


FUNDAMENTALS OF

Database 
Systems
SEVENTH EDITION



This page intentionally left blank



FUNDAMENTALS OF 

Database 
Systems
SEVENTH EDITION

Ramez Elmasri
Department of Computer Science and Engineering
The University of Texas at Arlington

Shamkant B. Navathe
College of Computing
Georgia Institute of Technology

Boston  Columbus  Indianapolis  New York  San Francisco  Hoboken 

Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montreal  Toronto 

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo



Vice President and Editorial Director, ECS:  
 Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Marketing Managers: Bram Van Kempen, Demetrius Hall
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing  
 and Procurement: Diane Hynes
Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia
Cover Designer: Black Horse Designs
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:  
 Timothy Nicholls
Full-Service Project Management: Rashmi Tickyani, 
 iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Printer/Binder: Edwards Brothers Malloy
Cover Printer: Phoenix Color/Hagerstown
Cover Image: Micha Pawlitzki/Terra/Corbis
Typeface: 10.5/12 Minion Pro

ISBN-10:         0-13-397077-9
ISBN-13: 978-0-13-397077-7

Copyright © 2016, 2011, 2007 by Ramez Elmasri and Shamkant B. Navathe. All rights reserved. Manufactured 
in the United States of America. This publication is protected by Copyright and permissions should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any 
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to 
use materials from this work, please submit a written request to Pearson Higher Education, Permissions 
Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. 
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations 
have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include 
the development, research, and testing of theories and programs to determine their effectiveness. The author and 
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the 
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or 
consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Microsoft and/or its respective suppliers make no representations about the suitability of the information 
contained in the documents and related graphics published as part of the services for any purpose. All such 
documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective 
suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties 
and conditions of merchantability. Whether express, implied or statutory, fitness for a particular purpose, title 
and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special, 
indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether 
in an action of contract. Negligence or other tortious action, arising out of or in connection with the use or 
performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical 
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may 
make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. 
Partial screen shots may be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1



To Amalia  
and 

to Ramy, Riyad, Katrina, and Thomas

R. E.

To my wife Aruna for her love, support, and understanding 
and 

to Rohan, Maya, and Ayush for bringing so much joy into our lives

S.B.N.



This page intentionally left blank



This book introduces the fundamental concepts 
necessary for designing, using, and implementing 

database systems and database applications. Our presentation stresses the funda-
mentals of database modeling and design, the languages and models provided by the 
database management systems, and database system implementation techniques. 
The book is meant to be used as a textbook for a one- or two-semester course in 
database systems at the junior, senior, or graduate level, and as a reference book. Our 
goal is to provide an in-depth and up-to-date presentation of the most important 
aspects of database systems and applications, and related technologies. We assume 
that readers are familiar with elementary programming and data-structuring con-
cepts and that they have had some exposure to the basics of computer organization.

New to This Edition
The following key features have been added in the seventh edition:

 ■ A reorganization of the chapter ordering (this was based on a survey of the 
instructors who use the textbook); however, the book is still organized so 
that the individual instructor can choose to follow the new chapter ordering 
or choose a different ordering of chapters (for example, follow the chapter 
order from the sixth edition) when presenting the materials.

 ■ There are two new chapters on recent advances in database systems and big 
data processing; one new chapter (Chapter 24) covers an introduction to the 
newer class of database systems known as NOSQL databases, and the other 
new chapter (Chapter 25) covers technologies for processing big data, 
including MapReduce and Hadoop.

 ■ The chapter on query processing and optimization has been expanded and 
reorganized into two chapters; Chapter 18 focuses on strategies and algo-
rithms for query processing whereas Chapter 19 focuses on query optimiza-
tion techniques.

 ■ A second UNIVERSITY database example has been added to the early chap-
ters (Chapters 3 through 8) in addition to our COMPANY database example 
from the previous editions.

 ■ Many of the individual chapters have been updated to varying degrees to include 
newer techniques and methods; rather than discuss these enhancements here, 
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we will describe them later in the preface when we discuss the organization of 
the seventh edition.

The following are key features of the book:

 ■ A self-contained, flexible organization that can be tailored to individual 
needs; in particular, the chapters can be used in different orders depending 
on the instructor’s preference.

 ■ A companion website (http://www.pearsonhighered.com/cs-resources) 
includes data to be loaded into various types of relational databases for more 
realistic student laboratory exercises.

 ■ A dependency chart (shown later in this preface) to show which chapters 
depend on other earlier chapters; this can guide the instructor who wants to 
tailor the order of presentation of the chapters.

 ■ A collection of supplements, including a robust set of materials for instruc-
tors and students such as PowerPoint slides, figures from the text, and an 
instructor’s guide with solutions.

Organization and Contents of the Seventh Edition
There are some organizational changes in the seventh edition as well as improve-
ment to the individual chapters. The book is now divided into 12 parts as follows:

 ■ Part 1 (Chapters 1 and 2) describes the basic introductory concepts neces-
sary for a good understanding of database models, systems, and languages. 
Chapters 1 and 2 introduce databases, typical users, and DBMS concepts, 
terminology, and architecture, as well as a discussion of the progression of 
database technologies over time and a brief history of data models. These 
chapters have been updated to introduce some of the newer technologies 
such as NOSQL systems.

 ■ Part 2 (Chapters 3 and 4) includes the presentation on entity-relationship 
modeling and database design; however, it is important to note that instruc-
tors can cover the relational model chapters (Chapters 5 through 8) before 
Chapters 3 and 4 if that is their preferred order of presenting the course 
materials. In Chapter 3, the concepts of the Entity-Relationship (ER) model 
and ER diagrams are presented and used to illustrate conceptual database 
design. Chapter 4 shows how the basic ER model can be extended to incorpo-
rate additional modeling concepts such as subclasses, specialization, gener-
alization, union types (categories) and inheritance, leading to the 
enhanced-ER (EER) data model and EER diagrams. The notation for the class 
diagrams of UML are also introduced in Chapters 7 and 8 as an alternative 
model and diagrammatic notation for ER/EER diagrams.

 ■ Part 3 (Chapters 5 through 8) includes a detailed presentation on relational 
databases and SQL with some additional new material in the SQL chapters 
to cover a few SQL constructs that were not in the previous edition. Chapter 5 
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describes the basic relational model, its integrity constraints, and update 
operations. Chapter 6 describes some of the basic parts of the SQL standard 
for relational databases, including data definition, data modification opera-
tions, and simple SQL queries. Chapter 7 presents more complex SQL que-
ries, as well as the SQL concepts of triggers, assertions, views, and schema 
modification. Chapter 8 describes the formal operations of the relational 
algebra and introduces the relational calculus. The material on SQL (Chap-
ters 6 and 7) is presented before our presentation on relational algebra and 
calculus in Chapter 8 to allow instructors to start SQL projects early in a 
course if they wish (it is possible to cover Chapter 8 before Chapters 6 and 7 
if the instructor desires this order). The final chapter in Part 2, Chapter 9, 
covers ER- and EER-to-relational mapping, which are algorithms that can be 
used for designing a relational database schema from a conceptual ER/EER 
schema design.

 ■ Part 4 (Chapters 10 and 11) are the chapters on database programming tech-
niques; these chapters can be assigned as reading materials and augmented 
with materials on the particular language used in the course for program-
ming projects (much of this documentation is readily available on the Web). 
Chapter 10 covers traditional SQL programming topics, such as embedded 
SQL, dynamic SQL, ODBC, SQLJ, JDBC, and SQL/CLI. Chapter 11 introduces 
Web database programming, using the PHP scripting language in our exam-
ples, and includes new material that discusses Java technologies for Web 
database programming.

