrelevant set for a query. To make this decision, it
is assumed that a predefined relevant set and nonrelevant set exist for the query, and
the task is to calculate the probability that the document belongs to the relevant set and
compare that with the probability that the document belongs to the nonrelevant set.

Given the document representation D of a document, estimating the relevance R
and nonrelevance NR of that document involves computation of conditional prob-
ability P(R|D) and P(NR|D). These conditional probabilities can be calculated using
Bayes’ rule:12

P(R|D) = P(D|R) × P(R)/P(D)
P(NR|D) = P(D|NR) × P(NR)/P(D)

A document D is classified as relevant if P(R|D) > P(NR|D). Discarding the constant
P(D), this is equivalent to saying that a document is relevant if:

P(D|R) × P(R) > P(D|NR) × P(NR)

The likelihood ratio P(D|R)/P(D|NR) is used as a score to determine the likelihood
of the document with representation D belonging to the relevant set.

The term independence or naïve Bayes assumption is used to estimate P(D|R) using
computation of P(ti|R) for term ti. The likelihood ratios P(D|R)/P(D|NR) of documents
are used as a proxy for ranking based on the assumption that highly ranked documents
will have a high likelihood of belonging to the relevant set.13

12Bayes’ theorem is a standard technique for measuring likelihood; see Howson and Urbach (1993),
for example.

11For a description of the Cheshire II system, see Robertson (1997).

13Readers should refer to Croft et al. (2009) pages 246–247 for a detailed description.

1034 Chapter 27 Introduction to Information Retrieval and Web Search

With some reasonable assumptions and estimates about the probabilistic model
along with extensions for incorporating query term weights and document term
weights in the model, a probabilistic ranking algorithm called BM25 (Best Match
25) is quite popular. This weighting scheme has evolved from several versions of
the Okapi14 system.

The Okapi weight for document dj and query q is computed by the formula below.
Additional notations are as follows:

 ■ ti is a term.

 ■ fij is the raw frequency count of term ti in document dj.

 ■ fiq is the raw frequency count of term ti in query q.

 ■ N is the total number of documents in the collection.

 ■ dfi is the number of documents that contain the term ti.

 ■ dlj is the document length (in bytes) of dj.

 ■ avdl is the average document length of the collection.

The Okapi relevance score of a document dj for a query q is given by the equa-
tion below, where k1 (between 1.0–2.0), b (usually 0.75), and k2 (between 1–1,000)
are parameters:

okapi(,) ln
.

.

)
d q

N df

df

k f

k b b
j

i

i

ij=
− +

+
×

(+1

− +

0 5
0 5

1

1

1
ddl

avdl
f

k f

k fj
ij

iq

iqt q d
i j

⎛

⎝
⎜

⎞

⎠
⎟

∈
∑

+
×

+

+

()

,

2

2

1

27.2.4 Semantic Model
However sophisticated the above statistical models become, they can miss many
relevant documents because those models do not capture the complete meaning or
information need conveyed by a user’s query. In semantic models, the process of
matching documents to a given query is based on concept level and semantic
matching instead of index term (keyword) matching. This allows retrieval of rele-
vant documents that share meaningful associations with other documents in the
query result, even when these associations are not inherently observed or statisti-
cally captured.

Semantic approaches include different levels of analysis, such as morphological,
syntactic, and semantic analysis, to retrieve documents more effectively. In
 morphological analysis, roots and affixes are analyzed to determine the parts of
speech (nouns, verbs, adjectives, and so on) of the words. Following morphological
analysis, syntactic analysis follows to parse and analyze complete phrases in docu-
ments. Finally, the semantic methods have to resolve word ambiguities and/or
 generate relevant synonyms based on the semantic relationships among levels of
structural entities in documents (words, paragraphs, pages, or entire documents).

14City University of London Okapi System by Robertson, Walker, and Hancock-Beaulieu (1995).

 27.3 Types of Queries in IR Systems 1035

The development of a sophisticated semantic system requires complex knowledge
bases of semantic information as well as retrieval heuristics. These systems often
require techniques from artificial intelligence and expert systems. Knowledge bases
like Cyc15 and WordNet16 have been developed for use in knowledge-based IR sys-
tems based on semantic models. The Cyc knowledge base, for example, is a repre-
sentation of a vast quantity of commonsense knowledge. It presently contains 15.94
million assertions, 498,271 atomic concepts, and 441,159 nonatomic derived con-
cepts for reasoning about the objects and events of everyday life. WordNet is an
extensive thesaurus (over 117,000 concepts) that is very popular and is used by
many systems and is under continuous development (see Section 27.4.3).

27.3 Types of Queries in IR Systems
Different keywords are associated with the document set during the process of
indexing. These keywords generally consist of words, phrases, and other character-
izations of documents such as date created, author names, and type of document.
They are used by an IR system to build an inverted index (see Section 27.5), which
is then consulted during the search. The queries formulated by users are compared
to the set of index keywords. Most IR systems also allow the use of Boolean and
other operators to build a complex query. The query language with these operators
enriches the expressiveness of a user’s information need.

27.3.1 Keyword Queries
Keyword-based queries are the simplest and most commonly used forms of IR que-
ries: the user just enters keyword combinations to retrieve documents. The query
keyword terms are implicitly connected by a logical AND operator. A query such as
‘database concepts’ retrieves documents that contain both the words ‘database’ and
‘concepts’ at the top of the retrieved results. In addition, most systems also retrieve
documents that contain only ‘database’ or only ‘concepts’ in their text. Some sys-
tems remove most commonly occurring words (such as a, the, of, and so on, called
stopwords) as a preprocessing step before sending the filtered query keywords to
the IR engine. Most IR systems do not pay attention to the ordering of these words
in the query. All retrieval models provide support for keyword queries.

27.3.2 Boolean Queries
Some IR systems allow using the AND, OR, NOT, (), + , and − Boolean operators in
combinations of keyword formulations. AND requires that both terms be found.
OR lets either term be found. NOT means any record containing the second term
will be excluded. ‘()’ means the Boolean operators can be nested using parentheses.
‘+’ is equivalent to AND, requiring the term; the ‘+’ should be placed directly in front

15See Lenat (1995).
16See Miller (1990) for a detailed description of WordNet.

1036 Chapter 27 Introduction to Information Retrieval and Web Search

of the search term. ‘–’ is equivalent to AND NOT and means to exclude the term;
the ‘–’ should be placed directly in front of the search term not wanted. Complex
Boolean queries can be built out of these operators and their combinations, and
they are evaluated according to the classical rules of Boolean algebra. No ranking is
possible, because a document either satisfies such a query (is “relevant”) or does not
satisfy it (is “nonrelevant”). A document is retrieved for a Boolean query if the
query is logically true as an exact match in the document. Users generally do not
use combinations of these complex Boolean operators, and IR systems support a
restricted version of these set operators. Boolean retrieval models can directly sup-
port different Boolean operator implementations for these kinds of queries.

27.3.3 Phrase Queries
When documents are represented using an inverted keyword index for searching,
the relative order of the terms in the document is lost. In order to perform exact
phrase retrieval, these phrases should be encoded in the inverted index or imple-
mented differently (with relative positions of word occurrences in documents). A
phrase query consists of a sequence of words that makes up a phrase. The phrase is
generally enclosed within double quotes. Each retrieved document must contain at
least one instance of the exact phrase. Phrase searching is a more restricted and spe-
cific version of proximity searching that we mention below. For example, a phrase
searching query could be ‘conceptual database design’. If phrases are indexed by the
retrieval model, any retrieval model can be used for these query types. A phrase the-
saurus may also be used in semantic models for fast dictionary searching of phrases.

27.3.4 Proximity Queries
Proximity search refers to a search that accounts for how close within a record mul-
tiple terms should be to each other. The most commonly used proximity search
option is a phrase search that requires terms to be in the exact order. Other proxim-
ity operators can specify how close terms should be to each other. Some will also
specify the order of the search terms. Each search engine can define proximity
operators differently, and the search engines use various operator names such as
NEAR, ADJ(adjacent), or AFTER. In some cases, a sequence of single words is
given, together with a maximum allowed distance between them. Vector space
models that also maintain information about positions and offsets of tokens (words)
have robust implementations for this query type. However, providing support for
complex proximity operators becomes computationally expensive because it
requires the time-consuming preprocessing of documents and is thus suitable for
smaller document collections rather than for the Web.

27.3.5 Wildcard Queries
Wildcard searching is generally meant to support regular expressions and pattern
matching–based searching in text. In IR systems, certain kinds of wildcard search sup-
port may be implemented—usually words with any trailing characters (for example,
‘data*’ would retrieve data, database, datapoint, dataset, and so on). Providing full support

 27.4 Text Preprocessing 1037

for wildcard searches in Web search engines involves preprocessing overhead and is
not generally implemented by many Web search engines today.17 Retrieval models do
not directly provide support for this query type. Lucene18 provides support for certain
types of wildcard queries. The query parser in Lucene computes a large Boolean query
combining all combinations and expansions of words from the index.

27.3.6 Natural Language Queries
There are a few natural language search engines that aim to understand the structure
and meaning of queries written in natural language text, generally as a question or nar-
rative. This is an active area of research that employs techniques like shallow semantic
parsing of text, or query reformulations based on natural language understanding. The
system tries to formulate answers for such queries from retrieved results. Some search
systems are starting to provide natural language interfaces to provide answers to spe-
cific types of questions, such as definition and factoid questions, which ask for defini-
tions of technical terms or common facts that can be retrieved from specialized
databases. Such questions are usually easier to answer because there are strong linguis-
tic patterns giving clues to specific types of sentences—for example, ‘defined as’ or
‘refers to’. Semantic models can provide support for this query type.

27.4 Text Preprocessing
In this section, we review the commonly used text preprocessing techniques that
are part of the text processing task in Figure 27.1.

27.4.1 Stopword Removal
Stopwords are very commonly used words in a language that play a major role in the
formation of a sentence but that seldom contribute to the meaning of that sentence.
Words that are expected to occur in 80% or more of the documents in a collection
are typically referred to as stopwords, and they are rendered potentially useless.
Because of the commonness and function of these words, they do not contribute
much to the relevance of a document for a query search. Examples include words
such as the, of, to, a, and, in, said, for, that, was, on, he, is, with, at, by, and it. These
words are presented here with decreasing frequency of occurrence from a large cor-
pus of documents called AP89.19 The fist six of these words account for 20% of all
words in the listing, and the most frequent 50 words account for 40% of all text.

Removal of stopwords from a document must be performed before indexing. Arti-
cles, prepositions, conjunctions, and some pronouns are generally classified as stop-
words. Queries must also be preprocessed for stopword removal before the actual
retrieval process. Removal of stopwords results in elimination of possible spurious

17See http://www.livinginternet.com/w/wu_expert_wild.htm for further details.
18http://lucene.apache.org/
19For details, see Croft et al. (2009), pages 75–90.

1038 Chapter 27 Introduction to Information Retrieval and Web Search

indexes, thereby reducing the size of an index structure by about 40% or more. How-
ever, doing so could impact the recall if the stopword is an integral part of a query
(for example, a search for the phrase ‘To be or not to be’, where removal of stop-
words makes the query inappropriate, as all the words in the phrase are stopwords).
Many search engines do not employ query stopword removal for this reason.

27.4.2 Stemming
A stem of a word is defined as the word obtained after trimming the suffix and pre-
fix of an original word. For example, ‘comput’ is the stem word for computer, com-
puting, computable, and computation. These suffixes and prefixes are very common
in the English language for supporting the notion of verbs, tenses, and plural forms.
Stemming reduces the different forms of the word formed by inflection (due to
plurals or tenses) and derivation to a common stem.

A stemming algorithm can be applied to reduce any word to its stem. In English,
the most famous stemming algorithm is Martin Porter’s stemming algorithm. The
Porter stemmer20 is a simplified version of Lovin’s technique that uses a reduced set
of about 60 rules (from 260 suffix patterns in Lovin’s technique) and organizes
them into sets; conflicts within one subset of rules are resolved before going on to
the next. Using stemming for preprocessing data results in a decrease in the size of
the indexing structure and an increase in recall, possibly at the cost of precision.

27.4.3 Utilizing a Thesaurus
A thesaurus comprises a precompiled list of important concepts and the main
word that describes each concept for a particular domain of knowledge. For each
concept in this list, a set of synonyms and related words is also compiled.21 Thus, a
synonym can be converted to its matching concept during preprocessing. This pre-
processing step assists in providing a standard vocabulary for indexing and search-
ing. Usage of a thesaurus, also known as a collection of synonyms, has a substantial
impact on the recall of information systems. This process can be complicated
because many words have different meanings in different contexts.

UMLS22 is a large biomedical thesaurus of millions of concepts (called the meta-
thesaurus) and a semantic network of meta concepts and relationships that organize
the metathesaurus (see Figure 27.3). The concepts are assigned labels from the
semantic network. This thesaurus of concepts contains synonyms of medical
terms, hierarchies of broader and narrower terms, and other relationships among
words and concepts that make it a very extensive resource for information retrieval
of documents in the medical domain. Figure 27.3 illustrates part of the UMLS
Semantic Network.

20See Porter (1980).
21See Baeza-Yates and Ribeiro-Neto (1999).
22Unified Medical Language System from the National Library of Medicine.

 27.4 Text Preprocessing 1039

WordNet23 is a manually constructed thesaurus that groups words into strict syn-
onym sets called synsets. These synsets are divided into noun, verb, adjective, and
adverb categories. Within each category, these synsets are linked together by appro-
priate relationships such as class/subclass or “is-a” relationships for nouns.

WordNet is based on the idea of using a controlled vocabulary for indexing, thereby
eliminating redundancies. It is also useful in providing assistance to users with
locating terms for proper query formulation.

27.4.4 Other Preprocessing Steps: Digits, Hyphens,
Punctuation Marks, Cases
Digits, dates, phone numbers, e-mail addresses, URLs, and other standard types of
text may or may not be removed during preprocessing. Web search engines, how-
ever, index them in order to use this type of information in the document metadata
to improve precision and recall (see Section 27.6 for detailed definitions of precision
and recall).

Organ or
Tissue

Function

Physiologic
Function

Biologic
Function

Pathologic
Function

Organism
Function

Cell
Function

Molecular
Function

Cell or
Molecular

Dysfunction

Disease
or

Syndrome

Experimental
Model of
Disease

Mental or
Behavioral

Dysfunction

Neoplastic
Process

Mental
Process

Genetic
Function

Figure 27.3
A portion of the UMLS Semantic Network: “Biologic Function” Hierarchy.
Source: UMLS Reference Manual, National Library of Medicine.

23See Fellbaum (1998) for a detailed description of WordNet.

1040 Chapter 27 Introduction to Information Retrieval and Web Search

Hyphens and punctuation marks may be handled in different ways. Either the
entire phrase with the hyphens/punctuation marks may be used, or they may be
eliminated. In some systems, the character representing the hyphen/punctuation
mark may be removed, or may be replaced with a space. Different information
retrieval systems follow different rules of processing. Handling hyphens automati-
cally can be complex: it can either be done as a classification problem, or more com-
monly by some heuristic rules. For example, the StandardTokenizer in Lucene24

treats the hyphen as a delimeter to break words—with the exception that if there is
a number in the token, the words are not split (for example, words like AK-47,
phone numbers, etc.). Many domain-specific terms like product catalogs, different
versions of a product, and so on have hyphens in them. When search engines crawl
the Web for indexing, it becomes difficult to automatically treat hyphens correctly;
therefore, simpler strategies are devised to process hyphens.

Most information retrieval systems perform case-insensitive search, converting
all the letters of the text to uppercase or lowercase. It is also worth noting that
many of these text preprocessing steps are language specific, such as involving
accents and diacritics and the idiosyncrasies that are associated with a particular
language.

27.4.5 Information Extraction
Information extraction (IE) is a generic term used for extracting structured con-
tent from text. Text analytic tasks such as identifying noun phrases, facts, events,
people, places, and relationships are examples of IE tasks. These tasks are also
called named entity recognition tasks and use rule-based approaches with either a
thesaurus, regular expressions and grammars, or probabilistic approaches. For IR
and search applications, IE technologies are mostly used to identify named entities
that involve text analysis, matching, and categorization for improving the rele-
vance of search systems. Language technologies using part-of-speech tagging are
applied to semantically annotate the documents with extracted features to aid
search relevance.

27.5 Inverted Indexing
The simplest way to search for occurrences of query terms in text collections can be
performed by sequentially scanning the text. This kind of online searching is only
appropriate when text collections are small. Most information retrieval systems
process the text collections to create indexes and operate upon the inverted index
data structure (refer to the indexing task in Figure 27.1). An inverted index struc-
ture comprises vocabulary and document information. Vocabulary is a set of dis-
tinct query terms in the document set. Each term in a vocabulary set has an
associated collection of information about the documents that contain the term,
such as document id, occurrence count, and offsets within the document where the

24See further details on StandardTokenizer at https://lucene.apache.org/

 27.5 Inverted Indexing 1041

term occurs. The simplest form of vocabulary terms consists of words or individual
tokens of the documents. In some cases, these vocabulary terms also consist of
phrases, n-grams, entities, links, names, dates, or manually assigned descriptor
terms from documents and/or Web pages. For each term in the vocabulary, the cor-
responding document id’s, occurrence locations of the term in each document,
number of occurrences of the term in each document, and other relevant informa-
tion may be stored in the document information section.

Weights are assigned to document terms to represent an estimate of the usefulness
of the given term as a descriptor for distinguishing the given document from other
documents in the same collection. A term may be a better descriptor of one docu-
ment than of another by the weighting process (see Section 27.2).

An inverted index of a document collection is a data structure that attaches distinct
terms with a list of all documents that contains the term. The process of inverted
index construction involves the extraction and processing steps shown in Fig-
ure 27.2. Acquired text is first preprocessed and the documents are represented
with the vocabulary terms. Documents’ statistics are collected in document lookup
tables. Statistics generally include counts of vocabulary terms in individual docu-
ments as well as different collections, their positions of occurrence within the docu-
ments, and the lengths of the documents. The vocabulary terms are weighted at
indexing time according to different criteria for collections. For example, in some
cases terms in the titles of the documents may be weighted more heavily than terms
that occur in other parts of the documents.

One of the most popular weighting schemes is the TF-IDF (term frequency–inverse
document frequency) metric that we described in Section 27.2. For a given term,
this weighting scheme distinguishes to some extent the documents in which the
term occurs more often from those in which the term occurs very little or never.
These weights are normalized to account for varying document lengths, further
ensuring that longer documents with proportionately more occurrences of a word
are not favored for retrieval over shorter documents with proportionately fewer
occurrences. These processed document-term streams (matrices) are then inverted
into term-document streams (matrices) for further IR steps.

Figure 27.4 shows an illustration of term-document-position vectors for the four
illustrative terms—example, inverted, index, and market—which shows the posi-
tions where each term occurs in the three documents.

The steps involved in inverted index construction can be summarized as follows:

 1. Break the documents into vocabulary terms by tokenizing, cleansing, remov-
ing stopwords, stemming, and/or using an additional thesaurus as vocabulary.

 2. Collect document statistics and store the statistics in a document lookup
table.

 3. Invert the document-term stream into a term-document stream along with
additional information such as term frequencies, term positions, and term
weights.

1042 Chapter 27 Introduction to Information Retrieval and Web Search

Searching for relevant documents from the inverted index, given a set of query
terms, is generally a three-step process.

 1. Vocabulary search. If the query comprises multiple terms, they are sepa-
rated and treated as independent terms. Each term is searched in the vocab-
ulary. Various data structures, like variations of B+-tree or hashing, may be
used to optimize the search process. Query terms may also be ordered in
lexicographic order to improve space efficiency.

 2. Document information retrieval. The document information for each
term is retrieved.

 3. Manipulation of retrieved information. The document information vector
for each term obtained in step 2 is now processed further to incorporate
various forms of query logic. Various kinds of queries like prefix, range,
context, and proximity queries are processed in this step to construct the
final result based on the document collections returned in step 2.

This example
shows an
example of an
inverted index.

Inverted index
is a data
structure for
associating
terms to
documents.

Stock market
index is used
for capturing
the sentiments
of the financial
market.

1.

2.

3.

4.

example

inverted

index

market

1:2, 1:5

1:8, 2:1

1:9, 2:2, 3:3

3:2, 3:13

Figure 27.4
Example of an
inverted index.

 27.5 Inverted Indexing 1043

27.5.1 Introduction to Lucene
Lucene is an actively maintained open source indexing/search engine that has
become popular in both academic and commercial settings. Indexing is the primary
focus of Lucene, but it uses indexing to facilitate search. The Lucene library is writ-
ten in Java and comes with out-of-the-box scalable and high-performance capabil-
ity. Lucene is the engine that powers another widely popular enterprise search
application called Solr.25 Solr provides many add-on capabilities to Lucene, such as
providing Web interfaces for indexing many different document formats.

An upcoming book by Moczar (2015) discusses both Lucene and Solr.

Indexing: In Lucene, documents must go through a process of indexing before they
become available for search. A Lucene document is made up of a set of fields. Fields
hold the type of data in the index and are loosely comparable to columns in a database
table. A field can be of type binary, numeric, or text data. Text fields consist of either
entire chunk of untokenized text or a series of processed lexical units called token
streams. The token streams are created via application of different types of available
tokenization and filtering algorithms. For example, StandardTokenizer is one of the
available tokenizers in Lucene that implements Unicode text segmentation for split-
ting words apart. There are other tokenizers, such as a WhitespaceTokenizer, that
divide text at whitespaces. It is also easy to extend these tokenizers and filters in
Lucene to create custom text analysis algorithms for tokenization and filtering. These
analysis algorithms are central to achieving desired search results. Lucene provides
APIs and several implementations for many high-speed and efficient tokenization
and filtering algorithms. These algorithms have been extended for several different
languages and domains, and they feature implementations of natural language pro-
cessing algorithms for stemming, conducting dictionary-driven lemmatization, per-
forming morphological analysis, conducting phonetic analysis, and so on.

Search: With a powerful search API, queries are matched against documents and a
ranked list of results is retrieved. Queries are compared against the term vectors in
inverted indexes to compute relevance scores based on the vector space model (see Sec-
tion 27.2.2). Lucene provides a highly configurable search API wherein one can create
queries for wildcard, exact, Boolean, proximity, and range searches. Lucene’s default
scoring algorithm uses variants of TF-IDF scoring to rank search results. To speed up
search, Lucene maintains document-dependent normalization factors precomputed at
index time; these are called norms of term vectors in document fields. These precom-
puted norms speed up the scoring process in Lucene. The actual query matching algo-
rithms use functions that do very little computation at query matching time.

Applications: One of the reasons for Lucene’s immense popularity is the ease of
availability of Lucene applications for handling various document collections and

25See http://lucene.apache.org/solr/

1044 Chapter 27 Introduction to Information Retrieval and Web Search

deployment systems for indexing large unstructured document collections. The
enterprise search application built on top of Lucene is called Solr. Solr is a Web
server application that provides support for faceted search (see Section 27.8.1 on
faceted search), custom format document processing support (such as PDF, HTML,
etc.), and Web services for several API functions for indexing and search in Lucene.

27.6 Evaluation Measures
of Search Relevance

Without proper evaluation techniques, one cannot compare and measure the rele-
vance of different retrieval models and IR systems in order to make improvements.
Evaluation techniques of IR systems measure the topical relevance and user rele-
vance. Topical relevance measures the extent to which the topic of a result matches
the topic of the query. Mapping one’s information need with “perfect” queries is a
cognitive task, and many users are not able to effectively form queries that would
retrieve results more suited to their information need. Also, since a major chunk of
user queries are informational in nature, there is no fixed set of right answers to
show to the user. User relevance is a term used to describe the “goodness” of a
retrieved result with regard to the user’s information need. User relevance includes
other implicit factors, such as user perception, context, timeliness, the user’s envi-
ronment, and current task needs. Evaluating user relevance may also involve sub-
jective analysis and study of user retrieval tasks to capture some of the properties of
implicit factors involved in accounting for users’ bias for judging performance.

In Web information retrieval, no binary classification decision is made on whether
a document is relevant or nonrelevant to a query (whereas the Boolean (or binary)
retrieval model uses this scheme, as we discussed in Section 27.2.1). Instead, a rank-
ing of the documents is produced for the user. Therefore, some evaluation mea-
sures focus on comparing different rankings produced by IR systems. We discuss
some of these measures next.

27.6.1 Recall and Precision
Recall and precision metrics are based on the binary relevance assumption (whether
each document is relevant or nonrelevant to the query). Recall is defined as the num-
ber of relevant documents retrieved by a search divided by the total number of actu-
ally relevant documents existing in the database. Precision is defined as the number
of relevant documents retrieved by a search divided by the total number of docu-
ments retrieved by that search. Figure 27.5 is a pictorial representation of the terms
retrieved versus relevant and shows how search results relate to four different sets of
documents.

The notation for Figure 27.5 is as follows:

 ■ TP: true positive

 ■ FP: false positive

 27.6 Evaluation Measures of Search Relevance 1045

 ■ FN: false negative

 ■ TN: true negative

The terms true positive, false positive, false negative, and true negative are generally
used in any type of classification tasks to compare the given classification of an
item with the desired correct classification. Using the term hits for the documents
that truly or “correctly” match the user request, we can define recall and precision
as follows:

Recall = |Hits|/|Relevant|
Precision = |Hits|/|Retrieved|

Recall and precision can also be defined in a ranked retrieval setting. Let us assume
that there is one document at each rank position. The recall at rank position i for
document di

q (denoted by r(i)) (di
q is the retrieved document at position i for

query q) is the fraction of relevant documents from d1
q to di

q in the result set for
the query. Let the set of relevant documents from d1

q to di
q in that set be Si with

cardinality | Si |. Let (|Dq| be the size of relevant documents for the query. In this
case,|Si | ≤ |Dq|). Then:

Ranked retrieval_recall: r(i) = |Si |/|Dq|

The precision at rank position i or document di
q (denoted by p(i)) is the fraction of

documents from d1
q to di

q in the result set that are relevant:

Ranked_retrieval_precision: p(i) = |Si |/i

Table 27.2 illustrates the p(i), r(i), and average precision (discussed in the next sec-
tion) metrics. It can be seen that recall can be increased by presenting more results
to the user, but this approach runs the risk of decreasing the precision. In the exam-
ple, the number of relevant documents for some query = 10. The rank position and
the relevance of an individual document are shown. The precision and recall value
can be computed at each position within the ranked list as shown in the last two
columns. As we see in Table 27.2, the ranked_retrieval_recall rises monotonically
whereas the precision is prone to fluctuation.

Relevant?

Yes No

Hits

TP

False
Alarms

FP

Misses

FN

Correct
Rejections

TN

Retrieved?

Yes

No

☺

☺

�

�
Figure 27.5
Retrieved versus relevant
search results.

1046 Chapter 27 Introduction to Information Retrieval and Web Search

27.6.2 Average Precision
Average precision is computed based on the precision at each relevant document in
the ranking. This measure is useful for computing a single precision value to com-
pare different retrieval algorithms on a query q.

P p i D
d D q

i

q

q
avg = ∈∑ () | |

Consider the sample precision values of relevant documents in Table 27.2. The
average precision (Pavg value) for the example in Table 27.2 is P(1) + P(2) + P(3) +
P(7) + P(8) + P(10)/6 = 79.93% (only relevant documents are considered in this
calculation). Many good algorithms tend to have high top-k average precision for
small values of k, with correspondingly low values of recall.

27.6.3 Recall/Precision Curve
A recall/precision curve can be drawn based on the recall and precision values at
each rank position, where the x-axis is the recall and the y-axis is the precision.
Instead of using the precision and recall at each rank position, the curve is com-
monly plotted using recall levels r(i) at 0%, 10%, 20% … 100%. The curve usually
has a negative slope, reflecting the inverse relationship between precision and recall.

27.6.4 F-Score
F-score (F) is the harmonic mean of the precision (p) and recall (r) values. That is,

p r
+

=
2

1 1

F
1

Table 27.2 Precision and Recall for Ranked Retrieval

Doc. No. Rank Position i Relevant Precision(i) Recall(i)

10 1 Yes 1/1 = 100% 1/10 = 10%

2 2 Yes 2/2 = 100% 2/10 = 20%

3 3 Yes 3/3 = 100% 3/10 = 30%

5 4 No 3/4 = 75% 3/10 = 30%

17 5 No 3/5 = 60% 3/10 = 30%

34 6 No 3/6 = 50% 3/10 = 30%

215 7 Yes 4/7 = 57.1% 4/10 = 40%

33 8 Yes 5/8 = 62.5% 5/10 = 50%

45 9 No 5/9 = 55.5% 5/10 = 50%

16 10 Yes 6/10 = 60% 6/10 = 60%

 27.7 Web Search and Analysis 1047

High precision is achieved almost always at the expense of recall and vice versa. It is
a matter of the application’s context whether to tune the system for high precision
or high recall. F-score is typically used as a single measure that combines precision
and recall to compare different result sets:

F
pr

p r
=

+
2

One of the properties of harmonic mean is that the harmonic mean of two numbers
tends to be closer to the smaller of the two. Thus F is automatically biased toward
the smaller of the precision and recall values. Therefore, for a high F-score, both
precision and recall must be high.

F

p r

=
+

2
1 1

27.7 Web Search and Analysis26

The emergence of the Web has brought millions of users to search for information,
which is stored in a very large number of active sites. To make this information
accessible, search engines such as Google, bing and Yahoo! must crawl and index
these sites and document collections in their index databases. Moreover, search
engines must regularly update their indexes given the dynamic nature of the Web
as new Web sites are created and current ones are updated or deleted. Since there
are many millions of pages available on the Web on different topics, search engines
must apply many sophisticated techniques such as link analysis to identify the
importance of pages.

There are other types of search engines besides the ones that regularly crawl the
Web and create automatic indexes: these are human-powered, vertical search
engines or metasearch engines. These search engines are developed with the help of
computer-assisted systems to aid the curators with the process of assigning indexes.
They consist of manually created specialized Web directories that are hierarchically
organized indexes to guide user navigation to different resources on the Web. Vertical
search engines are customized topic-specific search engines that crawl and index a
specific collection of documents on the Web and provide search results from that
specific collection. Metasearch engines are built on top of search engines: they
query different search engines simultaneously and aggregate and provide search
results from these sources.

Another source of searchable Web documents is digital libraries. Digital libraries
can be broadly defined as collections of electronic resources and services for the
delivery of materials in a variety of formats. These collections may include a univer-
sity’s library catalog, catalogs from a group of participating universities, as in the

26The contribution of Pranesh P. Ranganathan and Hari P. Kumar to this section is appreciated.

1048 Chapter 27 Introduction to Information Retrieval and Web Search

State of Florida University System, or a compilation of multiple external resources
on the World Wide Web, such as Google Scholar or the IEEE/ACM index. These
interfaces provide universal access to different types of content—such as books,
articles, audio, and video—situated in different database systems and remote repos-
itories. Similar to real libraries, these digital collections are maintained via a catalog
and organized in categories for online reference. Digital libraries “include personal,
distributed, and centralized collections such as online public-access catalogs
(OPACs) and bibliographic databases, distributed document databases, scholarly
and professional discussion lists and electronic journals, other online databases,
forums, and bulletin boards.”27

27.7.1 Web Analysis and Its Relationship
to Information Retrieval

In addition to browsing and searching the Web, another important activity closely
related to information retrieval is to analyze or mine information on the Web for
new information of interest. (We discuss mining of data from files and databases
in Chapter 28.) Application of data analysis techniques for discovery and analysis
of useful information from the Web is known as Web analysis. Over the past few
years, the World Wide Web has emerged as an important repository of informa-
tion for many day-to-day applications for individual consumers, as well as a sig-
nificant platform for e-commerce and for social networking. These properties
make it an interesting target for data analysis applications. The Web mining and
analysis field is an integration of a wide range of fields spanning information
retrieval, text analysis, natural language processing, data mining, machine learn-
ing, and statistical analysis.

The goals of Web analysis are to improve and personalize search results relevance
and to identify trends that may be of value to various businesses and organizations.
We elaborate on these goals next.

 ■ Finding relevant information. People usually search for specific informa-
tion on the Web by entering keywords in a search engine or browsing infor-
mation portals and using services. Search services are heavily constrained by
search relevance problems since search engines must map and approximate
the information need of millions of users as an a priori task. Low precision
(see Section 27.6) ensues due to results that are nonrelevant to the user. In
the case of the Web, high recall (see Section 27.6) is impossible to determine
due to the inability to index all the pages on the Web. Also, measuring recall
does not make sense since the user is concerned with only the top few docu-
ments. The most relevant results for the user are typically from only the top
few results.

 ■ Personalization of the information. Different people have different con-
tent and presentation preferences. Various customization tools used in

27Covi and Kling (1996), page 672.

 27.7 Web Search and Analysis 1049

Web-based applications and services (such as click-through monitoring,
eyeball tracking, explicit or implicit user profile learning, and dynamic ser-
vice composition using Web APIs) are used for service adaptation and per-
sonalization. A personalization engine typically has algorithms that make
use of the user’s personalization information—collected by various tools—
to generate user-specific search results. The Web has become a rich land-
scape where people leave traces as they navigate, click, like, comment, and
buy things in this virtual space. This information is of high commercial
value, and many companies in all kinds of consumer goods mine and sell
this information for customer targeting.

 ■ Finding information of social value. With more than 1 billion downloads
of the Facebook app on various Android devices, one can imagine how pop-
ular the various social networks have become in recent times. People build
what is called social capital in these virtual worlds such as Twitter and Face-
book. Social capital refers to features of social organizations, such as net-
works, norms, and social trust, that facilitate coordination and cooperation
for mutual benefit. Social scientists are studying social capital and how to
harness this rich resource to benefit society in various ways. We briefly
touch upon aspects of social search in Section 27.8.2.

Web analysis can be further classified into three categories: Web structure analysis,
which discovers knowledge from hyperlinks that represent the structure of the Web;
Web content analysis, which deals with extracting useful information/knowledge
from Web page contents; and Web usage analysis, which mines user access patterns
from usage logs that record the activity of every user.

27.7.2 Web Structure Analysis
The World Wide Web is a huge corpus of information, but locating resources that
are both high quality and relevant to the needs of the user is very difficult. The set of
Web pages taken as a whole has almost no unifying structure, with variability in
authoring style and content; this variability makes it difficult to precisely locate
needed information. Index-based search engines have been one of the primary
tools by which users search for information on the Web. Web search engines crawl
the Web and create an index to the Web for searching purposes. When a user spec-
ifies her need for information by supplying keywords, these Web search engines
query their repository of indexes and produce links or URLs with abbreviated con-
tent as search results. There may be thousands of pages relevant to a particular
query. A problem arises when only a few most relevant results are returned to the
user. Our discussions of querying and relevance-based ranking in IR systems in (see
Sections 27.2 and 27.3) is applicable to Web search engines. These ranking algo-
rithms explore the link structure of the Web.

Web pages, unlike standard text collections, contain connections to other Web
pages or documents (via the use of hyperlinks), allowing users to browse from page
to page. A hyperlink has two components: a destination page and an anchor text
that describes the link. For example, a person can link to the Yahoo Web site on her

1050 Chapter 27 Introduction to Information Retrieval and Web Search

Web page with anchor text such as “My favorite Web site.” Anchor texts can be
thought of as being implicit endorsements. They provide important latent human
annotation. A person linking to other Web pages from her Web page is assumed to
have some relation to those Web pages. Web search engines aim to distill results
per their relevance and authority. There are many redundant hyperlinks, like the
links to the homepage on every Web page of the Web site. Such hyperlinks must be
eliminated from the search results by the search engines.

A hub is a Web page or a Web site that links to a collection of prominent sites
(authorities) on a common topic. A good authority is a page that is pointed to by
many good hubs, whereas a good hub is a page that points to many good authori-
ties. These ideas are used by the HITS ranking algorithm. We briefly discuss a cou-
ple of ranking algorithms in the next section.

27.7.3 Analyzing the Link Structure of Web Pages
The goal of Web structure analysis is to generate a structural representation about
the Web site and Web pages. Web structure analysis focuses on the inner structure
of documents and deals with the link structure using hyperlinks at the interdocu-
ment level. The structure and content of Web pages are often combined for infor-
mation retrieval by Web search engines. Given a collection of interconnected Web
documents, interesting and informative facts describing their connectivity in the
Web subset can be discovered. Web structure analysis is also used to help with nav-
igation and make it possible to compare/integrate different Web page schemes.
This aspect of Web structure analysis facilitates Web document classification and
clustering on the basis of structure.

The PageRank Ranking Algorithm. As discussed earlier, ranking algorithms
are used to order search results based on relevance and authority. Google uses the
well-known PageRank algorithm,28 which is based on the “importance” of each
page. Every Web page has a number of forward links (out-edges) and backlinks (in-
edges). It is very difficult to determine all the backlinks of a Web page, whereas it is
relatively straightforward to determine its forward links. According to the PageRank
algorithm, highly linked pages are more important (have greater authority) than
pages with fewer links. However, not all backlinks are important. A backlink to a
page from a credible source is more important than a link from some arbitrary
page. Thus a page has a high rank if the sum of the ranks of its backlinks is high.
PageRank was an attempt to see how good an approximation of the “importance”
of a page can be obtained from the link structure.

The computation of page ranking follows an iterative approach. PageRank of a Web
page is calculated as a sum of the PageRanks of all its backlinks. PageRank treats the
Web like a Markov model. An imaginary Web surfer visits an infinite string of pages by
clicking randomly. The PageRank of a page is an estimate of how often the surfer winds

28The PageRank algorithm was proposed by Lawrence Page (1998) and Sergey Brin, founders of
Google. For more information, see http://en.wikipedia.org/wiki/PageRank

 27.7 Web Search and Analysis 1051

up at a particular page. PageRank is a measure of the query-independent importance
of a page/node. For example, let P(X) be the PageRank of any page X and C(X) be
the number of outgoing links from page X, and let d be the damping factor in the range
0 < d < 1. Usually d is set to 0.85. Then PageRank for a page A can be calculated as:

P(A) = (1 − d) + d(P(T1)/C(T1) + P(T2)/C(T2)+… + P(Tn)/C(Tn))

Here T1, T2, … , Tn are the pages that point to Page A (that is, are citations to page A).
PageRank forms a probability distribution over Web pages, so the sum of all Web
pages’ PageRanks is one.

The HITS Ranking Algorithm. The HITS29 algorithm proposed by Jon Kleinberg
is another type of ranking algorithm exploiting the link structure of the Web. The
algorithm presumes that a good hub is a document that points to many hubs, and a
good authority is a document that is pointed at by many other authorities. The
algorithm contains two main steps: a sampling component and a weight-propagation
component. The sampling component constructs a focused collection S of pages
with the following properties:

 1. S is relatively small.

 2. S is rich in relevant pages.

 3. S contains most (or a majority) of the strongest authorities.

The weight component recursively calculates the hub and authority values for each
document as follows:

 1. Initialize hub and authority values for all pages in S by setting them to 1.

 2. While (hub and authority values do not converge):

a. For each page in S, calculate authority value = Sum of hub values of all
pages pointing to the current page.

b. For each page in S, calculate hub value = Sum of authority values of all
pages pointed at by the current page.

c. Normalize hub and authority values such that sum of all hub values in S
equals 1 and the sum of all authority values in S equals 1.

27.7.4 Web Content Analysis
As mentioned earlier, Web content analysis refers to the process of discovering use-
ful information from Web content/data/documents. The Web content data consists
of unstructured data such as free text from electronically stored documents, semi-
structured data typically found as HTML documents with embedded image data,
and more structured data such as tabular data and pages in HTML, XML, or other
markup languages generated as output from databases. More generally, the term
Web content refers to any real data in the Web page that is intended for the user
accessing that page. This usually consists of but is not limited to text and graphics.

29See Kleinberg (1999).

1052 Chapter 27 Introduction to Information Retrieval and Web Search

We will first discuss some preliminary Web content analysis tasks and then look at
the traditional analysis tasks of Web page classification and clustering.

Structured Data Extraction. Structured data on the Web is often very important
because it represents essential information, such as a structured table showing the
airline flight schedule between two cities. There are several approaches to struc-
tured data extraction. One includes writing a wrapper, or a program that looks for
different structural characteristics of the information on the page and extracts the
right content. Another approach is to manually write an extraction program for
each Web site based on observed format patterns of the site, which is very labor
intensive and time consuming. This latter approach does not scale to a large num-
ber of sites. A third approach is wrapper induction or wrapper learning, where the
user first manually labels a set of training set pages and the learning system gener-
ates rules—based on the learning pages—that are applied to extract target items
from other Web pages. A fourth approach is the automatic approach, which aims to
find patterns/grammars from the Web pages and then uses wrapper generation to
produce a wrapper to extract data automatically.

Web Information Integration. The Web is immense and has billions of docu-
ments, authored by many different persons and organizations. Because of this, Web
pages that contain similar information may have different syntax and different
words that describe the same concepts. This creates the need for integrating infor-
mation from diverse Web pages. Two popular approaches for Web information
integration are:

 1. Web query interface integration, to enable querying multiple Web data-
bases that are not visible in external interfaces and are hidden in the “deep
Web.” The deep Web30 consists of those pages that do not exist until they
are created dynamically as the result of a specific database search, which
produces some of the information in the page (see Chapter 11). Since tradi-
tional search engine crawlers cannot probe and collect information from
such pages, the deep Web has heretofore been hidden from crawlers.

 2. Schema matching, such as integrating directories and catalogs to come up
with a global schema for applications. An example of such an application
would be to match and combine into one record data from various sources
by cross-linking health records from multiple systems. The result would be
an individual global health record.

These approaches remain an area of active research, and a detailed discussion of
them is beyond the scope of this text. Consult the Selected Bibliography at the end
of this chapter for further details.

Ontology-Based Information Integration. This task involves using ontologies to
effectively combine information from multiple heterogeneous sources. Ontologies—
formal models of representation with explicitly defined concepts and named

30The deep Web as defined by Bergman (2001).

 27.7 Web Search and Analysis 1053

relationships linking them—are used to address the issues of semantic heterogene-
ity in data sources. Different classes of approaches are used for information integra-
tion using ontologies.

 ■ Single ontology approaches use one global ontology that provides a shared
vocabulary for the specification of the semantics. They work if all informa-
tion sources to be integrated provide nearly the same view on a domain of
knowledge. For example, UMLS (described in Section 27.4.3) can serve as a
common ontology for biomedical applications.

 ■ In a multiple ontology approach, each information source is described by
its own ontology. In principle, the “source ontology” can be a combination
of several other ontologies, but it cannot be assumed that the different
“source ontologies” share the same vocabulary. Dealing with multiple, par-
tially overlapping, and potentially conflicting ontologies is a difficult prob-
lem faced by many applications, including those in bioinformatics and other
complex topics of study.

Building Concept Hierarchies. One common way of organizing search results is
via a linear ranked list of documents. But for some users and applications, a better
way to display results would be to create groupings of related documents in the
search result. One way of organizing documents in a search result, and for organiz-
ing information in general, is by creating a concept hierarchy. The documents in a
search result are organized into groups in a hierarchical fashion. Other related tech-
niques to organize docments are through classification and clustering (see Chap-
ter 28). Clustering creates groups of documents, where the documents in each
group share many common concepts.

Segmenting Web Pages and Detecting Noise. There are many superfluous
parts in a Web document, such as advertisements and navigation panels. The infor-
mation and text in these superfluous parts should be eliminated as noise before
classifying the documents based on their content. Hence, before applying classifica-
tion or clustering algorithms to a set of documents, the areas or blocks of the docu-
ments that contain noise should be removed.

27.7.5 Approaches to Web Content Analysis
The two main approaches to Web content analysis are (1) agent based (IR view)
and (2) database based (DB view).

The agent-based approach involves the development of sophisticated artificial
intelligence systems that can act autonomously or semi-autonomously on
behalf of a particular user, to discover and process Web-based information.
Generally, the agent-based Web analysis systems can be placed into the follow-
ing three categories:

 ■ Intelligent Web agents are software agents that search for relevant infor-
mation using characteristics of a particular application domain (and possi-
bly a user profile) to organize and interpret the discovered information. For

1054 Chapter 27 Introduction to Information Retrieval and Web Search

example, an intelligent agent retrieves product information from a variety of
vendor sites using only general information about the product domain.

 ■ Information filtering/categorization is another technique that utilizes
Web agents for categorizing Web documents. These Web agents use meth-
ods from information retrieval, as well as semantic information based on
the links among various documents, to organize documents into a concept
hierarchy.

 ■ Personalized Web agents are another type of Web agents that utilize the
personal preferences of users to organize search results, or to discover infor-
mation and documents that could be of value for a particular user. User
preferences could be learned from previous user choices, or from other indi-
viduals who are considered to have similar preferences to the user.

The database-based approach aims to infer the structure of the Web site or to
transform a Web site to organize it as a database so that better information man-
agement and querying on the Web become possible. This approach of Web con-
tent analysis primarily tries to model the data on the Web and integrate it so that
more sophisticated queries than keyword-based search can be performed. These
could be achieved by finding the schema of Web documents or building a Web
document warehouse, a Web knowledge base, or a virtual database. The database-
based approach may use a model such as the Object Exchange Model (OEM),31

which represents semistructured data by a labeled graph. The data in the OEM is
viewed as a graph, with objects as the vertices and labels on the edges. Each object
is identified by an object identifier and a value that is either atomic—such as inte-
ger, string, GIF image, or HTML document—or complex in the form of a set of
object references.

The main focus of the database-based approach has been with the use of multilevel
databases and Web query systems. A multilevel database at its lowest level is a
database containing primitive semistructured information stored in various Web
repositories, such as hypertext documents. At the higher levels, metadata or gener-
alizations are extracted from lower levels and organized in structured collections
such as relational or object-oriented databases. In a Web query system, informa-
tion about the content and structure of Web documents is extracted and organized
using database-like techniques. Query languages similar to SQL can then be used to
search and query Web documents. These types of queries combine structural que-
ries, based on the organization of hypertext documents, and content-based queries.

27.7.6 Web Usage Analysis
Web usage analysis is the application of data analysis techniques to discover usage
patterns from Web data, in order to understand and better serve the needs of Web-
based applications. This activity does not directly contribute to information
retrieval; but it is important for improving and enhancing users’ search experiences.

31See Kosala and Blockeel (2000).

 27.7 Web Search and Analysis 1055

Web usage data describes the pattern of usage of Web pages, such as IP addresses,
page references, and the date and time of accesses for a user, user group, or an
application. Web usage analysis typically consists of three main phases: preprocess-
ing, pattern discovery, and pattern analysis.

 1. Preprocessing. Preprocessing converts the information collected about
usage statistics and patterns into a form that can be utilized by the pattern
discovery methods. For example, we use the term page view to refer to pages
viewed or visited by a user. There are several different types of preprocessing
techniques available:

 � Usage preprocessing analyzes the available collected data about usage
patterns of users, applications, and groups of users. Because this data is
often incomplete, the process is difficult. Data cleaning techniques are
necessary to eliminate the impact of irrelevant items in the analysis result.
Frequently, usage data is identified by an IP address and consists of click-
ing streams that are collected at the server. Better data is available if a
usage tracking process is installed at the client site.

 � Content preprocessing is the process of converting text, image, scripts,
and other content into a form that can be used by the usage analysis.
Often, this process consists of performing content analysis such as classi-
fication or clustering. The clustering or classification techniques can group
usage information for similar types of Web pages, so that usage patterns
can be discovered for specific classes of Web pages that describe particular
topics. Page views can also be classified according to their intended use,
such as for sales or for discovery or for other uses.

 � Structure preprocessing can be done by parsing and reformatting the
information about hyperlinks and structure between viewed pages. One
difficulty is that the site structure may be dynamic and may have to be
constructed for each server session.

 2. Pattern discovery. The techniques that are used in pattern discovery are based
on methods from the fields of statistics, machine learning, pattern recognition,
data analysis, data mining, and other similar areas. These techniques are adapted
so they take into consideration the specific knowledge and characteristics of
Web analysis. For example, in association rule discovery (see Section 28.2), the
notion of a transaction for market-basket analysis considers the items to be
unordered. But the order of accessing of Web pages is important, and so it
should be considered in Web usage analysis. Hence, pattern discovery involves
mining sequences of page views. In general, using Web usage data, the following
types of data mining activities may be performed for pattern discovery.

 � Statistical analysis. Statistical techniques are the most common method
of extracting knowledge about visitors to a Web site. By analyzing the ses-
sion log, it is possible to apply statistical measures such as mean, median,
and frequency count to parameters such as pages viewed, viewing time
per page, length of navigation paths between pages, and other parameters
that are relevant to Web usage analysis.

1056 Chapter 27 Introduction to Information Retrieval and Web Search

 � Association rules. In the context of Web usage analysis, association rules
refer to sets of pages that are accessed together with a support value
exceeding some specified threshold. (See Section 28.2 on association
rules.) These pages may not be directly connected to one another via
hyperlinks. For example, association rule discovery may reveal a correla-
tion between users who visited a page containing electronic products to
those who visit a page about sporting equipment.

 � Clustering. In the Web usage domain, there are two kinds of interesting
clusters to be discovered: usage clusters and page clusters. Clustering of
users tends to establish groups of users exhibiting similar browsing pat-
terns. Such knowledge is especially useful for inferring user demographics
in order to perform market segmentation in e-commerce applications or
provide personalized Web content to the users. Clustering of pages is
based on the content of the pages, and pages with similar contents are
grouped together. This type of clustering can be utilized in Internet search
engines and in tools that provide assistance to Web browsing.

 � Classification. In the Web domain, one goal is to develop a profile of
users belonging to a particular class or category. This requires extraction
and selection of features that best describe the properties of a given class
or category of users. For example, an interesting pattern that may
be discovered would be: 60% of users who placed an online order in
/ Product/Books are in the 18–25 age group and live in rented apartments.

 � Sequential patterns. These kinds of patterns identify sequences of Web
accesses, which may be used to predict the next set of Web pages to be
accessed by a certain class of users. These patterns can be used by market-
ers to produce targeted advertisements on Web pages. Another type of
sequential pattern pertains to which items are typically purchased follow-
ing the purchase of a particular item. For example, after purchasing a
computer, a printer is often purchased.

 � Dependency modeling. Dependency modeling aims to determine and
model significant dependencies among the various variables in the Web
domain. For example, one may be interested in building a model that rep-
resents the various stages a visitor undergoes while shopping in an online
store; this model would be based on user actions (e.g., being a casual visi-
tor versus being a serious potential buyer).

 3. Pattern analysis. The final step is to filter out those rules or patterns that
are considered to be not of interest based on the discovered patterns. One
common technique for pattern analysis is to use a query language such as
SQL to detect various patterns and relationships. Another technique
involves loading usage data into a data warehouse with ETL tools and per-
forming OLAP operations to view the data along multiple dimensions (see
Section 29.3). It is common to use visualization techniques, such as graph-
ing patterns or assigning colors to different values, to highlight patterns or
trends in the data.

 27.8 Trends in Information Retrieval 1057

27.7.7 Practical Applications of Web Analysis
Web Analytics. The goal of web analytics is to understand and optimize the per-
formance of Web usage. This requires collecting, analyzing, and monitoring the
performance of Internet usage data. On-site Web analytics measures the perfor-
mance of a Web site in a commercial context. This data is typically compared
against key performance indicators to measure effectiveness or performance of the
Web site as a whole, and it can be used to improve a Web site or improve the mar-
keting strategies.

Web Spamming. It has become increasingly important for companies and indi-
viduals to have their Web sites/Web pages appear in the top search results. To
achieve this, it is essential to understand search engine ranking algorithms and to
present the information in one’s page in such a way that the page is ranked high
when the respective keywords are queried. There is a thin line separating legitimate
page optimization for business purposes and spamming. Web spamming is thus
defined as a deliberate activity to promote one’s page by manipulating the results
returned by the search engines. Web analysis may be used to detect such pages and
discard them from search results.

Web Security. Web analysis can be used to find interesting usage patterns of Web
sites. If any flaw in a Web site has been exploited, it can be inferred using Web
analysis, thereby allowing the design of more robust Web sites. For example, the
backdoor or information leak of Web servers can be detected by using Web analysis
techniques on abnormal Web application log data. Security analysis techniques
such as intrusion detection and denial-of-service attacks are based on Web access
pattern analysis.

Web Crawlers. These are programs that visit Web pages and create copies of all
the visited pages so they can be processed by a search engine for indexing the down-
loaded pages and providing fast searches. Another use of crawlers is to automati-
cally check and maintain Web sites. For example, the HTML code and the links in a
Web site can be checked and validated by the crawler. Another unfortunate use of
crawlers is to collect e-mail addresses and other personal information from Web
pages; the information is subsequently used in sending spam e-mails.

27.8 Trends in Information Retrieval
In this section, we review a few concepts that are being considered in recent research
work in information retrieval.

27.8.1 Faceted Search
Faceted search is a technique that allows for an integrated search and navigation
experience by allowing users to explore by filtering available information. This
search technique is often used in ecommerce Web sites and applications and

1058 Chapter 27 Introduction to Information Retrieval and Web Search

enables users to navigate a multi-dimensional information space. Facets are gener-
ally used for handling three or more dimensions of classification. These multiple
dimensions of classification allow the faceted classification scheme to classify an
object in various ways based on different taxonomical criteria. For example, a Web
page may be classified in various ways: by content (airlines, music, news, etc.); by
use (sales, information, registration, etc.); by location; by language used (HTML,
XML, etc.); and in other ways or facets. Hence, the object can be classified in mul-
tiple ways based on multiple taxonomies.

A facet defines properties or characteristics of a class of objects. The properties
should be mutually exclusive and exhaustive. For example, a collection of art objects
might be classified using an artist facet (name of artist), an era facet (when the art
was created), a type facet (painting, sculpture, mural, etc.), a country of origin facet,
a media facet (oil, watercolor, stone, metal, mixed media, etc.), a collection facet
(where the art resides), and so on.

Faceted search uses faceted classification, which enables a user to navigate informa-
tion along multiple paths corresponding to different orderings of the facets. This
contrasts with traditional taxonomies, in which the hierarchy of categories is fixed
and unchanging. University of California–Berkeley’s Flamenco project32 is one of
the earlier examples of a faceted search system. Most e-commerce sites today, such
as Amazon or Expedia, use faceted search in their search interfaces to quickly com-
pare and navigate various aspects related to search criteria.

27.8.2 Social Search
The traditional view of Web navigation and browsing assumes that a single user is
searching for information. This view contrasts with previous research by library
scientists who studied users’ information-seeking habits. This research demon-
strated that additional individuals may be valuable information resources during
information search by a single user. More recently, research indicates that there is
often direct user cooperation during Web-based information search. Some studies
report that significant segments of the user population are engaged in explicit col-
laboration on joint search tasks on the Web. Active collaboration by multiple par-
ties also occurs in certain cases (for example, enterprise settings); at other times,
and perhaps for a majority of searches, users often interact with others remotely,
asynchronously, and even involuntarily and implicitly.

Socially enabled online information search (social search) is a new phenomenon
facilitated by recent Web technologies. Collaborative social search involves different
ways for active involvement in search-related activities such as co-located search,
remote collaboration on search tasks, use of social network for search, use of expertise
networks, use of social data mining or collective intelligence to improve the search
process, and use of social interactions to facilitate information seeking and sense
making. This social search activity may be done synchronously, asynchronously,

32Yee (2003) describes faceted metadata for image search.

 27.8 Trends in Information Retrieval 1059

co-located, or in remote shared workspaces. Social psychologists have experimen-
tally validated that the act of social discussions has facilitated cognitive performance.
People in social groups can provide solutions (answers to questions), pointers to
databases or to other people (meta-knowledge), and validation and legitimization of
ideas; in addition, social groups can serve as memory aids and can help with problem
reformulation. Guided participation is a process in which people co-construct
knowledge in concert with peers in their community. Information seeking is mostly
a solitary activity on the Web today. Some recent work on collaborative search
reports several interesting findings and the potential of this technology for better
information access. It is increasingly common for people to use social networks such
as Facebook to seek opinions and clarifications on various topics and to read prod-
uct reviews before making a purchase.

27.8.3 Conversational Information Access
Conversational information access is an interactive and collaborative informa-
tion-finding interaction. The participants engage in a natural human-to-human
conversation, and intelligent agents listen to the conversation in the background
and perform intent extraction to provide participants with need-specific informa-
tion. Agents use direct or subtle interactions with participants via mobile or wear-
able communication devices. These interactions require technologies like speaker
identification, keyword spotting, automatic speech recognition, semantic under-
standing of conversations, and discourse analysis as a means of providing users
with faster and relevant pointers for conversations. Via technologies like those just
mentioned, information access is transformed from a solitary activity to a partici-
patory activity. In addition, information access becomes more goal specific as
agents use multiple technologies to gather relevant information and as participants
provide conversational feedback to agents.

27.8.4 Probabilistic Topic Modeling
The unprecedented growth in information generated with the advent of the Web
has led to issues concerning how to organize data into categories that will facilitate
correct and efficient dissemination of information. For example, international news
agencies like Reuters and the Associated Press gather daily news worldwide per-
taining to business, sports, politics, technology, and so on. It is a tremendous chal-
lenge to organize effectively this plethora of information. Search engines have
conventionally organized words within and links among documents to make them
accessible on the Web. Organizing information according to the topics and themes
of documents allows users to navigate through the vast amount of information
based on the topics they are interested in.

To address this problem, a class of machine learning algorithms known as
 probabilistic topic models has emerged in the last decade. These algorithms can
automatically organize large collections of documents into relevant themes. The
beauty of these algorithms is that they are totally unsupervised, meaning that they

1060 Chapter 27 Introduction to Information Retrieval and Web Search

do not need any training sets or human annotations to perform this thematic
extrapolation. The concept of this class of algorithms is as follows: Every document
is inherently organized thematically. For example, documents about Barack Obama
may mention other presidents, other issues related to the government, or a particular
political theme. An article about one of the Iron Man movies may contain refer-
ences to other sci-fi (science fiction) characters from the Marvel series or generally
have a sci-fi theme. These inherent structures in documents can be extracted by
probabilistic modeling and estimation methods. As another example, let us assume
that every document is made up of a collection of different topics in differing pro-
portions (e.g., a document about politics may also be about presidents and Ameri-
can history). Also, every topic is made up of a collection of words.

By considering Figure 27.6, we can guess that document D, which mentions U.S.
Presidents Barack Obama and George W. Bush, can belong to the topics Presidents,
Politics, Democrats, Republicans, and Government. In general, topics share a fixed
vocabulary of words. This vocabulary of words is extracted from the collection of
documents for which we wish to train the topic models. We generally choose the
number of topics we wish to extract from the collection. Every topic ranks words
differently according to how often a word is represented under a certain topic in
different documents. In Figure 27.6, the bars representing topic proportions should
all sum to 1. Document D primarily belongs to the topic Presidents, as shown in the
bar graph. Figure 27.6 depicts the topics related to Presidents along with the list of
words associated with this topic.

Probabilistic topic modeling estimates topic distributions using a learning algo-
rithm that assumes that documents can be generated as a mixture of topic propor-
tions. These topic proportion estimates are computed using sampling and
expectation maximization algorithms. An algorithm called latent Dirichlet alloca-
tion (LDA)33 is used to generate the topic models. The model assumes a generative
process wherein documents are mixtures of latent topics and topics are distribu-
tions over words. A generative model randomly generates observable data given

Republicans
Presidents

Government
Democrats

Politics

Democratic party
member Barack
Obama is the 44th
President of U.S.
He is preceded by
Republican
President George
W Bush.

Barack Obama
George W Bush
Bill Clinton
policy
defense
military
white house
Ronald Reagan
Jimmy Carter
Richard Nixon

Presidents (Topic)

Topic Proportions

Document D

Figure 27.6
A document D and its
topic proportions.

33See Blei, Ng, and Jordan (2003).

 27.8 Trends in Information Retrieval 1061

some hidden parameters. These hidden/unobserved parameters are the Dirichlet
distribution34 priors for words and topics, topic distributions, and per-topic word dis-
tributions. Bayesian inference methods such as Gibbs sampling35 are used to fit
the hidden parameters based on the observed data (the words in the documents).

27.8.5 Question Answering Systems
Question answering (QA) has become a hot topic of study due to the surge in vir-
tual assistant technology (e.g., Apple’s Siri and Microsoft’s Cortana). These virtual
assistant technologies are advancements in interactive voice response (IVR) sys-
tems, which primarily rely on speech recognition techniques such as keyword spot-
ting. Question answering deals with complex understanding of natural language
queries. Recently, IBM created history by developing the QA system called Watson,
that participated in the Jeopardy! Challenge36 and defeated human players in the
popular TV quiz show. Question answering has emerged as a practical engineering
discipline that comprises techniques such as parsing; named entity recognition
(NER); focus extraction; answer type extraction; relation extraction; ontological
inference; and search, indexing, and classification algorithms. Question answering
techniques also involve knowledge engineering from large unstructured corpora
such as Web document collections and structured databases that incorporate
knowledge from various domains. These document collections are generally large
enough to require application of big data tools and technologies, some of which we
discussed in Chapter 25. In the following sections, we consider the main concepts
involved in question answering.

Types of Questions: In question answering systems, it is important to know the
category or type of question, because answering strategies rely heavily on the type
of questions. Some of these categories are not always mutually exclusive and hence
require hybrid answering strategies. Generally, questions can be categorized into
the following types:

Factoid Questions: This type of question pinpoints the right phrase in a docu-
ment or a database that correctly addresses the question. Examples of this type
include questions such as, “Who is the president of the United States?”, “In
which city was Elvis Presley born?”, ‘Where is Hartsfield Jackson International
Airport located?’, and “At what time will today’s sunset occur?”.

List Questions: This type of question seeks a list of factoid responses that sat-
isfy a given criterion. Examples include “Name three plays that were written by
Shakespeare”, “Name the male actors who played the role of James Bond in the
James Bond 007 movie series”, and “List three red-colored vegetables”.

34S. Kotz, N. Balakrishnan, and N. L. Johnson (2000).
35German and German (1984).
36See Ferrucci et al. (2010).

1062 Chapter 27 Introduction to Information Retrieval and Web Search

Definition Questions: This type of question asks about the definition and
meaning of the concept, and to extract the essential information and properties
of the concept. Examples include “What is an inert gas ?”, “Who is Alexander
the Great?”, and “What is the LIBOR rate?”.

Opinion Questions: This type of question seeks different views on a subject
that the question. For example, “What countries should be allowed to test
nuclear weapons?” and “What is the sentiment in Saudi Arabia about terrorism
in the Middle East?”

In recent years, joint initiatives in research and academia have advocated adopting
common metrics, architectures, tools, and methodologies to create baselines that
will facilitate and improve the QA technique.

Architectures. Most state-of-the-art QA architectures are generally made up of
pipelines that comprise the following stages:

Question Analysis: This stage involves analyzing questions and converting
them to structural representations of analyzed text for processing by down-
stream components. Answer types are extracted from parsed representations of
questions using some or all of the following techniques: shallow semantic pars-
ing, focus detection, answer type classification, named entity recognition, and
co-reference resolution.

 � Shallow semantic parsing: The process of assigning surface-level markups to
sentence structures via supervised machine learning methods. In general,
frames are automatically instantiated for sentences by trying to match “WHO
did WHAT to WHOM, WHEN, WHERE, WHY, and HOW” elements.

 � Focus detection: In an image, certain things stand out whereas others
remain in the background. We say that things that stand out are in focus.
Similarly, in QA, questions have focus words that contain references to
answers. For example, in the question “Which book of Shakespeare is a
tragedy about lovers?”, the focus words “book of Shakespeare” can be
instantiated with the rule “which X”, where X is a noun phrase in a sen-
tence. QA systems use focus words to trigger directed searches and to aid
in answer resolution.

 � Answer type classification: This phase helps determine the categories of
answers in QA. In the preceding example, the headword of the focus words,
“book”, is the answer type for this question. Several machine learning tech-
niques are applied in QA to determine the answer type of a question.

 � Named entity recognition: Named entity recognition seeks to classify ele-
ments in text into predefined categories, such as person, place, animal,
country, river, continent.

 � Co-reference resolution: The task of co-reference resolution is about
identifying multiple expressions in text that refer to the same thing. For
example, in the sentence “John said that he wanted to go to the theater on
Sunday.”, the pronoun “he” refers to “John” and is a co-reference in text.

 27.9 Summary 1063

Query Generation: In this stage, the analyzed text is used to generate multiple
queries using query normalization and expansion techniques for one or more
underlying search engines in which the answers may be embedded. For example,
in the question, “Which book of Shakespeare is about tragedy of lovers?”, the
expanded queries can be “Shakespeare love story”, “novels of Shakespeare”, “tragic
love story author Shakespeare”, “love story genre tragedy author Shakespeare”,
and so on. Extracted keywords, answer types, synonyms information, and named
entities are generally used in different combinations to create different queries.

Search: In this stage, the queries are sent to different search engines and rele-
vant passages are retrieved. Search engines where searches are performed can
be online, such as Google or bing, and offline, such as Lucene or Indri.37

Candidate Answer Generation: Named entity extractors are used on retrieved
passages and matched against desired answer types to come up with candidate
answers. Depending on the desired granularity of the answer, candidate gen-
eration and answer type matching algorithms are applied (e.g., surface pattern
matching and structural matching). In surface pattern matching, regular
expression templates are instantiated with arguments from the question and
matched against lexical chunks of retrieved passages to extract answers. For
example, focus words are aligned with passages containing potential answers to
extract answer candidates. In the sentence, “Romeo and Juliet is a tragic love
story by Shakespeare”, the phrase “Romeo and Juliet” can simply replace
“Which book” in the question, “Which book is a tragic love story by Shake-
speare?”. In structural matching, questions and retrieved passages are parsed
and aligned together using syntactic and semantic alignment to find answer
candidates. A sentence such as, “Shakespeare wrote the tragic love story Romeo
and Juliet” cannot be surface matched with the aforementioned question, but
with correct parsing and alignment will structurally match with the question.

Answer Scoring: In this stage, confidence scores for the candidate answers are
estimated. Similar answers are merged; knowledge sources can be reused to
gather supporting evidence for different candidate answers.

27.9 Summary
In this chapter, we covered an important area called information retrieval (IR) that
is closely related to databases. With the advent of the Web, unstructured data with
text, images, audio, and video is proliferating at phenomenal rates. Although data-
base management systems have a very good handle on structured data, the unstruc-
tured data containing a variety of data types is being stored mainly on ad hoc
information repositories on the Web that are available for consumption primarily
via IR systems. Google, Yahoo, and similar search engines are IR systems that make
the advances in this field readily available for the average end user and give end
users a richer and continually improving search experience.

37http://www.lemurproject.org/indri/

1064 Chapter 27 Introduction to Information Retrieval and Web Search

We started in Section 27.1 by first introducing the field of IR in section 27.1.1 and
comparing IR and database technologies in Section 27.1.2. A brief history of IR was
presented in Section 27.1.3, and the query and browsing modes of interaction in IR
systems were introduced in Section 27.1.4.

We presented in Section 27.2 the various retrieval models used in IR, including
Boolean, vector space, probabilistic, and semantic models. These models allow us to
measure whether a document is relevant to a user query and provide similarity
measurement heuristics. In Section 27.3 we presented different types of queries—in
addition to keyword-based queries, which dominate, there are other types, includ-
ing Boolean, phrase, proximity, natural language, and others for which explicit sup-
port needs to be provided by the retrieval model. Text preprocessing is important in
IR systems, and we discussed in Section 27.4 various activities like stopword
removal, stemming, and the use of thesauruses. We then discussed the construction
and use of inverted indexes in Section 27.5, which are at the core of IR systems and
contribute to factors involving search efficiency. We then discussed in Section 27.6
various evaluation metrics, such as recall precision and F-score, to measure the
goodness of the results of IR queries. The Lucene open source indexing and search
engine and its extension called Solr was discussed. Relevance feedback was briefly
addressed—it is important to modify and improve the retrieval of pertinent infor-
mation for the user through his interaction and engagement in the search process.

We provided in Section 27.7 a somewhat detailed introduction to analysis of the Web
as it relates to information retrieval. We divided this treatment into the analysis of
content, structure, and usage of the Web. Web search was discussed, including an
analysis of the Web link structure (Section 27.7.3), including an introduction to algo-
rithms for ranking the results from a Web search such as PageRank and HITS. Finally,
we briefly discussed current trends, including faceted search, social search, and con-
versational search. We also presented probabilistic modeling of topics of documents
and a popular technique called latent Dirichlet allocation. We ended the chapter with
a discussion of question answering systems (Section 27.7.5), which are becoming very
popular and use tools like Siri from Apple and Cortana from Microsoft.

This chapter provided an introductory treatment of a vast field. The interested
reader should refer to the end-of-chapter bibliography for specialized texts on
information retrieval and search engines.

Review Questions
 27.1. What is structured data and what is unstructured data? Give an example of

each from your experience.

 27.2. Give a general definition of information retrieval (IR). What does informa-
tion retrieval involve when we consider information on the Web?

 27.3. Discuss the types of data and the types of users in today’s information
retrieval systems.

 Review Questions 1065

 27.4. What is meant by navigational, informational, and transformational search?

 27.5. What are the two main modes of interaction with an IR system? Describe
and provide examples.

 27.6. Explain the main differences between the database and IR systems men-
tioned in Table 27.1.

 27.7. Describe the main components of the IR system as shown in Figure 27.1.

 27.8. What are digital libraries? What types of data are typically found in them?

 27.9. Name some digital libraries that you have accessed. What do they contain
and how far back does the data go?

 27.10. Give a brief history of IR and mention the landmark developments in this field.

 27.11. What is the Boolean model of IR? What are its limitations?

 27.12. What is the vector space model of IR? How does a vector get constructed to
represent a document?

 27.13. Define the TF-IDF scheme of determining the weight of a keyword in a
document. Why is it necessary to include IDF in the weight of a term?

 27.14. What are probabilistic and semantic models of IR?

 27.15. Define recall and precision in IR systems.

 27.16. Give the definition of precision and recall in a ranked list of results at
position i.

 27.17. How is an F-score defined as a metric of information retrieval? In what way
does it account for both precision and recall?

 27.18. What are the different types of queries in an IR system? Describe each with
an example.

 27.19. What are the approaches to processing phrase and proximity queries?

 27.20. Describe the detailed IR process shown in Figure 27.2.

 27.21. What is stopword removal and stemming? Why are these processes neces-
sary for better information retrieval?

 27.22. What is a thesaurus? How is it beneficial to IR?

 27.23. What is information extraction? What are the different types of information
extraction from structured text?

 27.24. What are vocabularies in IR systems? What role do they play in the indexing
of documents?

 27.25. Gather five documents that contain about three sentences each and each
contain some related content. Construct an inverted index of all important
stems (keywords) from these documents.

1066 Chapter 27 Introduction to Information Retrieval and Web Search

 27.26. Describe the process of constructing the result of a search request using an
inverted index.

 27.27. Define relevance feedback.

 27.28. Describe the three types of Web analyses discussed in this chapter.

 27.29. List the important tasks mentioned that are involved in analyzing Web con-
tent. Describe each in a couple of sentences.

 27.30. What are the three categories of agent-based Web content analyses men-
tioned in this chapter?

 27.31. What is the database-based approach to analyzing Web content? What are
Web query systems?

 27.32. What algorithms are popular in ranking or determining the importance of
Web pages? Which algorithm was proposed by the founders of Google?

 27.33. What is the basic idea behind the PageRank algorithm?

 27.34. What are hubs and authority pages? How does the HITS algorithm use these
concepts?

 27.35. What can you learn from Web usage analysis? What data does it generate?

 27.36. What mining operations are commonly performed on Web usage data?
Give an example of each.

 27.37. What are the applications of Web usage mining?

 27.38. What is search relevance? How is it determined?

 27.39. Define faceted search. Make up a set of facets for a database containing all
types of buildings. For example, two facets could be “building value or price”
and “building type (residential, office, warehouse, factory, and so on)”.

 27.40. What is social search? What does collaborative social search involve?

 27.41. Define and explain conversational search.

 27.42. Define topic modeling.

 27.43. How do question answering systems work?

Selected Bibliography
Information retrieval and search technologies are active areas of research and
development in industry and academia. There are many IR textbooks that provide
detailed discussion of the materials that we have briefly introduced in this chapter.
The book entitled Search Engines: Information Retrieval in Practice by Croft, Met-
zler, and Strohman (2009) gives a practical overview of search engine concepts and
principles. Introduction to Information Retrieval by Manning, Raghavan, and Schu-
tze (2008) is an authoritative book on information retrieval. Another introductory

 Selected Bibliography 1067

textbook in IR is Modern Information Retrieval by Ricardo Baeza-Yates and Berthier
Ribeiro-Neto (1999), which provides detailed coverage of various aspects of IR
technology. Gerald Salton’s (1968) and van Rijsbergen’s (1979) classic books on
information retrieval provide excellent descriptions of the foundational research
done in the IR field until the late 1960s. Salton also introduced the vector space
model as a model of IR. Manning and Schutze (1999) provide a good summary of
natural language technologies and text preprocessing. “Interactive Information
Retrieval in Digital Environments” by Xie (2008) provides a good human-centered
approach to information retrieval. The book Managing Gigabytes by Witten, Mof-
fat, and Bell (1999) provides detailed discussions for indexing techniques. The
TREC book by Voorhees and Harman (2005) provides a description of test collec-
tion and evaluation procedures in the context of TREC competitions.

Broder (2002) classifies Web queries into three distinct classes—navigational,
informational, and transactional—and presents a detailed taxonomy of Web search.
Covi and Kling (1996) give a broad definition of digital libraries and discuss organi-
zational dimensions of effective digital library use. Luhn (1957) did seminal work in
IR at IBM in the 1950s on autoindexing and business intelligence. The SMART
system (Salton et al. (1993)), developed at Cornell, was one of the earliest advanced
IR systems that used fully automatic term indexing, hierarchical clustering, and
document ranking by degree of similarity to the query. The SMART system repre-
sented documents and queries as weighted term vectors according to the vector
space model.

Porter (1980) is credited with the weak and strong stemming algorithms that have
become standards. Robertson (1997) developed a sophisticated weighting scheme
in the City University of London Okapi system that became very popular in TREC
competitions. Lenat (1995) started the Cyc project in the 1980s for incorporating
formal logic and knowledge bases in information processing systems. Efforts
toward creating the WordNet thesaurus continued in the 1990s and are still ongo-
ing. WordNet concepts and principles are described in the book by Fellbaum
(1998). Rocchio (1971) describes the relevance feedback algorithm, which is
described in Salton’s (1971) book on The SMART Retrieval System—Experiments in
Automatic Document Processing.

Abiteboul, Buneman, and Suciu (1999) provide an extensive discussion of data on
the Web in their book that emphasizes semistructured data. Atzeni and Mendelzon
(2000) wrote an editorial in the VLDB journal on databases and the Web. Atzeni et
al. (2002) propose models and transformations for Web-based data. Abiteboul et al.
(1997) propose the Lord query language for managing semistructured data.

Chakrabarti (2002) is an excellent book on knowledge discovery from the Web. The
book by Liu (2006) consists of several parts, each providing a comprehensive over-
view of the concepts involved with Web data analysis and its applications. Excellent
survey articles on Web analysis include Kosala and Blockeel (2000) and Liu et al.
(2004). Etzioni (1996) provides a good starting point for understanding Web min-
ing and describes the tasks and issues related to data mining on the World Wide
Web. An excellent overview of the research issues, techniques, and development

1068 Chapter 27 Introduction to Information Retrieval and Web Search

efforts associated with Web content and usage analysis is presented by Cooley et al.
(1997). Cooley (2003) focuses on mining Web usage patterns through the use of
Web structure. Spiliopoulou (2000) describes Web usage analysis in detail. Web
mining based on page structure is described in Madria et al. (1999) and Chakraborti
et al. (1999). Algorithms to compute the rank of a Web page are given by Page et al.
(1999), who describe the famous PageRank algorithm, and Kleinberg (1998), who
presents the HITS algorithm.

Harth, Hose, and Schenkel (2014) present techniques for querying and managing
linked data on the Web and show the potential of these techniques for research and
commercial applications. Question answering technology is described in some
detail by Ferrucci et al. (2010), who developed the IBM Watson system. Bikel and
Zitouni (2012) is a comprehensive guide for developing robust and accurate multi-
lingual NLP (natural language processing) systems. Blei, Ng, and Jordan (2003)
provide an overview on topic modeling and latent Dirichlet allocation. For an in-
depth, hands-on guide to Lucene and Solr technologies, refer to the upcoming book
by Moczar (2015).

1069

28
Data Mining Concepts

Over the last several decades, many organizations
have generated a large amount of machine-read-

able data in the form of files and databases. Existing database technology can pro-
cess this data and supports query languages like SQL. However, SQL is a structured
language that assumes the user is aware of the database schema. SQL supports oper-
ations of relational algebra that allow a user to select rows and columns of data from
tables or join related information from tables based on common fields. In the next
chapter, we will see that data warehousing technology affords several types of func-
tionality: that of consolidation, aggregation, and summarization of data. Data ware-
houses let us view the same information along multiple dimensions. In this chapter,
we will focus our attention on another very popular area of interest known as data
mining. As the term connotes, data mining refers to the mining or discovery of
new information in terms of patterns or rules from vast amounts of data. To be
practically useful, data mining must be carried out efficiently on large files and
databases. Although some data mining features are being provided in RDBMSs,
data mining is not well-integrated with database management systems. The busi-
ness world is presently fascinated by the potential of data mining, and the field of
data mining is popularly called business intelligence or data analytics.

We will briefly review the basic concepts and principles of the extensive field of data
mining, which uses techniques from such areas as machine learning, statistics, neu-
ral networks, and genetic algorithms. We will highlight the nature of the informa-
tion that is discovered, the types of problems faced when trying to mine databases,
and the applications of data mining. We will also survey the state of the art of a large
number of commercial data mining tools (see Section 28.7) and describe a number
of research advances that are needed to make this area viable.

chapter 28

1070 Chapter 28 Data Mining Concepts

28.1 Overview of Data Mining Technology
In reports such as the popular Gartner Report,1 data mining has been hailed as one
of the top technologies for the near future. In this section, we relate data mining to
the broader area called knowledge discovery and contrast the two by means of an
illustrative example.

28.1.1 Data Mining versus Data Warehousing
The goal of a data warehouse (see Chapter 29) is to support decision making with
data. Data mining can be used in conjunction with a data warehouse to help with
certain types of decisions. Data mining can be applied to operational databases with
individual transactions. To make data mining more efficient, the data warehouse
should have an aggregated or summarized collection of data. Data mining helps in
extracting meaningful new patterns that cannot necessarily be found by merely
querying or processing data or meta-data in the data warehouse. Therefore, data
mining applications should be strongly considered early, during the design of a data
warehouse. Also, data mining tools should be designed to facilitate their use in con-
junction with data warehouses. In fact, for very large databases running into tera-
bytes and even petabytes of data, successful use of data mining applications will
depend first on the construction of a data warehouse.

28.1.2 Data Mining as a Part of the Knowledge
Discovery Process

Knowledge discovery in databases, frequently abbreviated as KDD, typically
encompasses more than data mining. The knowledge discovery process comprises
six phases:2 data selection, data cleansing, enrichment, data transformation or
encoding, data mining, and the reporting and display of the discovered information.