 ■ Part 5 (Chapters 12 and 13) covers the updated material on object-relational 
and object-oriented databases (Chapter 12) and XML (Chapter 13); both of 
these chapters now include a presentation of how the SQL standard incorpo-
rates object concepts and XML concepts into more recent versions of the 
SQL standard. Chapter 12 first introduces the concepts for object databases, 
and then shows how they have been incorporated into the SQL standard in 
order to add object capabilities to relational database systems. It then covers 
the ODMG object model standard, and its object definition and query lan-
guages. Chapter 13 covers the XML (eXtensible Markup Language) model 
and languages, and discusses how XML is related to database systems. It 
presents XML concepts and languages, and compares the XML model to 
traditional database models. We also show how data can be converted 
between the XML and relational representations, and the SQL commands 
for extracting XML documents from relational tables.

 ■ Part 6 (Chapters 14 and 15) are the normalization and relational design 
theory chapters (we moved all the formal aspects of normalization algo-
rithms to Chapter 15). Chapter 14 defines functional dependencies, and 
the normal forms that are based on functional dependencies. Chapter 14 
also develops a step-by-step intuitive normalization approach, and includes 
the definitions of multivalued dependencies and join dependencies. 
Chapter 15 covers normalization theory, and the formalisms, theories, 
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and algorithms developed for relational database design by normaliza-
tion, including the relational decomposition algorithms and the relational 
synthesis algorithms.

 ■ Part 7 (Chapters 16 and 17) contains the chapters on file organizations on 
disk (Chapter 16) and indexing of database files (Chapter 17). Chapter 16 
describes primary methods of organizing files of records on disk, including 
ordered (sorted), unordered (heap), and hashed files; both static and 
dynamic hashing techniques for disk files are covered. Chapter 16 has been 
updated to include materials on buffer management strategies for DBMSs as 
well as an overview of new storage devices and standards for files and mod-
ern storage architectures. Chapter 17 describes indexing techniques for files, 
including B-tree and B+-tree data structures and grid files, and has been 
updated with new examples and an enhanced discussion on indexing, 
including how to choose appropriate indexes and index creation during 
physical design.

 ■ Part 8 (Chapters 18 and 19) includes the chapters on query processing algo-
rithms (Chapter 18) and optimization techniques (Chapter 19); these two 
chapters have been updated and reorganized from the single chapter that 
covered both topics in the previous editions and include some of the newer 
techniques that are used in commercial DBMSs. Chapter 18 presents algo-
rithms for searching for records on disk files, and for joining records from 
two files (tables), as well as for other relational operations. Chapter 18 con-
tains new material, including a discussion of the semi-join and anti-join 
operations with examples of how they are used in query processing, as well 
as a discussion of techniques for selectivity estimation. Chapter 19 covers 
techniques for query optimization using cost estimation and heuristic rules; 
it includes new material on nested subquery optimization, use of histograms, 
physical optimization, and join ordering methods and optimization of 
typical queries in data warehouses.

 ■ Part 9 (Chapters 20, 21, and 22) covers transaction processing concepts; 
concurrency control; and database recovery from failures. These chapters 
have been updated to include some of the newer techniques that are used 
in some commercial and open source DBMSs. Chapter 20 introduces the 
techniques needed for transaction processing systems, and defines the 
concepts of recoverability and serializability of schedules; it has a new sec-
tion on buffer replacement policies for DBMSs and a new discussion on 
the concept of snapshot isolation. Chapter 21 gives an overview of the var-
ious types of concurrency control protocols, with a focus on two-phase 
locking. We also discuss timestamp ordering and optimistic concurrency 
control techniques, as well as multiple-granularity locking. Chapter 21 
includes a new presentation of concurrency control methods that are based 
on the snapshot isolation concept. Finally, Chapter 23 focuses on database 
recovery protocols, and gives an overview of the concepts and techniques 
that are used in recovery.



 ■ Part 10 (Chapters 23, 24, and 25) includes the chapter on distributed data-
bases (Chapter 23), plus the two new chapters on NOSQL storage systems 
for big data (Chapter 24) and big data technologies based on Hadoop and 
MapReduce (Chapter 25). Chapter 23 introduces distributed database 
concepts, including availability and scalability, replication and fragmenta-
tion of data, maintaining data consistency among replicas, and many other 
concepts and techniques. In Chapter 24, NOSQL systems are categorized 
into four general categories with an example system in each category used 
for our examples, and the data models, operations, as well as the replica-
tion/distribution/scalability strategies of each type of NOSQL system are 
discussed and compared. In Chapter 25, the MapReduce programming 
model for distributed processing of big data is introduced, and then we 
have presentations of the Hadoop system and HDFS (Hadoop Distributed 
File System), as well as the Pig and Hive high-level interfaces, and the 
YARN architecture.

 ■ Part 11 (Chapters 26 through 29) is entitled Advanced Database Models, 
Systems, and Applications and includes the following materials: Chapter 26 
introduces several advanced data models including active data- 
bases/triggers (Section 26.1), temporal databases (Section 26.2), spatial data-
bases (Section 26.3), multimedia databases (Section 26.4), and deductive 
databases (Section 26.5). Chapter 27 discusses information retrieval (IR) 
and Web search, and includes topics such as IR and keyword-based search, 
comparing DB with IR, retrieval models, search evaluation, and ranking 
algorithms. Chapter 28 is an introduction to data mining including over-
views of various data mining methods such as associate rule mining, cluster-
ing, classification, and sequential pattern discovery. Chapter 29 is an 
overview of data warehousing including topics such as data warehousing 
models and operations, and the process of building a data warehouse.

 ■ Part 12 (Chapter 30) includes one chapter on database security, which 
includes a discussion of SQL commands for discretionary access control 
(GRANT, REVOKE), as well as mandatory security levels and models for 
including mandatory access control in relational databases, and a discussion 
of threats such as SQL injection attacks, as well as other techniques and 
methods related to data security and privacy.

Appendix A gives a number of alternative diagrammatic notations for displaying a 
conceptual ER or EER schema. These may be substituted for the notation we use, if 
the instructor prefers. Appendix B gives some important physical parameters of 
disks. Appendix C gives an overview of the QBE graphical query language, and 
Appendixes D and E (available on the book’s Companion Website located at  
http://www.pearsonhighered.com/elmasri) cover legacy database systems, based on 
the hierarchical and network database models. They have been used for more than 
thirty years as a basis for many commercial database applications and transaction-
processing systems.
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Guidelines for Using This Book
There are many different ways to teach a database course. The chapters in Parts 1 
through 7 can be used in an introductory course on database systems in the order 
that they are given or in the preferred order of individual instructors. Selected chap-
ters and sections may be left out and the instructor can add other chapters from the 
rest of the book, depending on the emphasis of the course. At the end of the open-
ing section of some of the book’s chapters, we list sections that are candidates for 
being left out whenever a less-detailed discussion of the topic is desired. We suggest 
covering up to Chapter 15 in an introductory database course and including selected 
parts of other chapters, depending on the background of the students and the 
desired coverage. For an emphasis on system implementation techniques, chapters 
from Parts 7, 8, and 9 should replace some of the earlier chapters.

Chapters 3 and 4, which cover conceptual modeling using the ER and EER models, 
are important for a good conceptual understanding of databases. However, they 
may be partially covered, covered later in a course, or even left out if the emphasis 
is on DBMS implementation. Chapters 16 and 17 on file organizations and indexing 
may also be covered early, later, or even left out if the emphasis is on database mod-
els and languages. For students who have completed a course on file organization, 
parts of these chapters can be assigned as reading material or some exercises can be 
assigned as a review for these concepts.

If the emphasis of a course is on database design, then the instructor should cover 
Chapters 3 and 4 early on, followed by the presentation of relational databases. A 
total life-cycle database design and implementation project would cover conceptual 
design (Chapters 3 and 4), relational databases (Chapters 5, 6, and 7), data model 
mapping (Chapter 9), normalization (Chapter 14), and application programs 
implementation with SQL (Chapter 10). Chapter 11 also should be covered if the 
emphasis is on Web database programming and applications. Additional documen-
tation on the specific programming languages and RDBMS used would be required. 
The book is written so that it is possible to cover topics in various sequences. The 
following chapter dependency chart shows the major dependencies among chap-
ters. As the diagram illustrates, it is possible to start with several different topics 
following the first two introductory chapters. Although the chart may seem com-
plex, it is important to note that if the chapters are covered in order, the dependen-
cies are not lost. The chart can be consulted by instructors wishing to use an 
alternative order of presentation.

For a one-semester course based on this book, selected chapters can be assigned as 
reading material. The book also can be used for a two-semester course sequence. 
The first course, Introduction to Database Design and Database Systems, at the 
sophomore, junior, or senior level, can cover most of Chapters 1 through 15. The 
second course, Database Models and Implementation Techniques, at the senior or 
first-year graduate level, can cover most of Chapters 16 through 30. The two-
semester sequence can also be designed in various other ways, depending on the 
preferences of the instructors.
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Supplemental Materials
Support material is available to qualified instructors at Pearson’s instructor 
resource center (http://www.pearsonhighered.com/irc). For access, contact your 
local Pearson representative.

 ■ PowerPoint lecture notes and figures.

 ■ A solutions manual.
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1chapter 1
Databases and 

Database Users

Databases and database systems are an essential 
component of life in modern society: most of us 

encounter several activities every day that involve some interaction with a database. 
For example, if we go to the bank to deposit or withdraw funds, if we make a hotel 
or airline reservation, if we access a computerized library catalog to search for a 
bibliographic item, or if we purchase something online—such as a book, toy, or 
computer—chances are that our activities will involve someone or some computer 
program accessing a database. Even purchasing items at a supermarket often auto-
matically updates the database that holds the inventory of grocery items.

These interactions are examples of what we may call traditional database 
 applications, in which most of the information that is stored and accessed is either 
textual or numeric. In the past few years, advances in technology have led to exciting 
new applications of database systems. The proliferation of social media Web sites, 
such as Facebook, Twitter, and Flickr, among many others, has required the cre-
ation of huge databases that store nontraditional data, such as posts, tweets, 
images, and video clips. New types of database systems, often referred to as big data 
storage systems, or NOSQL systems, have been created to manage data for social 
media applications. These types of systems are also used by companies such as 
Google, Amazon, and Yahoo, to manage the data required in their Web search 
engines, as well as to provide cloud storage, whereby users are provided with stor-
age capabilities on the Web for managing all types of data including documents, 
programs, images, videos and emails. We will give an overview of these new types 
of database systems in Chapter 24.

We now mention some other applications of databases. The wide availability of 
photo and video technology on cellphones and other devices has made it possible to 
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store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information 
systems (GISs) can store and analyze maps, weather data, and satellite images. 
Data warehouses and online analytical processing (OLAP) systems are used in 
many companies to extract and analyze useful business information from very large 
databases to support decision making. Real-time and active database technology 
is used to control industrial and manufacturing processes. And database search 
techniques are being applied to the World Wide Web to improve the search for 
information that is needed by users browsing the Internet.

To understand the fundamentals of database technology, however, we must start 
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a 
simple UNIVERSITY database example to illustrate our discussion. Section 1.3 
describes some of the main characteristics of database systems, and Sections 1.4 
and 1.5 categorize the types of personnel whose jobs involve using and interacting 
with database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion 
of the various capabilities provided by database systems and discuss some typical 
database applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems can study 
 Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and 
go on to Chapter 2.

1.1 Introduction
Databases and database technology have had a major impact on the growing use of 
computers. It is fair to say that databases play a critical role in almost all areas where 
computers are used, including business, electronic commerce, social media, engi-
neering, medicine, genetics, law, education, and library science. The word database 
is so commonly used that we must begin by defining what a database is. Our initial 
definition is quite general.

A database is a collection of related data.1 By data, we mean known facts that can 
be recorded and that have implicit meaning. For example, consider the names, 
telephone numbers, and addresses of the people you know. Nowadays, this data is 
typically stored in mobile phones, which have their own simple database software. 
This data can also be recorded in an indexed address book or stored on a hard 
drive, using a personal computer and software such as Microsoft Access or Excel. 
This collection of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider 
the collection of words that make up this page of text to be related data and hence to 

1We will use the word data as both singular and plural, as is common in database literature; the context 
will determine whether it is singular or plural. In standard English, data is used for plural and datum for 
singular.
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constitute a database. However, the common use of the term database is usually 
more restricted. A database has the following implicit properties:

■ A database represents some aspect of the real world, sometimes called the 
miniworld or the universe of discourse (UoD). Changes to the miniworld 
are reflected in the database.

■ A database is a logically coherent collection of data with some inherent 
meaning. A random assortment of data cannot correctly be referred to as a 
database.

■ A database is designed, built, and populated with data for a specific purpose. 
It has an intended group of users and some preconceived applications in 
which these users are interested.

In other words, a database has some source from which data is derived, some degree 
of interaction with events in the real world, and an audience that is actively inter-
ested in its contents. The end users of a database may perform business transactions 
(for example, a customer buys a camera) or events may happen (for example, an 
employee has a baby) that cause the information in the database to change. In order 
for a database to be accurate and reliable at all times, it must be a true reflection of 
the miniworld that it represents; therefore, changes must be reflected in the data-
base as soon as possible.

A database can be of any size and complexity. For example, the list of names and 
addresses referred to earlier may consist of only a few hundred records, each with a 
simple structure. On the other hand, the computerized catalog of a large library 
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized 
alphabetically. A database of even greater size and complexity would be maintained 
by a social media company such as Facebook, which has more than a billion users. 
The database has to maintain information on which users are related to one another 
as friends, the postings of each user, which users are allowed to see each posting, 
and a vast amount of other types of information needed for the correct operation of 
their Web site. For such Web sites, a large number of databases are needed to keep 
track of the constantly changing information required by the social media Web site.

An example of a large commercial database is Amazon.com. It contains data for 
over 60 million active users, and millions of books, CDs, videos, DVDs, games, 
electronics, apparel, and other items. The database occupies over 42 terabytes 
(a terabyte is 1012 bytes worth of storage) and is stored on hundreds of computers 
(called servers). Millions of visitors access Amazon.com each day and use the 
database to make purchases. The database is continually updated as new books 
and other items are added to the inventory, and stock quantities are updated as 
purchases are transacted.

A database may be generated and maintained manually or it may be computer-
ized. For example, a library card catalog is a database that may be created and 
maintained manually. A computerized database may be created and maintained 
either by a group of application programs written specifically for that task or by a 
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database management system. Of course, we are only concerned with computer-
ized databases in this text.

A database management system (DBMS) is a computerized system that enables 
users to create and maintain a database. The DBMS is a general-purpose software 
system that facilitates the processes of defining, constructing, manipulating, and 
sharing databases among various users and applications. Defining a database 
involves specifying the data types, structures, and constraints of the data to be 
stored in the database. The database definition or descriptive information is also 
stored by the DBMS in the form of a database catalog or dictionary; it is called 
meta-data. Constructing the database is the process of storing the data on some 
storage medium that is controlled by the DBMS. Manipulating a database includes 
functions such as querying the database to retrieve specific data, updating the data-
base to reflect changes in the miniworld, and generating reports from the data. 
Sharing a database allows multiple users and programs to access the database 
simultaneously.

An application program accesses the database by sending queries or requests for 
data to the DBMS. A query2 typically causes some data to be retrieved; a transaction 
may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database 
and maintaining it over a long period of time. Protection includes system protec-
tion against hardware or software malfunction (or crashes) and security protection 
against unauthorized or malicious access. A typical large database may have a life 
cycle of many years, so the DBMS must be able to maintain the database system by 
allowing the system to evolve as requirements change over time.