As an example, consider a transaction database maintained by a specialty consumer
goods retailer. Suppose the client data includes a customer name, zip code, phone
number, date of purchase, item code, price, quantity, and total amount. A variety of
new knowledge can be discovered by KDD processing on this client database. Dur-
ing data selection, data about specific items or categories of items, or from stores in
a specific region or area of the country, may be selected. The data cleansing process
then may correct invalid zip codes or eliminate records with incorrect phone pre-
fixes. Enrichment typically enhances the data with additional sources of informa-
tion. For example, given the client names and phone numbers, the store may
purchase other data about age, income, and credit rating and append them to each
record. Data transformation and encoding may be done to reduce the amount of

1The Gartner Report is one example of the many technology survey publications that corporate
 managers rely on to discuss and select data mining technology.

2This discussion is largely based on Adriaans and Zantinge (1996).

 28.1 Overview of Data Mining Technology 1071

data. For instance, item codes may be grouped in terms of product categories into
audio, video, supplies, electronic gadgets, camera, accessories, and so on. Zip codes
may be aggregated into geographic regions, incomes may be divided into ranges,
and so on. In Figure 29.1, we will show a process called extraction, transformation,
and load (ETL) as a precursor to the data warehouse creation. If data mining is
based on an existing warehouse for this retail store chain, we would expect that the
cleaning has already been applied. It is only after such preprocessing that data min-
ing techniques are used to mine different rules and patterns.

The result of mining may be to discover the following types of new information:

 ■ Association rules—for example, whenever a customer buys video equip-
ment, he or she also buys another electronic gadget.

 ■ Sequential patterns—for example, suppose a customer buys a camera, and
within three months he or she buys photographic supplies, then within six
months he is likely to buy an accessory item. This defines a sequential pattern
of transactions. A customer who buys more than twice in lean periods may be
likely to buy at least once during the December holiday shopping period.

 ■ Classification trees—for example, customers may be classified by frequency
of visits, types of financing used, amount of purchase, or affinity for types of
items; some revealing statistics may be generated for such classes.

As this retail store example shows, data mining must be preceded by significant
data preparation before it can yield useful information that can directly influence
business decisions.

The results of data mining may be reported in a variety of formats, such as listings,
graphic outputs, summary tables, and visualizations.

28.1.3 Goals of Data Mining and Knowledge Discovery
Data mining is typically carried out with some end goals or applications. Broadly
speaking, these goals fall into the following classes: prediction, identification, clas-
sification, and optimization.

 ■ Prediction. Data mining can show how certain attributes within the data
will behave in the future. Examples of predictive data mining include the
analysis of buying transactions to predict what consumers will buy under
certain discounts, how much sales volume a store will generate in a given
period, and whether deleting a product line will yield more profits. In such
applications, business logic is used coupled with data mining. In a scientific
context, certain seismic wave patterns may predict an earthquake with high
probability.

 ■ Identification. Data patterns can be used to identify the existence of an
item, an event, or an activity. For example, intruders trying to break a sys-
tem may be identified by the programs executed, files accessed, and CPU
time per session. In biological applications, existence of a gene may be

1072 Chapter 28 Data Mining Concepts

 identified by certain sequences of nucleotide symbols in the DNA sequence.
The area known as authentication is a form of identification. It ascertains
whether a user is indeed a specific user or one from an authorized class, and
it involves comparing parameters or images or signals against a database.

 ■ Classification. Data mining can partition the data so that different classes or
categories can be identified based on combinations of parameters. For exam-
ple, customers in a supermarket can be categorized into discount- seeking
shoppers, shoppers in a rush, loyal regular shoppers, shoppers attached to
name brands, and infrequent shoppers. This classification may be used in
different analyses of customer buying transactions as a post–mining activity.
Sometimes classification based on common domain knowledge is used as an
input to decompose the mining problem and make it simpler. For instance,
health foods, party foods, and school lunch foods are distinct categories in
the supermarket business. It makes sense to analyze relationships within
and across categories as separate problems. Such categorization may be used
to encode the data appropriately before subjecting it to further data mining.

 ■ Optimization. One eventual goal of data mining may be to optimize the use
of limited resources such as time, space, money, or materials and to maxi-
mize output variables such as sales or profits under a given set of constraints.
As such, this goal of data mining resembles the objective function used in
operations research problems that deals with optimization under constraints.

The term data mining is popularly used in a broad sense. In some situations, it
includes statistical analysis and constrained optimization as well as machine learn-
ing. There is no sharp line separating data mining from these disciplines. It is
beyond our scope, therefore, to discuss in detail the entire range of applications that
make up this vast body of work. For a detailed understanding of the topic, readers
are referred to specialized books devoted to data mining.

28.1.4 Types of Knowledge Discovered during Data Mining
The term knowledge is broadly interpreted as involving some degree of intelligence.
There is a progression from raw data to information to knowledge as we go through
additional processing. Knowledge is often classified as inductive versus deductive.
Deductive knowledge deduces new information based on applying prespecified logi-
cal rules of deduction on the given data. Data mining addresses inductive knowledge,
which discovers new rules and patterns from the supplied data. Knowledge can be
represented in many forms: In an unstructured sense, it can be represented by rules or
propositional logic. In a structured form, it may be represented in decision trees,
semantic networks, neural networks, or hierarchies of classes or frames. It is common
to describe the knowledge discovered during data mining as follows:

 ■ Association rules. These rules correlate the presence of a set of items with
another range of values for another set of variables. Examples: (1) When a
female retail shopper buys a handbag, she is likely to buy shoes. (2) An X-ray
image containing characteristics a and b is likely to also exhibit characteristic c.

 28.2 Association Rules 1073

 ■ Classification hierarchies. The goal is to work from an existing set of events
or transactions to create a hierarchy of classes. Examples: (1) A population
may be divided into five ranges of credit worthiness based on a history of
previous credit transactions. (2) A model may be developed for the factors
that determine the desirability of a store location on a 1–10 scale. (3) Mutual
funds may be classified based on performance data using characteristics
such as growth, income, and stability.

 ■ Sequential patterns. A sequence of actions or events is sought. Example: If
a patient underwent cardiac bypass surgery for blocked arteries and an
aneurysm and later developed high blood urea within a year of surgery, he
or she is likely to suffer from kidney failure within the next 18 months.
Detecting sequential patterns is equivalent to detecting associations among
events with certain temporal relationships.

 ■ Patterns within time series. Similarities can be detected within positions of
a time series of data, which is a sequence of data taken at regular intervals,
such as daily sales or daily closing stock prices. Examples: (1) Stocks of a
utility company, ABC Power, and a financial company, XYZ Securities,
showed the same pattern during 2014 in terms of closing stock prices. (2) Two
products show the same selling pattern in summer but a different one in
winter. (3) A pattern in solar magnetic wind may be used to predict changes
in Earth’s atmospheric conditions.

 ■ Clustering. A given population of events or items can be partitioned (seg-
mented) into sets of “similar” elements. Examples: (1) An entire population
of treatment data on a disease may be divided into groups based on the sim-
ilarity of side effects produced. (2) The adult population in the United States
may be categorized into five groups from most likely to buy to least likely to
buy a new product. (3) The Web accesses made by a collection of users
against a set of documents (say, in a digital library) may be analyzed in terms
of the keywords of documents to reveal clusters or categories of users.

For most applications, the desired knowledge is a combination of the above types.
We expand on each of the above knowledge types in the following sections.

28.2 Association Rules

28.2.1 Market-Basket Model, Support, and Confidence
One of the major technologies in data mining involves the discovery of association
rules. The database is regarded as a collection of transactions, each involving a set of
items. A common example is that of market-basket data. Here the market basket
corresponds to the sets of items a consumer buys in a supermarket during one visit.
Consider four such transactions in a random sample shown in Figure 28.1.

An association rule is of the form X => Y, where X = {x1, x2, … , xn}, and Y = {y1, y2,
… , ym} are sets of items, with xi and yj being distinct items for all i and all j. This

1074 Chapter 28 Data Mining Concepts

association states that if a customer buys X, he or she is also likely to buy Y. In general,
any association rule has the form LHS (left-hand side) => RHS (right-hand side),
where LHS and RHS are sets of items. The set LHS ∪ RHS is called an itemset, the set
of items purchased by customers. For an association rule to be of interest to a data
miner, the rule should satisfy some interest measure. Two common interest measures
are support and confidence.

The support for a rule LHS => RHS is with respect to the itemset; it refers to how
frequently a specific itemset occurs in the database. That is, the support is the per-
centage of transactions that contain all of the items in the itemset LHS ∪ RHS. If
the support is low, it implies that there is no overwhelming evidence that items in
LHS ∪ RHS occur together because the itemset occurs in only a small fraction of
transactions. Another term for support is prevalence of the rule.

The confidence is with regard to the implication shown in the rule. The confidence
of the rule LHS => RHS is computed as the support(LHS ∪ RHS)/support(LHS).
We can think of it as the probability that the items in RHS will be purchased given
that the items in LHS are purchased by a customer. Another term for confidence is
strength of the rule.

As an example of support and confidence, consider the following two rules: milk =>
juice and bread => juice. Looking at our four sample transactions in Figure 28.1, we
see that the support of {milk, juice} is 50% and the support of {bread, juice} is only
25%. The confidence of milk => juice is 66.7% (meaning that, of three transactions
in which milk occurs, two contain juice) and the confidence of bread => juice is
50% (meaning that one of two transactions containing bread also contains juice).

As we can see, support and confidence do not necessarily go hand in hand. The goal
of mining association rules, then, is to generate all possible rules that exceed some
minimum user-specified support and confidence thresholds. The problem is thus
decomposed into two subproblems:

 1. Generate all itemsets that have a support that exceeds the threshold. These
sets of items are called large (or frequent) itemsets. Note that large here
means large support.

 2. For each large itemset, all the rules that have a minimum confidence are
generated as follows: For a large itemset X and Y ⊂ X, let Z = X − Y; then if
support(X)/support(Z) > minimum confidence, the rule Z => Y (that is,
X − Y => Y) is a valid rule.

Generating rules by using all large itemsets and their supports is relatively straight-
forward. However, discovering all large itemsets together with the value for their

Transaction_id Time Items_bought
101 6:35 milk, bread, cookies, juice
792 7:38 milk, juice

1130 8:05 milk, eggs
1735 8:40 bread, cookies, coffee

Figure 28.1
Sample transactions in
market-basket model.

 28.2 Association Rules 1075

support is a major problem if the cardinality of the set of items is very high. A typi-
cal supermarket has thousands of items. The number of distinct itemsets is 2m,
where m is the number of items, and counting support for all possible itemsets
becomes very computation intensive. To reduce the combinatorial search space,
algorithms for finding association rules utilize the following properties:

 ■ A subset of a large itemset must also be large (that is, each subset of a large
itemset exceeds the minimum required support).

 ■ Conversely, a superset of a small itemset is also small (implying that it does
not have enough support).

The first property is referred to as downward closure. The second property, called
the antimonotonicity property, helps to reduce the search space of possible solu-
tions. That is, once an itemset is found to be small (not a large itemset), then any
extension to that itemset, formed by adding one or more items to the set, will also
yield a small itemset.

28.2.2 Apriori Algorithm
The first algorithm to use the downward closure and antimontonicity properties
was the apriori algorithm, shown as Algorithm 28.1.

We illustrate Algorithm 28.1 using the transaction data in Figure 28.1 using a mini-
mum support of 0.5. The candidate 1-itemsets are {milk, bread, juice, cookies, eggs,
coffee} and their respective supports are 0.75, 0.5, 0.5, 0.5, 0.25, and 0.25. The first
four items qualify for L1 since each support is greater than or equal to 0.5. In the
first iteration of the repeat-loop, we extend the frequent 1-itemsets to create the
candidate frequent 2-itemsets, C2. C2 contains {milk, bread}, {milk, juice}, {bread,
juice}, {milk, cookies}, {bread, cookies}, and {juice, cookies}. Notice, for example,
that {milk, eggs} does not appear in C2 since {eggs} is small (by the antimonotonic-
ity property) and does not appear in L1. The supports for the six sets contained in
C2 are 0.25, 0.5, 0.25, 0.25, 0.5, and 0.25 and are computed by scanning the set of
transactions. Only the second 2-itemset {milk, juice} and the fifth 2-itemset {bread,
cookies} have support greater than or equal to 0.5. These two 2-itemsets form the
frequent 2-itemsets, L2.

Algorithm 28.1. Apriori Algorithm for Finding Frequent (Large) Itemsets

Input: Database of m transactions, D, and a minimum support, mins,
represented as a fraction of m.

Output: Frequent itemsets, L1, L2, … , Lk

Begin /* steps or statements are numbered for better readability */

 1. Compute support(ij) = count(ij)/m for each individual item, i1, i2, …, in
by scanning the database once and counting the number of transactions
that item ij appears in (that is, count(ij));

 2. The candidate frequent 1-itemset, C1, will be the set of items i1, i2, …, in;

1076 Chapter 28 Data Mining Concepts

 3. The subset of items containing ij from C1 where support(ij) >= mins
becomes the frequent 1-itemset, L1;

 4. k = 1;

termination = false;

repeat

 1. Lk+1 = (empty set);

 2. Create the candidate frequent (k+1)-itemset, Ck+1, by combining mem-
bers of Lk that have k–1 items in common (this forms candidate frequent
(k+1)-itemsets by selectively extending frequent k-itemsets by one item);

 3. In addition, only consider as elements of Ck+1 those k+1 items such that
every subset of size k appears in Lk;

 4. Scan the database once and compute the support for each member of Ck+1; if
the support for a member of Ck+1 >= mins then add that member to Lk+1;

 5. If Lk+1 is empty then termination = true

else k = k + 1;

until termination;

End;

In the next iteration of the repeat-loop, we construct candidate frequent 3-itemsets
by adding additional items to sets in L2. However, for no extension of itemsets in L2
will all 2-item subsets be contained in L2. For example, consider {milk, juice, bread};
the 2-itemset {milk, bread} is not in L2, hence {milk, juice, bread} cannot be a fre-
quent 3-itemset by the downward closure property. At this point the algorithm ter-
minates with L1 equal to {{milk}, {bread}, {juice}, {cookies}} and L2 equal to {{milk,
juice}, {bread, cookies}}.

Several other algorithms have been proposed to mine association rules. They vary
mainly in terms of how the candidate itemsets are generated and how the supports
for the candidate itemsets are counted. Some algorithms use data structures such as
bitmaps and hashtrees to keep information about itemsets. Several algorithms have
been proposed that use multiple scans of the database because the potential number
of itemsets, 2m, can be too large to set up counters during a single scan. We will
examine three improved algorithms (compared to the Apriori algorithm) for asso-
ciation rule mining: the sampling algorithm, the frequent-pattern tree algorithm,
and the partition algorithm.

28.2.3 Sampling Algorithm
The main idea for the sampling algorithm is to select a small sample, one that fits
in main memory, of the database of transactions and to determine the frequent
itemsets from that sample. If those frequent itemsets form a superset of the frequent
itemsets for the entire database, then we can determine the real frequent itemsets by
scanning the remainder of the database in order to compute the exact support val-
ues for the superset itemsets. A superset of the frequent itemsets can usually be

 28.2 Association Rules 1077

found from the sample by using, for example, the apriori algorithm, with a lowered
minimum support.

In rare cases, some frequent itemsets may be missed and a second scan of the data-
base is needed. To decide whether any frequent itemsets have been missed, the con-
cept of the negative border is used. The negative border with respect to a frequent
itemset, S, and set of items, I, is the minimal itemsets contained in PowerSet(I) and
not in S. The basic idea is that the negative border of a set of frequent itemsets con-
tains the closest itemsets that could also be frequent. Consider the case where a set
X is not contained in the frequent itemsets. If all subsets of X are contained in the
set of frequent itemsets, then X would be in the negative border.

We illustrate this with the following example. Consider the set of items I = {A, B, C,
D, E} and let the combined frequent itemsets of size 1 to 3 be S = {{A}, {B}, {C}, {D},
{AB}, {AC}, {BC}, {AD}, {CD}, {ABC}}. The negative border is {{E}, {BD}, {ACD}}.
The set {E} is the only 1-itemset not contained in S, {BD} is the only 2-itemset not
in S but whose 1-itemset subsets are, and {ACD} is the only 3-itemset whose 2-item-
set subsets are all in S. The negative border is important since it is necessary to
determine the support for those itemsets in the negative border to ensure that no
large itemsets are missed from analyzing the sample data.

Support for the negative border is determined when the remainder of the database
is scanned. If we find that an itemset, X, in the negative border belongs in the set of
all frequent itemsets, then there is a potential for a superset of X to also be frequent.
If this happens, then a second pass over the database is needed to make sure that all
frequent itemsets are found.

28.2.4 Frequent-Pattern (FP) Tree and FP-Growth Algorithm
The frequent-pattern tree (FP-tree) is motivated by the fact that apriori-based algo-
rithms may generate and test a very large number of candidate itemsets. For example,
with 1,000 frequent 1-itemsets, the apriori algorithm would have to generate

1000

2

⎛
⎝⎜

⎞
⎠⎟

or 499,500 candidate 2-itemsets. The FP-growth algorithm is one approach that
eliminates the generation of a large number of candidate itemsets.

The algorithm first produces a compressed version of the database in terms of an
FP-tree (frequent-pattern tree). The FP-tree stores relevant itemset information
and allows for the efficient discovery of frequent itemsets. The actual mining pro-
cess adopts a divide-and-conquer strategy, where the mining process is decom-
posed into a set of smaller tasks that each operates on a conditional FP-tree, a subset
(projection) of the original tree. To start with, we examine how the FP-tree is con-
structed. The database is first scanned and the frequent 1-itemsets along with their
support are computed. With this algorithm, the support is the count of transactions

1078 Chapter 28 Data Mining Concepts

containing the item rather than the fraction of transactions containing the item.
The frequent 1-itemsets are then sorted in nonincreasing order of their support.
Next, the root of the FP-tree is created with a NULL label. The database is scanned a
second time and for each transaction T in the database, the frequent 1-itemsets in T
are placed in order as was done with the frequent 1-itemsets. We can designate this
sorted list for T as consisting of a first item, the head, and the remaining items, the
tail. The itemset information (head, tail) is inserted into the FP-tree recursively,
starting at the root node, as follows:

 1. If the current node, N, of the FP-tree has a child with an item name = head,
then increment the count associated with node N by 1, else create a new
node, N, with a count of 1, link N to its parent and link N with the item
header table (used for efficient tree traversal).

 2. If the tail is nonempty, then repeat step (1) using as the sorted list only the
tail, that is, the old head is removed and the new head is the first item from
the tail and the remaining items become the new tail.

The item header table, created during the process of building the FP-tree, contains
three fields per entry for each frequent item: item identifier, support count, and
node link. The item identifier and support count are self-explanatory. The node
link is a pointer to an occurrence of that item in the FP-tree. Since multiple occur-
rences of a single item may appear in the FP-tree, these items are linked together as
a list where the start of the list is pointed to by the node link in the item header
table. We illustrate the building of the FP-tree using the transaction data in Fig-
ure 28.1. Let us use a minimum support of 2. One pass over the four transactions
yields the following frequent 1-itemsets with associated support: {{(milk, 3)},
{(bread, 2)}, {(cookies, 2)}, {(juice, 2)}}. The database is scanned a second time and
each transaction will be processed again.

For the first transaction, we create the sorted list, T = {milk, bread, cookies, juice}.
The items in T are the frequent 1-itemsets from the first transaction. The items are
ordered based on the nonincreasing ordering of the count of the 1-itemsets found
in pass 1 (that is, milk first, bread second, and so on). We create a NULL root node
for the FP-tree and insert milk as a child of the root, bread as a child of milk, cookies
as a child of bread, and juice as a child of cookies. We adjust the entries for the fre-
quent items in the item header table.

For the second transaction, we have the sorted list {milk, juice}. Starting at the root,
we see that a child node with label milk exists, so we move to that node and update
its count (to account for the second transaction that contains milk). We see that
there is no child of the current node with label juice, so we create a new node with
label juice. The item header table is adjusted.

The third transaction only has 1-frequent item, {milk}. Again, starting at the root,
we see that the node with label milk exists, so we move to that node, increment its
count, and adjust the item header table. The final transaction contains frequent
items, {bread, cookies}. At the root node, we see that a child with label bread does
not exist. Thus, we create a new child of the root, initialize its counter, and then

 28.2 Association Rules 1079

insert cookies as a child of this node and initialize its count. After the item header
table is updated, we end up with the FP-tree and item header table as shown in Fig-
ure 28.2. If we examine this FP-tree, we see that it indeed represents the original
transactions in a compressed format (that is, only showing the items from each
transaction that are large 1-itemsets).

Algorithm 28.2 is used for mining the FP-tree for frequent patterns. With the FP-
tree, it is possible to find all frequent patterns that contain a given frequent item by
starting from the item header table for that item and traversing the node links in the
FP-tree. The algorithm starts with a frequent 1-itemset (suffix pattern) and con-
structs its conditional pattern base and then its conditional FP-tree. The condi-
tional pattern base is made up of a set of prefix paths, that is, where the frequent
item is a suffix. For example, if we consider the item juice, we see from Figure 28.2
that there are two paths in the FP-tree that end with juice: (milk, bread, cookies,
juice) and (milk, juice). The two associated prefix paths are (milk, bread, cookies)
and (milk). The conditional FP-tree is constructed from the patterns in the condi-
tional pattern base. The mining is recursively performed on this FP-tree. The fre-
quent patterns are formed by concatenating the suffix pattern with the frequent
patterns produced from a conditional FP-tree.

Algorithm 28.2. FP-Growth Algorithm for Finding Frequent Itemsets

Input: FP-tree and a minimum support, mins

Output: frequent patterns (itemsets)
procedure FP-growth (tree, alpha);

Begin
 if tree contains a single path P then
 for each combination, beta, of the nodes in the path
 generate pattern (beta ∪ alpha)
 with support = minimum support of nodes in beta

Item Support Link

Milk 3

Bread 2

Cookies 2

Juice 2

Bread: 1Milk: 3

Bread: 1

Cookies: 1

Juice: 1

Juice: 1 Cookies: 1

NULL

Figure 28.2
FP-tree and item
header table.

1080 Chapter 28 Data Mining Concepts

 else
 for each item, i, in the header of the tree do
 begin
 generate pattern beta = (i ∪ alpha) with support = i.support;
 construct beta’s conditional pattern base;
 construct beta’s conditional FP-tree, beta_tree;
 if beta_tree is not empty then
 FP-growth(beta_tree, beta);
 end;
End;

We illustrate the algorithm using the data in Figure 28.1 and the tree in Figure 28.2.
The procedure FP-growth is called with the two parameters: the original FP-tree
and NULL for the variable alpha. Since the original FP-tree has more than a single
path, we execute the else part of the first if statement. We start with the frequent
item, juice. We will examine the frequent items in order of lowest support (that is,
from the last entry in the table to the first). The variable beta is set to juice with sup-
port equal to 2.

Following the node link in the item header table, we construct the conditional pat-
tern base consisting of two paths (with juice as suffix). These are (milk, bread, cook-
ies: 1) and (milk: 1). The conditional FP-tree consists of only a single node, milk: 2.
This is due to a support of only 1 for node bread and cookies, which is below the
minimal support of 2. The algorithm is called recursively with an FP-tree of only a
single node (that is, milk: 2) and a beta value of juice. Since this FP-tree only has
one path, all combinations of beta and nodes in the path are generated—that is,
{milk, juice}—with support of 2.

Next, the frequent item, cookies, is used. The variable beta is set to cookies with
support = 2. Following the node link in the item header table, we construct the con-
ditional pattern base consisting of two paths. These are (milk, bread: 1) and (bread: 1).
The conditional FP-tree is only a single node, bread: 2. The algorithm is called
recursively with an FP-tree of only a single node (that is, bread: 2) and a beta value
of cookies. Since this FP-tree only has one path, all combinations of beta and nodes
in the path are generated, that is, {bread, cookies} with support of 2. The frequent
item, bread, is considered next. The variable beta is set to bread with support = 2.
Following the node link in the item header table, we construct the conditional pat-
tern base consisting of one path, which is (milk: 1). The conditional FP-tree is
empty since the count is less than the minimum support. Since the conditional FP-
tree is empty, no frequent patterns will be generated.

The last frequent item to consider is milk. This is the top item in the item
header table and as such has an empty conditional pattern base and empty
conditional FP-tree. As a result, no frequent patterns are added. The result of
executing the algorithm is the following frequent patterns (or itemsets) with
their support: {{milk: 3}, {bread: 2}, {cookies: 2}, {juice: 2}, {milk, juice: 2},
{bread, cookies: 2}}.

 28.2 Association Rules 1081

28.2.5 Partition Algorithm
Another algorithm, called the partition algorithm,3 is summarized below. If we are
given a database with a small number of potential large itemsets, say, a few thou-
sand, then the support for all of them can be tested in one scan by using a partition-
ing technique. Partitioning divides the database into nonoverlapping subsets; these
are individually considered as separate databases and all large itemsets for that par-
tition, called local frequent itemsets, are generated in one pass. The apriori algo-
rithm can then be used efficiently on each partition if it fits entirely in main
memory. Partitions are chosen in such a way that each partition can be accommo-
dated in main memory. As such, a partition is read only once in each pass. The only
caveat with the partition method is that the minimum support used for each parti-
tion has a slightly different meaning from the original value. The minimum support
is based on the size of the partition rather than the size of the database for deter-
mining local frequent (large) itemsets. The actual support threshold value is the
same as given earlier, but the support is computed only for a partition.

At the end of pass one, we take the union of all frequent itemsets from each parti-
tion. This forms the global candidate frequent itemsets for the entire database.
When these lists are merged, they may contain some false positives. That is, some of
the itemsets that are frequent (large) in one partition may not qualify in several
other partitions and hence may not exceed the minimum support when the original
database is considered. Note that there are no false negatives; no large itemsets will
be missed. The global candidate large itemsets identified in pass one are verified in
pass two; that is, their actual support is measured for the entire database. At the end
of phase two, all global large itemsets are identified. The partition algorithm lends
itself naturally to a parallel or distributed implementation for better efficiency. Fur-
ther improvements to this algorithm have been suggested.4

28.2.6 Other Types of Association Rules

Association Rules among Hierarchies. There are certain types of associations
that are particularly interesting for a special reason. These associations occur among
hierarchies of items. Typically, it is possible to divide items among disjoint hierar-
chies based on the nature of the domain. For example, foods in a supermarket,
items in a department store, or articles in a sports shop can be categorized into
classes and subclasses that give rise to hierarchies. Consider Figure 28.3, which
shows the taxonomy of items in a supermarket. The figure shows two hierarchies—
beverages and desserts, respectively. The entire groups may not produce associa-
tions of the form beverages => desserts, or desserts => beverages. However,
associations of the type Healthy-brand frozen yogurt => bottled water, or Rich

3See Savasere et al. (1995) for details of the algorithm, the data structures used to implement it, and its
performance comparisons.

4See Cheung et al. (1996) and Lin and Dunham (1998).

1082 Chapter 28 Data Mining Concepts

cream-brand ice cream => wine cooler may produce enough confidence and sup-
port to be valid association rules of interest.

Therefore, if the application area has a natural classification of the itemsets into
hierarchies, discovering associations within the hierarchies is of no particular inter-
est. The ones of specific interest are associations across hierarchies. They may occur
among item groupings at different levels.

Multidimensional Associations. Discovering association rules involves search-
ing for patterns in a file. In Figure 28.1, we have an example of a file of customer
transactions with three dimensions: Transaction_id, Time, and Items_bought.
However, our data mining tasks and algorithms introduced up to this point only
involve one dimension: Items_bought. The following rule is an example of includ-
ing the label of the single dimension: Items_bought(milk) => Items_bought(juice).
It may be of interest to find association rules that involve multiple dimensions, for
example, Time(6:30 … 8:00) => Items_bought(milk). Rules like these are called
multidimensional association rules. The dimensions represent attributes of records
of a file or, in terms of relations, columns of rows of a relation, and can be categori-
cal or quantitative. Categorical attributes have a finite set of values that display no
ordering relationship. Quantitative attributes are numeric and their values display
an ordering relationship, for example, <. Items_bought is an example of a categori-
cal attribute and Transaction_id and Time are quantitative.

Beverages

Carbonated Noncarbonated

Orange Apple Others Plain Clear

Colas Clear
drinks

Mixed
drinks

Bottled
juices

Bottled
water

Wine
coolers

Desserts

Ice cream Baked Frozen yogurt

Rich
cream

Reduce Healthy
Figure 28.3
Taxonomy of items
in a supermarket.

 28.2 Association Rules 1083

One approach to handling a quantitative attribute is to partition its values into non-
overlapping intervals that are assigned labels. This can be done in a static manner
based on domain-specific knowledge. For example, a concept hierarchy may group
values for Salary into three distinct classes: low income (0 < Salary < 29,999), middle
income (30,000 < Salary < 74,999), and high income (Salary > 75,000). From here,
the typical apriori-type algorithm or one of its variants can be used for the rule min-
ing since the quantitative attributes now look like categorical attributes. Another
approach to partitioning is to group attribute values based on data distribution (for
example, equi-depth partitioning) and to assign integer values to each partition.
The partitioning at this stage may be relatively fine, that is, a larger number of inter-
vals. Then during the mining process, these partitions may combine with other
adjacent partitions if their support is less than some predefined maximum value.
An apriori-type algorithm can be used here as well for the data mining.

Negative Associations. The problem of discovering a negative association is
harder than that of discovering a positive association. A negative association is of
the following type: 60% of customers who buy potato chips do not buy bottled water.
(Here, the 60% refers to the confidence for the negative association rule.) In a data-
base with 10,000 items, there are 210,000 possible combinations of items, a majority
of which do not appear even once in the database. If the absence of a certain item
combination is taken to mean a negative association, then we potentially have mil-
lions and millions of negative association rules with RHSs that are of no interest at
all. The problem, then, is to find only interesting negative rules. In general, we are
interested in cases in which two specific sets of items appear very rarely in the same
transaction. This poses two problems.

 1. For a total item inventory of 10,000 items, the probability of any two being
bought together is (1/10,000) * (1/10,000) = 10–8. If we find the actual sup-
port for these two occurring together to be zero, that does not represent a
significant departure from expectation and hence is not an interesting (neg-
ative) association.

 2. The other problem is more serious. We are looking for item combinations
with very low support, and there are millions and millions with low or even
zero support. For example, a data set of 10 million transactions has most of
the 2.5 billion pairwise combinations of 10,000 items missing. This would
generate billions of useless rules.

Therefore, to make negative association rules interesting, we must use prior knowl-
edge about the itemsets. One approach is to use hierarchies. Suppose we use the
hierarchies of soft drinks and chips shown in Figure 28.4.

Soft drinks

Joke Wakeup Topsy

Chips

Days Nightos Party’Os

Figure 28.4
Simple hierarchy of
soft drinks and chips.

1084 Chapter 28 Data Mining Concepts

A strong positive association has been shown between soft drinks and chips. If we
find a large support for the fact that when customers buy Days chips they predomi-
nantly buy Topsy and not Joke and not Wakeup, that would be interesting because
we would normally expect that if there is a strong association between Days and
Topsy, there should also be such a strong association between Days and Joke or
Days and Wakeup.5

In the frozen yogurt and bottled water groupings shown in Figure 28.3, suppose
the Reduce versus Healthy-brand division is 80–20 and the Plain and Clear
brands division is 60–40 among respective categories. This would give a joint
probability of Reduce frozen yogurt being purchased with Plain bottled water as
48% among the transactions containing a frozen yogurt and bottled water. If this
support, however, is found to be only 20%, it would indicate a significant nega-
tive association among Reduce yogurt and Plain bottled water; again, that would
be interesting.

The problem of finding negative association is important in the above situations
given the domain knowledge in the form of item generalization hierarchies (that is,
the beverage given and desserts hierarchies shown in Figure 28.3), the existing pos-
itive associations (such as between the frozen yogurt and bottled water groups), and
the distribution of items (such as the name brands within related groups). The
scope of discovery of negative associations is limited in terms of knowing the item
hierarchies and distributions. Exponential growth of negative associations remains
a challenge.

28.2.7 Additional Considerations for Association Rules
The mining of association rules in real-life databases is complicated by the following
factors:

 ■ The cardinality of itemsets in most situations is extremely large, and the vol-
ume of transactions is very high as well. Some operational databases in
retailing and communication industries collect tens of millions of transac-
tions per day.

 ■ Transactions show variability in such factors as geographic location and sea-
sons, making sampling difficult.

 ■ Item classifications exist along multiple dimensions. Hence, driving the dis-
covery process with domain knowledge, particularly for negative rules, is
extremely difficult.

 ■ Quality of data is variable; significant problems exist with missing, errone-
ous, conflicting, as well as redundant data in many industries.

5For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy.

 28.3 Classification 1085

28.3 Classification
Classification is the process of learning a model that describes different classes of
data. The classes are predetermined. For example, in a banking application, cus-
tomers who apply for a credit card may be classified as a poor risk, fair risk, or good
risk. Hence this type of activity is also called supervised learning. Once the model
is built, it can be used to classify new data. The first step—learning the model—is
accomplished by using a training set of data that has already been classified. Each
record in the training data contains an attribute, called the class label, which indi-
cates which class the record belongs to. The model that is produced is usually in the
form of a decision tree or a set of rules. Some of the important issues with regard to
the model and the algorithm that produces the model include the model’s ability to
predict the correct class of new data, the computational cost associated with the
algorithm, and the scalability of the algorithm.

We will examine the approach where our model is in the form of a decision tree. A
decision tree is simply a graphical representation of the description of each class or, in
other words, a representation of the classification rules. A sample decision tree is pic-
tured in Figure 28.5. We see from Figure 28.5 that if a customer is married and if sal-
ary ≥ 50K, then she is a good risk for a bank credit card. This is one of the rules that
describe the class good risk. Traversing the decision tree from the root to each leaf node
forms other rules for this class and the two other classes. Algorithm 28.3 shows the pro-
cedure for constructing a decision tree from a training data set. Initially, all training sam-
ples are at the root of the tree. The samples are partitioned recursively based on selected
attributes. The attribute used at a node to partition the samples is the one with the best
splitting criterion, for example, the one that maximizes the information gain measure.

Married

Salary Acct_balance

Fair risk Good risk

Poor risk

< 20K >= 20K >= 50K < 5K >= 5K

< 25 >= 25

< 50K

NoYes

Fair risk Good risk Poor risk Age

Figure 28.5
Sample decision tree for
credit card applications.

1086 Chapter 28 Data Mining Concepts

Algorithm 28.3. Algorithm for Decision Tree Induction

Input: Set of training data records: R1, R2, … , Rm and set of attributes: A1,
A2, …, An

Output: Decision tree

procedure Build_tree (records, attributes);
Begin
 create a node N;
 if all records belong to the same class C, then
 return N as a leaf node with class label C;
 if attributes is empty then
 return N as a leaf node with class label C, such that the majority of
 records belong to it;
 select attribute Ai (with the highest information gain) from attributes;
 label node N with Ai;
 for each known value, vj, of Ai do
 begin
 add a branch from node N for the condition Ai = vj;
 Sj = subset of records where Ai = vj;
 if Sj is empty then
 add a leaf, L, with class label C, such that the majority of
 records belong to it and return L
 else add the node returned by Build_tree(Sj, attributes − Ai);
 end;
End;

Before we illustrate Algorithm 28.3, we will explain the information gain measure
in more detail. The use of entropy as the information gain measure is motivated by
the goal of minimizing the information needed to classify the sample data in the
resulting partitions and thus minimizing the expected number of conditional tests
needed to classify a new record. The expected information needed to classify train-
ing data of s samples, where the Class attribute has n values (v1, … , vn) and si is the
number of samples belonging to class label vi, is given by

I S S S p pn i i
i

n

1 2 2
1

, , ..., log()= −
=
∑

where pi is the probability that a random sample belongs to the class with label vi. An
estimate for pi is si/s. Consider an attribute A with values {v1, … , vm} used as the test
attribute for splitting in the decision tree. Attribute A partitions the samples into the
subsets S1, … , Sm where samples in each Sj have a value of vj for attribute A. Each Sj
may contain samples that belong to any of the classes. The number of samples in Sj that
belong to class i can be denoted as sij. The entropy associated with using attribute A as
the test attribute is defined as

E A
S S

S
I S S

j nj

j

m

j nj()
...

, ...,=
+ +

× ()
=
∑ 1

1
1

 28.3 Classification 1087

I(s1j, … , snj) can be defined using the formulation for I(s1, … , sn) with pi being replaced
by pij where pij = sij/sj. Now the information gain by partitioning on attribute A, Gain(A),
is defined as I(s1, …, sn) − E(A). We can use the sample training data from Fig-
ure 28.6 to illustrate the algorithm.

The attribute RID represents the record identifier used for identifying an individual
record and is an internal attribute. We use it to identify a particular record in our
example. First, we compute the expected information needed to classify the training
data of 6 records as I(s1, s2) where there are two classes: the first class label value
corresponds to yes and the second to no. So

I(3,3) = − 0.5log2 0.5 − 0.5log2 0.5 = 1

Now, we compute the entropy for each of the four attributes as shown below. For
Married = yes, we have s11 = 2, s21 = 1 and I(s11, s21) = 0.92. For Married = no, we have
s12 = 1, s22 = 2 and I(s12, s22) = 0.92. So the expected information needed to classify a
sample using attribute Married as the partitioning attribute is

E(Married) = 3/6 I(s11, s21) + 3/6 I(s12, s22) = 0.92

The gain in information, Gain(Married), would be 1 − 0.92 = 0.08. If we follow simi-
lar steps for computing the gain with respect to the other three attributes we end up
with

E(Salary) = 0.33 and Gain(Salary) = 0.67
E(Acct_balance) = 0.92 and Gain(Acct_balance) = 0.08
E(Age) = 0.54 and Gain(Age) = 0.46

Since the greatest gain occurs for attribute Salary, it is chosen as the partitioning
attribute. The root of the tree is created with label Salary and has three branches,
one for each value of Salary. For two of the three values, that is, < 20K and > 50K, all
the samples that are partitioned accordingly (records with RIDs 4 and 5 for < 20K
and records with RIDs 1 and 2 for ≥ 50K) fall within the same class loanworthy no
and loanworthy yes, respectively, for those two values. So we create a leaf node for
each. The only branch that needs to be expanded is for the value 20K … 50K with
two samples, records with RIDs 3 and 6 in the training data. Continuing the process
using these two records, we find that Gain(Married) is 0, Gain(Acct_balance) is 1, and
Gain(Age) is 1.

RID Married Salary Acct_balance Age Loanworthy

1 no >=50K <5K >=25 yes

2 yes >=50K >=5K >=25 yes

3 yes 20K. . .50K <5K <25 no

4 no <20K >=5K <25 no

5 no <20K <5K >=25 no

6 yes 20K. . .50K >=5K >=25 yes

Figure 28.6
Sample training data
for classification
algorithm.

1088 Chapter 28 Data Mining Concepts

We can choose either Age or Acct_balance since they both have the largest gain. Let
us choose Age as the partitioning attribute. We add a node with label Age that has
two branches, less than 25, and greater or equal to 25. Each branch partitions the
remaining sample data such that one sample record belongs to each branch and
hence one class. Two leaf nodes are created and we are finished. The final decision
tree is pictured in Figure 28.7.

28.4 Clustering
The previous data mining task of classification deals with partitioning data based
on using a preclassified training sample. However, it is often useful to partition data
without having a training sample; this is also known as unsupervised learning. For
example, in business, it may be important to determine groups of customers who
have similar buying patterns, or in medicine, it may be important to determine
groups of patients who show similar reactions to prescribed drugs. The goal of
clustering is to place records into groups, such that records in a group are simi-
lar to each other and dissimilar to records in other groups. The groups are usu-
ally disjoint.

An important facet of clustering is the similarity function that is used. When the
data is numeric, a similarity function based on distance is typically used. For exam-
ple, the Euclidean distance can be used to measure similarity. Consider two
n-dimensional data points (records) rj and rk. We can consider the value for the ith
dimension as rji and rki for the two records. The Euclidean distance between points
rj and rk in n-dimensional space is calculated as:

Distance(,) ...r r r r r r r rj k j k j k jn kn= − + − + + −1 1

2

2 2

2 2

The smaller the distance between two points, the greater is the similarity as
we think of them. A classic clustering algorithm is the k-means algorithm,
Algorithm 28.4.

Salary

{3} {6}

{4,5}

Class is “no”

Class is “no”

Class is “yes”

Class is “yes”

< 20K
20K . . . 50K

>= 50K

< 25 >= 25

{1,2}Age

Figure 28.7
Decision tree based on sample
training data where the leaf nodes
are represented by a set of RIDs
of the partitioned records.

 28.4 Clustering 1089

Algorithm 28.4. k-Means Clustering Algorithm

Input: a database D, of m records, r1, …, rm and a desired number of clusters k

Output: set of k clusters that minimizes the squared error criterion

Begin
 randomly choose k records as the centroids for the k clusters;
 repeat
 assign each record, ri, to a cluster such that the distance between ri

 and the cluster centroid (mean) is the smallest among the k clusters;
 recalculate the centroid (mean) for each cluster based on the records
 assigned to the cluster;
 until no change;
End;

The algorithm begins by randomly choosing k records to represent the centroids
(means), m1, …, mk, of the clusters, C1, …, Ck. All the records are placed in a
given cluster based on the distance between the record and the cluster mean. If
the distance between mi and record rj is the smallest among all cluster means,
then record rj is placed in cluster Ci. Once all records have been initially placed in
a cluster, the mean for each cluster is recomputed. Then the process repeats, by
examining each record again and placing it in the cluster whose mean is closest.
Several iterations may be needed, but the algorithm will converge, although it
may terminate at a local optimum. The terminating condition is usually the
squared-error criterion. For clusters C1, …, Ck with means m1, …, mk, the error is
defined as:

Error Distance=
∀ ∈=
∑∑ (,)r mj i
r Ci

k

j i

2

1

We will examine how Algorithm 28.4 works with the (two-dimensional) records in
Figure 28.8. Assume that the number of desired clusters k is 2. Let the algorithm
choose records with RID 3 for cluster C1 and RID 6 for cluster C2 as the initial cluster
centroids. The remaining records will be assigned to one of those clusters during
the first iteration of the repeat loop. The record with RID 1 has a distance from C1 of
22.4 and a distance from C2 of 32.0, so it joins cluster C1. The record with RID 2 has

RID Age Years_of_service

5031

52052

51053

5524

01035

52556

Figure 28.8
Sample two-dimensional
records for clustering
example (the RID
column is not
considered).

1090 Chapter 28 Data Mining Concepts

a distance from C1 of 10.0 and a distance from C2 of 5.0, so it joins cluster C2. The
record with RID 4 has a distance from C1 of 25.5 and a distance from C2 of 36.6, so it
joins cluster C1. The record with RID 5 has a distance from C1 of 20.6 and a distance
from C2 of 29.2, so it joins cluster C1. Now, the new means (centroids) for the two
clusters are computed. The mean for a cluster, Ci, with n records of m dimensions is
the vector:

C
n

r
n

ri ji
r C

jm
r Cj i j i

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∀ ∈ ∀ ∈

∑ ∑1 1
,...,

The new mean for C1 is (33.75, 8.75) and the new mean for C2 is (52.5, 25). A sec-
ond iteration proceeds and the six records are placed into the two clusters as fol-
lows: records with RIDs 1, 4, 5 are placed in C1 and records with RIDs 2, 3, 6 are
placed in C2. The mean for C1 and C2 is recomputed as (28.3, 6.7) and (51.7, 21.7),
respectively. In the next iteration, all records stay in their previous clusters and the
algorithm terminates.

Traditionally, clustering algorithms assume that the entire data set fits in main
memory. More recently, researchers have developed algorithms that are efficient
and are scalable for very large databases. One such algorithm is called BIRCH.
BIRCH is a hybrid approach that uses both a hierarchical clustering approach,
which builds a tree representation of the data, as well as additional clustering meth-
ods, which are applied to the leaf nodes of the tree. Two input parameters are used
by the BIRCH algorithm. One specifies the amount of available main memory and
the other is an initial threshold for the radius of any cluster. Main memory is used
to store descriptive cluster information such as the center (mean) of a cluster and
the radius of the cluster (clusters are assumed to be spherical in shape). The radius
threshold affects the number of clusters that are produced. For example, if the
radius threshold value is large, then few clusters of many records will be formed.
The algorithm tries to maintain the number of clusters such that their radius is
below the radius threshold. If available memory is insufficient, then the radius
threshold is increased.

The BIRCH algorithm reads the data records sequentially and inserts them into an
in-memory tree structure, which tries to preserve the clustering structure of the
data. The records are inserted into the appropriate leaf nodes (potential clusters)
based on the distance between the record and the cluster center. The leaf node
where the insertion happens may have to split, depending upon the updated center
and radius of the cluster and the radius threshold parameter. Additionally, when
splitting, extra cluster information is stored, and if memory becomes insufficient,
then the radius threshold will be increased. Increasing the radius threshold may
actually produce a side effect of reducing the number of clusters since some nodes
may be merged.

Overall, BIRCH is an efficient clustering method with a linear computational com-
plexity in terms of the number of records to be clustered.

 28.5 Approaches to Other Data Mining Problems 1091

28.5 Approaches to Other Data
Mining Problems

28.5.1 Discovery of Sequential Patterns
The discovery of sequential patterns is based on the concept of a sequence of item-
sets. We assume that transactions such as the supermarket-basket transactions we
discussed previously are ordered by time of purchase. That ordering yields a
sequence of itemsets. For example, {milk, bread, juice}, {bread, eggs}, {cookies,
milk, coffee} may be such a sequence of itemsets based on three visits by the same
customer to the store. The support for a sequence S of itemsets is the percentage of
the given set U of sequences of which S is a subsequence. In this example, {milk,
bread, juice} {bread, eggs} and {bread, eggs} {cookies, milk, coffee} are considered
subsequences. The problem of identifying sequential patterns, then, is to find all
subsequences from the given sets of sequences that have a user-defined minimum
support. The sequence S1, S2, S3, … is a predictor of the fact that a customer who
buys itemset S1 is likely to buy itemset S2 and then S3, and so on. This prediction is
based on the frequency (support) of this sequence in the past. Various algorithms
have been investigated for sequence detection.

28.5.2 Discovery of Patterns in Time Series
Time series are sequences of events; each event may be a given fixed type of a
transaction. For example, the closing price of a stock or a fund is an event that
occurs every weekday for each stock and fund. The sequence of these values per
stock or fund constitutes a time series. For a time series, one may look for a
variety of patterns by analyzing sequences and subsequences as we did above.
For example, we might find the period during which the stock rose or held
steady for n days, or we might find the longest period over which the stock had
a fluctuation of no more than 1% over the previous closing price, or we might
find the quarter during which the stock had the most percentage gain or percent-
age loss. Time series may be compared by establishing measures of similarity to
identify companies whose stocks behave in a similar fashion. Analysis and min-
ing of time series is an extended functionality of temporal data management (see
Chapter 26).

28.5.3 Regression
Regression is a special application of the classification rule. If a classification rule is
regarded as a function over the variables that maps these variables into a target
class variable, the rule is called a regression rule. A general application of regres-
sion occurs when, instead of mapping a tuple of data from a relation to a specific
class, the value of a variable is predicted based on that tuple. For example, consider
a relation

LAB_TESTS (patient ID, test 1, test 2, … , test n)

1092 Chapter 28 Data Mining Concepts

which contains values that are results from a series of n tests for one patient. The
target variable that we wish to predict is P, the probability of survival of the patient.
Then the rule for regression takes the form:

(test 1 in range1) and (test 2 in range2) and … (test n in rangen) ⇒ P = x,
or x < P ≤ y

The choice depends on whether we can predict a unique value of P or a range of
values for P. If we regard P as a function:

P = f (test 1, test 2, …, test n)

the function is called a regression function to predict P. In general, if the function
appears as

Y = f (X1, X2, … , Xn),

and f is linear in the domain variables xi, the process of deriving f from a given set of
tuples for <X1, X2, … , Xn, y> is called linear regression. Linear regression is a com-
monly used statistical technique for fitting a set of observations or points in n
dimensions with the target variable y.

Regression analysis is a very common tool for analysis of data in many research
domains. The discovery of the function to predict the target variable is equivalent to
a data mining operation.

28.5.4 Neural Networks
A neural network is a technique derived from artificial intelligence research that
uses generalized regression and provides an iterative method to carry it out. Neural
networks use the curve-fitting approach to infer a function from a set of samples.
This technique provides a learning approach; it is driven by a test sample that is
used for the initial inference and learning. With this kind of learning method,
responses to new inputs may be able to be interpolated from the known samples.
This interpolation, however, depends on the world model (internal representation
of the problem domain) developed by the learning method.

Neural networks can be broadly classified into two categories: supervised and unsu-
pervised networks. Adaptive methods that attempt to reduce the output error are
supervised learning methods, whereas those that develop internal representations
without sample outputs are called unsupervised learning methods.

Neural networks self-adapt; that is, they learn from information about a specific
problem. They perform well on classification tasks and are therefore useful in data
mining. Yet they are not without problems. Although they learn, they do not pro-
vide a good representation of what they have learned. Their outputs are highly
quantitative and not easy to understand. As another limitation, the internal repre-
sentations developed by neural networks are not unique. Also, in general, neural
networks have trouble modeling time series data. Despite these shortcomings, they
are popular and frequently used by several commercial vendors.

 28.5 Approaches to Other Data Mining Problems 1093

28.5.5 Genetic Algorithms
Genetic algorithms (GAs) are a class of randomized search procedures capable
of adaptive and robust search over a wide range of search space topologies. Mod-
eled after the adaptive emergence of biological species from evolutionary mecha-
nisms, and introduced by Holland,6 GAs have been successfully applied in such
diverse fields as image analysis, scheduling, and engineering design.

Genetic algorithms extend the idea from human genetics of the four-letter
alphabet (based on the A, C, T, G nucleotides) of the human DNA code. The
construction of a genetic algorithm involves devising an alphabet that encodes
the solutions to the decision problem in terms of strings of that alphabet.
Strings are equivalent to individuals. A fitness function defines which solu-
tions can survive and which cannot. The ways in which solutions can be com-
bined are patterned after the cross-over operation of cutting and combining
strings from a father and a mother. An initial population of a well-varied pop-
ulation is provided, and a game of evolution is played in which mutations
occur among strings. They combine to produce a new generation of individu-
als; the fittest individuals survive and mutate until a family of successful solu-
tions develops.

The solutions produced by GAs are distinguished from most other search
techniques by the following characteristics:

 ■ A GA search uses a set of solutions during each generation rather than a
single solution.

 ■ The search in the string-space represents a much larger parallel search in the
space of encoded solutions.

 ■ The memory of the search done is represented solely by the set of solutions
available for a generation.

 ■ A genetic algorithm is a randomized algorithm since search mechanisms use
probabilistic operators.

 ■ While progressing from one generation to the next, a GA finds near-optimal
balance between knowledge acquisition and exploitation by manipulating
encoded solutions.

Genetic algorithms are used for problem solving and clustering problems. Their
ability to solve problems in parallel provides a powerful tool for data mining. The
drawbacks of GAs include the large overproduction of individual solutions, the
random character of the searching process, and the high demand on computer pro-
cessing. In general, substantial computing power is required to achieve anything of
significance with genetic algorithms.

6Holland’s seminal work (1975) entitled Adaptation in Natural and Artificial Systems introduced the idea
of genetic algorithms.

1094 Chapter 28 Data Mining Concepts

28.6 Applications of Data Mining
Data mining technologies can be applied to a large variety of decision-making con-
texts in business. In particular, areas of significant payoffs are expected to include
the following:

 ■ Marketing. Applications include analysis of consumer behavior based on
buying patterns; determination of marketing strategies, including adver-
tising, store location, and targeted mailing; segmentation of customers,
stores, or products; and design of catalogs, store layouts, and advertising
campaigns.

 ■ Finance. Applications include analysis of creditworthiness of clients; seg-
mentation of account receivables; performance analysis of finance invest-
ments like stocks, bonds, and mutual funds; evaluation of financing options;
and fraud detection.

 ■ Manufacturing. Applications involve optimization of resources like
machines, personnel, and materials; and optimal design of manufacturing
processes, shop-floor layouts, and product design, such as for automobiles
based on customer requirements.

 ■ Healthcare. Applications include discovery of patterns in radiological
images, analysis of microarray (gene-chip) experimental data to cluster
genes and to relate to symptoms or diseases, analysis of side effects of drugs
and effectiveness of certain treatments, optimization of processes within a
hospital, and analysis of the relationship between patient wellness data and
doctor qualifications.

28.7 Commercial Data Mining Tools
Currently, commercial data mining tools use several common techniques to extract
knowledge. These include association rules, clustering, neural networks, sequenc-
ing, and statistical analysis. We discussed these earlier. Also used are decision trees,
which are a representation of the rules used in classification or clustering, and sta-
tistical analyses, which may include regression and many other techniques. Other
commercial products use advanced techniques such as genetic algorithms, case-
based reasoning, Bayesian networks, nonlinear regression, combinatorial optimiza-
tion, pattern matching, and fuzzy logic. In this chapter, we have already discussed
some of these.

Most data mining tools use the ODBC (Open Database Connectivity) interface.
ODBC is an industry standard that works with databases; it enables access to data in
most of the popular database programs such as Access, dBASE, Informix, Oracle,
and SQL Server. Some of these software packages provide interfaces to specific
database programs; the most common are Oracle, Access, and SQL Server. Most of
the tools work in the Microsoft Windows environment and a few work in the UNIX
operating system. The trend is for all products to operate under the Microsoft

 28.7 Commercial Data Mining Tools 1095

 Windows environment. One tool, Data Surveyor, mentions ODMG compliance;
see Chapter 12, where we discussed the ODMG object-oriented standard.

In general, these programs perform sequential processing in a single machine.
Many of these products work in the client/server mode. Some products incorporate
parallel processing in parallel computer architectures and work as a part of online
analytical processing (OLAP) tools.

28.7.1 User Interface
Most of the tools run in a graphical user interface (GUI) environment. Some prod-
ucts include sophisticated visualization techniques to view data and rules (for
example, SGI’s MineSet), and are even able to manipulate data this way interac-
tively. Text interfaces are rare and are more common in tools available for UNIX,
such as IBM’s Intelligent Miner.

28.7.2 Application Programming Interface
Usually, the application programming interface (API) is an optional tool. Most
products do not permit using their internal functions. However, some of them
allow the application programmer to reuse their code. The most common inter-
faces are C libraries and dynamic link libraries (DLLs). Some tools include propri-
etary database command languages.

Table 28.1 lists 11 representative data mining tools. To date, there are hundreds of
commercial data mining products available worldwide. Non-U.S. products include
Data Surveyor from the Netherlands and PolyAnalyst from Russia.

28.7.3 Future Directions
Data mining tools are continually evolving, building on ideas from the latest scien-
tific research. Many of these tools incorporate the latest algorithms taken from arti-
ficial intelligence (AI), statistics, and optimization. Currently, fast processing is
done using modern database techniques—such as distributed processing—in cli-
ent/server architectures, in parallel databases, and in data warehousing. For the
future, the trend is toward developing Internet capabilities more fully. Additionally,
hybrid approaches will become commonplace, and processing will be done using
all resources available. Processing will take advantage of both parallel and distrib-
uted computing environments. This shift is especially important because modern
databases contain very large amounts of information.

The primary direction for data mining is to analyze terabytes and petabytes of data
in the so-called big data systems that we presented in Chapter 25. These systems are
being equipped with their own tools and libraries for data mining, such as Mahout,
which runs on top of Hadoop, which we described in detail. The data mining area
will also be closely tied to data that will be housed in the cloud in data warehouses

1096 Chapter 28 Data Mining Concepts

Table 28.1 Some Representative Data Mining Tools

Company Product Technique Platform Interface*

AcknoSoft Kate Decision trees, case-based
reasoning

Windows
UNIX

Microsoft
Access

Angoss Knowledge SEEKER Decision trees, statistics Windows ODBC

Business Objects Business Miner Neural nets, machine
learning

Windows ODBC

CrossZ QueryObject Statistical analysis,
optimization algorithm

Windows MVS
UNIX

ODBC

Data Distilleries Data Surveyor Comprehensive; can
mix different types of
data mining

UNIX ODBC and
ODMG-
compliant

DBMiner
Technology Inc.

DBMiner OLAP analysis, associa-
tions, classification,
clustering algorithms

Windows Microsoft 7.0
OLAP

IBM Intelligent Miner Classification, association
rules, predictive models

UNIX (AIX) IBM DB2

Megaputer
Intelligence

PolyAnalyst Symbolic knowledge
acquisition, evolutionary
programming

Windows OS/2 ODBC
Oracle DB2

NCR Management
Discovery Tool (MDT)

Association rules Windows ODBC

Purple Insight MineSet Decision trees,
association rules

UNIX (Irix) Oracle
Sybase
Informix

SAS Enterprise Miner Decision trees, association
rules, Nneural nets,
regression, clustering

UNIX (Solaris)
Windows
Macintosh

ODBC
Oracle
AS/400

*ODBC: Open Database Connectivity
ODMG: Object Data Management Group

and brought into service for mining operations as needed using OLAP (online ana-
lytical processing) servers. Not only are multimedia databases growing, but, in
addition, image storage and retrieval are slow operations. Also, the cost of second-
ary storage is decreasing, so massive information storage will be feasible, even for
small companies. Thus, data mining programs will have to deal with larger sets of
data of more companies.

Most of data mining software will use the ODBC standard to extract data from
business databases; proprietary input formats can be expected to disappear.
There is a definite need to include nonstandard data, including images and other
multimedia data, as source data for data mining.

 Review Questions 1097

28.8 Summary
In this chapter, we surveyed the important discipline of data mining, which uses
database technology to discover additional knowledge or patterns in the data. We
gave an illustrative example of knowledge discovery in databases, which has a wider
scope than data mining. For data mining, among the various techniques, we focused
on the details of association rule mining, classification, and clustering. We pre-
sented algorithms in each of these areas and illustrated with examples of how those
algorithms work.

A variety of other techniques, including the AI-based neural networks and genetic
algorithms, were also briefly discussed. Active research is ongoing in data mining,
and we have outlined some of the expected research directions. In the future data-
base technology products market, a great deal of data mining activity is expected.
We summarized 11 out of several hundred data mining tools available; future
research is expected to extend the number and functionality significantly.

Review Questions
 28.1. What are the different phases of the knowledge discovery from databases?

Describe a complete application scenario in which new knowledge may be
mined from an existing database of transactions.

 28.2. What are the goals or tasks that data mining attempts to facilitate?

 28.3. What are the five types of knowledge produced from data mining?

 28.4. What are association rules as a type of knowledge? Define support and confi-
dence, and use these definitions to define an association rule.

 28.5. What is the downward closure property? How does it aid in developing an
efficient algorithm for finding association rules; that is, with regard to find-
ing large itemsets?

 28.6. What was the motivating factor for the development of the FP-tree algo-
rithm for association rule mining?

 28.7. Describe an association rule among hierarchies and provide an example.

 28.8. What is a negative association rule in the context of the hierarchy in Figure 28.3?

 28.9. What are the difficulties of mining association rules from large databases?

 28.10. What are classification rules, and how are decision trees related to them?

 28.11. What is entropy, and how is it used in building decision trees?

 28.12. How does clustering differ from classification?

 28.13. Describe neural networks and genetic algorithms as techniques for data
mining. What are the main difficulties in using these techniques?

1098 Chapter 28 Data Mining Concepts

Exercises
 28.14. Apply the apriori algorithm to the following data set.

Trans_id Items_purchased

101 milk, bread, eggs

102 milk, juice

103 juice, butter

104 milk, bread, eggs

105 coffee, eggs

106 coffee

107 coffee, juice

108 milk, bread, cookies, eggs

109 cookies, butter

110 milk, bread

 The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2
for the minimum support value.

 28.15. Show two rules that have a confidence of 0.7 or greater for an itemset con-
taining three items from Exercise 28.14.

 28.16. For the partition algorithm, prove that any frequent itemset in the database
must appear as a local frequent itemset in at least one partition.

 28.17. Show the FP-tree that would be made for the data from Exercise 28.14.

 28.18. Apply the FP-growth algorithm to the FP-tree from Exercise 28.17 and show
the frequent itemsets.

 28.19. Apply the classification algorithm to the following set of data records. The
class attribute is Repeat_customer.

RID Age City Gender Education Repeat_customer
101 20 … 30 NY F college YES

102 20 … 30 SF M graduate YES

103 31 … 40 NY F college YES

104 51 … 60 NY F college NO

105 31 … 40 LA M high school NO

106 41 … 50 NY F college YES

107 41 … 50 NY F graduate YES

108 20 … 30 LA M college YES

109 20 … 30 NY F high school NO

110 20 … 30 NY F college YES

 Selected Bibliography 1099

 28.20. Consider the following set of two-dimensional records:

RID Dimension1 Dimension2

1 8 4

2 5 4

3 2 4

4 2 6

5 2 8

6 8 6

 Also consider two different clustering schemes: (1) where Cluster1 contains
records {1, 2, 3} and Cluster2 contains records {4, 5, 6}, and (2) where Cluster1
contains records {1, 6} and Cluster2 contains records {2, 3, 4, 5}. Which scheme
is better and why?

 28.21. Use the k-means algorithm to cluster the data from Exercise 28.20. We can
use a value of 3 for K, and we can assume that the records with RIDs 1, 3,
and 5 are used for the initial cluster centroids (means).

 28.22. The k-means algorithm uses a similarity metric of distance between a record
and a cluster centroid. If the attributes of the records are not quantitative but
categorical in nature, such as Income_level with values {low, medium, high}
or Married with values {Yes, No} or State_of_residence with values {Alabama,
Alaska, … , Wyoming}, then the distance metric is not meaningful. Define a
more suitable similarity metric that can be used for clustering data records
that contain categorical data.

Selected Bibliography
Literature on data mining comes from several fields, including statistics, mathe-
matical optimization, machine learning, and artificial intelligence. Chen et al.
(1996) give a good summary of the database perspective on data mining. The book
by Han and Kamber (2006) is an excellent text and describes in detail the different
algorithms and techniques used in the data mining area. Work at IBM Almaden
Research has produced a large number of early concepts and algorithms as well as
results from some performance studies. Agrawal et al. (1993) report the first major
study on association rules. Their apriori algorithm for market-basket data in
Agrawal and Srikant (1994) is improved by using partitioning in Savasere et al.
(1995); Toivonen (1996) proposes sampling as a way to reduce the processing effort.
Cheung et al. (1996) extends the partitioning to distributed environments; Lin and
Dunham (1998) propose techniques to overcome problems with data skew. Agrawal
et al. (1993b) discuss the performance perspective on association rules. Mannila et
al. (1994), Park et al. (1995), and Amir et al. (1997) present additional efficient algo-
rithms related to association rules. Han et al. (2000) present the FP-tree algorithm

1100 Chapter 28 Data Mining Concepts

discussed in this chapter. Srikant and Agrawal (1995) proposes mining generalized
rules. Savasere et al. (1998) present the first approach to mining negative associa-
tions. Agrawal et al. (1996) describe the Quest system at IBM. Sarawagi et al. (1998)
describe an implementation where association rules are integrated with a relational
database management system. Piatesky-Shapiro and Frawley (1992) have contrib-
uted papers from a wide range of topics related to knowledge discovery. Zhang et al.
(1996) present the BIRCH algorithm for clustering large databases. Information
about decision tree learning and the classification algorithm presented in this chap-
ter can be found in Mitchell (1997).

Adriaans and Zantinge (1996), Fayyad et al. (1997), and Weiss and Indurkhya (1998)
are books devoted to the different aspects of data mining and its use in prediction.
The idea of genetic algorithms was proposed by Holland (1975); a good survey of
genetic algorithms appears in Srinivas and Patnaik (1994). Neural networks have a
vast literature; a comprehensive introduction is available in Lippman (1987).

Tan, Steinbach, and Kumar (2006) provides a comprehensive introduction to data
mining and has a detailed set of references. Readers are also advised to consult pro-
ceedings of two prominent annual conferences in data mining: the Knowledge
Discovery and Data Mining Conference (KDD), which has been running since 1995,
and the SIAM International Conference on Data Mining (SDM), which has been run-
ning since 2001. Links to past conferences may be found at http://dblp.uni-trier.de.

1101

29
Overview of Data

Warehousing and OLAP

Data warehouses are databases that store and
maintain analytical data separately from transac-

tion-oriented databases for the purpose of decision support. Regular transaction-
oriented databases store data for a limited period of time before the data loses its
immediate usefulness and it is archived. On the other hand, data warehouses tend
to keep years’ worth of data in order to enable analysis of historical data. They
provide storage, functionality, and responsiveness to queries beyond the capabili-
ties of transaction-oriented databases. Accompanying this ever-increasing power
is a great demand to improve the data access performance of databases. In modern
organizations, users of data are often completely removed from the data sources.
Many people only need read-access to data, but still need fast access to a larger
volume of data than can conveniently be downloaded to their desktops. Often
such data comes from multiple databases. Because many of the analyses performed
are recurrent and predictable, software vendors and systems support staff are
designing systems to support these functions. Data warehouses are modeled and
structured differently, they use different types of technologies for storage and
retrieval, and they are used by different types of users than transaction-oriented
databases. Presently there is a great need to provide decision makers from middle
management upward with information at the correct level of detail to support
decision making. Data warehousing, online analytical processing (OLAP), and data
mining provide this functionality. We gave an introduction to data mining tech-
niques in Chapter 28. In this chapter, we give a broad overview of data warehous-
ing and OLAP technologies.

chapter 29

1102 Chapter 29 Overview of Data Warehousing and OLAP

29.1 Introduction, Definitions, and Terminology
In Chapter 1, we defined a database as a collection of related data and a database
system as a database and database software together. A data warehouse is also a col-
lection of information as well as a supporting system. However, a clear distinction
exists. Traditional databases are transactional (relational, object-oriented, network,
or hierarchical). Data warehouses have the distinguishing characteristic that they
are mainly intended for decision-support applications. They are optimized for data
retrieval, not routine transaction processing.

Because data warehouses have been developed in numerous organizations to meet
particular needs, there is no single, canonical definition of the term data warehouse.
Professional magazine articles and books in the popular press have elaborated on
the meaning in a variety of ways. Vendors have capitalized on the popularity of the
term to help market a variety of related products, and consultants have provided a
large variety of services, all under the data warehousing banner. However, data
warehouses are distinct from traditional databases in their structure, functioning,
performance, and purpose.

W. H. Inmon1 characterized a data warehouse as a subject-oriented, integrated,
nonvolatile, time-variant collection of data in support of management’s decisions.
Data warehouses provide access to data for complex analysis, knowledge discovery,
and decision making through ad hoc and canned queries. Canned queries refer to
a-priori defined queries with parameters that may recur with high frequency. They
support high-performance demands on an organization’s data and information.
Several types of applications—OLAP, DSS, and data mining applications—are sup-
ported. We define each of these next.

OLAP (online analytical processing) is a term used to describe the analysis of
complex data from the data warehouse. In the hands of skilled knowledge workers,
OLAP tools enable quick and straightforward querying of the analytical data stored
in data warehouses and data marts (analytical databases similar to data warehouses
but with a defined narrow scope).

DSS (decision-support systems), also known as EIS (or MIS)—executive
 information systems (or management information systems), not to be confused
with enterprise integration systems—support an organization’s leading decision
makers with higher-level (analytical) data for complex and important decisions.
Data mining (which we discussed in Chapter 28) is used for knowledge discovery,
the ad hoc process of searching data for unanticipated new knowledge (not unlike
looking for pearls of wisdom in an ocean of data).

Traditional databases support online transaction processing (OLTP), which
includes insertions, updates, and deletions while also supporting information query
requirements. Traditional relational databases are optimized to process queries that

1Inmon (1992) is credited with initially using the term warehouse. Inmon et al. (2008) is titled “DW 2.0:
The architecture for the next generation of Data Warehousing.”

 29.2 Characteristics of Data Warehouses 1103

may touch a small part of the database and transactions that deal with insertions or
updates of a few tuples per relation to process. Thus, they cannot be optimized for
OLAP, DSS, or data mining. By contrast, data warehouses are designed precisely to
support efficient extraction, processing, and presentation for analytic and decision-
making purposes. In comparison to traditional databases, data warehouses gener-
ally contain very large amounts of data from multiple sources that may include
databases from different data models and sometimes files acquired from indepen-
dent systems and platforms.

29.2 Characteristics of Data Warehouses
To discuss data warehouses and distinguish them from transactional databases
calls for an appropriate data model. The multidimensional data model (explained
in more detail in Section 29.3) is a good fit for OLAP and decision-support tech-
nologies. In contrast to multidatabases, which provide access to disjoint and
usually heterogeneous databases, a data warehouse is frequently a store of inte-
grated data from multiple sources, processed for storage in a multidimensional
model. Unlike most transactional databases, data warehouses typically support
time series and trend analyses along with what-if or predictive-type analyses, all
of which require more historical data than is generally maintained in transac-
tional databases.

Compared with transactional databases, data warehouses are nonvolatile. This
means that information in the data warehouse is typically not subject to modifica-
tion and is often referred to as read/append/purge only. A data warehouse may be
regarded as non–real-time with periodic insertions. In transactional systems, trans-
actions are the unit and are the agent of change to the database; by contrast, data
warehouse information is much more coarse-grained and is refreshed according to a
careful choice of refresh policy, usually incremental. Warehouse insertions are han-
dled by the warehouse’s ETL (extract, transform, load) process, which does a large
amount of preprocessing and which is shown in Figure 29.1. We can also describe

Databases

Backflushing

Data mining

DSS
EIS

OLAP

Other data inputs

Updates/new data

Extract, Transform,
Load (ETL) Metadata

Data

Data Warehouse

Figure 29.1
Overview of the general
architecture of a data
warehouse.

1104 Chapter 29 Overview of Data Warehousing and OLAP

data warehousing more generally as a collection of decision-support technologies
aimed at enabling the knowledge worker (executive, manager, analyst) to make better
and faster decisions.2 Figure 29.1 gives an overview of the conceptual structure of a
data warehouse. It shows the entire data warehousing process, which includes pos-
sible cleaning and reformatting of data before loading it into the warehouse. This
process is handled by tools known as ETL (extraction, transformation, and loading)
tools. At the back end of the process, OLAP, data mining, and DSS may generate
new relevant information such as rules (or additional meta-data); this information is
shown in Figure 29.1 as going back as additional data inputs into the warehouse. The
figure also shows that data sources may include files.

The important characteristics of data warehouses that accompanied the defini-
tion of the term OLAP in 1993 included the following, and they are applicable
even today:3

 ■ Multidimensional conceptual view

 ■ Unlimited dimensions and aggregation levels

 ■ Unrestricted cross-dimensional operations

 ■ Dynamic sparse matrix handling

 ■ Client/server architecture

 ■ Multiuser support

 ■ Accessibility

 ■ Transparency

 ■ Intuitive data manipulation

 ■ Inductive and deductive analysis

 ■ Flexible distributed reporting

Because they encompass large volumes of data, data warehouses are generally an
order of magnitude (sometimes two orders of magnitude) larger than the source
databases. The sheer volume of data (likely to be in terabytes or even petabytes) is
an issue that has been dealt with through enterprise-wide data warehouses, virtual
data warehouses, logical data warehouses, and data marts:

 ■ Enterprise-wide data warehouses are huge projects requiring massive
investment of time and resources.

 ■ Virtual data warehouses provide views of operational databases that are
materialized for efficient access.

 ■ Logical data warehouses use data federation, distribution, and virtualiza-
tion techniques.

 ■ Data marts generally are targeted to a subset of the organization, such as a
department, and are more tightly focused.

3Codd and Salley (1993) coined the term OLAP and mentioned the characteristics listed here.

2Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting definition.

 29.3 Data Modeling for Data Warehouses 1105

Other terms frequently encountered in the context of data warehousing are
as follows:

 ■ Operational data store (ODS): This term is commonly used for intermedi-
ate form of databases before they are cleansed, aggregated, and transformed
into a data warehouse.

 ■ Analytical data store (ADS): Those are the database that are built for the
purpose of conducting data analysis. Typically, ODSs are reconfigured and
repurposed into ADSs through the processes of cleansing, aggregation, and
transformation.

29.3 Data Modeling for Data Warehouses
Multidimensional models take advantage of inherent relationships in data to popu-
late data in multidimensional matrices called data cubes. (These may be called hyper-
cubes if they have more than three dimensions.) For data that lends itself to
multidimensional modeling, query performance in multidimensional matrices can
be much better than in the relational data model. Three examples of dimensions in a
corporate data warehouse are the corporation’s fiscal periods, products, and regions.

A standard spreadsheet is a two-dimensional matrix. One example would be a
spreadsheet of regional sales by product for a particular time period. Products could
be shown as rows, with columns comprising sales revenues for each region. (Fig-
ure 29.2 shows this two-dimensional organization.) Adding a time dimension, such
as an organization’s fiscal quarters, would produce a three-dimensional matrix,
which could be represented using a data cube.

Figure 29.3 shows a three-dimensional data cube that organizes product sales data by
fiscal quarters and sales regions. Each cell could contain data for a specific product,

Reg 1

P123

P124

P125

P126

Region

P
ro

du
ct

Reg 2 Reg 3

Figure 29.2
A two-dimensional matrix
model.

1106 Chapter 29 Overview of Data Warehousing and OLAP

specific fiscal quarter, and specific region. By including additional dimensions, a data
hypercube could be produced, although more than three dimensions cannot be easily
visualized or graphically presented. The data can be queried directly in any combina-
tion of dimensions, thus bypassing complex database queries. Tools exist for viewing
data according to the user’s choice of dimensions.

Changing from one-dimensional hierarchy (orientation) to another is easily accom-
plished in a data cube with a technique called pivoting (also called rotation). In this
technique, the data cube can be thought of as rotating to show a different orienta-
tion of the axes. For example, you might pivot the data cube to show regional sales
revenues as rows, the fiscal quarter revenue totals as columns, and the company’s
products in the third dimension (Figure 29.4). Hence, this technique is equivalent
to having a regional sales table for each product separately, where each table shows
quarterly sales for that product region by region. The term slice is used to refer to a
two-dimensional view of a three- or higher-dimensional cube. The Product vs.
Region 2-D view shown in Figure 29.2 is a slice of the 3-D cube shown in Figure
29.3. The popular term “slice and dice” implies a systematic reduction of a body of
data into smaller chunks or views so that the information is made visible from mul-
tiple angles or viewpoints.

Multidimensional models lend themselves readily to hierarchical views in what is
known as roll-up display and drill-down display. A roll-up display moves up the

P126

P127

P
ro

du
ct

P125

P124

P123

Reg 1
Reg 2

Region
Reg 3

Qtr 1
Qtr 2Fiscal_quarter

Qtr 3
Qtr 4

Figure 29.3
A three-dimensional data
cube model.

 29.3 Data Modeling for Data Warehouses 1107

hierarchy, grouping into larger units along a dimension (for example, summing
weekly data by quarter or by year). Figure 29.5 shows a roll-up display that moves
from individual products to a coarser grain of product categories. Shown in Fig-
ure 29.6, a drill-down display provides the opposite capability, furnishing a
finer-grained view, perhaps disaggregating country sales by region and then

Reg 4

R
eg

io
n

Reg 3

Reg 2

Reg 1 Qtr 1

Qtr 2

Fiscal quarter

Qtr 3
Qtr 4

P 123
P 124

Product
P 125

P 126
P 127

Figure 29.4
Pivoted version of the data
cube from Figure 29.3.

Products
1XX

Products
2XX

Products
3XX

Products
4XX

Region

P
ro

du
ct

 c
at

eg
or

ie
s

Region 1 Region 2 Region 3

Figure 29.5
The roll-up operation.

1108 Chapter 29 Overview of Data Warehousing and OLAP

regional sales by subregion and also breaking up products by styles. Typically, in
a warehouse, the drill-down capability is limited to the lowest level of aggregated
data stored in the warehouse. For example, compared to the data shown in Fig-
ure 29.6, lower- level data will correspond to something like “the total sales for
style P123 substyle A color Black in zipcode 30022 of sub-region 1.” That level of
aggregation may have been kept in the ODS. Some DBMSs like Oracle offer the
“nested table” concept, which enables access to lower levels of data and thus
makes the drill-down penetrate deeper.

The multidimensional model (also called the dimensional model)-involves two
types of tables: dimension tables and fact tables. A dimension table consists of
tuples of attributes of the dimension. A fact table can be thought of as having
tuples, one per a recorded fact. This fact contains some measured or observed
variable(s) and identifies it (them) with pointers to dimension tables. The fact
table contains the data, and the dimensions identify each tuple in that data.
Another way to look at a fact table is as an agglomerated view of the transaction
data whereas each dimension table represents so-called “master data” that those
transactions belonged to. In multidimensional database systems, the multidimen-
sional model has been implemented as specialized software system known as a
multidimensional database, which we do not discuss. Our treatment of the multi-
dimensional model is based on storing the warehouse as a relational database in
an RDBMS.

Figure 29.7 shows an example of a fact table that can be viewed from the perspective
of multi-dimension tables. Two common multidimensional schemas are the star
schema and the snowflake schema. The star schema consists of a fact table with a
single table for each dimension (Figure 29.7). The snowflake schema is a variation
on the star schema in which the dimensional tables from a star schema are organized

A
B
C
D

P123
Styles

P124
Styles

P125
Styles

A
B
C

A
B
C
D

Sub_reg 1 Sub_reg 2

Region 1 Region 2

Sub_reg 3 Sub_reg 4 Sub_reg 1

Figure 29.6
The drill-down
operation.

 29.3 Data Modeling for Data Warehouses 1109

into a hierarchy by normalizing them (Figure 29.8). A fact constellation is a set
of fact tables that share some dimension tables. Figure 29.9 shows a fact constella-
tion with two fact tables, business results and business forecast. These share the
dimension table called product. Fact constellations limit the possible queries for
the warehouse.

Data warehouse storage also utilizes indexing techniques to support high-
performance access (see Chapter 17 for a discussion of indexing). A technique called
bitmap indexing constructs a bit vector for each value in a domain (column) being
indexed. It works very well for domains of low cardinality. There is a 1 bit placed in

Dimension table

Product

Prod_no
Prod_name
Prod_descr
Prod_style
Prod_line

Fact table

Business results

Product
Quarter
Region
Sales_revenue

Dimension table

Fiscal quarter

Qtr
Year
Beg_date
End_date

Dimension table

Region
Subregion

Figure 29.7
A star schema with fact
and dimensional tables.

Dimension tables

Pname

Prod_name
Prod_descr Product

Prod_no
Prod_name
Style
Prod_line_no

Fact table

Business results

Product
Quarter
Region
Revenue

Pline

Prod_line_no
Prod_line_name

Dimension tables

Fiscal quarter

Qtr
Year
Beg_date

FQ dates

Beg_date
End_date

Sales revenue

Region
Subregion

Figure 29.8
A snowflake schema.

1110 Chapter 29 Overview of Data Warehousing and OLAP

the jth position in the vector if the jth row contains the value being indexed. For
example, imagine an inventory of 100,000 cars with a bitmap index on car size. If
there are four car sizes—economy, compact, mid-size, and full-size—there will be
four bit vectors, each containing 100,000 bits (12.5kbytes) for a total index size of 50K.
Bitmap indexing can provide considerable input/output and storage space advan-
tages in low-cardinality domains. With bit vectors, a bitmap index can provide
 dramatic improvements in comparison, aggregation, and join performance. We
showed an example of a query on a star schema in Section 19.8, and we also showed
the star schema’s transformation for efficient execution that uses bitmap indexes.

In a star schema, dimensional data can be indexed to tuples in the fact table by join
indexing. Join indexes are traditional indexes used to maintain relationships
between primary key and foreign key values. They relate the values of a dimension
of a star schema to rows in the fact table. Consider a sales fact table that has city and
fiscal quarter as dimensions. If there is a join index on city, for each city the join
index maintains the tuple IDs of tuples containing that city. Join indexes may
involve multiple dimensions.