It is not absolutely necessary to use general-purpose DBMS software to implement 
a computerized database. It is possible to write a customized set of programs to cre-
ate and maintain the database, in effect creating a special-purpose DBMS software 
for a specific application, such as airlines reservations. In either case—whether we 
use a general-purpose DBMS or not—a considerable amount of complex software 
is deployed. In fact, most DBMSs are very complex software systems.

To complete our initial definitions, we will call the database and DBMS software 
together a database system. Figure 1.1 illustrates some of the concepts we have 
discussed so far.

1.2 An Example
Let us consider a simple example that most readers may be familiar with: a 
 UNIVERSITY database for maintaining information concerning students, courses, 
and grades in a university environment. Figure 1.2 shows the database structure 
and a few sample data records. The database is organized as five files, each of which 

2The term query, originally meaning a question or an inquiry, is sometimes loosely used for all types of 
interactions with databases, including modifying the data.
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stores data records of the same type.3 The STUDENT file stores data on each stu-
dent, the COURSE file stores data on each course, the SECTION file stores data on 
each section of a course, the GRADE_REPORT file stores the grades that students 
receive in the various sections they have completed, and the PREREQUISITE file 
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by 
specifying the different types of data elements to be stored in each record. In 
Figure 1.2, each STUDENT record includes data to represent the student’s Name, 
Student_number, Class (such as freshman or ‘1’, sophomore or ‘2’, and so forth), 
and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each 
COURSE record includes data to represent the Course_name, Course_number, 
Credit_hours, and Department (the department that offers the course), and so  
on. We must also specify a data type for each data element within a record. For 
example, we can specify that Name of STUDENT is a string of alphabetic characters, 
Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a  

3We use the term file informally here. At a conceptual level, a file is a collection of records that may or 
may not be ordered.

Database
System

Users/Programmers 

Application Programs/Queries 

Software to Process 
Queries/Programs 

Software to Access 
Stored Data 

Stored Database 
Stored Database 

Definition 
(Meta-Data) 

DBMS
Software

Figure 1.1 
A simplified database 
system environment.
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Name Student_number Class Major

Smith 17 1 CS

Brown 8 2 CS

STUDENT

Course_name Course_number Credit_hours Department

Intro to Computer Science CS1310 4 CS

Data Structures CS3320 4 CS

Discrete Mathematics MATH2410 3 MATH

Database CS3380 3 CS

COURSE

Section_identifier Course_number Semester Year Instructor

85 MATH2410 Fall 07 King

92 CS1310 Fall 07 Anderson

102 CS3320 Spring 08 Knuth

112 MATH2410 Fall 08 Chang

119 CS1310 Fall 08 Anderson

135 CS3380 Fall 08 Stone

SECTION

Student_number Section_identifier Grade

17 112 B

17 119 C

8 85 A

8 92 A

8 102 B

8 135 A

GRADE_REPORT

Course_number Prerequisite_number

CS3380 CS3320

CS3380 MATH2410

CS3320 CS1310

PREREQUISITE

Figure 1.2 
A database that stores 
student and course 
information.



 1.2 An Example 9

single character from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’}. We may also use a coding 
scheme to represent the values of a data item. For example, in Figure 1.2 we rep-
resent the Class of a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior,  
4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student, 
course, section, grade report, and prerequisite as a record in the appropriate file. 
Notice that records in the various files may be related. For example, the record for 
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that 
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE  
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of 
records and have many relationships among the records.

Database manipulation involves querying and updating. Examples of queries are as 
follows:

■ Retrieve the transcript—a list of all courses and grades—of ‘Smith’

■ List the names of students who took the section of the ‘Database’ course 
offered in fall 2008 and their grades in that section

■ List the prerequisites of the ‘Database’ course

Examples of updates include the following:

■ Change the class of ‘Smith’ to sophomore

■ Create a new section for the ‘Database’ course for this semester

■ Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as part of a larger undertaking 
known as an information system within an organization. The Information Tech-
nology (IT) department within an organization designs and maintains an informa-
tion system consisting of various computers, storage systems, application software, 
and databases. Design of a new application for an existing database or design of a 
brand new database starts off with a phase called requirements specification and 
analysis. These requirements are documented in detail and transformed into a 
 conceptual design that can be represented and manipulated using some comput-
erized tools so that it can be easily maintained, modified, and transformed into a 
database implementation. (We will introduce a model called the Entity-Relation-
ship model in Chapter 3 that is used for this purpose.) The design is then translated 
to a logical design that can be expressed in a data model implemented in a com-
mercial DBMS. (Various types of DBMSs are discussed throughout the text, with an 
emphasis on relational DBMSs in Chapters 5 through 9.)

The final stage is physical design, during which further specifications are provided for 
storing and accessing the database. The database design is implemented, populated 
with actual data, and continuously maintained to reflect the state of the miniworld.
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1.3 Characteristics of the Database Approach
A number of characteristics distinguish the database approach from the much 
older approach of writing customized programs to access data stored in files. In 
traditional file processing, each user defines and implements the files needed for a 
specific software application as part of programming the application. For example, 
one user, the grade reporting office, may keep files on students and their grades. 
Programs to print a student’s transcript and to enter new grades are implemented 
as part of the application. A second user, the accounting office, may keep track of 
students’ fees and their payments. Although both users are interested in data about 
students, each user maintains separate files—and programs to manipulate these 
files—because each requires some data not available from the other user’s files. 
This redundancy in defining and storing data results in wasted storage space and 
in redundant efforts to maintain common up-to-date data.

In the database approach, a single repository maintains data that is defined once 
and then accessed by various users repeatedly through queries, transactions, and 
application programs. The main characteristics of the database approach versus the 
file-processing approach are the following:

■ Self-describing nature of a database system

■ Insulation between programs and data, and data abstraction

■ Support of multiple views of the data

■ Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System
A fundamental characteristic of the database approach is that the database system 
contains not only the database itself but also a complete definition or description of 
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information 
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1). It is important to note that some newer types of data-
base systems, known as NOSQL systems, do not require meta-data. Rather the data 
is stored as self-describing data that includes the data item names and data values 
together in one structure (see Chapter 24).

The catalog is used by the DBMS software and also by database users who need 
information about the database structure. A general-purpose DBMS software 
package is not written for a specific database application. Therefore, it must refer 
to the catalog to know the structure of the files in a specific database, such as the 
type and format of data it will access. The DBMS software must work equally well 
with any number of database applications—for example, a university database, a 
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banking database, or a company database—as long as the database definition is 
stored in the catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one 
specific database, whose structure is declared in the application programs. For 
example, an application program written in C++ may have struct or class declara-
tions. Whereas file-processing software can access only specific databases, DBMS 
software can access diverse databases by extracting the database definitions from 
the catalog and using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of 
all the files shown. Figure 1.3 shows some entries in a database catalog. Whenever a 
request is made to access, say, the Name of a STUDENT record, the DBMS software 
refers to the catalog to determine the structure of the STUDENT file and the position 
and size of the Name data item within a STUDENT record. By contrast, in a typical 
file-processing application, the file structure and, in the extreme case, the exact 
location of Name within a STUDENT record are already coded within each program 
that accesses this data item.

Figure 1.3 
An example of a 
 database catalog for 
the database in 
 Figure 1.2.

Relation_name No_of_columns

STUDENT 4

COURSE 4

SECTION 5

GRADE_REPORT 3

PREREQUISITE 2

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT

Student_number Character (4) STUDENT

Class Integer (1) STUDENT

Major Major_type STUDENT

Course_name Character (10) COURSE

Course_number XXXXNNNN COURSE

…. …. …..