Data warehouse storage can facilitate access to summary data by taking further
advantage of the nonvolatility of data warehouses and a degree of predictability of
the analyses that will be performed using them. Two approaches have been used:
(1) smaller tables that include summary data such as quarterly sales or revenue by
product line, and (2) encoding of level (for example, weekly, quarterly, annual) into
existing tables. The overhead of creating and maintaining such aggregations would
likely be excessive in a dynamically changing, transaction-oriented database.

The purpose of master data management (MDM), a popular concept within enter-
prises, is to define the standards, processes, policies, and governance related to the
critical data entities of the organization. The dimension tables—which in a data
warehouse physicalize concepts, such as customers, regions and product catego-
ries—represent essentially the master data. Since dimensions are shared across
multiple facts or reporting data marts, data warehouse designers typically must
spend a considerable amount of time cleansing and harmonizing these dimensions
(i.e., reconciling definitional and notional differences across multiple source sys-
tems that the dimension data comes from). As such, table structures containing
these dimensions become good candidates for special copies of master data that can
be used in other environments.

Fact table I

Business results

Prod_no
Prod_name
Prod_descr
Prod_style
Prod_line

Dimension table

Product

Product
Quarter
Region
Revenue

Fact table II

Business forecast

Product
Future_qtr
Region
Projected_revenue

Figure 29.9
A fact constellation.

 29.4 Building a Data Warehouse 1111

29.4 Building a Data Warehouse
In constructing a data warehouse, builders should take a broad view of the antici-
pated use of the warehouse. There is no way to anticipate all possible queries or
analyses during the design phase. However, the design should specifically support
ad hoc querying; that is, accessing data with any combination of values for the
attributes that would be meaningful in the dimension or fact tables. For example, a
marketing-intensive consumer-products company would require different ways of
organizing the data warehouse than would a nonprofit charity focused on fund
raising. An appropriate schema should be chosen that reflects anticipated usage.

Acquisition of data for the warehouse involves the following steps:

 1. The data must be extracted from multiple, heterogeneous sources; for exam-
ple, databases or other data feeds such as those containing financial market
data or environmental data.

 2. Data must be formatted for consistency within the warehouse. Names,
meanings, and domains of data from unrelated sources must be reconciled.
For instance, subsidiary companies of a large corporation may have differ-
ent fiscal calendars with quarters ending on different dates, making it diffi-
cult to aggregate financial data by quarter. Various credit cards may report
their transactions differently, making it difficult to compute all credit sales.
These format inconsistencies must be resolved.

 3. The data must be cleaned to ensure validity. Data cleaning is an involved
and complex process that has been identified as the largest labor-demanding
component of data warehouse construction. For input data, cleaning must
occur before the data is loaded into the warehouse. Since input data must be
examined and formatted consistently, data warehouse builders should take
this opportunity to check each input for validity and quality. Recognizing
erroneous and incomplete data is difficult to automate, and cleaning that
requires automatic error correction can be even tougher. Some aspects, such
as domain checking, are easily coded into data cleaning routines, but auto-
matic recognition of other data problems can be more challenging. (For
example, one might require that City = ‘San Francisco’ together with State =
‘CT’ be recognized as an incorrect combination.) After such problems have
been taken care of, similar data from different sources must be coordinated
for loading into the warehouse. As data managers in the organization dis-
cover that their data is being cleaned for input into the warehouse, they will
likely want to upgrade their data with the cleaned data. The process of
returning cleaned data to the source is called backflushing (see Figure 29.1).

 4. The data must be fitted into the data model of the warehouse. Data from the
various sources must be represented in the data model of the warehouse.
Data may have to be converted from relational, object-oriented, or legacy
databases (network and/or hierarchical) to a multidimensional model.

 5. The data must be loaded into the warehouse. The sheer volume of data in
the warehouse makes loading the data a significant task. Monitoring tools

1112 Chapter 29 Overview of Data Warehousing and OLAP

for loads as well as methods to recover from incomplete or incorrect loads
are required. With the huge volume of data in the warehouse, incremental
updating is usually the only feasible approach. The refresh policy will prob-
ably emerge as a compromise that takes into account the answers to the fol-
lowing questions:

 � How up-to-date must the data be?

 � Can the warehouse go offline, and for how long?

 � What are the data interdependencies?

 � What is the storage availability?

 � What are the distribution requirements (such as for replication and parti-
tioning)?

 � What is the loading time (including cleaning, formatting, copying, trans-
mitting, and overhead such as index rebuilding)?

Data in a warehouse can come from multiple sources, geographies, and/or time
zones. Data loads, therefore, need to be carefully planned and staged. The order
in which data is loaded into the warehouse is critical; failure to load data in the
correct order could lead to integrity constraints or semantic rule violations, both
of which could cause load failures. For example, master data (whether new or
changed) such as Customer and Product must be loaded prior to the transactions
that contain them; and invoice data must be loaded before the billing data that
references it.

As we have said, databases must strike a balance between efficiency in transaction
processing and support for query requirements (ad hoc user requests), but a data
warehouse is typically optimized for access from a decision maker’s needs. Data
storage in a data warehouse reflects this specialization and involves the following
processes:

 ■ Storing the data according to the data model of the warehouse

 ■ Creating and maintaining required data structures

 ■ Creating and maintaining appropriate access paths

 ■ Providing for time-variant data as new data are added

 ■ Supporting the updating of warehouse data

 ■ Refreshing the data

 ■ Purging data

Although adequate time can be devoted initially to constructing the warehouse, the
sheer volume of data in the warehouse generally makes it impossible to simply
reload the warehouse in its entirety later on. Alternatives include selective (partial)
refreshing of data and separate warehouse versions (which requires double storage
capacity for the warehouse). When the warehouse uses an incremental data refresh-
ing mechanism, data may need to be purged periodically; for example, a warehouse
that maintains data on the previous twelve business quarters may periodically purge
its data each year, or even each quarter.

 29.4 Building a Data Warehouse 1113

Data warehouses must also be designed with full consideration of the environment
in which they will reside. Important design considerations include the following:

 ■ Usage projections

 ■ The fit of the data model

 ■ Characteristics of available sources

 ■ Design of the meta-data component

 ■ Modular component design

 ■ Design for manageability and change

 ■ Considerations of distributed and parallel architecture

We discuss each of these in turn. Warehouse design is initially driven by usage pro-
jections; that is, by expectations about who will use the warehouse and how they
will use it. Choice of a data model to support this usage is a key initial decision.
Usage projections and the characteristics of the warehouse’s data sources are both
taken into account. Modular design is a practical necessity to allow the warehouse
to evolve with the organization and its information environment. Additionally, a
well-built data warehouse must be designed for maintainability, enabling the ware-
house managers to plan for and manage change effectively while providing optimal
support to users.

You may recall the term meta-data from Chapter 1; meta-data was defined as the
description of a database; this description includes the database’s schema defini-
tion. The meta-data repository is a key data warehouse component. The meta-data
repository includes both technical and business meta-data. The first, technical
meta-data, covers details of acquisition, processing, storage structures, data
descriptions, warehouse operations and maintenance, and access support function-
ality. The second, business meta-data, includes the relevant business rules and
organizational details supporting the warehouse.

The architecture of the organization’s distributed computing environment is a
major determining characteristic for the design of the warehouse. There are two
basic distributed architectures: the distributed warehouse and the federated ware-
house. For a distributed warehouse, all the issues of distributed databases are rele-
vant; for example, replication, partitioning, communications, and consistency
concerns. A distributed architecture can provide benefits particularly important to
warehouse performance, such as improved load balancing, scalability of perfor-
mance, and higher availability. A single replicated meta-data repository would
reside at each distribution site. The idea of the federated warehouse is like that of
the federated database: a decentralized confederation of autonomous data ware-
houses, each with its own meta-data repository. Given the magnitude of the chal-
lenge inherent to data warehouses, it is likely that such federations will consist of
smaller scale components, such as data marts.

Businesses are becoming dissatisfied with the traditional data warehousing tech-
niques and technologies. New analytic requirements are driving new analytic appli-
ances; examples include Netezza of IBM, Greenplum of EMC, Hana of SAP, and

1114 Chapter 29 Overview of Data Warehousing and OLAP

ParAccel of Tableau Software. Big data analytics have driven Hadoop and other
specialized databases such as graph and key-value stores into the next generation of
data warehousing (see Chapter 25 for a discussion of big data technology based on
Hadoop). Data virtualization platforms such as the one from Cisco4 will enable
such logical data warehouses to be built in the future.

29.5 Typical Functionality of a Data Warehouse
Data warehouses exist to facilitate complex, data-intensive, and frequent ad hoc
queries. Accordingly, data warehouses must provide far greater and more efficient
query support than is demanded of transactional databases. The data warehouse
access component supports enhanced spreadsheet functionality, efficient query
processing, structured queries, ad hoc queries, data mining, and materialized views.
In particular, enhanced spreadsheet functionality includes support for state-of-the-
art spreadsheet applications (for example, MS Excel) as well as for OLAP applica-
tions programs. These enhanced spreadsheet products offer preprogrammed
functionalities such as the following:

 ■ Roll-up (also drill-up). Data is summarized with increasing generalization
(for example, weekly to quarterly to annually).

 ■ Drill-down. Increasing levels of detail are revealed (the complement of
roll-up).

 ■ Pivot. Cross tabulation (also referred to as rotation) is performed.

 ■ Slice and dice. Projection operations are performed on the dimensions.

 ■ Sorting. Data is sorted by ordinal value.

 ■ Selection. Data is filtered by value or range.

 ■ Derived (computed) attributes. Attributes are computed by operations on
stored and derived values.

Because data warehouses are free from the restrictions of the transactional environ-
ment, there is an increased efficiency in query processing. Among the tools and
techniques used are query transformation; index intersection and union; special
ROLAP (relational OLAP) and MOLAP (multidimensional OLAP) functions; SQL
extensions; advanced join methods; and intelligent scanning (as in piggy-backing
multiple queries).

There is also a HOLAP (hybrid OLAP) option available that combines both ROLAP
and MOLAP. For summary-type information, HOLAP leverages cube technology
(using MOLAP) for faster performance. When detailed information is needed,
HOLAP can “drill through” from the cube into the underlying relational data
(which is in the ROLAP component).

4See the description of Cisco’s Data Virtualization Platform at http://www.compositesw.com/products-
services/data-virtualization-platform/

 29.6 Data Warehouse versus Views 1115

Improved performance has also been attained with parallel processing. Parallel
server architectures include symmetric multiprocessor (SMP), cluster, and mas-
sively parallel processing (MPP), and combinations of these.

Knowledge workers and decision makers use tools ranging from parametric queries
to ad hoc queries to data mining. Thus, the access component of the data ware-
house must provide support for structured queries (both parametric and ad hoc).
Together, these make up a managed query environment. Data mining itself uses
techniques from statistical analysis and artificial intelligence. Statistical analysis can
be performed by advanced spreadsheets, by sophisticated statistical analysis soft-
ware, or by custom-written programs. Techniques such as lagging, moving aver-
ages, and regression analysis are also commonly employed. Artificial intelligence
techniques, which may include genetic algorithms and neural networks, are used
for classification and are employed to discover knowledge from the data warehouse
that may be unexpected or difficult to specify in queries. (We discussed data mining
in detail in Chapter 28.)

29.6 Data Warehouse versus Views
Some people consider data warehouses to be an extension of database views. Ear-
lier we mentioned materialized views as one way of meeting requirements for
improved access to data (see Section 7.3 for a discussion of views). Materialized
views have been explored for their performance enhancement. In Section 19.2.4,
we discussed how materialized views are maintained and used as a part of query
optimization. Views, however, provide only a subset of the functions and capabili-
ties of data warehouses. Views and data warehouses are similar in some aspects;
for example, they both have read-only extracts from databases and they allow
 orientation by subject. However, data warehouses are different from views in the
following ways:

 ■ Data warehouses exist as persistent storage instead of being materialized
on demand.

 ■ Data warehouses are not just relational views; they are multidimensional
views with levels of aggregation.

 ■ Data warehouses can be indexed to optimize performance. Views cannot be
indexed independent of the underlying databases.

 ■ Data warehouses characteristically provide specific support of functionality;
views cannot.

 ■ Data warehouses provide large amounts of integrated and often temporal
data, generally more than is contained in one database, whereas views are an
extract of a database.

 ■ Data warehouses bring in data from multiple sources via a complex ETL
process that involves cleaning, pruning, and summarization, whereas views
are an extract from a database through a predefined query.

1116 Chapter 29 Overview of Data Warehousing and OLAP

29.7 Difficulties of Implementing
Data Warehouses

Some significant operational issues arise with data warehousing: construction,
administration, and quality control. Project management—the design, construc-
tion, and implementation of the warehouse—is an important and challenging
consideration that should not be underestimated. The building of an enterprise-
wide warehouse in a large organization is a major undertaking, potentially taking
years from conceptualization to implementation. Because of the difficulty and
amount of lead time required for such an undertaking, the widespread develop-
ment and deployment of data marts may provide an attractive alternative, espe-
cially to those organizations with urgent needs for OLAP, DSS, and/or data
mining support.

The administration of a data warehouse is an intensive enterprise, proportional to
the size and complexity of the warehouse. An organization that attempts to admin-
ister a data warehouse must realistically understand the complex nature of its
administration. Although designed for read access, a data warehouse is no more a
static structure than any of its information sources. Source databases can be
expected to evolve. The warehouse’s schema and acquisition component must be
expected to be updated to handle these evolutions.

A significant issue in data warehousing is the quality control of data. Both quality
and consistency of data—especially as it relates to dimension data, which in turn
affects master data management—are major concerns. Although the data passes
through a cleaning function during acquisition, quality and consistency remain sig-
nificant issues for the database administrator and designer alike. Melding data from
heterogeneous and disparate sources is a major challenge given differences in nam-
ing, domain definitions, identification numbers, and the like. Every time a source
database changes, the data warehouse administrator must consider the possible
interactions with other elements of the warehouse.

Usage projections should be estimated conservatively prior to construction of the
data warehouse and should be revised continually to reflect current requirements.
As utilization patterns become clear and change over time, storage and access paths
can be tuned to remain optimized for support of the organization’s use of its ware-
house. This activity should continue throughout the life of the warehouse in order
to remain ahead of the demand. The warehouse should also be designed to accom-
modate the addition and attrition of data sources without major redesign. Sources
and source data will evolve, and the warehouse must accommodate such change.
Fitting the available source data into the data model of the warehouse will be a con-
tinual challenge, a task that is as much art as science. Because there is continual
rapid change in technologies, both the requirements and capabilities of the ware-
house will change considerably over time. Additionally, data warehousing technol-
ogy itself will continue to evolve for some time, so component structures and
functionalities will continually be upgraded. This certain change is an excellent
motivation for fully modular design of components.

 Review Questions 1117

Administration of a data warehouse will require far broader skills than are needed for
traditional database administration. Often, different parts of a large organization view
the data differently. A team of highly skilled technical experts with overlapping areas of
expertise will likely be needed, rather than a single individual. The team must also pos-
sess a thorough knowledge of the business and specifically the rules and regulations, the
constraints and the policies of the enterprise. Like database administration, data ware-
house administration is only partly technical; a large part of the responsibility requires
working effectively with all the members of the organization who have an interest in the
data warehouse. However difficult that can be at times for database administrators, it is
that much more challenging for data warehouse administrators because the scope of
their responsibilities is considerably broader than that faced by database administrators.

Design of the management function and selection of the management team for a
database warehouse are crucial. Managing the data warehouse in a large organiza-
tion will surely be a major task. Many commercial tools are available to support
management functions. Effective data warehouse management will be a team func-
tion that requires a wide set of technical skills, careful coordination, and effective
leadership. Just as we must prepare for the evolution of the warehouse, we must also
recognize that the skills of the management team will, of necessity, evolve with it.

29.8 Summary
In this chapter, we surveyed the field known as data warehousing. Data warehousing
can be seen as a process that requires a variety of activities to precede it. In contrast,
data mining (see Chapter 28) may be thought of as an activity that draws knowledge
from an existing data warehouse or other sources of data. We first introduced in Sec-
tion 29.1 key concepts related to a data warehouse and defined terms such as OLAP
and DSS and contrasted them with OLTP. We presented a general architecture of
data warehousing systems. We discussed in Section 29.2 the fundamental characteris-
tics of data warehouses and their different types. We then discussed in Section 29.3
the modeling of data in warehouses using what is popularly known as the multidi-
mensional data model. Different types of tables and schemas were discussed. We gave
an elaborate account of the processes and design considerations involved in building
a data warehouse in Section 29.4. We then presented the typical special functionality
associated with a data warehouse in Section 29.5. The view concept from the rela-
tional model was contrasted with the multidimensional view of data in data ware-
houses in Section 29.6. We finally discussed in Section 29.7 the difficulties of
implementing data warehouses and the challenges of data warehouse administration.

Review Questions
 29.1. What is a data warehouse? How does it differ from a database?

 29.2. Define the following terms: OLAP (online analytical processing), ROLAP
(relational OLAP), MOLAP (multidimensional OLAP), and DSS (decision-
support systems).

1118 Chapter 29 Overview of Data Warehousing and OLAP

 29.3. Describe the characteristics of a data warehouse. Divide them into the func-
tionality of a warehouse and the advantages users derive from the warehouse.

 29.4. What is the multidimensional data model? How is it used in data warehousing?

 29.5. Define the following terms: star schema, snowflake schema, fact constella-
tion, data marts.

 29.6. What types of indexes are built for a warehouse? Illustrate the uses for each
with an example.

 29.7. Describe the steps of building a warehouse.

 29.8. What considerations play a major role in the design of a warehouse?

 29.9. Describe the functions a user can perform on a data warehouse, and illustrate
the results of these functions on a sample multidimensional data warehouse.

 29.10. How is the relational view concept similar to a data warehouse and how are
they different?

 29.11. List the difficulties in implementing a data warehouse.

 29.12. List the ongoing issues and research problems pertaining to data warehousing.

 29.13. What is master data management? How is it related to data warehousing?

 29.14. What are logical data warehouses? Do an online search for the data virtual-
ization platform from Cisco, and disvcuss how it will help in building a logi-
cal data warehouse?

Selected Bibliography
Inmon (1992, 2005) is credited for giving the term wide acceptance. Codd and Salley
(1993) popularized the term online analytical processing (OLAP) and defined a set of
characteristics for data warehouses to support OLAP. Kimball (1996) is known for
his contribution to the development of the data warehousing field. Mattison (1996)
is one of the several books on data warehousing that gives a comprehensive analysis
of techniques available in data warehouses and the strategies companies should use
in deploying them. Ponniah (2010) gives a very good practical overview of the data
warehouse building process from requirements collection to deployment mainte-
nance. Jukic et al. (2013) is a good source on modeling a data warehouse. Bischoff
and Alexander (1997) is a compilation of advice from experts. Chaudhuri and Dayal
(1997) give an excellent tutorial on the topic, while Widom (1995) points to a num-
ber of ongoing issues and research.

Additional Database
Topics: Security

part 12

This page intentionally left blank

1121

30
Database Security

This chapter discusses techniques for securing data-
bases against a variety of threats. It also presents

schemes of providing access privileges to authorized users. Some of the security
threats to databases—such as SQL injection—will be presented. At the end of the
chapter, we summarize how a mainstream RDBMS—specifically, the Oracle sys-
tem—provides different types of security. We start in Section 30.1 with an intro-
duction to security issues and the threats to databases, and we give an overview of
the control measures that are covered in the rest of this chapter. We also comment
on the relationship between data security and privacy as it applies to personal infor-
mation. Section 30.2 discusses the mechanisms used to grant and revoke privileges
in relational database systems and in SQL, mechanisms that are often referred to as
discretionary access control. In Section 30.3, we present an overview of the mecha-
nisms for enforcing multiple levels of security—a particular concern in database
system security that is known as mandatory access control. Section 30.3 also intro-
duces the more recently developed strategies of role-based access control, and
label-based and row-based security. Section 30.3 also provides a brief discussion of
XML access control. Section 30.4 discusses a major threat to databases—SQL injec-
tion—and discusses some of the proposed preventive measures against it. Sec-
tion 30.5 briefly discusses the security problem in statistical databases. Section 30.6
introduces the topic of flow control and mentions problems associated with covert
channels. Section 30.7 provides a brief summary of encryption and symmetric key
and asymmetric (public) key infrastructure schemes. It also discusses digital certifi-
cates. Section 30.8 introduces privacy-preserving techniques, and Section 30.9 pres-
ents the current challenges to database security. In Section 30.10, we discuss Oracle
label-based security. Finally, Section 30.11 summarizes the chapter. Readers who
are interested only in basic database security mechanisms will find it sufficient to
cover the material in Sections 30.1 and 30.2.

chapter 30

1122 Chapter 30 Database Security

30.1 Introduction to Database Security Issues1

30.1.1 Types of Security
Database security is a broad area that addresses many issues, including the following:

 ■ Various legal and ethical issues regarding the right to access certain infor-
mation—for example, some information may be deemed to be private and
cannot be accessed legally by unauthorized organizations or persons. In the
United States, there are numerous laws governing privacy of information.

 ■ Policy issues at the governmental, institutional, or corporate level regarding
what kinds of information should not be made publicly available—for
example, credit ratings and personal medical records.

 ■ System-related issues such as the system levels at which various security
functions should be enforced—for example, whether a security function
should be handled at the physical hardware level, the operating system level,
or the DBMS level.

 ■ The need in some organizations to identify multiple security levels and to
categorize the data and users based on these classifications—for example,
top secret, secret, confidential, and unclassified. The security policy of the
organization with respect to permitting access to various classifications of
data must be enforced.

Threats to Databases. Threats to databases can result in the loss or degradation
of some or all of the following commonly accepted security goals: integrity, avail-
ability, and confidentiality.

 ■ Loss of integrity. Database integrity refers to the requirement that informa-
tion be protected from improper modification. Modification of data includes
creating, inserting, and updating data; changing the status of data; and delet-
ing data. Integrity is lost if unauthorized changes are made to the data by
either intentional or accidental acts. If the loss of system or data integrity is
not corrected, continued use of the contaminated system or corrupted data
could result in inaccuracy, fraud, or erroneous decisions.

 ■ Loss of availability. Database availability refers to making objects available to a
human user or a program who/which has a legitimate right to those data objects.
Loss of availability occurs when the user or program cannot access these objects.

 ■ Loss of confidentiality. Database confidentiality refers to the protection of
data from unauthorized disclosure. The impact of unauthorized disclosure
of confidential information can range from violation of the Data Privacy Act
to the jeopardization of national security. Unauthorized, unanticipated, or
unintentional disclosure could result in loss of public confidence, embar-
rassment, or legal action against the organization.

1The substantial contributions of Fariborz Farahmand, Bharath Rengarajan, and Frank Rietta to this and
subsequent sections of this chapter is much appreciated.

 30.1 Introduction to Database Security Issues 1123

Database Security: Not an Isolated Concern. When considering the threats
facing databases, it is important to remember that the database management sys-
tem alone cannot be responsible for maintaining the confidentiality, integrity, and
availability of the data. Rather, the database works as part of a network of services,
including applications, Web servers, firewalls, SSL terminators, and security moni-
toring systems. Because security of an overall system is only as strong as its weakest
link, a database may be compromised even if it would have been perfectly secure on
its own merits.

To protect databases against the threats discussed above, it is common to imple-
ment four kinds of control measures: access control, inference control, flow control,
and encryption. We discuss each of these in this chapter.

In a multiuser database system, the DBMS must provide techniques to enable
certain users or user groups to access selected portions of a database without
gaining access to the rest of the database. This is particularly important when a
large integrated database is to be used by many different users within the same
organization. For example, sensitive information such as employee salaries or
performance reviews should be kept confidential from most of the database sys-
tem’s users. A DBMS typically includes a database security and authorization
subsystem that is responsible for ensuring the security of portions of a database
against unauthorized access. It is now customary to refer to two types of database
security mechanisms:

 ■ Discretionary security mechanisms. These are used to grant privileges to
users, including the capability to access specific data files, records, or fields
in a specified mode (such as read, insert, delete, or update).

 ■ Mandatory security mechanisms. These are used to enforce multilevel
security by classifying the data and users into various security classes (or
levels) and then implementing the appropriate security policy of the organi-
zation. For example, a typical security policy is to permit users at a certain
classification (or clearance) level to see only the data items classified at the
user’s own (or lower) classification level. An extension of this is role-based
security, which enforces policies and privileges based on the concept of orga-
nizational roles. (See Section 30.4.2 for role based access control.)

We discuss discretionary security in Section 30.2 and mandatory and role-based
security in Section 30.3.

30.1.2 Control Measures
Four main control measures are used to provide security of data in databases:

 ■ Access control

 ■ Inference control

 ■ Flow control

 ■ Data encryption

1124 Chapter 30 Database Security

A security problem common to computer systems is that of preventing unauthor-
ized persons from accessing the system itself, either to obtain information or to
make malicious changes in a portion of the database. The security mechanism of a
DBMS must include provisions for restricting access to the database system as a
whole. This function, called access control, is handled by creating user accounts
and passwords to control the login process by the DBMS. We discuss access control
techniques in Section 30.1.3.

Statistical databases are used to provide statistical information or summaries of
values based on various criteria. For example, a database for population statistics
may provide statistics based on age groups, income levels, household size, educa-
tion levels, and other criteria. Statistical database users such as government statis-
ticians or market research firms are allowed to access the database to retrieve
statistical information about a population but not to access the detailed confiden-
tial information about specific individuals. Security for statistical databases must
ensure that information about individuals cannot be accessed. It is sometimes
possible to deduce or infer certain facts concerning individuals from queries that
involve only summary statistics on groups; consequently, this must not be per-
mitted either. This problem, called statistical database security, is discussed
briefly in Section 30.4. The corresponding control measures are called inference
control measures.

Another security issue is that of flow control, which prevents information from
flowing in such a way that it reaches unauthorized users. Flow control is discussed
in Section 30.6. Covert channels are pathways on which information flows implic-
itly in ways that violate the security policy of an organization. We briefly discuss
some issues related to covert channels in Section 30.6.1.

A final control measure is data encryption, which is used to protect sensitive data
(such as credit card numbers) that is transmitted via some type of communications
network. Encryption can be used to provide additional protection for sensitive por-
tions of a database as well. The data is encoded using some coding algorithm. An
unauthorized user who accesses encoded data will have difficulty deciphering it,
but authorized users are given decoding or decrypting algorithms (or keys) to deci-
pher the data. Encrypting techniques that are very difficult to decode without a key
have been developed for military applications. However, encrypted database
records are used today in both private organizations and governmental and mili-
tary applications. In fact, state and federal laws prescribe encryption for any system
that deals with legally protected personal information. For example, according to
Georgia Law (OCGA 10-1-911):

“Personal information” means an individual’s first name or first initial and last
name in combination with any one or more of the following data elements,
when either the name or the data elements are not encrypted or redacted:

 � Social security number;

 � Driver’s license number or state identification card number;

 30.1 Introduction to Database Security Issues 1125

 � Account number, credit card number, or debit card number, if circum-
stances exist wherein such a number could be used without additional
identifying information, access codes, or passwords;

 � Account passwords or personal identification numbers or other access codes

Because laws defining what constitutes personal information vary from state to state,
systems must protect individuals’ privacy and enforce privacy measures adequately.
Discretionary access control (see Section 30.2) alone may not suffice. Section 30.7
briefly discusses encryption techniques, including popular techniques such as public
key encryption (which is heavily used to support Web-based transactions against
databases) and digital signatures (which are used in personal communications).

A comprehensive discussion of security in computer systems and databases is outside
the scope of this text. We give only a brief overview of database security techniques
here. Network- and communication-based security is also a vast topic that we do not
cover. For a comprehensive discussion, the interested reader can refer to several of the
references discussed in the Selected Bibliography at the end of this chapter.

30.1.3 Database Security and the DBA
As we discussed in Chapter 1, the database administrator (DBA) is the central
authority for managing a database system. The DBA’s responsibilities include
granting privileges to users who need to use the system and classifying users and
data in accordance with the policy of the organization. The DBA has a DBA account
in the DBMS, sometimes called a system or superuser account, which provides
powerful capabilities that are not made available to regular database accounts and
users.2 DBA-privileged commands include commands for granting and revoking
privileges to individual accounts, users, or user groups and for performing the fol-
lowing types of actions:

 1. Account creation. This action creates a new account and password for a
user or a group of users to enable access to the DBMS.

 2. Privilege granting. This action permits the DBA to grant certain privileges
to certain accounts.

 3. Privilege revocation. This action permits the DBA to revoke (cancel) cer-
tain privileges that were previously given to certain accounts.

 4. Security level assignment. This action consists of assigning user accounts to
the appropriate security clearance level.

The DBA is responsible for the overall security of the database system. Action 1 in
the preceding list is used to control access to the DBMS as a whole, whereas actions
2 and 3 are used to control discretionary database authorization, and action 4 is
used to control mandatory authorization.

2This account is similar to the root or superuser accounts that are given to computer system administra-
tors and that allow access to restricted operating system commands.

1126 Chapter 30 Database Security

30.1.4 Access Control, User Accounts, and Database Audits
Whenever a person or a group of persons needs to access a database system, the
individual or group must first apply for a user account. The DBA will then create a
new account number and password for the user if there is a legitimate need to
access the database. The user must log in to the DBMS by entering the account
number and password whenever database access is needed. The DBMS checks that
the account number and password are valid; if they are, the user is permitted to use
the DBMS and to access the database. Application programs can also be considered
users and are required to log in to the database (see Chapter 10).

It is straightforward to keep track of database users and their accounts and pass-
words by creating an encrypted table or file with two fields: AccountNumber and
Password. This table can easily be maintained by the DBMS. Whenever a new
account is created, a new record is inserted into the table. When an account is can-
celed, the corresponding record must be deleted from the table.

The database system must also keep track of all operations on the database that are
applied by a certain user throughout each login session, which consists of the
sequence of database interactions that a user performs from the time of logging in
to the time of logging off. When a user logs in, the DBMS can record the user’s
account number and associate it with the computer or device from which the user
logged in. All operations applied from that computer or device are attributed to the
user’s account until the user logs off. It is particularly important to keep track of
update operations that are applied to the database so that, if the database is tam-
pered with, the DBA can determine which user did the tampering.

To keep a record of all updates applied to the database and of particular users who
applied each update, we can modify the system log. Recall from Chapters 20 and 22
that the system log includes an entry for each operation applied to the database that
may be required for recovery from a transaction failure or system crash. We can
expand the log entries so that they also include the account number of the user and
the online computer or device ID that applied each operation recorded in the log. If
any tampering with the database is suspected, a database audit is performed, which
consists of reviewing the log to examine all accesses and operations applied to the
database during a certain time period. When an illegal or unauthorized operation is
found, the DBA can determine the account number used to perform the operation.
Database audits are particularly important for sensitive databases that are updated
by many transactions and users, such as a banking database that can be updated by
thousands of bank tellers. A database log that is used mainly for security purposes
serves as an audit trail.

30.1.5 Sensitive Data and Types of Disclosures
Sensitivity of data is a measure of the importance assigned to the data by its
owner for the purpose of denoting its need for protection. Some databases con-
tain only sensitive data whereas other databases may contain no sensitive data at
all. Handling databases that fall at these two extremes is relatively easy because

 30.1 Introduction to Database Security Issues 1127

such databases can be covered by access control, which is explained in the next
section. The situation becomes tricky when some of the data is sensitive whereas
other data is not.

Several factors can cause data to be classified as sensitive:

 1. Inherently sensitive. The value of the data itself may be so revealing or con-
fidential that it becomes sensitive—for example, a person’s salary or who a
patient has HIV/AIDS.

 2. From a sensitive source. The source of the data may indicate a need for
secrecy—for example, an informer whose identity must be kept secret.

 3. Declared sensitive. The owner of the data may have explicitly declared it as
sensitive.

 4. A sensitive attribute or sensitive record. The particular attribute or record
may have been declared sensitive—for example, the salary attribute of an
employee or the salary history record in a personnel database.

 5. Sensitive in relation to previously disclosed data. Some data may not be
sensitive by itself but will become sensitive in the presence of some other
data—for example, the exact latitude and longitude information for a loca-
tion where some previously recorded event happened that was later deemed
sensitive.

It is the responsibility of the database administrator and security administrator to
collectively enforce the security policies of an organization. This dictates whether
access should or should not be permitted to a certain database attribute (also known
as a table column or a data element) for individual users or for categories of users.
Several factors must be considered before deciding whether it is safe to reveal the
data. The three most important factors are data availability, access acceptability,
and authenticity assurance.

 1. Data availability. If a user is updating a field, then this field becomes inac-
cessible and other users should not be able to view this data. This blocking
is only temporary and only to ensure that no user sees any inaccurate data.
This is typically handled by the concurrency control mechanism (see
Chapter 21).

 2. Access acceptability. Data should only be revealed to authorized users. A
database administrator may also deny access to a user request even if the
request does not directly access a sensitive data item, on the grounds that the
requested data may reveal information about the sensitive data that the user
is not authorized to have.

 3. Authenticity assurance. Before granting access, certain external character-
istics about the user may also be considered. For example, a user may only
be permitted access during working hours. The system may track previous
queries to ensure that a combination of queries does not reveal sensitive
data. The latter is particularly relevant to statistical database queries (see
Section 30.5).

1128 Chapter 30 Database Security

The term precision, when used in the security area, refers to allowing as much as
possible of the data to be available, subject to protecting exactly the subset of data
that is sensitive. The definitions of security versus precision are as follows:

 ■ Security: Means of ensuring that data is kept safe from corruption and that
access to it is suitably controlled. To provide security means to disclose only
nonsensitive data and to reject any query that references a sensitive field.

 ■ Precision: To protect all sensitive data while disclosing or making avail-
able as much nonsensitive data as possible. Note that this definition of pre-
cision is not related to the precision of information retrieval defined in
Section 27.6.1.

The ideal combination is to maintain perfect security with maximum precision. If
we want to maintain security, precision must be sacrificed to some degree. Hence
there is typically a tradeoff between security and precision.

30.1.6 Relationship between Information Security
and Information Privacy

The rapid advancement of the use of information technology (IT) in industry, govern-
ment, and academia raises challenging questions and problems regarding the protec-
tion and use of personal information. Questions of who has what rights to information
about individuals for which purposes become more important as we move toward a
world in which it is technically possible to know just about anything about anyone.

Deciding how to design privacy considerations in technology for the future includes
philosophical, legal, and practical dimensions. There is a considerable overlap
between issues related to access to resources (security) and issues related to appro-
priate use of information (privacy). We now define the difference between security
and privacy.

Security in information technology refers to many aspects of protecting a system
from unauthorized use, including authentication of users, information encryption,
access control, firewall policies, and intrusion detection. For our purposes here, we
will limit our treatment of security to the concepts associated with how well a sys-
tem can protect access to information it contains. The concept of privacy goes
beyond security. Privacy examines how well the use of personal information that
the system acquires about a user conforms to the explicit or implicit assumptions
regarding that use. From an end user perspective, privacy can be considered from
two different perspectives: preventing storage of personal information versus ensur-
ing appropriate use of personal information.

For the purposes of this chapter, a simple but useful definition of privacy is the abil-
ity of individuals to control the terms under which their personal information is
acquired and used. In summary, security involves technology to ensure that infor-
mation is appropriately protected. Security is a required building block for privacy.
Privacy involves mechanisms to support compliance with some basic principles and
other explicitly stated policies. One basic principle is that people should be informed

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges 1129

about information collection, told in advance what will be done with their informa-
tion, and given a reasonable opportunity to approve or disapprove of such use of the
information. A related concept, trust, relates to both security and privacy and is seen
as increasing when it is perceived that both security and privacy are provided for.

30.2 Discretionary Access Control Based
on Granting and Revoking Privileges

The typical method of enforcing discretionary access control in a database system
is based on the granting and revoking of privileges. Let us consider privileges in the
context of a relational DBMS. In particular, we will discuss a system of privileges
somewhat similar to the one originally developed for the SQL language (see Chap-
ters 7 and 8). Many current relational DBMSs use some variation of this technique.
The main idea is to include statements in the query language that allow the DBA
and selected users to grant and revoke privileges.

30.2.1 Types of Discretionary Privileges
In SQL2 and later versions,3 the concept of an authorization identifier is used to
refer, roughly speaking, to a user account (or group of user accounts). For simplic-
ity, we will use the words user or account interchangeably in place of authorization
identifier. The DBMS must provide selective access to each relation in the database
based on specific accounts. Operations may also be controlled; thus, having an
account does not necessarily entitle the account holder to all the functionality pro-
vided by the DBMS. Informally, there are two levels for assigning privileges to use
the database system:

 ■ The account level. At this level, the DBA specifies the particular privileges
that each account holds independently of the relations in the database.

 ■ The relation (or table) level. At this level, the DBA can control the privilege
to access each individual relation or view in the database.

The privileges at the account level apply to the capabilities provided to the account
itself and can include the CREATE SCHEMA or CREATE TABLE privilege, to create a
schema or base relation; the CREATE VIEW privilege; the ALTER privilege, to apply
schema changes such as adding or removing attributes from relations; the DROP
privilege, to delete relations or views; the MODIFY privilege, to insert, delete, or
update tuples; and the SELECT privilege, to retrieve information from the database
by using a SELECT query. Notice that these account privileges apply to the account
in general. If a certain account does not have the CREATE TABLE privilege, no rela-
tions can be created from that account. Account-level privileges are not defined as
part of SQL2; they are left to the DBMS implementers to define. In earlier versions
of SQL, a CREATETAB privilege existed to give an account the privilege to create
tables (relations).

3Discretionary privileges were incorporated into SQL2 and are applicable to later versions of SQL.

1130 Chapter 30 Database Security

The second level of privileges applies to the relation level, which includes base rela-
tions and virtual (view) relations. These privileges are defined for SQL2. In the fol-
lowing discussion, the term relation may refer either to a base relation or to a view,
unless we explicitly specify one or the other. Privileges at the relation level specify
for each user the individual relations on which each type of command can be
applied. Some privileges also refer to individual columns (attributes) of relations.
SQL2 commands provide privileges at the relation and attribute level only. Although
this distinction is general, it makes it difficult to create accounts with limited privi-
leges. The granting and revoking of privileges generally follow an authorization
model for discretionary privileges known as the access matrix model, where the
rows of a matrix M represent subjects (users, accounts, programs) and the columns
represent objects (relations, records, columns, views, operations). Each position
M(i, j) in the matrix represents the types of privileges (read, write, update) that sub-
ject i holds on object j.

To control the granting and revoking of relation privileges, each relation R in a
database is assigned an owner account, which is typically the account that was used
when the relation was created in the first place. The owner of a relation is given all
privileges on that relation. In SQL2, the DBA can assign an owner to a whole
schema by creating the schema and associating the appropriate authorization iden-
tifier with that schema, using the CREATE SCHEMA command (see Section 7.1.1).
The owner account holder can pass privileges on any of the owned relations to
other users by granting privileges to their accounts. In SQL, the following types of
privileges can be granted on each individual relation R:

 ■ SELECT (retrieval or read) privilege on R. Gives the account retrieval privi-
lege. In SQL, this gives the account the privilege to use the SELECT state-
ment to retrieve tuples from R.

 ■ Modification privileges on R. This gives the account the capability to mod-
ify the tuples of R. In SQL, this includes three privileges: UPDATE, DELETE,
and INSERT. These correspond to the three SQL commands (see Sec-
tion 7.4) for modifying a table R. Additionally, both the INSERT and UPDATE
privileges can specify that only certain attributes of R can be modified by the
account.

 ■ References privilege on R. This gives the account the capability to reference
(or refer to) a relation R when specifying integrity constraints. This privilege
can also be restricted to specific attributes of R.

Notice that to create a view, the account must have the SELECT privilege on all rela-
tions involved in the view definition in order to specify the query that corresponds
to the view.

30.2.2 Specifying Privileges through the Use of Views
The mechanism of views is an important discretionary authorization mechanism in
its own right. For example, if the owner A of a relation R wants another account B
to be able to retrieve only some fields of R, then A can create a view V of R that

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges 1131

includes only those attributes and then grant SELECT on V to B. The same applies
to limiting B to retrieving only certain tuples of R; a view V′ can be created by
defining the view by means of a query that selects only those tuples from R that A
wants to allow B to access. We will illustrate this discussion with the example given
in Section 30.2.5.

30.2.3 Revoking of Privileges
In some cases, it is desirable to grant a privilege to a user temporarily. For example,
the owner of a relation may want to grant the SELECT privilege to a user for a spe-
cific task and then revoke that privilege once the task is completed. Hence, a mech-
anism for revoking privileges is needed. In SQL, a REVOKE command is included
for the purpose of canceling privileges. We will see how the REVOKE command is
used in the example in Section 30.2.5.

30.2.4 Propagation of Privileges Using the GRANT OPTION
Whenever the owner A of a relation R grants a privilege on R to another account B,
the privilege can be given to B with or without the GRANT OPTION. If the GRANT
OPTION is given, this means that B can also grant that privilege on R to other
accounts. Suppose that B is given the GRANT OPTION by A and that B then grants
the privilege on R to a third account C, also with the GRANT OPTION. In this way,
privileges on R can propagate to other accounts without the knowledge of the
owner of R. If the owner account A now revokes the privilege granted to B, all the
privileges that B propagated based on that privilege should automatically be revoked
by the system.

It is possible for a user to receive a certain privilege from two or more sources. For
example, A4 may receive a certain UPDATE R privilege from both A2 and A3. In such
a case, if A2 revokes this privilege from A4, A4 will still continue to have the privilege
by virtue of having been granted it from A3. If A3 later revokes the privilege from A4,
A4 totally loses the privilege. Hence, a DBMS that allows propagation of privileges
must keep track of how all the privileges were granted in the form of some internal
log so that revoking of privileges can be done correctly and completely.

30.2.5 An Example to Illustrate Granting and Revoking
of Privileges

Suppose that the DBA creates four accounts—A1, A2, A3, and A4—and wants only
A1 to be able to create base relations. To do this, the DBA must issue the following
GRANT command in SQL:

GRANT CREATETAB TO A1;

The CREATETAB (create table) privilege gives account A1 the capability to create
new database tables (base relations) and is hence an account privilege. This privi-
lege was part of earlier versions of SQL but is now left to each individual system

1132 Chapter 30 Database Security

implementation to define. Note that A1 , A2, and so forth may be individuals, like
John in IT department or Mary in marketing; but they may also be applications or
programs that want to access a database.

In SQL2, the same effect can be accomplished by having the DBA issue a CREATE
SCHEMA command, as follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

User account A1 can now create tables under the schema called EXAMPLE. To con-
tinue our example, suppose that A1 creates the two base relations EMPLOYEE and
DEPARTMENT shown in Figure 30.1; A1 is then the owner of these two relations and
hence has all the relation privileges on each of them.

Next, suppose that account A1 wants to grant to account A2 the privilege to insert and
delete tuples in both of these relations. However, A1 does not want A2 to be able to
propagate these privileges to additional accounts. A1 can issue the following command:

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

Notice that the owner account A1 of a relation automatically has the GRANT OPTION,
allowing it to grant privileges on the relation to other accounts. However, account A2
cannot grant INSERT and DELETE privileges on the EMPLOYEE and DEPARTMENT
tables because A2 was not given the GRANT OPTION in the preceding command.

Next, suppose that A1 wants to allow account A3 to retrieve information from either
of the two tables and also to be able to propagate the SELECT privilege to other
accounts. A1 can issue the following command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

The clause WITH GRANT OPTION means that A3 can now propagate the privilege to
other accounts by using GRANT. For example, A3 can grant the SELECT privilege on
the EMPLOYEE relation to A4 by issuing the following command:

GRANT SELECT ON EMPLOYEE TO A4;

Notice that A4 cannot propagate the SELECT privilege to other accounts because
the GRANT OPTION was not given to A4.

Now suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE
relation from A3; A1 then can issue this command:

REVOKE SELECT ON EMPLOYEE FROM A3;

DEPARTMENT

DnameDnumber Mgr_ssn

Name Bdate Address Sex Salary Dno

EMPLOYEE

Ssn

Figure 30.1
Schemas for the two relations
EMPLOYEE and DEPARTMENT.

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges 1133

The DBMS must now revoke the SELECT privilege on EMPLOYEE from A3, and it
must also automatically revoke the SELECT privilege on EMPLOYEE from A4.
This is because A3 granted that privilege to A4, but A3 does not have the privilege
any more.

Next, suppose that A1 wants to give back to A3 a limited capability to SELECT from
the EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege.
The limitation is to retrieve only the Name, Bdate, and Address attributes and only
for the tuples with Dno = 5. A1 then can create the following view:

CREATE VIEW A3EMPLOYEE AS
SELECT Name, Bdate, Address
FROM EMPLOYEE
WHERE Dno = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3
as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that A1 wants to allow A4 to update only the Salary attribute of
EMPLOYEE; A1 can then issue the following command:

GRANT UPDATE ON EMPLOYEE (Salary) TO A4;

The UPDATE and INSERT privileges can specify particular attributes that may be
updated or inserted in a relation. Other privileges (SELECT, DELETE) are not attri-
bute specific, because this specificity can easily be controlled by creating the appro-
priate views that include only the desired attributes and granting the corresponding
privileges on the views. However, because updating views is not always possible (see
Chapter 8), the UPDATE and INSERT privileges are given the option to specify the
particular attributes of a base relation that may be updated.

30.2.6 Specifying Limits on Propagation of Privileges
Techniques to limit the propagation of privileges have been developed, although
they have not yet been implemented in most DBMSs and are not a part of SQL.
Limiting horizontal propagation to an integer number i means that an account B
given the GRANT OPTION can grant the privilege to at most i other accounts.
 Vertical propagation is more complicated; it limits the depth of the granting of
privileges. Granting a privilege with a vertical propagation of zero is equivalent to
granting the privilege with no GRANT OPTION. If account A grants a privilege to
account B with the vertical propagation set to an integer number j > 0, this means
that the account B has the GRANT OPTION on that privilege, but B can grant the
privilege to other accounts only with a vertical propagation less than j. In effect,
vertical propagation limits the sequence of GRANT OPTIONS that can be given from
one account to the next based on a single original grant of the privilege.

We briefly illustrate horizontal and vertical propagation limits—which are not
available currently in SQL or other relational systems—with an example. Suppose

1134 Chapter 30 Database Security

that A1 grants SELECT to A2 on the EMPLOYEE relation with horizontal propaga-
tion equal to 1 and vertical propagation equal to 2. A2 can then grant SELECT to at
most one account because the horizontal propagation limitation is set to 1. Addi-
tionally, A2 cannot grant the privilege to another account except with vertical prop-
agation set to 0 (no GRANT OPTION) or 1; this is because A2 must reduce the vertical
propagation by at least 1 when passing the privilege to others. In addition, the hori-
zontal propagation must be less than or equal to the originally granted horizontal
propagation. For example, if account A grants a privilege to account B with the
horizontal propagation set to an integer number j > 0, this means that B can grant
the privilege to other accounts only with a horizontal propagation less than or equal
to j. As this example shows, horizontal and vertical propagation techniques are
designed to limit the depth and breadth of propagation of privileges.

30.3 Mandatory Access Control and Role-Based
Access Control for Multilevel Security

The discretionary access control technique of granting and revoking privileges on
relations has traditionally been the main security mechanism for relational data-
base systems. This is an all-or-nothing method: A user either has or does not have a
certain privilege. In many applications, an additional security policy is needed that
classifies data and users based on security classes. This approach, known as
 mandatory access control (MAC), would typically be combined with the discre-
tionary access control mechanisms described in Section 30.2. It is important to note
that most mainstream RDBMSs currently provide mechanisms only for discretionary
access control. However, the need for multilevel security exists in government, mil-
itary, and intelligence applications, as well as in many industrial and corporate
applications. Because of the overriding concerns for privacy, in many systems the
levels are determined by who has what access to what private information (also
called personally identifiable information). Some DBMS vendors—for example,
Oracle—have released special versions of their RDBMSs that incorporate manda-
tory access control for government use.

Typical security classes are top secret (TS), secret (S), confidential (C), and unclas-
sified (U), where TS is the highest level and U the lowest. Other more complex
security classification schemes exist, in which the security classes are organized in
a lattice. For simplicity, we will use the system with four security classification lev-
els, where TS ≥ S ≥ C ≥ U, to illustrate our discussion. The commonly used model
for multilevel security, known as the Bell-LaPadula model,4 classifies each subject
(user, account, program) and object (relation, tuple, column, view, operation) into
one of the security classifications TS, S, C, or U. We will refer to the clearance
(classification) of a subject S as class(S) and to the classification of an object O as
class(O). Two restrictions are enforced on data access based on the subject/object
classifications:

4Bell and La Padulla (1976) was a MITRE technical report on secure computer systems in Multics.

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security 1135

 1. A subject S is not allowed read access to an object O unless class(S) ≥
class(O). This is known as the simple security property.

 2. A subject S is not allowed to write an object O unless class(S) ≤ class(O).
This is known as the star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can read
an object whose security classification is higher than the subject’s security clearance.
The second restriction is less intuitive. It prohibits a subject from writing an object at
a lower security classification than the subject’s security clearance. Violation of this
rule would allow information to flow from higher to lower classifications, which vio-
lates a basic tenet of multilevel security. For example, a user (subject) with TS clear-
ance may make a copy of an object with classification TS and then write it back as a
new object with classification U, thus making it visible throughout the system.

To incorporate multilevel security notions into the relational database model, it is
common to consider attribute values and tuples as data objects. Hence, each attri-
bute A is associated with a classification attribute C in the schema, and each attribute
value in a tuple is associated with a corresponding security classification. In addition,
in some models, a tuple classification attribute TC is added to the relation attributes
to provide a classification for each tuple as a whole. The model we describe here is
known as the multilevel model, because it allows classifications at multiple security
levels. A multilevel relation schema R with n attributes would be represented as:

R(A1, C1, A2, C2, … , An, Cn, TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the tuple classification attribute TC in each tuple t—which is the high-
est of all attribute classification values within t—provides a general classification for
the tuple itself. Each attribute classification Ci provides a finer security classification
for each attribute value within the tuple. The value of TC in each tuple t is the high-
est of all attribute classification values Ci within t.

The apparent key of a multilevel relation is the set of attributes that would have
formed the primary key in a regular (single-level) relation. A multilevel relation will
appear to contain different data to subjects (users) with different clearance levels. In
some cases, it is possible to store a single tuple in the relation at a higher classifica-
tion level and produce the corresponding tuples at a lower-level classification
through a process known as filtering. In other cases, it is necessary to store two or
more tuples at different classification levels with the same value for the apparent
key. This leads to the concept of polyinstantiation,5 where several tuples can have
the same apparent key value but have different attribute values for users at different
clearance levels.

We illustrate these concepts with the simple example of a multilevel relation shown
in Figure 30.2(a), where we display the classification attribute values next to each

5This is similar to the notion of having multiple versions in the database that represent the same
real-world object.

1136 Chapter 30 Database Security

attribute’s value. Assume that the Name attribute is the apparent key, and consider the
query SELECT * FROM EMPLOYEE. A user with security clearance S would see the same
relation shown in Figure 30.2(a), since all tuple classifications are less than or equal to
S. However, a user with security clearance C would not be allowed to see the values for
Salary of ‘Brown’ and Job_performance of ‘Smith’, since they have higher classification.
The tuples would be filtered to appear as shown in Figure 30.2(b), with Salary and
Job_performance appearing as null. For a user with security clearance U, the filtering
allows only the Name attribute of ‘Smith’ to appear, with all the other attributes appear-
ing as null (Figure 30.2(c)). Thus, filtering introduces null values for attribute values
whose security classification is higher than the user’s security clearance.

In general, the entity integrity rule for multilevel relations states that all attributes
that are members of the apparent key must not be null and must have the same
security classification within each individual tuple. Additionally, all other attribute
values in the tuple must have a security classification greater than or equal to that of
the apparent key. This constraint ensures that a user can see the key if the user is
permitted to see any part of the tuple. Other integrity rules, called null integrity
and interinstance integrity, informally ensure that if a tuple value at some security
level can be filtered (derived) from a higher-classified tuple, then it is sufficient to
store the higher-classified tuple in the multilevel relation.

Name Salary JobPerformance TC
Smith U C40000 SFair S
Smith U C40000 CExcellent C
Brown C S80000 CGood S

EMPLOYEE(d)

Name Salary JobPerformance TC
Smith U C40000 SFair S
Brown C S80000 CGood S

EMPLOYEE(a)

Name Salary JobPerformance TC

Smith U C40000 CNULL C
Brown C CNULL CGood C

EMPLOYEE(b)

Name Salary JobPerformance TC

Smith U UNULL UNULL U

EMPLOYEE(c)Figure 30.2
A multilevel relation to
 illustrate multilevel security.
(a) The original EMPLOYEE
tuples. (b) Appearance of
EMPLOYEE after filtering
for classification C users.
(c) Appearance of
EMPLOYEE after filtering
for classification U users.
(d) Polyinstantiation of the
Smith tuple.

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security 1137

To illustrate polyinstantiation further, suppose that a user with security clearance C
tries to update the value of Job_performance of ‘Smith’ in Figure 30.2 to ‘Excellent’;
this corresponds to the following SQL update being submitted by that user:

UPDATE EMPLOYEE
SET Job_performance = ‘Excellent’
WHERE Name = ‘Smith’;

Since the view provided to users with security clearance C (see Figure 30.2(b)) per-
mits such an update, the system should not reject it; otherwise, the user could infer
that some nonnull value exists for the Job_performance attribute of ‘Smith’ rather
than the null value that appears. This is an example of inferring information
through what is known as a covert channel, which should not be permitted in
highly secure systems (see Section 30.6.1). However, the user should not be allowed
to overwrite the existing value of Job_performance at the higher classification level.
The solution is to create a polyinstantiation for the ‘Smith’ tuple at the lower clas-
sification level C, as shown in Figure 30.2(d). This is necessary since the new tuple
cannot be filtered from the existing tuple at classification S.

The basic update operations of the relational model (INSERT, DELETE, UPDATE)
must be modified to handle this and similar situations, but this aspect of the prob-
lem is outside the scope of our presentation. We refer the interested reader to the
Selected Bibliography at the end of this chapter for further details.

30.3.1 Comparing Discretionary Access Control
and Mandatory Access Control

Discretionary access control (DAC) policies are characterized by a high degree of
flexibility, which makes them suitable for a large variety of application domains.
The main drawback of DAC models is their vulnerability to malicious attacks, such
as Trojan horses embedded in application programs. The reason for this vulnerabil-
ity is that discretionary authorization models do not impose any control on how
information is propagated and used once it has been accessed by users authorized
to do so. By contrast, mandatory policies ensure a high degree of protection—in a
way, they prevent any illegal flow of information. Therefore, they are suitable for
military and high-security types of applications, which require a higher degree of
protection. However, mandatory policies have the drawback of being too rigid in
that they require a strict classification of subjects and objects into security levels,
and therefore they are applicable to few environments and place an additional bur-
den of labeling every object with its security classification. In many practical situa-
tions, discretionary policies are preferred because they offer a better tradeoff
between security and applicability than mandatory policies.

30.3.2 Role-Based Access Control
Role-based access control (RBAC) emerged rapidly in the 1990s as a proven tech-
nology for managing and enforcing security in large-scale enterprise-wide systems.

1138 Chapter 30 Database Security

Its basic notion is that privileges and other permissions are associated with organi-
zational roles rather than with individual users. Individual users are then assigned
to appropriate roles. Roles can be created using the CREATE ROLE and DESTROY
ROLE commands. The GRANT and REVOKE commands discussed in Section 30.2
can then be used to assign and revoke privileges from roles, as well as for individual
users when needed. For example, a company may have roles such as sales account
manager, purchasing agent, mailroom clerk, customer service manager, and so on.
Multiple individuals can be assigned to each role. Security privileges that are com-
mon to a role are granted to the role name, and any individual assigned to this role
would automatically have those privileges granted.

RBAC can be used with traditional discretionary and mandatory access controls; it
ensures that only authorized users in their specified roles are given access to certain
data or resources. Users create sessions during which they may activate a subset of
roles to which they belong. Each session can be assigned to several roles, but it maps
to one user or a single subject only. Many DBMSs have allowed the concept of roles,
where privileges can be assigned to roles.

Separation of duties is another important requirement in various mainstream
DBMSs. It is needed to prevent one user from doing work that requires the involve-
ment of two or more people, thus preventing collusion. One method in which sepa-
ration of duties can be successfully implemented is with mutual exclusion of roles.
Two roles are said to be mutually exclusive if both the roles cannot be used simul-
taneously by the user. Mutual exclusion of roles can be categorized into two types,
namely authorization time exclusion (static) and runtime exclusion (dynamic). In
authorization time exclusion, two roles that have been specified as mutually exclu-
sive cannot be part of a user’s authorization at the same time. In runtime exclusion,
both these roles can be authorized to one user but cannot be activated by the user at
the same time. Another variation in mutual exclusion of roles is that of complete
and partial exclusion.

The role hierarchy in RBAC is a natural way to organize roles to reflect the organi-
zation’s lines of authority and responsibility. By convention, junior roles at the bot-
tom are connected to progressively senior roles as one moves up the hierarchy. The
hierarchic diagrams are partial orders, so they are reflexive, transitive, and antisym-
metric. In other words, if a user has one role, the user automatically has roles lower
in the hierarchy. Defining a role hierarchy involves choosing the type of hierarchy
and the roles, and then implementing the hierarchy by granting roles to other roles.
Role hierarchy can be implemented in the following manner:

GRANT ROLE full_time TO employee_type1
GRANT ROLE intern TO employee_type2

The above are examples of granting the roles full_time and intern to two types of
employees.

Another issue related to security is identity management. Identity refers to a unique
name of an individual person. Since the legal names of persons are not necessarily
unique, the identity of a person must include sufficient additional information to

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security 1139

make the complete name unique. Authorizing this identity and managing the
schema of these identities is called identity management. Identity management
addresses how organizations can effectively authenticate people and manage their
access to confidential information. It has become more visible as a business require-
ment across all industries affecting organizations of all sizes. Identity management
administrators constantly need to satisfy application owners while keeping expen-
ditures under control and increasing IT efficiency.

Another important consideration in RBAC systems is the possible temporal con-
straints that may exist on roles, such as the time and duration of role activations
and the timed triggering of a role by an activation of another role. Using an RBAC
model is a highly desirable goal for addressing the key security requirements of
Web-based applications. Roles can be assigned to workflow tasks so that a user with
any of the roles related to a task may be authorized to execute it and may play a
certain role only for a certain duration.

RBAC models have several desirable features, such as flexibility, policy neutrality,
better support for security management and administration, and a natural enforce-
ment of the hierarchical organization structure within organizations. They also
have other aspects that make them attractive candidates for developing secure
Web-based applications. These features are lacking in DAC and MAC models.
RBAC models do include the capabilities available in traditional DAC and MAC
policies. Furthermore, an RBAC model provides mechanisms for addressing the
security issues related to the execution of tasks and workflows, and for specifying
user-defined and organization-specific policies. Easier deployment over the Inter-
net has been another reason for the success of RBAC models.

30.3.3 Label-Based Security and Row-Level Access Control
Many mainstream RDBMSs currently use the concept of row-level access control,
where sophisticated access control rules can be implemented by considering the
data row by row. In row-level access control, each data row is given a label, which
is used to store information about data sensitivity. Row-level access control pro-
vides finer granularity of data security by allowing the permissions to be set for
each row and not just for the table or column. Initially the user is given a default
session label by the database administrator. Levels correspond to a hierarchy of
data-sensitivity levels to exposure or corruption, with the goal of maintaining pri-
vacy or security. Labels are used to prevent unauthorized users from viewing or
altering certain data. A user having a low authorization level, usually represented
by a low number, is denied access to data having a higher-level number. If no such
label is given to a row, a row label is automatically assigned to it depending upon
the user’s session label.

A policy defined by an administrator is called a label security policy. Whenever
data affected by the policy is accessed or queried through an application, the policy
is automatically invoked. When a policy is implemented, a new column is added to
each row in the schema. The added column contains the label for each row that

1140 Chapter 30 Database Security

reflects the sensitivity of the row as per the policy. Similar to MAC (mandatory
access control), where each user has a security clearance, each user has an identity
in label-based security. This user’s identity is compared to the label assigned to each
row to determine whether the user has access to view the contents of that row.
However, the user can write the label value himself, within certain restrictions and
guidelines for that specific row. This label can be set to a value that is between the
user’s current session label and the user’s minimum level. The DBA has the privi-
lege to set an initial default row label.

The label security requirements are applied on top of the DAC requirements for
each user. Hence, the user must satisfy the DAC requirements and then the label
security requirements to access a row. The DAC requirements make sure that the
user is legally authorized to carry on that operation on the schema. In most applica-
tions, only some of the tables need label-based security. For the majority of the
application tables, the protection provided by DAC is sufficient.

Security policies are generally created by managers and human resources person-
nel. The policies are high-level, technology neutral, and relate to risks. Policies are a
result of management instructions to specify organizational procedures, guiding
principles, and courses of action that are considered to be expedient, prudent, or
advantageous. Policies are typically accompanied by a definition of penalties and
countermeasures if the policy is transgressed. These policies are then interpreted
and converted to a set of label-oriented policies by the label security administrator,
who defines the security labels for data and authorizations for users; these labels
and authorizations govern access to specified protected objects.

Suppose a user has SELECT privileges on a table. When the user executes a SELECT
statement on that table, label security will automatically evaluate each row returned
by the query to determine whether the user has rights to view the data. For example,
if the user has a sensitivity of 20, then the user can view all rows having a security
level of 20 or lower. The level determines the sensitivity of the information con-
tained in a row; the more sensitive the row, the higher its security label value. Such
label security can be configured to perform security checks on UPDATE, DELETE,
and INSERT statements as well.

30.3.4 XML Access Control
With the worldwide use of XML in commercial and scientific applications, efforts
are under way to develop security standards. Among these efforts are digital signa-
tures and encryption standards for XML. The XML Signature Syntax and Process-
ing specification describes an XML syntax for representing the associations between
cryptographic signatures and XML documents or other electronic resources. The
specification also includes procedures for computing and verifying XML signa-
tures. An XML digital signature differs from other protocols for message signing,
such as OpenPGP (Pretty Good Privacy—a confidentiality and authentication ser-
vice that can be used for electronic mail and file storage application), in its support
for signing only specific portions of the XML tree (see Chapter 13) rather than the

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security 1141

complete document. Additionally, the XML signature specification defines mecha-
nisms for countersigning and transformations—so-called canonicalization—to
ensure that two instances of the same text produce the same digest for signing even
if their representations differ slightly; for example, in typographic white space.

The XML Encryption Syntax and Processing specification defines XML vocabulary
and processing rules for protecting confidentiality of XML documents in whole or in
part and of non-XML data as well. The encrypted content and additional processing
information for the recipient are represented in well-formed XML so that the result
can be further processed using XML tools. In contrast to other commonly used tech-
nologies for confidentiality, such as SSL (Secure Sockets Layer—a leading Internet
security protocol) and virtual private networks, XML encryption also applies to parts
of documents and to documents in persistent storage. Database systems such as
PostgreSQL or Oracle support JSON (JavaScript Object Notation) objects as a data
format and have similar facilities for JSON objects like those defined above for XML.

30.3.5 Access Control Policies for the Web
and Mobile Appplications

Publicly accessible Web application environments present a unique challenge to
database security. These systems include those responsible for handling sensitive or
private information and include social networks, mobile application API servers,
and e-commerce transaction platforms.

Electronic commerce (e-commerce) environments are characterized by any trans-
actions that are done electronically. They require elaborate access control policies
that go beyond traditional DBMSs. In conventional database environments, access
control is usually performed using a set of authorizations stated by security officers
or users according to some security policies. Such a simple paradigm is not well
suited for a dynamic environment like e-commerce. Furthermore, in an e-com-
merce environment the resources to be protected are not only traditional data but
also knowledge and experience. Such peculiarities call for more flexibility in speci-
fying access control policies. The access control mechanism must be flexible enough
to support a wide spectrum of heterogeneous protection objects.

Because many reservation, ticketing, payment, and online shopping systems pro-
cess information that is protected by law, the security architecture that goes beyond
simple database access control must be put in place to protect the information.
When an unauthorized party inappropriately accesses protected information, it
amounts to a data breach, which has significant legal and financial consequences.
This unauthorized party could be an adversary that actively seeks to steal protected
information or may be an employee who overstepped his or her role or incorrectly
distributed protected information to others. Inappropriate handling of credit card
data, for instance, has led to significant data breaches at major retailers.

In conventional database environments, access control is usually performed using a
set of authorizations stated by security officers. But in Web applications, it is all too

1142 Chapter 30 Database Security

common that the Web application itself is the user rather than a duly authorized
individual. This gives rise to a situation where the DBMS’s access control mecha-
nisms are bypassed and the database becomes just a relational data store to the sys-
tem. In such environments, vulnerabilities like SQL injection (which we cover in
depth in Section 30.4) become significantly more dangerous bacause it may lead to
a total data breach rather than being limited to data that a particular account is
authorized to access.

To protect against data breaches in these systems, a first requirement is a compre-
hensive information security policy that goes beyond the technical access control
mechanisms found in mainstream DBMSs. Such a policy must protect not only
traditional data, but also processes, knowledge, and experience.

A second related requirement is the support for content-based access control.
 Content-based access control allows one to express access control policies that
take the protection object content into account. In order to support content-based
access control, access control policies must allow inclusion of conditions based on
the object content.

A third requirement is related to the heterogeneity of subjects, which requires
access control policies based on user characteristics and qualifications rather than
on specific and individual characteristics (for example, user Ids). A possible solu-
tion that will allow better accounting of user profiles in the formulation of access
control policies, is to support the notion of credentials. A credential is a set of prop-
erties concerning a user that are relevant for security purposes (for example, age or
position or role within an organization). For instance, by using credentials, one can
simply formulate policies such as Only permanent staff with five or more years of
service can access documents related to the internals of the system.

XML is expected to play a key role in access control for e-commerce applications6

because XML is becoming the common representation language for document
interchange over the Web, and is also becoming the language for e-commerce.
Thus, on the one hand, there is the need to make XML representations secure by
providing access control mechanisms specifically tailored to the protection of
XML documents. On the other hand, access control information (that is, access
control policies and user credentials) can be expressed using XML itself. The
Directory Services Markup Language (DSML) is a representation of directory
service information in XML syntax. It provides a foundation for a standard for
communicating with the directory services that will be responsible for providing
and authenticating user credentials. The uniform presentation of both protection
objects and access control policies can be applied to policies and credentials them-
selves. For instance, some credential properties (such as the user name) may be
accessible to everyone, whereas other properties may be visible only to a restricted
class of users. Additionally, the use of an XML-based language for specifying cre-
dentials and access control policies facilitates secure credential submission and
export of access control policies.

6See Thuraisingham et al. (2001).

 30.4 SQL Injection 1143

30.4 SQL Injection
SQL injection is one of the most common threats to a database system. We will discuss
it in detail later in this section. Some of the other frequent attacks on databases are:

 ■ Unauthorized privilege escalation. This attack is characterized by an indi-
vidual attempting to elevate his or her privilege by attacking vulnerable
points in the database systems.

 ■ Privilege abuse. Whereas unauthorized privilege escalation is done by an
unauthorized user, this attack is performed by a privileged user. For exam-
ple, an administrator who is allowed to change student information can use
this privilege to update student grades without the instructor’s permission.

 ■ Denial of service. A denial of service (DOS) attack is an attempt to make
resources unavailable to its intended users. It is a general attack category in
which access to network applications or data is denied to intended users by
overflowing the buffer or consuming resources.

 ■ Weak authentication. If the user authentication scheme is weak, an attacker
can impersonate the identity of a legitimate user by obtaining her login
credentials.

30.4.1 SQL Injection Methods
As we discussed in Chapter 11, Web programs and applications that access a data-
base can send commands and data to the database, as well as display data retrieved
from the database through the Web browser. In an SQL injection attack, the
attacker injects a string input through the application, which changes or manipu-
lates the SQL statement to the attacker’s advantage. An SQL injection attack can
harm the database in various ways, such as unauthorized manipulation of the data-
base or retrieval of sensitive data. It can also be used to execute system-level com-
mands that may cause the system to deny service to the application. This section
describes types of injection attacks.

SQL Manipulation. A manipulation attack, which is the most common type of
injection attack, changes an SQL command in the application—for example, by add-
ing conditions to the WHERE-clause of a query, or by expanding a query with addi-
tional query components using set operations such as UNION, INTERSECT, or MINUS.
Other types of manipulation attacks are also possible. A typical manipulation attack
occurs during database login. For example, suppose that a simplistic authentication
procedure issues the following query and checks to see if any rows were returned:

SELECT * FROM users WHERE username = ‘jake’ and PASSWORD =
‘jakespasswd’ ;

The attacker can try to change (or manipulate) the SQL statement by changing it as
follows:

SELECT * FROM users WHERE username = ‘jake’ and (PASSWORD =
‘jakespasswd’ or ‘x’ = ‘x’) ;

1144 Chapter 30 Database Security

As a result, the attacker who knows that ‘jake’ is a valid login of some user is able to
log into the database system as ‘jake’ without knowing his password and is able to
do everything that ‘jake’ may be authorized to do to the database system.

Code Injection. This type of attack attempts to add additional SQL statements or
commands to the existing SQL statement by exploiting a computer bug, which is
caused by processing invalid data. The attacker can inject or introduce code into a
computer program to change the course of execution. Code injection is a popular
technique for system hacking or cracking to gain information.

Function Call Injection. In this kind of attack, a database function or operating
system function call is inserted into a vulnerable SQL statement to manipulate the
data or make a privileged system call. For example, it is possible to exploit a func-
tion that performs some aspect related to network communication. In addition,
functions that are contained in a customized database package, or any custom data-
base function, can be executed as part of an SQL query. In particular, dynamically
created SQL queries (see Chapter 10) can be exploited since they are constructed
at runtime.

For example, the dual table is used in the FROM clause of SQL in Oracle when a user
needs to run SQL that does not logically have a table name. To get today’s date, we
can use:

SELECT SYSDATE FROM dual;

The following example demonstrates that even the simplest SQL statements can be
vulnerable.

SELECT TRANSLATE (‘user input’, ‘from_string’, ‘to_string’) FROM dual;

Here, TRANSLATE is used to replace a string of characters with another string
of characters. The TRANSLATE function above will replace the characters of the
‘from_string’ with the characters in the ‘to_string’ one by one. This means that the
f will be replaced with the t, the r with the o, the o with the _, and so on.

This type of SQL statement can be subjected to a function injection attack. Con-
sider the following example:

SELECT TRANSLATE (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) || ”,
‘98765432’, ‘9876’) FROM dual;

The user can input the string (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) ||”),
where || is the concatenate operator, thus requesting a page from a Web server.
UTL_HTTP makes Hypertext Transfer Protocol (HTTP) callouts from SQL. The
REQUEST object takes a URL (‘http://129.107.2.1/’ in this example) as a parame-
ter, contacts that site, and returns the data (typically HTML) obtained from that
site. The attacker could manipulate the string he inputs, as well as the URL, to
include other functions and do other illegal operations. We just used a dummy
example to show conversion of ‘98765432’ to ‘9876’, but the user’s intent would be
to access the URL and get sensitive information. The attacker can then retrieve

 30.4 SQL Injection 1145

useful information from the database server—located at the URL that is passed as
a parameter—and send it to the Web server (that calls the TRANSLATE function).

30.4.2 Risks Associated with SQL Injection
SQL injection is harmful and the risks associated with it provide motivation for
attackers. Some of the risks associated with SQL injection attacks are explained below.

 ■ Database fingerprinting. The attacker can determine the type of database
being used in the backend so that he can use database-specific attacks that
correspond to weaknesses in a particular DBMS.

 ■ Denial of service. The attacker can flood the server with requests, thus
denying service to valid users, or the attacker can delete some data.

 ■ Bypassing authentication. This is one of the most common risks, in which
the attacker can gain access to the database as an authorized user and per-
form all the desired tasks.

 ■ Identifying injectable parameters. In this type of attack, the attacker gathers
important information about the type and structure of the back-end database
of a Web application. This attack is made possible by the fact that the default
error page returned by application servers is often overly descriptive.

 ■ Executing remote commands. This provides attackers with a tool to exe-
cute arbitrary commands on the database. For example, a remote user can
execute stored database procedures and functions from a remote SQL inter-
active interface.

 ■ Performing privilege escalation. This type of attack takes advantage of log-
ical flaws within the database to upgrade the access level.

30.4.3 Protection Techniques against SQL Injection
Protection against SQL injection attacks can be achieved by applying certain pro-
gramming rules to all Web-accessible procedures and functions. This section
describes some of these techniques.

Bind Variables (Using Parameterized Statements). The use of bind variables
(also known as parameters; see Chapter 10) protects against injection attacks and
also improves performance.

Consider the following example using Java and JDBC:

PreparedStatement stmt = conn.prepareStatement(“SELECT * FROM
 EMPLOYEE WHERE EMPLOYEE_ID=? AND PASSWORD=?”);

stmt.setString(1, employee_id);

stmt.setString(2, password);

Instead of embedding the user input into the statement, the input should be bound
to a parameter. In this example, the input ‘1’ is assigned (bound) to a bind variable

1146 Chapter 30 Database Security

‘employee_id’ and input ‘2’ to the bind variable ‘password’ instead of directly pass-
ing string parameters.

Filtering Input (Input Validation). This technique can be used to remove escape
characters from input strings by using the SQL Replace function. For example, the
delimiter single quote (‘) can be replaced by two single quotes (‘’). Some SQL
manipulation attacks can be prevented by using this technique, since escape charac-
ters can be used to inject manipulation attacks. However, because there can be a
large number of escape characters, this technique is not reliable.

Function Security. Database functions, both standard and custom, should be
restricted, as they can be exploited in the SQL function injection attacks.

30.5 Introduction to Statistical
Database Security

Statistical databases are used mainly to produce statistics about various popula-
tions. The database may contain confidential data about individuals; this informa-
tion should be protected from user access. However, users are permitted to retrieve
statistical information about the populations, such as averages, sums, counts, maxi-
mums, minimums, and standard deviations. The techniques that have been devel-
oped to protect the privacy of individual information are beyond the scope of this
text. We will illustrate the problem with a very simple example, which refers to the
relation shown in Figure 30.3. This is a PERSON relation with the attributes Name,
Ssn, Income, Address, City, State, Zip, Sex, and Last_degree.

A population is a set of tuples of a relation (table) that satisfy some selection condi-
tion. Hence, each selection condition on the PERSON relation will specify a particu-
lar population of PERSON tuples. For example, the condition Sex = ‘M’ specifies the
male population; the condition ((Sex = ‘F’) AND (Last_degree = ‘M.S.’ OR Last_degree
= ‘Ph.D.’)) specifies the female population that has an M.S. or Ph.D. degree as their
highest degree; and the condition City = ‘Houston’ specifies the population that
lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples.
For example, we may want to retrieve the number of individuals in a population
or the average income in the population. However, statistical users are not allowed
to retrieve individual data, such as the income of a specific person. Statistical
 database security techniques must prohibit the retrieval of individual data. This
can be achieved by prohibiting queries that retrieve attribute values and by allowing

Name Ssn Income Address City State Zip Sex Last_degree

PERSON

Figure 30.3
The PERSON relation schema for illustrating statistical database security.

 30.6 Introduction to Flow Control 1147

only queries that involve statistical aggregate functions such as COUNT, SUM, MIN,
MAX, AVERAGE, and STANDARD DEVIATION. Such queries are sometimes called
 statistical queries.

It is the responsibility of a database management system to ensure the confidentiality
of information about individuals while still providing useful statistical summaries of
data about those individuals to users. Provision of privacy protection of users in a
statistical database is paramount; its violation is illustrated in the following example.

In some cases it is possible to infer the values of individual tuples from a sequence
of statistical queries. This is particularly true when the conditions result in a popu-
lation consisting of a small number of tuples. As an illustration, consider the fol-
lowing statistical queries:

Q1: SELECT COUNT (*)FROM PERSON
 WHERE <condition>;

Q2: SELECT AVG (Income) FROM PERSON
 WHERE <condition>;

Now suppose that we are interested in finding the Salary of Jane Smith, and we
know that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We
issue the statistical query Q1 with the following condition:

(Last_degree=‘Ph.D.’ AND Sex=‘F’ AND City=‘Bellaire’ AND State=‘Texas’)

If we get a result of 1 for this query, we can issue Q2 with the same condition and
find the Salary of Jane Smith. Even if the result of Q1 on the preceding condition is
not 1 but is a small number—say 2 or 3—we can issue statistical queries using the
functions MAX, MIN, and AVERAGE to identify the possible range of values for the
Salary of Jane Smith.

The possibility of inferring individual information from statistical queries is reduced if
no statistical queries are permitted whenever the number of tuples in the population
specified by the selection condition falls below some threshold. Another technique for
prohibiting retrieval of individual information is to prohibit sequences of queries that
refer repeatedly to the same population of tuples. It is also possible to introduce slight
inaccuracies or noise into the results of statistical queries deliberately, to make it diffi-
cult to deduce individual information from the results. Another technique is partition-
ing of the database. Partitioning implies that records are stored in groups of some
minimum size; queries can refer to any complete group or set of groups, but never to
subsets of records within a group. The interested reader is referred to the bibliography
at the end of this chapter for a discussion of these techniques.

30.6 Introduction to Flow Control
Flow control regulates the distribution or flow of information among accessible
objects. A flow between object X and object Y occurs when a program reads values
from X and writes values into Y. Flow controls check that information contained in
some objects does not flow explicitly or implicitly into less protected objects. Thus, a

1148 Chapter 30 Database Security

user cannot get indirectly in Y what he or she cannot get directly in X. Active flow
control began in the early 1970s. Most flow controls employ some concept of security
class; the transfer of information from a sender to a receiver is allowed only if the
receiver’s security class is at least as privileged as the sender’s. Examples of a flow con-
trol include preventing a service program from leaking a customer’s confidential data,
and blocking the transmission of secret military data to an unknown classified user.

A flow policy specifies the channels along which information is allowed to move. The
simplest flow policy specifies just two classes of information—confidential (C) and
nonconfidential (N)—and allows all flows except those from class C to class N. This
policy can solve the confinement problem that arises when a service program handles
data such as customer information, some of which may be confidential. For example,
an income-tax-computing service might be allowed to retain a customer’s address
and the bill for services rendered, but not a customer’s income or deductions.

Access control mechanisms are responsible for checking users’ authorizations for
resource access: Only granted operations are executed. Flow controls can be
enforced by an extended access control mechanism, which involves assigning a
security class (usually called the clearance) to each running program. The program
is allowed to read a particular memory segment only if its security class is as high as
that of the segment. It is allowed to write in a segment only if its class is as low as
that of the segment. This automatically ensures that no information transmitted by
the person can move from a higher to a lower class. For example, a military pro-
gram with a secret clearance can only read from objects that are unclassified and
confidential and can only write into objects that are secret or top secret.

Two types of flow can be distinguished: explicit flows, which occur as a consequence
of assignment instructions, such as Y:= f(X1,Xn,); and implicit flows, which are gen-
erated by conditional instructions, such as if f(Xm+1, … , Xn) then Y:= f (X1,Xm).

Flow control mechanisms must verify that only authorized flows, both explicit and
implicit, are executed. A set of rules must be satisfied to ensure secure information
flows. Rules can be expressed using flow relations among classes and assigned to
information, stating the authorized flows within a system. (An information flow
from A to B occurs when information associated with A affects the value of infor-
mation associated with B. The flow results from operations that cause information
transfer from one object to another.) These relations can define, for a class, the set
of classes where information (classified in that class) can flow, or can state the spe-
cific relations to be verified between two classes to allow information to flow from
one to the other. In general, flow control mechanisms implement the controls by
assigning a label to each object and by specifying the security class of the object.
Labels are then used to verify the flow relations defined in the model.

30.6.1 Covert Channels
A covert channel allows a transfer of information that violates the security or the
policy. Specifically, a covert channel allows information to pass from a higher
classification level to a lower classification level through improper means. Covert

 30.7 Encryption and Public Key Infrastructures 1149

channels can be classified into two broad categories: timing channels and storage.
The distinguishing feature between the two is that in a timing channel the infor-
mation is conveyed by the timing of events or processes, whereas storage channels
do not require any temporal synchronization, in that information is conveyed by
accessing system information or what is otherwise inaccessible to the user.

In a simple example of a covert channel, consider a distributed database system in
which two nodes have user security levels of secret (S) and unclassified (U). In order
for a transaction to commit, both nodes must agree to commit. They mutually can
only do operations that are consistent with the *-property, which states that in any
transaction, the S site cannot write or pass information to the U site. However, if
these two sites collude to set up a covert channel between them, a transaction
involving secret data may be committed unconditionally by the U site, but the S site
may do so in some predefined agreed-upon way so that certain information may be
passed from the S site to the U site, violating the *-property. This may be achieved
where the transaction runs repeatedly, but the actions taken by the S site implicitly
convey information to the U site. Measures such as locking, which we discussed in
Chapters 21 and 22, prevent concurrent writing of the information by users with
different security levels into the same objects, preventing the storage-type covert
channels. Operating systems and distributed databases provide control over the
multiprogramming of operations, which allows a sharing of resources without the
possibility of encroachment of one program or process into another’s memory or
other resources in the system, thus preventing timing-oriented covert channels. In
general, covert channels are not a major problem in well-implemented robust data-
base implementations. However, certain schemes may be contrived by clever users
that implicitly transfer information.

Some security experts believe that one way to avoid covert channels is to disallow
programmers to actually gain access to sensitive data that a program will process
after the program has been put into operation. For example, a programmer for a
bank has no need to access the names or balances in depositors’ accounts. Program-
mers for brokerage firms do not need to know what buy and sell orders exist for
clients. During program testing, access to a form of real data or some sample test
data may be justifiable, but not after the program has been accepted for regular use.

30.7 Encryption and Public Key Infrastructures
The previous methods of access and flow control, despite being strong control mea-
sures, may not be able to protect databases from some threats. Suppose we commu-
nicate data, but our data falls into the hands of a nonlegitimate user. In this situation,
by using encryption we can disguise the message so that even if the transmission is
diverted, the message will not be revealed. Encryption is the conversion of data into
a form, called a ciphertext, that cannot be easily understood by unauthorized per-
sons. It enhances security and privacy when access controls are bypassed, because
in cases of data loss or theft, encrypted data cannot be easily understood by unau-
thorized persons.

1150 Chapter 30 Database Security

With this background, we adhere to following standard definitions:7

 ■ Ciphertext: Encrypted (enciphered) data

 ■ Plaintext (or cleartext): Intelligible data that has meaning and can be read or
acted upon without the application of decryption

 ■ Encryption: The process of transforming plaintext into ciphertext

 ■ Decryption: The process of transforming ciphertext back into plaintext

Encryption consists of applying an encryption algorithm to data using some pre-
specified encryption key. The resulting data must be decrypted using a decryption
key to recover the original data.

30.7.1 The Data Encryption and Advanced
Encryption Standards

The Data Encryption Standard (DES) is a system developed by the U.S. govern-
ment for use by the general public. It has been widely accepted as a cryptographic
standard both in the United States and abroad. DES can provide end-to-end
encryption on the channel between sender A and receiver B. The DES algorithm
is a careful and complex combination of two of the fundamental building blocks
of encryption: substitution and permutation (transposition). The algorithm
derives its strength from repeated application of these two techniques for a total
of 16 cycles. Plaintext (the original form of the message) is encrypted as blocks of
64 bits. Although the key is 64 bits long, in effect the key can be any 56-bit num-
ber. After questioning the adequacy of DES, the NIST introduced the Advanced
Encryption Standard (AES). This algorithm has a block size of 128 bits, com-
pared with DES’s 56-block size, and can use keys of 128, 192, or 256 bits, com-
pared with DES’s 56-bit key. AES introduces more possible keys, compared with
DES, and thus takes a much longer time to crack. In present systems, AES is the
default with large key lengths. It is also the standard for full drive encryption
products, with both Apple FileVault and Microsoft BitLocker using 256-bit or
128-bit keys. TripleDES is a fallback option if a legacy system cannot use a mod-
ern encryption standard.

30.7.2 Symmetric Key Algorithms
A symmetric key is one key that is used for both encryption and decryption. By
using a symmetric key, fast encryption and decryption is possible for routine
use with sensitive data in the database. A message encrypted with a secret key can
be decrypted only with the same secret key. Algorithms used for symmetric
key encryption are called secret key algorithms. Since secret-key algorithms
are mostly used for encrypting the content of a message, they are also called
 content-encryption algorithms.

7U.S. Department of Commerce.

 30.7 Encryption and Public Key Infrastructures 1151

The major liability associated with secret-key algorithms is the need for sharing the
secret key. A possible method is to derive the secret key from a user-supplied password
string by applying the same function to the string at both the sender and receiver; this
is known as a password-based encryption algorithm. The strength of the symmetric key
encryption depends on the size of the key used. For the same algorithm, encrypting
using a longer key is tougher to break than the one using a shorter key.

30.7.3 Public (Asymmetric) Key Encryption
In 1976, Diffie and Hellman proposed a new kind of cryptosystem, which they
called public key encryption. Public key algorithms are based on mathematical
functions rather than operations on bit patterns. They address one drawback of
symmetric key encryption, namely that both sender and recipient must exchange
the common key in a secure manner. In public key systems, two keys are used for
encryption/decryption. The public key can be transmitted in a nonsecure way,
whereas the private key is not transmitted at all. These algorithms—which use two
related keys, a public key and a private key, to perform complementary operations
(encryption and decryption)—are known as asymmetric key encryption
 algorithms. The use of two keys can have profound consequences in the areas of
confidentiality, key distribution, and authentication. The two keys used for public
key encryption are referred to as the public key and the private key. The private key
is kept secret, but it is referred to as a private key rather than a secret key (the key
used in conventional encryption) to avoid confusion with conventional encryption.
The two keys are mathematically related, since one of the keys is used to perform
encryption and the other to perform decryption. However, it is very difficult to
derive the private key from the public key.

A public key encryption scheme, or infrastructure, has six ingredients:

 1. Plaintext. This is the data or readable message that is fed into the algorithm
as input.

 2. Encryption algorithm. This algorithm performs various transformations
on the plaintext.

 3. and 4. Public and private keys. These are a pair of keys that have been
selected so that if one is used for encryption, the other is used for decryp-
tion. The exact transformations performed by the encryption algorithm
depend on the public or private key that is provided as input. For example, if
a message is encrypted using the public key, it can only be decrypted using
the private key.

 5. Ciphertext. This is the scrambled message produced as output. It depends
on the plaintext and the key. For a given message, two different keys will
produce two different ciphertexts.

 6. Decryption algorithm. This algorithm accepts the ciphertext and the
matching key and produces the original plaintext.

As the name suggests, the public key of the pair is made public for others to use,
whereas the private key is known only to its owner. A general-purpose public key

1152 Chapter 30 Database Security

cryptographic algorithm relies on one key for encryption and a different but related
key for decryption. The essential steps are as follows:

 1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

 2. Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private.

 3. If a sender wishes to send a private message to a receiver, the sender encrypts
the message using the receiver’s public key.

 4. When the receiver receives the message, he or she decrypts it using the
receiver’s private key. No other recipient can decrypt the message because
only the receiver knows his or her private key.

The RSA Public Key Encryption Algorithm. One of the first public key schemes
was introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT8 and
is named after them as the RSA scheme. The RSA scheme has since then reigned
supreme as the most widely accepted and implemented approach to public key
encryption. The RSA encryption algorithm incorporates results from number the-
ory, combined with the difficulty of determining the prime factors of a target. The
RSA algorithm also operates with modular arithmetic—mod n.

Two keys, d and e, are used for decryption and encryption. An important property
is that they can be interchanged. n is chosen as a large integer that is a product of
two large distinct prime numbers, a and b, n = a × b. The encryption key e is a ran-
domly chosen number between 1 and n that is relatively prime to (a − 1) × (b − 1).
The plaintext block P is encrypted as Pe where Pe = P mod n. Because the exponen-
tiation is performed mod n, factoring Pe to uncover the encrypted plaintext is diffi-
cult. However, the decrypting key d is carefully chosen so that (Pe)d mod n = P. The
decryption key d can be computed from the condition that d × e = 1 mod ((a − 1) ×
(b − 1)). Thus, the legitimate receiver who knows d simply computes (Pe)d mod n =
P and recovers P without having to factor Pe.

30.7.4 Digital Signatures
A digital signature is an example of using encryption techniques to provide authen-
tication services in electronic commerce applications. Like a handwritten signature,
a digital signature is a means of associating a mark unique to an individual with a
body of text. The mark should be unforgettable, meaning that others should be able
to check that the signature comes from the originator.

A digital signature consists of a string of symbols. If a person’s digital signature
were always the same for each message, then one could easily counterfeit it by sim-
ply copying the string of symbols. Thus, signatures must be different for each use.
This can be achieved by making each digital signature a function of the message

8Rivest et al. (1978).

 30.8 Privacy Issues and Preservation 1153

that it is signing, together with a timestamp. To be unique to each signer and coun-
terfeitproof, each digital signature must also depend on some secret number that is
unique to the signer. Thus, in general, a counterfeitproof digital signature must
depend on the message and a unique secret number of the signer. The verifier of the
signature, however, should not need to know any secret number. Public key tech-
niques are the best means of creating digital signatures with these properties.

30.7.5 Digital Certificates
A digital certificate is used to combine the value of a public key with the identity of
the person or service that holds the corresponding private key into a digitally signed
statement. Certificates are issued and signed by a certification authority (CA). The
entity receiving this certificate from a CA is the subject of that certificate. Instead of
requiring each participant in an application to authenticate every user, third-party
authentication relies on the use of digital certificates.

The digital certificate itself contains various types of information. For example,
both the certification authority and the certificate owner information are included.
The following list describes all the information included in the certificate:

 1. The certificate owner information, which is represented by a unique identi-
fier known as the distinguished name (DN) of the owner. This includes the
owner’s name, as well as the owner’s organization and other information
about the owner.

 2. The certificate also includes the public key of the owner.

 3. The date of issue of the certificate is also included.

 4. The validity period is specified by ‘Valid From’ and ‘Valid To’ dates, which
are included in each certificate.

 5. Issuer identifier information is included in the certificate.

 6. Finally, the digital signature of the issuing CA for the certificate is included.
All the information listed is encoded through a message-digest function,
which creates the digital signature. The digital signature basically certifies
that the association between the certificate owner and public key is valid.

30.8 Privacy Issues and Preservation
Preserving data privacy is a growing challenge for database security and privacy
experts. In some perspectives, to preserve data privacy we should even limit per-
forming large-scale data mining and analysis. The most commonly used techniques
to address this concern are to avoid building mammoth central warehouses as a
single repository of vital information. This is one of the stumbling blocks for creat-
ing nationwide registries of patients for many important diseases. Another possible
measure is to intentionally modify or perturb data.

If all data were available at a single warehouse, violating only a single repository’s
security could expose all data. Avoiding central warehouses and using distributed

1154 Chapter 30 Database Security

data mining algorithms minimizes the exchange of data needed to develop globally
valid models. By modifying, perturbing, and anonymizing data, we can also miti-
gate privacy risks associated with data mining. This can be done by removing iden-
tity information from the released data and injecting noise into the data. However,
by using these techniques, we should pay attention to the quality of the resulting
data in the database, which may undergo too many modifications. We must be able
to estimate the errors that may be introduced by these modifications.

Privacy is an important area of ongoing research in database management. It is
complicated due to its multidisciplinary nature and the issues related to the subjec-
tivity in the interpretation of privacy, trust, and so on. As an example, consider
medical and legal records and transactions, which must maintain certain privacy
requirements. Providing access control and privacy for mobile devices is also
receiving increased attention. DBMSs need robust techniques for efficient storage
of security-relevant information on small devices, as well as trust negotiation tech-
niques. Where to keep information related to user identities, profiles, credentials,
and permissions and how to use it for reliable user identification remains an impor-
tant problem. Because large-sized streams of data are generated in such environ-
ments, efficient techniques for access control must be devised and integrated with
processing techniques for continuous queries. Finally, the privacy of user location
data, acquired from sensors and communication networks, must be ensured.

30.9 Challenges to Maintaining
Database Security

Considering the vast growth in volume and speed of threats to databases and infor-
mation assets, research efforts need to be devoted to a number of issues: data qual-
ity, intellectual property rights, and database survivability, to name a few. We
briefly outline the work required in a few important areas that researchers in data-
base security are trying to address.

30.9.1 Data Quality
The database community needs techniques and organizational solutions to assess
and attest to the quality of data. These techniques may include simple mechanisms
such as quality stamps that are posted on Web sites. We also need techniques that
provide more effective integrity semantics verification and tools for the assessment
of data quality, based on techniques such as record linkage. Application-level recov-
ery techniques are also needed for automatically repairing incorrect data. The ETL
(extract, transform, load) tools widely used to load data in data warehouses (see
Section 29.4) are presently grappling with these issues.

30.9.2 Intellectual Property Rights
With the widespread use of the Internet and intranets, legal and informational
aspects of data are becoming major concerns for organizations. To address these

 30.10 Oracle Label-Based Security 1155

concerns, watermarking techniques for relational data have been proposed. The
main purpose of digital watermarking is to protect content from unauthorized
duplication and distribution by enabling provable ownership of the content. Digital
watermarking has traditionally relied upon the availability of a large noise domain
within which the object can be altered while retaining its essential properties. How-
ever, research is needed to assess the robustness of such techniques and to investi-
gate different approaches aimed at preventing intellectual property rights violations.

30.9.3 Database Survivability
Database systems need to operate and continue their functions, even with reduced
capabilities, despite disruptive events such as information warfare attacks. A DBMS,
in addition to making every effort to prevent an attack and detecting one in the
event of occurrence, should be able to do the following:

 ■ Confinement. Take immediate action to eliminate the attacker’s access to
the system and to isolate or contain the problem to prevent further spread.

 ■ Damage assessment. Determine the extent of the problem, including failed
functions and corrupted data.

 ■ Reconfiguration. Reconfigure to allow operation to continue in a degraded
mode while recovery proceeds.

 ■ Repair. Recover corrupted or lost data and repair or reinstall failed system
functions to reestablish a normal level of operation.

 ■ Fault treatment. To the extent possible, identify the weaknesses exploited in
the attack and take steps to prevent a recurrence.

The goal of the information warfare attacker is to damage the organization’s opera-
tion and fulfillment of its mission through disruption of its information systems.
The specific target of an attack may be the system itself or its data. Although attacks
that bring the system down outright are severe and dramatic, they must also be well
timed to achieve the attacker’s goal, since attacks will receive immediate and con-
centrated attention in order to bring the system back to operational condition,
diagnose how the attack took place, and install preventive measures.

To date, issues related to database survivability have not been sufficiently investi-
gated. Much more research needs to be devoted to techniques and methodologies
that ensure database system survivability.

30.10 Oracle Label-Based Security
Restricting access to entire tables or isolating sensitive data into separate databases
is a costly operation to administer. Oracle label security overcomes the need for
such measures by enabling row-level access control. It is available starting with
Oracle Database 11g Release 1 (11.1) Enterprise Edition. Each database table or
view has a security policy associated with it. This policy executes every time the
table or view is queried or altered. Developers can readily add label-based access

1156 Chapter 30 Database Security

control to their Oracle Database applications. Label-based security provides an
adaptable way of controlling access to sensitive data. Both users and data have labels
associated with them. Oracle label security uses these labels to provide security.

30.10.1 Virtual Private Database (VPD) Technology
Virtual private databases (VPDs) are a feature of the Oracle Enterprise Edition
that add predicates to user statements to limit their access in a transparent manner
to the user and the application. The VPD concept allows server-enforced, fine-
grained access control for a secure application.

VPD provides access control based on policies. These VPD policies enforce object-
level access control or row-level security. VPD provides an application program-
ming interface (API) that allows security policies to be attached to database tables
or views. Using PL/SQL, a host programming language used in Oracle applications,
developers and security administrators can implement security policies with the
help of stored procedures.9 VPD policies allow developers to remove access security
mechanisms from applications and centralize them within the Oracle Database.

VPD is enabled by associating a security “policy” with a table, view, or synonym.
An administrator uses the supplied PL/SQL package, DBMS_RLS, to bind a policy
function with a database object. When an object having a security policy associated
with it is accessed, the function implementing this policy is consulted. The policy
function returns a predicate (a WHERE clause) that is then appended to the user’s
SQL statement, thus transparently and dynamically modifying the user’s data
access. Oracle label security is a technique of enforcing row-level security in the
form of a security policy.

30.10.2 Label Security Architecture
Oracle label security is built on the VPD technology delivered in the Oracle Data-
base 11.1 Enterprise Edition. Figure 30.4 illustrates how data is accessed under Ora-
cle label security, showing the sequence of DAC and label security checks.

Figure 30.4 shows the sequence of discretionary access control (DAC) and label
security checks. The left part of the figure shows an application user in an Oracle
Database 11g Release 1 (11.1) session sending out an SQL request. The Oracle
DBMS checks the DAC privileges of the user, making sure that he or she has SELECT
privileges on the table. Then it checks whether the table has a virtual private data-
base (VPD) policy associated with it to determine if the table is protected using
Oracle label security. If it is, the VPD SQL modification (WHERE clause) is added to
the original SQL statement to find the set of accessible rows for the user to view.
Then Oracle label security checks the labels on each row to determine the subset of
rows to which the user has access (as explained in the next section). This modified
query is processed, optimized, and executed.

9Stored procedures are discussed in Section 8.2.2.

 30.10 Oracle Label-Based Security 1157

30.10.3 How Data Labels and User Labels Work Together
A user’s label indicates the information the user is permitted to access. It also deter-
mines the type of access (read or write) that the user has on that information. A
row’s label shows the sensitivity of the information that the row contains as well as
the ownership of the information. When a table in the database has a label-based
access associated with it, a row can be accessed only if the user’s label meets certain
criteria defined in the policy definitions. Access is granted or denied based on the
result of comparing the data label and the session label of the user.

Compartments allow a finer classification of sensitivity of the labeled data. All data
related to the same project can be labeled with the same compartment. Compart-
ments are optional; a label can contain zero or more compartments.

Groups are used to identify organizations as owners of the data with corresponding
group labels. Groups are hierarchical; for example, a group can be associated with a
parent group.

If a user has a maximum level of SENSITIVE, then the user potentially has access to
all data having levels SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED. This user has
no access to HIGHLY_SENSITIVE data. Figure 30.5 shows how data labels and user
labels work together to provide access control in Oracle label security.

As shown in Figure 30.5, User 1 can access the rows 2, 3, and 4 because his maxi-
mum level is HS (Highly_Sensitive). He has access to the FIN (Finance) compart-
ment, and his access to group WR (Western Region) hierarchically includes group

Oracle User

Request for Data in SQL

Check DAC
(Discretionary) Access

Control

Check Virtual Private
Database (VDP) Policy

Process and Execute
Data Request

Enforce Label-
Based Security

Oracle Data Server

Table Level
Privileges

Table

Data Rows
in Table

Label Security
Policies

Row Level
Access Control

VPD-Based
Control

User-Defined
VPD Policies

Figure 30.4
Oracle label security
architecture.
Data from: Oracle
(2007)

1158 Chapter 30 Database Security

WR_SAL (WR Sales). He cannot access row 1 because he does not have the CHEM
(Chemical) compartment. It is important that a user has authorization for all com-
partments in a row’s data label so the user can access that row. Based on this exam-
ple, user 2 can access both rows 3 and 4 and has a maximum level of S, which is less
than the HS in row 2. So, although user 2 has access to the FIN compartment, he
can only access the group WR_SAL and thus cannot access row 1.

30.11 Summary
In this chapter, we discussed several techniques for enforcing database system
security. Section 30.1 is an introduction to database security. We presented in Sec-
tion 30.1.1 different threats to databases in terms of loss of integrity, availability,
and confidentiality. We discussed in Section 30.1.2 the types of control measures
to deal with these problems: access control, inference control, flow control, and
encryption. In the rest of Section 30.1, we covered various issues related to secu-
rity, including data sensitivity and type of disclosures; security versus precision of
results when a user requests information; and the relationship between informa-
tion security and privacy.

Security enforcement deals with controlling access to the database system as a
whole and controlling authorization to access specific portions of a database. The
former is usually done by assigning accounts with passwords to users. The latter
can be accomplished by using a system of granting and revoking privileges to
individual accounts for accessing specific parts of the database. This approach,

User Labels

HS FIN : WR

S FIN : WR_SAL

Legend for Labels
HS = Highly sensitive
S = Sensitive
C = Confidential
U = Unclassified

Maximum
Access
Level

All compartments to which
the user has access

Minimum
Access Level

Required

All compartments to which
the user must have access

User Label

Data Label

Rows in Table Data Labels

Row 1

Row 2

Row 3

Row 4

S CHEM, FIN : WR

HS FIN : WR_SAL

U FIN

C FIN : WR_SAL

Figure 30.5
Data labels and user labels
in Oracle.
Data from: Oracle (2007)

 Review Questions 1159

presented in Section 30.2, is generally referred to as discretionary access control
(DAC). We presented some SQL commands for granting and revoking privileges,
and we illustrated their use with examples. Then in Section 30.3 we gave an over-
view of mandatory access control (MAC) mechanisms that enforce multilevel
security. These require the classifications of users and data values into security
classes and enforce the rules that prohibit flow of information from higher to
lower security levels. Some of the key concepts underlying the multilevel rela-
tional model, including filtering and polyinstantiation, were presented. Role-
based access control (RBAC) was introduced in Section 30.3.2, which assigns
privileges based on roles that users play. We introduced the notion of role hierar-
chies, mutual exclusion of roles, and row- and label-based security. We explained
the main ideas behind the threat of SQL injection in Section 30.4, the methods in
which it can be induced, and the various types of risks associated with it. Then we
gave an idea of the various ways SQL injection can be prevented.

We briefly discussed in Section 30.5 the problem of controlling access to statistical
databases to protect the privacy of individual information while concurrently pro-
viding statistical access to populations of records. The issues related to flow control
and the problems associated with covert channels were discussed next in Sec-
tion 30.6, as well as encryption and public-versus-private key-based infrastructures
in Section 30.7. The idea of symmetric key algorithms and the use of the popular
asymmetric key-based public key infrastructure (PKI) scheme was explained in
Section 30.7.3. We also covered in Sections 30.7.4 and 30.7.5 the concepts of digital
signatures and digital certificates. We highlighted in Section 30.8 the importance of
privacy issues and hinted at some privacy preservation techniques. We discussed in
Section 30.9 a variety of challenges to security, including data quality, intellectual
property rights, and data survivability. We ended the chapter in Section 30.10 by
introducing the implementation of security policies by using a combination of
label-based security and virtual private databases in Oracle 11g.

Review Questions
 30.1. Discuss what is meant by each of the following terms: database authoriza-

tion, access control, data encryption, privileged (system) account, database
audit, audit trail.

 30.2. Which account is designated as the owner of a relation? What privileges
does the owner of a relation have?

 30.3. How is the view mechanism used as an authorization mechanism?

 30.4. Discuss the types of privileges at the account level and those at the relation level.

 30.5. What is meant by granting a privilege? What is meant by revoking a privilege?

 30.6. Discuss the system of propagation of privileges and the restraints imposed
by horizontal and vertical propagation limits.

 30.7. List the types of privileges available in SQL.

1160 Chapter 30 Database Security

 30.8. What is the difference between discretionary and mandatory access control?

 30.9. What are the typical security classifications? Discuss the simple security
property and the *-property, and explain the justification behind these rules
for enforcing multilevel security.

 30.10. Describe the multilevel relational data model. Define the following terms:
apparent key, polyinstantiation, filtering.

 30.11. What are the relative merits of using DAC or MAC?

 30.12. What is role-based access control? In what ways is it superior to DAC and
MAC?

 30.13. What are the two types of mutual exclusion in role-based access control?

 30.14. What is meant by row-level access control?

 30.15. What is label security? How does an administrator enforce it?

 30.16. What are the different types of SQL injection attacks?

 30.17. What risks are associated with SQL injection attacks?

 30.18. What preventive measures are possible against SQL injection attacks?

 30.19. What is a statistical database? Discuss the problem of statistical database
security.

 30.20. How is privacy related to statistical database security? What measures can be
taken to ensure some degree of privacy in statistical databases?

 30.21. What is flow control as a security measure? What types of flow control exist?

 30.22. What are covert channels? Give an example of a covert channel.

 30.23. What is the goal of encryption? What process is involved in encrypting data
and then recovering it at the other end?

 30.24. Give an example of an encryption algorithm and explain how it works.

 30.25. Repeat the previous question for the popular RSA algorithm.

 30.26. What is a symmetric key algorithm for key-based security?

 30.27. What is the public key infrastructure scheme? How does it provide security?

 30.28. What are digital signatures? How do they work?

 30.29. What type of information does a digital certificate include?

Exercises
 30.30. How can privacy of data be preserved in a database?

 30.31. What are some of the current outstanding challenges for database security?

 Selected Bibliography 1161

 30.32. Consider the relational database schema in Figure 5.5. Suppose that all the
relations were created by (and hence are owned by) user X, who wants to
grant the following privileges to user accounts A, B, C, D, and E:

a. Account A can retrieve or modify any relation except DEPENDENT and
can grant any of these privileges to other users.

b. Account B can retrieve all the attributes of EMPLOYEE and DEPARTMENT
except for Salary, Mgr_ssn, and Mgr_start_date.

c. Account C can retrieve or modify WORKS_ON but can only retrieve the
Fname, Minit, Lname, and Ssn attributes of EMPLOYEE and the Pname and
Pnumber attributes of PROJECT.

d. Account D can retrieve any attribute of EMPLOYEE or DEPENDENT and
can modify DEPENDENT.

e. Account E can retrieve any attribute of EMPLOYEE but only for EMPLOYEE
tuples that have Dno = 3.

f. Write SQL statements to grant these privileges. Use views where appropriate.

 30.33. Suppose that privilege (a) of Exercise 30.32 is to be given with GRANT
OPTION but only so that account A can grant it to at most five accounts, and
each of these accounts can propagate the privilege to other accounts but
without the GRANT OPTION privilege. What would the horizontal and verti-
cal propagation limits be in this case?

 30.34. Consider the relation shown in Figure 30.2(d). How would it appear to a
user with classification U? Suppose that a classification U user tries to update
the salary of ‘Smith’ to $50,000; what would be the result of this action?

Selected Bibliography
Authorization based on granting and revoking privileges was proposed for the
 SYSTEM R experimental DBMS and is presented in Griffiths and Wade (1976).
Several books discuss security in databases and computer systems in general,
including the books by Leiss (1982a), Fernandez et al. (1981), and Fugini et al.
(1995). Natan (2005) is a practical book on security and auditing implementation
issues in all major RDBMSs.

Many papers discuss different techniques for the design and protection of statistical
databases. They include McLeish (1989), Chin and Ozsoyoglu (1981), Leiss (1982),
Wong (1984), and Denning (1980). Ghosh (1984) discusses the use of statistical data-
bases for quality control. There are also many papers discussing cryptography and data
encryption, including Diffie and Hellman (1979), Rivest et al. (1978), Akl (1983),
Pfleeger and Pfleeger (2007), Omura et al. (1990), Stallings (2000), and Iyer at al. (2004).

Halfond et al. (2006) helps us understand the concepts of SQL injection attacks and
the various threats imposed by them. The white paper Oracle (2007a) explains how
Oracle is less prone to SQL injection attack as compared to SQL Server. Oracle

1162 Chapter 30 Database Security

(2007a) also gives a brief explanation of how these attacks can be prevented from
occurring. Further proposed frameworks are discussed in Boyd and Keromytis
(2004), Halfond and Orso (2005), and McClure and Krüger (2005).

Multilevel security is discussed in Jajodia and Sandhu (1991), Denning et al. (1987),
Smith and Winslett (1992), Stachour and Thuraisingham (1990), Lunt et al. (1990),
and Bertino et al. (2001). Overviews of research issues in database security are given
by Lunt and Fernandez (1990), Jajodia and Sandhu (1991), Bertino (1998), Castano
et al. (1995), and Thuraisingham et al. (2001). The effects of multilevel security on
concurrency control are discussed in Atluri et al. (1997). Security in next- generation,
semantic, and object-oriented databases is discussed in Rabbiti et al. (1991), Jajodia
and Kogan (1990), and Smith (1990). Oh (1999) presents a model for both discre-
tionary and mandatory security. Security models for Web-based applications and
role-based access control are discussed in Joshi et al. (2001). Security issues for
managers in the context of e-commerce applications and the need for risk assess-
ment models for selection of appropriate security control measures are discussed in
Farahmand et al. (2005). Row-level access control is explained in detail in Oracle
(2007b) and Sybase (2005). The latter also provides details on role hierarchy and
mutual exclusion. Oracle (2009) explains how Oracle uses the concept of identity
management.

Recent advances as well as future challenges for security and privacy of databases
are discussed in Bertino and Sandhu (2005). U.S. Govt. (1978), OECD (1980), and
NRC (2003) are good references on the view of privacy by important government
bodies. Karat et al. (2009) discusses a policy framework for security and privacy.
XML and access control are discussed in Naedele (2003). More details are presented
on privacy-preserving techniques in Vaidya and Clifton (2004), intellectual prop-
erty rights in Sion et al. (2004), and database survivability in Jajodia et al. (1999).
Oracle’s VPD technology and label-based security is discussed in more detail in
Oracle (2007b).

Agrawal et al. (2002) defined the concept of Hippocratic Databases for preserving
privacy in healthcare information. K-anonymity as a privacy preserving technique
is discussed in Bayardo and Agrawal (2005) and in Ciriani et al. (2007). Privacy-
preserving data mining techniques based on k-anonymity are surveyed by Ciriani
et al. (2008). Vimercati et al. (2014) discuss encryption and fragmentation as poten-
tial protection techniques for data confidentiality in the cloud.

1163

A
Alternative Diagrammatic

Notations for ER Models

Figure A.1 shows a number of different diagram-
matic notations for representing ER and EER

model concepts. Unfortunately, there is no standard notation: different database
design practitioners prefer different notations. Similarly, various CASE (computer-
aided software engineering) tools and OOA (object-oriented analysis) methodolo-
gies use various notations. Some notations are associated with models that have
additional concepts and constraints beyond those of the ER and EER models
described in Chapters 7 through 9, while other models have fewer concepts and
constraints. The notation we used in Chapter 7 is quite close to the original notation
for ER diagrams, which is still widely used. We discuss some alternate notations
here.

Figure A.1(a) shows different notations for displaying entity types/classes, attri-
butes, and relationships. In Chapters 7 through 9, we used the symbols marked (i) in
Figure A.1(a)—namely, rectangle, oval, and diamond. Notice that symbol (ii) for
entity types/classes, symbol (ii) for attributes, and symbol (ii) for relationships are
similar, but they are used by different methodologies to represent three different
concepts. The straight line symbol (iii) for representing relationships is used by
several tools and methodologies.

Figure A.1(b) shows some notations for attaching attributes to entity types. We used
notation (i). Notation (ii) uses the third notation (iii) for attributes from Figure A.1(a).
The last two notations in Figure A.1(b)—(iii) and (iv)—are popular in OOA meth-
odologies and in some CASE tools. In particular, the last notation displays both the
attributes and the methods of a class, separated by a horizontal line.

appendix A

1164 Appendix A Alternative Diagrammatic Notations for ER Models

Entity type/class symbols E(i) E(ii)

Attribute symbols (i) (ii)

Relationship symbols (i) (ii)

(iii)

(iii)

(a)

A

R

A A

R R

(b)
Ssn
Name
Address

.

.

.

EMPLOYEE(ii)

EMPLOYEE

Ssn(i)
Name

Address . . .

.

.

.

(iii)
Ssn

Name
Address

EMPLOYEE

.

.

.

.

.

.

(iv)

Ssn

Name
Address

Hire_emp

Fire_emp

EMPLOYEE

(c) (i)

(ii)

1 N

(iii)

(iv)

(v)

(vi) *

(d) (i)

(ii)

1 N

(0,n) (1,1)

(0,n)(1,1)
(iii)

(iv)

(e) (i)

(iv) C

(ii) (iii)C

S2S1 S3

d o

S2S1 S3

G

Gs

C

S2S1 S3

C

S2S1 S3

(v) (vi)C

S2S1 S3

C

S2S1 S3

G

(v)
 0..n 1..1

Figure A.1
Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying
attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for
displaying specialization/generalization.

 Appendix A Alternative Diagrammatic Notations for ER Models 1165

Figure A.1(c) shows various notations for representing the cardinality ratio of
binary relationships. We used notation (i) in Chapters 7 through 9. Notation (ii)—
known as the chicken feet notation—is quite popular. Notation (iv) uses the arrow as
a functional reference (from the N to the 1 side) and resembles our notation for for-
eign keys in the relational model (see Figure 9.2); notation (v)—used in Bachman
diagrams and the network data model—uses the arrow in the reverse direction (from
the 1 to the N side). For a 1:1 relationship, (ii) uses a straight line without any
chicken feet; (iii) makes both halves of the diamond white; and (iv) places arrow-
heads on both sides. For an M:N relationship, (ii) uses chicken feet at both ends of
the line; (iii) makes both halves of the diamond black; and (iv) does not display any
arrowheads.

Figure A.1(d) shows several variations for displaying (min, max) constraints, which
are used to display both cardinality ratio and total/partial participation. We mostly
used notation (i). Notation (ii) is the alternative notation we used in Figure 7.15 and
discussed in Section 7.7.4. Recall that our notation specifies the constraint that each
entity must participate in at least min and at most max relationship instances.
Hence, for a 1:1 relationship, both max values are 1; for M:N, both max values are n.
A min value greater than 0 (zero) specifies total participation (existence depen-
dency). In methodologies that use the straight line for displaying relationships, it is
common to reverse the positioning of the (min, max) constraints, as shown in (iii); a
variation common in some tools (and in UML notation) is shown in (v). Another
popular technique—which follows the same positioning as (iii)—is to display the
min as o (“oh” or circle, which stands for zero) or as | (vertical dash, which stands
for 1), and to display the max as | (vertical dash, which stands for 1) or as chicken
feet (which stands for n), as shown in (iv).

Figure A.1(e) shows some notations for displaying specialization/generalization. We
used notation (i) in Chapter 8, where a d in the circle specifies that the subclasses
(S1, S2, and S3) are disjoint and an o in the circle specifies overlapping subclasses.
Notation (ii) uses G (for generalization) to specify disjoint, and Gs to specify over-
lapping; some notations use the solid arrow, while others use the empty arrow
(shown at the side). Notation (iii) uses a triangle pointing toward the superclass,
and notation (v) uses a triangle pointing toward the subclasses; it is also possible to
use both notations in the same methodology, with (iii) indicating generalization
and (v) indicating specialization. Notation (iv) places the boxes representing
subclasses within the box representing the superclass. Of the notations based on
(vi), some use a single-lined arrow, and others use a double-lined arrow (shown
at the side).

The notations shown in Figure A.1 show only some of the diagrammatic symbols
that have been used or suggested for displaying database conceptual schemes. Other
notations, as well as various combinations of the preceding, have also been used. It
would be useful to establish a standard that everyone would adhere to, in order to
prevent misunderstandings and reduce confusion.

This page intentionally left blank

1167

B
Parameters of Disks

The most important disk parameter is the time
required to locate an arbitrary disk block, given its

block address, and then to transfer the block between the disk and a main memory
buffer. This is the random access time for accessing a disk block. There are three
time components to consider as follows:

 1. Seek time (s). This is the time needed to mechanically position the
read/write head on the correct track for movable-head disks. (For fixed-head
disks, it is the time needed to electronically switch to the appropriate
read/write head.) For movable-head disks, this time varies, depending on the
distance between the current track under the read/write head and the track
specified in the block address. Usually, the disk manufacturer provides an
average seek time in milliseconds. The typical range of average seek time is 4
to 10 msec. This is the main culprit for the delay involved in transferring
blocks between disk and memory.

 2. Rotational delay (rd). Once the read/write head is at the correct track, the
user must wait for the beginning of the required block to rotate into position
under the read/write head. On average, this takes about the time for half a
revolution of the disk, but it actually ranges from immediate access (if
the start of the required block is in position under the read/write head right
after the seek) to a full disk revolution (if the start of the required block just
passed the read/write head after the seek). If the speed of disk rotation is p
revolutions per minute (rpm), then the average rotational delay rd is given by

rd = (1/2) * (1/p) min = (60 * 1000)/(2 * p) msec = 30000/p msec

A typical value for p is 10,000 rpm, which gives a rotational delay of rd =
3 msec. For fixed-head disks, where the seek time is negligible, this component
causes the greatest delay in transferring a disk block.

appendix B

1168 Appendix B Parameters of Disks

 3. Block transfer time (btt). Once the read/write head is at the beginning of
the required block, some time is needed to transfer the data in the block.
This block transfer time depends on the block size, track size, and rotational
speed. If the transfer rate for the disk is tr bytes/msec and the block size is
B bytes, then

btt = B/tr msec

If we have a track size of 50 Kbytes and p is 3600 rpm, then the transfer rate
in bytes/msec is

tr = (50 * 1000)/(60 * 1000/3600) = 3000 bytes/msec

In this case, btt = B/3000 msec, where B is the block size in bytes.

The average time (s) needed to find and transfer a block, given its block address, is
estimated by

(s + rd + btt) msec

This holds for either reading or writing a block. The principal method of reducing
this time is to transfer several blocks that are stored on one or more tracks of the
same cylinder; then the seek time is required for the first block only. To transfer
consecutively k noncontiguous blocks that are on the same cylinder, we need
approximately

s + (k * (rd + btt)) msec

In this case, we need two or more buffers in main storage because we are continu-
ously reading or writing the k blocks, as we discussed in Chapter 17. The transfer
time per block is reduced even further when consecutive blocks on the same track or
cylinder are transferred. This eliminates the rotational delay for all but the first
block, so the estimate for transferring k consecutive blocks is

s + rd + (k * btt) msec

A more accurate estimate for transferring consecutive blocks takes into account the
interblock gap (see Section 17.2.1), which includes the information that enables the
read/write head to determine which block it is about to read. Usually, the disk man-
ufacturer provides a bulk transfer rate (btr) that takes the gap size into account
when reading consecutively stored blocks. If the gap size is G bytes, then

btr = (B/(B + G)) * tr bytes/msec

The bulk transfer rate is the rate of transferring useful bytes in the data blocks. The
disk read/write head must go over all bytes on a track as the disk rotates, including
the bytes in the interblock gaps, which store control information but not real data.
When the bulk transfer rate is used, the time needed to transfer the useful data in
one block out of several consecutive blocks is B/btr. Hence, the estimated time to
read k blocks consecutively stored on the same cylinder becomes

s + rd + (k * (B/btr)) msec

 Appendix B Parameters of Disks 1169

Another parameter of disks is the rewrite time. This is useful in cases when we read
a block from the disk into a main memory buffer, update the buffer, and then write
the buffer back to the same disk block on which it was stored. In many cases, the
time required to update the buffer in main memory is less than the time required for
one disk revolution. If we know that the buffer is ready for rewriting, the system can
keep the disk heads on the same track, and during the next disk revolution the
updated buffer is rewritten back to the disk block. Hence, the rewrite time Tr w, is
usually estimated to be the time needed for one disk revolution:

Tr w = 2 * rd msec = 60000/p msec

To summarize, the following is a list of the parameters we have discussed and the
symbols we use for them:

Seek time: s msec

Rotational delay: rd msec

Block transfer time: btt msec

Rewrite time: Tr w msec

Transfer rate: tr bytes/msec

Bulk transfer rate: btr bytes/msec

Block size: B bytes

Interblock gap size: G bytes

Disk speed: p rpm (revolutions per minute)

This page intentionally left blank

1171

C
Overview of the QBE

Language

The Query-By-Example (QBE) language is impor-
tant because it is one of the first graphical query

languages with minimum syntax developed for database systems. It was developed
at IBM Research and is available as an IBM commercial product as part of the QMF
(Query Management Facility) interface option to DB2. The language was also
implemented in the Paradox DBMS, and is related to a point-and-click type inter-
face in the Microsoft Access DBMS. It differs from SQL in that the user does not
have to explicitly specify a query using a fixed syntax; rather, the query is formulated
by filling in templates of relations that are displayed on a monitor screen. Figure C.1
shows how these templates may look for the database of Figure 3.5. The user does
not have to remember the names of attributes or relations because they are dis-
played as part of these templates. Additionally, the user does not have to follow rigid
syntax rules for query specification; rather, constants and variables are entered in
the columns of the templates to construct an example related to the retrieval or
update request. QBE is related to the domain relational calculus, as we shall see, and
its original specification has been shown to be relationally complete.

C.1 Basic Retrievals in QBE
In QBE retrieval queries are specified by filling in one or more rows in the templates
of the tables. For a single relation query, we enter either constants or example
 elements (a QBE term) in the columns of the template of that relation. An example
element stands for a domain variable and is specified as an example value preceded
by the underscore character (_). Additionally, a P. prefix (called the P dot operator)
is entered in certain columns to indicate that we would like to print (or display)

appendix C

1172 Appendix C Overview of the QBE Language

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure C.1
The relational schema of Figure 3.5
as it may be displayed by QBE.

values in those columns for our result. The constants specify values that must be
exactly matched in those columns.

For example, consider the query Q0: Retrieve the birth date and address of John B.
Smith. In Figures C.2(a) through C.2(d) we show how this query can be specified in
a progressively more terse form in QBE. In Figure C.2(a) an example of an employee
is presented as the type of row that we are interested in. By leaving John B. Smith as
constants in the Fname, Minit, and Lname columns, we are specifying an exact match
in those columns. The rest of the columns are preceded by an underscore indicating
that they are domain variables (example elements). The P. prefix is placed in the
Bdate and Address columns to indicate that we would like to output value(s) in those
columns.

Q0 can be abbreviated as shown in Figure C.2(b). There is no need to specify exam-
ple values for columns in which we are not interested. Moreover, because example
values are completely arbitrary, we can just specify variable names for them, as
shown in Figure C.2(c). Finally, we can also leave out the example values entirely, as
shown in Figure C.2(d), and just specify a P. under the columns to be retrieved.

To see how retrieval queries in QBE are similar to the domain relational calculus,
compare Figure C.2(d) with Q0 (simplified) in domain calculus as follows:

Q0 : { uv | EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and s=‘Smith’}

 Appendix C Overview of the QBE Language 1173

We can think of each column in a QBE template as an implicit domain variable;
hence, Fname corresponds to the domain variable q, Minit corresponds to r, …, and
Dno corresponds to z. In the QBE query, the columns with P. correspond to vari-
ables specified to the left of the bar in domain calculus, whereas the columns with
constant values correspond to tuple variables with equality selection conditions on
them. The condition EMPLOYEE(qrstuvwxyz) and the existential quantifiers are
implicit in the QBE query because the template corresponding to the EMPLOYEE
relation is used.

In QBE, the user interface first allows the user to choose the tables (relations) needed
to formulate a query by displaying a list of all relation names. Then the templates for
the chosen relations are displayed. The user moves to the appropriate columns in
the templates and specifies the query. Special function keys are provided to move
among templates and perform certain functions.

We now give examples to illustrate basic facilities of QBE. Comparison operators
other than = (such as > or ≥) may be entered in a column before typing a constant
value. For example, the query Q0A: List the social security numbers of employees who
work more than 20 hours per week on project number 1 can be specified as shown in
Figure C.3(a). For more complex conditions, the user can ask for a condition box,
which is created by pressing a particular function key. The user can then type the
complex condition.1

EMPLOYEE(a)

(b)

(c)

(d)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith _123456789 P._9/1/60 P._100 Main, Houston, TX _M _25000 _123456789 _3

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._9/1/60 P._100 Main, Houston, TX

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._X P._Y

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P. P.

Figure C.2
Four ways to specify the query Q0 in QBE.

1Negation with the ¬ symbol is not allowed in a condition box.

1174 Appendix C Overview of the QBE Language

For example, the query Q0B: List the social security numbers of employees who work
more than 20 hours per week on either project 1 or project 2 can be specified as shown
in Figure C.3(b).

Some complex conditions can be specified without a condition box. The rule is that
all conditions specified on the same row of a relation template are connected by the
and logical connective (all must be satisfied by a selected tuple), whereas conditions
specified on distinct rows are connected by or (at least one must be satisfied). Hence,
Q0B can also be specified, as shown in Figure C.3(c), by entering two distinct rows
in the template.

Now consider query Q0C: List the social security numbers of employees who work on
both project 1 and project 2; this cannot be specified as in Figure C.4(a), which lists
those who work on either project 1 or project 2. The example variable _ES will bind
itself to Essn values in <–, 1, –> tuples as well as to those in <–, 2, –> tuples. Fig-
ure C.4(b) shows how to specify Q0C correctly, where the condition (_EX = _EY) in
the box makes the _EX and _EY variables bind only to identical Essn values.

In general, once a query is specified, the resulting values are displayed in the template
under the appropriate columns. If the result contains more rows than can be displayed
on the screen, most QBE implementations have function keys to allow scrolling up
and down the rows. Similarly, if a template or several templates are too wide to appear
on the screen, it is possible to scroll sideways to examine all the templates.

A join operation is specified in QBE by using the same variable2 in the columns to
be joined. For example, the query Q1: List the name and address of all employees who

WORKS_ON

(a) Essn Pno Hours

P. > 20

WORKS_ON

(b) Essn Pno Hours

P. _PX _HX

_HX > 20 and (PX = 1 or PX = 2)

CONDITIONS

WORKS_ON

(c) Essn Pno Hours

P. > 201
P. > 202

Figure C.3
Specifying complex conditions
in QBE. (a) The query Q0A.
(b) The query Q0B with a
condition box. (c) The query
Q0B without a condition box.

2A variable is called an example element in QBE manuals.

 Appendix C Overview of the QBE Language 1175

work for the ‘Research’ department can be specified as shown in Figure C.5(a). Any
number of joins can be specified in a single query. We can also specify a result table
to display the result of the join query, as shown in Figure C.5(a); this is needed if the
result includes attributes from two or more relations. If no result table is specified,
the system provides the query result in the columns of the various relations, which
may make it difficult to interpret. Figure C.5(a) also illustrates the feature of QBE
for specifying that all attributes of a relation should be retrieved, by placing the P.
operator under the relation name in the relation template.

To join a table with itself, we specify different variables to represent the different
references to the table. For example, query Q8: For each employee retrieve the
employee’s first and last name as well as the first and last name of his or her immedi-
ate supervisor can be specified as shown in Figure C.5(b), where the variables start-
ing with E refer to an employee and those starting with S refer to a supervisor.

C.2 Grouping, Aggregation, and Database
Modification in QBE

Next, consider the types of queries that require grouping or aggregate functions. A
grouping operator G. can be specified in a column to indicate that tuples should be
grouped by the value of that column. Common functions can be specified, such as
AVG., SUM., CNT. (count), MAX., and MIN. In QBE the functions AVG., SUM., and
CNT. are applied to distinct values within a group in the default case. If we want
these functions to apply to all values, we must use the prefix ALL.3 This convention
is different in SQL, where the default is to apply a function to all values.

WORKS_ON
(a) Essn Pno Hours

P._ES 1
P._ES 2

WORKS_ON
(b) Essn Pno Hours

P._EX 1
P._EY 2

_EX = _EY

CONDITIONS

Figure C.4
Specifying EMPLOYEES who work
on both projects. (a) Incorrect
specification of an AND condition.
(b) Correct specification.

3ALL in QBE is unrelated to the universal quantifier.

1176 Appendix C Overview of the QBE Language

EMPLOYEE(a)

(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_FN

Research

P. _FN _LN _Addr

_DX

_LN _Addr _DX

DEPARTMENT

Dname Dnumber Mgrssn Mgr_start_date

RESULT

P. _E1 _E2 _S1

RESULT
_S2

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_E1 _E2 _Xssn

_S1 _S2 _Xssn

Figure C.5
Illustrating JOIN and result relations in QBE. (a) The query Q1. (b) The query Q8.

Figure C.6(a) shows query Q23, which counts the number of distinct salary values
in the EMPLOYEE relation. Query Q23A (Figure C.6(b) counts all salary values,
which is the same as counting the number of employees. Figure C.6(c) shows Q24,
which retrieves each department number and the number of employees and average
salary within each department; hence, the Dno column is used for grouping as indi-
cated by the G. function. Several of the operators G., P., and ALL can be specified in
a single column. Figure C.6(d) shows query Q26, which displays each project name
and the number of employees working on it for projects on which more than two
employees work.

QBE has a negation symbol, ¬, which is used in a manner similar to the NOT EXISTS
function in SQL. Figure C.7 shows query Q6, which lists the names of employees
who have no dependents. The negation symbol ¬ says that we will select values of
the _SX variable from the EMPLOYEE relation only if they do not occur in the
DEPENDENT relation. The same effect can be produced by placing a ¬ _SX in the
Essn column.

Although the QBE language as originally proposed was shown to support the
equivalent of the EXISTS and NOT EXISTS functions of SQL, the QBE implementa-
tion in QMF (under the DB2 system) does not provide this support. Hence, the
QMF version of QBE, which we discuss here, is not relationally complete. Queries
such as Q3: Find employees who work on all projects controlled by department 5
cannot be specified.

 Appendix C Overview of the QBE Language 1177

EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.ALL

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.AVG.ALL P.G.P.CNT.ALL

PROJECT(d)

Pname Pnumber Plocation

_PXP.

Dnum

WORKS_ON

Essn Pno Hours

P.CNT.EX G._PX

CNT._EX > 2

CONDITIONS

Figure C.6
Functions and grouping in QBE.
(a) The query Q23. (b) The query Q23A.
(c) The query Q24. (d) The query Q26.

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P. P. _SX

DEPENDENT

Essn Dependent_name Sex Bdate Relationship
_SX

Figure C.7
Illustrating negation by the query Q6.

There are three QBE operators for modifying the database: I. for insert, D. for delete,
and U. for update. The insert and delete operators are specified in the template col-
umn under the relation name, whereas the update operator is specified under the
columns to be updated. Figure C.8(a) shows how to insert a new EMPLOYEE tuple.
For deletion, we first enter the D. operator and then specify the tuples to be deleted
by a condition (Figure C.8(b)). To update a tuple, we specify the U. operator under
the attribute name, followed by the new value of the attribute. We should also select
the tuple or tuples to be updated in the usual way. Figure C.8(c) shows an update

1178 Appendix C Overview of the QBE Language

request to increase the salary of ‘John Smith’ by 10 percent and also to reassign him
to department number 4.

QBE also has data definition capabilities. The tables of a database can be specified
interactively, and a table definition can also be updated by adding, renaming, or
removing a column. We can also specify various characteristics for each column,
such as whether it is a key of the relation, what its data type is, and whether an index
should be created on that field. QBE also has facilities for view definition, authoriza-
tion, storing query definitions for later use, and so on.

QBE does not use the linear style of SQL; rather, it is a two-dimensional language
because users specify a query moving around the full area of the screen. Tests on
users have shown that QBE is easier to learn than SQL, especially for nonspecialists.
In this sense, QBE was the first user-friendly visual relational database language.

More recently, numerous other user-friendly interfaces have been developed for
commercial database systems. The use of menus, graphics, and forms is now becom-
ing quite common. Filling forms partially to issue a search request is akin to using
QBE. Visual query languages, which are still not so common, are likely to be offered
with commercial relational databases in the future.

EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

RichardI. MariniK M 37000 987654321 4653298653 30-Dec-52 98 Oak Forest, Katy, TX

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

D. 653298653

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John Smith U._S*1.1 U.4

Figure C.8
Modifying the database in QBE. (a) Insertion. (b) Deletion. (c) Update in QBE.

Abbreviations Used in the Bibliography
ACM: Association for Computing Machinery
AFIPS: American Federation of Information Processing

Societies
ASPLOS: Proceedings of the international Conference on

Architectural Support for Programming Languages
and Operating Systems

CACM: Communications of the ACM (journal)
CIKM: Proceedings of the International Conference on

Information and Knowledge Management
DASFAA: Proceedings of the International Conference on

Database Systems for Advanced Applications
DKE: Data and Knowledge Engineering, Elsevier Publishing

(journal)
EDBT: Proceedings of the International Conference on

Extending Database Technology
EDS: Proceedings of the International Conference on

Expert Database Systems
ER Conference: Proceedings of the International Confer-

ence on Entity-Relationship Approach (now called
International Conference on Conceptual Modeling)

ICDCS: Proceedings of the IEEE International Conference
on Distributed Computing Systems

ICDE: Proceedings of the IEEE International Conference
on Data Engineering

IEEE: Institute of Electrical and Electronics Engineers
IEEE Computer: Computer magazine (journal) of the

IEEE CS
IEEE CS: IEEE Computer Society
IFIP: International Federation for Information Processing
JACM: Journal of the ACM
KDD: Knowledge Discovery in Databases
LNCS: Lecture Notes in Computer Science
NCC: Proceedings of the National Computer Conference

(published by AFIPS)
OOPSLA: Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages, and
Applications

OSDI: USENIX Symposium on Operating Systems Design
and Implementation

PAMI: Pattern Analysis and Machine Intelligence
PODS: Proceedings of the ACM Symposium on Principles

of Database Systems

SIGMETRICS: Proceedings of ACM International Con-
ference on Measurement and Modeling of Computer
Systems

SIGMOD: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data

SOSP: ACM Symposium on Operating System Principles
TKDE: IEEE Transactions on Knowledge and Data Engi-

neering (journal)
TOCS: ACM Transactions on Computer Systems

(journal)
TODS: ACM Transactions on Database Systems (journal)
TOIS: ACM Transactions on Information Systems

(journal)
TOOIS: ACM Transactions on Office Information Systems

(journal)
TPDS: IEEE Transactions of Parallel and Distributed

 Systems (journal)
TSE: IEEE Transactions on Software Engineering (journal)
VLDB: Proceedings of the International Conference on

Very Large Data Bases (issues after 1981 available from
Morgan Kaufmann, Menlo Park, California)

Format for Bibliographic Citations
Book titles are in boldface—for example, Database

 Computers. Conference proceedings names are in
 italics—for example, ACM Pacific Conference. Journal
names are in boldface—for example, TODS or
 Information Systems. For journal citations, we give
the volume number and issue number (within the
 volume, if any) and date of issue. For example, “TODS,
3:4, December 1978” refers to the December 1978 issue
of ACM Transactions on Database Systems, which is
Volume 3, Number 4. Articles that appear in books or
conference proceedings that are themselves cited in the
bibliography are referenced as “in” these references—
for example, “in VLDB [1978]” or “in Rustin [1974].”
Page numbers (abbreviated “pp.”) are provided with pp.
at the end of the citation whenever available. For cita-
tions with more than four authors, we will give the first
author only followed by et al. In the selected bibliogra-
phy at the end of each chapter, we use et al. if there are
more than two authors.

Bibliography

1179

1180 Bibliography

Bibliographic References
Abadi, D. J., Madden, S. R., and Hachem, N. [2008] “Col-

umn Stores vs. Row Stores: How Different Are They
Really?” in SIGMOD [2008].

Abbott, R., and Garcia-Molina, H. [1989] “Scheduling
Real-Time Transactions with Disk Resident Data,” in
VLDB [1989].

Abiteboul, S., and Kanellakis, P. [1989] “Object Identity as
a Query Language Primitive,” in SIGMOD [1989].

Abiteboul, S., Hull, R., and Vianu, V. [1995] Foundations
of Databases, Addison-Wesley, 1995.

Abramova, V. and Bernardino, J. [2013] “NoSQL Data-
bases: MongoDB vs Cassandra,” Proc. Sixth Int.Conf.
on Comp. Sci. and Software Engg. (C3S2E’13), Porto,
Portugal, July 2013, pp. 14–22.

Abrial, J. [1974] “Data Semantics,” in Klimbie and Koffeman
[1974].

Acharya, S., Alonso, R., Franklin, M., and Zdonik, S. [1995]
“Broadcast Disks: Data Management for Asymmetric
Communication Environments,” in SIGMOD [1995].

Adam, N., and Gongopadhyay, A. [1993] “Integrating
Functional and Data Modeling in a Computer Inte-
grated Manufacturing System,” in ICDE [1993].

Adriaans, P., and Zantinge, D. [1996] Data Mining,
 Addison-Wesley, 1996.

Afsarmanesh, H., McLeod, D., Knapp, D., and Parker, A.
[1985] “An Extensible Object-Oriented Approach to
Databases for VLSI/CAD,” in VLDB [1985].

Afrati, F. and Ullman, J. [2010] “Optimizing Joins in a
MapReduce Environment,” in EDBT [2010].

Agneeswaran, V.S. [2014] Big Data Analytics Beyond
Hadoop: Real-Time Applications with Storm, Spark,
and More Hadoop Alternatives, Pearson FT Press,
2014, 240 pp.

Agrawal, D., and ElAbbadi, A. [1990] “Storage Efficient
Replicated Databases,” TKDE, 2:3, September 1990.

Agrawal, R. et al. [2008] “The Claremont Report on
Database Research,” available at http://db.cs.berkeley.
edu/claremont/claremontreport08.pdf, May 2008.

Agrawal, R., and Gehani, N. [1989] “ODE: The Language
and the Data Model,” in SIGMOD [1989].

Agrawal, R., and Srikant, R. [1994] “Fast Algorithms for
Mining Association Rules in Large Databases,” in
VLDB [1994].

Agrawal, R., Gehani, N., and Srinivasan, J. [1990] “OdeView:
The Graphical Interface to Ode,” in SIGMOD [1990].

Agrawal, R., Imielinski, T., and Swami, A. [1993] “Mining
Association Rules Between Sets of Items in Databases,”
in SIGMOD [1993].

Agrawal, R., Imielinski, T., and Swami, A. [1993b] “Data-
base Mining: A Performance Perspective,” TKDE 5:6,
December 1993.

Agrawal, R., Mehta, M., Shafer, J., and Srikant, R. [1996]
“The Quest Data Mining System,” in KDD [1996].

Ahad, R., and Basu, A. [1991] “ESQL: A Query Language
for the Relational Model Supporting Image Domains,”
in ICDE [1991].

Ahmed R. et al. [2006] “Cost-Based Query Transformation
in Oracle”, in VLDB [2006].

Ahmed R. et al. [2014] “Of Snowstorms and Bushy Trees”,
in VLDB [2014].

Aho, A., and Ullman, J. [1979] “Universality of Data
Retrieval Languages,” Proc. POPL Conference, San
Antonio, TX, ACM, 1979.

Aho, A., Beeri, C., and Ullman, J. [1979] “The Theory of
Joins in Relational Databases,” TODS, 4:3, September
1979.

Aho, A., Sagiv, Y., and Ullman, J. [1979a] “Efficient Opti-
mization of a Class of Relational Expressions,” TODS,
4:4, December 1979.

Akl, S. [1983] “Digital Signatures: A Tutorial Survey,” IEEE
Computer, 16:2, February 1983.

Alagic, S. [1999] “A Family of the ODMG Object Models,”
in Advances in Databases and Information Systems,
Third East European Conference, ADBIS’99, Maribor,
Slovenia, J. Eder, I. Rozman, T. Welzer (eds.), Septem-
ber 1999, LNCS, No. 1691, Springer.

Alashqur, A., Su, S., and Lam, H. [1989] “OQL: A Query
Language for Manipulating Object-Oriented Data-
bases,” in VLDB [1989].

Albano, A., Cardelli, L., and Orsini, R. [1985] “GALILEO:
A Strongly Typed Interactive Conceptual Language,”
TODS, 10:2, June 1985, pp. 230–260.

Albrecht J. H., [1996] “Universal GIS Operations,”
University of Osnabrueck, Germany, Ph.D. Disserta-
tion, 1996.

Allen, F., Loomis, M., and Mannino, M. [1982] “The Inte-
grated Dictionary/Directory System,” ACM Computing
Surveys, 14:2, June 1982.

Allen, J. [1983] “Maintaining Knowledge about Temporal
Intervals,” in CACM 26:11, November 1983, pp. 832–843.

Alonso, G., Agrawal, D., El Abbadi, A., and Mohan, C.
[1997] “Functionalities and Limitations of Current
Workflow Management Systems,” IEEE Expert, 1997.

Amir, A., Feldman, R., and Kashi, R. [1997] “A New and
Versatile Method for Association Generation,” Infor-
mation Systems, 22:6, September 1997.

Ananthanarayanan, G. et al. [2012] “PACMan: Coordi-
nated Memory Caching for Parallel Jobs,” In USENIX
Symp. on Networked Systems Design and Implementa-
tion (NSDI), 2012.

Anderson, S. et al. [1981] “Sequence and Organization of
the Human Mitochondrial Genome.” Nature, 290:
457–465, 1981.

 Bibliography 1181

Andrews, T., and Harris, C. [1987] “Combining Language
and Database Advances in an Object-Oriented Devel-
opment Environment,” OOPSLA, 1987.

ANSI [1975] American National Standards Institute Study
Group on Data Base Management Systems: Interim
Report, FDT, 7:2, ACM, 1975.

ANSI [1986] American National Standards Institute: The
Database Language SQL, Document ANSI X3.135, 1986.

ANSI [1986a] American National Standards Institute: The
Database Language NDL, Document ANSI X3.133,
1986.

ANSI [1989] American National Standards Institute:
Information Resource Dictionary Systems, Docu-
ment ANSI X3.138, 1989.

Antenucci, J. et al. [1998] Geographic Information
Systems: A Guide to the Technology, Chapman and
Hall, May 1998.

Anwar, T., Beck, H., and Navathe, S. [1992] “Knowledge
Mining by Imprecise Querying: A Classification Based
Approach,” in ICDE [1992].

Apers, P., Hevner, A., and Yao, S. [1983] “Optimization
Algorithms for Distributed Queries,” TSE, 9:1, January
1983.

Apweiler, R., Martin, M., O’Donovan, C., and Prues, M.
[2003] “Managing Core Resources for Genomics and
Proteomics,” Pharmacogenomics, 4:3, May 2003,
pp. 343–350.

Aref, W. et al. [2004] “VDBMS: A Testbed Facility or
Research in Video Database Benchmarking,” in Multi-
media Systems (MMS), 9:6, June 2004, pp. 98–115.

Arisawa, H., and Catarci, T. [2000] Advances in Visual
Information Management, Proc. Fifth Working Conf.
On Visual Database Systems, Arisawa, H., Catarci, T.
(eds.), Fujkuoka, Japan, IFIP Conference Proceedings
168, Kluwer, 2000.

Armstrong, W. [1974] “Dependency Structures of Data
Base Relationships,” Proc. IFIP Congress, 1974.

Ashburner, M. et al. [2000] “Gene Ontology: Tool for the
unification of biology,” Nature Genetics, Vol. 25, May
2000, pp. 25–29.

Astrahan, M. et al. [1976] “System R: A Relational Approach
to Data Base Management,” TODS, 1:2, June 1976.

Atkinson, M., and Buneman, P. [1987] “Types and Persis-
tence in Database Programming Languages” in ACM
Computing Surveys, 19:2, June 1987.

Atkinson, Malcolm et al. [1990] The Object-Oriented
Database System Manifesto, Proc. Deductive and Object
Oriented Database Conf. (DOOD), Kyoto, Japan, 1990.

Atluri, V. et al. [1997] “Multilevel Secure Transaction Pro-
cessing: Status and Prospects,” in Database Security:
Status and Prospects, Chapman and Hall, 1997,
pp. 79–98.

Atzeni, P., and De Antonellis, V. [1993] Relational Database
Theory, Benjamin/Cummings, 1993.

Atzeni, P., Mecca, G., and Merialdo, P. [1997] “To Weave
the Web,” in VLDB [1997].

Bachman, C. [1969] “Data Structure Diagrams,” Data Base
(Bulletin of ACM SIGFIDET), 1:2, March 1969.

Bachman, C. [1973] “The Programmer as a Navigator,”
CACM, 16:1, November 1973.

Bachman, C. [1974] “The Data Structure Set Model,” in
Rustin [1974].

Bachman, C., and Williams, S. [1964] “A General Purpose
Programming System for Random Access Memories,”
Proc. Fall Joint Computer Conference, AFIPS, 26, 1964.

Badal, D., and Popek, G. [1979] “Cost and Performance
Analysis of Semantic Integrity Validation Methods,” in
SIGMOD [1979].

Badrinath, B., and Imielinski, T. [1992] “Replication and
Mobility,” Proc. Workshop on the Management of Repli-
cated Data 1992: pp. 9–12

Badrinath, B., and Ramamritham, K. [1992] “Semantics-
Based Concurrency Control: Beyond Commutativity,”
TODS, 17:1, March 1992.

Bahga, A. and Madisetti, V. [2013] Cloud Computing—A
Hands On Approach, (www.cloudcomputingbook.
info), 2013, 454 pp.

Baeza-Yates, R., and Larson, P. A. [1989] “Performance of
B+-trees with Partial Expansions,” TKDE, 1:2, June 1989.

Baeza-Yates, R., and Ribero-Neto, B. [1999] Modern
Information Retrieval, Addison-Wesley, 1999.

Balbin, I., and Ramamohanrao, K. [1987] “A Generalization
of the Different Approach to Recursive Query
Evaluation,” Journal of Logic Programming, 15:4, 1987.

Bancilhon, F. [1985] “Naive Evaluation of Recursively
Defined Relations,” in On Knowledge Base Manage-
ment Systems (Brodie, M., and Mylopoulos, J., eds.),
Islamorada workshop 1985, Springer, pp. 165–178.

Bancilhon, F., and Buneman, P., eds. [1990] Advances in
Database Programming Languages, ACM Press, 1990.

Bancilhon, F., and Ferran, G. [1995] “The ODMG Stan-
dard for Object Databases,” DASFAA 1995, Singapore,
pp. 273–283.

Bancilhon, F., and Ramakrishnan, R. [1986] “An Amateur’s
Introduction to Recursive Query Processing Strate-
gies,” in SIGMOD [1986].

Bancilhon, F., Delobel, C., and Kanellakis, P., eds. [1992]
Building an Object-Oriented Database System: The
Story of O2, Morgan Kaufmann, 1992.

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. [1986]
“Magic Sets and Other Strange Ways to Implement
Logic Programs,” PODS [1986].

Banerjee, J. et al. [1987] “Data Model Issues for Object-
Oriented Applications,” TOOIS, 5:1, January 1987.

1182 Bibliography

Banerjee, J., Kim, W., Kim, H., and Korth, H. [1987a]
“Semantics and Implementation of Schema Evolution
in Object-Oriented Databases,” in SIGMOD [1987].

Barbara, D. [1999] “Mobile Computing and Databases – A
Survey,” TKDE, 11:1, January 1999.

Baroody, A., and DeWitt, D. [1981] “An Object-Oriented
Approach to Database System Implementation,” TODS,
6:4, December 1981.

Barrett T. et al. [2005] “NCBI GEO: mining millions of
expression profiles—database and tools,” Nucleic Acid
Research, 33: database issue, 2005, pp. 562–566.

Barrett, T. et al. [2007] “NCBI GEO: mining tens of millions
of expression profiles—database and tools update,” in
Nucleic Acids Research, 35:1, January 2007.

Barsalou, T., Siambela, N., Keller, A., and Wiederhold, G.
[1991] “Updating Relational Databases Through
Object-Based Views,” in SIGMOD [1991].

Bassiouni, M. [1988] “Single-Site and Distributed Opti-
mistic Protocols for Concurrency Control,” TSE, 14:8,
August 1988.

Batini, C., Ceri, S., and Navathe, S. [1992] Database Design:
An Entity-Relationship Approach, Benjamin/
Cummings, 1992.

Batini, C., Lenzerini, M., and Navathe, S. [1987] “A Com-
parative Analysis of Methodologies for Database
Schema Integration,” ACM Computing Surveys, 18:4,
December 1987.

Batory, D. et al. [1988] “GENESIS: An Extensible Database
Management System,” TSE, 14:11, November 1988.

Batory, D., and Buchmann, A. [1984] “Molecular Objects,
Abstract Data Types, and Data Models: A Framework,”
in VLDB [1984].

Bay, H., Tuytelaars, T., and Gool, L. V. [2006] “SURF:
Speeded Up Robust Features”, in Proc. Ninth European
Conference on Computer Vision, May 2006.

Bayer, R., and McCreight, E. [1972] “Organization and
Maintenance of Large Ordered Indexes,” Acta Infor-
matica, 1:3, February 1972.

Bayer, R., Graham, M., and Seegmuller, G., eds. [1978]
Operating Systems: An Advanced Course, Springer-
Verlag, 1978.

Beck, H., Anwar, T., and Navathe, S. [1994] “A Conceptual
Clustering Algorithm for Database Schema Design,”
TKDE, 6:3, June 1994.

Beck, H., Gala, S., and Navathe, S. [1989] “Classification as
a Query Processing Technique in the CANDIDE
Semantic Data Model,” in ICDE [1989].

Beeri, C., and Ramakrishnan, R. [1987] “On the Power of
Magic” in PODS [1987].

Beeri, C., Fagin, R., and Howard, J. [1977] “A Complete
Axiomatization for Functional and Multivalued
Dependencies,” in SIGMOD [1977].

Bellamkonda, S., et al., [2009], “Enhanced Subquery Opti-
mization in Oracle”, in VLDB [2009]

Bell, D.E., and L. J. Lapadula, L.J. [1976]. Secure computer
system: Unified exposition and Multics Interpreta-
tion, Technical Report MTR-2997, MITRE Corp., Bed-
ford, MA, March1976.

Ben-Zvi, J. [1982] “The Time Relational Model,” Ph.D. dis-
sertation, University of California, Los Angeles, 1982.

Benson, D., Boguski, M., Lipman, D., and Ostell, J.,
“ GenBank,” Nucleic Acids Research, 24:1, 1996.

Benson, D., Karsch-Mizrachi, I., Lipman, D. et al. [2002]
“GenBank,” Nucleic Acids Research, 36:1, January 2008.

Berg, B., and Roth, J. [1989] Software for Optical Storage,
Meckler, 1989.

Bergman, M. K. [2001] “The Deep Web: Surfacing Hidden
Value,” The Journal of Electronic Publishing, 7:1,
August 2001.

Berners-Lee, T., Caillian, R., Grooff, J., Pollermann, B.
[1992] “World-Wide Web: The Information Universe,”
Electronic Networking: Research, Applications and
Policy, 1:2, 1992.

Berners-Lee, T., Caillian, R., Lautonen, A., Nielsen, H., and
Secret, A. [1994] “The World Wide Web,” CACM, 13:2,
August 1994.

Bernstein, P. [1976] “Synthesizing Third Normal Form
Relations from Functional Dependencies,” TODS, 1:4,
December 1976.

Bernstein, P. and Goodman, N. [1983] “Multiversion Con-
currency Control—Theory and Algorithms,” TODS,
8:4, pp. 465-483.

Bernstein, P., and Goodman, N. [1980] “Timestamp-Based
Algorithms for Concurrency Control in Distributed
Database Systems,” in VLDB [1980].

Bernstein, P., and Goodman, N. [1981a] “Concurrency
Control in Distributed Database Systems,” ACM Com-
puting Surveys, 13:2, June 1981.

Bernstein, P., and Goodman, N. [1981b] “The Power of
Natural Semijoins,” SIAM Journal of Computing,
10:4, December 1981.

Bernstein, P., and Goodman, N. [1984] “An Algorithm for
Concurrency Control and Recovery in Replicated Dis-
tributed Databases,” TODS, 9:4, December 1984.

Bernstein, P., Blaustein, B., and Clarke, E. [1980] “Fast
Maintenance of Semantic Integrity Assertions Using
Redundant Aggregate Data,” in VLDB [1980].

Bernstein, P., Hadzilacos, V., and Goodman, N. [1987]
Concurrency Control and Recovery in Database Sys-
tems, Addison-Wesley, 1987.

Bertino, E. [1992] “Data Hiding and Security in Object-
Oriented Databases,” in ICDE [1992].

Bertino, E. [1998] “Data Security,” in DKE 25:1–2,
pp. 199–216.

 Bibliography 1183

Bertino, E. and Sandhu, R., [2005] “Security—Concepts,
Approaches, and Challenges,” in IEEE Transactions on
Dependable Secure Computing (TDSC), 2:1, 2005,
pp. 2–19.

Bertino, E., and Guerrini, G. [1998] “Extending the ODMG
Object Model with Composite Objects,” OOPSLA,
Vancouver, Canada, 1998, pp. 259–270.

Bertino, E., and Kim, W. [1989] “Indexing Techniques for
Queries on Nested Objects,” TKDE, 1:2, June 1989.

Bertino, E., Catania, B., and Ferrari, E. [2001] “A Nested
Transaction Model for Multilevel Secure Database
Management Systems,” ACM Transactions on Infor-
mation and System Security (TISSEC), 4:4, Novem-
ber 2001, pp. 321–370.

Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L. [1992]
“Object-Oriented Query Languages: The Notion and
the Issues,” TKDE, 4:3, June 1992.

Bertino, E., Pagani, E., and Rossi, G. [1992] “Fault Toler-
ance and Recovery in Mobile Computing Systems,” in
Kumar and Han [1992].

Bertino, F., Rabitti, F., and Gibbs, S. [1988] “Query Pro-
cessing in a Multimedia Document System,” TOIS, 6:1,
1988.

Bhargava, B., and Helal, A. [1993] “Efficient Reliability
Mechanisms in Distributed Database Systems,” CIKM,
November 1993.

Bhargava, B., and Reidl, J. [1988] “A Model for Adaptable
Systems for Transaction Processing,” in ICDE [1988].

Bikel, D. and Zitouni, I. [2012] Multilingual Natural Lan-
guage Processing Applications: From Theory to
Practice, IBM Press, 2012.

Biliris, A. [1992] “The Performance of Three Database
Storage Structures for Managing Large Objects,” in
SIGMOD [1992].

Biller, H. [1979] “On the Equivalence of Data Base Sche-
mas—A Semantic Approach to Data Translation,”
Information Systems, 4:1, 1979.

Bischoff, J., and T. Alexander, eds., Data Warehouse: Prac-
tical Advice from the Experts, Prentice-Hall, 1997.

Biskup, J., Dayal, U., and Bernstein, P. [1979] “Synthe-
sizing Independent Database Schemas,” in SIGMOD
[1979].

Bitton, D., and Gray, J. [1988] “Disk Shadowing,” in VLDB
[1988], pp. 331–338.

Bjork, A. [1973] “Recovery Scenario for a DB/DC System,”
Proc. ACM National Conference, 1973.

Bjorner, D., and Lovengren, H. [1982] “Formalization of
Database Systems and a Formal Definition of IMS,” in
VLDB [1982].

Blaha, M., and Rumbaugh, J. [2005] Object-Oriented
Modeling and Design with UML, 2nd ed., Prentice-
Hall, 2005.

Blaha, M., and Premerlani, W. [1998] Object-Oriented
Modeling and Design for Database Applications,
Prentice-Hall, 1998.

Blakely, J., Larson, P. and Tompa, F.W. [1986] “Efficiently
Updating Materialized Views,” in SIGMOD [1986],
pp. 61–71.

Blakeley, J., and Martin, N. [1990] “Join Index, Material-
ized View, and Hybrid-Hash Join: A Performance
Analysis,” in ICDE [1990].

Blakeley, J., Coburn, N., and Larson, P. [1989] “Updated
Derived Relations: Detecting Irrelevant and Autono-
mously Computable Updates,” TODS, 14:3, September
1989.

Blasgen, M. et al. [1981] “System R: An Architectural
Overview,” IBM Systems Journal, 20:1, January 1981.

Blasgen, M., and Eswaran, K. [1976] “On the Evaluation of
Queries in a Relational Database System,” IBM
Systems Journal, 16:1, January 1976.

Blei, D.M., Ng, A.Y., and Jordan, M.I. [2003] “Latent
Dirichlet Allocation.” Journal of Machine. Learning.
Research. 3, March 2003, pp. 993–1022.

Bleier, R., and Vorhaus, A. [1968] “File Organization in the
SDC TDMS,” Proc. IFIP Congress.

Bocca, J. [1986] “EDUCE—A Marriage of Convenience:
Prolog and a Relational DBMS,” Proc. Third Interna-
tional Conference on Logic Programming, Springer-
Verlag, 1986.

Bocca, J. [1986a] “On the Evaluation Strategy of EDUCE,”
in SIGMOD [1986].

Bodorick, P., Riordon, J., and Pyra, J. [1992] “Deciding on
Correct Distributed Query Processing,” TKDE, 4:3,
June 1992.

Boncz, P., Zukowski, M., and Nes, N. [2005] “MonetDB/
X100: Hyper-Pipelining Query Execution,” in Proc.
Conf. on Innovative Data Systems Research CIDR [2005].

Bonnet, P., Gehrke, J., and Seshadri, P. [2001] “Towards
Sensor Database Systems.,” in Proc. 2nd Int. Conf. on
Mobile Data Management, Hong Kong, China, LNCS
1987, Springer, January 2001, pp. 3–14.

Booch, G., Rumbaugh, J., and Jacobson, I., Unified Model-
ing Language User Guide, Addison-Wesley, 1999.

Borges, K., Laender, A., and Davis, C. [1999] “Spatial data
integrity constraints in object oriented geographic data
modeling,” Proc. 7th ACM International Symposium on
Advances in Geographic Information Systems, 1999.

Borgida, A., Brachman, R., McGuinness, D., and Resnick,
L. [1989] “CLASSIC: A Structural Data Model for
Objects,” in SIGMOD [1989].

Borkin, S. [1978] “Data Model Equivalence,” in VLDB
[1978].

Bossomaier, T., and Green, D.[2002] Online GIS and
Metadata, Taylor and Francis, 2002.

1184 Bibliography

Boukerche, A., and Tuck, T. [2001] “Improving Concur-
rency Control in Distributed Databases with Prede-
clared Tables,” in Proc. Euro-Par 2001: Parallel
Processing, 7th International Euro-Par Conference,
Manchester, UK August 28–31, 2001, pp. 301–309.

Boutselakis, H. et al. [2003] “E-MSD: the European Bioin-
formatics Institute Macromolecular Structure Data-
base,” Nucleic Acids Research, 31:1, January 2003, pp.
458–462.

Bouzeghoub, M., and Metais, E. [1991] “Semantic Model-
ling of Object-Oriented Databases,” in VLDB [1991].

Boyce, R., Chamberlin, D., King, W., and Hammer, M.
[1975] “Specifying Queries as Relational Expressions,”
CACM, 18:11, November 1975.

Boyd, S., and Keromytis, A. [2004] “SQLrand: Preventing
SQL injection attacks,” in Proc. 2nd Applied Cryptogra-
phy and Network Security Conf. (ACNS 2004), June
2004, pp. 292–302.

Braam, P., and Schwan, P. [2002] Lustre: The intergalactic
file system, Proc. Ottawa Linux Symposium, June 2002.
(http://ols.fedoraproject.org/OLS/Reprints-2002/
braam-reprint.pdf)

Bracchi, G., Paolini, P., and Pelagatti, G. [1976] “Binary
Logical Associations in Data Modelling,” in Nijssen
[1976].