…. …. …..

…. …. …..

Prerequisite_number XXXXNNNN PREREQUISITE

RELATIONS

COLUMNS

Note: Major_type is defined as an enumerated type with all known majors.  
XXXXNNNN is used to define a type with four alphabetic characters followed by four numeric digits.
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1.3.2  Insulation between Programs and Data,  
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all 
programs that access that file. By contrast, DBMS access programs do not require 
such changes in most cases. The structure of data files is stored in the DBMS cata-
log separately from the access programs. We call this property program-data 
independence.

For example, a file access program may be written in such a way that it can access 
only STUDENT records of the structure shown in Figure 1.4. If we want to add 
another piece of data to each STUDENT record, say the Birth_date, such a program 
will no longer work and must be changed. By contrast, in a DBMS environment, we 
only need to change the description of STUDENT records in the catalog (Figure 1.3) 
to reflect the inclusion of the new data item Birth_date; no programs are changed. 
The next time a DBMS program refers to the catalog, the new structure of  
STUDENT records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational 
systems (see Chapter 12), users can define operations on data as part of the database 
definitions. An operation (also called a function or method) is specified in two 
parts. The interface (or signature) of an operation includes the operation name and 
the data types of its arguments (or parameters). The implementation (or method) of 
the operation is specified separately and can be changed without affecting the inter-
face. User application programs can operate on the data by invoking these opera-
tions through their names and arguments, regardless of how the operations are 
implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation 
independence is called data abstraction. A DBMS provides users with a conceptual 
representation of data that does not include many of the details of how the data is 
stored or how the operations are implemented. Informally, a data model is a type of 
data abstraction that is used to provide this conceptual representation. The data 
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage 
concepts. Hence, the data model hides storage and implementation details that are 
not of interest to most database users.

Looking at the example in Figures 1.2 and 1.3, the internal implementation of the 
STUDENT file may be defined by its record length—the number of characters 
(bytes) in each record—and each data item may be specified by its starting byte 
within a record and its length in bytes. The STUDENT record would thus be repre-
sented as shown in Figure 1.4. But a typical database user is not concerned with the 
location of each data item within a record or its length; rather, the user is concerned 
that when a reference is made to Name of STUDENT, the correct value is returned.  
A conceptual representation of the STUDENT records is shown in Figure 1.2. Many 
other details of file storage organization—such as the access paths specified on a 
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file—can be hidden from database users by the DBMS; we discuss storage details in 
Chapters 16 and 17.

In the database approach, the detailed structure and organization of each file are 
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage 
from the catalog when these are needed by the DBMS file access modules. Many 
data models can be used to provide this data abstraction to database users. A major 
part of this text is devoted to presenting various data models and the concepts they 
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes 
not only the data structure but also the operations on the data. These operations 
provide an abstraction of miniworld activities commonly understood by the users. 
For example, an operation CALCULATE_GPA can be applied to a STUDENT object  
to calculate the grade point average. Such operations can be invoked by the user 
queries or application programs without having to know the details of how the 
operations are implemented.

1.3.3 Support of Multiple Views of the Data
A database typically has many types of users, each of whom may require a different 
perspective or view of the database. A view may be a subset of the database or it may 
contain virtual data that is derived from the database files but is not explicitly stored. 
Some users may not need to be aware of whether the data they refer to is stored or 
derived. A multiuser DBMS whose users have a variety of distinct applications must 
provide facilities for defining multiple views. For example, one user of the database 
of Figure 1.2 may be interested only in accessing and printing the transcript of each 
student; the view for this user is shown in Figure 1.5(a). A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course 
for which the student registers, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing
A multiuser DBMS, as its name implies, must allow multiple users to access the 
database at the same time. This is essential if data for multiple applications is to be 
integrated and maintained in a single database. The DBMS must include  concurrency 
control software to ensure that several users trying to update the same data  

Data Item Name Starting Position in Record Length in Characters (bytes)

Name 1 30

Student_number 31 4

Class 35 1

Major 36 4

Figure 1.4 
Internal storage format 
for a STUDENT record, 
based on the database 
catalog in Figure 1.3.
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do so in a controlled manner so that the result of the updates is correct. For exam-
ple, when several reservation agents try to assign a seat on an airline flight, the 
DBMS should ensure that each seat can be accessed by only one agent at a time for 
assignment to a passenger. These types of applications are generally called online 
transaction processing (OLTP) applications. A fundamental role of multiuser 
DBMS software is to ensure that concurrent transactions operate correctly and 
efficiently.

The concept of a transaction has become central to many database applications. A 
transaction is an executing program or process that includes one or more database 
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety with-
out interference from other transactions. The DBMS must enforce several 
transaction properties. The isolation property ensures that each transaction 
appears to execute in isolation from other transactions, even though hundreds of 
transactions may be executing concurrently. The atomicity property ensures that 
either all the database operations in a transaction are executed or none are. We dis-
cuss transactions in detail in Part 9.

The preceding characteristics are important in distinguishing a DBMS from tradi-
tional file-processing software. In Section 1.6 we discuss additional features that 
characterize a DBMS. First, however, we categorize the different types of people 
who work in a database system environment.

Student_name
Student_transcript

Course_number Grade Semester Year Section_id

Smith
CS1310 C Fall 08 119

MATH2410 B Fall 08 112

Brown

MATH2410 A Fall 07 85

CS1310 A Fall 07 92

CS3320 B Spring 08 102

CS3380 A Fall 08 135

TRANSCRIPT

Course_name Course_number Prerequisites

Database CS3380
CS3320

MATH2410

Data Structures CS3320 CS1310

COURSE_PREREQUISITES

(a)

(b)

Figure 1.5 
Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.  
(b) The COURSE_PREREQUISITES view.
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1.4 Actors on the Scene
For a small personal database, such as the list of addresses discussed in Section 1.1, 
one person typically defines, constructs, and manipulates the database, and there is 
no sharing. However, in large organizations, many people are involved in the 
design, use, and maintenance of a large database with hundreds or thousands of 
users. In this section we identify the people whose jobs involve the day-to-day use 
of a large database; we call them the actors on the scene. In Section 1.5 we consider 
people who may be called workers behind the scene—those who work to maintain 
the database system environment but who are not actively interested in the data-
base contents as part of their daily job.

1.4.1 Database Administrators
In any organization where many people use the same resources, there is a need for 
a chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the 
DBMS and related software. Administering these resources is the responsibility of 
the database administrator (DBA). The DBA is responsible for authorizing access 
to the database, coordinating and monitoring its use, and acquiring software and 
hardware resources as needed. The DBA is accountable for problems such as secu-
rity breaches and poor system response time. In large organizations, the DBA is 
assisted by a staff that carries out these functions.

1.4.2 Database Designers
Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These 
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with 
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the 
staff of the DBA and may be assigned other staff responsibilities after the database 
design is completed. Database designers typically interact with each potential group 
of users and develop views of the database that meet the data and processing 
requirements of these groups. Each view is then analyzed and integrated with the 
views of other user groups. The final database design must be capable of supporting 
the requirements of all user groups.

1.4.3 End Users
End users are the people whose jobs require access to the database for querying, 
updating, and generating reports; the database primarily exists for their use. There 
are several categories of end users:

■ Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query interface 
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to specify their requests and are typically middle- or high-level managers or 
other occasional browsers.

■ Naive or parametric end users make up a sizable portion of database 
end users. Their main job function revolves around constantly querying 
and updating the database, using standard types of queries and updates—
called canned transactions—that have been carefully programmed and 
tested. Many of these tasks are now available as mobile apps for use with 
mobile devices. The tasks that such users perform are varied. A few 
examples are:

� Bank customers and tellers check account balances and post withdrawals 
and deposits.

� Reservation agents or customers for airlines, hotels, and car rental com-
panies check availability for a given request and make reservations.