Brachman, R., and Levesque, H. [1984] “What Makes a
Knowledge Base Knowledgeable? A View of Databases
from the Knowledge Level,” in EDS [1984].

Brandon, M. et al. [2005] MITOMAP: A human mito-
chondrial genome database—2004 Update, Nucleic
Acid Research, 34:1, January 2005.

Bratbergsengen, K. [1984] “Hashing Methods and Rela-
tional Algebra Operators,” in VLDB [1984].

Bray, O. [1988] Computer Integrated Manufacturing—
The Data Management Strategy, Digital Press, 1988.

Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Sil-
berschatz, A. [1999] “Update Propagation Protocols for
Replicated Databases,” in SIGMOD [1999], pp. 97–108.

Breitbart, Y., Silberschatz, A., and Thompson, G. [1990]
“Reliable Transaction Management in a Multidatabase
System,” in SIGMOD [1990].

Brinkhoff, T., Kriegel, H.-P., and Seeger, B. [1993] “ Efficient
Processing of Spatial Joins Using R-trees,” in SIGMOD
[1993].

Broder, A. [2002] “A Taxonomy of Web Search,” in SIGIR
Forum, 36:2 ,September 2002, pp.3–10

Brodeur, J., Bédard, Y., and Proulx, M. [2000] “Modelling
Geospatial Application Databases Using UML-Based
Repositories Aligned with International Standards in
Geomatics,” Proc. 8th ACM International Symposium
on Advances in Geographic Information Systems. Wash-
ington, DC, ACM Press, 2000, pp. 39–46.

Brodie, M., and Mylopoulos, J., eds. [1985] On Knowledge
Base Management Systems, Springer-Verlag, 1985.

Brodie, M., Mylopoulos, J., and Schmidt, J., eds. [1984] On
Conceptual Modeling, Springer-Verlag, 1984.

Brosey, M., and Shneiderman, B. [1978] “Two Experimen-
tal Comparisons of Relational and Hierarchical Data-
base Models,” International Journal of Man-Machine
Studies, 1978.

Bruno, N., Chaudhuri, S., and Gravano, L. [2002] “Top-k
Selection Queries Over Relational Databases: Mapping
Strategies and Performance Evaluation,” ACM TODS,
27:2, 2002, pp. 153–187.

Bry, F. [1990] “Query Evaluation in Recursive Databases:
Bottom-up and Top-down Reconciled,” DKE, 5, 1990,
pp. 289–312.

Buckley, C., Salton, G., and Allan, J. [1993] “The SMART
Information Retrieval Project,” In Proc. of the Workshop
on Human Language Technology, Human Language
Technology Conference, Association for Computa-
tional Linguistics, March 1993.

Bukhres, O. [1992] “Performance Comparison of Distrib-
uted Deadlock Detection Algorithms,” in ICDE [1992].

Buneman, P., and Frankel, R. [1979] “FQL: A Functional
Query Language,” in SIGMOD [1979].

Burkhard, W. [1976] “Hashing and Trie Algorithms for
Partial Match Retrieval,” TODS, 1:2, June 1976,
pp. 175–187.

Burkhard, W. [1979] “Partial-match Hash Coding: Bene-
fits of Redunancy,” TODS, 4:2, June 1979, pp. 228–239.

Bush, V. [1945] “As We May Think,” Atlantic Monthly,
176:1, January 1945. Reprinted in Kochen, M., ed., The
Growth of Knowledge, Wiley, 1967.

Butterworth, P. Otis, A., and Stein, J. [1991] : “The Gem-
stone Object Database Management System,” in
CACM, 34:10, October 1991, pp. 64–77.

Byte [1995] Special Issue on Mobile Computing, June 1995.
CACM [1995] Special issue of the Communications of

the ACM, on Digital Libraries, 38:5, May 1995.
CACM [1998] Special issue of the Communications of

the ACM on Digital Libraries: Global Scope and
Unlimited Access, 41:4, April 1998.

Cahill, M.J., Rohm, U., and Fekete, A. [2008] “Serializable
Isolation for Snapshot Databases,” in SIGMOD [2008].

Cammarata, S., Ramachandra, P., and Shane, D. [1989]
“Extending a Relational Database with Deferred Refer-
ential Integrity Checking and Intelligent Joins,” in
SIGMOD [1989].

Campbell, D., Embley, D., and Czejdo, B. [1985] “A Rela-
tionally Complete Query Language for the Entity-
Relationship Model,” in ER Conference [1985].

Cardenas, A. [1985] Data Base Management Systems,
2nd ed., Allyn and Bacon, 1985.

 Bibliography 1185

Carey, M. et al. [1986] “The Architecture of the EXODUS
Extensible DBMS,” in Dittrich and Dayal [1986].

Carey, M., DeWitt, D., and Vandenberg, S. [1988] “A Data
Model and Query Language for Exodus,” in SIGMOD
[1988].

Carey, M., DeWitt, D., Richardson, J., and Shekita, E.
[1986a] “Object and File Management in the EXODUS
Extensible Database System,” in VLDB [1986].

Carey, M., Franklin, M., Livny, M., and Shekita, E. [1991]
“Data Caching Tradeoffs in Client-Server DBMS
Architectures,” in SIGMOD [1991].

Carey, M., and Kossman, D. [1998] “Reducing the break-
ing distance of an SQL Query Engine,” in VLDB [1998],
pp. 158–169.

Carlis, J. [1986] “HAS, a Relational Algebra Operator or
Divide Is Not Enough to Conquer,” in ICDE [1986].

Carlis, J., and March, S. [1984] “A Descriptive Model of
Physical Database Design Problems and Solutions,” in
ICDE [1984].

Carneiro, G., and Vasconselos, N. [2005] “A Database Cen-
tric View of Semantic Image Annotation and Retrieval,”
in SIGIR [2005].

Carroll, J. M. [1995] Scenario-Based Design: Envisioning
Work and Technology in System Development,
Wiley, 1995.

Casanova, M., and Vidal, V. [1982] “Toward a Sound View
Integration Method,” in PODS [1982].

Casanova, M., Fagin, R., and Papadimitriou, C. [1981]
“Inclusion Dependencies and Their Interaction with
Functional Dependencies,” in PODS [1981].

Casanova, M., Furtado, A., and Tuchermann, L. [1991] “A
Software Tool for Modular Database Design,” TODS,
16:2, June 1991.

Casanova, M., Tuchermann, L., Furtado, A., and Braga, A.
[1989] “Optimization of Relational Schemas Contain-
ing Inclusion Dependencies,” in VLDB [1989].

Castano, S., DeAntonellio, V., Fugini, M. G., and Pernici, B.
[1998] “Conceptual Schema Analysis: Techniques
and Applications,” TODS, 23:3, September 1998,
pp. 286–332.

Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C.
[1997] “Visual Query Systems for Databases: A Survey,”
Journal of Visual Languages and Computing, 8:2,
June 1997, pp. 215–260.

Catarci, T., Costabile, M. F., Santucci, G., and Tarantino, L.,
eds. [1998] Proc. Fourth International Workshop on
Advanced Visual Interfaces, ACM Press, 1998.

Cattell, R. [1991] Object Data Management: Object-
Oriented and Extended Relational Database Systems,
Addison-Wesley, 1991.

Cattell, R., and Barry, D. K. [2000], The Object Data
Standard: ODMG 3.0, Morgan Kaufmann, 2000.

Cattell, R., and Skeen, J. [1992] “Object Operations Bench-
mark,” TODS, 17:1, March 1992.

Cattell, R., ed. [1993] The Object Database Standard:
ODMG-93, Release 1.2, Morgan Kaufmann, 1993.

Cattell, R., ed. [1997] The Object Database Standard:
ODMG, Release 2.0, Morgan Kaufmann, 1997.

Cattell, R. [2010] “Scalable SQL and NoSQL data stores”,
SIGMOD Record, Vol. 39 Issue 4, 2010.

Ceri, S., and Fraternali, P. [1997] Designing Database
Applications with Objects and Rules: The IDEA
Methodology, Addison-Wesley, 1997.

Ceri, S., and Owicki, S. [1983] “On the Use of Optimistic
Methods for Concurrency Control in Distributed
Databases,” Proc. Sixth Berkeley Workshop on Distrib-
uted Data Management and Computer Networks,
 February 1983.

Ceri, S., and Pelagatti, G. [1984] “Correctness of Query
Execution Strategies in Distributed Databases,” TODS,
8:4, December 1984.

Ceri, S., and Pelagatti, G. [1984a] Distributed Databases:
Principles and Systems, McGraw-Hill, 1984.

Ceri, S., and Tanca, L. [1987] “Optimization of Systems of
Algebraic Equations for Evaluating Datalog Queries,”
in VLDB [1987].

Ceri, S., Gottlob, G., and Tanca, L. [1990] Logic Program-
ming and Databases, Springer-Verlag, 1990.

Ceri, S., Navathe, S., and Wiederhold, G. [1983] “Distri-
bution Design of Logical Database Schemas,” TSE, 9:4,
July 1983.

Ceri, S., Negri, M., and Pelagatti, G. [1982] “Horizontal Data
Partitioning in Database Design,” in SIGMOD [1982].

Cesarini, F., and Soda, G. [1991] “A Dynamic Hash Method
with Signature,” TODS, 16:2, June 1991.

Chakrabarti, S. [2002] Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan-Kaufmann,
2002.

Chakrabarti, S. et al. [1999] “Mining the Web’s Link
 Structure,” Computer 32:8, August 1999, pp. 60–67.

Chakravarthy, S. [1990] “Active Database Management
Systems: Requirements, State-of-the-Art, and an
 Evaluation,” in ER Conference [1990].

Chakravarthy, S. [1991] “Divide and Conquer: A Basis for
Augmenting a Conventional Query Optimizer with
Multiple Query Processing Capabilities,” in ICDE [1991].

Chakravarthy, S. et al. [1989] “HiPAC: A Research Project
in Active, Time Constrained Database Management,”
Final Technical Report, XAIT-89-02, Xerox Advanced
Information Technology, August 1989.

Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D.
[1994] Design of Sentinel: An Object-oriented DBMS
with Event-based Rules, Information and Software
Technology, 36:9, 1994.

1186 Bibliography

Chakravarthy, S., Karlapalem, K., Navathe, S., and Tanaka, A.
[1993] “Database Supported Co-operative Problem Solv-
ing,” International Journal of Intelligent Co-operative
Information Systems, 2:3, September 1993.

Chakravarthy, U., Grant, J., and Minker, J. [1990] “Logic-
Based Approach to Semantic Query Optimization,”
TODS, 15:2, June 1990.

Chalmers, M., and Chitson, P. [1992] “Bead: Explorations
in Information Visualization,” Proc. ACM SIGIR Inter-
national Conference, June 1992.

Chamberlin, D. et al. [1976] “SEQUEL 2: A Unified
Approach to Data Definition, Manipulation, and Con-
trol,” IBM Journal of Research and Development,
20:6, November 1976.

Chamberlin, D. et al. [1981] “A History and Evaluation of
System R,” CACM, 24:10, October 1981.

Chamberlin, D., and Boyce, R. [1974] “SEQUEL: A Struc-
tured English Query Language,” in SIGMOD [1974].

Chan, C., Ooi, B., and Lu, H. [1992] “Extensible Buffer
Management of Indexes,” in VLDB [1992].

Chandy, K., Browne, J., Dissley, C., and Uhrig, W. [1975]
“Analytical Models for Rollback and Recovery Strate-
gies in Database Systems,” TSE, 1:1, March 1975.

Chang, C. [1981] “On the Evaluation of Queries Contain-
ing Derived Relations in a Relational Database” in
 Gallaire et al. [1981].

Chang, C., and Walker, A. [1984] “PROSQL: A Prolog
 Programming Interface with SQL/DS,” in EDS [1984].

Chang, E., and Katz, R. [1989] “Exploiting Inheritance and
Structure Semantics for Effective Clustering and Buff-
ering in Object-Oriented Databases,” in SIGMOD
[1989].

Chang, F. et al. [2006] “Bigtable: A Distributed Storage
 System for Structured Data,” in OSDI [2006].

Chang, N., and Fu, K. [1981] “Picture Query Languages for
Pictorial Databases,” IEEE Computer, 14:11, Novem-
ber 1981.

Chang, P., and Myre, W. [1988] “OS/2 EE Database Man-
ager: Overview and Technical Highlights,” IBM
Systems Journal, 27:2, 1988.

Chang, S., Lin, B., and Walser, R. [1979] “Generalized
Zooming Techniques for Pictorial Database Systems,”
NCC, AFIPS, 48, 1979.

Chatzoglu, P. D., and McCaulay, L. A. [1997] “Require-
ments Capture and Analysis: A Survey of Current Prac-
tice,” Requirements Engineering, 1997, pp. 75–88.

Chaudhri, A., Rashid, A., and Zicari, R., eds. [2003] XML
Data Management: Native XML and XML-Enabled
Database Systems, Addison-Wesley, 2003.

Chaudhuri, S., and Dayal, U. [1997] “An Overview of Data
Warehousing and OLAP Technology,” SIGMOD
Record, 26:1, March 1997.

Chaudhuri, S., and Shim, K. [1994] “Including Group-By
in Query Optimization,” in VLDB [1994].

Chaudhuri, S. et al. [1995] “Optimizing Queries with
Materialized Views,” in ICDE [1995].

Chen, M., and Yu, P. [1991] “Determining Beneficial Semi-
joins for a Join Sequence in Distributed Query Process-
ing,” in ICDE [1991].

Chen, M., Han, J., and Yu, P. S., [1996] “Data Mining: An
Overview from a Database Perspective,” TKDE, 8:6,
December 1996.

Chen, P. [1976] “The Entity Relationship Mode—Toward a
Unified View of Data,” TODS, 1:1, March 1976.

Chen, P., and Patterson, D. [1990]. “Maximizing perfor-
mance in a striped disk array,” in Proceedings of Sympo-
sium on Computer Architecture, IEEE, New York, 1990.

Chen, P. et al. [1994] RAID High Performance, Reliable
Secondary Storage, ACM Computing Surveys,
26:2, 1994.

Chen, Q., and Kambayashi, Y. [1991] “Nested Relation
Based Database Knowledge Representation,” in
 SIGMOD [1991].

Cheng, J. [1991] “Effective Clustering of Complex Objects
in Object-Oriented Databases,” in SIGMOD [1991].

Cheung, D., et al. [1996] “A Fast and Distributed Algo-
rithm for Mining Association Rules,” in Proc. Int. Conf.
on Parallel and Distributed Information Systems, PDIS
[1996].

Childs, D. [1968] “Feasibility of a Set Theoretical Data
Structure—A General Structure Based on a Reconsti-
tuted Definition of Relation,” Proc. IFIP Congress, 1968.

Chimenti, D. et al. [1987] “An Overview of the LDL Sys-
tem,” IEEE Data Engineering Bulletin, 10:4, 1987,
pp. 52–62.

Chimenti, D. et al. [1990] “The LDL System Prototype,”
TKDE, 2:1, March 1990.

Chin, F. [1978] “Security in Statistical Databases for
Queries with Small Counts,” TODS, 3:1, March 1978.

Chin, F., and Ozsoyoglu, G. [1981] “Statistical Database
Design,” TODS, 6:1, March 1981.

Chintalapati, R., Kumar, V., and Datta, A. [1997] “An
Adaptive Location Management Algorithm for Mobile
Computing,” Proc. 22nd Annual Conf. on Local Com-
puter Networks (LCN ’97), Minneapolis, 1997.

Chou, H.-T., and DeWitt, D. [1985] “An Evaluation of Buf-
fer Management Strategies or Relational Databases,”
VLDB [1985], pp. 127–141.

Chou, H.-T., and Kim, W. [1986] “A Unifying Framework
for Version Control in a CAD Environment,” in VLDB
[1986], pp. 336–344.

Christodoulakis, S. et al. [1984] “Development of a Multi-
media Information System for an Office Environment,”
in VLDB [1984].

 Bibliography 1187

Christodoulakis, S., and Faloutsos, C. [1986] “Design and
Performance Considerations for an Optical Disk-Based
Multimedia Object Server,” IEEE Computer, 19:12,
December 1986.

Chrysanthis, P. [1993] “Transaction Processing in a Mobile
Computing Environment,” Proc. IEEE Workshop on
Advances in Parallel and Distributed Systems, October
1993, pp. 77–82.

Chu, W., and Hurley, P. [1982] “Optimal Query Processing
for Distributed Database Systems,” IEEE Transactions
on Computers, 31:9, September 1982.

Ciborra, C., Migliarese, P., and Romano, P. [1984] “A Meth-
odological Inquiry of Organizational Noise in Socio-
Technical Systems,” Human Relations, 37:8, 1984.

CISCO [2014] Accelerate Application Performance with
the Cisco UCS Invicta Series, CISCO White Paper,
January 2014.

Claybrook, B. [1992] File Management Techniques,
Wiley, 1992.

Claybrook, B. [1992] OLTP: OnLine Transaction
 Processing Systems, Wiley, 1992.

Clementini, E., and Di Felice, P. [2000] “Spatial Operators,”
in SIGMOD Record 29:3, 2000, pp. 31–38.

Clifford, J., and Tansel, A. [1985] “On an Algebra for His-
torical Relational Databases: Two Views,” in SIGMOD
[1985].

Clocksin, W. F., and Mellish, C. S. [2003] Programming in
Prolog: Using the ISO Standard, 5th ed., Springer, 2003.

Cloudera Inc. [2014] “Impala Performance Update: Now
Reaching DBMS-Class Speed,” by Justin Erickson et al.,
(http://blog.cloudera.com/blog/2014/01/impala-per-
formance-dbms-class-speed/), January 2014.

Cockcroft, S. [1997] “A Taxonomy of Spatial Data Integrity
Constraints,” GeoInformatica, 1997, pp. 327–343.

CODASYL [1978] Data Description Language Journal of
Development, Canadian Government Publishing Cen-
tre, 1978.

Codd, E. [1970] “A Relational Model for Large Shared Data
Banks,” CACM, 13:6, June 1970.

Codd, E. [1971] “A Data Base Sublanguage Founded on the
Relational Calculus,” Proc. ACM SIGFIDET Workshop
on Data Description, Access, and Control, November
1971.

Codd, E. [1972] “Relational Completeness of Data Base
Sublanguages,” in Rustin [1972].

Codd, E. [1972a] “Further Normalization of the Data Base
Relational Model,” in Rustin [1972].

Codd, E. [1974] “Recent Investigations in Relational Data-
base Systems,” Proc. IFIP Congress, 1974.

Codd, E. [1978] “How About Recently? (English Dialog
with Relational Data Bases Using Rendezvous Version
1),” in Shneiderman [1978].

Codd, E. [1979] “Extending the Database Relational Model
to Capture More Meaning,” TODS, 4:4, December 1979.

Codd, E. [1982] “Relational Database: A Practical Founda-
tion for Productivity,” CACM, 25:2, December 1982.

Codd, E. [1985] “Is Your DBMS Really Relational?” and
“Does Your DBMS Run By the Rules?,” Computer
World, October 14 and October 21, 1985.

Codd, E. [1986] “An Evaluation Scheme for Database
Management Systems That Are Claimed to Be Rela-
tional,” in ICDE [1986].

Codd, E. [1990] Relational Model for Data Management-
Version 2, Addison-Wesley, 1990.

Codd, E. F., Codd, S. B., and Salley, C. T. [1993] “Providing
OLAP (On-Line Analytical Processing) to User Ana-
lyst: An IT Mandate,” a white paper at http://www.
cs.bgu.ac.il/~dbm031/dw042/Papers/olap_to_userana-
lysts_wp.pdf, 1993.

Comer, D. [1979] “The Ubiquitous B-tree,” ACM
 Computing Surveys, 11:2, June 1979.

Comer, D. [2008] Computer Networks and Internets, 5th
ed., Prentice-Hall, 2008.

Cooley, R. [2003] “The Use of Web Structure and Content
to Identify Subjectively Interesting Web Usage Pat-
terns,” ACM Trans. On Internet Technology, 3:2, May
2003, pp. 93–116.

Cooley, R., Mobasher, B., and Srivastava, J. [1997] “Web
Mining: Information and Pattern Discovery on the
World Wide Web,” in Proc. Ninth IEEE Int. Conf. on
Tools with Artificial Intelligence (ICTAI), November
1997, pp. 558–567.

Cooley, R., Mobasher, B., and Srivastava, J. [2000] “Auto-
matic personalization based on Web usage mining,”
CACM, 43:8, August 2000.

Corcho, C., Fernandez-Lopez, M., and Gomez-Perez, A.
[2003] “Methodologies, Tools and Languages for Build-
ing Ontologies. Where Is Their Meeting Point?,” DKE,
46:1, July 2003.

Cormen, T., Leiserson, C. and Rivest, R. [1990] Introduction
to Algorithms, MIT Press, 1990.

Cornelio, A., and Navathe, S. [1993] “Applying Active
Database Models for Simulation,” in Proceedings of
1993 Winter Simulation Conference, IEEE, Los Angeles,
December 1993.

Corson, S., and Macker, J. [1999] “Mobile Ad-Hoc Net-
working: Routing Protocol Performance Issues and
Performance Considerations,” IETF Request for Com-
ments No. 2501, January 1999, available at www.ietf.
org/rfc/rfc2501.txt.

Cosmadakis, S., Kanellakis, P. C., and Vardi, M. [1990]
“Polynomial-time Implication Problems for
Unary Inclusion Dependencies,” JACM, 37:1, 1990,
pp. 15–46.

1188 Bibliography

Covi, L., and Kling, R. [1996] “Organizational Dimensions
of Effective Digital Library Use: Closed Rational and
Open Natural Systems Models,” Journal of American
Society of Information Science (JASIS), 47:9, 1996,
pp. 672–689.

Croft, B., Metzler, D., and Strohman, T. [2009] Search
Engines: Information Retrieval in Practice, Addison-
Wesley, 2009.

Cruz, I. [1992] “Doodle: A Visual Language for Object-
Oriented Databases,” in SIGMOD [1992].

Curtice, R. [1981] “Data Dictionaries: An Assessment of
Current Practice and Problems,” in VLDB [1981].

Cuticchia, A., Fasman, K., Kingsbury, D., Robbins, R., and
Pearson, P. [1993] “The GDB Human Genome Data-
base Anno 1993.” Nucleic Acids Research, 21:13, 1993.

Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley, D.
[1987] “An Algebraic Language for Graphical Query
Formulation Using an Extended Entity-Relationship
Model,” Proc. ACM Computer Science Conference, 1987.

Dahl, R., and Bubenko, J. [1982] “IDBD: An Interactive
Design Tool for CODASYL DBTG Type Databases,” in
VLDB [1982].

Dahl, V. [1984] “Logic Programming for Constructive
Database Systems,” in EDS [1984].

Danforth, S., and Tomlinson, C. [1988] “Type Theories
and Object-oriented Programming,” ACM Computing
Surveys, 20:1, 1998, pp. 29–72.

Das, S. [1992] Deductive Databases and Logic Program-
ming, Addison-Wesley, 1992.

Das, S., Antony, S., Agrawal, D. et al. [2008] “Clouded Data:
Comprehending Scalable Data Management Systems,”
UCSB CS Technical Report 2008-18, November 2008.

Date, C. J. [1983] An Introduction to Database Systems,
Vol. 2, Addison-Wesley, 1983.

Date, C. J. [1983a] “The Outer Join,” Proc. Second Interna-
tional Conference on Databases (ICOD-2), 1983.

Date, C. J. [1984] “A Critique of the SQL Database Lan-
guage,” ACM SIGMOD Record, 14:3, November 1984.

Date, C. J. [2001] The Database Relational Model: A
 Retrospective Review and Analysis: A Historical
Account and Assessment of E. F. Codd’s Contribu-
tion to the Field of Database Technology, Addison-
Wesley, 2001.

Date, C. J. [2004] An Introduction to Database Systems,
8th ed., Addison-Wesley, 2004.

Date, C. J., and Darwen, H. [1993] A Guide to the SQL
Standard, 3rd ed., Addison-Wesley.

Date C.J. and Fagin, R. [1992] “Simple Conditions for
Guaranteeing Higher Normal Forms in Relational
Databases,” TODS, 17:3, 1992.

Date, C., J. and White, C. [1988] A Guide to SQL/DS,
Addison-Wesley, 1988.

Date, C. J., and White, C. [1989] A Guide to DB2, 3rd ed.,
Addison-Wesley, 1989.

Davies, C. [1973] “Recovery Semantics for a DB/DC Sys-
tem,” Proc. ACM National Conference, 1973.

Dayal, U. et al. [1987] “PROBE Final Report,” Technical
Report CCA-87-02, Computer Corporation of America,
December 1987.

Dayal, U., and Bernstein, P. [1978] “On the Updatability of
Relational Views,” in VLDB [1978].

Dayal, U., Hsu, M., and Ladin, R. [1991] “A Transaction
Model for Long-Running Activities,” in VLDB [1991].

DBTG [1971] Report of the CODASYL Data Base Task
Group, ACM, April 1971.

DeCandia, G. et al. [2007] “Dynamo: Amazon’s Highly
Available Key-Value Store,” In SOSP, 2007.

Deelman, E., and Chervenak, A. L. [2008] “Data Man-
agement Challenges of Data-Intensive Scientific
Workflows,” in Proc. IEEE International Symposium
on Cluster, Cloud, and Grid Computing, 2008,
pp. 687–692.

Delcambre, L., Lim, B., and Urban, S. [1991] “Object-
Centered Constraints,” in ICDE [1991].

DeMarco, T. [1979] Structured Analysis and System
Specification, Prentice-Hall, 1979.

DeMers, M. [2002] Fundamentals of GIS, John Wiley, 2002.
DeMichiel, L. [1989] “Performing Operations Over Mis-

matched Domains,” in ICDE [1989].
Denning, D. [1980] “Secure Statistical Databases with

Random Sample Queries,” TODS, 5:3, September 1980.
Denning, D. E., and Denning, P. J. [1979] “Data Security,”

ACM Computing Surveys, 11:3, September 1979,
pp. 227–249.

Denning, D. et al. [1987] “A Multi-level Relational Data
Model,” in Proc. IEEE Symp. On Security and Privacy,
1987, pp. 196–201.

Deshpande, A. [1989] “An Implementation for Nested
Relational Databases,” Technical Report, Ph.D. disser-
tation, Indiana University, 1989.

Devor, C., and Weeldreyer, J. [1980] “DDTS: A Testbed for
Distributed Database Research,” Proc. ACM Pacific
Conference, 1980.

DeWitt, D. et al. [1984] “Implementation Techniques for
Main Memory Databases,” in SIGMOD [1984].

DeWitt, D. et al. [1990] “The Gamma Database Machine
Project,” TKDE, 2:1, March 1990.

DeWitt, D., Futtersack, P., Maier, D., and Velez, F. [1990] “A
Study of Three Alternative Workstation Server Archi-
tectures for Object-Oriented Database Systems,” in
VLDB [1990].

Dhawan, C. [1997] Mobile Computing, McGraw-Hill, 1997.
Di, S. M. [2005] Distributed Data Management in Grid

Environments, Wiley, 2005.

 Bibliography 1189

Dietrich, B. L. et al. [2014] Analytics Across the Enterprise:
How IBM Realizes Business Value from Big Data
and Analytics, IBM Press (Pearson plc), 2014,
192 pp.

Dietrich, S., Friesen, O., and Calliss, W. [1999] “On
Deductive and Object Oriented Databases: The
VALIDITY Experience,” Technical Report, Arizona
State University, 1999.

Diffie, W., and Hellman, M. [1979] “Privacy and Authenti-
cation,” Proceedings of the IEEE, 67:3, March 1979,
pp. 397–429.

Dimitrova, N. [1999] “Multimedia Content Analysis and
Indexing for Filtering and Retrieval Applications,”
Information Science, Special Issue on Multimedia
Informing Technologies, Part 1, 2:4, 1999.

Dipert, B., and Levy, M. [1993] Designing with Flash
Memory, Annabooks, 1993.

Dittrich, K. [1986] “Object-Oriented Database Systems: The
Notion and the Issues,” in Dittrich and Dayal [1986].

Dittrich, K., and Dayal, U., eds. [1986] Proc. International
Workshop on Object-Oriented Database Systems, IEEE
CS, Pacific Grove, CA, September 1986.

Dittrich, K., Kotz, A., and Mulle, J. [1986] “An Event/Trigger
Mechanism to Enforce Complex Consistency Con-
straints in Design Databases,” in ACM SIGMOD
Record, 15:3, 1986.

DKE [1997] Special Issue on Natural Language Processing,
DKE, 22:1, 1997.

Dodd, G. [1969] “APL—A Language for Associative Data
Handling in PL/I,” Proc. Fall Joint Computer Confer-
ence, AFIPS, 29, 1969.

Dodd, G. [1969] “Elements of Data Management Systems,”
ACM Computing Surveys, 1:2, June 1969.

Dogac, A. [1998] Special Section on Electronic Commerce,
ACM SIGMOD Record, 27:4, December 1998.

Dogac, A., Ozsu, M. T., Biliris, A., and Sellis, T., eds. [1994]
Advances in Object-oriented Databases Systems,
NATO ASI Series. Series F: Computer and Systems Sci-
ences, Vol. 130, Springer-Verlag, 1994.

Dos Santos, C., Neuhold, E., and Furtado, A. [1979] “A
Data Type Approach to the Entity-Relationship Model,”
in ER Conference [1979].

Du, D., and Tong, S. [1991] “Multilevel Extendible Hash-
ing: A File Structure for Very Large Databases,” TKDE,
3:3, September 1991.

Du, H., and Ghanta, S. [1987] “A Framework for Efficient
IC/VLSI CAD Databases,” in ICDE [1987].

Dumas, P. et al. [1982] “MOBILE-Burotique: Prospects for
the Future,” in Naffah [1982].

Dumpala, S., and Arora, S. [1983] “Schema Translation
Using the Entity-Relationship Approach,” in ER Con-
ference [1983].

Dunham, M., and Helal, A. [1995] “Mobile Computing
and Databases: Anything New?” ACM SIGMOD
Record, 24:4, December 1995.

Dwyer, S. et al. [1982] “A Diagnostic Digital Imaging Sys-
tem,” Proc. IEEE CS Conference on Pattern Recognition
and Image Processing, June 1982.

Eastman, C. [1987] “Database Facilities for Engineering
Design,” Proceedings of the IEEE, 69:10, October 1981.

EDS [1984] Expert Database Systems, Kerschberg, L., ed.
(Proc. First International Workshop on Expert Database
Systems, Kiawah Island, SC, October 1984), Benjamin/
Cummings, 1986.

EDS [1986] Expert Database Systems, Kerschberg, L., ed.
(Proc. First International Conference on Expert Data-
base Systems, Charleston, SC, April 1986), Benjamin/
Cummings, 1987.

EDS [1988] Expert Database Systems, Kerschberg, L., ed.
(Proc. Second International Conference on Expert Data-
base Systems, Tysons Corner, VA, April 1988), Benja-
min/Cummings.

Eick, C. [1991] “A Methodology for the Design and Trans-
formation of Conceptual Schemas,” in VLDB [1991].

ElAbbadi, A., and Toueg, S. [1988] “The Group Paradigm
for Concurrency Control,” in SIGMOD [1988].

ElAbbadi, A., and Toueg, S. [1989] “Maintaining Availabil-
ity in Partitioned Replicated Databases,” TODS, 14:2,
June 1989.

Ellis, C., and Nutt, G. [1980] “Office Information Systems
and Computer Science,” ACM Computing Surveys,
12:1, March 1980.

Elmagarmid A. K., ed. [1992] Database Transaction Models
for Advanced Applications, Morgan Kaufmann, 1992.

Elmagarmid, A., and Helal, A. [1988] “Supporting Updates
in Heterogeneous Distributed Database Systems,” in
ICDE [1988], pp. 564–569.

Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M.
[1990] “A Multidatabase Transaction Model for Inter-
base,” in VLDB [1990].

Elmasri, R., and Larson, J. [1985] “A Graphical Query
Facility for ER Databases,” in ER Conference [1985].

Elmasri, R., and Wiederhold, G. [1979] “Data Model Inte-
gration Using the Structural Model,” in SIGMOD [1979].

Elmasri, R., and Wiederhold, G. [1980] “Structural Prop-
erties of Relationships and Their Representation,”
NCC, AFIPS, 49, 1980.

Elmasri, R., and Wiederhold, G. [1981] “GORDAS: A For-
mal, High-Level Query Language for the Entity-Rela-
tionship Model,” in ER Conference [1981].

Elmasri, R., and Wuu, G. [1990] “A Temporal Model and
Query Language for ER Databases,” in ICDE [1990].

Elmasri, R., and Wuu, G. [1990a] “The Time Index: An
Access Structure for Temporal Data,” in VLDB [1990].

1190 Bibliography

Elmasri, R., James, S., and Kouramajian, V. [1993] “Auto-
matic Class and Method Generation for Object-
Oriented Databases,” Proc. Third International
Conference on Deductive and Object-Oriented Data-
bases (DOOD-93), Phoenix, AZ, December 1993.

Elmasri, R., Kouramajian, V., and Fernando, S. [1993]
“Temporal Database Modeling: An Object-Oriented
Approach,” CIKM, November 1993.

Elmasri, R., Larson, J., and Navathe, S. [1986] “Schema
Integration Algorithms for Federated Databases and
Logical Database Design,” Honeywell CSDD, Technical
Report CSC-86-9: 8212, January 1986.

Elmasri, R., Srinivas, P., and Thomas, G. [1987] “Fragmen-
tation and Query Decomposition in the ECR Model,”
in ICDE [1987].

Elmasri, R., Weeldreyer, J., and Hevner, A. [1985]
“The Category Concept: An Extension to the Entity-
Relationship Model,” DKE, 1:1, May 1985.

Engelbart, D., and English, W. [1968] “A Research Center
for Augmenting Human Intellect,” Proc. Fall Joint Com-
puter Conference, AFIPS, December 1968.

Epstein, R., Stonebraker, M., and Wong, E. [1978] “Distrib-
uted Query Processing in a Relational Database
 System,” in SIGMOD [1978].

ER Conference [1979] Entity-Relationship Approach to
Systems Analysis and Design, Chen, P., ed. (Proc. First
International Conference on Entity-Relationship
Approach, Los Angeles, December 1979), North-Hol-
land, 1980.

ER Conference [1981] Entity-Relationship Approach to
Information Modeling and Analysis, Chen, P., eds.
(Proc. Second International Conference on Entity-
Relationship Approach, Washington, October 1981),
Elsevier Science, 1981.

ER Conference [1983] Entity-Relationship Approach to
Software Engineering, Davis, C., Jajodia, S., Ng, P., and
Yeh, R., eds. (Proc. Third International Conference on
Entity-Relationship Approach, Anaheim, CA, October
1983), North-Holland, 1983.

ER Conference [1985] Proc. Fourth International Confer-
ence on Entity-Relationship Approach, Liu, J., ed.,
 Chicago, October 1985, IEEE CS.

ER Conference [1986] Proc. Fifth International Confer-
ence on Entity-Relationship Approach, Spaccapietra,
S., ed., Dijon, France, November 1986, Express-
Tirages.

ER Conference [1987] Proc. Sixth International Conference
on Entity-Relationship Approach, March, S., ed., New
York, November 1987.

ER Conference [1988] Proc. Seventh International Confer-
ence on Entity-Relationship Approach, Batini, C., ed.,
Rome, November 1988.

ER Conference [1989] Proc. Eighth International Confer-
ence on Entity-Relationship Approach, Lochovsky, F.,
ed., Toronto, October 1989.

ER Conference [1990] Proc. Ninth International Conference
on Entity-Relationship Approach, Kangassalo, H., ed.,
Lausanne, Switzerland, September 1990.

ER Conference [1991] Proc. Tenth International Conference
on Entity-Relationship Approach, Teorey, T., ed., San
Mateo, CA, October 1991.

ER Conference [1992] Proc. Eleventh International Confer-
ence on Entity-Relationship Approach, Pernul, G., and
Tjoa, A., eds., Karlsruhe, Germany, October 1992.

ER Conference [1993] Proc. Twelfth International Confer-
ence on Entity-Relationship Approach, Elmasri, R.,
and Kouramajian, V., eds., Arlington, TX, December
1993.

ER Conference [1994] Proc. Thirteenth International Con-
ference on Entity-Relationship Approach, Loucopoulos,
P., and Theodoulidis, B., eds., Manchester, England,
December 1994.

ER Conference [1995] Proc. Fourteenth International Con-
ference on ER-OO Modeling, Papazouglou, M., and Tari,
Z., eds., Brisbane, Australia, December 1995.

ER Conference [1996] Proc. Fifteenth International Confer-
ence on Conceptual Modeling, Thalheim, B., ed.,
 Cottbus, Germany, October 1996.

ER Conference [1997] Proc. Sixteenth International Confer-
ence on Conceptual Modeling, Embley, D., ed., Los
Angeles, October 1997.

ER Conference [1998] Proc. Seventeenth International Con-
ference on Conceptual Modeling, Ling, T.-K., ed., Singa-
pore, November 1998.

ER Conference [1999] Proc. Eighteenth Conference on Con-
ceptual Modeling, Akoka, J., Bouzeghoub, M., Comyn-
Wattiau, I., Métais, E., (eds.): Paris, France, LNCS 1728,
Springer, 1999.

ER Conference [2000] Proc. Nineteenth Conference on Con-
ceptual Modeling, Laender, A., Liddle, S., Storey, V.,
(eds.), Salt Lake City, LNCS 1920, Springer, 2000.

ER Conference [2001] Proc. Twentieth Conference on Con-
ceptual Modeling, Kunii, H., Jajodia, S., Solveberg, A.,
(eds.), Yokohama, Japan, LNCS 2224, Springer, 2001.

ER Conference [2002] Proc. 21st Int. Conference on
 Conceptual Modeling, Spaccapietra, S., March, S.,
Kambayashi, Y., (eds.), Tampere, Finland, LNCS 2503,
Springer, 2002.

ER Conference [2003] Proc. 22nd Int. Conference on Con-
ceptual Modeling, Song, I.-Y., Liddle, S., Ling, T.-W.,
Scheuermann, P., (eds.), Tampere, Finland, LNCS
2813, Springer, 2003.

ER Conference [2004] Proc. 23rd Int. Conference on Con-
ceptual Modeling, Atzeni, P., Chu, W., Lu, H., Zhou, S.,

 Bibliography 1191

Ling, T.-W., (eds.), Shanghai, China, LNCS 3288,
Springer, 2004.

ER Conference [2005] Proc. 24th Int. Conference on Con-
ceptual Modeling, Delacambre, L.M.L., Kop, C., Mayr,
H., Mylopoulos, J., Pastor, O., (eds.), Klagenfurt,
 Austria, LNCS 3716, Springer, 2005.

ER Conference [2006] Proc. 25th Int. Conference on Con-
ceptual Modeling, Embley, D., Olive, A., Ram, S. (eds.),
Tucson, AZ, LNCS 4215, Springer, 2006.

ER Conference [2007] Proc. 26th Int. Conference on Con-
ceptual Modeling, Parent, C., Schewe, K.-D., Storey, V.,
Thalheim, B. (eds.), Auckland, New Zealand, LNCS
4801, Springer, 2007.

ER Conference [2008] Proc. 27th Int. Conference on Concep-
tual Modeling, Li, Q., Spaccapietra, S., Yu, E. S. K., Olive,
A. (eds.), Barcelona, Spain, LNCS 5231, Springer, 2008.

ER Conference [2009] Proc. 28th Int. Conference on Con-
ceptual Modeling, Laender, A., Castano, S., Dayal, U.,
Casati, F., de Oliveira (eds.), Gramado, RS, Brazil,
LNCS 5829, Springer, 2009.

ER Conference [2010] Proc. 29th Int. Conference on Con-
ceptual Modeling, Parsons, J. et al. (eds.), Vancouver,
Canada, LNCS 6412, Springer, 2010.

ER Conference [2011] Proc. 30th Int. Conference on Con-
ceptual Modeling, Jeusfeld, M. Delcambre, L., and Ling,
Tok Wang (eds.), Brussels, Belgium, LNCS 6998,
Springer, 2011.

ER Conference [2012] Proc. 31st Int. Conference on Concep-
tual Modeling, Atzeni, P., Cheung, D.W., and Ram,
Sudha (eds.), Florence, Italy, LNCS 7532, Springer,
2012.

ER Conference [2013] Proc. 32nd Int. Conference on Con-
ceptual Modeling, Ng, Wilfred, Storey, V., and Trujillo, J.
(eds.), Hong Kong, China, LNCS 8217, Springer, 2013.

ER Conference [2014] Proc. 33rd Int. Conference on Con-
ceptual Modeling, Yu, Eric, Dobbie, G., Jarke, M., Purao,
S. (eds.), Atlanta, USA, LNCS 8824, Springer, 2014.

ER Conference [2015] Proc. 34th Int. Conference on Con-
ceptual Modeling, Stockholm, Sweden, LNCS Springer,
forthcoming.

Erl, T. et al. [2013] Cloud Computing: Concepts, Technol-
ogy and Architecture, Prentice Hall, 2013, 489 pp.

ESRI [2009] “The Geodatabase: Modeling and Managing
Spatial Data” in ArcNews, 30:4, ESRI, Winter
2008/2009.

Ester, M., Kriegel, H.-P., and Jorg, S., [2001] “Algorithms
and Applications for Spatial Data Mining,” in Research
Monograph in GIS, CRC Press, [2001].

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. [1996]. “A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise,” in KDD, 1996,
AAAI Press, pp. 226–231.

Eswaran, K., and Chamberlin, D. [1975] “Functional Spec-
ifications of a Subsystem for Database Integrity,” in
VLDB [1975].

Eswaran, K., Gray, J., Lorie, R., and Traiger, I. [1976] “The
Notions of Consistency and Predicate Locks in a Data
Base System,” CACM, 19:11, November 1976.

Etzioni, O. [1996] “The World-Wide Web: quagmire or
gold mine?” CACM, 39:11, November 1996, pp. 65–68.

Everett, G., Dissly, C., and Hardgrave, W. [1971] RFMS
User Manual, TRM-16, Computing Center, University
of Texas at Austin, 1981.

Fagin, R. [1977] “Multivalued Dependencies and a New
Normal Form for Relational Databases,” TODS, 2:3,
September 1977.

Fagin, R. [1979] “Normal Forms and Relational Database
Operators,” in SIGMOD [1979].

Fagin, R. [1981] “A Normal Form for Relational Data-
bases That Is Based on Domains and Keys,” TODS,
6:3, September 1981.

Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H.
[1979] “Extendible Hashing—A Fast Access Method
for Dynamic Files,” TODS, 4:3, September 1979.

Falcone, S., and Paton, N. [1997]. “Deductive Object-
Oriented Database Systems: A Survey,” Proc. 3rd Inter-
national Workshop Rules in Database Systems (RIDS ’97),
Skovde, Sweden, June 1997.

Faloutsos, C. [1996] Searching Multimedia Databases by
Content, Kluwer, 1996.

Faloutsos, C. et al. [1994] “Efficient and Effective Query-
ing by Image Content,” Journal of Intelligent Informa-
tion Systems, 3:4, 1994.

Faloutsos, G., and Jagadish, H. [1992] “On B-Tree Indices
for Skewed Distributions,” in VLDB [1992].

Fan, J., Gao, Y., Luo, H. and Xu, G.[2004] “Automatic
Image Annotation by Using Concept-sensitive Salient
Objects for Image Content Representation,” in SIGIR,
2004.

Farag, W., and Teorey, T. [1993] “FunBase: A Function-
based Information Management System,” CIKM,
November 1993.

Farahmand, F., Navathe, S., Sharp, G., Enslow, P. [2003]
“Managing Vulnerabilities of Information Systems to
Security Incidents,” Proc. ACM 5th International Con-
ference on Electronic Commerce, ICEC 2003, Pittsburgh,
PA, September 2003, pp. 348–354.

Farahmand, F., Navathe, S., Sharp, G., Enslow, P., “A Man-
agement Perspective on Risk of Security Threats to
Information Systems,” Journal of Information Tech-
nology & Management, Vol. 6, pp. 203–225, 2005.

Fayyad, U., Piatesky-Shapiro, G., Smyth, P., Uthurusamy,
R. [1997] Advances in Knowledge Discovery and
Data Mining, MIT Press, 1997.

1192 Bibliography

Fekete, A., O’Neil, E., and O’Neil, P. [2004] “A Read-only
Transaction Anomaly Under Snapshot Isolation,”
SIGMOD Record, 33:3, 2004, pp. 12–14.

Fekete, A. et al. [2005] “Making Snapshot Isolation Serial-
izable,” ACM TODS, 30:2, 2005, pp. 492–528.

Fellbaum, C., ed. [1998] WordNet: An Electronic Lexical
Database, MIT Press, 1998.

Fensel, D. [2000] “The Semantic Web and Its Languages,”
IEEE Intelligent Systems, Vol. 15, No. 6, Nov./Dec.
2000, pp. 67–73.

Fensel, D. [2003]: Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce, 2nd ed.,
Springer-Verlag, Berlin, 2003.

Fernandez, E., Summers, R., and Wood, C. [1981] Data-
base Security and Integrity, Addison-Wesley, 1981.

Ferrier, A., and Stangret, C. [1982] “Heterogeneity in
the Distributed Database Management System
 SIRIUS-DELTA,” in VLDB [1982].

Ferrucci, D. et al. “Building Watson: An overview of the
DeepQA project.” AI Magazine 31:3 , 2010, pp. 59–79.

Fishman, D. et al. [1987] “IRIS: An Object-Oriented
DBMS,” TOIS, 5:1, 1987, pp. 48–69.

Flickner, M. et al. [1995] “Query by Image and Video
 Content: The QBIC System,” IEEE Computer, 28:9,
September 1995, pp. 23–32.

Flynn, J., and Pitts, T. [2000] Inside ArcINFO 8, 2nd ed.,
On Word Press, 2000.

Folk, M. J., Zoellick, B., and Riccardi, G. [1998] File
 Structures: An Object Oriented Approach with C++,
3rd ed., Addison-Wesley, 1998.

Fonseca, F., Egenhofer, M., Davis, C. and Câmara, G.
[2002)] “Semantic Granularity in Ontology-Driven
Geographic Information Systems,” in Annals of
Mathematics and Artificial Intelligence 36:1–2,
pp. 121–151.

Ford, D., and Christodoulakis, S. [1991] “Optimizing
 Random Retrievals from CLV Format Optical Disks,”
in VLDB [1991].

Ford, D., Blakeley, J., and Bannon, T. [1993] “Open OODB:
A Modular Object-Oriented DBMS,” in SIGMOD
[1993].

Foreman, G., and Zahorjan, J. [1994] “The Challenges of
Mobile Computing,” IEEE Computer, April 1994.

Fotouhi, F., Grosky, W., Stanchev, P.[2007] , eds., Proc. of
the First ACM Workshop on Many Faces of the Multi-
media Semantics, MS 2007, Augsburg Germany,
September 2007.

Fowler, M., and Scott, K. [2000] UML Distilled, 2nd ed.,
Addison-Wesley, 2000.

Franaszek, P., Robinson, J., and Thomasian, A. [1992]
“Concurrency Control for High Contention Environ-
ments,” TODS, 17:2, June 1992.

Frank, A. [2003] “A linguistically justified proposal for a
spatio-temporal ontology,” a position paper in Proc.
COSIT03- Int. Conf. on Spatial Information Theory,
Ittingen, Switzerland, LNCS 2825, September 2003.

Franklin, F. et al. [1992] “Crash Recovery in Client-Server
EXODUS,” in SIGMOD [1992].

Franks, B. [2012] Taming the Big Data Tidal Wave, Wiley,
2012, 294 pp.

Fraternali, P. [1999] Tools and Approaches for Data Inten-
sive Web Applications: A Survey, ACM Computing Sur-
veys, 31:3, September 1999.

Frenkel, K. [1991] “The Human Genome Project and
Informatics,” CACM, November 1991.

Friesen, O., Gauthier-Villars, G., Lefelorre, A., and Vieille,
L., “Applications of Deductive Object-Oriented Data-
bases Using DEL,” in Ramakrishnan (1995).

Friis-Christensen, A., Tryfona, N., and Jensen, C. S. [2001]
“Requirements and Research Issues in Geographic Data
Modeling,” Proc. 9th ACM International Symposium on
Advances in Geographic Information Systems, 2001.

Fugini, M., Castano, S., Martella G., and Samarati, P. [1995]
Database Security, ACM Press and Addison-Wesley,
1995.

Furtado, A. [1978] “Formal Aspects of the Relational
Model,” Information Systems, 3:2, 1978.

Gadia, S. [1988] “A Homogeneous Relational Model and
Query Language for Temporal Databases,” TODS, 13:4,
December 1988.

Gait, J. [1988] “The Optical File Cabinet: A Random-
Access File System for Write-Once Optical Disks,”
IEEE Computer, 21:6, June 1988.

Galindo-Legaria, C. and Joshi, M. [2001] “Orthogonal
Optimization of Subqueries and Aggregation,” in
 SIGMOD [2001].

Galindo-Legaria, C., Sefani, S., and Waas, F. [2004] “Query
Processing for SQL Updates,” in SIGMOD [2004],
pp. 844–849.

Gallaire, H., and Minker, J., eds. [1978] Logic and
 Databases, Plenum Press, 1978.

Gallaire, H., Minker, J., and Nicolas, J. [1984] “Logic and
Databases: A Deductive Approach,” ACM Computing
Surveys, 16:2, June 1984.

Gallaire, H., Minker, J., and Nicolas, J., eds. [1981] Advances
in Database Theory, Vol. 1, Plenum Press, 1981.

Gamal-Eldin, M., Thomas, G., and Elmasri, R. [1988]
“Integrating Relational Databases with Support for
Updates,” Proc. International Symposium on Data-
bases in Parallel and Distributed Systems, IEEE CS,
December 1988.

Gane, C., and Sarson, T. [1977] Structured Systems
 Analysis: Tools and Techniques, Improved Systems
Technologies, 1977.

 Bibliography 1193

Gangopadhyay, A., and Adam, N. [1997] Database Issues
in Geographic Information Systems, Kluwer Aca-
demic Publishers, 1997.

Garcia-Molina, H. [1982] “Elections in Distributed Com-
puting Systems,” IEEE Transactions on Computers,
31:1, January 1982.

Garcia-Molina, H. [1983] “Using Semantic Knowledge for
Transaction Processing in a Distributed Database,”
TODS, 8:2, June 1983.

Garcia-Molina, H., Ullman, J., and Widom, J. [2000] Data-
base System Implementation, Prentice-Hall, 2000.

Garcia-Molina, H., Ullman, J., and Widom, J. [2009] Data-
base Systems: The Complete Book, 2nd ed., Prentice-
Hall, 2009.

Gartner [2014a] Hype Cycle for Information Infrastruc-
ture, by Mark Beyer and Roxanne Edjlali, August 2014,
Gartner Press, 110 pp.

Gartner [2014b] “The Logical Data Warehouse Will be a
Key Scenario for Using Data Federation,” by Eric Thoo
and Ted Friedman, Gartner, September 2012, 6 pp.

Gedik, B., and Liu, L. [2005] “Location Privacy in Mobile
Systems: A Personalized Anonymization Model,” in
ICDCS, 2005, pp. 620–629.

Gehani, N., Jagdish, H., and Shmueli, O. [1992] “Composite
Event Specification in Active Databases: Model and
Implementation,” in VLDB [1992].

Geman, S., and Geman, D. [1984]. “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of
Images.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMII-6, No. 6, November
1984, pp. 721–741.

Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A.
[1991] “On Serializability of Multidatabase Transac-
tions Through Forced Local Conflicts,” in ICDE [1991].

Gerritsen, R. [1975] “A Preliminary System for the Design
of DBTG Data Structures,” CACM, 18:10, October
1975.

Ghemawat, S., Gobioff, H., and Leung, S. [2003] “The
Google File System,” in SOSP [2003].

Ghosh, S. [1984] “An Application of Statistical Databases
in Manufacturing Testing,” in ICDE [1984].

Ghosh, S. [1986] “Statistical Data Reduction for Manufac-
turing Testing,” in ICDE [1986].

Gibson, G. et al. [1997] “File Server Scaling with Network-
Attached Secure Disks.” Sigmetrics, 1997.

Gifford, D. [1979] “Weighted Voting for Replicated Data,”
SOSP, 1979.

Gladney, H. [1989] “Data Replicas in Distributed Informa-
tion Services,” TODS, 14:1, March 1989.

Gogolla, M., and Hohenstein, U. [1991] “Towards a
Semantic View of an Extended Entity-Relationship
Model,” TODS, 16:3, September 1991.

Goldberg, A., and Robson, D. [1989] Smalltalk-80: The
Language, Addison-Wesley, 1989.

Goldfine, A., and Konig, P. [1988] A Technical Overview of
the Information Resource Dictionary System (IRDS),
2nd ed., NBS IR 88-3700, National Bureau of
Standards.

Goodchild, M. F. [1992] “Geographical Information
Science,” International Journal of Geographical
Information Systems, 1992, pp. 31–45.

Goodchild, M. F. [1992a] “Geographical Data Modeling,”
Computers & Geosciences 18:4, 1992, pp. 401–408.

Gordillo, S., and Balaguer, F. [1998] “Refining an Object-
oriented GIS Design Model: Topologies and Field
Data,” Proc. 6th ACM International Symposium on
Advances in Geographic Information Systems, 1998.

Gotlieb, L. [1975] “Computing Joins of Relations,” in
 SIGMOD [1975].

Graefe, G. [1993] “Query Evaluation Techniques for Large
Databases,” ACM Computing Surveys, 25:2, June 1993.

Graefe, G., and DeWitt, D. [1987] “The EXODUS Opti-
mizer Generator,” in SIGMOD [1987].

Graefe, G., and McKenna, W. [1993] “The Volcano Opti-
mizer Generator,” in ICDE [1993], pp. 209–218.

Graefe, G. [1995] “The Cascades Framework for Query
Optimization,” Data Engineering Bulletin, 18:3, 1995,
pp. 209–218.

Gravano, L., and Garcia-Molina, H. [1997] “Merging
Ranks from Heterogeneous Sources,” in VLDB [1997].

Gray, J. [1978] “Notes on Data Base Operating Systems,” in
Bayer, Graham, and Seegmuller [1978].

Gray, J. [1981] “The Transaction Concept: Virtues and
Limitations,” in VLDB [1981].

Gray, J., and Reuter, A. [1993] Transaction Processing:
Concepts and Techniques, Morgan Kaufmann, 1993.

Gray, J., Helland, P., O’Neil, P., and Shasha, D. [1993]
“The Dangers of Replication and a Solution,”
 SIGMOD [1993].

Gray, J., Horst, B., and Walker, M. [1990] “Parity Striping
of Disk Arrays: Low-Cost Reliable Storage with Accept-
able Throughput,” in VLDB [1990], pp. 148–161.

Gray, J., Lorie, R., and Putzolu, G. [1975] “Granularity of
Locks and Degrees of Consistency in a Shared Data
Base,” in Nijssen [1975].

Gray, J., McJones, P., and Blasgen, M. [1981] “The Recov-
ery Manager of the System R Database Manager,” ACM
Computing Surveys, 13:2, June 1981.

Griffiths, P., and Wade, B. [1976] “An Authorization Mech-
anism for a Relational Database System,” TODS, 1:3,
September 1976.

Grochowski, E., and Hoyt, R. F. [1996] “Future Trends in
Hard Disk Drives,” IEEE Transactions on Magnetics,
32:3, May 1996.

1194 Bibliography

Grosky, W. [1994] “Multimedia Information Systems,” in
IEEE Multimedia, 1:1, Spring 1994.

Grosky, W. [1997] “Managing Multimedia Information in
Database Systems,” in CACM, 40:12, December 1997.

Grosky, W., Jain, R., and Mehrotra, R., eds. [1997] The
Handbook of Multimedia Information Management,
Prentice-Hall PTR, 1997.

Gruber, T. [1995] “Toward principles for the design of
ontologies used for knowledge sharing,” International
Journal of Human-Computer Studies, 43:5–6, Nov./
Dec. 1995, pp. 907–928.

Gupta, R. and Horowitz E. [1992] Object Oriented Data-
bases with Applications to Case, Networks and VLSI
CAD, Prentice-Hall, 1992.

Güting, R. [1994] “An Introduction to Spatial Database
Systems,” in VLDB [1994].

Guttman, A. [1984] “R-Trees: A Dynamic Index Structure
for Spatial Searching,” in SIGMOD [1984].

Gwayer, M. [1996] Oracle Designer/2000 Web Server
Generator Technical Overview (version 1.3.2), Tech-
nical Report, Oracle Corporation, September 1996.

Gyssens, M.,Paredaens, J., and Van Gucht, D. [1990] “A
graph-oriented object model for database end-user
interfaces,” in SIGMOD [1990].

Haas, P., and Swami, A. [1995] “Sampling-based Selectivity
Estimation for Joins Using Augmented Frequent Value
Statistics,” in ICDE [1995].

Haas, P., Naughton, J., Seshadri, S., and Stokes, L. [1995]
“Sampling-based Estimation of the Number of Distinct
Values of an Attribute,” in VLDB [1995].

Hachem, N., and Berra, P. [1992] “New Order Preserving
Access Methods for Very Large Files Derived from Lin-
ear Hashing,” TKDE, 4:1, February 1992.

Hadoop [2014] Hadoop Wiki at http://hadoop.apache.org/
Hadzilacos, V. [1983] “An Operational Model for Database

System Reliability,” in Proceedings of SIGACT-SIGMOD
Conference, March 1983.

Hadzilacos, V. [1988] “A Theory of Reliability in Database
Systems,” JACM, 35:1, 1986.

Haerder, T., and Reuter, A. [1983] “Principles of Transaction
Oriented Database Recovery—A Taxonomy,” ACM
Computing Surveys, 15:4, September 1983, pp. 287–318.

Haerder, T., and Rothermel, K. [1987] “Concepts for
Transaction Recovery in Nested Transactions,” in
SIGMOD [1987].

Hakonarson, H., Gulcher, J., and Stefansson, K. [2003].
“deCODE genetics, Inc.” Pharmacogenomics Journal,
2003, pp. 209–215.

Halfond, W., and Orso. A. [2005] “AMNESIA: Analysis and
Monitoring for Neutralizing SQL-Injection Attacks,” in
Proc. IEEE and ACM Int. Conf. on Automated Software
Engineering (ASE 2005), November 2005, pp. 174–183.

Halfond, W., Viegas, J., and Orso, A. [2006] “A Classifica-
tion of SQL Injection Attacks and Countermeasures,”
in Proc. Int. Symposium on Secure Software Engineering,
March 2006.

Hall, P. [1976] “Optimization of a Single Relational Expres-
sion in a Relational Data Base System,” IBM Journal of
Research and Development, 20:3, May 1976.

Hamilton, G., Catteli, R., and Fisher, M. [1997] JDBC
Database Access with Java—A Tutorial and Anno-
tated Reference, Addison-Wesley, 1997.

Hammer, M., and McLeod, D. [1975] “Semantic Integrity
in a Relational Data Base System,” in VLDB [1975].

Hammer, M., and McLeod, D. [1981] “Database Descrip-
tion with SDM: A Semantic Data Model,” TODS, 6:3,
September 1981.

Hammer, M., and Sarin, S. [1978] “Efficient Monitoring of
Database Assertions,” in SIGMOD [1978].

Han, J., Kamber, M., and Pei, J. [2005] Data Mining:
Concepts and Techniques, 2nd ed., Morgan
Kaufmann, 2005.

Han, Y., Jiang, C. and Luo, X. [2004] “A Study of Concur-
rency Control in Web-Based Distributed Real-Time
Database System Using Extended Time Petri Nets,”
Proc. Int. Symposium on Parallel Architectures, Algo-
rithms, and Networks, 2004, pp. 67–72.

Han, J., Pei, J., and Yin, Y. [2000] “Mining Frequent Patterns
without Candidate Generation,” in SIGMOD [2000].

Hanson, E. [1992] “Rule Condition Testing and Action
Execution in Ariel,” in SIGMOD [1992].

Hardgrave, W. [1980] “Ambiguity in Processing Boolean
Queries on TDMS Tree Structures: A Study of Four
Different Philosophies,” TSE, 6:4, July 1980.

Hardgrave, W. [1984] “BOLT: A Retrieval Language for
Tree-Structured Database Systems,” in Tou [1984].

Harel, D., [1987] “Statecharts: A Visual Formulation for
Complex Systems,” in Science of Computer Program-
ming, 8:3, June 1987, pp. 231–274.

Harman, D. [1992] “Evaluation Issues in Information
Retrieval,” Information Processing and Management,
28:4, pp. 439–440.

Harrington, J. [1987] Relational Database Management
for Microcomputer: Design and Implementation,
Holt, Rinehart, and Winston, 1987.

Harris, L. [1978] “The ROBOT System: Natural Language
Processing Applied to Data Base Query,” Proc. ACM
National Conference, December 1978.

Harth, A., Hose, K., and Schenkel, R. [2014] Linked Data
Management, Chapman and Hall, CRC Press, 2014,
576 pp.

Haskin, R., and Lorie, R. [1982] “On Extending the Func-
tions of a Relational Database System,” in SIGMOD
[1982].

 Bibliography 1195

Hasse, C., and Weikum, G. [1991] “A Performance Evalua-
tion of Multi-Level Transaction Management,” in
VLDB [1991].

Hayes-Roth, F., Waterman, D., and Lenat, D., eds. [1983]
Building Expert Systems, Addison-Wesley, 1983.

Hayne, S., and Ram, S. [1990] “Multi-User View Integra-
tion System: An Expert System for View Integration,”
in ICDE [1990].

Hecht. R., and Jablonski, S. [2011] “NOSQL Evaluation, A
Use Case Oriented Survey,” in Int. Conf. on Cloud and
Service Computing, IEEE, 2011, pp. 336–341.

Heiler, S., and Zdonick, S. [1990] “Object Views: Extend-
ing the Vision,” in ICDE [1990].

Heiler, S., Hardhvalal, S., Zdonik, S., Blaustein, B., and
Rosenthal, A. [1992] “A Flexible Framework for Trans-
action Management in Engineering Environment,” in
Elmagarmid [1992].

Helal, A., Hu, T., Elmasri, R., and Mukherjee, S. [1993]
“Adaptive Transaction Scheduling,” CIKM, November
1993.

Held, G., and Stonebraker, M. [1978] “B-Trees Reexam-
ined,” CACM, 21:2, February 1978.

Henriksen, C., Lauzon, J. P., and Morehouse, S. [1994]
“Open Geodata Access Through Standards,” Standard-
View Archive, 1994, 2:3, pp. 169–174.

Henschen, L., and Naqvi, S. [1984] “On Compiling Que-
ries in Recursive First-Order Databases,” JACM, 31:1,
January 1984.

Hernandez, H., and Chan, E. [1991] “Constraint-Time-
Maintainable BCNF Database Schemes,” TODS, 16:4,
December 1991.

Herot, C. [1980] “Spatial Management of Data,” TODS,
5:4, December 1980.

Hevner, A., and Yao, S. [1979] “Query Processing in Dis-
tributed Database Systems,” TSE, 5:3, May 1979.

Hinneburg, A., and Gabriel, H.-H., [2007] “DENCLUE
2.0: Fast Clustering Based on Kernel Density Estima-
tion,” in Proc. IDA’2007: Advances in Intelligent Data
Analysis VII, 7th International Symposium on Intelligent
Data Analysis, Ljubljana, Slovenia, September 2007,
LNCS 4723, Springer, 2007.

Hoffer, J. [1982] “An Empirical Investigation with Indi-
vidual Differences in Database Models,” Proc. Third
International Information Systems Conference,
December 1982.

Hoffer, J., Prescott, M., and Topi, H. [2009] Modern Data-
base Management, 9th ed., Prentice-Hall, 2009.

Holland, J. [1975] Adaptation in Natural and Artificial
Systems, University of Michigan Press, 1975.

Holsapple, C., and Whinston, A., eds. [1987] Decision
Support Systems Theory and Application, Springer-
Verlag, 1987.

Holt, R. C. [1972] “Some Deadlock Properties of Computer
Systems,” ACM Computing Surveys, 4:3, pp. 179–196.

Holtzman J. M., and Goodman D. J., eds. [1993] Wireless
Communications: Future Directions, Kluwer, 1993.

Horowitz, B. [1992] “A Run-Time Execution Model for
Referential Integrity Maintenance”, in ICDE [1992],
pp. 548–556.

Hortonworks, Inc. [2014a] “Benchmarking Apache Hive
13 for Enterprise Hadoop,” by Carter Shanklin, a
Hortonworks Blog (http://hortonworks.com/blog/
benchmarking-apache-hive-13-enterprise-hadoop/),
June 2014.

Hortonworks, Inc. [2014b] “Best Practices—Selecting
Apache Hadoop Hardware,” at http://docs.horton-
works.com/HDP2Alpha/index.htm#Hardware_Rec-
ommendations_for_Hadoop.htm

Howson, C. and P. Urbach, P. [1993] Scientific Reasoning:
The Bayesian Approach, Open Court Publishing,
December 1993.

Hsiao, D., and Kamel, M. [1989] “Heterogeneous Data-
bases: Proliferation, Issues, and Solutions,” TKDE, 1:1,
March 1989.

Hsu, A., and Imielinsky, T. [1985] “Integrity Checking for
Multiple Updates,” in SIGMOD [1985].

Hsu, M., and Zhang, B. [1992] “Performance Evaluation of
Cautious Waiting,” TODS, 17:3, pp. 477–512.

Hull, R., and King, R. [1987] “Semantic Database Model-
ing: Survey, Applications, and Research Issues,” ACM
Computing Surveys, 19:3, September 1987.

Huxhold, W. [1991] An Introduction to Urban Geographic
Information Systems, Oxford University Press, 1991.

IBM [1978] QBE Terminal Users Guide, Form Number
SH20-2078-0.

IBM [1992] Systems Application Architecture Common
Programming Interface Database Level 2 Reference,
Document Number SC26-4798-01.

ICDE [1984] Proc. IEEE CS International Conference on Data
Engineering, Shuey, R., ed., Los Angeles, CA, April 1984.

ICDE [1986] Proc. IEEE CS International Conference on
Data Engineering, Wiederhold, G., ed., Los Angeles,
February 1986.

ICDE [1987] Proc. IEEE CS International Conference on Data
Engineering, Wah, B., ed., Los Angeles, February 1987.

ICDE [1988] Proc. IEEE CS International Conference on Data
Engineering, Carlis, J., ed., Los Angeles, February 1988.

ICDE [1989] Proc. IEEE CS International Conference on Data
Engineering, Shuey, R., ed., Los Angeles, February 1989.

ICDE [1990] Proc. IEEE CS International Conference on Data
Engineering, Liu, M., ed., Los Angeles, February 1990.

ICDE [1991] Proc. IEEE CS International Conference on
Data Engineering, Cercone, N., and Tsuchiya, M., eds.,
Kobe, Japan, April 1991.

1196 Bibliography

ICDE [1992] Proc. IEEE CS International Conference on
Data Engineering, Golshani, F., ed., Phoenix, AZ, Feb-
ruary 1992.

ICDE [1993] Proc. IEEE CS International Conference on
Data Engineering, Elmagarmid, A., and Neuhold, E.,
eds., Vienna, Austria, April 1993.

ICDE [1994] Proc. IEEE CS International Conference on
Data Engineering, Houston, TX, February 1994.

ICDE [1995] Proc. IEEE CS International Conference on
Data Engineering, Yu, P. S., and Chen, A. L. A., eds.,
Taipei, Taiwan, 1995.

ICDE [1996] Proc. IEEE CS International Conference on
Data Engineering, Su, S. Y. W., ed., New Orleans, 1996.

ICDE [1997] Proc. IEEE CS International Conference on
Data Engineering, Gray, W. A., and Larson, P. A., eds.,
Birmingham, England, 1997.

ICDE [1998] Proc. IEEE CS International Conference on
Data Engineering, Orlando, FL, February 1998.

ICDE [1999] Proc. IEEE CS International Conference on
Data Engineering, Sydney, Australia, March 1999.

ICDE [2000] Proc. IEEE CS International Conference on
Data Engineering, San Diego, CA, February-March 2000.

ICDE [2001] Proc. IEEE CS International Conference on
Data Engineering, Heidelberg, Germany, April 2001.

ICDE [2002] Proc. IEEE CS International Conference on
Data Engineering, San Jose, CA, February-March 2002.

ICDE [2003] Proc. IEEE CS International Conference on
Data Engineering, Dayal, U., Ramamritham, K., and
Vijayaraman, T. M., eds., Bangalore, India, March 2003.

ICDE [2004] Proc. IEEE CS International Conference on
Data Engineering, Boston, MA, March-April 2004.

ICDE [2005] Proc. IEEE CS International Conference on
Data Engineering, Tokyo, Japan, April 2005.

ICDE [2006] Proc. IEEE CS International Conference on
Data Engineering, Liu, L., Reuter, A., Whang, K.-Y., and
Zhang, J., eds., Atlanta, GA, April 2006.

ICDE [2007] Proc. IEEE CS International Conference on
Data Engineering, Istanbul, Turkey, April 2007.

ICDE [2008] Proc. IEEE CS International Conference on
Data Engineering, Cancun, Mexico, April 2008.

ICDE [2009] Proc. IEEE CS International Conference on
Data Engineering, Shanghai, China, March-April 2009.

ICDE [2010] Proc. IEEE CS International Conference on
Data Engineering, Long Beach, CA, March 2010.

ICDE [2011] Proc. IEEE CS International Conference on
Data Engineering, Hannover, Germany, April 2011.

ICDE [2012] Proc. IEEE CS International Conference on
Data Engineering, Kementsietsidis, A., and Antonio
Vaz Salles, M., eds., Washington, D.C., April 2012.

ICDE [2013] Proc. IEEE CS International Conference on
Data Engineering, Jensen, C., Jermaine, C., and Zhou,
Xiaofang, eds., Brisbane, Australia, April 2013.

ICDE [2014] Proc. IEEE CS International Conference on
Data Engineering, Cruz, Isabel F. et al., eds., Chicago,
March-April 2014.

ICDE [2015] Proc. IEEE CS International Conference on
Data Engineering, Seoul Korea, April 2015, forthcoming.

IGES [1983] International Graphics Exchange Specifica-
tion Version 2, National Bureau of Standards, U.S.
Department of Commerce, January 1983.

Imielinski, T., and Badrinath, B. [1994] “Mobile Wireless
Computing: Challenges in Data Management,” CACM,
37:10, October 1994.

Imielinski, T., and Lipski, W. [1981] “On Representing
Incomplete Information in a Relational Database,” in
VLDB [1981].

Indulska, M., and Orlowska, M. E. [2002] “On Aggrega-
tion Issues in Spatial Data Management,” (ACM Inter-
national Conference Proceeding Series) Proc.
Thirteenth Australasian Conference on Database Tech-
nologies, Melbourne, 2002, pp. 75–84.

Informix [1998] “Web Integration Option for Informix
Dynamic Server,” available at www.informix.com.

Inmon, W. H. [1992] Building the Data Warehouse,
Wiley, 1992.

Inmon, W., Strauss, D., and Neushloss, G. [2008] DW 2.0:
The Architecture for the Next Generation of Data
Warehousing, Morgan Kaufmann, 2008.

Integrigy [2004] “An Introduction to SQL Injection Attacks
for Oracle Developers,” Integrigy, April 2004, available
at www.net-security.org/dl/articles/Integrigy Introto-
SQLInjectionAttacks.pdf.

Internet Engineering Task Force (IETF) [1999] “An Archi-
tecture Framework for High Speed Mobile Ad Hoc
Network,” in Proc. 45th IETF Meeting, Oslo, Norway,
July 1999, available at www.ietf.org/proceeings/99jul/.

Ioannidis, Y., and Kang, Y. [1990] “Randomized Algorithms
for Optimizing Large Join Queries,” in SIGMOD [1990].

Ioannidis, Y., and Kang, Y. [1991] “Left-Deep vs. Bushy
Trees: An Analysis of Strategy Spaces and Its Implica-
tions for Query Optimization,” in SIGMOD [1991].

Ioannidis, Y., and Wong, E. [1988] “Transforming Non-
Linear Recursion to Linear Recursion,” in EDS [1988].

Iossophidis, J. [1979] “A Translator to Convert the DDL of
ERM to the DDL of System 2000,” in ER Conference
[1979].

Irani, K., Purkayastha, S., and Teorey, T. [1979] “A Designer
for DBMS-Processable Logical Database Structures,” in
VLDB [1979].

Iyer et al. [2004] “A Framework for Efficient Storage Secu-
rity in RDBMSs,” in EDBT, 2004, pp. 147–164.

Jacobson, I., Booch, G., and Rumbaugh, J. [1999] The
 Unified Software Development Process, Addison-
Wesley, 1999.

 Bibliography 1197

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard,
G. [1992] Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison-Wesley, 1992.

Jagadish, H. [1989] “Incorporating Hierarchy in a Rela-
tional Model of Data,” in SIGMOD [1989].

Jagadish, H. [1997] “Content-based Indexing and
Retrieval,” in Grosky et al. [1997].

Jajodia, S., Ammann, P., McCollum, C. D., “Surviving
Information Warfare Attacks,” IEEE Computer, 32:4,
April 1999, pp. 57–63.

Jajodia, S., and Kogan, B. [1990] “Integrating an Object-
oriented Data Model with Multilevel Security,” Proc.
IEEE Symposium on Security and Privacy, May 1990,
pp. 76–85.

Jajodia, S., and Mutchler, D. [1990] “Dynamic Voting
Algorithms for Maintaining the Consistency of a Repli-
cated Database,” TODS, 15:2, June 1990.

Jajodia, S., and Sandhu, R. [1991] “Toward a Multilevel
Secure Relational Data Model,” in SIGMOD [1991].

Jajodia, S., Ng, P., and Springsteel, F. [1983] “The Problem
of Equivalence for Entity-Relationship Diagrams,” TSE,
9:5, September 1983.

Jardine, D., ed. [1977] The ANSI/SPARC DBMS Model,
North-Holland, 1977.

Jarke, M., and Koch, J. [1984] “Query Optimization in
Database Systems,” ACM Computing Surveys, 16:2,
June 1984.

Jensen, C. et al. [1994] “A Glossary of Temporal Database
Concepts,” ACM SIGMOD Record, 23:1, March 1994.

Jensen, C., and Snodgrass, R. [1992] “Temporal Specializa-
tion,” in ICDE [1992].

Jensen, C. et al. [2001] “Location-based Services: A Database
Perspective,” Proc. ScanGIS Conference, 2001, pp. 59–68.

Jhingran, A., and Khedkar, P. [1992] “Analysis of Recovery
in a Database System Using a Write-ahead Log Proto-
col,” in SIGMOD [1992].

Jing, J., Helal, A., and Elmagarmid, A. [1999] “Client-
server Computing in Mobile Environments,” ACM
Computing Surveys, 31:2, June 1999.

Johnson, T., and Shasha, D. [1993] “The Performance of
Current B-Tree Algorithms,” TODS, 18:1, March 1993.

Jorwekar, S. et al. [2007] “Automating the Detection of
Snapshot Isolation Anomalies,” in VLDB [2007],
pp. 1263–1274.

Joshi, J., Aref, W., Ghafoor, A., and Spafford, E. [2001]
“Security Models for Web-Based Applications,” CACM,
44:2, February 2001, pp. 38–44.

Jukic, N., Vrbsky, S., and Nestorov, S. [2013] Database
 Systems: Introduction to Databases and Data
 Warehouses, Prentice Hall, 2013, 408 pp.

Jung, I.Y, . and Yeom, H.Y. [2008] “An efficient and trans-
parent transaction management based on the data

workflow of HVEM DataGrid,” Proc. Challenges of
Large Applications in Distributed Environments, 2008,
pp. 35–44.

Kaefer, W., and Schoening, H. [1992] “Realizing a Tempo-
ral Complex-Object Data Model,” in SIGMOD [1992].

Kamel, I., and Faloutsos, C. [1993] “On Packing R-trees,”
CIKM, November 1993.

Kamel, N., and King, R. [1985] “A Model of Data Distribu-
tion Based on Texture Analysis,” in SIGMOD [1985].

Kappel, G., and Schrefl, M. [1991] “Object/Behavior Dia-
grams,” in ICDE [1991].

Karlapalem, K., Navathe, S. B., and Ammar, M. [1996] “Opti-
mal Redesign Policies to Support Dynamic Processing
of Applications on a Distributed Relational Database
System,” Information Systems, 21:4, 1996, pp. 353–367.

Karolchik, D. et al. [2003] “The UCSC Genome Browser
Database”, in Nucleic Acids Research, 31:1, January 2003.

Katz, R. [1985] Information Management for Engineer-
ing Design: Surveys in Computer Science, Springer-
Verlag, 1985.

Katz, R., and Wong, E. [1982] “Decompiling CODASYL
DML into Relational Queries,” TODS, 7:1, March 1982.

Kavis, M. [2014] Architecting the Cloud: Design Deci-
sions for Cloud Computing Service Models (SaaS,
PaaS, and IaaS), Wiley, 224 pp.

KDD [1996] Proc. Second International Conference on
Knowledge Discovery in Databases and Data Mining,
Portland, Oregon, August 1996.

Ke, Y., and Sukthankar, R. [2004] “PCA-SIFT: A More Dis-
tinctive Representation for Local Image Descriptors,”
in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2004.

Kedem, Z., and Silberschatz, A. [1980] “Non-Two Phase
Locking Protocols with Shared and Exclusive Locks,” in
VLDB [1980].

Keller, A. [1982] “Updates to Relational Database Through
Views Involving Joins,” in Scheuermann [1982].

Kemp, K. [1993]. “Spatial Databases: Sources and Issues,”
in Environmental Modeling with GIS, Oxford Uni-
versity Press, New York, 1993.

Kemper, A., and Wallrath, M. [1987] “An Analysis of Geo-
metric Modeling in Database Systems,” ACM Comput-
ing Surveys, 19:1, March 1987.

Kemper, A., Lockemann, P., and Wallrath, M. [1987] “An
Object-Oriented Database System for Engineering
Applications,” in SIGMOD [1987].

Kemper, A., Moerkotte, G., and Steinbrunn, M. [1992]
“Optimizing Boolean Expressions in Object Bases,” in
VLDB [1992].

Kent, W. [1978] Data and Reality, North-Holland, 1978.
Kent, W. [1979] “Limitations of Record-Based Information

Models,” TODS, 4:1, March 1979.

1198 Bibliography

Kent, W. [1991] “Object-Oriented Database Programming
Languages,” in VLDB [1991].

Kerschberg, L., Ting, P., and Yao, S. [1982] “Query Optimi-
zation in Star Computer Networks,” TODS, 7:4,
December 1982.

Ketabchi, M. A., Mathur, S., Risch, T., and Chen, J. [1990]
“Comparative Analysis of RDBMS and OODBMS: A
Case Study,” IEEE International Conference on Manu-
facturing, 1990.

Khan, L. [2000] “Ontology-based Information Selection,”
Ph.D. dissertation, University of Southern California,
August 2000.

Khoshafian, S., and Baker A. [1996] Multimedia and
Imaging Databases, Morgan Kaufmann, 1996.

Khoshafian, S., Chan, A., Wong, A., and Wong, H.K.T.
[1992] Developing Client Server Applications,
 Morgan Kaufmann, 1992.

Khoury, M. [2002] “Epidemiology and the Continuum
from Genetic Research to Genetic Testing,” in Ameri-
can Journal of Epidemiology, 2002, pp. 297–299.

Kifer, M., and Lozinskii, E. [1986] “A Framework for an Effi-
cient Implementation of Deductive Databases,” Proc. Sixth
Advanced Database Symposium, Tokyo, August 1986.

Kim W. [1995] Modern Database Systems: The Object
Model, Interoperability, and Beyond, ACM Press,
Addison-Wesley, 1995.

Kim, P. [1996] “A Taxonomy on the Architecture of Data-
base Gateways for the Web,” Working Paper TR-
96-U-10, Chungnam National University, Taejon,
Korea (available from http://grigg.chungnam.ac.kr/
projects/UniWeb).

Kim, S.-H., Yoon, K.-J., and Kweon, I.-S. [2006] “Object
Recognition Using a Generalized Robust Invariant Fea-
ture and Gestalt’s Law of Proximity and Similarity,” in
Proc. Conf. on Computer Vision and Pattern Recognition
Workshop (CVPRW ’06), 2006.

Kim, W. [1982] “On Optimizing an SQL-like Nested
Query,” TODS, 3:3, September 1982.

Kim, W. [1989] “A Model of Queries for Object-Oriented
Databases,” in VLDB [1989].

Kim, W. [1990] “Object-Oriented Databases: Definition
and Research Directions,” TKDE, 2:3, September 1990.

Kim, W. et al. [1987] “Features of the ORION Object-
Oriented Database System,” Microelectronics and
Computer Technology Corporation, Technical Report
ACA-ST-308-87, September 1987.

Kim, W., and Lochovsky, F., eds. [1989] Object-oriented
Concepts, Databases, and Applications, ACM Press,
Frontier Series, 1989.

Kim, W., Garza, J., Ballou, N., and Woelk, D. [1990] “Archi-
tecture of the ORION Next-Generation Database Sys-
tem,” TKDE, 2:1, 1990, pp. 109–124.

Kim, W., Reiner, D. S., and Batory, D., eds. [1985] Query
Processing in Database Systems, Springer-Verlag, 1985.

Kimball, R. [1996] The Data Warehouse Toolkit, Wiley,
Inc. 1996.

King, J. [1981] “QUIST: A System for Semantic Query
Optimization in Relational Databases,” in VLDB
[1981].

Kitsuregawa, M., Nakayama, M., and Takagi, M. [1989]
“The Effect of Bucket Size Tuning in the Dynamic
Hybrid GRACE Hash Join Method,” in VLDB [1989].

Kleinberg, J. M. [1999] “Authoritative sources in a hyper-
linked environment,” JACM 46:5, September 1999,
pp. 604–632

Klimbie, J., and Koffeman, K., eds. [1974] Data Base
 Management, North-Holland, 1974.

Klug, A. [1982] “Equivalence of Relational Algebra and
Relational Calculus Query Languages Having Aggre-
gate Functions,” JACM, 29:3, July 1982.

Knuth, D. [1998] The Art of Computer Programming,
Vol. 3: Sorting and Searching, 2nd ed., Addison-
Wesley, 1998.

Kogelnik, A. [1998] “Biological Information Management
with Application to Human Genome Data,” Ph.D. dis-
sertation, Georgia Institute of Technology and Emory
University, 1998.

Kogelnik, A. et al. [1998] “MITOMAP: A human mito-
chondrial genome database—1998 update,” Nucleic
Acids Research, 26:1, January 1998.

Kogelnik, A., Navathe, S., Wallace, D. [1997] “GENOME:
A system for managing Human Genome Project Data.”
Proceedings of Genome Informatics ’97, Eighth Work-
shop on Genome Informatics, Tokyo, Japan, Sponsor:
Human Genome Center, University of Tokyo, Decem-
ber 1997.

Kohler, W. [1981] “A Survey of Techniques for Synchroni-
zation and Recovery in Decentralized Computer Sys-
tems,” ACM Computing Surveys, 13:2, June 1981.

Konsynski, B., Bracker, L., and Bracker, W. [1982] “A
Model for Specification of Office Communications,”
IEEE Transactions on Communications, 30:1,
 January 1982.

Kooi, R. P., [1980] The Optimization of Queries in Rela-
tional Databases, Ph.D. Dissertation, Case Western
Reserve University, 1980: pp. 1–159.

Koperski, K., and Han, J. [1995] “Discovery of Spatial
Association Rules in Geographic Information Data-
bases,” in Proc. SSD’1995, 4th Int. Symposium on
Advances in Spatial Databases, Portland, Maine, LNCS
951, Springer, 1995.

Korfhage, R. [1991] “To See, or Not to See: Is that the
Query?” in Proc. ACM SIGIR International Conference,
June 1991.

 Bibliography 1199

Korth, H. [1983] “Locking Primitives in a Database Sys-
tem,” JACM, 30:1, January 1983.

Korth, H., Levy, E., and Silberschatz, A. [1990] “A Formal
Approach to Recovery by Compensating Transactions,”
in VLDB [1990].

Kosala, R., and Blockeel, H. [2000] “Web Mining Research: a
Survey,” SIGKDD Explorations. 2:1, June 2000, pp. 1–15.

Kotz, A., Dittrich, K., Mulle, J. [1988] “Supporting Seman-
tic Rules by a Generalized Event/Trigger Mechanism,”
in VLDB [1988].

Kotz, S., Balakrishnan, N., and Johnson, N. L. [2000]
“Dirichlet and Inverted Dirichlet Distributions,” in
Continuous Multivariate Distributions: Models and
Applications, Vol. 1, 2nd Ed., John Wiley, 2000.

Krishnamurthy, R., and Naqvi, S. [1989] “Non-Determin-
istic Choice in Datalog,” Proceeedings of the 3rd Interna-
tional Conference on Data and Knowledge Bases,
Jerusalem, June 1989.

Krishnamurthy, R., Litwin, W., and Kent, W. [1991] “Lan-
guage Features for Interoperability of Databases with
Semantic Discrepancies,” in SIGMOD [1991].

Krovetz, R., and Croft B. [1992] “Lexical Ambiguity and
Information Retrieval” in TOIS, 10, April 1992.

Kubiatowicz, J. et al., [2000] “OceanStore: An Architecture
for Global-Scale Persistent Storage,” ASPLOS 2000.

Kuhn, R. M., Karolchik, D., Zweig, et al. [2009] “The
UCSC Genome Browser Database: update 2009,”
Nucleic Acids Research, 37:1, January 2009.

Kulkarni K. et al., “Introducing Reference Types and
Cleaning Up SQL3’s Object Model,” ISO WG3 Report
X3H2-95-456, November 1995.

Kumar, A. [1991] “Performance Measurement of Some
Main Memory Recovery Algorithms,” in ICDE [1991].

Kumar, A., and Segev, A. [1993] “Cost and Availability
Tradeoffs in Replicated Concurrency Control,” TODS,
18:1, March 1993.

Kumar, A., and Stonebraker, M. [1987] “Semantics Based
Transaction Management Techniques for Replicated
Data,” in SIGMOD [1987].

Kumar, D. [2007a]. “Genomic medicine: a new frontier of
medicine in the twenty first century”, Genomic
 Medicine, 2007, pp. 3–7.

Kumar, D. [2007b]. “Genome mirror—2006”, Genomic
Medicine, 2007, pp. 87–90.

Kumar, V., and Han, M., eds. [1992] Recovery Mechan-
isms in Database Systems, Prentice-Hall, 1992.

Kumar, V., and Hsu, M. [1998] Recovery Mechanisms in
Database Systems, Prentice-Hall (PTR), 1998.

Kumar, V., and Song, H. S. [1998] Database Recovery,
Kluwer Academic, 1998.

Kung, H., and Robinson, J. [1981] “Optimistic Concur-
rency Control,” TODS, 6:2, June 1981.

Lacroix, M., and Pirotte, A. [1977a] “Domain-Oriented
Relational Languages,” in VLDB [1977].

Lacroix, M., and Pirotte, A. [1977b] “ILL: An English
Structured Query Language for Relational Data Bases,”
in Nijssen [1977].

Lai, M.-Y., and Wilkinson, W. K. [1984] “Distributed
Transaction Management in Jasmin,” in VLDB [1984].

Lamb, C. et al. [1991] “The ObjectStore Database System,”
in CACM, 34:10, October 1991, pp. 50–63.

Lamport, L. [1978] “Time, Clocks, and the Ordering
of Events in a Distributed System,” CACM, 21:7,
July 1978.

Lander, E. [2001] “Initial Sequencing and Analysis of the
Genome,” Nature, 409:6822, 2001.

Langerak, R. [1990] “View Updates in Relational Data-
bases with an Independent Scheme,” TODS, 15:1,
March 1990.

Lanka, S., and Mays, E. [1991] “Fully Persistent B1-Trees,”
in SIGMOD [1991].

Larson, J. [1983] “Bridging the Gap Between Network and
Relational Database Management Systems,” IEEE
Computer, 16:9, September 1983.

Larson, J., Navathe, S., and Elmasri, R. [1989] “Attribute
Equivalence and its Use in Schema Integration,” TSE,
15:2, April 1989.

Larson, P. [1978] “Dynamic Hashing,” BIT, 18, 1978.
Larson, P. [1981] “Analysis of Index-Sequential Files with

Overflow Chaining,” TODS, 6:4, December 1981.
Lassila, O. [1998] “Web Metadata: A Matter of Semantics,”

IEEE Internet Computing, 2:4, July/August 1998,
pp. 30–37.

Laurini, R., and Thompson, D. [1992] Fundamentals of
Spatial Information Systems, Academic Press, 1992.

Lausen G., and Vossen, G. [1997] Models and Languages
of Object Oriented Databases, Addison-Wesley, 1997.

Lazebnik, S., Schmid, C., and Ponce, J. [2004] “Semi-Local
Affine Parts for Object Recognition,” in Proc. British
Machine Vision Conference, Kingston University, The
Institution of Engineering and Technology, U.K., 2004.

Lee, J., Elmasri, R., and Won, J. [1998] “An Integrated
Temporal Data Model Incorporating Time Series
Concepts,” DKE, 24, 1998, pp. 257–276.

Lehman, P., and Yao, S. [1981] “Efficient Locking for
Concurrent Operations on B-Trees,” TODS, 6:4,
December 1981.

Lehman, T., and Lindsay, B. [1989] “The Starburst Long
Field Manager,” in VLDB [1989].

Leiss, E. [1982] “Randomizing: A Practical Method for
Protecting Statistical Databases Against Compromise,”
in VLDB [1982].

Leiss, E. [1982a] Principles of Data Security, Plenum
Press, 1982.

1200 Bibliography

Lenat, D. [1995] “CYC: A Large-Scale Investment in
Knowledge Infrastructure,” CACM 38:11, November
1995, pp. 32–38.

Lenzerini, M., and Santucci, C. [1983] “Cardinality Con-
straints in the Entity Relationship Model,” in ER Con-
ference [1983].

Leung, C., Hibler, B., and Mwara, N. [1992] “Picture
Retrieval by Content Description,” in Journal of Infor-
mation Science, 1992, pp. 111–119.

Levesque, H. [1984] “The Logic of Incomplete Knowledge
Bases,” in Brodie et al., Ch. 7 [1984].

Li, W.-S., Seluk Candan, K., Hirata, K., and Hara, Y. [1998]
Hierarchical Image Modeling for Object-based Media
Retrieval in DKE, 27:2, September 1998, pp. 139–176.

Lien, E., and Weinberger, P. [1978] “Consistency, Concur-
rency, and Crash Recovery,” in SIGMOD [1978].

Lieuwen, L., and DeWitt, D. [1992] “A Transformation-
Based Approach to Optimizing Loops in Database Pro-
gramming Languages,” in SIGMOD [1992].

Lilien, L., and Bhargava, B. [1985] “Database Integrity
Block Construct: Concepts and Design Issues,” TSE,
11:9, September 1985.

Lin, J., and Dunham, M. H. [1998] “Mining Association
Rules,” in ICDE [1998].

Lindsay, B. et al. [1984] “Computation and Communica-
tion in R*: A Distributed Database Manager,” TOCS,
2:1, January 1984.

Lippman R. [1987] “An Introduction to Computing with
Neural Nets,” IEEE ASSP Magazine, April 1987.

Lipski, W. [1979] “On Semantic Issues Connected with
Incomplete Information,” TODS, 4:3, September 1979.

Lipton, R., Naughton, J., and Schneider, D. [1990] “Practi-
cal Selectivity Estimation through Adaptive Sampling,”
in SIGMOD [1990].

Liskov, B., and Zilles, S. [1975] “Specification Techniques
for Data Abstractions,” TSE, 1:1, March 1975.

Litwin, W. [1980] “Linear Hashing: A New Tool for File
and Table Addressing,” in VLDB [1980].

Liu, B. [2006] Web Data Mining: Exploring Hyperlinks,
Contents, and Usage Data (Data-Centric Systems
and Applications), Springer, 2006.

Liu, B. and Chen-Chuan-Chang, K. [2004] “Editorial: Spe-
cial Issue on Web Content Mining,” SIGKDD Explora-
tions Newsletter 6:2 , December 2004, pp. 1–4.

Liu, K., and Sunderraman, R. [1988] “On Representing
Indefinite and Maybe Information in Relational Data-
bases,” in ICDE [1988].

Liu, L., and Meersman, R. [1992] “Activity Model: A Declar-
ative Approach for Capturing Communication Behavior
in Object-Oriented Databases,” in VLDB [1992].

Lockemann, P., and Knutsen, W. [1968] “Recovery of Disk
Contents After System Failure,” CACM, 11:8, August 1968.

Longley, P. et al [2001] Geographic Information Systems
and Science, John Wiley, 2001.

Lorie, R. [1977] “Physical Integrity in a Large Segmented
Database,” TODS, 2:1, March 1977.

Lorie, R., and Plouffe, W. [1983] “Complex Objects and
Their Use in Design Transactions,” in SIGMOD [1983].

Lowe, D. [2004] “Distinctive Image Features from Scale-
Invariant Keypoints”, Int. Journal of Computer Vision,
Vol. 60, 2004, pp. 91–110.

Lozinskii, E. [1986] “A Problem-Oriented Inferential Data-
base System,” TODS, 11:3, September 1986.

Lu, H., Mikkilineni, K., and Richardson, J. [1987]
“Design and Evaluation of Algorithms to Compute
the Transitive Closure of a Database Relation,” in
ICDE [1987].

Lubars, M., Potts, C., and Richter, C. [1993] “A Review of
the State of Practice in Requirements Modeling,” Proc.
IEEE International Symposium on Requirements Engi-
neering, San Diego, CA, 1993.

Lucyk, B. [1993] Advanced Topics in DB2, Addison-
Wesley, 1993.

Luhn, H. P. [1957] “A Statistical Approach to Mechanized
Encoding and Searching of Literary Information,” IBM
Journal of Research and Development, 1:4, October
1957, pp. 309–317.

Lunt, T., and Fernandez, E. [1990] “Database Security,” in
SIGMOD Record, 19:4, pp. 90–97.

Lunt, T. et al. [1990] “The Seaview Security Model,” IEEE
TSE, 16:6, pp. 593–607.

Luo, J., and Nascimento, M. [2003] “Content-based Sub-
image Retrieval via Hierarchical Tree Matching,” in
Proc. ACM Int Workshop on Multimedia Databases,
New Orleans, pp. 63–69.

Madria, S. et al. [1999] “Research Issues in Web Data Min-
ing,” in Proc. First Int. Conf. on Data Warehousing and
Knowledge Discovery (Mohania, M., and Tjoa, A., eds.)
LNCS 1676. Springer, pp. 303–312.

Madria, S., Baseer, Mohammed, B., Kumar,V., and Bhow-
mick, S. [2007] “A transaction model and multiversion
concurrency control for mobile database systems,” Dis-
tributed and Parallel Databases (DPD), 22:2–3, 2007,
pp. 165–196.

Maguire, D., Goodchild, M., and Rhind, D., eds. [1997]
Geographical Information Systems: Principles and
Applications. Vols. 1 and 2, Longman Scientific and
Technical, New York.

Mahajan, S., Donahoo. M. J., Navathe, S. B., Ammar, M.,
Malik, S. [1998] “Grouping Techniques for Update
Propagation in Intermittently Connected Databases,”
in ICDE [1998].

Maier, D. [1983] The Theory of Relational Databases,
Computer Science Press, 1983.

 Bibliography 1201

Maier, D., and Warren, D. S. [1988] Computing with
Logic, Benjamin Cummings, 1988.

Maier, D., Stein, J., Otis, A., and Purdy, A. [1986] “Devel-
opment of an Object-Oriented DBMS,” OOPSLA, 1986.

Malewicz, G, [2010] “Pregel: a system for large-scale graph
processing,” in SIGMOD [2010].

Malley, C., and Zdonick, S. [1986] “A Knowledge-Based
Approach to Query Optimization,” in EDS [1986].

Mannila, H., Toivonen, H., and Verkamo, A. [1994] “Effi-
cient Algorithms for Discovering Association Rules,” in
KDD-94, AAAI Workshop on Knowledge Discovery in
Databases, Seattle, 1994.

Manning, C., and Schütze, H. [1999] Foundations of
Statistical Natural Language Processing, MIT Press,
1999.

Manning, C., Raghavan, P., and and Schutze, H. [2008]
Introduction to Information Retrieval, Cambridge
University Press, 2008.

Manola. F. [1998] “Towards a Richer Web Object Model,”
in ACM SIGMOD Record, 27:1, March 1998.

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., and
Theodoridis, Y. [2005] R-Trees: Theory and Applica-
tions, Springer, 2005.

March, S., and Severance, D. [1977] “The Determination
of Efficient Record Segmentations and Blocking Fac-
tors for Shared Files,” TODS, 2:3, September 1977.

Mark, L., Roussopoulos, N., Newsome, T., and Laohapipat-
tana, P. [1992] “Incrementally Maintained Network to
Relational Mappings,” Software Practice & Experience,
22:12, December 1992.

Markowitz, V., and Raz, Y. [1983] “ERROL: An Entity-
Relationship, Role Oriented, Query Language,” in ER
Conference [1983].

Martin, J., and Odell, J. [2008] Principles of Object-
oriented Analysis and Design, Prentice-Hall, 2008.

Martin, J., Chapman, K., and Leben, J. [1989] DB2-
Concepts, Design, and Programming, Prentice-Hall,
1989.

Maryanski, F. [1980] “Backend Database Machines,” ACM
Computing Surveys, 12:1, March 1980.

Masunaga, Y. [1987] “Multimedia Databases: A Formal
Framework,” Proc. IEEE Office Automation Symposium,
April 1987.

Mattison, R., Data Warehousing: Strategies, Technolo-
gies, and Techniques, McGraw-Hill, 1996.

Maune, D. F. [2001] Digital Elevation Model Technolo-
gies and Applications: The DEM Users Manual,
ASPRS, 2001.

McCarty, C. et al. [2005]. “Marshfield Clinic Personalized
Medicine Research Project (PMRP): design, methods
and recruitment for a large population-based biobank,”
Personalized Medicine, 2005, pp. 49–70.

McClure, R., and Krüger, I. [2005] “SQL DOM: Compile
Time Checking of Dynamic SQL Statements,” Proc.
27th Int. Conf. on Software Engineering, May 2005.

Mckinsey [2013] Big data: The next frontier for innova-
tion, competition, and productivity, McKinsey Global
Institute, 2013, 216 pp.

McLeish, M. [1989] “Further Results on the Security of
Partitioned Dynamic Statistical Databases,” TODS,
14:1, March 1989.

McLeod, D., and Heimbigner, D. [1985] “A Federated
Architecture for Information Systems,” TOOIS, 3:3,
July 1985.

Mehrotra, S. et al. [1992] “The Concurrency Control Prob-
lem in Multidatabases: Characteristics and Solutions,”
in SIGMOD [1992].

Melton, J. [2003] Advanced SQL: 1999—Understanding
Object-Relational and Other Advanced Features,
Morgan Kaufmann, 2003.

Melton, J., and Mattos, N. [1996] “An Overview of SQL3—
The Emerging New Generation of the SQL Standard,
Tutorial No. T5,” VLDB, Bombay, September 1996.

Melton, J., and Simon, A. R. [1993] Understanding the
New SQL: A Complete Guide, Morgan Kaufmann,
1993.

Melton, J., and Simon, A. R. [2002] SQL: 1999—Under-
standing Relational Language Components, Morgan
Kaufmann, 2002.

Melton, J., Bauer, J., and Kulkarni, K. [1991] “Object ADTs
(with improvements for value ADTs),” ISO WG3 Report
X3H2-91-083, April 1991.

Menasce, D., Popek, G., and Muntz, R. [1980] “A Locking
Protocol for Resource Coordination in Distributed
Databases,” TODS, 5:2, June 1980.

Mendelzon, A., and Maier, D. [1979] “Generalized Mutual
Dependencies and the Decomposition of Database
Relations,” in VLDB [1979].

Mendelzon, A., Mihaila, G., and Milo, T. [1997] “Querying
the World Wide Web,” Journal of Digital Libraries,
1:1, April 1997.

Mesnier, M. et al. [2003]. “Object-Based Storage.” IEEE
Communications Magazine, August 2003, pp. 84–90.

Metais, E., Kedad, Z., Comyn-Wattiau, C., and Bouzeg-
houb, M., “Using Linguistic Knowledge in View Inte-
gration: Toward a Third Generation of Tools,” DKE,
23:1, June 1998.

Mihailescu, M., Soundararajan, G., and Amza, C. “MixA-
part: Decoupled Analytics for Shared Storage Systems”
In USENIX Conf on File And Storage Technologies
(FAST), 2013

Mikkilineni, K., and Su, S. [1988] “An Evaluation of Rela-
tional Join Algorithms in a Pipelined Query Processing
Environment,” TSE, 14:6, June 1988.

1202 Bibliography

Mikolajczyk, K., and Schmid, C. [2005] “A performance
evaluation of local descriptors”, IEEE Transactions on
PAMI, 10:27, 2005, pp. 1615–1630.

Miller, G. A. [1990] “Nouns in WordNet: a lexical inheri-
tance system.” in International Journal of Lexicography
3:4, 1990, pp. 245–264.

Miller, H. J., (2004) “Tobler’s First Law and Spatial Analysis,”
Annals of the Association of American Geographers,
94:2, 2004, pp. 284–289.

Milojicic, D. et al. [2002] Peer-to-Peer Computing, HP Lab-
oratories Technical Report No. HPL-2002-57, HP Labs,
Palo Alto, available at www.hpl.hp.com/techre-
ports/2002/HPL-2002-57R1.html.

Minoura, T., and Wiederhold, G. [1981] “Resilient
Extended True-Copy Token Scheme for a Distributed
Database,” TSE, 8:3, May 1981.

Missikoff, M., and Wiederhold, G. [1984] “Toward a Uni-
fied Approach for Expert and Database Systems,” in
EDS [1984].

Mitchell, T. [1997] Machine Learning, McGraw-Hill, 1997.
Mitschang, B. [1989] “Extending the Relational Algebra to

Capture Complex Objects,” in VLDB [1989].
Moczar, L. [2015] Enterprise Lucene and Solr, Addison

Wesley, forthcoming, 2015, 496 pp.
Mohan, C. [1993] “IBM’s Relational Database Products:

Features and Technologies,” in SIGMOD [1993].
Mohan, C. et al. [1992] “ARIES: A Transaction Recovery

Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write-Ahead Logging,” TODS,
17:1, March 1992.

Mohan, C., and Levine, F. [1992] “ARIES/IM: An Efficient
and High-Concurrency Index Management Method
Using Write-Ahead Logging,” in SIGMOD [1992].

Mohan, C., and Narang, I. [1992] “Algorithms for Creating
Indexes for Very Large Tables without Quiescing
Updates,” in SIGMOD [1992].

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and
Schwarz, P. [1992] “ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write-Ahead Logging,” TODS,
17:1, March 1992.

Morris, K. et al. [1987] “YAWN! (Yet Another Window on
NAIL!), in ICDE [1987].

Morris, K., Ullman, J., and VanGelden, A. [1986] “Design
Overview of the NAIL! System,” Proc. Third International
Conference on Logic Programming, Springer- Verlag, 1986.

Morris, R. [1968] “Scatter Storage Techniques,” CACM,
11:1, January 1968.

Morsi, M., Navathe, S., and Kim, H. [1992] “An Extensible
Object-Oriented Database Testbed,” in ICDE [1992].

Moss, J. [1982] “Nested Transactions and Reliable Distrib-
uted Computing,” Proc. Symposium on Reliability in

Distributed Software and Database Systems, IEEE CS,
July 1982.

Motro, A. [1987] “Superviews: Virtual Integration of Mul-
tiple Databases,” TSE, 13:7, July 1987.

Mouratidis, K. et al. [2006] “Continuous nearest neighbor
monitoring in road networks,” in VLDB [2006],
pp. 43–54.

Mukkamala, R. [1989] “Measuring the Effect of Data Dis-
tribution and Replication Models on Performance
Evaluation of Distributed Systems,” in ICDE [1989].

Mumick, I., Finkelstein, S., Pirahesh, H., and Ramakrish-
nan, R. [1990a] “Magic Is Relevant,” in SIGMOD [1990].

Mumick, I., Pirahesh, H., and Ramakrishnan, R. [1990b]
“The Magic of Duplicates and Aggregates,” in VLDB
[1990].

Muralikrishna, M. [1992] “Improved Unnesting Algorithms
for Join and Aggregate SQL Queries,” in VLDB [1992].

Muralikrishna, M., and DeWitt, D. [1988] “Equi-depth
Histograms for Estimating Selectivity Factors for
Multi-dimensional Queries,” in SIGMOD [1988].

Murthy, A.C. and Vavilapalli, V.K. [2014] Apache Hadoop
YARN: Moving beyond MapReduce and Batch
Processing with Apache Hadoop 2, Addison Wesley,
2014, 304 pp.

Mylopolous, J., Bernstein, P., and Wong, H. [1980] “A Lan-
guage Facility for Designing Database-Intensive Appli-
cations,” TODS, 5:2, June 1980.

Naedele, M., [2003] Standards for XML and Web Services
Security, IEEE Computer, 36:4, April 2003, pp. 96–98.

Naish, L., and Thom, J. [1983] “The MU-PROLOG Deduc-
tive Database,” Technical Report 83/10, Department of
Computer Science, University of Melbourne, 1983.

Natan R. [2005] Implementing Database Security and
Auditing: Includes Examples from Oracle, SQL
Server, DB2 UDB, and Sybase, Digital Press, 2005.

Navathe, S. [1980] “An Intuitive Approach to Normalize
Network-Structured Data,” in VLDB [1980].

Navathe, S., and Balaraman, A. [1991] “A Transaction
Architecture for a General Purpose Semantic Data
Model,” in ER [1991], pp. 511–541.

Navathe, S. B., Karlapalem, K., and Ra, M. Y. [1996] “A
Mixed Fragmentation Methodology for the Initial Dis-
tributed Database Design,” Journal of Computers and
Software Engineering, 3:4, 1996.

Navathe, S. B. et al. [1994] “Object Modeling Using Clas-
sification in CANDIDE and Its Application,” in Dogac
et al. [1994].

Navathe, S., and Ahmed, R. [1989] “A Temporal Relational
Model and Query Language,” Information Sciences,
47:2, March 1989, pp. 147–175.

Navathe, S., and Gadgil, S. [1982] “A Methodology for View
Integration in Logical Database Design,” in VLDB [1982].

 Bibliography 1203

Navathe, S., and Kerschberg, L. [1986] “Role of Data Dic-
tionaries in Database Design,” Information and Man-
agement, 10:1, January 1986.

Navathe, S., and Savasere, A. [1996] “A Practical Schema
Integration Facility Using an Object Oriented
Approach,” in Multidatabase Systems (A. Elmagarmid
and O. Bukhres, eds.), Prentice-Hall, 1996.

Navathe, S., and Schkolnick, M. [1978] “View Representa-
tion in Logical Database Design,” in SIGMOD [1978].

Navathe, S., Ceri, S., Wiederhold, G., and Dou, J. [1984]
“Vertical Partitioning Algorithms for Database Design,”
TODS, 9:4, December 1984.

Navathe, S., Elmasri, R., and Larson, J. [1986] “Integrating
User Views in Database Design,” IEEE Computer,
19:1, January 1986.

Navathe, S., Patil, U., and Guan, W. [2007] “Genomic and
Proteomic Databases: Foundations, Current Status and
Future Applications,” in Journal of Computer Science
and Engineering, Korean Institute of Information Sci-
entists and Engineers (KIISE), 1:1, 2007, pp. 1–30

Navathe, S., Sashidhar, T., and Elmasri, R. [1984a] “Relation-
ship Merging in Schema Integration,” in VLDB [1984].

Negri, M., Pelagatti, S., and Sbatella, L. [1991] “Formal
Semantics of SQL Queries,” TODS, 16:3, September 1991.

Ng, P. [1981] “Further Analysis of the Entity-Relationship
Approach to Database Design,” TSE, 7:1, January 1981.

Ngu, A. [1989] “Transaction Modeling,” in ICDE [1989],
pp. 234–241.

Nicolas, J. [1978] “Mutual Dependencies and Some Results
on Undecomposable Relations,” in VLDB [1978].

Nicolas, J. [1997] “Deductive Object-oriented Databases,
Technology, Products, and Applications: Where Are
We?” Proc. Symposium on Digital Media Information
Base (DMIB ’97), Nara, Japan, November 1997.

Nicolas, J., Phipps, G., Derr, M., and Ross, K. [1991]
 “Glue-NAIL!: A Deductive Database System,” in
 SIGMOD [1991].

Niemiec, R. [2008] Oracle Database 10g Performance
Tuning Tips & Techniques , McGraw Hill Osborne
Media, 2008, 967 pp.

Nievergelt, J. [1974] “Binary Search Trees and File Organiza-
tion,” ACM Computing Surveys, 6:3, September 1974.

Nievergelt, J., Hinterberger, H., and Seveik, K. [1984]. “The
Grid File: An Adaptable Symmetric Multikey File
Structure,” TODS, 9:1, March 1984, pp. 38–71.

Nijssen, G., ed. [1976] Modelling in Data Base Manage-
ment Systems, North-Holland, 1976.

Nijssen, G., ed. [1977] Architecture and Models in Data
Base Management Systems, North-Holland, 1977.

Nwosu, K., Berra, P., and Thuraisingham, B., eds. [1996]
Design and Implementation of Multimedia Database
Management Systems, Kluwer Academic, 1996.

O’Neil, P., and O’Neil, P. [2001] Database: Principles, Pro-
gramming, Performance, Morgan Kaufmann, 1994.

Obermarck, R. [1982] “Distributed Deadlock Detection
Algorithms,” TODS, 7:2, June 1982.

Oh, Y.-C. [1999] “Secure Database Modeling and Design,”
Ph.D. dissertation, College of Computing, Georgia
Institute of Technology, March 1999.

Ohsuga, S. [1982] “Knowledge Based Systems as a New
Interactive Computer System of the Next Generation,”
in Computer Science and Technologies, North-Hol-
land, 1982.

Olken, F., Jagadish, J. [2003] Management for Integrative
Biology,” OMICS: A Journal of Integrative Biology,
7:1, January 2003.

Olle, T. [1978] The CODASYL Approach to Data Base
Management, Wiley, 1978.

Olle, T., Sol, H., and Verrijn-Stuart, A., eds. [1982] Informa-
tion System Design Methodology, North-Holland, 1982.

Olston, C. et al. [2008] Pig Latin: A Not-So-Foreign lan-
guage for Data Processing, in SIGMOD [2008].

Omiecinski, E., and Scheuermann, P. [1990] “A Parallel
Algorithm for Record Clustering,” TODS, 15:4, Decem-
ber 1990.

Omura, J. K. [1990] “Novel applications of cryptography in
digital communications,” IEEE Communications
Magazine, 28:5, May 1990, pp. 21–29.

O’Neil, P. and Graefe, G., ‘Multi-Table Joins Through
 Bitmapped Join Indices’, SIGMOD Record, Vol. 24,
No. 3, 1995.

Open GIS Consortium, Inc. [1999] “OpenGIS® Simple
Features Specification for SQL,” Revision 1.1, OpenGIS
Project Document 99-049, May 1999.

Open GIS Consortium, Inc. [2003] “OpenGIS® Geography
Markup Language (GML) Implementation Specifica-
tion,” Version 3, OGC 02-023r4., 2003.

Oracle [2005] Oracle 10, Introduction to LDAP and Oracle
Internet Directory 10g Release 2, Oracle Corporation,
2005.

Oracle [2007] Oracle Label Security Administrator’s
Guide, 11g (release 11.1), Part no. B28529-01, Oracle,
available at http://download.oracle.com/docs/cd/
B28359_01/network.111/b28529/intro.htm.

Oracle [2008] Oracle 11 Distributed Database Concepts
11g Release 1, Oracle Corporation, 2008.

Oracle [2009] “An Oracle White Paper: Leading Practices for
Driving Down the Costs of Managing Your Oracle Iden-
tity and Access Management Suite,” Oracle, April 2009.

Osborn, S. L. [1977] “Normal Forms for Relational Data-
bases,” Ph.D. dissertation, University of Waterloo, 1977.

Osborn, S. L. [1989] “The Role of Polymorphism in
Schema Evolution in an Object-Oriented Database,”
TKDE, 1:3, September 1989.

1204 Bibliography

Osborn, S. L.[1979] “Towards a Universal Relation Inter-
face,” in VLDB [1979].

Ozsoyoglu, G., Ozsoyoglu, Z., and Matos, V. [1985]
“Extending Relational Algebra and Relational Calculus
with Set Valued Attributes and Aggregate Functions,”
TODS, 12:4, December 1987.

Ozsoyoglu, Z., and Yuan, L. [1987] “A New Normal Form
for Nested Relations,” TODS, 12:1, March 1987.

Ozsu, M. T., and Valduriez, P. [1999] Principles of Distrib-
uted Database Systems, 2nd ed., Prentice-Hall, 1999.

Palanisamy, B. et al. [2011] “Purlieus: locality-aware
resource allocation for MapReduce in a cloud,” In Proc.
ACM/IEEE Int. Conf for High Perf Computing, Net-
working , Storage and Analysis, (SC) 2011.

Palanisamy, B. et al. [2014] “VNCache: Map Reduce Anal-
ysis for Cloud-archived Data”, Proc. 14th IEEE/ACM
Int. Symp. on Cluster, Cloud and Grid Computing,
2014.

Palanisamy, B., Singh, A., and Liu, Ling, “Cost-effective
Resource Provisioning for MapReduce in a Cloud”,
IEEE TPDS, 26:5, May 2015.

Papadias, D. et al. [2003] “Query Processing in Spatial Net-
work Databases,” in VLDB [2003] pp. 802–813.

Papadimitriou, C. [1979] “The Serializability of Concur-
rent Database Updates,” JACM, 26:4, October 1979.

Papadimitriou, C. [1986] The Theory of Database Con-
currency Control, Computer Science Press, 1986.

Papadimitriou, C., and Kanellakis, P. [1979] “On Concur-
rency Control by Multiple Versions,” TODS, 9:1, March
1974.

Papazoglou, M., and Valder, W. [1989] Relational Database
Management: A Systems Programming Approach,
Prentice-Hall, 1989.

Paredaens, J., and Van Gucht, D. [1992] “Converting
Nested Algebra Expressions into Flat Algebra Expres-
sions,” TODS, 17:1, March 1992.

Parent, C., and Spaccapietra, S. [1985] “An Algebra for
a General Entity-Relationship Model,” TSE, 11:7,
July 1985.

Paris, J. [1986] “Voting with Witnesses: A Consistency
Scheme for Replicated Files,” in ICDE [1986].

Park, J., Chen, M., and Yu, P. [1995] “An Effective Hash-
Based Algorithm for Mining Association Rules,” in
SIGMOD [1995].

Parker Z., Poe, S., and Vrbsky, S.V. [2013] “Comparing
NoSQL MongoDB to an SQL DB,” Proc. 51st ACM South-
east Conference [ACMSE ’13], Savannah, GA, 2013.

Paton, A. W., ed. [1999] Active Rules in Database Sys-
tems, Springer-Verlag, 1999.

Paton, N. W., and Diaz, O. [1999] Survey of Active Data-
base Systems, ACM Computing Surveys, 31:1, 1999,
pp. 63–103.

Patterson, D., Gibson, G., and Katz, R. [1988] “A Case for
Redundant Arrays of Inexpensive Disks (RAID),” in
SIGMOD [1988].

Paul, H. et al. [1987] “Architecture and Implementation of the
Darmstadt Database Kernel System,” in SIGMOD [1987].

Pavlo, A. et al. [2009] A Comparison of Approaches to
Large Scale Data Analysis, in SIGMOD [2009].

Pazandak, P., and Srivastava, J., “Evaluating Object DBMSs
for Multimedia,” IEEE Multimedia, 4:3, pp. 34–49.

Pazos- Rangel, R. et. al. [2006] “Least Likely to Use: A New
Page Replacement Strategy for Improving Database
Management System Response Time,” in Proc. CSR
2006: Computer Science- Theory and Applications, St.
Petersburg, Russia, LNCS, Volume 3967, Springer,
2006, pp. 314–323.

PDES [1991] “A High-Lead Architecture for Implementing
a PDES/STEP Data Sharing Environment,” Publication
Number PT 1017.03.00, PDES Inc., May 1991.

Pearson, P. et al. [1994] “The Status of Online Mendelian
Inheritance in Man (OMIM) Medio 1994” Nucleic
Acids Research, 22:17, 1994.

Peckham, J., and Maryanski, F. [1988] “Semantic Data
Models,” ACM Computing Surveys, 20:3, September
1988, pp. 153–189.

Peng, T. and Tsou, M. [2003] Internet GIS: Distributed
Geographic Information Services for the Internet
and Wireless Network, Wiley, 2003.

Pfleeger, C. P., and Pfleeger, S. [2007] Security in Comput-
ing, 4th ed., Prentice-Hall, 2007.

Phipps, G., Derr, M., and Ross, K. [1991] “Glue-NAIL!: A
Deductive Database System,” in SIGMOD [1991].

Piatetsky-Shapiro, G., and Frawley, W., eds. [1991]
Knowledge Discovery in Databases, AAAI Press/
MIT Press, 1991.

Pistor P., and Anderson, F. [1986] “Designing a General-
ized NF2 Model with an SQL-type Language Interface,”
in VLDB [1986], pp. 278–285.

Pitoura, E., and Bhargava, B. [1995] “Maintaining Consis-
tency of Data in Mobile Distributed Environments.” In
15th ICDCS, May 1995, pp. 404–413.

Pitoura, E., and Samaras, G. [1998] Data Management for
Mobile Computing, Kluwer, 1998.

Pitoura, E., Bukhres, O., and Elmagarmid, A. [1995]
“Object Orientation in Multidatabase Systems,” ACM
Computing Surveys, 27:2, June 1995.

Polavarapu, N. et al. [2005] “Investigation into Biomedical
Literature Screening Using Support Vector Machines,”
in Proc. 4th Int. IEEE Computational Systems Bioinfor-
matics Conference (CSB’05), August 2005, pp. 366–374.

Ponceleon D. et al. [1999] “CueVideo: Automated Multi-
media Indexing and Retrieval,” Proc. 7th ACM Multi-
media Conf., Orlando, Fl., October 1999, p.199.

 Bibliography 1205

Ponniah, P. [2010] Data Warehousing Fundamentals for IT
Professionals, 2nd Ed., Wiley Interscience, 2010, 600pp.

Poosala, V., Ioannidis, Y., Haas, P., and Shekita, E. [1996]
“Improved Histograms for Selectivity Estimation of
Range Predicates,” in SIGMOD [1996].

Porter, M. F. [1980] “An algorithm for suffix stripping,”
Program, 14:3, pp. 130–137.

Ports, D.R.K. and Grittner, K. [2012] “Serializable Snap-
shot Isolation in PostgreSQL,” Proceedings of VLDB,
5:12, 2012, pp. 1850–1861.

Potter, B., Sinclair, J., and Till, D. [1996] An Introduction
to Formal Specification and Z, 2nd ed., Prentice-Hall,
1996.

Prabhakaran, B. [1996] Multimedia Database Manage-
ment Systems, Springer-Verlag, 1996.

Prasad, S. et al. [2004] “SyD: A Middleware Testbed for
Collaborative Applications over Small Heterogeneous
Devices and Data Stores,” Proc. ACM/IFIP/USENIX 5th
International Middleware Conference (MW-04),
Toronto, Canada, October 2004.

Price, B. [2004] “ESRI Systems IntegrationTechnical
Brief—ArcSDE High-Availability Overview,” ESRI,
2004, Rev 2 (www.lincoln.ne.gov/city/pworks/gis/pdf/
arcsde.pdf).

Rabitti, F., Bertino, E., Kim, W., and Woelk, D. [1991] “A
Model of Authorization for Next-Generation Database
Systems,” TODS, 16:1, March 1991.

Ramakrishnan, R., and Gehrke, J. [2003] Database Man-
agement Systems, 3rd ed., McGraw-Hill, 2003.

Ramakrishnan, R., and Ullman, J. [1995] “Survey of
Research in Deductive Database Systems,” Journal of
Logic Programming, 23:2, 1995, pp. 125–149.

Ramakrishnan, R., ed. [1995] Applications of Logic Data-
bases, Kluwer Academic, 1995.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. [1992]
“{CORAL} : {C} ontrol, {R} elations and {L} ogic,” in
VLDB [1992].

Ramakrishnan, R., Srivastava, D., Sudarshan, S., and She-
shadri, P. [1993] “Implementation of the {CORAL}
deductive database system,” in SIGMOD [1993].

Ramamoorthy, C., and Wah, B. [1979] “The Placement of
Relations on a Distributed Relational Database,” Proc.
First International Conference on Distributed Comput-
ing Systems, IEEE CS, 1979.

Ramesh, V., and Ram, S. [1997] “Integrity Constraint Inte-
gration in Heterogeneous Databases an Enhanced
Methodology for Schema Integration,” Information
Systems, 22:8, December 1997, pp. 423–446.

Ratnasamy, S. et al. [2001] “A Scalable Content-Address-
able Network.” SIGCOMM 2001.

Reed, D. P. [1983] “Implementing Atomic Actions on Decen-
tralized Data,” TOCS, 1:1, February 1983, pp. 3–23.

Reese, G. [1997] Database Programming with JDBC and
Java, O’Reilley, 1997.

Reisner, P. [1977] “Use of Psychological Experimentation
as an Aid to Development of a Query Language,” TSE,
3:3, May 1977.

Reisner, P. [1981] “Human Factors Studies of Database
Query Languages: A Survey and Assessment,” ACM
Computing Surveys, 13:1, March 1981.

Reiter, R. [1984] “Towards a Logical Reconstruction
of Relational Database Theory,” in Brodie et al., Ch. 8
[1984].

Reuter, A. [1980] “A Fast Transaction Oriented Logging
Scheme for UNDO recovery,” TSE 6:4, pp. 348–356.

Revilak, S., O’Neil, P., and O’Neil, E. [2011] “Precisely Seri-
alizable Snapshot Isolation (PSSI),” in ICDE [2011],
pp. 482–493.

Ries, D., and Stonebraker, M. [1977] “Effects of Locking
Granularity in a Database Management System,”
TODS, 2:3, September 1977.

Rissanen, J. [1977] “Independent Components of Rela-
tions,” TODS, 2:4, December 1977.

Rivest, R. et al.[1978] “A Method for Obtaining Digital
 Signatures and Public-Key Cryptosystems,” CACM,
21:2, February 1978, pp. 120–126.

Robbins, R. [1993] “Genome Informatics: Requirements
and Challenges,” Proc. Second International Conference
on Bioinformatics, Supercomputing and Complex
Genome Analysis, World Scientific Publishing, 1993.

Robertson, S. [1997] “The Probability Ranking Principle
in IR,” in Readings in Information Retrieval (Jones, K.
S., and Willett, P., eds.), Morgan Kaufmann Multimedia
Information and Systems Series, pp. 281–286.

Robertson, S., Walker, S., and Hancock-Beaulieu, M.
[1995] “Large Test Collection Experiments on an Oper-
ational, Interactive System: Okapi at TREC,” Informa-
tion Processing and Management, 31, pp. 345–360.

Rocchio, J. [1971] “Relevance Feedback in Information
Retrieval,” in The SMART Retrieval System: Experi-
ments in Automatic Document Processing, (G.
Salton, ed.), Prentice-Hall, pp. 313–323.

Rosenkrantz, D., Stearns, D., and Lewis, P. [1978] System-
Level Concurrency Control for Distributed Database
Systems, TODS, 3:2, pp. 178–198.

Rotem, D., [1991] “Spatial Join Indices,” in ICDE [1991].
Roth, M. A., Korth, H. F., and Silberschatz, A. [1988]

“Extended Algebra and Calculus for Non-1NF Rela-
tional Databases,” TODS, 13:4, 1988, pp. 389–417.

Roth, M., and Korth, H. [1987] “The Design of Non-1NF
Relational Databases into Nested Normal Form,” in
SIGMOD [1987].

Rothnie, J. et al. [1980] “Introduction to a System for Dis-
tributed Databases (SDD-1),” TODS, 5:1, March 1980.

1206 Bibliography

Roussopoulos, N. [1991] “An Incremental Access Method
for View-Cache: Concept, Algorithms, and Cost
 Analysis,” TODS, 16:3, September 1991.

Roussopoulos, N., Kelley, S., and Vincent, F. [1995] “Near-
est Neighbor Queries,” in SIGMOD [1995], pp. 71–79.

Rozen, S., and Shasha, D. [1991] “A Framework for Auto-
mating Physical Database Design,” in VLDB [1991].

Rudensteiner, E. [1992] “Multiview: A Methodology for
Supporting Multiple Views in Object-Oriented
 Databases,” in VLDB [1992].

Ruemmler, C., and Wilkes, J. [1994] “An Introduction to
Disk Drive Modeling,” IEEE Computer, 27:3, March
1994, pp. 17–27.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. [1991] Object Oriented Modeling and
Design, Prentice-Hall, 1991.

Rumbaugh, J., Jacobson, I., Booch, G. [1999] The Unified
Modeling Language Reference Manual, Addison-
Wesley, 1999.

Rusinkiewicz, M. et al. [1988] “OMNIBASE—A Loosely
Coupled: Design and Implementation of a Multidata-
base System,” IEEE Distributed Processing Newsletter,
10:2, November 1988.

Rustin, R., ed. [1972] Data Base Systems, Prentice-Hall, 1972.
Rustin, R., ed. [1974] Proc. BJNAV2.
Sacca, D., and Zaniolo, C. [1987] “Implementation of

Recursive Queries for a Data Language Based on Pure
Horn Clauses,” Proc. Fourth International Conference
on Logic Programming, MIT Press, 1986.

Sadri, F., and Ullman, J. [1982] “Template Dependencies:
A Large Class of Dependencies in Relational Data-
bases and Its Complete Axiomatization,” JACM, 29:2,
April 1982.

Sagiv, Y., and Yannakakis, M. [1981] “Equivalence among
Relational Expressions with the Union and Difference
Operators,” JACM, 27:4, November 1981.

Sahay, S. et al. [2008] “Discovering Semantic Biomedical
Relations Utilizing the Web,” in Journal of ACM
Transactions on Knowledge Discovery from Data
(TKDD), Special issue on Bioinformatics, 2:1, 2008.

Sakai, H. [1980] “Entity-Relationship Approach to Con-
ceptual Schema Design,” in SIGMOD [1980].

Salem, K., and Garcia-Molina, H. [1986] “Disk Striping,” in
ICDE [1986], pp. 336–342.

Salton, G. [1968] Automatic Information Organization
and Retrieval, McGraw Hill, 1968.

Salton, G. [1971] The SMART Retrieval System—Experi-
ments in Automatic Document Processing, Prentice-
Hall, 1971.

Salton, G. [1990] “Full Text Information Processing Using
the Smart System,” IEEE Data Engineering Bulletin
13:1, 1990, pp. 2–9.

Salton, G., and Buckley, C. [1991] “Global Text Matching
for Information Retrieval” in Science, 253, August 1991.

Salton, G., Yang, C. S., and Yu, C. T. [1975] “A theory of
term importance in automatic text analysis,” Journal of
the American Society for Information Science, 26,
pp. 33–44 (1975).

Salzberg, B. [1988] File Structures: An Analytic
Approach, Prentice-Hall, 1988.

Salzberg, B. et al. [1990] “FastSort: A Distributed Single-
Input Single-Output External Sort,” in SIGMOD [1990].

Samet, H. [1990] The Design and Analysis of Spatial
Data Structures, Addison-Wesley, 1990.

Samet, H. [1990a] Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS,
Addison-Wesley, 1990.

Sammut, C., and Sammut, R. [1983] “The Implementation of
UNSW-PROLOG,” The Australian Computer Journal,
May 1983.

Santucci, G. [1998] “Semantic Schema Refinements for
Multilevel Schema Integration,” DKE, 25:3, 1998,
pp. 301–326.

Sarasua, W., and O’Neill, W. [1999]. “GIS in Transporta-
tion,” in Taylor and Francis [1999].

Sarawagi, S., Thomas, S., and Agrawal, R. [1998] “Integrating
Association Rules Mining with Relational Database sys-
tems: Alternatives and Implications,” in SIGMOD [1998].

Savasere, A., Omiecinski, E., and Navathe, S. [1995] “An
Efficient Algorithm for Mining Association Rules,” in
VLDB [1995].

Savasere, A., Omiecinski, E., and Navathe, S. [1998] “Min-
ing for Strong Negative Association in a Large Database
of Customer Transactions,” in ICDE [1998].

Schatz, B. [1995] “Information Analysis in the Net: The
Interspace of the Twenty-First Century,” Keynote Plenary
Lecture at American Society for Information Science
(ASIS) Annual Meeting, Chicago, October 11, 1995.

Schatz, B. [1997] “Information Retrieval in Digital Librar-
ies: Bringing Search to the Net,” Science, 275:17 Janu-
ary 1997.

Schek, H. J., and Scholl, M. H. [1986] “The Relational
Model with Relation-valued Attributes,” Information
Systems, 11:2, 1986.

Schek, H. J., Paul, H. B., Scholl, M. H., and Weikum, G.
[1990] “The DASDBS Project: Objects, Experiences,
and Future Projects,” TKDE, 2:1, 1990.

Scheuermann, P., Schiffner, G., and Weber, H. [1979]
“Abstraction Capabilities and Invariant Properties
Modeling within the Entity-Relationship Approach,” in
ER Conference [1979].

Schlimmer, J., Mitchell, T., and McDermott, J. [1991]
“ Justification Based Refinement of Expert Knowledge”
in Piatetsky-Shapiro and Frawley [1991].

 Bibliography 1207

Schmarzo, B. [2013] Big Data: Understanding How Data
Powers Big Business, Wiley, 2013, 240 pp.

Schlossnagle, G. [2005] Advanced PHP Programming,
Sams, 2005.

Schmidt, J., and Swenson, J. [1975] “On the Semantics of
the Relational Model,” in SIGMOD [1975].

Schneider, R. D. [2006] MySQL Database Design and
Tuining, MySQL Press, 2006.

Scholl, M. O., Voisard, A., and Rigaux, P. [2001] Spatial
Database Management Systems, Morgan Kauffman,
2001.

Sciore, E. [1982] “A Complete Axiomatization for Full Join
Dependencies,” JACM, 29:2, April 1982.

Scott, M., and Fowler, K. [1997] UML Distilled: Applying
the Standard Object Modeling Language, Addison-
Wesley, 1997.

Selinger, P. et al. [1979] “Access Path Selection in a Relational
Database Management System,” in SIGMOD [1979].

Senko, M. [1975] “Specification of Stored Data Structures
and Desired Output in DIAM II with FORAL,” in
VLDB [1975].

Senko, M. [1980] “A Query Maintenance Language for the
Data Independent Accessing Model II,” Information
Systems, 5:4, 1980.

Shapiro, L. [1986] “Join Processing in Database Systems
with Large Main Memories,” TODS, 11:3, 1986.

Shasha, D., and Bonnet, P. [2002] Database Tuning:
Principles, Experiments, and Troubleshooting
Techniques, Morgan Kaufmann, Revised ed., 2002.

Shasha, D., and Goodman, N. [1988] “Concurrent Search
Structure Algorithms,” TODS, 13:1, March 1988.

Shekhar, S., and Chawla, S. [2003] Spatial Databases, A
Tour, Prentice-Hall, 2003.

Shekhar, S., and Xong, H. [2008] Encyclopedia of GIS,
Springer Link (Online service).

Shekita, E., and Carey, M. [1989] “Performance Enhance-
ment Through Replication in an Object-Oriented
DBMS,” in SIGMOD [1989].

Shenoy, S., and Ozsoyoglu, Z. [1989] “Design and Imple-
mentation of a Semantic Query Optimizer,” TKDE, 1:3,
September 1989.

Sheth, A. P., and Larson, J. A. [1990] “Federated Database
Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases,” ACM Computing Surveys,
22:3, September 1990, pp. 183–236.

Sheth, A., Gala, S., and Navathe, S. [1993] “On Automatic
Reasoning for Schema Integration,” in International
Journal of Intelligent Co-operative Information Sys-
tems, 2:1, March 1993.

Sheth, A., Larson, J., Cornelio, A., and Navathe, S. [1988]
“A Tool for Integrating Conceptual Schemas and User
Views,” in ICDE [1988].

Shipman, D. [1981] “The Functional Data Model and the
Data Language DAPLEX,” TODS, 6:1, March 1981.

Shlaer, S., Mellor, S. [1988] Object-Oriented System
Analysis: Modeling the World in Data, Prentice-Hall,
1988.

Shneiderman, B., ed. [1978] Databases: Improving
Usability and Responsiveness, Academic Press, 1978.

Shvachko, K.V. [2012] “HDFS Scalability: the limits of
growth,” Usenix legacy publications, Login, Vol. 35,
No. 2, pp. 6–16, April 2010 (https://www.usenix.
org/legacy/publications/login/2010-04/openpdfs/
shvachko.pdf)

Sibley, E., and Kerschberg, L. [1977] “Data Architecture and
Data Model Considerations,” NCC, AFIPS, 46, 1977.

Siegel, M., and Madnick, S. [1991] “A Metadata Approach
to Resolving Semantic Conflicts,” in VLDB [1991].

Siegel, M., Sciore, E., and Salveter, S. [1992] “A Method for
Automatic Rule Derivation to Support Semantic Query
Optimization,” TODS, 17:4, December 1992.

SIGMOD [1974] Proc. ACM SIGMOD-SIGFIDET Confer-
ence on Data Description, Access, and Control, Rustin,
R., ed., May 1974.

SIGMOD [1975] Proc. 1975 ACM SIGMOD International
Conference on Management of Data, King, F., ed., San
Jose, CA, May 1975.

SIGMOD [1976] Proc. 1976 ACM SIGMOD International
Conference on Management of Data, Rothnie, J., ed.,
Washington, June 1976.

SIGMOD [1977] Proc. 1977 ACM SIGMOD International
Conference on Management of Data, Smith, D., ed.,
Toronto, August 1977.

SIGMOD [1978] Proc. 1978 ACM SIGMOD International
Conference on Management of Data, Lowenthal, E., and
Dale, N., eds., Austin, TX, May/June 1978.

SIGMOD [1979] Proc. 1979 ACM SIGMOD International
Conference on Management of Data, Bernstein, P., ed.,
Boston, MA, May/June 1979.

SIGMOD [1980] Proc. 1980 ACM SIGMOD International
Conference on Management of Data, Chen, P., and
Sprowls, R., eds., Santa Monica, CA, May 1980.

SIGMOD [1981] Proc. 1981 ACM SIGMOD International
Conference on Management of Data, Lien, Y., ed., Ann
Arbor, MI, April/May 1981.

SIGMOD [1982] Proc. 1982 ACM SIGMOD International
Conference on Management of Data, Schkolnick, M.,
ed., Orlando, FL, June 1982.

SIGMOD [1983] Proc. 1983 ACM SIGMOD International
Conference on Management of Data, DeWitt, D., and
Gardarin, G., eds., San Jose, CA, May 1983.

SIGMOD [1984] Proc. 1984 ACM SIGMOD Internaitonal
Conference on Management of Data, Yormark, E., ed.,
Boston, MA, June 1984.

1208 Bibliography

SIGMOD [1985] Proc. 1985 ACM SIGMOD International
Conference on Management of Data, Navathe, S., ed.,
Austin, TX, May 1985.

SIGMOD [1986] Proc. 1986 ACM SIGMOD International
Conference on Management of Data, Zaniolo, C., ed.,
Washington, May 1986.

SIGMOD [1987] Proc. 1987 ACM SIGMOD International
Conference on Management of Data, Dayal, U., and
Traiger, I., eds., San Francisco, CA, May 1987.

SIGMOD [1988] Proc. 1988 ACM SIGMOD International
Conference on Management of Data, Boral, H., and Lar-
son, P., eds., Chicago, June 1988.

SIGMOD [1989] Proc. 1989 ACM SIGMOD International
Conference on Management of Data, Clifford, J., Lindsay,
B., and Maier, D., eds., Portland, OR, June 1989.

SIGMOD [1990] Proc. 1990 ACM SIGMOD International
Conference on Management of Data, Garcia-Molina, H.,
and Jagadish, H., eds., Atlantic City, NJ, June 1990.

SIGMOD [1991] Proc. 1991 ACM SIGMOD International
Conference on Management of Data, Clifford, J., and
King, R., eds., Denver, CO, June 1991.

SIGMOD [1992] Proc. 1992 ACM SIGMOD International
Conference on Management of Data, Stonebraker, M.,
ed., San Diego, CA, June 1992.

SIGMOD [1993] Proc. 1993 ACM SIGMOD International
Conference on Management of Data, Buneman, P., and
Jajodia, S., eds., Washington, June 1993.

SIGMOD [1994] Proceedings of 1994 ACM SIGMOD Inter-
national Conference on Management of Data, Snod-
grass, R. T., and Winslett, M., eds., Minneapolis, MN,
June 1994.

SIGMOD [1995] Proceedings of 1995 ACM SIGMOD Inter-
national Conference on Management of Data, Carey, M.,
and Schneider, D. A., eds., Minneapolis, MN, June 1995.

SIGMOD [1996] Proceedings of 1996 ACM SIGMOD Inter-
national Conference on Management of Data, Jagadish,
H. V., and Mumick, I. P., eds., Montreal, June 1996.

SIGMOD [1997] Proceedings of 1997 ACM SIGMOD Inter-
national Conference on Management of Data, Peckham,
J., ed., Tucson, AZ, May 1997.

SIGMOD [1998] Proceedings of 1998 ACM SIGMOD Inter-
national Conference on Management of Data, Haas, L.,
and Tiwary, A., eds., Seattle, WA, June 1998.

SIGMOD [1999] Proceedings of 1999 ACM SIGMOD Inter-
national Conference on Management of Data, Faloutsos,
C., ed., Philadelphia, PA, May 1999.

SIGMOD [2000] Proceedings of 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, Chen, W.,
Naughton J., and Bernstein, P., eds., Dallas, TX, May 2000.

SIGMOD [2001] Proceedings of 2001 ACM SIGMOD Inter-
national Conference on Management of Data, Aref, W.,
ed., Santa Barbara, CA, May 2001.

SIGMOD [2002] Proceedings of 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Franklin,
M., Moon, B., and Ailamaki, A., eds., Madison, WI,
June 2002.

SIGMOD [2003] Proceedings of 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, Halevy, Y.,
Zachary, G., and Doan, A., eds., San Diego, CA, June 2003.

SIGMOD [2004] Proceedings of 2004 ACM SIGMOD Inter-
national Conference on Management of Data, Weikum,
G., Christian König, A., and DeBloch, S., eds., Paris,
France, June 2004.

SIGMOD [2005] Proceedings of 2005 ACM SIGMOD Inter-
national Conference on Management of Data, Widom,
J., ed., Baltimore, MD, June 2005.

SIGMOD [2006] Proceedings of 2006 ACM SIGMOD Inter-
national Conference on Management of Data, Chaud-
hari, S., Hristidis,V., and Polyzotis, N., eds., Chicago,
IL, June 2006.

SIGMOD [2007] Proceedings of 2007 ACM SIGMOD
International Conference on Management of Data,
Chan, C.-Y., Ooi, B.-C., and Zhou, A., eds., Beijing,
China, June 2007.

SIGMOD [2008] Proceedings of 2008 ACM SIGMOD Inter-
national Conference on Management of Data, Wang, J.
T.-L., ed., Vancouver, Canada, June 2008.

SIGMOD [2009] Proceedings of 2009 ACM SIGMOD Inter-
national Conference on Management of Data, Cetinte-
mel, U., Zdonik,S., Kossman, D., and Tatbul, N., eds.,
Providence, RI, June–July 2009.

SIGMOD [2010] Proceedings of 2010 ACM SIGMOD Inter-
national Conference on Management of Data, Elmagar-
mid, Ahmed K. and Agrawal, Divyakant eds.,
Indianapolis, IN, June 2010.

SIGMOD [2011] Proceedings of 2011 ACM SIGMOD Inter-
national Conference on Management of Data, Sellis, T.,
Miller, R., Kementsietsidis, A., and Velegrakis, Y., eds.,
Athens, Greece, June 2011.

SIGMOD [2012] Proceedings of 2012 ACM SIGMOD
International Conference on Management of Data, Sel-
cuk Candan, K., Chen, Yi, Snodgrass, R., Gravano, L.,
Fuxman, A., eds., Scottsdale, Arizona, June 2012.

SIGMOD [2013] Proceedings of 2013 ACM SIGMOD Inter-
national Conference on Management of Data, Ross, K.,
Srivastava, D., Papadias, D., eds, New York, June 2013.

SIGMOD [2014] Proceedings of 2014 ACM SIGMOD Inter-
national Conference on Management of Data, Dyreson,
C., Li, Feifei., Ozsu, T., eds., Snowbird, UT, June 2014.

SIGMOD [2015] Proceedings of 2015 ACM SIGMOD Inter-
national Conference on Management of Data, Mel-
bourne, Australia, May-June 2015, forthcoming.

Silberschatz, A., Korth, H., and Sudarshan, S. [2011] Data-
base System Concepts, 6th ed., McGraw-Hill, 2011.

 Bibliography 1209

Silberschatz, A., Stonebraker, M., and Ullman, J. [1990]
“Database Systems: Achievements and Opportunities,”
in ACM SIGMOD Record, 19:4, December 1990.

Simon, H. A. [1971] “Designing Organizations for an Infor-
mation-Rich World,” in Computers, Communi-
cations and the Public Interest, (Greenberger, M., ed.),
The Johns Hopkins University Press, 1971, (pp. 37–72).

Sion, R., Atallah, M., and Prabhakar, S. [2004] “Protecting
Rights Proofs for Relational Data Using Watermark-
ing,” TKDE, 16:12, 2004, pp. 1509–1525.

Sklar, D. [2005] Learning PHP5, O’Reilly Media, Inc., 2005.
Smith, G. [1990] “The Semantic Data Model for Security:

Representing the Security Semantics of an Applica-
tion,” in ICDE [1990].

Smith, J. et al. [1981] “MULTIBASE: Integrating Distrib-
uted Heterogeneous Database Systems,” NCC, AFIPS,
50, 1981.

Smith, J. R., and Chang, S.-F. [1996] “VisualSEEk: A Fully
Automated Content-Based Image Query System,” Proc.
4th ACM Multimedia Conf., Boston, MA, November
1996, pp. 87–98.

Smith, J., and Chang, P. [1975] “Optimizing the Perfor-
mance of a Relational Algebra Interface,” CACM, 18:10,
October 1975.

Smith, J., and Smith, D. [1977] “Database Abstractions:
Aggregation and Generalization,” TODS, 2:2, June 1977.

Smith, K., and Winslett, M. [1992] “Entity Modeling in the
MLS Relational Model,” in VLDB [1992].

Smith, P., and Barnes, G. [1987] Files and Databases: An
Introduction, Addison-Wesley, 1987.

Snodgrass, R. [1987] “The Temporal Query Language
TQuel,” TODS, 12:2, June 1987.

Snodgrass, R., and Ahn, I. [1985] “A Taxonomy of Time in
Databases,” in SIGMOD [1985].

Snodgrass, R., ed. [1995] The TSQL2 Temporal Query
Language, Springer, 1995.

Soutou, G. [1998] “Analysis of Constraints for N-ary Rela-
tionships,” in ER98.

Spaccapietra, S., and Jain, R., eds. [1995] Proc. Visual Data-
base Workshop, Lausanne, Switzerland, October 1995.

Spiliopoulou, M. [2000] “Web Usage Mining for Web Site
Evaluation,” CACM 43:8, August 2000, pp. 127–134.

Spooner D., Michael, A., and Donald, B. [1986] “Modeling
CAD Data with Data Abstraction and Object-Oriented
Technique,” in ICDE [1986].

Srikant, R., and Agrawal, R. [1995] “Mining Generalized
Association Rules,” in VLDB [1995].

Srinivas, M., and Patnaik, L. [1994] “Genetic Algorithms:
A Survey,” IEEE Computer, 27:6, June 1994, pp.17–26.

Srinivasan, V., and Carey, M. [1991] “Performance of
B-Tree Concurrency Control Algorithms,” in SIGMOD
[1991].

Srivastava, D., Ramakrishnan, R., Sudarshan, S., and She-
shadri, P. [1993] “Coral++: Adding Object-orientation
to a Logic Database Language,” in VLDB [1993].

Srivastava, J, et al. [2000] “Web Usage Mining: Discovery
and Applications of Usage Patterns from Web Data,”
SIGKDD Explorations, 1:2, 2000.

Stachour, P., and Thuraisingham, B. [1990] “The Design
and Implementation of INGRES,” TKDE, 2:2, June
1990.

Stallings, W. [1997] Data and Computer Communi-
cations, 5th ed., Prentice-Hall, 1997.

Stallings, W. [2010] Network Security Essentials, Appli-
cations and Standards, 4th ed., Prentice-Hall, 2010.

Stevens, P., and Pooley, R. [2003] Using UML: Software
Engineering with Objects and Components, Revised
edition, Addison-Wesley, 2003.

Stoesser, G. et al. [2003] “The EMBL Nucleotide Sequence
Database: Major New Developments,” Nucleic Acids
Research, 31:1, January 2003, pp. 17–22.

Stoica, I., Morris, R., Karger, D. et al. [2001] “Chord: A
Scalable Peer-To-Peer Lookup Service for Internet
Applications,” SIGCOMM 2001.

Stonebraker, M., Aoki, P., Litwin W., et al. [1996] “Mari-
posa: A Wide-Area Distributed Database System”
VLDB J, 5:1, 1996, pp. 48–63.

Stonebraker M. et al. [2005] “C-store: A column oriented
DBMS,” in VLDB [2005].

Stonebraker, M. [1975] “Implementation of Integrity
 Constraints and Views by Query Modification,” in
 SIGMOD [1975].

Stonebraker, M. [1993] “The Miro DBMS” in SIGMOD
[1993].

Stonebraker, M., and Rowe, L. [1986] “The Design of
POSTGRES,” in SIGMOD [1986].

Stonebraker, M., ed. [1994] Readings in Database Sys-
tems, 2nd ed., Morgan Kaufmann, 1994.

Stonebraker, M., Hanson, E., and Hong, C. [1987] “The
Design of the POSTGRES Rules System,” in ICDE [1987].

Stonebraker, M., with Moore, D. [1996] Object-Relational
DBMSs: The Next Great Wave, Morgan Kaufmann,
1996.

Stonebraker, M., Wong, E., Kreps, P., and Held, G. [1976]
“The Design and Implementation of INGRES,” TODS,
1:3, September 1976.

Stroustrup, B. [1997] The C++ Programming Language:
Special Edition, Pearson, 1997.

Su, S. [1985] “A Semantic Association Model for Corporate
and Scientific-Statistical Databases,” Information
 Science, 29, 1985.

Su, S. [1988] Database Computers, McGraw-Hill, 1988.
Su, S., Krishnamurthy, V., and Lam, H. [1988] “An Object-

Oriented Semantic Association Model (OSAM*),” in

1210 Bibliography

AI in Industrial Engineering and Manufacturing:
Theoretical Issues and Applications, American Insti-
tute of Industrial Engineers, 1988.

Subrahmanian V. S., and Jajodia, S., eds. [1996] Multime-
dia Database Systems: Issues and Research Direc-
tions, Springer-Verlag, 1996.

Subrahmanian, V. [1998] Principles of Multimedia Data-
bases Systems, Morgan Kaufmann, 1998.

Sunderraman, R. [2007] ORACLE 10g Programming: A
Primer, Addison-Wesley, 2007.

Swami, A., and Gupta, A. [1989] “Optimization of Large
Join Queries: Combining Heuristics and Combinato-
rial Techniques,” in SIGMOD [1989].

Sybase [2005] System Administration Guide: Volume 1
and Volume 2 (Adaptive Server Enterprise 15.0),
Sybase, 2005.

Tan, P., Steinbach, M., and Kumar, V. [2006] Introduction
to Data Mining, Addison-Wesley, 2006.

Tanenbaum, A. [2003] Computer Networks, 4th ed.,
Prentice-Hall PTR, 2003.

Tansel, A. et al., eds. [1993] Temporal Databases:
Theory, Design, and Implementation, Benjamin
Cummings, 1993.

Teorey, T. [1994] Database Modeling and Design: The Fun-
damental Principles, 2nd ed., Morgan Kaufmann, 1994.

Teorey, T., Yang, D., and Fry, J. [1986] “A Logical Design
Methodology for Relational Databases Using the
Extended Entity-Relationship Model,” ACM Computing
Surveys, 18:2, June 1986.

Thomas, J., and Gould, J. [1975] “A Psychological Study of
Query by Example,” NCC AFIPS, 44, 1975.

Thomas, R. [1979] “A Majority Consensus Approach to
Concurrency Control for Multiple Copy Data Bases,”
TODS, 4:2, June 1979.

Thomasian, A. [1991] “Performance Limits of Two-Phase
Locking,” in ICDE [1991].

Thuraisingham, B. [2001] Managing and Mining Multi-
media Databases, CRC Press, 2001.

Thuraisingham, B., Clifton, C., Gupta, A., Bertino, E., and
Ferrari, E. [2001] “Directions for Web and E-commerce
Applications Security,” Proc. 10th IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2001, pp. 200–204.

Thusoo, A. et al. [2010] Hive—A Petabyte Scale Data
Warehouse Using Hadoop, in ICDE [2010].

Todd, S. [1976] “The Peterlee Relational Test Vehicle—A
System Overview,” IBM Systems Journal, 15:4,
December 1976.

Toivonen, H., “Sampling Large Databases for Association
Rules,” in VLDB [1996].

Tou, J., ed. [1984] Information Systems COINS-IV,
 Plenum Press, 1984.

Tsangaris, M., and Naughton, J. [1992] “On the Performance
of Object Clustering Techniques,” in SIGMOD [1992].

Tsichritzis, D. [1982] “Forms Management,” CACM, 25:7,
July 1982.

Tsichritzis, D., and Klug, A., eds. [1978] The ANSI/X3/
SPARC DBMS Framework, AFIPS Press, 1978.

Tsichritzis, D., and Lochovsky, F. [1976] “Hierarchical
Database Management: A Survey,” ACM Computing
Surveys, 8:1, March 1976.

Tsichritzis, D., and Lochovsky, F. [1982] Data Models,
Prentice-Hall, 1982.

Tsotras, V., and Gopinath, B. [1992] “Optimal Versioning
of Object Classes,” in ICDE [1992].

Tsou, D. M., and Fischer, P. C. [1982] “Decomposition of a
Relation Scheme into Boyce Codd Normal Form,”
SIGACT News, 14:3, 1982, pp. 23–29.

U.S. Congress [1988] “Office of Technology Report,
Appendix D: Databases, Repositories, and Informat-
ics,” in Mapping Our Genes: Genome Projects: How
Big, How Fast? John Hopkins University Press, 1988.

U.S. Department of Commerce [1993] TIGER/Line Files,
Bureau of Census, Washington, 1993.

Ullman, J. [1982] Principles of Database Systems, 2nd
ed., Computer Science Press, 1982.

Ullman, J. [1985] “Implementation of Logical Query Lan-
guages for Databases,” TODS, 10:3, September 1985.

Ullman, J. [1988] Principles of Database and Knowledge-
Base Systems, Vol. 1, Computer Science Press, 1988.

Ullman, J. [1989] Principles of Database and Knowledge-
Base Systems, Vol. 2, Computer Science Press, 1989.

Ullman, J. D., and Widom, J. [1997] A First Course in
Database Systems, Prentice-Hall, 1997.

Uschold, M., and Gruninger, M. [1996] “Ontologies:
 Principles, Methods and Applications,” Knowledge
Engineering Review, 11:2, June 1996.

Vadivelu, V., Jayakumar, R. V., Muthuvel, M., et al. [2008]
“A backup mechanism with concurrency control for
multilevel secure distributed database systems.” Proc.
Int. Conf. on Digital Information Management, 2008,
pp. 57–62.

Vaidya, J., and Clifton, C., “Privacy-Preserving Data Mining:
Why, How, and What For?” IEEE Security & Privacy
(IEEESP), November–December 2004, pp. 19–27.

Valduriez, P., and Gardarin, G. [1989] Analysis and
 Comparison of Relational Database Systems,
 Addison-Wesley, 1989.

van Rijsbergen, C. J. [1979] Information Retrieval, But-
terworths, 1979.

Valiant, L. [1990] “ A Bridging Model for Parallel Compu-
tation,” CACM, 33:8, August 1990.

Vassiliou, Y. [1980] “Functional Dependencies and Incom-
plete Information,” in VLDB [1980].

 Bibliography 1211

Vélez, F., Bernard, G., Darnis, V. [1989] “The O2 Object
Manager: an Overview.” In VLDB [1989] , pp. 357–366.

Verheijen, G., and VanBekkum, J. [1982] “NIAM: An
Information Analysis Method,” in Olle et al. [1982].

Verhofstad, J. [1978] “Recovery Techniques for Database
Systems,” ACM Computing Surveys, 10:2, June 1978.

Vielle, L. [1986] “Recursive Axioms in Deductive Data-
bases: The Query-Subquery Approach,” in EDS [1986].

Vielle, L. [1987] “Database Complete Proof Production
Based on SLD-resolution,” in Proc. Fourth International
Conference on Logic Programming, 1987.

Vielle, L. [1988] “From QSQ Towards QoSaQ: Global
Optimization of Recursive Queries,” in EDS [1988].

Vielle, L. [1998] “VALIDITY: Knowledge Independence for
Electronic Mediation,” invited paper, in Practical Appli-
cations of Prolog/Practical Applications of Constraint
Technology (PAP/PACT ’98), London, March 1998.

Vin, H., Zellweger, P., Swinehart, D., and Venkat Rangan,
P. [1991] “Multimedia Conferencing in the Etherphone
Environment,” IEEE Computer, Special Issue on Mul-
timedia Information Systems, 24:10, October 1991.

VLDB [1975] Proc. First International Conference on Very
Large Data Bases, Kerr, D., ed., Framingham, MA,
September 1975.

VLDB [1976] Systems for Large Databases, Lockemann,
P., and Neuhold, E., eds., in Proc. Second International
Conference on Very Large Data Bases, Brussels, Bel-
gium, July 1976, North-Holland, 1976.

VLDB [1977] Proc.Third International Conference on
Very Large Data Bases, Merten, A., ed., Tokyo, Japan,
October 1977.

VLDB [1978] Proc. Fourth International Conference on
Very Large Data Bases, Bubenko, J., and Yao, S., eds.,
West Berlin, Germany, September 1978.

VLDB [1979] Proc. Fifth International Conference on Very
Large Data Bases, Furtado, A., and Morgan, H., eds.,
Rio de Janeiro, Brazil, October 1979.

VLDB [1980] Proc. Sixth International Conference on Very
Large Data Bases, Lochovsky, F., and Taylor, R., eds.,
Montreal, Canada, October 1980.

VLDB [1981] Proc. Seventh International Conference on
Very Large Data Bases, Zaniolo, C., and Delobel, C.,
eds., Cannes, France, September 1981.

VLDB [1982] Proc. Eighth International Conference on Very
Large Data Bases, McLeod, D., and Villasenor, Y., eds.,
Mexico City, September 1982.

VLDB [1983] Proc. Ninth International Conference on Very
Large Data Bases, Schkolnick, M., and Thanos, C., eds.,
Florence, Italy, October/November 1983.

VLDB [1984] Proc. Tenth International Conference on Very
Large Data Bases, Dayal, U., Schlageter, G., and Seng,
L., eds., Singapore, August 1984.

VLDB [1985] Proc. Eleventh International Conference on
Very Large Data Bases, Pirotte, A., and Vassiliou, Y.,
eds., Stockholm, Sweden, August 1985.

VLDB [1986] Proc. Twelfth International Conference on
Very Large Data Bases, Chu, W., Gardarin, G., and
Ohsuga, S., eds., Kyoto, Japan, August 1986.

VLDB [1987] Proc. Thirteenth International Conference on
Very Large Data Bases, Stocker, P., Kent, W., and Ham-
mersley, P., eds., Brighton, England, September 1987.

VLDB [1988] Proc. Fourteenth International Conference on
Very Large Data Bases, Bancilhon, F., and DeWitt, D.,
eds., Los Angeles, August/September 1988.

VLDB [1989] Proc. Fifteenth International Conference on
Very Large Data Bases, Apers, P., and Wiederhold, G.,
eds., Amsterdam, August 1989.

VLDB [1990] Proc. Sixteenth International Conference on
Very Large Data Bases, McLeod, D., Sacks-Davis, R.,
and Schek, H., eds., Brisbane, Australia, August 1990.

VLDB [1991] Proc. Seventeenth International Conference
on Very Large Data Bases, Lohman, G., Sernadas, A.,
and Camps, R., eds., Barcelona, Catalonia, Spain, Sep-
tember 1991.

VLDB [1992] Proc. Eighteenth International Conference on
Very Large Data Bases, Yuan, L., ed., Vancouver, Can-
ada, August 1992.

VLDB [1993] Proc. Nineteenth International Conference on
Very Large Data Bases, Agrawal, R., Baker, S., and Bell,
D. A., eds., Dublin, Ireland, August 1993.

VLDB [1994] Proc. 20th International Conference on Very
Large Data Bases, Bocca, J., Jarke, M., and Zaniolo, C.,
eds., Santiago, Chile, September 1994.

VLDB [1995] Proc. 21st International Conference on Very
Large Data Bases, Dayal, U., Gray, P.M.D., and Nishio,
S., eds., Zurich, Switzerland, September 1995.

VLDB [1996] Proc. 22nd International Conference on Very
Large Data Bases, Vijayaraman, T. M., Buchman, A. P.,
Mohan, C., and Sarda, N. L., eds., Bombay, India, Sep-
tember 1996.

VLDB [1997] Proc. 23rd International Conference on Very
Large Data Bases, Jarke, M., Carey, M. J., Dittrich, K. R.,
Lochovsky, F. H., and Loucopoulos, P., eds., Zurich,
Switzerland, September 1997.

VLDB [1998] Proc. 24th International Conference on Very
Large Data Bases, Gupta, A., Shmueli, O., and Widom,
J., eds., New York, September 1998.

VLDB [1999] Proc. 25th International Conference on Very
Large Data Bases, Zdonik, S. B., Valduriez, P., and
Orlowska, M., eds., Edinburgh, Scotland, September
1999.

VLDB [2000] Proc. 26th International Conference on Very
Large Data Bases, Abbadi, A. et al., eds., Cairo, Egypt,
September 2000.

1212 Bibliography

VLDB [2001] Proc. 27th International Conference on Very
Large Data Bases, Apers, P. et al., eds., Rome, Italy, Sep-
tember 2001.