� Employees at receiving stations for shipping companies enter package 
identifications via bar codes and descriptive information through buttons 
to update a central database of received and in-transit packages.

� Social media users post and read items on social media Web sites.

■ Sophisticated end users include engineers, scientists, business analysts, and 
others who thoroughly familiarize themselves with the facilities of the DBMS 
in order to implement their own applications to meet their complex require-
ments.

■ Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based 
interfaces. An example is the user of a financial software package that stores 
a variety of personal financial data.

A typical DBMS provides multiple facilities to access a database. Naive end users 
need to learn very little about the facilities provided by the DBMS; they simply have 
to understand the user interfaces of the mobile apps or standard transactions 
designed and implemented for their use. Casual users learn only a few facilities that 
they may use repeatedly. Sophisticated users try to learn most of the DBMS facilities 
in order to achieve their complex requirements. Standalone users typically become 
very proficient in using a specific software package.

1.4.4  System Analysts and Application Programmers  
(Software Engineers)

System analysts determine the requirements of end users, especially naive and 
parametric end users, and develop specifications for standard canned transactions 
that meet these requirements. Application programmers implement these specifi-
cations as programs; then they test, debug, document, and maintain these canned 
transactions. Such analysts and programmers—commonly referred to as software 
developers or software engineers—should be familiar with the full range of capa-
bilities provided by the DBMS to accomplish their tasks.
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1.5 Workers behind the Scene
In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system 
environment. These persons are typically not interested in the database content 
itself. We call them the workers behind the scene, and they include the following 
categories:

■ DBMS system designers and implementers design and implement the 
DBMS modules and interfaces as a software package. A DBMS is a very 
complex software system that consists of many components, or modules, 
including modules for implementing the catalog, query language process-
ing, interface processing, accessing and buffering data, controlling concur-
rency, and handling data recovery and security. The DBMS must interface 
with other system software, such as the operating system and compilers for 
various programming languages.

■ Tool developers design and implement tools—the software packages that 
facilitate database modeling and design, database system design, and 
improved performance. Tools are optional packages that are often pur-
chased separately. They include packages for database design, performance 
monitoring, natural language or graphical interfaces, prototyping, simula-
tion, and test data generation. In many cases, independent software vendors 
develop and market these tools.

■ Operators and maintenance personnel (system administration personnel) 
are responsible for the actual running and maintenance of the hardware and 
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making 
the database system available to end users, they typically do not use the database 
contents for their own purposes.

1.6 Advantages of Using the DBMS Approach
In this section we discuss some additional advantages of using a DBMS and the 
capabilities that a good DBMS should possess. These capabilities are in addition to 
the four main characteristics discussed in Section 1.3. The DBA must utilize these 
capabilities to accomplish a variety of objectives related to the design, administra-
tion, and use of a large multiuser database.

1.6.1 Controlling Redundancy
In traditional software development utilizing file processing, every user group 
maintains its own files for handling its data-processing applications. For example, 
consider the UNIVERSITY database example of Section 1.2; here, two groups of  
users might be the course registration personnel and the accounting office. In the 
traditional approach, each group independently keeps files on students. The 
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accounting office keeps data on registration and related billing information, 
whereas the registration office keeps track of student courses and grades. Other 
groups may further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems. 
First, there is the need to perform a single logical update—such as entering data on 
a new student—multiple times: once for each file where student data is recorded. 
This leads to duplication of effort. Second, storage space is wasted when the same 
data is stored repeatedly, and this problem may be serious for large databases. 
Third, files that represent the same data may become inconsistent. This may happen 
because an update is applied to some of the files but not to others. Even if an 
update—such as adding a new student—is applied to all the appropriate files, the 
data concerning the student may still be inconsistent because the updates are applied 
independently by each user group. For example, one user group may enter a stu-
dent’s birth date erroneously as ‘JAN-19-1988’, whereas the other user groups may 
enter the correct value of ‘JAN-29-1988’.

In the database approach, the views of different user groups are integrated during 
database design. Ideally, we should have a database design that stores each logical 
data item—such as a student’s name or birth date—in only one place in the data-
base. This is known as data normalization, and it ensures consistency and saves 
storage space (data normalization is described in Part 6 of the text).

However, in practice, it is sometimes necessary to use controlled redundancy to 
improve the performance of queries. For example, we may store Student_name and 
Course_number redundantly in a GRADE_REPORT file (Figure 1.6(a)) because  
whenever we retrieve a GRADE_REPORT record, we want to retrieve the student 
name and course number along with the grade, student number, and section identi-
fier. By placing all the data together, we do not have to search multiple files to col-
lect this data. This is known as denormalization. In such cases, the DBMS should 

Student_number Student_name Section_identifier Course_number Grade

17 Smith 112 MATH2410 B

17 Smith 119 CS1310 C

8 Brown 85 MATH2410 A

8 Brown 92 CS1310 A

8 Brown 102 CS3320 B

8 Brown 135 CS3380 A

GRADE_REPORT

Student_number Student_name Section_identifier Course_number Grade

17 Brown 112 MATH2410 B

GRADE_REPORT

(a)

(b)

Figure 1.6 
Redundant storage 
of Student_name 
and Course_name in  
GRADE_REPORT. 
(a) Consistent data. 
(b) Inconsistent 
record.
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have the capability to control this redundancy in order to prohibit inconsisten-
cies among the files. This may be done by automatically checking that the 
 Student_name–Student_number values in any GRADE_REPORT record in Fig- 
ure 1.6(a) match one of the Name–Student_number values of a STUDENT record (Fig- 
ure 1.2). Similarly, the Section_identifier–Course_number values in GRADE_REPORT 
can be checked against SECTION records. Such checks can be specified to the DBMS 
during database design and automatically enforced by the DBMS whenever the 
GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that 
is inconsistent with the STUDENT file in Figure 1.2; this kind of error may be entered 
if the redundancy is not controlled. Can you tell which part is inconsistent?

1.6.2 Restricting Unauthorized Access
When multiple users share a large database, it is likely that most users will not be 
authorized to access all information in the database. For example, financial data 
such as salaries and bonuses is often considered confidential, and only autho-
rized persons are allowed to access such data. In addition, some users may only 
be permitted to retrieve data, whereas others are allowed to retrieve and update. 
Hence, the type of access operation—retrieval or update—must also be con-
trolled. Typically, users or user groups are given account numbers protected by 
passwords, which they can use to gain access to the database. A DBMS should 
provide a security and authorization subsystem, which the DBA uses to create 
accounts and to specify account restrictions. Then, the DBMS should enforce 
these restrictions automatically. Notice that we can apply similar controls to the 
DBMS software. For example, only the DBA’s staff may be allowed to use certain 
privileged software, such as the software for creating new accounts. Similarly, 
parametric users may be allowed to access the database only through the pre-
defined apps or canned transactions developed for their use. We discuss data-
base security and authorization in Chapter 30.

1.6.3 Providing Persistent Storage for Program Objects
Databases can be used to provide persistent storage for program objects and data 
structures. This is one of the main reasons for object-oriented database systems 
(see Chapter 12). Programming languages typically have complex data structures, 
such as structs or class definitions in C++ or Java. The values of program variables 
or objects are discarded once a program terminates, unless the programmer explic-
itly stores them in permanent files, which often involves converting these complex 
structures into a format suitable for file storage. When the need arises to read this 
data once more, the programmer must convert from the file format to the program 
variable or object structure. Object-oriented database systems are compatible with 
programming languages such as C++ and Java, and the DBMS software auto-
matically performs any necessary conversions. Hence, a complex object in C++ 
can be stored permanently in an object-oriented DBMS. Such an object is said to 
be persistent, since it survives the termination of program execution and can 
later be directly retrieved by another program.
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The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the 
DBMS were incompatible with the programming language’s data structures. 
Object-oriented database systems typically offer data structure compatibility with 
one or more object-oriented programming languages.