VLDB [2002] Proc. 28th International Conference on Very
Large Data Bases, Bernstein, P., Ionnidis, Y., Ramak-
rishnan, R., eds., Hong Kong, China, August 2002.

VLDB [2003] Proc. 29th International Conference on Very
Large Data Bases, Freytag, J. et al., eds., Berlin,
Germany, September 2003.

VLDB [2004] Proc. 30th International Conference on Very
Large Data Bases, Nascimento, M. et al., eds., Toronto,
Canada, September 2004.

VLDB [2005] Proc. 31st International Conference on Very
Large Data Bases, Böhm, K. et al., eds., Trondheim,
Norway, August-September 2005.

VLDB [2006] Proc. 32nd International Conference on Very
Large Data Bases, Dayal, U. et al., eds., Seoul, Korea,
September 2006.

VLDB [2007] Proc. 33rd International Conference on Very
Large Data Bases, Koch, C. et al., eds., Vienna, Austria,
September, 2007.

VLDB [2008] Proc. 34th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 1, Auckland, New Zealand, August 2008.

VLDB [2009] Proc. 35th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 2 , Lyon, France, August 2009.

VLDB [2010] Proc. 36th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 3, Singapore, August 2010.

VLDB [2011] Proc. 37th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 4, Seattle, August 2011.

VLDB [2012] Proc. 38th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 5, Istanbul, Turkey, August 2012.

VLDB [2013] Proc. 39th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 6, Riva del Garda, Trento, Italy, August
2013.

VLDB [2014] Proc. 39th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 7, Hangzhou, China, September 2014.

VLDB [2015] Proc. 40th International Conference on Very
Large Data Bases, as Proceedings of the VLDB Endow-
ment, Volume 8, Kohala Coast, Hawaii, September
2015, forthcoming.

Voorhees, E., and Harman, D., eds., [2005] TREC Experi-
ment and Evaluation in Information Retrieval, MIT
Press, 2005.

Vorhaus, A., and Mills, R. [1967] “The Time-Shared Data
Management System: A New Approach to Data Man-

agement,” System Development Corporation, Report
SP-2634, 1967.

Wallace, D. [1995] “1994 William Allan Award Address:
Mitochondrial DNA Variation in Human Evolution,
Degenerative Disease, and Aging.” American Journal
of Human Genetics, 57:201–223, 1995.

Walton, C., Dale, A., and Jenevein, R. [1991] “A Taxonomy
and Performance Model of Data Skew Effects in Paral-
lel Joins,” in VLDB [1991].

Wang, K. [1990] “Polynomial Time Designs Toward Both
BCNF and Efficient Data Manipulation,” in SIGMOD
[1990].

Wang, Y., and Madnick, S. [1989] “The Inter-Database
Instance Identity Problem in Integrating Autonomous
Systems,” in ICDE [1989].

Wang, Y., and Rowe, L. [1991] “Cache Consistency and
Concurrency Control in a Client/Server DBMS
 Architecture,” in SIGMOD [1991].

Warren, D. [1992] “Memoing for Logic Programs,” CACM,
35:3, ACM, March 1992.

Weddell, G. [1992] “Reasoning About Functional Depen-
dencies Generalized for Semantic Data Models,”
TODS, 17:1, March 1992.

Weikum, G. [1991] “Principles and Realization Strategies
of Multilevel Transaction Management,” TODS, 16:1,
March 1991.

Weiss, S., and Indurkhya, N. [1998] Predictive Data
 Mining: A Practical Guide, Morgan Kaufmann, 1998.

Whang, K. [1985] “Query Optimization in Office
By Example,” IBM Research Report RC 11571,
December 1985.

Whang, K., and Navathe, S. [1987] “An Extended Disjunc-
tive Normal Form Approach for Processing Recursive
Logic Queries in Loosely Coupled Environments,” in
VLDB [1987].

Whang, K., and Navathe, S. [1992] “Integrating Expert
Systems with Database Management Systems—an
Extended Disjunctive Normal Form Approach,” Infor-
mation Sciences, 64, March 1992.

Whang, K., Malhotra, A., Sockut, G., and Burns, L. [1990]
“Supporting Universal Quantification in a Two-
Dimensional Database Query Language,” in ICDE
[1990].

Whang, K., Wiederhold, G., and Sagalowicz, D. [1982]
“Physical Design of Network Model Databases Using
the Property of Separability,” in VLDB [1982].

White, Tom [2012] Hadoop: The Definitive Guide, (3rd
Ed.), Oreilly, Yahoo! Press, 2012. [hadoopbook.com].

Widom, J., “Research Problems in Data Warehousing,”
CIKM, November 1995.

Widom, J., and Ceri, S. [1996] Active Database Systems,
Morgan Kaufmann, 1996.

 Bibliography 1213

Widom, J., and Finkelstein, S. [1990] “Set Oriented
 Production Rules in Relational Database Systems,” in
SIGMOD [1990].

Wiederhold, G. [1984] “Knowledge and Database Man-
agement,” IEEE Software, January 1984.

Wiederhold, G. [1987] File Organization for Database
Design, McGraw-Hill, 1987.

Wiederhold, G. [1995] “Digital Libraries, Value, and Pro-
ductivity,” CACM, April 1995.

Wiederhold, G., and Elmasri, R. [1979] “The Structural
Model for Database Design,” in ER Conference [1979].

Wiederhold, G., Beetem, A., and Short, G. [1982] “A Data-
base Approach to Communication in VLSI Design,”
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 1:2, April 1982.

Wilkinson, K., Lyngbaek, P., and Hasan, W. [1990] “The
IRIS Architecture and Implementation,” TKDE, 2:1,
March 1990.

Willshire, M. [1991] “How Spacey Can They Get? Space
Overhead for Storage and Indexing with Object-
Oriented Databases,” in ICDE [1991].

Wilson, B., and Navathe, S. [1986] “An Analytical Framework
for Limited Redesign of Distributed Databases,” Proc. Sixth
Advanced Database Symposium, Tokyo, August 1986.

Wiorkowski, G., and Kull, D. [1992] DB2: Design and
Development Guide, 3rd ed., Addison-Wesley, 1992.

Witkowski, A., et al, “Spreadsheets in RDBMS for OLAP”,
in SIGMOD [2003].

Wirth, N. [1985] Algorithms and Data Structures, Pren-
tice-Hall, 1985.

Witten, I. H., Bell, T. C., and Moffat, A. [1994] Managing
Gigabytes: Compressing and Indexing Documents
and Images, Wiley, 1994.

Wolfson, O. Chamberlain, S., Kalpakis, K., and Yesha, Y.
[2001] “Modeling Moving Objects for Location Based
Services,” NSF Workshop on Infrastructure for Mobile
and Wireless Systems, in LNCS 2538, pp. 46–58.

Wong, E. [1983] “Dynamic Rematerialization: Processing
Distributed Queries Using Redundant Data,” TSE, 9:3,
May 1983.

Wong, E., and Youssefi, K. [1976] “Decomposition—A Strat-
egy for Query Processing,” TODS, 1:3, September 1976.

Wong, H. [1984] “Micro and Macro Statistical/Scientific
Database Management,” in ICDE [1984].

Wood, J., and Silver, D. [1989] Joint Application Design:
How to Design Quality Systems in 40% Less Time,
Wiley, 1989.

Worboys, M., Duckham, M. [2004] GIS – A Computing
Perspective, 2nd ed., CRC Press, 2004.

Wright, A., Carothers, A., and Campbell, H. [2002]. “Gene-
environment interactions the BioBank UK study,”
Pharmacogenomics Journal, 2002, pp. 75–82.

Wu, X., and Ichikawa, T. [1992] “KDA: A Knowledge-
based Database Assistant with a Query Guiding Facil-
ity,” TKDE 4:5, October 1992.

www.oracle.com/ocom/groups/public/@ocompublic/doc-
uments/webcontent/039544.pdf.

Xie, I. [2008] Interactive Information Retrieval in Digi-
tal Environments, IGI Publishing, Hershey, PA, 2008.

Xie, W. [2005] “Supporting Distributed Transaction Pro-
cessing Over Mobile and Heterogeneous Platforms,”
Ph.D. dissertation, Georgia Tech, 2005.

Xie, W., Navathe, S., Prasad, S. [2003] “Supporting QoS-
Aware Transaction in the Middleware for a System of
Mobile Devices (SyD),” in Proc. 1st Int. Workshop on
Mobile Distributed Computing in ICDCS ’03, Provi-
dence, RI, May 2003.

XML (2005): www.w3.org/XML/.
Yan, W.P., and Larson, P.A. [1995] “Eager aggregation and

Lazy Aggregation,” in VLDB [1995].
Yannakakis, Y. [1984] “Serializability by Locking,” JACM,

31:2, 1984.
Yao, S. [1979] “Optimization of Query Evaluation Algo-

rithms,” TODS, 4:2, June 1979.
Yao, S., ed. [1985] Principles of Database Design, Vol. 1:

Logical Organizations, Prentice-Hall, 1985.
Yee, K.-P. et al. [2003] “Faceted metadata for image search

and browsing,” Proc.ACM CHI 2003 (Conference on
Human Factors in Computing Systems), Ft. Lauderdale,
FL, pp. 401–408.

Yee, W. et al. [2002] “Efficient Data Allocation over Multi-
ple Channels at Broadcast Servers,” IEEE Transactions
on Computers, Special Issue on Mobility and Databases,
51:10, 2002.

Yee, W., Donahoo, M., and Navathe, S. [2001] “Scaling
Replica Maintenance in Intermittently Synchronized
Databases,” in CIKM, 2001.

Yoshitaka, A., and Ichikawa, K. [1999] “A Survey on Con-
tent-Based Retrieval for Multimedia Databases,”
TKDE, 11:1, January 1999.

Youssefi, K. and Wong, E. [1979] “Query Processing in a
Relational Database Management System,” in VLDB
[1979].

Zadeh, L. [1983] “The Role of Fuzzy Logic in the Manage-
ment of Uncertainty in Expert Systems,” in Fuzzy Sets
and Systems, 11, North-Holland, 1983.

Zaharia M. et al. [2012] “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing,” in Proc. Usenix Symp. on Networked Sys-
tem Design and Implementation (NSDI) April 2012,
pp. 15–28.

Zaniolo, C. [1976] “Analysis and Design of Relational
Schemata for Database Systems,” Ph.D. dissertation,
University of California, Los Angeles, 1976.

1214 Bibliography

Zaniolo, C. [1988] “Design and Implementation of a Logic
Based Language for Data Intensive Applications,”
ICLP/SLP 1988, pp. 1666–1687.

Zaniolo, C. [1990] “Deductive Databases: Theory meets
Practice,” in EDBT,1990, pp. 1–15.

Zaniolo, C. et al. [1986] “Object-Oriented Database Sys-
tems and Knowledge Systems,” in EDS [1984].

Zaniolo, C. et al. [1997] Advanced Database Systems,
Morgan Kaufmann, 1997.

Zantinge, D., and Adriaans, P. [1996] Managing Client
Server, Addison-Wesley, 1996.

Zave, P. [1997] “Classification of Research Efforts in
Requirements Engineering,” ACM Computing
 Surveys, 29:4, December 1997.

Zeiler, Michael. [1999] Modeling Our World—The ESRI
Guide to Geodatabase Design, 1999.

Zhang, T., Ramakrishnan, R., and Livny, M. [1996] “Birch:
An Efficient Data Clustering Method for Very Large
Databases,” in SIGMOD [1996].

Zhao, R., and Grosky, W. [2002] “Bridging the Semantic
Gap in Image Retrieval,” in Distributed Multimedia

Databases: Techniques and Applications (Shih, T. K.,
ed.), Idea Publishing, 2002.

Zhou, X., and Pu, P. [2002] “Visual and Multimedia Infor-
mation Management,” Proc. Sixth Working Conf. on
Visual Database Systems, Zhou, X., and Pu, P. (eds.),
Brisbane Australia, IFIP Conference Proceedings 216,
Kluwer, 2002.

Ziauddin, M. et al. [2008] “Optimizer Plan Change
Management: Improved Stability and Performance in
Oracle 11g,” in VLDB [2008].

Zicari, R. [1991] “A Framework for Schema Updates in an
Object-Oriented Database System,” in ICDE [1991].

Zloof, M. [1975] “Query by Example,” NCC, AFIPS, 44, 1975.
Zloof, M. [1982] “Office By Example: A Business Language

That Unifies Data, Word Processing, and Electronic
Mail,” IBM Systems Journal, 21:3, 1982.

Zobel, J., Moffat, A., and Sacks-Davis, R. [1992] “An
 Efficient Indexing Technique for Full-Text Database
Systems,” in VLDB [1992].

Zvieli, A. [1986] “A Fuzzy Relational Calculus,” in EDS
[1986].

Index

‘ ’, string notation (single quotation), 182,
196, 347–348

:, multiple inheritance (colon) notation,
393

@, XPath attribute names, 444
=, EQUIJOIN comparison operator, 253
–>, dereferencing in SQL, 386
–>, operation arrow notation, 392
←, assignment operation, relational

algebra, 245
ρ, RENAME operator, 245–246
“ ”, operator notation (double quotation),

196, 347–348
$, XQuery variable prefix, 445
%, arbitrary number replacement

symbol, SQL, 195–196
(), SQL notation

constraint conditions for assertions,
226

explicit set of values, 214
tuple value comparisons, 210

(), XML DTD element notation, 434
*, SQL notation

attribute specification and retrieval,
193

tuple rows in query results, 218
*, XPath elements (wildcard symbol), 444
*__, NATURAL JOIN comparison

operator, 253
/ and //, path separators, XML, 443
/, escape operator, SQL, 196
[], UDT arrays (brackets), 383
_, single character replacement symbol,

SQL, 195–196
||, concatenation operator (double bar),

SQL, 182–183
d, disjointness constraint notation,

114–115
∪, set union operation, 120
≡, equivalent to symbol, 274
σ, SELECT operator, 241
⇒, implies symbol, 274
1NF, see First normal form (1NF)
2NF, see Second normal form (2NF)
3NF, see Third normal form (3NF)
4NF, see Fourth normal form (4NF)
5NF, see Fifth normal form (5NF)
Abstraction concepts

aggregation, 131–133
association, 131–132
classification, 130
identification, 130–131

instantiation, 130
knowledge representation (KR) and,

129
Access control

content-based, 1142
credentials and, 1142
defined, 1126
Directory Services Markup Language

(DSML) and, 1142
e-commerce environment and, 1141
mandatory access control (MAC),

1121, 1134–1137
mobile applications, 1141–1142
row-level, 1139–1140
Web policies, 1141–1142
XML, 1140–1141, 1142

Access paths
data modeling, 34
DBMS classification from, 52

Action, SQL triggers, 227
Active database systems, 4, 22
Active database techniques, SQL, 202
Active databases

design issues, 967–972
enhanced data models, 963–974
event-condition-action (ECA) model,

963–964
expert (knowledge-based) systems,

962–963
implementation issues, 967–972
triggers, 963–967, 973–974

Active rules
applications for, 972–973
event-condition-action (ECA) model,

963–964
functionality of, 962
statement-level rules in STARBURST,

970–972
Actuator, disk devices, 551
Acyclic graphs, 52. See also Hierarchies
Adaptive optimization, Oracle, 735
ADD CONSTRAINT keyword, SQL, 234
Advanced Encryption Standards (AES),

1150
After image (AFIM) updating, 816
Agent-based approach, Web content

analysis, 1053–1054
Aggregate functions

asterisk (*) for tuple rows of query
results, 218

discarded NULL values, 218
grouping and, 216–218, 260–261

OQL collections and, 413–414
parallel algorithms, 686
QBE (Query-by-Example) language,

1175–1177
query execution and, 709
SQL query retrieval and, 216–219
relational algebra for, 260–261

Aggregate operation implementation,
678–679

Aggregation
semantic modeling process, 131–133
UML class diagrams, 87–88

Algorithms, concurrency control
Thomas’s write rule, 795
timestamp ordering (TO), 793

Algorithms, data mining
apriori algorithm, 1075–1076
BIRCH algorithm, 1090
FP-growth algorithm, 1077–1080
genetic algorithms (GAs), 1093
k-means algorithm, 1088–1089
partition algorithm, 1081
sampling algorithm, 1076–1077

Algorithms, database recovery
ARIES recovery algorithm, 827–831
idempotent operations of, 815
NO-UNDO/REDO, 815, 821–823
UNDO/REDO, 815

Algorithms, encryption
asymmetric key encryption

algorithms, 1151
RSA public key encryption algorithm,

1152
symmetric key algorithms, 1150–1151

Algorithms, normalization
alternative RDB designs, 524–527
BCNF schemas, 522–523
dependency preservation, 519–522
ER-to-relational mapping, 290–296
nonadditive (lossless) join property

decomposition, 519–523
RDB schema design, 519–527
3NF schemas, 519–522

Algorithms, queries
external sorting, 660–663
heuristic algebra optimization,

700–701
parallel processing, 683–687
PROJECT operation, 676–678
SELECT operation, 663–668
set operation, 676–678

Alias (tuple variables) of attributes, 192

1215

1216 Index

ALL option, SQL, 194–195, 210
All-key relation, 491, 493
Allocation of file blocks on a disk, 564
ALTER command, SQL, 233–234
ALTER TABLE command, SQL, 180
Analysis, RDB design by, 503
Analytical data store (ADS), 1105
Analytical operations, spatial databases,

988
Anchor texts, 1027
AND/OR/NOT operators

Boolean conditions, 270–271
quantifier transformations using, 274

Annotations, XML language, 440
Anomalies

deletion, 467
insertion, 465–466
modification, 467
RDB design and, 465–467
tuple redundant information

avoidance using, 465–467
update, 465–467

Anti-join (AJ) operator, 658–660,
677–678, 681, 719–720

Apache systems
Apache Cassandra, 900
Apache Giraph, 943
Apache Hive, 933–936
Apache Pig, 932–933
Apache Tez, 943
Apache Zookeeper, 900
Big data technologies for, 932–936,

943–944
API (Application programming

interface)
client-side program calls from, 49
data mining, 1095
database programming and, 312, 326
library of functions, 312, 326

Application-based (semantic)
constraints, 158

Application development environments,
47

Application programmers, 16
Application programs, 6, 313
Application server, 44, 50
ApplicationMaster (AM), YARN, 942
Apriori algorithm, 1075–1076
Arbitrary number replacement symbol

(%), 195–196
Architecture

automated storage tiering (AST), 591
centralized DBMS, 46–47
client/server, 47–49
data independence and, 37–38
database systems and, 46–51
distributed databases (DDBs), 868–875
federated database (FDBS) schema,

871–872
Fibre Channel over Ethernet (FCoE),

590–591
Fibre Channel over IP (FCIP), 590

Internet SCSI (iSCSI), 590
label security, 1156–1157
mappings, 37
network-attached storage (NAS),

589–590
n-tier for Web applications, 49–51
parallel database, 683
parallel versus distributed, 869
pure distributed databases, 869–871
shared-disk, 683
shared-memory, 683
shared-nothing, 684
storage area networks (SANs),

588–589
storage, 588–592
three-schema, 36–38
three-tier client/server, 49–51, 872–875
two-tier client-server, 49
Web applications, 49–51
YARN (Hadoop v2), 940–942

ARIES recovery algorithm, 827–831
Arithmetic operations, SQL query

recovery and, 196–197
Armstrong’s axioms, 506–509
Array constructor, 369
Array processing, Oracle, 735–736
Arrays

associative, 350
brackets ([]) for, 383
dynamic, 345–346
numeric, 349
PHP programming, 345–346, 348–350
UDT elements, 383

AS option, SQL, 196
Assertions

constraint conditions in parentheses
() for, 226

CREATE ASSERTION statement,
225–226

declarative, 225–227
relation schema and, 156
SQL constraint specification, 158, 165,

225–226
Assignment operations (←), relational

algebra, 245
Association rules

apriori algorithm, 1075–1076
complications with, 1084
confidence of, 1074
data mining, 1073–1084
FP-growth algorithm, 1077–1080
frequent-pattern (FP) tree, 1077–1080
hierarchies and, 1081–1082
market-basket data model, 1073–1075
multidimensional associations,

1082–1083
negative associations, 1082–1084
partition algorithm, 1081
sampling algorithm, 1076–1077
support for, 1074

Association, semantic modeling process,
131–132

Associations, UML class diagrams 87–88
Associative arrays, PHP, 350
Asterisk (*)

all attribute specification, 193
tuple rows of query results, 218

Asymmetric key encryption algorithms,
1151

Atom constructor, 368, 369
Atomic (single-valued) types, 368
Atomic literals, 388
Atomic objects, ODMG models, 388,

395–398
Atomic values

domains, 151
first normal form (1NF), 477–478
tuples, 155

Atomicity property, transactions, 14, 157
Atoms

domain relational calculus formulas,
277–278

tuple relational calculus formulas,
270–271

truth value of, 270, 277
Attribute data, 989
Attribute-defined specialization, 114, 126
Attribute preservation, RDB

decomposition condition, 513
Attribute versioning, 982–984
Attributes. See also Entities

ambiguous, prevention of, 191–192
asterisk (*) for, 193
clarity of in RDB design, 461–465
complex, 66–67, 441
composite, 65–66, 441
conceptual data models, 33
constraints and defaults in SQL,

184–186
data types in SQL, 182–184
default values, 184–186
defined, 63
defining, 114
degree (arity) of, 152
derived, 66
discriminating, 299–300
EER-to-relational mapping, 298–300
entities and, 63–65
ER models, 63–70
ER-to-relational mapping, 295–296
functional dependency of, 472–473
grouping, 219, 260–261
HTML tags, 430
key (uniqueness constraint), 68–69
multiple keys for, 631–632
multivalued, 66, 295–296, 481
normal form keys, 477
NULL values, 66, 184–186
ODMG model objects, 396
ordered indexes, 631–632
partial key, 79
prime/nonprime, 477
project, 189
query retrieval in SQL, 191–192

 Index 1217

RDB design and, 461–465, 472–473
relation schema and, 152, 461–465
relational algebra, 245–246
relational model domains and,

152–153
relationships as, 74
relationships types of, 78
renaming, 192, 214–215, 245–246
roles for a domain, 152
semantics for, 461–465
simple (atomic), 65–66
single-valued, 66
SQL use of, 184–186, 191–192
stored, 66
subclass specialization, 114
tree-structured data models, XML, 433
tuple modification for, 166, 168–169
update (modify) operation for,

168–169
value sets (domains) of, 69–70
versioning, 982–984
visible/hidden, 371, 375
XML, 433, 441

Audio data source analysis, 999
Audio sources, multimedia databases,

996
Audit trail, 1127
Authorization, SQL views as mechanisms

of, 232
AUTHORIZATION command, SQL, 315
Authorization identifier, SQL schemas,

179
Automated storage tiering (AST), 591
Autonomy, DDBs, 845–846
Auxiliary access structure, 546
Availability

DDBs, 844–845
loss of, database threat of, 1122
NOSQL, 885–886

AVERAGE function, grouping, 260
AVG function, SQL, 217
Axioms, 1005
B-trees

dynamic multilevel indexes
implementation, 617–622

file organization and, 583
dynamic multilevel index

implementation, 617–622
physical database design and, 601–602,

617–622
unbalanced, 617
variations of, 629–630

B+-trees
bitmaps for leaf nodes of, 636–637
dynamic multilevel index

implementation, 622–625
physical database design and, 601–602,

622–630
search, insert and deletion with,

625–629
variations of, 629–630

Backup and recovery subsystem, 20

Backup utility, 45
Bag constructor, 369
Base class, 127
Base tables (relations), 180, 182
Before image (BFIM) updating, 816
Behavior inheritance, 393
BETWEEN comparison operator, SQL,

196–197
Bidirectional associations, UML class

diagrams, 87
Big data storage systems, 3, 26, 31, 51
Big data technologies

Apache systems, 932–936, 943–944
cloud computing, 947–949
distributed and database combination,

841
Hadoop, 916–917, 921–926
MapReduce (MR), 917–921, 926–936
parallel RDBMS compared to, 944–946
technological development of,

911–913
variety of data, 915
velocity of data, 915
veracity of data, 915–916
volume of data, 914
YARN (Hadoop v2), 936–944, 949–953

Binary association, UML class diagrams,
87

Binary locks, 782–784
Binary operations

complete set of, 255
DIVISION operation, 255–257
JOIN operation, 251–255
OUTER JOIN operations, 262–264
query tree notation, 257–259
relational algebra and, 240, 251–259,

262–264
set theory for, 247

Binary relationships
cardinality ratios for, 76–77
constraints on, 76–78
degree of, 73
ER models, 73–74, 76–78
ER-to-relational mapping, 293–295
existence dependency, 77–78
participation constraints, 77–78
relationship type, 73–74
ternary relationships compared to,

88–91
Binary search, files, 570
Bind variables, SQL injection and,

1145–1146
Binding

C++ language binding, 417–418
early (static), 344
JDBC statement parameters, 333
late (dynamic), 377
OBDs, 377
ODMG standards and, 386, 417–418
programming language, 312
polymorphism and, 377
SQL/CLI statement parameters, 329

BIRCH algorithm, 1090
Bitemporal relations, 980–982
Bit-level striping, RAID, 584, 586
Bit-string data types, 183
Bits of data, 547
Bitmap indexes, 634–637, 1109–1110
BLOBs (binary large objects, 560–561
Block-level striping, RAID, 584–585, 586
Block transfer time, disk devices, 552
Blocking factor, records, 563
Blocking records, 563–564
Boolean data types, 183
Boolean model, IR, 1030
Boolean queries, 1035–1036
Boolean (TRUE/FALSE) statements

OQL, 414
relational algebra expressions, 241–242
SQL query retrieval, 212–214
tuple relational calculus formulas,

270–271
Bottom-tier database server, DBMS as,

344
Bottom-up conceptual synthesis, 119
Bottom-up method, RDB design, 460,

504
Bound columns approach, SQL/CLI

query results, 329
Boyce-Codd normal form (BCNF)

decomposition of relations not in,
489–491

definition of, 488
nonadditive join test for binary

decomposition (NJB), 490
relations in, 487–489

Browsing, 1027
Browsing interfaces, 40
Bucket join, MapReduce (MR), 931
Buckets, hashing, 575–576
Buffer, disk blocks, 550–551
Buffer replacement policy, 749
Buffer space, nested-loop join and,

672–673
Buffering

buffer management, 557–558
buffer replacement strategies, 559–560
CPU processing and, 556–557
data using disk devices, 552
database recovery, 815–816
disk blocks, 541, 556–560, 815–816
double buffering technique, 556–557

Buffering (caching) modules, 20, 42
Built-in functions, UDT, 384
Built-in interfaces, ODMG models,

393–396
Built-in variables, PHP, 352–353
Bulk loading process, indexes, 639
Bulk transfer time, disk devices, 552
Business rules, 21
Bytes of data, 547
C language, SQL/CLI (SQI call level

interface), 326–331
C++ language binding, ODMG, 417–418

1218 Index

Cache memory, 543
Caching (buffering) disk blocks, database

recovery, 815–816
Calendar, 975
CALL statement, stored procedures, 337
Candidate key, 159–160, 477
Canned transactions, 15
CAP theorem, NOSQL, 888–890
Cardinality

JOIN operations, 719–720
of a relational domain, 152

CARDINALITY function, 383
Cardinality ratios, 76–77
Cartesian product of a relational domain,

153
CARTESIAN PRODUCT operation,

249–251
CASCADE option, SQL, 233, 234
Cascaded values

insert violation and, 167
SELECT operation sequence of, 243
SQL constraint options, 186–187

Cascading rollback phenomenon
database recovery and, 819–821
schedules, 762
timestamp ordering, 794

CASE (computer-aided software
engineering), 46–47

CASE clause, SQL, 222–223
Casual end users, 15–16
Catalog management, DDBs, 875
Catalogs

component modules and, 42–45
DBMS, 10–11, 35, 38, 42–45
file storage in, 10–11
schema description storage, 35, 38, 180
SQL concept, 179–180

Catastrophic failures, database backup
and recovery from, 832–833

Categories
defined, 126
EER modeling concept, 108, 120–122,

126
EER-to-relational mapping, 302–303
partial, 122
superclasses and, 120–122
total, 122
union types using, 120–122, 302–303

Cautious waiting algorithm, deadlock
prevention, 791

Central processing unit (CPU), primary
storage of, 542

Centralized DBMS, 52
Centralized DBMS architectures, 46–47
Certification of transactions, 781
Certify locks, 796–797
Chaining, hashing collision resolution, 574
Character-string data types, 182–183
Characters of data, 547
CHECK clauses for, 187
Checkpoints, database recovery,

818–819, 828–829

Child nodes, tree structures, 617
Ciphertext, 1149
Class diagrams, UML, 85–88
Class library

OOPL (object-oriented programming
language) and, 312

SQL imported from JDBC, 331, 332
Classes

EER model relationships, 108–110
inheritance, 110, 118
interface inheritance, ODL, 404–405
interfaces, instantiable behavior and,

392
Java, 331
object data models, 52
ODL, 400, 404–405
ODMG models, 392, 404–405
operations and type definitions, 371
property specification, 130
subclasses, 108–110, 126
superclasses, 109, 110, 126

Clausal form, deductive databases,
1003–1005

Client, defined, 48
Client computer, 44
Client machines, 47
Client module, 31
Client program, 313
Client/server architectures

basic, 47–49
centralized DBMS, 46–47
two-tier, 49

Client tier, HTML and, 344
CLOSE CURSOR command, SQL, 318
Closed world assumption, 156
Closure, functional dependencies,

505–506, 508
Cloud computing

Big data technology for, 947–949
environment, 31
Cloud storage, 3

Clustered file, 572, 583, 602–603
Clustering, data mining, 1088–1091
Clustering indexes, 602, 606–608
Clusters, file blocks, 564
Code generator, query processing, 655
Code injection, SQL, 1144
Collection (multivalued) constructors,

369
Collection objects, ODMG models,

393–394
Collection operators, OQL, 413–416
Collections

built-in interfaces, ODMG, 393–396
entity sets, 67–68
object extent and, 373, 376
persistent, 373, 376
transient, 376

Collision resolution, hashing, 574
Column, SQL, 179
Column-based data models, 51, 53
Column-based NOSQL, 888, 900–903

Column-based storage of relations,
indexing for, 642

Comments, PHP programming, 345
Commit point, transaction processing, 756
Committed projection, schedules, 760
Communication autonomy, DDBs, 845
Communication software, DBMS, 46
Communication variables in embedded

SQL, 315, 316
Commutative property, SELECT

operation, 243
Comparison operators

select-from-where query structure
and, 188–190

select-project-join query structure
and, 189, 191

SQL query retrieval, 188–191, 195–197
substring pattern matching, 195–197

Compiled queries, 710
Compilers

DBMS interface modules, 42–45
DDL for schema definitions, 42–43
query, 43–44
precompiler, 44

Complete schedule conditions, 760
Complete set of relational binary

operations, 255
Completeness (totalness) constraint, 115
Complex attributes, 66–67
Complex elements, XML, 431, 441
Composite, 65–66
Composite (compound) attributes,

XML, 441
Composite keys, 631
Concatenation operator (||) in SQL,

182–183
Concept hierarchy, 1053
Conceptual (schema) level, 37
Conceptual data models, 33
Conceptual design

comparison of ODB and RDB, 405–406
high-level data model design, 61–62
mapping EER schema to ODB schema,

407–408
Conceptualization, ontology and, 134
Concurrency

control, 749–752, 770–771
serializability of schedules and,

770–771
transaction processing, 746–747

Concurrency control protocols, 781
Concurrency control software, 13–14
Concurrency control techniques

data insertion and, 806
deletion operation and, 806
distributed databases (DDBs), 854–857
granularity of data items, 800–801
index concurrency control using locks,

805–806
interactive transactions and, 807
latches and, 807
locking data items, 781

 Index 1219

locks used for, 782–786, 796–797,
805–806

multiple granularity locking, 801–804
multiversion concurrency control,

781, 795–797
phantom records and, 806–807
snapshot isolation, 781, 799–800
timestamp ordering (TO), 792–795, 796
timestamps, 781, 790–791, 793
two-phase locking (2PL), 782–792,

796–797
validation (optimistic) of transactions,

781, 798–799
Conditions

constraint parentheses () for
assertions, 226

trigger component in SQL, 227
Conflict equivalence, schedules, 765–766
Conjunctive selection, search methods

for, 665–666
CONNECT TO command, SQL, 315
Connecting fields for mixed records,

582–583
Connecting to a database

embedded SQL, 315–316
PHP, 353–355

Connection record, SQL/CLI, 327–328
Connection to database server, 313
Consistency preservation, transactions,

757
Constant nodes, query graphs, 273
Constraint specification language, 165
Constraints

application-based (semantic), 158
assertions in SQL, 58, 165, 225–226
attribute defaults and, 184–186
attribute-defined specialization, 114
binary relationships, 76–78
business rules, 21
CHECK clauses for, 187
completeness (totalness), 115
conditions in parentheses () for

assertions, 226
database applications, 21–22, 160–163
disjointness (d notation), 114–115
domain, 158
EER models and, 113–116
ER models and, 76–78, 91–92
existence dependency, 77–78
foreign keys, 163, 186–187
generalization, 113–116
indexes for management of, 641
inherent model-based (implicit), 157
inherent rules, 22
insert operation and, 166–167
integrity, 21–22, 160–163
key, 21, 158–160, 163–165, 186–187
minimum cardinality, 77
naming, 187
NULL value and, 160, 163
participation, 77–78
predicate-defined subclasses, 113–114

referential integrity, 21, 186–187
relational database schemas, 160–163
relational models and, 157–167
relationships and, 76–78
row-based, 187
schema-based (explicit), 157
semantics and, 21
specialization, 113–116
SQL specifications, 165, 184–187,

225–226
state, 165
structural, 78
table-based, 184–187
ternary relationships, 91–92
transition, 165
triggers in SQL, 58, 165
UML notation for, 127–128
uniqueness, 21
user-defined subclasses, 114
violations, 166–167

Constructor function, SQL
encapsulation, 384

Constructors, see Type constructors
Constructs, 35
Content-based access control, 1142
Content-based retrieval, 995
Contiguous allocation, file blocks, 564
Control measures, database security,

1123–1125
Conversational information access, IR,

1059
Conversion of locks, 786
Core specifications, SQL, 178
Correlated nested queries, SQL, 211–212
Cost-based query optimization

approach, 710–712
defined, 710
dynamic programming compared to,

716
illustration of, 726–728

Cost estimation
catalog information in cost functions

for, 712
histograms for, 713
JOIN optimization based on cost

formulas, 720–721
query execution components, 710–712
query optimization technique, 657,

710–713, 716–717
selection based on cost formulas,

716–717
Cost functions

JOIN operation use of, 717–726
query optimization, 714–715, 717–726
SELECT operation use of, 714

COUNT function
grouping, 260
SQL, 217

Covert channels, flow control and,
1148–1149

CREATE ASSERTION statement, SQL,
225–226

CREATE SCHEMA statement, 179–180
CREATE TABLE command, SQL,

180–182
CREATE TRIGGER statement, SQL,

225, 226–227
CREATE TYPE command, 184, 380–383
CREATE VIEW statement, SQL,

228–229
Credentials, access control and, 1142
CROSS PRODUCT operation

relational algebra set theory, 249–251
SQL tuple combinations, 192–193

CRUD (create, read, update, and delete)
operations, NOSQL, 887, 893, 903

Cursors
declaration of, 317, 319–320
impedance mismatch and, 312
iterator as, 318
SQL query result processing, 312,

317–320
updating records, 318

Cypher query language, Neo4j system,
905–908

Dangling tuples, RDB design problems,
523–524

Data
Big data technology for, 914–916
complex relationships among, 21
conceptual representation of, 12
databases and, 7–8, 12–14
defined, 4
directed graph representation of,

427–428
elements, 7
eXtended Markup Language (XML)

and, 25, 426–430
granularity of data items, 800–801
insulation from programs and, 12–13
integrity constraints, 21–22
interchanging on the Web, 25
logical independence, 37–38
multiple views of, 13
multiuser transactions and, 13–14
physical independence, 38
records, 6–7
requirements collection and analysis,

60–61
self-describing, 10, 427
semantics and, 21
semistructured, 426–428
sharing, 13–14
storage, 3–4
structured, 426
tag notation and use, HTML, 428–430
three-schema architecture and, 37–38
type, 7–8
unstructured, 428–430
variety of, 915
velocity of, 915
veracity of, 915–916
volume of, 914
virtual, 13

1220 Index

Data abstraction
conceptual representation of, 12–13
data models and, 12, 32–34
program independence from, 12

Data allocation, DDBs, 849–853
Data-based approach, Web content

analysis, 1054
Data buffers, transaction processing,

748–749
Data-centric documents, XML, 431
Data collection and records, PHP, 355–356
Data definition, SQL, 179
Data dictionary (data repository), 45–46
Data Encryption Standards (DES), 1150
Data fragmentation, DDBs, 847–853
Data independence, three-schema

architecture and, 37–38
Data insertion, concurrency control and,

806
Data manipulation language (DML),

39–40, 44
Data marts, 1102
Data mining

application programming interface
(API), 1095

applications of, 1094
association rules, 1073–1084
BIRCH algorithm, 1090
classification, 1085–1088
clustering, 1088–1091
commercial tools, 1094–1096
data warehousing compared to, 1070
decision trees, 1085–1086
genetic algorithms (GAs), 1093
graphical user interface (GUI), 1095
k-means algorithm, 1088–1089
knowledge discovery in databases

(KDD), 1070–1073
neural networks, 1092
Open Database Connectivity (ODBC)

interface, 1094–1095
regression, 1091–1092
sequential pattern discovery, 1091
spatial databases, 993–994

Data model mapping
database design and, 62
logical database design, 289

Data models. See also Object data models
access path, 34
basic operations, 32
categories of, 33–34
conceptual, 12–13, 33
data abstraction and, 12, 32–34
database schemas for, 34–38
DBMS classification from, 51–53
dynamic aspect of applications, 23
EER (enhanced entity-relationship),

107–146
ER (entity-relationship), 59–105
object, 33, 51, 52–53
relational, 33, 51, 52, 149–157

representational, 33
self-describing, 34

Data normalization, 475–476
Data organization transparency, DDBs,

843
Data quality, database security and, 1154
Data replication, DDBs, 849–853
Data security

access acceptability and, 1127
authenticity assurance and, 1127
data availability and, 1127
sensitivity of data and, 1126–1127

Data sources
databases as, 425
JDBC, 331

Data striping, RAID, 584–585
Data transfer costs, DDB query

processing, 860–862
Data types

attributes in SQL, 182–184
bit strings, 183
Boolean, 183
character strings, 182–183
CREATE TYPE command, 184
DATE, 183
INTERVAL, 184
numeric, 182
records, 560–561
relational model domains, 151
spatial, 989–990
TIME, 183
TIMESTAMP, 183–184

Data values, records, 560
Data warehouses

building, 1111–1114
data modeling for, 1105–1110
defined, 1102
ETL (extract, transform, load) process,

1103
functionality of, 1114–1115
use of, 4
views compared to, 1115

Data warehousing
analytical data store (ADS), 1105
characteristics of, 1103–1104
data mining compared to, 1070
DSS (decision-support systems), 1102
master data management (MDM), 1110
OLAP (online analytical processing),

1102
OLTP (online transaction processing),

1102–1103
operational data store (ODS), 1105
query optimization, 731–733
use of, 1101
warehouse implementation difficulties,

1115–1117
Database administrator, see DBA

(database administrator)
Database design

active databases, 967–972

conceptual design, 61–62, 70–72
data modal mapping, 62
entities and attributes for, 70–72
ER (Entity-Relationship) models for,

60–62, 70–72
functional requirements for, 61
logical design, 62
physical design, 62
requirements collection and analysis,

60–61
schema creation, 61–62

Database designer, 15
Database items, transaction processing,

748
Database management systems, see DBMS

(database management system)
Database monitoring, SQL triggers for,

226–227
Database programming

application programming interface
(API), 312

database application implementation,
309

embedding commands in programming
language, 311, 314–320

evolution of, 309–310
impendence mismatch, 312–313
language design for, 312, 339
library of functions or classes for,

311–312, 326–335
overview of techniques and issues,

310–311
sequence of interaction, 313–314
stored procedures, 335–338
Web programming using PHP, 343–359

Database recovery techniques
ARIES recovery algorithm, 827–831
caching (buffering) disk blocks, 815–816
cascading rollback and, 819–821
checkpoints, 818–819, 828–829
database backup and recovery from

catastrophic failures, 832–833
deferred updates for recovery, 814,

821–823
force/no-force rules, 817–818
fuzzy checkpointing, 819, 828
idempotent operations, 815
immediate updates for recovery, 815,

823–826
multidatabase system recovery,

831–834
NO-UNDO/REDO algorithm, 815,

821–823
shadow paging, 826–827
steal/no-steal rules, 817–818
system log for, 814, 817, 818–819
transaction rollback and, 819
transactions not affecting database, 821
UNDO/REDO algorithm, 815, 818
write-ahead logging (WAL), 816–818

Database schema, ontology as, 134

 Index 1221

Database security
access acceptability and, 1127
access control, 1126
additional forms of protection, 1123
authenticity assurance and, 1127
challenges for maintaining, 1154–1155
control measures, 1123–1125
data availability and, 1127
database administrator (DBA) and,

1125–1126
discretionary action control, 1121,

1129–1134
discretionary privileges, types of,

1129–1130
discretionary security mechanisms, 1123
encryption, 1149–1153
flow control, 1147–1149
GRANT command for, 1131
GRANT OPTION for, 1131
granting and revoking privileges,

1129–1134
information privacy relationship to,

1128–1129
label-based security policy, 1139–1140,

1155–1158
limiting privilege propagation,

1133–1134
mandatory access control (MAC),

1121, 1134–1137
mandatory security mechanisms, 1123
Oracle, 1155–1158
precision compared to security, 1128
privacy issues and preservation,

1153–1154
privilege specification using views,

1130–1131
propagation of privileges, 1131,

1133–1134
revoking of privileges, 1131
role-based access control (RBAC),

1121, 1137–1139
row-level access control, 1139–1140
sensitivity of data and, 1126–1127
SQL injection, 1143–1146
statistical database security, 1146–1147
system log modifications and, 1125
threats to databases, 1122
types of security for, 1122
XML access control, 1140–1141

Database security and authorization
subsystem, DBMS, 1123

Database server, 44
Database storage

organization of, 545–546
reorganization, 45

Database system
architectures, 46–51
catalog, 10–11, 35, 42–45
communication software, 46
current state, 35
data models, 32–34

DBMS classification, 51–53
defined, 6
environment
environment of, 6–7, 42–46
extension of, 35
initial state, 35
instances, 35
interfaces, 40–42
languages, 38–40
module functions in, 31, 42–45
populating (loading), 35
schemas, 34–38
tools, 45–46
utilities, 45
valid state, 35

Databases
big data storage systems and, 26
DBMS (database management

systems) for, 6, 9, 17–23, 27
active systems, 4, 22
application programs for, 6
backing up, magnetic tape storage for,

555–556
backup and recovery subsystem, 20
big data storage, 3
characteristics of, 10–14
cloud storage, 3
constructing, 6, 9
data abstraction, 12–13
data relationship complexity and, 21
database users and, 3–29
deductive systems, 22
defined, 4
development time reduction, 22–23
economies of scale, 23
employment concerning, 15–17
eXtended Markup Language (XML)

and, 25
extending capabilities of, 25
extracting XML documents from,

442–443, 447–453
file processing, 10–11
flexibility of, 23
hierarchical and network systems used

as, 23–24
history of applications, 23–26
information retrieval (IR) systems

compared to, 1025–1026
integrity constraints, 21–22
interchanging Web data, 25
maintenance, 6
manipulating, 6, 9
meta-data, 6, 10
multiple user interfaces, 20–21
multiple views of, 13
multiuser transaction processing, 13–14
NOSQL system, 3, 26
object-oriented (OODB), 24–25
object-oriented systems and, 19
online transaction processing

(OLTP), 14

persistent storage, 19–20
program-data independence, 12
program-operation independence, 12
properties of, 5
protection, 6
queries, 6, 20
real-time technology, 4
redundancy control, 18–19
relational, 24
rules for inferencing information, 22
search techniques, 4
self-describing data, 10
sharing, 6
Structured Query Language (SQL), 26
standards enforced by, 22
traditional applications, 3
transactions, 6, 14
triggers for, 22
unauthorized access restriction, 19
updating information, 23

Datalog language
clausal form, 1003–1005
deductive databases, 1001, 1002–1003
Horn clauses, 1004
notation, 1000–1003
program safety, 1007–1010
queries in, 1004, 1010–1012

DATE data type, 183
DBA (database administrators)

interfaces for, 42
role of, 15

DBMIN method, transaction processing,
757

DBMS (database management systems)
advantages of approach, 17–23
access path options, 52
backup and recovery subsystem, 20
bottom-tier database server as, 344
centralized, 51
centralized architecture of, 46–47
classification of, 51–53
client/server architectures, 47–49
component modules, 42–45
conceptual design phase, 9
concurrency control software for, 13–14
data complexity and, 21
data models and, 51–53
defined, 6
disadvantages of, 27
distributed, 51
federated, 52
general purpose, 52
heterogeneous, 52
homogeneous, 52
integrity constraints, 21–22
interfaces, 40–42
language, 38–40
logical design phase, 9
multiple user interfaces, 20–21
multiuser systems, 51
number of sites for, 51–52

1222 Index

DBMS (continued)
operators and maintenance personnel,

17
persistent storage, 19–20
physical design phase, 9
query processing, 20
redundancy control, 18–19
requirements specification and

analysis phase, 9
single-user systems, 51
special purpose, 52
SQL and, 177–178
stored procedures and, 336–337
system designers and implementers, 17
tool developers, 17
two-tier client-server architecture, 49
unauthorized access restriction, 19
XML document storage, 442

DBMS-specific buffer replacement
policies, 756–757

DDBMSs (distributed database
management systems)

degree of local autonomy, 865–866
degree of homogeneity, 865–866
technology and, 841
update decomposition and, 863–865

DDBs (distributed databases)
advantages of, 846
architectures, 868–875
autonomy, 845–846
availability, 844–845
catalog management, 875
concurrent control and recovery in,

854–857
conditions for, 842–843
data allocation, 849–853
data fragmentation, 847–853
data replication, 849–853
network topologies, 843
partition tolerance, 845
query processing and optimization,

859–865
reliability, 844–845
scalability, 845
sharding, 847–848
technology and, 841
transaction management in, 857–859
transparency, 843–844

DDL (data definition language)
compiler for schema definitions,

42–43
DBMS languages and, 39

Deadlock
cautious waiting algorithm, 791
detection, 791–792
no waiting algorithm, 791
occurrence in transactions, 789–790
prevention protocols, 790–791
timeouts for, 792
transaction timestamps and, 790–791

Debt–credit transactions, 773

Decision-support systems, see DSS
(decision-support systems)

Decision trees, data mining, 1085–1086
Declaration, XML documents, 433
Declarative assertions, 225–227
Declarative expressions, 268
Declarative languages, 40, 999
Decomposition

algorithms, 519–523
Boyce-Codd normal form (BCNF),

489–491, 522–523
dependency preservation, 514–515,

519–522
DDMS (distributed database

management service), 863–865
fourth normal form (4NF), 527–530
nonadditive (lossless) join property,

476, 515–518, 519–523, 530
nonadditive join test for binary

decomposition (NJB), 490
normalization and, 489–491
properties of, 504, 513–518
queries, 863–865
relations not in BCNF, 489–491
three normal form (3NF), 519–522
update, 863–865

Deductive database systems, 22
Deductive databases

clausal form, 1003–1005
Datalog language for, 1001, 1002–1003
Datalog program safety, 1007–1010
Datalog rule, 1004
declarative language of, 999
enhanced data models, 962, 999–1012
Horn clauses, 1004
nonrecursive query evaluation,

1010–1012
overview of, 999–1000
Prolog language for, 1000–1001
Prolog/Datalog notation, 1000–1003
relational operators for, 1010
rules, 1000, 1005–1007

Deep Web, 1052
Default values, SQL attributes, 184–186
Deferred updates, database recovery, 814,

821–823
Degree of homogeneity, 865–866
Degree of local autonomy, 865–866
Degree of relation

schema attributes, 152
SELECT operations, 243
PROJECT operation, 244

DELETE command, SQL, 200
Delete operation, relational data models,

166, 167–168
Deletion, B-Trees, 629–630
Deletion anomalies, RDB design and, 467
Deletion marker, files, 568
Deletion operation, concurrency control

and, 806
Denormalization, 476

Dependency
diagrammatic notation for, 474
equivalence of sets of, 508
functional, 471–474, 505–512,

527–528, 532
inclusion, 531–532
inference rules for, 505–509, 527–528
join (JD), 494–495, 530–531
minimal sets of, 510–512
multivalued (MVD), 491–494, 527–530
preservation property, 476

Dependency preservation
algorithms, 519–522
nonadditive (lossless) join

decomposition and, 519–522
property of decomposition, 514–515
3NF schema using, 519–522

Dereferencing (–>), SQL, 386
Derived attribute, 66
Descendant nodes, tree structures, 617
Description record, SQL/CLI, 327–328
Descriptors, SQL schemas, 179
Design, see Database design
Design autonomy, DDBs, 845
Design transparency, DDBs, 844
Destructor, object operation, 371
Dictionary, ontology as, 134
Dictionary constructor, 369
Digital certificates, 1153
Digital libraries, 1047–1048
Digital signatures, 1152–1153
Digital terrain analysis, 988–989
Directed acyclic graph (DAG), 655
Directed graph, XML data

representation, 427–428
Dirty bit, buffer (cache) management,

558, 816
Dirty page tables, database recovery,

828–831
Dirty read problem, transaction

processing, 750
DISCONNECT command, SQL, 316
Discretionary action control, 1121,

1129–1134
Discretionary privileges, types of,

1129–1130
Discretionary security mechanisms, 1123
Discriminating attributes, 299–300
Discriminator key, UML class diagrams, 88
Disjointness constraint (d notation),

114–115
Disjunctive selection, search methods

for, 666–667
Disk blocks (pages)

allocating files on, 564
block size, 549–550
buffering, 556–560, 815–816
database recovery, 815–816
hardware addresses of, 550–551
interblock gaps in, 550
reading/writing data from, 551

 Index 1223

Disk drive, 550, 551–552
Disk pack, 547
Disk storage devices

capacity of, 547
double-sided, 547
efficient data access from, 552–553
fixed-head, 551
formatting, 549–550
external hashing, 575–577
hardware disk drive (HDD), 547
hardware of, 547-
interfacing drives with computer

systems, 551–552
moveable head, 551
parameters, 1167–1169
RAID, parallelizing access using, 542,

584–588
single-sided, 547

DISTINCT option, SQL, 188, 194
Distributed computing systems, 841
Distributed database management

systems, see DDBMs (distributed
database management systems)

Distributed databases, see DDBs
(distributed databases)

Distributed DBMS, 51
Distributed query processing

mapping, 859
localization, 859
data transfer costs, 860–862
semi-join operator, 862–863

DIVISION operation, 255–257
Document-based data models, 51, 53
Document-based NOSQL, 888, 890–895
Document body specification, HTML,

429
Document-centric documents, XML, 431
Document header specifications, HTML,

428
Document type definition (DTD), XML,

434–436
Documents

data-centric, 431
DBMS storage of, 442
declaration, XML, 433
document-centric, 431
extracting from databases, 442–443,

447–453
graph-based data for, 447–452
hierarchical views of, 447–452
hybrid, 431
hypertext, 425
parentheses for element specifications,

434
relational data models for, 447–449
schemaless, 432–433
schemas, 448–452
self-describing, 425
storage of, 442–443
tags for XML unstructured data,

428–430

tree-structured data models for,
431–433, 449–453

type of element, 434
valid, 434
well-formed, 433–424
XML, 431–436, 442–443, 447–453

Domain-key normal form (DKNF),
532–533

Domain relational calculus
formulas (conditions), 277–278
join condition, 278
nonprocedural language of, 268
quantifiers for, 279
selection condition, 278
variables, 277

Domain separation (DS) method,
transaction processing, 756–757

Domains
atomic values of, 151
attribute roles, 152
attribute value sets, 69–70
cardinality of, 153
Cartesian product of, 153
constraints, 158
data type specification, 151, 184
ER model entity types, 69–70
format of, 151
mathematical relation, 153
relation schema and, 152
relational data models, 151–152, 158
SQL, 184
tuples for, 151–152

Dot notation
object operation application, 372, 392
path expressions, SQL, 386
UDT components, 383

Double buffering technique, 556–557
Double-sided disks, 547
Downgrading locks, 786
Driver manager, JDBC, 331
Drivers, JDBC, 331–332
DROP command, SQL, 233
DROP TABLE command, SQL, 200
DROP VIEW command, SQL, 229
DSS (decision-support systems), 1102
Duplicates

indexes for management of, 641
parallel algorithm projection and, 685
PROJECT operation elimination of,

245
unary operation elimination of,

244–245
Durability (permanency) property,

transactions, 758
Dynamic arrays, PHP, 345–346
Dynamic file expansion, hashing for,

577–582
Dynamic files, 566
Dynamic hashing, 580
Dynamic multilevel indexes

B-trees and, 601–602, 622–630

B-trees and, 601–602, 617–622
concept of, 616
search trees and, 618–619
search, insert and deletion with,

625–629
Dynamic programming, query

optimization and, 716, 725–726
Dynamic random-access memory

(DRAM), 543
Dynamic spatial operators, 990–991
Dynamic SQL

command preparation and execution,
320–321

defined, 310
queries specified at runtime, 320–321

DynamoDB model, 896–867
e-commerce environment, access control

and, 1141
e-mail servers, client/server architecture,

47
Early (static) binding, 344
EER (Enhanced Entity-Relationship)

model
abstraction concepts, 129–133
categories, 108, 120–122, 126
class relationships, 108–110
conceptual schema refinement,

119–120
constraints, 113–116
database schema, 122–124
design choices, 124–126
generalization, 108, 112–120,

124–128
hierarchies, 116–119
inheritance, 110, 117–119
knowledge representation (KR),

128–129
lattices, 116–119
mapping to ODB schema, 407–408
ontology, 129, 132–134
semantic data models, 107–108,

129–134
specialization, 108, 110–120,

124–128
subclasses, 108–110, 117–119, 126
superclasses, 109, 110, 117–118, 126
UML class diagrams, 127–128
union type modeling, 108, 120–122

EER-to-Relational mapping
attributes of relations, 298–300
categories, 302–303
generalization options, 298–301
model constructs to relations,

298–303
multiple inheritance and, 301
multiple-relation options, 299–300
shared subclasses, 301
single-relation options, 299–300
specialization options, 298–301
union types, 302–303

Element operator, OQL, 413

1224 Index

Elements
complex, XML structure specification,

441
empty elements, 440
parentheses for specifications of, 434
root elements, 440
tree-structured data models, 430–431
type of in documents, 434, 440–441
XML, 430–431, 434, 440–441

Embedded SQL
communication variables in, 315, 316
connecting to a database, 315–316
cursors for, 317–320
database programming approach, 311,

338–339
defined, 310, 311
host language for, 314
Java commands using SQLJ, 321–325
precompiler or preprocessor for, 311, 314
program variables in, 314–315
query results and, 317–320
shared variables in, 314
tuple retrieval, 311, 314–317

Empty elements, XML, 440
Encapsulation

constructor function for, 384
mutator function for, 384
ODBs, 366, 370–374, 384–385
object behavior and, 366, 371
observer function for, 384
operations, 366, 370–374, 384–385
object naming and reachability, 373–374
SQL, 379–380, 384–385
user-defined type (UDT) for, 384–385

Encryption
Advanced Encryption Standards

(AES), 1150
asymmetric key encryption

algorithms, 1151
Data Encryption Standards (DES), 1150
database security, 1149–1153
defined, 1149–1150
digital certificates, 1153
digital signatures, 1152–1153
public key encryption, 1151–1152
RSA public key encryption algorithm,

1152
symmetric key algorithms, 1150–1151

End/start tag (</…>), HTML, 428
End users, 15–16
Enhanced data models

active databases, 963–974
active rules, 962, 963–964, 969–973
deductive databases, 962, 999–1012
functionality and, 961
logic databases, 962
multimedia databases, 962, 994–999
spatial databases, 962, 987–994
temporal databases, 962, 974–987
temporal querying constructs,

984–986
time series data, 986–987

Enhanced Entity-Relationship model, see
EER (Enhanced Entity-Relationship)
model

Enterprise flash drives (EFDs), 553
Entities

attributes, 63–70
conceptual data modeling, 33
conceptual design and, 70–72
defined, 63
ER mapping of, 291–293
ER models and, 63–72, 75, 79
generalized, 126
identifying (owner) type, 79
key (uniqueness constraint) attributes,

68–69, 79
NULL values, 66
overlapping, 115
participation in relationships, 72–73
recursive (self-referencing)

relationships and, 75
role names, 75
sets (collection), 67–68
strong, 79
subclass as, 110, 114–115
superclass as, 110
types, 67–68, 79, 110
value sets (domains) of attributes, 69–70
weak, 79, 292–293

Entity integrity, relational data modeling,
163–165

Entity-Relationship model, see ER
(Entity-Relationship) model

Entrypoints, object names as, 373, 387
Environment record, SQL/CLI, 327–328
Environments

application programs, 6–7, 46
communication software, 46
database system, 6–7, 42–46
modules, 31, 42–45
tools, 45–46

EQUIJOIN (=) comparison operator, 253
Equivalence of sets of functional

dependency, 508
Equi-width/equi-height histograms, 713
ER (Entity-Relationship) diagrams

conceptual design choices, 82–84
database application use of, 63–64
database schema as, 81
entity type distinction, 79
notations for, 81, 83–88, 1163–1165
schema construct names, 82

ER (Entity-Relationship) model
applications of, 59, 62–64, 70–72,

92–94
attributes, 63–70
constraints on, 73–74, 76–78, 91–92
data model type, 33
data modeling using, 59–105
database design using, 60–62, 80
entities, 63–72, 79
relationships, 72–78, 88–92
schema and, 61–62, 81–85

Unified Modeling Language (UML)
and, 60, 85–88

Error checking, PHP, 355
Errors, DDBs, 844
ER-to-Relational mapping

algorithm, 290–296
binary relationship types, 293–295
entity types, 291–293
ER model constructs, 296–298
multivalued attributes, 295–296
n-ary relationship types, 296
relational database design, 290–298
weak entity types, 292–293

Escape operator (/) in SQL, 196
ETL (extract, transform, load) process, 1103
Evaluation for query execution, 701–702
Event-condition-action (ECA) model

active rules (triggers), 963–964
SQL trigger components, 227

Event information versus duration
information, 976

Events, SQL trigger component, 227
Eventual consistency, NOSQL, 885–886
EXCEPT operation, SQL sets, 194–195
Exceptions

error handling, 322–323, 393–394
ODMG models, 393–394, 397–398
operation signature and, 397–398
SQLJ, 322–323

Execution autonomy, DDBs, 845
Execution for query optimization, 701–712
Execution transparency, DDBs, 844
Existence bitmap, 636
Existence dependency, 77–78
Existential quantifiers, 271, 274
EXISTS function, SQL query retrieval,

212–214
Exists quantifier, OQL, 415
Expert (knowledge-based) systems,

962–963
Explicit set of values, SQL, 214
Expressions

Boolean, 241–242
declarative, 268
formulas and, 270–271
in-line, 245
relational algebra, 239
safe, 276–277
tuple relational calculus, 270–271,

276–277
EXtended Markup Language, see XML

(EXtended Markup Language)
Extendible hashing, 578–580
EXTENDS inheritance, 393
Extensible Stylesheet Language (XLS), 447
Extensible Stylesheet Language for

Transformations (XSLT), 447
Extensions, SQL, 178
Extent inheritance, 377, 385
Extents

class declaration of, 398
constraints on, 376–377

 Index 1225

defined, 376
object persistence and, 373
ODMG models, 373, 376–377, 398
persistent collection for, 373, 376
transient collection for, 376
type hierarchy and, 376–377

External hashing, 575–577
External (schema) level (views), 37
External sorting, files, 568
External sorting algorithms, 660–663
Extraneous attribute, 510
F-score, IR, 1046–1047
Faceted search, IR, 1058–1059
Fact constellation, 1109
Fact tables, 1108
Factory objects, ODMG models, 398–400
Facts, relation schema and, 156
Fan-out, multilevel indexes, 613, 622
Fault, DDBs, 844–845
Fault tolerance, Big data technology and,

942, 946
Federated database (FDBS) schema

architecture, 871–872
Federated database system (FDBS),

866–868
Federated DBMS, 52
FETCH command, SQL, 317, 319–320
FETCH INTO command, 325
Fibre Channel over Ethernet (FCoE),

590–591
Fibre Channel over IP (FCIP), 590
Fields

connecting, 582–583
data type of, 560
Fields, records, 560, 561–563, 568–569
fixed-length records, 561
key, 568
mixed records, 582–583
optional, 562
ordered records, 568–569
ordering, 568
record type, 583
records, 560, 561–563, 568–569
repeating, 562–563
variable-length records, 561

Fifth normal form (5NF)
definition of, 494
functional dependency in, 532
join dependency (JD) in, 494–495,

530–531
inclusion dependency in, 531–532

File load factor, hashing, 582
File processing, 10–11
File servers, client/server architecture, 47
Files

allocating blocks on a disk, 564
B-trees for organization of, 583
binary search for, 570
clustered files, 572, 583, 602–603
data storage using, 541–542
database catalog for, 10–11
defined, 7

dynamic files, 566
fully inverted file, 641
grid files, 632–633
hashing techniques, 572–582
headers, 564
heaps, 567–568
indexed-sequential, 571
indexes, 20
indexing structures for, 601–652
inverted files, 641
linear search for, 564, 567–568
main (master) files, 571
mixed records, 582–583
operations on, 564–567
ordered (sorted) records, 568–572
overflow (transaction), 571
records, 560–564, 567–572, 582–583
static files, 566
storage of, 10–11, 560–572, 582–583
unordered records (heaps), 567–568

Filtering input, SQL injection and, 1146
First normal form (1NF)

atomic (indivisible) values of, 477–478
multivalued attributes, 481
nested relations, 479–480
techniques for relations, 478–479
unnest relation, 479–480

Fixed-head disks, 551
Fixed-length records, 561–563
Flag fields, EER-to-relational mapping

with, 300
Flash memory, 543–544
Flat files, 150
Flat relational model, 155
Flow analysis operations, 988
Flow control, 1147–1149
FLWOR expression, XQuery, 445
FOR clause, XQuery, 445–446
FOR UPDATE OF clause, SQL, 318
Force/no-force rules, 817–818
Foreign keys

relational data modeling, 163–165
SQL constraints, 186–187
XML specification, 441

Formal languages, see Relational algebra;
Relational calculus

Format, relational model domains, 151
Formatting styles, HTML, 428
Forms-based interfaces, 41
Forms specification language, 41
Formulas (conditions)

atoms in, 270–271, 277–278
Boolean conditions, 270–271
domain relational calculus, 277–278
tuple relational calculus, 270–271

Fourth normal form (4NF)
decomposition of relations, 529
definition of, 493, 528
functional dependency and, 527–528
inference rules for, 527–528
multivalued dependency (MVD) and,

491–494, 527–528

nonadditive join decomposition into,
530

normalizing relations, 493–494
FP-growth algorithm, 1077–1080
Fragmentation transparency, DDBs,

843–844
Free-form search request, 1023
Frequent-pattern (FP) tree, 1077–1080
FROM clause, SQL, 188–189, 197, 232
Full functional dependency, 2NF, 481–482
Fully inverted file, 641
Function-based indexing, 637–638
Function call injection, SQL, 1144–1145
Functional data models, 75
Functional dependency (FD)

Armstrong’s axioms, 506–509
closure, 505–506, 508
defined, 472, 505
equivalence of sets of, 508
extraneous attribute, 510
full functional dependency, 2NF, 481–482
inference rules for, 505–509, 527–528
left- and right-hand attributes of, 472
legal relation states (extensions), 472
minimal sets of, 510–512
normal forms, 481–483
notation for diagrams, 474
RDB design and, 471–474, 505–512
semantics of attributes and, 472–473
transitive dependency, 3NF, 483
universal schema relation for, 471–474

Functional requirements, 61
Functions

aggregate, 216–219, 260–261
built-in, 384
hashing (randomizing), 572, 580
inheritance specifications and, 385
overloading, 385
PHP programming, 350–352
query retrieval and, 216–219
relational algebra for, 260–261
SQL, 216–219, 384–385
type (class) hierarchies and, 374–375
UDT, 384–385
XML data creation using, 453–455

Fuzzy checkpointing, 819, 828
Garbage collection, 827
Generalization

conceptual schema refinement, 119–120
constraints on, 113–116
defined, 113
design choices for, 124–128
EER diagram notation for, 112
EER modeling concept, 108, 112–120,

124–128
entity type, 126
hierarchies, 119
lattices, 116–119
semantic modeling process, 131
superclass from subclasses, 112–113
total, 115
UML notation for, 127–128

1226 Index

Generalized projection operation, 259–260
Genetic algorithms (GAs), 1093
Geographic information systems (GISs),

4, 987
Global depth, hashing, 578
Global query optimization, 860
Global query optimizer, Oracle, 734–735
Glossary, ontology as, 134
GRANT command, 1131
GRANT OPTION, 1131
Granting and revoking privileges,

1129–1134
Graph-based data, XML document

extraction using, 447–452
Graph-based data models, 51, 53
Graph-based NOSQL, 888, 903–909
Graphical User Interfaces, see GUI

(Graphical User Interface)
Grid files, 632–633
GROUP BY clause

SQL, 219–220
view merging, subqueries, 705–706

Grouping
aggregate functions and, 216–218,

260–261
attributes, 219, 260–261
GROUP BY clause for, 219–220
HAVING clause for, 219–221
NULL values in grouping attributes, 219
operator, 415–416
OQL, 415–416
partitions, 219, 415–416
QBE (Query-by-Example) language,

1175–1177
relations partitioning into tuples, 219
separate groups for tuples, 219
SQL query retrieval and, 216–222
WHERE clause for, 221–222

GUI (Graphical User Interface)
data mining, 1095
DBMS provision of, 20–21
use of, 41

Hadoop
advantages of technology, 936
Big data technology for, 916–917,

921–926
distributed file system (HDFS), 921–926
ecosystem, 926
historical background of, 916–917
parallel RDBMS compared to, 944–946
releases, 921
YARN (Hadoop v2), 936–944, 949–953

Handles, SQL/CLI records, 328
Handle variables, SQL/CLI declaration

of, 328
Hardware

addresses, 550–551
disk storage devices, 547–552

Hash field, 572
Hash file, 572
Hash (randomizing) functions, 572, 580
Hash indexes, 633–634

Hash key, 572
Hash partitioning, 684
Hash tables, 572–573
Hashing techniques

dynamic file expansion, 577–582
dynamic hashing, 580
extendible hashing, 578–580
external hashing, 575–577
file storage, 572–582
folding, 574
internal hashing, 572–575
linear hashing, 580–582
multiple keys and, 632
partitioned hashing, 632
static hashing, 577

Having clause, OQL, 416
HAVING clause, SQL, 219–221
Hbase data model

column based systems, 900–903
CRUD operations, 903
distributed system concepts for, 903
NOSQL, 900–903
versioning, 900–902

Headers, file descriptors, 564
Heaps (unordered file records), 567–568
Here documents, PHP, 347–348
Heterogeneous DBMS, 52
Heuristic rules for query optimization,

657, 692, 697–701
Hidden attributes, objects, 371, 375
Hierarchical data models, 33, 53. See also

Tree-structured data models
Hierarchical systems using databases,

23–24
Hierarchical views, XML document

extraction using, 447–453
Hierarchies

association rules for data mining,
1081–1082

EER models, 116–119
generalization, 119
inheritance and, 118
memory, 543–545
object data models (acyclic graphs), 52
specialization, 116–119
tree structure, 116, 452–453
type (class), 366, 374–377, 385

High-level (conceptual) data models, 33,
60–62

High-level (nonprocedural) DML, 39–40
High-level language support, Big data

technology and, 946
High-performance data access, NOSQL,

886–887
Hints, Oracle, 736
Histograms

cost estimation from, 713
equi-width/equi-height, 713
selection conditions and, 668

HITS ranking algorithm, 1051
HOLAP (hybrid OLAP) option, 1114
Homogeneous DBMS, 52

Horizontal fragmentation (sharding),
DDB data, 843–844, 847–848

Horizontal partitioning, 684
Horn clauses, 1004
Host language, embedded SQL, 314
Hot set method, transaction processing,

757
Hoya (Hortonworks HBase on YARN),

943–944
HTML (HyperText Markup Language)

client tier of, 344
tag notation and use, 428–430
Web data and, 25

HTML tag (<…>), 428
Hybrid documents, XML, 431
Hybrid-hash join, 675–676
Hyperlinks, 25, 1027
Hypertext documents, 425
HyperText Markup Language, see HTML

(HyperText Markup Language)
Idempotent operations, 815
Identification, semantic modeling

process, 130–131
Identifying (owner) entity type and

relationship, 79
Image data, 989
Images

automatic analysis, 996–997
color, 997
defined, 995
multimedia databases for, 995–999
object recognition, 997–998
semantic tagging of, 998–999
shape, 997
texture, 997

Immediate updates
database recovery, 815, 823–826
SQL views, 230

Immutable property of OID, 367
Impendence mismatch, 312–313
Implementation

active databases, 967–972
aggregate operations, 678–679
database operations, 12
JOIN operations for, 668–681
operation encapsulation and, 371
pipelining using iterators, 682–683
query processing, 668–676, 679–681
temporal databases, 982

Implementation (physical storage) level,
RDB design, 459–460

IN comparison operator, SQL, 209–210
In-line expression, 245
In-line views, SQL, 232
In-place updating, 816
Inclusion dependency, 5NF, 531–532
Incorporating time, temporal databases,

977–984
Incorrect summary problem, transaction

processing, 750
Incremental updates, SQL views, 230
Incremental view maintenance, 707–710

 Index 1227

Index-based nested-loop join, 559,
718–719

Indexed allocation, file blocks, 564
Indexed (ordered) collection expressions,

OQL, 415
Indexed-sequential file, 571, 616
Indexes

bitmap indexes, 634–637
clustering, 602, 606–608
constraint management using, 641
creation of, 639–640
data modeling access path, 34
DBMS auxiliary files, 20
duplicate management using, 641
fully inverted file, 641
hash indexes, 633–634
locks for concurrency control,

805–806
logical versus physical, 638–639
multilevel, 613–617
multiple keys for, 613–633
ordered index on multiple attributes,

631–632
physical database file structures as, 641
primary, 602, 603–606
rebuilding, 640
secondary, 603, 609–612
single-level ordered, 602–613
spatial data, 991–993
SQL creation of, 201–202
tuning, 640–641

Indexing fields, 601, 602
Indexing structures

column-based storage of relations, 642
hints in queries, 641–642
physical database design and, 601–652
indexed sequential access method

(ISAM), 601
B-trees, 601–602, 622–630, 636–637
B-trees, 601–602, 617–622, 629–630
single-level ordered indexes, 602–613
multilevel indexes, 613–617
multiple keys for, 631–633
hash indexes, 633–634
bitmap indexes, 634–637
function-based indexing, 637–638
issues concerning, 638–642
RDB design and, 643–646
strings, 640

Industrial internet of things (IIOT or
IOT), 914

Inference engine, deductive databases,
999, 1004–1005

Inference rules
Armstrong’s axioms, 506–509
closure, 505–506, 508
4NF schema using, 527–528
functional dependencies, 505–509,

527–528
proof by contradiction, 507
multivalued dependencies, 527–528

Information extraction (IE), 1040

Information privacy, security
relationship to, 1128–1129

Information repository, DBMS, 46
Information retrieval (IR)

Boolean model, 1030
data, 1024
databases compared to IR systems,

1025–1026
defined, 1022–1023
desktop search engines for, 1025
enterprise search systems for, 1024
F-score for, 1046–1047
free-form search request, 1023
history of, 1026–1027
information need, 1024
inverted indexing, 1040–1044
levels of scale, 1024
modes of interaction in IR systems,

1027–1028
pipeline for processing, 1028–1029
probabilistic model, 1033–1034
queries in IR systems, 1035–1037
recall and precision, 1044–1046
search relevance, 1044–1047
semantic approach, 1028
semantic model, 1034–1035
statistical approach, 1028
text preprocessing, 1037–1040
trends in, 1057–1063
unstructured information, 1022
users, 1023–1024
vector space model, 1031–1033

Information updating, 23
Inherent model-based (implicit)

constraints, 157
Inherent rules, 22
Inheritance

behavior inheritance, 393
class–schema interface, ODL, 404–405
colon (:) notation for, 393
EER-to-relational mapping, 301
EXTENDS, 393
extent inheritance, 377, 385
function overloading and, 385
generalization lattice or hierarchy, 119
interface inheritance, 377, 393
multiple, 118, 301, 377–378, 393
ODBs, 366, 374–377, 377–378, 385, 393
ODMG object model and, 393, 404–405
selective, 377
simplified model for, 347–377
single, 118–119
specialization lattice or hierarchy,

117–118
SQL, 380
subclass/superclass relationships, 110,

117–119
table inheritance, 385
type inheritance, 385

Initial hash function, 580
Initial state, populating (loading)

databases and, 35

Inner join, SQL table (relations),
215–216

Inner/outer joins, 254, 263–264
Innermost nested query, 211
INSERT command, SQL, 198–200
Insert operation

constraint violations and, 166–167
relational data models, 166–167

Insertion, B-trees, 626–629
Insertion anomalies, RDB design and,

465–466
Instance variables, 365–366
Instances (occurrences), 35, 72
Instantiable class behavior, interface

and, 392
Instantiation, semantic modeling

process, 130
Integrity constraints

database applications and, 21–22
entity integrity, 163–165
foreign keys and, 163–164
referential integrity, 21, 163–165
relational modeling and, 160–165
relational database schemas and,

160–163
semantic, 165
valid and not valid states and, 160–161

Intellectual property rights, 1154–1155
Intention, 35
Interactive query interface, 43–44
Interactive transactions, concurrency

control and, 807
Interblock gaps, disk devices, 550
Interface inheritance, 377, 393
Interfaces. See also GUI (Graphical User

Interfaces)
built-in, ODMG models, 393–396
class–schema inheritance, ODL,

404–405
database operations, 12
DBMS, 20–21, 40–42
disk drives with computer systems,

551–552
instantiable class behavior and, 392
multiple user, 20–21
noninstantiable object behavior and,

392
object model definitions, 389–392
ODMG models and, 389–396,

404–405
operation encapsulation and, 371
operation specifications, 366

Interleaved concurrency, 747
Interleaved processes, 747
Internal hashing, 572–575
Internal (schema) level, 36
Internal nodes, tree structures, 622
Internet SCSI (iSCSI), 590
Interpolating variables within text

strings, 347
Interpreted queries, 710
Interquery parallelism, 687

1228 Index

INTERSECT operation, SQL sets,
194–195

INTERSECTION operation, 247–249
INTERVAL data type, 184
INTO clause, 317
Intraquery parallelism, 687
inverse references, 366, 370, 396–397
Inverse relationships, ODMG objects,

396–397
Inverted files, 641
Inverted indexing

construction of, 1041–1042
defined, 1041
information retrieval (IR), 1040–1044
Lucern indexing/search engine for,

1043–1044
process of, 1042

IS-A relationship, 109, 126
IS/IS NOT comparison operators, 209
Isolation. See also Snapshot isolation

levels of in transactions, 758
property, transactions, 14, 158

Iterator object, ODMG models, 393
Iterator variables

query results and, 312
OQL, 409–410

Iterators
defined, 682
pipelining implementation using,

682–683
SQLJ query result processing with,

323–325
Java

embedding SQL commands (SQLJ),
321–325

exceptions for error handling, 322–323
Web programming technologies, 358

Java server pages (JSP), 358
Java servlets, 358
JavaScript, 358
JavaScript Object Notation (JSON), 358
JDBC (Java Database Connectivity)

class library imported from, 331, 332
drivers, 331–332
programming steps, 332–335
SQL class library, 326, 331–335
two-tier client/server architecture and,

49
Join attribute, 253
Join condition, 189, 191, 252, 278
Join dependency (JD), 5NF, 494–495
JOIN operations

aggregate operation implementation
and, 678–679

anti-join (AJ) operator, 658–660,
677–678, 681, 719–720

attributes, 668
bucket join, 931
buffer space and, 672–673
cardinality, 719–720
cost functions for, 717–726

distributed query processing, 862–863
dynamic programming approach to

ordering, 725–726
EQUIJOIN (=) comparison operator,

253
hybrid-hash join, 675–676
index-based nested-loop join, 559,

718–719
inner/outer, 254, 263–264
join selectivity (js) operator, 717–718
MapReduce (MR), 930–932
map-side hash join, 930
multiway joins, 668
N-way joins, 931–932
NATURAL JOIN (*__) comparison

operator, 253, 262–263
nested-loop join, 558–559, 672–673, 718
non-equi-join, 681
optimization based on cost formulas,

720–721
ordering choices in multirelational

queries, 721–724
OUTER JOIN operations, 262–264,

679–681
parallel algorithms, 685–686
partition-hash join, 559, 674–675, 719,

930–931
performance of, 673–674
physical optimization, 724
query processing implementation,

668–676, 679–681
recursive closure operations, 262
relational algebra and, 251–255,

262–264
semi-join (SJ) operator, 658–660, 681,

719–720, 862–863
SQL query retrieval, 215–216
SQL relations, 215–216
sort-merge join, 559, 719, 930
two-way join, 668

k-means algorithm, 1088–1089
Key constraints

attributes, 68–69, 302
database integrity and, 21
integrity constraints and, 163–165
referential integrity constraints and,

163–165
relational modeling and, 158–160,

163–165
relational schema and, 157–165
surrogate, 302
uniqueness property, 68–69, 159

Key field, records, 568
Key-value storage (data models), 34, 51, 53
Key-value stores, NOSQL, 888, 895–900
Keys

attributes, 477
candidate key, 159–160, 477
composite keys, 631
defined, 476
foreign keys, 163–165, 186–187

indexes with, 631–633
multiple keys, 631–633
normal forms and, 476–477
ODMG object model, 398
primary key, 159, 186–187, 441, 477
SQL, 186–187
superkey, 158–159, 476–477
unique keys, 160
XML schema specification, 441

Keyword-based data search, 41
Keyword queries, 1035
Knowledge discovery in databases

(KDD), 1070–1073
Knowledge representation (KR)

abstraction concepts, 129–133
domain of knowledge for, 129
EER modeling and, 128–129
ontology and, 129
reasoning mechanisms, 129

Label-based security policy
architecture, 1156–1157
multilevel security, 1139–1140
Oracle, 1155–1158
Virtual private database (VPD)

technology, 1156
Language design for database

programming, 312, 339
Latches, concurrency control and, 807
Late (dynamic) binding, 377
Lattices

EER models, 116–119
generalization, 119
inheritance and, 117–118
specialization, 116–119

Lazy updates, SQL views, 230
Leaf class, 127
Leaf nodes, tree structures, 257, 617, 623
Least recently used (LRU) strategy,

buffering, 559
Legacy data models, 33, 51, 53
Legal relation states (extensions), 472
Level trigger, 967
Library of functions or classes

application programming interface
(API), 312, 326

database programming approach, 311,
338–339

JDBC: SQL class library, 326, 331–335
SQL/CLI (SQI call level interface),

326–331
Lifetime of an object, 388
LIKE comparison operator, SQL,

195–196
Linear hashing, 580–582
Linear regression, data mining, 1092
Linear scale-up, 684
Linear search, files, 564, 567–568
Linear speed-up, 684
Link structure analysis, Web search and,