1.6.4  Providing Storage Structures and Search  
Techniques for Efficient Query Processing

Database systems must provide capabilities for efficiently executing queries and 
updates. Because the database is typically stored on disk, the DBMS must provide 
specialized data structures and search techniques to speed up disk search for the 
desired records. Auxiliary files called indexes are often used for this purpose. 
Indexes are typically based on tree data structures or hash data structures that are 
suitably modified for disk search. In order to process the database records needed 
by a particular query, those records must be copied from disk to main memory. 
Therefore, the DBMS often has a buffering or caching module that maintains parts 
of the database in main memory buffers. In general, the operating system is respon-
sible for disk-to-memory buffering. However, because data buffering is crucial to 
the DBMS performance, most DBMSs do their own data buffering.

The query processing and optimization module of the DBMS is responsible for 
choosing an efficient query execution plan for each query based on the existing 
storage structures. The choice of which indexes to create and maintain is part of 
physical database design and tuning, which is one of the responsibilities of the DBA 
staff. We discuss query processing and optimization in Part 8 of the text.

1.6.5 Providing Backup and Recovery
A DBMS must provide facilities for recovering from hardware or software failures. 
The backup and recovery subsystem of the DBMS is responsible for recovery. For 
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is 
restored to the state it was in before the transaction started executing. Disk backup 
is also necessary in case of a catastrophic disk failure. We discuss recovery and 
backup in Chapter 22.

1.6.6 Providing Multiple User Interfaces
Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include apps for 
mobile users, query languages for casual users, programming language interfaces 
for application programmers, forms and command codes for parametric users, 
and menu-driven interfaces and natural language interfaces for standalone users. 
Both forms-style interfaces and menu-driven interfaces are commonly known as 
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graphical user interfaces (GUIs). Many specialized languages and environments 
exist for specifying GUIs. Capabilities for providing Web GUI interfaces to a 
database—or Web-enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data
A database may include numerous varieties of data that are interrelated in many 
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the 
STUDENT file is related to four records in the GRADE_REPORT file. Similarly, 
each section record is related to one course record and to a number of  
GRADE_REPORT records—one for each student who completed that section. A 
DBMS must have the capability to represent a variety of complex relationships 
among the data, to define new relationships as they arise, and to retrieve and 
update related data easily and efficiently.

1.6.8 Enforcing Integrity Constraints
Most database applications have certain integrity constraints that must hold for 
the data. A DBMS should provide capabilities for defining and enforcing these 
constraints. The simplest type of integrity constraint involves specifying a data 
type for each data item. For example, in Figure 1.3, we specified that the value of 
the Class data item within each STUDENT record must be a one-digit integer and 
that the value of Name must be a string of no more than 30 alphabetic characters. 
To restrict the value of Class between 1 and 5 would be an additional constraint 
that is not shown in the current catalog. A more complex type of constraint that 
frequently occurs involves specifying that a record in one file must be related to 
records in other files. For example, in Figure 1.2, we can specify that every section 
record must be related to a course record. This is known as a referential integrity 
constraint. Another type of constraint specifies uniqueness on data item values, 
such as every course record must have a unique value for Course_number. This is 
known as a key or uniqueness constraint. These constraints are derived from the 
meaning or semantics of the data and of the miniworld it represents. It is the 
responsibility of the database designers to identify integrity constraints during 
database design. Some constraints can be specified to the DBMS and automatically 
enforced. Other constraints may have to be checked by update programs or at the 
time of data entry. For typical large applications, it is customary to call such con-
straints business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered 
in the database, the DBMS cannot discover this error automatically because ‘C’ is a 
valid value for the Grade data type. Such data entry errors can only be discovered 
manually (when the student receives the grade and complains) and corrected later 
by updating the database. However, a grade of ‘Z’ would be rejected automatically 
by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to 
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that model implicitly. For example, in the Entity-Relationship model in Chapter 3, 
a relationship must involve at least two entities. Rules that pertain to a specific data 
model are called inherent rules of the data model.

1.6.9  Permitting Inferencing and Actions  
Using Rules and Triggers

Some database systems provide capabilities for defining deduction rules for infer-
encing new information from the stored database facts. Such systems are called 
deductive database systems. For example, there may be complex rules in the mini-
world application for determining when a student is on probation. These can be 
specified declaratively as rules, which when compiled and maintained by the DBMS 
can determine all students on probation. In a traditional DBMS, an explicit proce-
dural program code would have to be written to support such applications. But if 
the miniworld rules change, it is generally more convenient to change the declared 
deduction rules than to recode procedural programs. In today’s relational database 
systems, it is possible to associate triggers with tables. A trigger is a form of a rule 
activated by updates to the table, which results in performing some additional oper-
ations to some other tables, sending messages, and so on. More involved proce-
dures to enforce rules are popularly called stored procedures; they become a part of 
the overall database definition and are invoked appropriately when certain condi-
tions are met. More powerful functionality is provided by active database systems, 
which provide active rules that can automatically initiate actions when certain 
events and conditions occur (see Chapter 26 for introductions to active databases in 
Section 26.1 and deductive databases in Section 26.5).

1.6.10  Additional Implications of Using  
the Database Approach

This section discusses a few additional implications of using the database approach 
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to 
define and enforce standards among database users in a large organization. This facil-
itates communication and cooperation among various departments, projects, and 
users within the organization. Standards can be defined for names and formats of 
data elements, display formats, report structures, terminology, and so on. The DBA 
can enforce standards in a centralized database environment more easily than in an 
environment where each user group has control of its own data files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain 
data from the database for printing a new report—takes very little time. Designing 
and implementing a large multiuser database from scratch may take more time 
than writing a single specialized file application. However, once a database is up 
and running, substantially less time is generally required to create new applications 
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using DBMS facilities. Development time using a DBMS is estimated to be one-
sixth to one-fourth of that for a file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information 
not currently in the database. In response, it may be necessary to add a file to the 
database or to extend the data elements in an existing file. Modern DBMSs allow 
certain types of evolutionary changes to the structure of the database without affect-
ing the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available 
to all users. As soon as one user’s update is applied to the database, all other users 
can immediately see this update. This availability of up-to-date information is 
essential for many transaction-processing applications, such as reservation systems 
or banking databases, and it is made possible by the concurrency control and recov-
ery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and 
applications, thus reducing the amount of wasteful overlap between activities of 
data-processing personnel in different projects or departments as well as redundan-
cies among applications. This enables the whole organization to invest in more 
powerful processors, storage devices, or networking gear, rather than having each 
department purchase its own (lower performance) equipment. This reduces overall 
costs of operation and management.

1.7 A Brief History of Database Applications
We now give a brief historical overview of the applications that use DBMSs and 
how these applications provided the impetus for new types of database systems.

1.7.1  Early Database Applications Using Hierarchical  
and Network Systems

Many early database applications maintained records in large organizations such as 
corporations, universities, hospitals, and banks. In many of these applications, 
there were large numbers of records of similar structure. For example, in a univer-
sity application, similar information would be kept for each student, each course, 
each grade record, and so on. There were also many types of records and many 
interrelationships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk. 
Hence, these systems did not provide sufficient data abstraction and program-data 
independence capabilities. For example, the grade records of a particular student 
could be physically stored next to the student record. Although this provided very 
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efficient access for the original queries and transactions that the database was 
designed to handle, it did not provide enough flexibility to access records efficiently 
when new queries and transactions were identified. In particular, new queries that 
required a different storage organization for efficient processing were quite difficult 
to implement efficiently. It was also laborious to reorganize the database when 
changes were made to the application’s requirements.