1050–1051
Linked allocation, file blocks, 564

 Index 1229

Links, UML class diagrams, 87
List constructor, 369
Literal declaration, 392
Literals

atomic (single-valued) types, 368, 388
collection, 392
constructors for, 368–370
deductive databases, 1002–1003
objects compared to, 368
ODBs, 368–370, 388, 392
ODMG models, 388, 392
structured, 388
type generators, 368–369
type structures for, 368–370

Loading utility, 45
Local area network, 842
Local depth, hashing, 578
Local query optimization, 860
Localization, DDB query processing,

859
Location analysis, 988
Location transparency, DDBs, 843
Locking data items, 781
Locks

binary locks, 782–784
certify locks, 796–797
concurrency control and, 782–786,

796–797, 805–806
conversion of, 786
downgrading, 786
index concurrency control using,

805–806
shared/exclusive (read/write) locks,

784–786
upgrading, 786, 797

Log buffers, 755, 756
Log sequence number (LSN), 828
Logic databases, 962
Logical (conceptual) level, RDB design,

459–460
Logical comparison operators, SQL,

188–190
Logical data independence, 37–38
Logical database design, see Data model

mapping
Logical design, 62
Logical index, 638–639
Logical theory, ontology as, 134
Loss of confidentiality, database threat

of, 1122
Loss of integrity, database threat of, 1122
Lossy design, 515
Lost update problem, transaction

processing, 750
Low-level (physical) data models, 33–34
Low-level (procedural) DML, 40
Lucern indexing/search engine,

1043–1044
Magnetic tape

backing up databases using, 555–556
memory hierarchy and, 544–545

storage devices, 555–556
tape reel, 555

Main (master) file, 571
Main memory, 543
Maintenance, databases, 6
Maintenance personnel, 17
Mandatory access control (MAC), 1121,

1134–1137
Mandatory security mechanisms, 1123
Map data, 989
Mappings

data model, 62
database schema views, 37
distributed query processing, 859
EER model constructs to relations,

298–303
EER schema to ODB schema, 407–408
ER-to-relational, 290–298
ODB conceptual design, 407–408
tuples for relations, 154

MapReduce (MR)
advantages of technology, 936
Big data technology for, 917–921,

926–936
historical background of, 917–918
joins in, 930–932
parallel RDBMS compared to, 944–946
programming model, 918–921
runtime, 927–930

Map-side hash join, MapReduce (MR),
930

Mark up, XML documents for HTML,
428–429

Market-basket data model, 1073–1075
Mass storage, 543
Master data management (MDM), 1110
Master-master replication, NOSQL, 886
Master-slave replication, NOSQL, 886
Materialized evaluation, 681, 702–702
Materialized views, query execution,

707–710
Mathematical relation, domains, 152
MAX function, SQL, 217
MAXIMUM function, grouping, 260
Measurement operations, 988
Mechanical arm, disk devices, 551
Memory

cache, 543
dynamic random-access (DRAM), 543
flash memory, 543–544
hierarchies, 543–545
magnetic tape, 544–545
main, 543
optical drives, 544
random-access (RAM), 543
storage capacity and, 543
storage devices for, 543–545

Menu-based interfaces, 40
Merging phase, external algorithms, 661
Meta-data

database catalog and, 10–11

defined, 6
schema storage, 35

Methods
database operations, 12
object data models, 53
operation implementation and, 366,

371
Middle-tier Web server, PHP as, 344
Middleware layer, n-tier architecture,

50–51
MIN function, SQL, 217
Minimal sets of functional dependency,

510–512
MINIMUM function, grouping, 260
Miniworld, 5
MINUS operation, 247–249
Mirroring, (shadowing), RAID, 585
Mixed (hybrid) fragmentation, DDB

data, 847–848
Mixed records, files for, 582–583
Mobile applications, access control of,

1141–1142
Mobile device apps

ER modeling and, 59
interfacing, 40–41
user transactions by, 16

Model-theoretic interpretation of rules,
1005

Models, see Data models; EER (Enhanced
Entity-Relationship) model; ER
(Entity-Relationship) model; Object
data models

Modification anomalies, RDB design
and, 467

Modifier, object operations, 371
Modules

buffering (caching), 20, 42
client module, 31
compilers, 42–45
database queries and, 20, 43–44
database systems, 31, 42–45
DBMS components, 42–45
interactive query interface, 43–44
server module, 31
stored data manager, 42

MOLAP (multidimensional OLAP)
function, 1114

MongoDB data model
CRUD operations, 893
documents, 890–893
NOSQL, 890–895
replication in, 894
sharding in, 894–895

Moveable head disks, 551
Multidatabase system recovery, 831–834
Multidimensional models, 1108
Multilevel indexes

dynamic, 616, 617–630
fan-out, 613, 622
levels, 613–616
physical database design and, 613–617

1230 Index

Multimedia databases
audio data source analysis, 999
concepts, 994–996
enhanced data models, 962, 994–999
image automatic analysis, 996–997
object recognition, 997–998
semantic tagging of images, 998–999
types of, 3–4

Multiple granularity locking
concurrency control and, 801–804
granularity levels for, 801
granularity of data items, 800–801
protocol, 802–804

Multiple hashing, collision resolution, 575
Multiple inheritance, 118, 301, 377–378,

393
Multiple keys

grid files and, 632–633
indexes on, 613–633
multiple attributes and, 631–632
ordered index on, 631–632
partitioned hashing with, 632
physical database design and, 613–633

Multiple-relation options, EER-to-
relational mapping, 299–300

Multiple user interfaces, 20–21
Multiplicities, UML class diagrams, 87
Multiprogramming

concept of, 746–747
operating systems, 747

Multirelational queries, JOIN ordering
choices and, 721–724

Multiset (tuple) operations
comparisons for query retrieval, 209–211
SQL tables, 193–195

Multiuser DBMS systems, 51
Multiuser transaction processing, 13–14
Multivalued attributes, 66, 295–296, 481
Multivalued dependency, see MVD

(multivalued dependency)
Multiversion concurrency control, 781,

795–797
certify locks for, 796–797
timestamp ordering (TO), 796
two-phase locking (2PL), 796–797

Multiway joins
implementing, 668
SQL table (relations), 216

Mutator function, SQL encapsulation, 384
MVD (multivalued dependency)

all-key relation of, 491, 493
definition of, 491–492
fourth normal form (4NF) and,

491–494, 527–530
inference rules for, 527–528
normalizing relations, 493–494
trivial/nontrivial, 493

n-ary relationship types, mapping of, 296
n-degree relationships, 88–92
n-tier architecture for Web applications,

49–51

N-way joins, MapReduce (MR), 931–932
Named iterator, SQLJ, 323
Namespace, XML, 440
Naming mechanisms

constraints, SQL, 187
database entrypoints, 373
object persistence and, 373–374
operations for renaming attributes,

245–246
query retrieval and, 192, 214–215
renaming attributes, 192, 214–215,

245–246
schema constructs, 82

Naming transparency, DDBs, 843
NATURAL JOIN (*__) comparison

operator, 253, 262–263
NATURAL JOIN operation, SQL tables,

215
Natural language interfaces, 41
Natural language queries, 1037
Neo4j system

cypher query language of, 905–908
distributed system concepts for,

908–909
nodes, 904–905
NOSQL, 903–909
relationships, 904–905

Nested-loop join, 558–559, 672–673, 718
Nested queries

comparison operators for, 210–211
correlated, 211–212
innermost query of, 211
outer query of, 209
query optimization and, 702–704
subqueries, 702–704
tuple values in, 209–211
unnesting (decorrelation), 704

Nested relations, 1NF in, 479–480
Network-attached storage (NAS), 589–590
Network data models, 33, 51, 53
Network systems using databases, 23–24
Network topologies, 843
Neural networks, data mining, 1092
No waiting algorithm, deadlock

prevention, 791
NodeManager, YARN, 942
Nodes

constant, query graphs, 273
leaf, query trees, 257
relation, query graphs, 273
tree structures, 617

Non-equi join implementation, 681
Nonadditive (lossless) join property

algorithms, 519–523
Boyce-Codd normal form (BCNF)

schemas using, 522–523
dependency preservation and, 519–522
4NF schema using, 530
normalization process, 476
RDB decomposition, 515–518, 519–522
successive decompositions, 517–518

testing binary decompositions for, 517
3NF schema using, 519–522

Nonadditive join test for binary
decomposition (NJB), 490

Noninstantiable object behavior,
interface and, 392

Nonprocedural language, 268
Nonrecursive query evaluation, 1010–1012
Nonserial schedules, 763, 764–765
Normal form test, 475
Normal forms

Boyce-Codd normal form (BCNF),
487–491

defined, 475
denormalization, 476
domain-key (DKNF), 532–533
fifth normal form (5NF), 494–495
first normal form (1NF), 477–481
fourth normal form (4NF), 491–494
insufficiency of for relational

decomposition, 513–514
join dependency (JD) and, 494–495
keys, attributes and definitions for,

476–477
multivalued dependency (MVD) and,

491–494
normalization of relations, 474–476,

482, 485, 486–487, 493–494
practical use of, 476
primary keys for, 483–495
RDB design and, 474–495, 513–514,

528–533
second normal form (2NF), 481–482,

484–486
third normal form (3NF), 483–484,

486–487
Normalization process

algorithms, 519–527
data normalization, 475–476
dependency preservation property, 476
multivalued dependency (MVD),

493–494
nonadditive (lossless) join property, 476
normal form test for, 475
relations, 474–476

NOSQL database system
availability, 885–886
big data storage uses, 3, 26
CAP theorem, 888–890
categories of, 887–888
column-based, 888, 900–903
CRUD (create, read, update, and

delete) operations, 887, 893, 903
data models, 34, 51
DDB similar characteristics, 885–887
distributed storage using, 883
document-based, 888, 890–895
emergence of, 884–885
eventual consistency, 885–886
graph-based, 888, 903–909
Hbase data model, 900–903

 Index 1231

high-performance data access,
886–887

key-value stores, 888, 895–900
MongoDB data model for, 890–895
Neo4j system, 903–909
query language similar characteristics,

887
replication models for, 886
replication, 885–886, 894
scalability, 885
sharding, 886, 894–895
versioning, 887, 899, 900–902

NOT FINAL, UDT inheritance
specification, 385

NOT operator, see AND/OR/NOT
operators

NO-UNDO/REDO algorithm, 815,
821–823

NULL values
aggregate functions and, 218
attribute not applicable, 208
complex query retrieval and, 208–209
constraints on attributes, 160,

184–186
discarded values, 218
entity attributes, 66
grouping attributes with, 219
IS/IS NOT comparison operators for,

209
query retrieval in SQL, 208–209, 218,

219
RDB design problems, 523–524
referential integrity and, 163–164
relational modeling and, 155–156, 160
relation schema for RDB design and,

467–468
grouping attributes, 219
SQL attribute constraints, 184–186
three-valued logic for comparisons,

208–209
tuples for relations, 155–156, 163,

467–468
unavailable (or withheld) value, 208
unknown value, 208

Numeric arrays, PHP, 349
Numeric data types, 182, 348
Object-based storage, 591–592
Object Data Management Group, see

ODMG (Object Data Management
Group)

Object data models
classes, 52
data model type, 33
DBMS classification from, 51, 52–53
hierarchies (acyclic graphs), 52
methods, 53
ODMG, 387–400

Object databases, see ODBs (object
databases)

Object definition language, see ODL
(object definition language)

Object identifier, see OID (object identifier)
Object identity

literal values for, 368
ODBs, 367–368, 378
OID implementation of, 367
SQL, 379

Object-oriented systems, persistent
storage, 19–20

Object query language, see OQL (object
query language)

Object recognition, multimedia
databases, 997–998

Object-relational systems
extended-relational systems, 53
SQL, 202

Objects
arrow (–>;) notation for, 392
atomic (single-valued) types, 368, 388,

396–398
attributes, 396
behavior of based on operations, 371
collections, 373, 376
constructors for, 368–370
dot notation for, 372, 392
encapsulation of, 366, 371
exceptions, 397–398
hidden attributes, 371
instance variables, 365–366
interfaces, noninstantiable behavior

and, 392
lifetime, 388
literals compared to, 368
naming, 373–374, 387
ODBs, 365–371, 387–388, 395–400
ODMG models, 387–388, 392, 395–400
operations for, 370–372
persistent, 365, 373–374, 376
reachability, 373–374
relationships, 396–397
signatures, 366, 397
state of, 387
structure of, 388
transient, 365, 373, 376
type generators, 368–369
type structures for, 368–370
unique identity, 367–368
visible/hidden attributes, 371, 375

Observer function, SQL encapsulation, 384
ODBC (Open Database Connectivity)

data mining, 1094–1095
standard, 49, 326

ODBs (object databases)
C++ language binding, 417–418
conceptual design, 405–408
development of, 363–365
encapsulation of operations, 366,

370–374, 384–385
inheritance and, 366, 374–377,

378, 385, 393
instance variables, 365–366
inverse references, 366, 370, 396–397

literals in, 368–370, 388–392
Object Data Management Group

(ODGM) model, 386–405, 417–418
object definition language (ODL) and,

386, 400–405
object identifier (OID), 367–368
object query language (OQL), 408–416
object-oriented (OO) concepts, 365–366
objects in, 365–371, 387–388, 395–400
polymorphism (operator overloading),

366, 377
RDB compared to, 405–406
SQL extended from, 379–386
type (class) hierarchy, 366, 374–377

ODL (object definition language)
classes, 400, 404–405
class–schema interface inheritance,

401–404
Object Data Management Group

(ODGM) model and, 386, 400–405
object databases (ODBs) and, 386–387,

400–405
schemas, 400–403
type constructors in, 369

ODMG (Object Data Management Group)
atomic (user-defined) objects, 395–398
bindings, 386, 417–418
built-in interfaces and classes, 393–396
C++ language binding, 386, 417–418
database standard, 33, 364–365
extents, 373, 376–377, 398
factory objects, 398–400
inheritance in object models, 393
interface definitions for object models,

389–392
keys, 398
literals in object models, 388, 392
object databases (ODBs), 386–405,

417–418
object definition language (ODL) and,

386, 400–405
object model of, 387–400
object query language (OQL) and, 386,

408
objects, 387–388, 392, 395–400
standards, 386, 417–417

OID (object identifier)
immutable property of, 367
ODB unique object identity and, 367–368
ODMG models, 387
reference types used for in SQL, 383

OLAP (Online analytical processing)
data warehousing and, 1102
data warehousing characteristics and,

1104
HOLAP (hybrid OLAP) option, 1114
MOLAP (multidimensional OLAP)

function, 1114
ROLAP (relational OLAP) function,

1114
use of, 4

1232 Index

OLTP (online transaction processing)
data warehousing and, 1102
multiuser transaction processing, 14
relational data modeling, 169
special-purpose DBMS use, 52

Online analytical processing, see OLAP
(Online analytical processing)

Online transaction processing, see OLTP
(online transaction processing)

Ontology
conceptualization and, 134
defined, 134
knowledge representation (KR) and, 129
semantic Web data models, 133–134
specification and, 134
types of, 134

Ontology-based information integration,
1052–1053

OO (object-oriented) concepts, 365–366
OODB (object-oriented database)

attribute versioning, 982–984
database complexity and, 24–25
development of, 363
temporal databases incorporating time

in, 982–984
OQL (object query language)

aggregate functions, 413–414
Boolean (true/false) results, 414
collection operators, 413–416
element operator, 413
exists quantifier, 415
grouping operator, 415–416
indexed (ordered) collection

expressions, 415
iterator variables for, 409–410
named query specification, 412–413
ODBs, 408–416
ODGM model queries and, 408–416
ODMG standard and, 386
path expressions, 410–412
query results, 410–412
select…from…where structure of, 409

OOPL (object-oriented programming
language), class library for, 312

op comparison operator, 270
Open addressing, hashing collision

resolution, 574
OPEN CURSOR command, SQL, 317
OpenPGP (Pretty Good Privacy)

protocol, XML, 1140–1141
Operating system (OS), 42
Operational data store (ODS), 583, 1105
Operations. See also Query processing

strategies
aggregate, 678–679
assignment (←) for, 245
binary, 240, 251–259, 262–264
defined, 12
delete, 166, 167–168
dot notation for objects, 372
encapsulation, 366, 370–374, 384–385
files, 564–567

generalized projection, 259–260
insert, 166–167
JOIN, 251–255, 262–264, 668–676
method (body) of, 366, 371
ODBs, 366, 370–374, 384–385
pipelining for combinations of,

681–683
program variables for, 565–566
record-at-a-time, 566
recursive closure, 262
relational algebra, 240–259, 262–265
relational data modeling, 165–168
renaming attributes, 245–246
retrievals, 165–166, 564–565
schedules, 759–760, 773
selection conditions for, 564–565
sequence of, 245–246
set-at-a-time, 566
set theory and, 246–251, 264–265
signature (interface) of, 366, 371
SQL query recovery and, 194–197
SQL sets, 194–195
unary, 240, 241–246
UNION, 194–195, 264–265
update (modify), 166, 168–169, 564–565
user-defined functional requirements,

61
Operator-level parallelism, 684–686
Operators

aggregate functions, 216–219, 260–261
arithmetic, SQL, 196–197
collections, 413–416
comparison, 209–211
nested queries, 209–211
defined, 17
grouping, 415–416
logical comparison, SQL, 188–190
OQL collections, 413–416
spacial, 990–991
SQL query recovery, 188–190,

196–197, 209–211
SQL query translation into, 657–660

Optical drives, 544
Optimistic protocols, 781
Optional field, records, 561–562
OR logical connective, SQL, 209–210
OR operator, see AND/OR/NOT operators
Oracle

adaptive optimization, 735
array processing, 735–736
global query optimizer, 734–735
hints, 736
key-value store, 899
label-based security policy, 1155–1158
outlines, 736
physical optimizer, 733–734
query optimization in, 733–737
SQL plan management, 736–737
virtual private database (VPD)

technology, 1156
ORDBMS (object-relational database

management system), 364

ORDER BY clause
SQL, 197–198
XQuery, 446

Order preserving, hashing, 577
Ordered (sorted) records, 568–572
Ordering field, records, 568
OUTER JOIN operations, 216, 262–264
Outer query, 209
OUTER UNION operation, 264–265
Outlines, Oracle, 736
Overflow (transaction) file, 571
Overlapping entities, 115, 126
PageRank ranking algorithm, 1051
Parallel algorithms

aggregate operations for, 686
architectures for, 683–684
interquery parallelism, 687
intraquery parallelism, 687
join techniques, 685
operator-level parallelism, 684–686
partitioning strategies, 684
projection and duplicate elimination, 685
query processing using, 683–687
selection conditions, 685
set operations for, 686
sorting, 684

Parallel database architecture, 683
Parallel processing, 747
Parameters

binding, 329, 333
disks, 1167–1169
JDBC statement parameters, 333
SQL/CLI statement parameters, 329
stored procedure type and mode,

336–337
Parametric (naïve) end users, 16
Parametric user interfaces, 42
Parent nodes, tree structures, 617
Parser, query processing, 655
Partial categories, 122
Partial key, 79, 479
Partial specialization, 115, 126
Participation constraints, 77–78
Partition algorithm, 1081
Partition-hash join, 559, 674–675, 719,

930–931
Partition tolerance, DDBs, 845
Partitioned hashing, 632
Partitioning strategies

NOSQL, 886
parallel algorithms, 684

Partitions
OQL, 415–416
grouping and, 219, 415–416
SQL query retrieval and, 219

Path expressions
OQL, 410–412
SQL, 386
XPath for, 443–445

Path separators (/ and //), XML, 443
Patterns, substring matching in SQL,

195–197

 Index 1233

PEAR (PHP Extension and Application
Repository), 353–354

Performance, Big data technology and, 945
Performance monitoring, 45
Periodic updates, SQL views, 230
Persistent data, storage of, 545
Persistent objects, 365, 373–374
Persistent storage, 19–20
Persistent storage modules, 336
Phantom records, concurrency control

and, 806–807
PHP (Hypertext processor)

arrays, 345–346, 348–350
built-in variables, 352–353
comments in, 345
connecting to a database, 353–355
data collection and records, 355–356
error checking, 355
Extension and Application Repository

(PEAR), 353–354
functions, 350–352
here documents, 347–348
HTML and, 343–346
middle-tier Web server as, 344
numeric data types for, 348
placeholders, 356
predefined variables, 345–346
query retrieval, 356–357
query submission, 355
text strings in, 346, 347–348
use of, 343–345
variable names for, 346, 347
Web programming using, 343–359

Phrase queries, 1036
Physical clustering, mixed records, 583
Physical data independence, 38
Physical data models, 33–34
Physical database design

data storage and, 546
indexing design decisions, 645–646
indexing structures, 601–652
job mix factors for, 643–645
multilevel indexes, 613–617
relational databases (RDBs) with,

643–646
single-level ordered indexes, 602–613

Physical database file structures, 641. See
also Indexes

Physical design, data modeling, 62
Physical index, 638–639
Physical optimization, queries, 724
Physical optimizer, Oracle, 733–734
Pin count, buffer management, 558
Pin-unpin bit, database recovery cache, 816
Pipelined parallelism, 687
Pipelining

combining operations using, 681–683
iterators for implementation of, 682–683
materialized evaluation and, 681
pipelined evaluation, 682
processing information, 1028–1029
query processing using, 681–683

Placeholders, PHP, 356
Plan caching, query optimization, 730
Pointers

B-trees, 620, 623–624
file records, 563, 575–576

Polymorphism (operator overloading)
binding and, 377
ODBs, 366, 377

Populating (loading) databases, 35
Positional iterator, SQLJ, 323
Practical relational model, 177–206.

See also SQL (Structured Query
Language) system

Precompiler
DML command extraction, 44
embedded SQL and, 311, 314

Predefined variables, PHP, 345–346
Predicate, relation schema and, 156
Predicate-defined subclasses, 113, 126
Prefix compression, string indexing, 640
PreparedStatement objects, JDBC, 333
Preprocessor, embedded SQL and, 311, 314
Primary file organization, 546
Primary indexes, 602, 603–606
Primary keys

arbitrary designation of, 477
normal form based on, 483–495
relational data modeling, 159
SQL constraints, 186–187
XML specification, 441

Primary storage, 542, 543
Prime/nonprime attributes, 477
Printer servers, client/server architecture,

47
Privacy issues and preservation,

1153–1154
Privileged software use, 19
Privileges, granting and revoking in SQL,

202
Probabilistic model, IR, 1033–1034
Probabilistic topic modeling, IR,

1059–1061
Program variables

embedded SQL, 314–315
file operations, 565–566

Program-data independence, 12
Programming, see Database

programming; SQL programming
Programming languages

DBMS, 38–40
declarative, 40
design for database programming,

312–313, 339
impendence mismatch, 312–313
Java, 321–325, 358
PHP (Hypertext processor), 343–359
QBE (Query-by-Example), 1171–1178
XML, 434, 436–447

Programming model, MapReduce (MR),
918–921

Program-operation independence, 12
Project attributes, 189

PROJECT operation
degree of relations, 244
duplicate elimination and, 244–245
query processing, algorithms for,

676–678
relational algebra using, 243–245

Prolog language, deductive databases,
1000–1003

Proof by contradiction, 507
Proof-theoretic interpretation of rules,

1005
Properties of decomposition

attribute preservation condition, 513
dependency preservation, 514–515
insufficiency of normal forms,

513–514
nonadditive (lossless) join, 515–517,

519–523
RDB design and, 504, 513–518
universal relations and, 513

Protection, databases, 6
Proximity queries, 1036
Public key encryption, 1151–1152
Pure distributed database architecture,

869–871
QBE (Query-by-Example) language

aggregate functions in, 1175–1177
grouping, 1175–1177
modifying the database, 1177–1178
retrievals in, 1171–1175

Qualified association, UML class
diagrams, 88

Qualifier conditions, XML, 443
Quantifiers

domain relational calculus, 279
existential, 271, 274
queries using, 274–276
transformation of, 274
tuple relational calculus, 271, 274–276
universal, 271, 274–276

Queries
buffering (caching) modules for, 20, 42
compiler, 43–44
complex retrieval, 207–225
constant nodes, 273
Datalog language, 1004, 1010–1012
defined, 6
indexes for, 20
indexing hints in, 641–642
information retrieval (IR) systems,

1035–1037
interactive interface, 43–44
join condition, 189, 191
keyword-based, 41
named specification, OQL, 412–413
nested, 209–212
nonrecursive evaluation, 1010–1012
object query language (OQL), 408–416
ODMG model for, 408–416
optimizer, 44
outer, 209
processing in databases, 20

1234 Index

Queries (continued)
quantifiers for, 274–276
recursive, 223
relation nodes, 273
relational algebra for, 265–268
select-from-where structure, 188–190
selection condition, 189
select-project-join, 189–190, 273
spatial, 991
SQL retrieval, 187–198, 207–225
temporal constructs, 984–986
TSQL2 language for, 984–986
tuple relational calculus for, 272–276
XML languages for, 443–447

Query block, 657–658
Query decomposition, DDBMS, 863–865
Query execution

aggregate functions for, 709
cost components for, 711–712
GROUP-BY view merging, 705–706
incremental view maintenance, 707–710
materialized views for, 707–710
nested subqueries, 702–704
query evaluation for, 701–702
subquery (view) merging

transformation for, 704–706
Query graphs

internal query representation by, 655
notation, 692–694
query optimization, 692–697
tuple relational calculus, 273–274

Query modification, SQL views, 229–230
Query optimization

cost estimation for, 657, 710–713,
716–717

cost functions for, 714–715, 717-
cost-based optimization, 710–712, 716,

726–728
data warehouses, 731–733
distributed databases (DDBs), 859–863
dynamic programming, 716, 725–726
execution plan, display of, 729
heuristic rules for, 657, 692, 697–701
histograms for, 713
JOIN operation for, 717–726
multirelation queries, 721–724
operation size estimation, 729–730
Oracle, 733–737
physical optimization, 724
plan caching, 730
query execution and, 701–712
query processing compared to,

655–657
query trees and graphs for, 692–697
SELECT operation for, 714
semantic query optimization, 737–738
star-transformation optimization,

731–733
top-k results, 730
transformation rules for relational

algebra operations, 697–699
Query optimizer, 655

Query processing strategies
aggregate operation implementation,

678–679
anti-join (AJ) operator for, 658–660
distributed databases (DDBs), 859–863
external sorting algorithms, 660–663
importance of, 656–657
JOIN operation implementation,

668–676, 679–681
parallel algorithms for, 683–687
pipelining to combine operations,

681–683
PROJECT operation algorithm, 676–678
query block for, 657–658
query optimization compared to,

655–657
SELECT operation algorithms, 663–668
semi-join (SJ) operator for, 658–660
set operation algorithm, 676–678
SQL query translation, 657–660
steps for, 655–656

Query results
bound columns approach, 329
cursor (iterator variable) for, 312,

317–320
embedded SQL, 312, 317–320
impedance mismatch and, 312
iterators for, 323–325
OQL, 410–412
path expressions, 386, 410–412
PHP, 356–357
SQL/CLI processing, 329
SQLJ processing of, 323–325

Query retrieval
aggregate functions in, 216–219
alias for, 192
arithmetic operators for, 196–197
asterisk (*) uses, 193, 218
attribute name qualification, 191
Boolean (TRUE/FALSE) statements

for, 212–214
CASE clause for, 222–223
clauses used in, 198–199
comparison operators, 188–191, 195–197
complex queries, 207–225
EXISTS function for, 212–214
explicit sets of values, 214–215
FROM clause for, 188–189, 197, 232
grouping, 216–222
joined tables (relations), 215–216
LIKE comparison operator, 195–196
logical comparison operators for,

188–190
multiset of tuples, 188, 193–195
nested queries, 209–212
NULL values and, 208–209
ORDER BY clause for, 197–198
ordering results, 197
PHP, 356–357
QBE (Query-by-Example) language,

1171–1175
recursive queries, 223

renaming attributes, 192, 214–215
SELECT statement (clause) for,

187–188, 194–195, 197
select-from-where block, 188–191
set operations for, 194–195
set/multiset comparisons, 209–211
SQL, 187–198, 207–225, 230–231
substring pattern matching, 195–197
table set relations, 193–195
three-valued logic for comparisons,

208–209
tuple variables for, 192, 209–211
UNIQUE function for, 212–214
views (virtual tables) for, 230–231
WHERE clause for, 188, 192–193, 197
WITH clause for, 222–223

Query server, two-tier client/server
architecture, 49

Query submission, PHP, 355
Query tree

defined, 257
heuristic optimization of, 694–694
internal query representation by, 655
notation, 257–259, 692–694
query optimization, 692–697
RDBMS use of, 257–259
semantic equivalence of, 694–695

Query validation, 655
Question answering (QA) systems,

1061–1063
RAID (redundant arrays of inexpensive

disks) technology
bit-level striping, 584, 586
block-level striping, 584–585, 586
data striping, 584–585
levels, 586–588
mirroring, (shadowing), 585
parallelizing disk access using, 542,

584–588
performance, improvement with, 586
reliability, improvement with,

585–586
Random-access memory (RAM), 543
Random access storage devices, 554
Range partitioning, 684, 886
Range relations, tuple variables and,

269–270
RDBMS (Relational database

management system)
query tree notation, 257–259
two-tier client/server architecture and,

49
RDBs (relational databases)

application flexibility with, 24
data abstraction in, 24
indexing for, 643–646
integrity constraints and, 160–163
physical database design in, 643–646
relation schema sets as, 160
schemas, 160–163
temporal databases incorporating time

in, 977–982

 Index 1235

tuple versioning, 977–982
valid and invalid relational states,

160–161
Reachability, object persistence and,

373–374
Read/write head, disk devices, 551
Read/write transactions, 748
Real-time database technology, 4
Reasoning mechanisms, 129
Recall and precision metrics, IR,

1044–1046
Record type (format), 560
Record-at-a-time, file operations, 566
Record-at-time DML, 40
Record-based data models, 33
Records

blocking, 563–564
data types, 560–561
data values, 560
fields, 560, 561–563, 568–569, 582–583
file storage, 560–564, 567–572,

582–583
fixed-length, 561–563
mixed, 582–583
ordered (sorted), 568–572
spanned versus unspanned, 563–564
unordered (heaps), 567–568
variable-length, 561–563

Recoverability basis of schedules, 761–762
Recoverable/nonrecoverable schedule, 761
Recursive closure operations, 262
Recursive queries, 223
Recursive (self-referencing)

relationships, 75
Redis key-value cache, 900
Redundancy control, 18–19
REF keyword, 383, 386
Reference types, OIDs created using, 383
References

dot notation for path expressions, 386
inverse, 366, 370, 396–397
object identity from, 370
object type relationships, 369–370
relationships specified by, 386
SQL, 370, 386

Referential integrity
constraints, 21, 163–165, 186–187
NULL values and, 163–164
relational data modeling, 163–165
SQL constraints, 186–187

Referential triggered action clause, SQL,
186

Reflexive association, UML class
diagrams, 87

Regression, data mining, 1091–1092
Regression function, data mining, 1092
Relation extension/intension, 152
Relation nodes, query graphs, 273
Relation schema

anomalies and, 465–467
assertion, 156
attribute clarity and, 464

degree (arity) of attributes, 152
facts, 156
functional dependency of, 471–474
goodness of, 459
interpretation of, 156
key of, 159
nested relations, 479–480
normalization of relations, 474–476
NULL value in tuples, 467–468
predicate, 156
redundant information in tuples,

465–467
relational database (RDB) design

guidelines, 461–471
relational model constraints and,

157–165
relational model domains and, 152
semantics of, 461–465
spurious tuple generation, 468–471
superkey of, 158–159
universal, 471–474

Relation state
current, 153
relational model domains and, 152–153
relational database, 160–161
tuple values in, 152–156
valid and not valid, 160–161

Relational algebra
aggregate functions, 240, 260–261
binary operations, 240, 251–259,

262–264
expressions for, 239, 241–242, 245
formal relational modeling and, 239–240
generalized projection operation,

259–260
groupings, 260–261
operations, purpose and notation of, 258
procedural order of, 268
queries in, 265–268
query optimization and, 697–699
recursive closure operations, 262
set theory and, 246–251, 264–265
SQL query translation into, 657–660
transformation rules for operations,

697–699
unary operations, 240, 241–246

Relational calculus
declarative expressions for, 268
domains and, 268, 277–279
formal relational modeling and,

240–241
nonprocedural language of, 268
query graphs, 273–274
relationally complete language of, 268
tuples and, 268–277

Relational data models
attributes, 152–153
breaking cycle for tree-structure model

conversion, 452–453
concepts, 150–157
constraints, 157–167
DBMS criteria and, 51–52

delete operation, 166, 167–168
domains, 151–152
entity integrity, 163–165
extraction of XML documents using,

447–449
flat files, 150
formal languages for, see Relational

algebra; Relational calculus
insert operation, 166–167
key constraints, 21, 158–160, 163–165
mathematical relation of, 149
notation for, 156–157
operations, 165–168
referential integrity, 163–165
practical language for, see SQL

(Structured Query Language)
relations, 152–156
representational model type, 33
retrievals (operations), 165–166
schemas, 152–165
table of values, 150–151
transactions, 169
tuples, 152–156
update (modify) operation, 166,

168–169
Relational database (RDB) design

algorithms for schema design,
519–523, 524–527

bottom-up method, 460, 504
by analysis, 503
by synthesis, 504, 503
dangling tuple problems, 523–524
data model mapping for, 289
designer intention for, 459–460
EER-to-relational mapping, 298–303
ER-to-relational mapping, 290–298
functional dependency and, 471–474,

505–512, 527–528, 532
implementation (physical storage)

level, 459–460
inclusion dependency and, 531–532
inference rules for, 505–509, 527–528
join dependency (JD) and, 494–495,

530–531
keys for, 474–483
logical (conceptual) level, 459–460
multivalued dependency (MVD) and,

491–494, 527–530
normal forms, 474–495, 513–514,

528–533
normalization algorithm problems,

524–527
normalization of relations, 474–476,

482, 485, 486–487, 493–494
NULL value problems, 523–524
ODBs compared to, 405–406
properties of decomposition, 504,

513–518
relation schema, guidelines for,

461–471
top-down method, 460
universal relations, 471–474, 504

1236 Index

Relational database management system,
see RDBMS (Relational database
management system)

Relational database state, 160–161
Relational databases, see RDBs (relational

databases)
Relational operators for deductive

databases, 1010
Relationally complete language of, 268
Relationships

aggregation, 87–88
associations, 87–88
attributes of, 78
attributes, as, 74
binary types, 76–78, 293–295
cardinality ratios for, 76–77
comparison of ternary and binary, 88–91
conceptual data models, 33
constraints on, 76–78, 91–92
degree of types, 71–74, 88
entity participation in, 72–73
ER models and, 72–78, 88–92
ER-to-relational mapping, 293–296
existence dependency, 77–78
identifying, 79
instances, 72
inverse, 396–397
multivalued attributes, 295–296
n-degree, 88–92, 296
ODMG model objects, 396–397
order of instances in, 87
participation constraints of, 77–78
recursive (self-referencing), 75
role names and, 75
sets, 72
structural constraints of, 78
subtype/supertype, 375–376
ternary, 88–92
type, 72–78, 126
type hierarchies, 375–376
UML class diagrams, 87–88

Reliability, DDBs, 844–845
RENAME operator (ρ), 245–246
Renaming attributes in SQL, 192, 214–215
Repeating field, records, 561–563
Replication models, 886
Replication transparency

DDBs, 843
NOSQL, 885–886, 894

Representational (implementation) data
models), 33

Resource Description Framework
(RDF), 447

ResourceManager (RM), YARN,
941–942

RESTRICT option, SQL, 233, 234
Result equivalence, schedules, 765
ResultSet object JDBC, 334–335
Retrieval operations

files, 564–565
object information, 371
relational data models, 165–166

selection conditions, 564–565
Retrieval, 1027
RETURN clause, XQuery, 446
ROLAP (relational OLAP) function, 1114
Role-based access control (RBAC), 1121,

1137–1139
Role names, 75
Roles of domain attributes, 152
Root, tree structures, 617
Root element, XML, 440
Root tag, XML documents, 434
Rotational delay (latency), disk devices, 552
Round-robin partitioning, 684
Row, SQL, 179
Row-based constraints, SQL, 187
Row-level access control, 1139–1140
ROW TYPE command, 380
RSA public key encryption algorithm,

1152
Rules

active databases systems, 22
active rules, 962–964, 970–973
association rules, 1073–1084
axioms, 1005
deductive database systems, 22
deductive databases, 1000, 1005–1007
defined, 1000
force/no-force rules, 817–818
4NF schema, 527–528
functional dependencies, 505–509,

527–528
inference rules, 505–509, 527–528
inferencing information using, 22
interpretation of, 1005–1007
models for, 1005–1006
model-theoretic interpretation of, 1005
proof-theoretic interpretation of, 1005
stored procedure for, 22
theorem proving, 1005
triggers as, 22

Runtime, MapReduce (MR), 927–930
Runtime database processor, 44, 655
Safe expressions, 276–277
Sampling algorithm, 1076–1077
Scalability

DDBs, 845
NOSQL, 885

Scale-invariant feature transform
(SIFT), 998

Scanner, query processing, 655
Schedules (histories)

cascading rollback phenomenon, 762
committed projection of, 760
complete schedule conditions, 760
concurrency control and

serializability, 770–771
conflict equivalence of, 765–766
conflicting operations in, 759–760
debt–credit transactions, 773
nonserial schedules, 763, 764–765
operation semantics for, 773
recoverability basis of, 761–762

recoverable/nonrecoverable schedule,
761

result equivalence of, 765
serial schedules, 763–764
serializability basis of, 763–766
serializable schedules, 763, 765–766
strict schedule, 762
testing for serializability, 767–770
transaction processing, 759–773
transactions for, 759–760
view equivalence, 771–772
view serializability, 771–772

Schema-based (explicit) constraints, 157
Schema change statements

ALTER command, 233–234
DROP command, 233
schema evolution command use,

232–233
Schema diagram, 34–35
Schema matching, 1052
Schemaless documents, XML, 432–433
Schemas

authorization identifier, 179
bottom-up conceptual synthesis, 119
catalog collection of, 35, 38, 180
conceptual level, 37, 61–62
constraints and, 157–165
constructs, 35
data independence and, 37–38
database descriptions, 34
database state (snapshot) and, 35
database requirements, 122–124
descriptors, 179
design creation (conceptual) of, 61–62
EER modeling and, 119–120, 122–124
EER schema to ODB schema, 407–408
ER diagram notation for, 81, 83–85
ER modeling and, 61–62
evolution, 35
external level (views), 37
intention, 35
interface inheritance, ODL, 404–405
internal level, 36
mappings, 37, 407–408
meta-data storage of, 35
naming constructs, 82
ODB conceptual design and, 407–408
ODL, 400–403
refinement using generalization and

specialization, 119–120
relation, 157–160, 163–165
relational database, 160–163
SQL concepts, 179–180
three-schema architecture, 36–38
top-down conceptual refinement, 119
XML language, 434, 436–441

Script functions, HTML, 428
Search, B-trees, 625–626
Search engines

desktop, 1025
Lucern, 1043–1044
Web search, 1047

 Index 1237

Search relevance, IR, 1044–1047
Search techniques

conjunctive selection, 665–666
disjunctive selection, 666–667
keyword-based, 41
query processing, 663–667
SELECT operation algorithms,

663–667
simple selection, 663–665
Web database applications, 4

Search trees, dynamic multilevel indexes,
618–619

Second normal form (2NF)
definition of, 481
full functional dependency and,

481–482
general definition of, 484–486
normalizing relations, 482, 484–486
primary key and, 483–484

Secondary access path, indexing, 601
Secondary indexes, 603, 609–612
Secondary storage

capacity of, 534
devices for, 547–556
random access devices, 554
sequential access devices, 554–555
solid-state drive (SSD), 542

Security, see Data security; Database
security

Security and authorization subsystems, 19
Seek time, disk devices, 552
SELECT clause statement

ALL option with, 194–195
AS option with, 196
DISTINCT option with, 188, 194
mandatory use of, 197
multiset tables and, 194–195
SQL query retrieval and, 187–188,

194–197
SELECT operation

Boolean expressions (clauses),
241–242

cascade (sequence) with, 243
conjunctive selection, 665–666
cost functions for, 714
degree of relations, 243
disjunctive selection, 666–667
estimating selectivity of conditions,

667–668
implementation options for, 663
query processing algorithms, 663–668
relational algebra using, 241–243
search methods for, 663–667
selectivity of a condition, 243, 667–668
simple selection, 663–665

SELECT operator (σ), 241
Select…from…where structure, OQL,

409
Select-from-where block, SQL, 188–191
Select-project-join query, 189–190, 273
Selection conditions

domain variables, 278

file operations, 564–565
parallel algorithms, 685
WHERE clause queries, 189

Selective inheritance, 377
Selectivity

join operations, 254, 719–720
of a condition, 243, 667–668

Self-describing data, 10, 427
Self-describing data models, 34
Self-describing documents, 425. See also

JSON; XML (EXtended Markup
Language)

Semantic approach, IR, 1028
Semantic data models

abstraction concepts, 129–133
EER modeling, 107–108
ontology for, 132–134

Semantic equivalence, query trees,
694–695

Semantic heterogeneity, 857–858
Semantic model, IR, 1034–1035
Semantic query optimization, 737–738
Semantic tagging, images, 998–999
Semantics

attribute clarity, 461–465
data constraints, 21
functional dependency of, 472–473
relation schema, 461–465
RDB design, 461–465, 472–473
schedule operations, 773

Semi-join (SJ) operator, 658–660, 681,
719–720, 862–863

Semistructured data, XML, 426–428
Separator characters, records, 561
Sequence of interaction, database

programming and, 313–314
Sequence of operations, relational

algebra, 245–246
Sequential access storage devices,

554–555
Sequential pattern discovery, data

mining, 1091
Serial ATA (SATA), 551
Serial schedules, 763–764
Serializability

basis of schedules, 763–766
concurrency control and, 770–771
testing for, 767–770

Serializable schedules, 763, 765–766
Server, defined, 48
Servers

application, 44
database, 44
DBMS module, 31

SET clause, SQL, 201
SET CONNECTION command, SQL,

316
Set constructor, 369
SET DIFFERENCE operation, 247–249
Set operations

anti-join (AJ) operator for set
difference, 677–678

parallel algorithms, 686
query processing, algorithms for,

676–678
SQL, 194–195

Set theory
CARTESIAN PRODUCT operation,

249–251
INTERSECTION operation, 247–249
MINUS operation, 247–249
OUTER UNION operation, 264–265
relational algebra operations from,

246–251, 264–265
SET DIFFERENCE operation,

247–249
type compatibility, 247
UNION operation, 246–249

Set type, legacy data modeling with, 53
Set-at-a-time, file operations, 566
Set-at-time DML, 40
Sets

explicit set of values, 214
multiset comparisons, SQL query

retrieval, 209–211
parentheses for, 214
SQL table relations, 188, 193–195

Shadow directory, 826
Shadow paging, database recovery,

826–827
Shadowing, 816
Sharding

DDBs, 847–848
NOSQL, 886, 894–895

Shared-disk architecture, 683
Shared/exclusive (read/write) locks,

784–786
Shared-memory architecture, 683
Shared-nothing architecture, 684
Shared subclasses, 118, 301
Shared variables in embedded SQL, 314
Signature of operations, 366, 397. See also

Interfaces
Simple (atomic) attributes, 65–66
Simple elements, XML, 431
Simple Object Access Protocol (SOAP),

447
Simple selection, search methods for,

663–665
Single character replacement symbol (_),

195–196
Single inheritance, 118–119
Single-level ordered indexes

clustering indexes, 602, 606–608
concept of, 602–603
physical database design and, 602–613
primary indexes, 602, 603–606
secondary indexes, 603, 609–612

Single-relation options, EER-to-
relational mapping, 299–300

Single-sided disks, 547
Single time point, 976
Single-user DBMS systems, 51
Single-valued attribute, ER modeling, 66

1238 Index

Small computer system interface (SCSI),
551

Snapshot isolation
concurrency control and, 758, 781,

799–800
defined, 775
SQL transaction support and, 775–776

Snapshot (database) state, 35
Snowflake schema, 1108–1109
Social search, IR, 1058–1059
Software engineers, 16
Solid-state device (SSD) storage, 553–555
Solid-state drive (SSD), secondary

storage of, 542
Sophisticated end users, 16
Sorting phase, external algorithms, 661
Sort-merge join, 559, 719, 930
Spanned versus unspanned records,

563–564
Spatial analysis operations, 988
Spatial colocation rules, 993–994
Spatial databases

analytical operations, 988
applications of spatial data, 994
data mining, 993–994
data types, 989–990
enhanced data models, 962, 987–994
indexing, 991–993
models of information, 990
object storage by, 987–988
operators, 990–991
queries, 991

Specialization
attribute-defined, 114
conceptual schema refinement, 119–120
constraints on, 113–116
defined, 110
design choices for, 124–128
disjointness (d notation), 114–115
EER diagram notation for, 109, 110
EER modeling concept, 108, 110–120,

124–128
EER-to-relational mapping options,

298–301
hierarchies, 116–119
instances of, 111–112
lattices, 116–119
partial, 115
semantic modeling process, 131
total, 115
UML notation for, 127–128

Specialized servers, client/server
architecture, 47

Specification, ontology and, 134
Speech input and output, 41
Spurious tuple generation, RDB design

and, 468–471
SQL (Structured Query Language)

system
active database techniques, 202
arithmetic operators, 196–197

assertions, 158, 156, 165, 225–226
attribute data types in, 182–184
catalog concepts, 179–180
CHECK clause, 187
comparison operators, 188–191, 195–197
complex queries, 207–225
constraints, 165, 184–187, 225–227
core specifications, 178
CREATE ASSERTION statement,

225–226
CREATE TABLE command, 180–182
CREATE TRIGGER statement, 225,

226–227
data definition, 179
DBMS use of, 177–178
DELETE command, 200
domains, 184
encapsulation of operations, 384–385
extensions, 178
function overloading, 385
granting and revoking privileges, 202
history of, 178
index creation, 201–202
inheritance, type specification of, 385
INSERT command, 198–200
logical comparison operators, 188–190
NOSQL database system and, 26
object identifiers, 383
object-relational systems, 202
ODB extensions to, 379–386
operators, query translation into,

657–660
practical relational model, 177–206
query processing, translation for,

657–660
query retrieval, 187–198, 207–225
reference types, 383
relational algebra, query translation

into, 657–660
relational data models and, 51, 165
schema change statements, 232–234
schema concepts, 179–180
syntax of, 235
table creation, 383–384
transaction support, 773–776
triggers, 158, 165, 226–227
UPDATE command, 200–201
user-defined types (UDTs), 380–384
views (virtual tables), 228–232
XML data creation functions

(XML/SQL), 453–455
SQL injection

bind variables, 1145–1146
code injection, 1144
database security, 1143–1146
filtering input, 1146
function call injection, 1144–1145
function security for, 1146
manipulation, 1143–1144
protection against attacks, 1145–1146
risks associated with, 1145

SQL plan management, Oracle, 736–737
SQL programming

comparison of approaches, 338–339
database programming language

approaches, 309–314, 339
database stored procedures, 335–338
dynamic SQL, 320–321
embedded SQL, 311, 314–320, 338–339
JDBC: SQL class library, 331–335
library of functions or classes for,

311–312, 326–335, 339
query specification and, 320–321
SQL/CLI (SQI call level interface),

326–331
SQLJ: Java commands, 321–325

SQL server, two-tier client/server
architecture, 49

SQL/CLI (SQI call level interface)
connection record, 327–328
database programming with, 326–331
description record, 327–328
environment record, 327–328
handles for records, 328
statement record, 327–328
steps for programming, 328–331

SQL/PSM (SQL/persistent stored
modules), 337–338

SQLCODE variable, 316
SQLJ

embedding SQL commands in Java,
321–325

exceptions for error handling, 322–323
iterators for, 323–325
query result processing, 323–325

SQLSTATE variable, 316
Standalone users, 16
Standards, enforcement of, 22
Star schema, 1108
STARBURST, statement-level rules in,

970–972
Star-transformation optimization,

731–733
Starvation, 792
State constraints, 165
State of an object or literal, 387
Statement object JDBC, 335
Statement parameter

binding, 329, 333
JDBC, 333
SQL/CLI, 329

Statement record, SQL/CLI, 327–329
Statement string, SQL/CLI, 329
Statement-level rules, STARBURST,

970–972
Statement-level trigger, 967
Static files, 566
Static hashing, 577
Statistical approach, IR, 1028
Statistical database security, 1146–1147
Steal/no-steal rules, 817–818
Stemming, IR text processing, 1038

 Index 1239

Stopword removal, IR text processing,
1037–1038

Storage
architectures for, 588–592
automated storage tiering (AST), 591
big data, 3
buffering blocks, 541, 556–560
capacity, 543
cloud, 3
column-based, indexing for, 642
database catalog for, 10–11
database organization of, 545–546
database reorganization, 45
devices for, 543–545, 547–556
Fibre Channel over Ethernet (FCoE),

590–591
Fibre Channel over IP (FCIP), 590
file records, 560–564, 567–572,

582–583
files, 10–11, 560–572, 582–583
hashing techniques, 572–582
Internet SCSI (iSCSI), 590
memory hierarchies, 543–545
meta-data, 6, 10
network-attached storage (NAS),

589–590
object-based, 591–592
objects, 987–988
persistent, 19–20, 545
primary, 542, 543
program objects, 19–20
RAID technology, 542, 584–588
secondary, 542, 543, 547–556
spatial databases for, 987–988
storage area networks (SANs), 588–589
tertiary, 542, 543
XML documents, 442–443

Storage area networks (SANs), 588–589
Storage definition language (SDL), 39
Storage devices

databases, organization and, 545–546
disks, 547–553
flash memory, 543–544
magnetic tape, 544–545, 555–556
memory, 543–545, 547–556
optical drives, 544
secondary, 547–556
solid-state device (SSD), 553–555

Stored attribute, 66
Stored data manager, 42, 44
Stored procedures

CALL statement, 337
database programming and, 335–338
parameter type and mode, 336–337
persistent storage modules, 336
rule enforcement using, 22
SQL/PSM (SQL/persistent stored

modules), 337–338
Stream-based processing, 682. See also

Pipelining
Strict schedule, 762

Strings. See also Text strings
character data types, 182–183
double quotations (“ ”) for, 196, 347
indexing, 640
prefix compression, 640
single quotations (‘ ’) for, 182, 196, 347
SQL use of, 182–183, 195–197
substring pattern matching, 195–197

Strong entity types, 79
Struct (tuple) constructor, 368, 369
Structural constraints, 78
Structured data, XML, 426
Structured data extraction, WEB, 1052
Structured objects and literals, 388, 396
Structured Query Language, see SQL

(Structured Query Language)
Subclasses

class relationships, 108–110
defined, 126
defining predicate of, 113–114
EER diagram notation for, 109
EER modeling concept, 108–110, 126
EER-to-relational mapping, 301
entity type as, 110
inheritance, 110, 117–119, 301
IS-A relationship, 109, 126
leaf class (UML node), 127
local attributes of, 110–111
overlapping entities, 115
predicate-defined, 113–114
shared, 118, 301
specialization of set of, 110–112
specific relationship types, 110–111
union type, 108, 120–122
user-defined, 114

Subqueries
nested, 702–704
query optimization and, 702–706
unnesting (decorrelation), 704
view merging transformation, 704–706

Substring pattern matching, SQL,
195–197

Subtrees, 617
Subtypes, 375–376
SUM function

grouping, 260
SQL, 217

Superclasses
base class (UML root), 127
categories of, 120–122
class relationships, 109
EER modeling concept, 109, 110, 126
entity type as, 110
inheritance, 110, 117–118
subclass relationships, 110, 117–118

Superkey, 158–159, 476–477
Supertypes, 375–376
Surrogate key, 302
Symmetric key algorithms, 1150–1151
Synthesis, RDB design by, 503, 504
System analysts, 16

System designers and implementers, 17
System log

database recovery, 814, 817, 818–819
modifications for database security,

1125
transaction processing, 755–756

Table inheritance, SQL, 385
Table of values, 150–151
Table-based constraints, SQL, 184–187
Tables

ALTER TABLE command, 180
base relations, 180, 182
CREATE TABLE command, 180–182
data definition statements, 180–182
database recovery, 828–831
inner join, 215–216
joined relations, 215–216
multiset operations, 193–195
multiway join, 216
NATURAL JOIN operation, 215
OUTER JOIN operations, 216
query retrieval and, 193–195
query retrieval and, 193–195, 215–216
sets of relations in, 188, 193–195
transaction, 828–831
trigger activation from, 22
UDT creation of for SQL, 383–384
views (virtual tables), 228–232
virtual relations, 82

Tags
attributes, 430
document body specification, 429
document header specifications, 428
end/start tag (</…>), 428
HTML tag (<…>), 428
mark up of documents using, 428–429
notation and use, HTML, 428–430
semantic tagging of images, 998–999
XML unstructured data and, 428–430

Tape jukeboxes, 544
Taxonomy, ontology as, 134
Temporal databases

applications of, 974
calendar, 975
enhanced data models, 962, 974–987
implementation considerations, 982
incorporating time, 977–984
object-oriented databases for, 982–984
relational databases for, 977–982
time representation, 975–977
versioning, 977–984

Temporal querying constructs, 984–986
Temporary update problem, transaction

processing, 750
Ternary relationships

binary relationships compared to,
88–89

degree of, 73–74
ER diagrams, 88–92
notation for diagrams, 88–89

Tertiary storage, 542, 543

1240 Index

Testing for serializability, 767–770
Text/document source, multimedia

databases, 996
Text preprocessing

information extraction (IE), 1040
information retrieval (IR), 1037–1040
stemming, 1038
stopword removal, 1037–1038
thesaurus use, 1038–1039

Text strings
double-quoted, 347–348
interpolating variables within, 347
length of, 346
PHP programming, 346, 347–348
single-quoted, 347–348

Thematic search, 989
Theorem proving, 1005
Thesaurus

IR text processing, 1038–1039
ontology as, 134

THETA JOIN condition, 252
Third normal form (3NF)

algorithm for RDB schema design,
519–522

definition of, 483
dependency preservation and, 519–522
general definition of, 486–487
nonadditive (lossless) join

decomposition and, 519–522
normalizing relations, 485, 486–487
primary key and, 483–484
transitive dependency and, 483

Thomas’s write rule, 795
Three-schema architecture, 36–38
Three-tier/client-server architecture

discrete databases (DDBs), 872–875
Web applications, 49–51

Three-valued logic for SQL NULL
comparisons, 208–209

Thrown exceptions, SQLJ, 322–323
TIME data type, 183
Time period, 976
Time reduction, development of, 22–23
Time representation, temporal databases,

975–977
Time series data, 986–987
Time series management systems, 987
Timeouts, deadlock prevention, 792
TIMESTAMP data type, 183–184
Timestamp ordering (TO)

algorithm, 793
basic, 794
concurrency control based on,

792–795
multiversion technique based on, 796
strict, 794–795
Thomas’s write rule for, 795

Timestamps
concurrency control and, 781,

790–791, 793
deadlock prevention using, 790–791, 793

generation of, 793
transaction timestamps, 790–791

Tool developers, 17
Tools, DBMS, 45–46
Top-down conceptual refinement, 119
Top-down method, RDB design, 460
Top-k results, query optimization, 730
Topological relationships, 989
Total categories, 122
Total specialization, 115, 126
Transaction management, DDBs, 857–859
Transaction processing

commit point, 756
concurrency control, 749–752
concurrency of, 746–747
data buffers, 748–749
database items, 748
DBMS-specific buffer replacement

policies, 756–757
read/write transactions, 748
recovery for, 752–753
schedules (histories), 759–773
single-user versus multiuser systems,

746–747
SQL transaction support, 773–776
system log, 755–756
systems, 745
transaction failures, 752–753
transaction states, 753–754
transactions for, 747–749, 757–758

Transaction rollback, database recovery,
819

Transaction server, two-tier client/server
architecture, 49

Transaction tables, database recovery,
828–831

Transaction time dimensions, 976–977
Transaction time relations, 979–980
Transaction timestamps, deadlock

prevention, 790–791
Transaction-id, 755
Transactions

atomicity property, 14, 757
certification of, 781
concurrency control and, 781,

798–799, 807
consistency preservation, 757
database recovery, 821
debt–credit, 773
defined, 6, 169
desirable properties of, 757–758
durability (permanency) property, 758
interactive, 807
isolation property, 14, 758
multiuser processing, 13–14
not affecting database, 821
OTLP systems, 14, 52, 169
relational data modeling, 169
user-defined functional requirements,

61
validation (optimistic) of, 781, 798–799

Transient data, storage of, 545
Transient objects, 365, 373
Transition constraints, 165
Transitive dependency, 3NF, 483
Transparency, DDBs, 843–844
Tree search data structures, see B-trees;

B+-trees
Tree-structured data models

attributes, 433
breaking graph cycles for conversion

to, 452–453
data-centric documents, 431
data mining, 1077–1080, 1085–1086
decision trees, 1085–1086
document-centric documents, 431
document extraction using, 447–453
elements, 430–431
frequent-pattern (FP) tree, 1077–1080
graph conversion into, 452–453
hierarchies for, 116, 452–453
hybrid documents, 431
schemaless documents, 432–433
XML, 51, 430–433, 447–453

Triggers
active databases, 963–967, 973–974
database tables and, 22
CREATE TRIGGER statement, 225,

226–227
database monitoring, 226–227
event-condition-action (ECA)

components, 227, 963–964
Oracle notation for, 965–967
SQL, 158, 165, 226–227
SQL-99 standards for, 973–974

Trivial/nontrivial MVD, 493
Truth value of atoms, 270, 277
TSQL2 language, 984–986
Tuning indexes, 640–641
Tuple relational calculus

expressions, 270–271, 276–277
formulas (conditions), 270–271
nonprocedural language of, 268
quantifiers, 271, 274–276
queries using, 272–276
query graphs, 273–274
range relations, 269–270
requested attributes, 269
safe expressions, 276–277
selected combinations for, 269
variables, 269–270

Tuple variables
alias of attributes, 192
bound, 271
free, 271
iterators, 189
range relations and, 269–270

Tuples
alternative definition of a relation and,

154–155
anomalies and, 465–467
asterisk (*) for rows in query results, 218

 Index 1241

atomic value of, 155
attribute ambiguity and, 191–192
CHECK clause for, 187
CROSS PRODUCT operation for

combinations, 192–193
dangling tuple problems, 523–524
delete operation for, 166, 167–168
embedded SQL retrieval of, 311,

314–317
grouping and, 219
mapping relations with, 154
matching, 264–265
multisets of, 193–195
nested query values, 209–211
n-tuple for relations, 152
NULL value of, 155–156, 163, 467–468
ordering of, 154–155
OUTER UNION operation and,

264–265
parentheses for comparisons, 210
partially compatible relations, 264
partitioning relations into, 219
precompiler or preprocessor for

retrieval of, 311, 314
query retrieval and, 191–195, 209–211
RDB design problems, 523–524
redundant information in, 465–467
referential integrity of, 163
relation schema for RDB design,

465–471
relation state values, 152–156
row-based constraints, 187
separate groups for NULL grouping

attributes, 219
set of, 154–155
spurious tuple generation, 468–471
SQL tables and, 187, 191–195
type (union) compatibility, 247
update (modify) operation for, 166,

168–169
versioning, 977–982

Two-phase locking (2PL)
basic 2PL, 788
concurrency control, 782–792, 796–797
conservative 2RL, 788
deadlock, 789–792
expanding (first) phase, 786
locks for, 782–786
multiversion concurrency control and,

796–797
protocol, 786–788
rigorous 2PL, 789
shrinking (second) phase, 786
starvation, 792
strict 2PL, 788–789
subsystem for, 789

Two-tier client/server architecture, 49
Two-way join, 668
Type (class) hierarchies

constraints on extents corresponding
to, 376–377

functions in, 374–375
inheritance, 385
ODBs, 366, 374–377
subtype/supertype relationships,

375–376
visible/hidden attributes, 371, 375

Type (union) compatibility, 247
Type constructors

array, 369
atom, 368, 369
bag, 369
collection (multivalued), 369
dictionary, 369
list, 369
object definition language (ODL)

and, 369
object operation, 371
ODB objects and literals, 368–370
references to object type relationships,

369–370
set, 369
SQL, 379
struct (tuple), 368, 369
type structures and, 368–370

Type generators
ODB objects and literals, 368–369
ODMG models, 394–395

Type inheritance, 385
Type structures, 368–370. See also Type

constructors
UDTs (User-defined types)

arrays, 383
built-in functions for, 384
CARDINALITY function, 383
CREATE TYPE command, 380–383
dot notation for, 383
encapsulation of operations, 384–385
inheritance specification (NOT

FINAL), 385
SQL, 380–385
table creation based on, 383–384

UML (Unified Modeling Language)
aggregation, 87–88
associations, 87–88
base class, 127
bidirectional associations, 87
class diagrams, 85–88, 127–128
EER models and, 127–128
ER models and, 60, 85–88
leaf class, 127
links, 87
qualified association, 88
reflexive association, 87
unidirectional association, 87

Unary operations
assignment operations (←) for, 245
Boolean expressions (clauses),

241–242
cascade (sequence) with, 243
defined, 243
degree of relations, 243, 244

duplicate elimination and, 244–245
PROJECT operation, 243–245
relational algebra and, 240, 241–246
renaming attributes, 245–246
SELECT operation, 241–243
selectivity of condition, 243
sequence of operations for, 245–246

Unauthorized access restriction, 19
UNDO/REDO algorithm, 815, 818
Unidirectional association, UML class

diagrams, 87
Unified Modeling Language, see UML

(Unified Modeling Language)
UNION operations

matching tuples, 264–265
OUTER UNION operation, 264–265
partially compatible relations, 264
relational algebra, 264–265
SQL sets, 194–195

Union types
categories of, 120–122, 302–303
EER diagram notation for, 120
EER modeling concept, 108, 120–122
EER-to-relational mapping, 302–303
set union operation (∪), 120
surrogate key for, 302

UNIQUE function, SQL query retrieval,
212–214

Unique keys, 160
Uniqueness constraints

ER model entity types, 68–68
key attributes as, 68–69
key constraints with, 158–160
relation schema and, 158–160

Universal quantifiers, 271, 274–276
Universal relation assumption, 513
Universal schema relations, 471–474,

504, 513
Universe of Discourse (UoD), 5
Unnest relation, 1NF, 479–480
Unordered file records (heaps), 567–568
Unrepeatable read problem, transaction

processing, 752
Unstructured data, XML, 428–430
Unstructured information, 1022
Unstructured/semistructured data

handling, Big data technology and,
945

Update (modify) operations
relational data models, 166, 168–169
files, 564–565
relational data models, 166, 168–169
selection conditions for, 564–565
tuple modification using, 166, 168–169

Update anomalies, RDB design and,
465–467

UPDATE command, SQL, 200–201
Update decomposition, DDBMS,

863–865
Update strategies for SQL views, 230–232
Upgrading locks, 786

1242 Index

User views, 37
User-defined subclass, 114, 126
User-defined types, see UDTs

(User-defined types)
Utilities, DBMS functions, 45
Valid documents, XML, 434
Valid state, databases, 35, 160–161
Valid time, temporal databases, 976
Valid time relations, temporal databases,

977–979
Validation (optimistic) concurrency

control, 781, 798–799
Value (state) of an object or literal, 387
Value sets (domains) of attributes, 69–70
Variable-length records, 561–563
Variables

built-in, 352–353
communication, 316
domain, 277
embedded SQL, 314–316
iterator, OQL, 409–410
interpolating within text strings, 347
names for, 346, 347
PHP, 345–347, 352–353
predefined, 345–346
program, 314–315
shared, 314
tuple, 189, 192, 169–170

Vector space model, IR, 1031–1033
Versioning

attribute approach, 982–984
NOSQL, 887, 899, 900–902
object-oriented databases

incorporating time, 982–984
relational databases incorporating

time, 977–982
tuple approach, 977–982

Vertical fragmentation, DDBs, 844,
848–849

Video source, multimedia databases, 996
View definition language, 39
View merging transformation,

subqueries, 704–706
Views

database designer development of, 15
equivalence, schedules, 771–772
serializability, schedules, 771–772
support of multiple data, 13

Views (virtual tables)
authorization using, 232
base tables compared to, 228
CREATE VIEW statement, 228–229
data warehouses compared to, 1115
defining tables of, 228
hierarchical, 447–452
in-line, 232
DROP VIEW command, 229
materialization, 230

query modification for, 229–230
query retrieval using, 230–231
SQL virtual tables, 228–232
update strategies for, 230–232
virtual data in, 13
WITH CHECK option for, 232
XML document extraction and,

447–452
Virtual data, 13
Virtual private database (VPD)

technology, 1156
Virtual relations (tables), 82
Virtual storage access method (VSAM),

541
Virtual tables, 228–232. See also Views

(virtual tables)
Visible attributes, objects, 371, 375
Volatile/nonvolatile storage, 545
Voldemort key-value data store, 897–899
Weak entity types, 79, 292–293
Web analytics, 1057
Web-based user interfaces, 40
Web crawlers, 1057
Web database programming

HTML and, 343–346
Java technologies for, 358
PHP for, 343–359

Web database systems
access control policies, 1141–1142
data interchanging using XML, 25
HTML and, 25
menu-based interfaces, 40
n-tier architecture for, 49–51
security, 1141–1142
three-tier architecture for, 49–51

Web information integration, 1052
Web pages

hypertext documents for, 425
segmentation and noise reduction,

1053
XML and formatting of, 425–426

Web search
defined, 1028
digital libraries for, 1047–1048
HITS ranking algorithm, 1051
link structure analysis, 1050–1051
PageRank ranking algorithm, 1051
search engines for, 1047
Web analysis and, 1048–1049
Web context analysis, 1051–1054
Web structure analysis, 1049–1050
Web usage analysis, 1054–1057

Web servers
client/server architecture, 47
three-tier architecture, 50

Web Services Description Language
(WSDL), 447

Web spamming, 1057

Well-formed documents, XML, 433–424
WHERE clause

asterisk (*) for all attributes, 193
explicit set of values in, 214–215
grouping and, 221–222
SQL query retrieval and, 188–189,

192–193, 197, 214–215
selection (Boolean) condition of, 189
unspecified, 192–193
XQuery, 446

WHERE CURRENT OF clause, SQL, 318
Wide area network, 842
Wildcard (*) queries, 1036–1037
WITH CHECK option, SQL views, 232
WITH clause, SQL, 222–223
Wrapper, 1025
Write-ahead logging (WAL), database

recovery, 816–818
XML (EXtended Markup Language)

access control, 1140–1141
data models, 34, 51, 53
database extraction of documents,

442–443, 447–453
document type definition (DTD),

434–436
documents, 433–436, 442–443,

447–453
hierarchical (tree) data models, 51,

430–433, 447–453
hypertext documents and, 425
OpenPGP (Pretty Good Privacy)

protocol, 1140–1141
protocols for, 446–447
query languages, 443–447
relational data model for document

extraction, 447–449
schema language, 434, 436–441
semistructured data, 426–428
SQL functions for creation of data,

453–455
structured data, 426
tag notation and use, HTML, 428–430
unstructured data, 428–430
Web data interchanging using, 25
Web page formatting by, 425–426
XPath for path expressions, 443–445
XQuery, 445–446

XPath, XML path expressions, 443–445
XQuery, XML query specifications,

445–446

YARN (Hadoop v2)
architecture, 940–942
Big data technology for, 936–944,

949–953
frameworks on, 943–944
rational behind development of,

937–939

	Cover
	Title Page
	Copyright Page
	Dedication
	Preface
	Acknowledgments
	Contents
	About the Authors
	part 1 Introduction to Databases
	chapter 1 Databases and Database Users
	1.1 Introduction
	1.2 An Example
	1.3 Characteristics of the Database Approach
	1.4 Actors on the Scene
	1.5 Workers behind the Scene
	1.6 Advantages of Using the DBMS Approach
	1.7 A Brief History of Database Applications
	1.8 When Not to Use a DBMS
	1.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 2 Database System Concepts and Architecture
	2.1 Data Models, Schemas, and Instances
	2.2 Three-Schema Architecture and Data Independence
	2.3 Database Languages and Interfaces
	2.4 The Database System Environment
	2.5 Centralized and Client/Server Architectures for DBMSs
	2.6 Classification of Database Management Systems
	2.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 2 Conceptual Data Modeling and Database Design
	chapter 3 Data Modeling Using the Entity–Relationship (ER) Model
	3.1 Using High-Level Conceptual Data Models for Database Design
	3.2 A Sample Database Application
	3.3 Entity Types, Entity Sets, Attributes, and Keys
	3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints
	3.5 Weak Entity Types
	3.6 Refining the ER Design for the COMPANY Database
	3.7 ER Diagrams, Naming Conventions, and Design Issues
	3.8 Example of Other Notation: UML Class Diagrams
	3.9 Relationship Types of Degree Higher than Two
	3.10 Another Example: A UNIVERSITY Database
	3.11 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 4 The Enhanced Entity–Relationship (EER) Model
	4.1 Subclasses, Superclasses, and Inheritance
	4.2 Specialization and Generalization
	4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies
	4.4 Modeling of UNION Types Using Categories
	4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
	4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams
	4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts
	4.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 3 The Relational Data Model and SQL
	chapter 5 The Relational Data Model and Relational Database Constraints
	5.1 Relational Model Concepts
	5.2 Relational Model Constraints and Relational Database Schemas
	5.3 Update Operations, Transactions, and Dealing with Constraint Violations
	5.4 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 6 Basic SQL
	6.1 SQL Data Definition and Data Types
	6.2 Specifying Constraints in SQL
	6.3 Basic Retrieval Queries in SQL
	6.4 INSERT, DELETE, and UPDATE Statements in SQL
	6.5 Additional Features of SQL
	6.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification
	7.1 More Complex SQL Retrieval Queries
	7.2 Specifying Constraints as Assertions and Actions as Triggers
	7.3 Views (Virtual Tables) in SQL
	7.4 Schema Change Statements in SQL
	7.5 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 8 The Relational Algebra and Relational Calculus
	8.1 Unary Relational Operations: SELECT and PROJECT
	8.2 Relational Algebra Operations from Set Theory
	8.3 Binary Relational Operations: JOIN and DIVISION
	8.4 Additional Relational Operations
	8.5 Examples of Queries in Relational Algebra
	8.6 The Tuple Relational Calculus
	8.7 The Domain Relational Calculus
	8.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping
	9.1 Relational Database Design Using ER-to-Relational Mapping
	9.2 Mapping EER Model Constructs to Relations
	9.3 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 4 Database Programming Techniques
	chapter 10 Introduction to SQL Programming Techniques
	10.1 Overview of Database Programming Techniques and Issues
	10.2 Embedded SQL, Dynamic SQL, and SQLJ
	10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC
	10.4 Database Stored Procedures and SQL/PSM
	10.5 Comparing the Three Approaches
	10.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 11 Web Database Programming Using PHP
	11.1 A Simple PHP Example
	11.2 Overview of Basic Features of PHP
	11.3 Overview of PHP Database Programming
	11.4 Brief Overview of Java Technologies for Database Web Programming
	11.5 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 5 Object, Object-Relational, and XML: Concepts, Models, Languages, and Standards
	chapter 12 Object and Object-Relational Databases
	12.1 Overview of Object Database Concepts
	12.2 Object Database Extensions to SQL
	12.3 The ODMG Object Model and the Object Definition Language ODL
	12.4 Object Database Conceptual Design
	12.5 The Object Query Language OQL
	12.6 Overview of the C++ Language Binding in the ODMG Standard
	12.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 13 XML: Extensible Markup Language
	13.1 Structured, Semistructured, and Unstructured Data
	13.2 XML Hierarchical (Tree) Data Model
	13.3 XML Documents, DTD, and XML Schema
	13.4 Storing and Extracting XML Documents from Databases
	13.5 XML Languages
	13.6 Extracting XML Documents from Relational Databases
	13.7 XML/SQL: SQL Functions for Creating XML Data
	13.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 6 Database Design Theory and Normalization
	chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases
	14.1 Informal Design Guidelines for Relation Schemas
	14.2 Functional Dependencies
	14.3 Normal Forms Based on Primary Keys
	14.4 General Definitions of Second and Third Normal Forms
	14.5 Boyce-Codd Normal Form
	14.6 Multivalued Dependency and Fourth Normal Form
	14.7 Join Dependencies and Fifth Normal Form
	14.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 15 Relational Database Design Algorithms and Further Dependencies
	15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover
	15.2 Properties of Relational Decompositions
	15.3 Algorithms for Relational Database Schema Design
	15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs
	15.5 Further Discussion of Multivalued Dependencies and 4NF
	15.6 Other Dependencies and Normal Forms
	15.7 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 7 File Structures, Hashing, Indexing, and Physical Database Design
	chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures
	16.1 Introduction
	16.2 Secondary Storage Devices
	16.3 Buffering of Blocks
	16.4 Placing File Records on Disk
	16.5 Operations on Files
	16.6 Files of Unordered Records (Heap Files)
	16.7 Files of Ordered Records (Sorted Files)
	16.8 Hashing Techniques
	16.9 Other Primary File Organizations
	16.10 Parallelizing Disk Access Using RAID Technology
	16.11 Modern Storage Architectures
	16.12 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 17 Indexing Structures for Files and Physical Database Design
	17.1 Types of Single-Level Ordered Indexes
	17.2 Multilevel Indexes
	17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees
	17.4 Indexes on Multiple Keys
	17.5 Other Types of Indexes
	17.6 Some General Issues Concerning Indexing
	17.7 Physical Database Design in Relational Databases
	17.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 8 Query Processing and Optimization
	chapter 18 Strategies for Query Processing
	18.1 Translating SQL Queries into Relational Algebra and Other Operators
	18.2 Algorithms for External Sorting
	18.3 Algorithms for SELECT Operation
	18.4 Implementing the JOIN Operation
	18.5 Algorithms for PROJECT and Set Operations
	18.6 Implementing Aggregate Operations and Different Types of JOINs
	18.7 Combining Operations Using Pipelining
	18.8 Parallel Algorithms for Query Processing
	18.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 19 Query Optimization
	19.1 Query Trees and Heuristics for Query Optimization
	19.2 Choice of Query Execution Plans
	19.3 Use of Selectivities in Cost-Based Optimization
	19.4 Cost Functions for SELECT Operation
	19.5 Cost Functions for the JOIN Operation
	19.6 Example to Illustrate Cost-Based Query Optimization
	19.7 Additional Issues Related to Query Optimization
	19.8 An Example of Query Optimization in Data Warehouses
	19.9 Overview of Query Optimization in Oracle
	19.10 Semantic Query Optimization
	19.11 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 9 Transaction Processing, Concurrency Control, and Recovery
	chapter 20 Introduction to Transaction Processing Concepts and Theory
	20.1 Introduction to Transaction Processing
	20.2 Transaction and System Concepts
	20.3 Desirable Properties of Transactions
	20.4 Characterizing Schedules Based on Recoverability
	20.5 Characterizing Schedules Based on Serializability
	20.6 Transaction Support in SQL
	20.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 21 Concurrency Control Techniques
	21.1 Two-Phase Locking Techniques for Concurrency Control
	21.2 Concurrency Control Based on Timestamp Ordering
	21.3 Multiversion Concurrency Control Techniques
	21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control
	21.5 Granularity of Data Items and Multiple Granularity Locking
	21.6 Using Locks for Concurrency Control in Indexes
	21.7 Other Concurrency Control Issues
	21.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 22 Database Recovery Techniques
	22.1 Recovery Concepts
	22.2 NO-UNDO/REDO Recovery Based on Deferred Update
	22.3 Recovery Techniques Based on Immediate Update
	22.4 Shadow Paging
	22.5 The ARIES Recovery Algorithm
	22.6 Recovery in Multidatabase Systems
	22.7 Database Backup and Recovery from Catastrophic Failures
	22.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 10 Distributed Databases, NOSQL Systems, and Big Data
	chapter 23 Distributed Database Concepts
	23.1 Distributed Database Concepts
	23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design
	23.3 Overview of Concurrency Control and Recovery in Distributed Databases
	23.4 Overview of Transaction Management in Distributed Databases
	23.5 Query Processing and Optimization in Distributed Databases
	23.6 Types of Distributed Database Systems
	23.7 Distributed Database Architectures
	23.8 Distributed Catalog Management
	23.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 24 NOSQL Databases and Big Data Storage Systems
	24.1 Introduction to NOSQL Systems
	24.2 The CAP Theorem
	24.3 Document-Based NOSQL Systems and MongoDB
	24.4 NOSQL Key-Value Stores
	24.5 Column-Based or Wide Column NOSQL Systems
	24.6 NOSQL Graph Databases and Neo4j
	24.7 Summary
	Review Questions
	Selected Bibliography

	chapter 25 Big Data Technologies Based on MapReduce and Hadoop
	25.1 What Is Big Data?
	25.2 Introduction to MapReduce and Hadoop
	25.3 Hadoop Distributed File System (HDFS)
	25.4 MapReduce: Additional Details
	25.5 Hadoop v2 alias YARN
	25.6 General Discussion
	25.7 Summary
	Review Questions
	Selected Bibliography

	part 11 Advanced Database Models, Systems, and Applications
	chapter 26 Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases
	26.1 Active Database Concepts and Triggers
	26.2 Temporal Database Concepts
	26.3 Spatial Database Concepts
	26.4 Multimedia Database Concepts
	26.5 Introduction to Deductive Databases
	26.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 27 Introduction to Information Retrieval and Web Search
	27.1 Information Retrieval (IR) Concepts
	27.2 Retrieval Models
	27.3 Types of Queries in IR Systems
	27.4 Text Preprocessing
	27.5 Inverted Indexing
	27.6 Evaluation Measures of Search Relevance
	27.7 Web Search and Analysis
	27.8 Trends in Information Retrieval
	27.9 Summary
	Review Questions
	Selected Bibliography

	chapter 28 Data Mining Concepts
	28.1 Overview of Data Mining Technology
	28.2 Association Rules
	28.3 Classification
	28.4 Clustering
	28.5 Approaches to Other Data Mining Problems
	28.6 Applications of Data Mining
	28.7 Commercial Data Mining Tools
	28.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 29 Overview of Data Warehousing and OLAP
	29.1 Introduction, Definitions, and Terminology
	29.2 Characteristics of Data Warehouses
	29.3 Data Modeling for Data Warehouses
	29.4 Building a Data Warehouse
	29.5 Typical Functionality of a Data Warehouse
	29.6 Data Warehouse versus Views
	29.7 Difficulties of Implementing Data Warehouses
	29.8 Summary
	Review Questions
	Selected Bibliography

	part 12 Additional Database Topics: Security
	chapter 30 Database Security
	30.1 Introduction to Database Security Issues
	30.2 Discretionary Access Control Based on Granting and Revoking Privileges
	30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security
	30.4 SQL Injection
	30.5 Introduction to Statistical Database Security
	30.6 Introduction to Flow Control
	30.7 Encryption and Public Key Infrastructures
	30.8 Privacy Issues and Preservation
	30.9 Challenges to Maintaining Database Security
	30.10 Oracle Label-Based Security
	30.11 Summary
	Review Questions
	Exercises
	Selected Bibliography

	appendix A Alternative Diagrammatic Notations for ER Models
	appendix B Parameters of Disks
	appendix C Overview of the QBE Language
	C.1 Basic Retrievals in QBE
	C.2 Grouping, Aggregation, and Database Modification in QBE

	Selected Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