Another shortcoming of early systems was that they provided only programming 
language interfaces. This made it time-consuming and expensive to implement 
new queries and transactions, since new programs had to be written, tested, and 
debugged. Most of these database systems were implemented on large and 
expensive mainframe computers starting in the mid-1960s and continuing 
through the 1970s and 1980s. The main types of early systems were based on 
three main paradigms: hierarchical systems, network model–based systems, and 
inverted file systems.

1.7.2  Providing Data Abstraction and Application Flexibility  
with Relational Databases

Relational databases were originally proposed to separate the physical storage of 
data from its conceptual representation and to provide a mathematical foundation 
for data representation and querying. The relational data model also introduced 
high-level query languages that provided an alternative to programming language 
interfaces, making it much faster to write new queries. Relational representation of 
data somewhat resembles the example we presented in Figure 1.2. Relational sys-
tems were initially targeted to the same applications as earlier systems, and pro-
vided flexibility to develop new queries quickly and to reorganize the database as 
requirements changed. Hence, data abstraction and program-data independence 
were much improved when compared to earlier systems.

Early experimental relational systems developed in the late 1970s and the com-
mercial relational database management systems (RDBMS) introduced in the 
early 1980s were quite slow, since they did not use physical storage pointers or 
record placement to access related data records. With the development of new 
storage and indexing techniques and better query processing and optimization, 
their performance improved. Eventually, relational databases became the domi-
nant type of database system for traditional database applications. Relational data-
bases now exist on almost all types of computers, from small personal computers 
to large servers.

1.7.3  Object-Oriented Applications and the Need  
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the 
need to store and share complex, structured objects led to the development of 
object-oriented databases (OODBs). Initially, OODBs were considered a competitor 
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to relational databases, since they provided more general data structures. They also 
incorporated many of the useful object-oriented paradigms, such as abstract data 
types, encapsulation of operations, inheritance, and object identity. However, the 
complexity of the model and the lack of an early standard contributed to their lim-
ited use. They are now mainly used in specialized applications, such as engineering 
design, multimedia publishing, and manufacturing systems. Despite expectations 
that they will make a big impact, their overall penetration into the database prod-
ucts market remains low. In addition, many object-oriented concepts were incor-
porated into the newer versions of relational DBMSs, leading to object-relational 
database management systems, known as ORDBMSs.

1.7.4  Interchanging Data on the Web  
for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers. 
Users can create static Web pages using a Web publishing language, such as Hyper-
Text Markup Language (HTML), and store these documents on Web servers where 
other users (clients) can access them and view them through Web browsers. Docu-
ments can be linked through hyperlinks, which are pointers to other documents. 
Starting in the 1990s, electronic commerce (e-commerce) emerged as a major 
application on the Web. Much of the critical information on e-commerce Web 
pages is dynamically extracted data from DBMSs, such as flight information, prod-
uct prices, and product availability. A variety of techniques were developed to allow 
the interchange of dynamically extracted data on the Web for display on Web 
pages. The eXtended Markup Language (XML) is one standard for interchanging 
data among various types of databases and Web pages. XML combines concepts 
from the models used in document systems with database modeling concepts. 
Chapter 13 is devoted to an overview of XML.

1.7.5  Extending Database Capabilities  
for New Applications

The success of database systems in traditional applications encouraged devel-
opers of other types of applications to attempt to use them. Such applications 
traditionally used their own specialized software and file and data structures. 
Database systems now offer extensions to better support the specialized require-
ments for some of these applications. The following are some examples of these 
applications:

■ Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics, the mapping of the 
human genome, and the discovery of protein structures

■ Storage and retrieval of images, including scanned news or personal photo-
graphs, satellite photographic images, and images from medical procedures 
such as x-rays and MRI (magnetic resonance imaging) tests
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■ Storage and retrieval of videos, such as movies, and video clips from news 
or personal digital cameras

■ Data mining applications that analyze large amounts of data to search for 
the occurrences of specific patterns or relationships, and for identifying 
unusual patterns in areas such as credit card fraud detection

■ Spatial applications that store and analyze spatial locations of data, such as 
weather information, maps used in geographical information systems, and 
automobile navigational systems

■ Time series applications that store information such as economic data at 
regular points in time, such as daily sales and monthly gross national 
product figures

It was quickly apparent that basic relational systems were not very suitable for many 
of these applications, usually for one or more of the following reasons:

■ More complex data structures were needed for modeling the application 
than the simple relational representation.

■ New data types were needed in addition to the basic numeric and character 
string types.

■ New operations and query language constructs were necessary to manipu-
late the new data types.

■ New storage and indexing structures were needed for efficient searching on 
the new data types.

This led DBMS developers to add functionality to their systems. Some functionality 
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form 
of optional modules that could be used for specific applications. For example, users 
could buy a time series module to use with their relational DBMS for their time 
series application.

1.7.6  Emergence of Big Data Storage Systems  
and NOSQL Databases

In the first decade of the twenty-first century, the proliferation of applications and 
platforms such as social media Web sites, large e-commerce companies, Web search 
indexes, and cloud storage/backup led to a surge in the amount of data stored on 
large databases and massive servers. New types of database systems were necessary 
to manage these huge databases—systems that would provide fast search and 
retrieval as well as reliable and safe storage of nontraditional types of data, such as 
social media posts and tweets. Some of the requirements of these new systems were 
not compatible with SQL relational DBMSs (SQL is the standard data model and 
language for relational databases). The term NOSQL is generally interpreted as Not 
Only SQL, meaning that in systems than manage large amounts of data, some of the 
data is stored using SQL systems, whereas other data would be stored using NOSQL, 
depending on the application requirements.
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1.8 When Not to Use a DBMS
In spite of the advantages of using a DBMS, there are a few situations in which a 
DBMS may involve unnecessary overhead costs that would not be incurred in 
traditional file processing. The overhead costs of using a DBMS are due to the 
following:

■ High initial investment in hardware, software, and training

■ The generality that a DBMS provides for defining and processing data

■ Overhead for providing security, concurrency control, recovery, and integ-
rity functions

Therefore, it may be more desirable to develop customized database applications 
under the following circumstances:

■ Simple, well-defined database applications that are not expected to change 
at all

■ Stringent, real-time requirements for some application programs that may 
not be met because of DBMS overhead

■ Embedded systems with limited storage capacity, where a general-purpose 
DBMS would not fit

■ No multiple-user access to data

Certain industries and applications have elected not to use general-purpose 
DBMSs. For example, many computer-aided design (CAD) tools used by mechan-
ical and civil engineers have proprietary file and data management software that 
is geared for the internal manipulations of drawings and 3D objects. Similarly, 
communication and switching systems designed by companies like AT&T were 
early manifestations of database software that was made to run very fast with 
hierarchically organized data for quick access and routing of calls. GIS imple-
mentations often implement their own data organization schemes for efficiently 
implementing functions related to processing maps, physical contours, lines, 
polygons, and so on.

1.9 Summary
In this chapter we defined a database as a collection of related data, where data 
means recorded facts. A typical database represents some aspect of the real world 
and is used for specific purposes by one or more groups of users. A DBMS is a 
generalized software package for implementing and maintaining a computerized 
database. The database and software together form a database system. We identi-
fied several characteristics that distinguish the database approach from traditional 
file-processing applications, and we discussed the main categories of database 
users, or the actors on the scene. We noted that in addition to database users, there 
are several categories of support personnel, or workers behind the scene, in a data-
base environment.
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We presented a list of capabilities that should be provided by the DBMS software to 
the DBA, database designers, and end users to help them design, administer, and 
use a database. Then we gave a brief historical perspective on the evolution of data-
base applications. We pointed out the recent rapid growth of the amounts and types 
of data that must be stored in databases, and we discussed the emergence of new 
systems for handling “big data” applications. Finally, we discussed the overhead 
costs of using a DBMS and discussed some situations in which it may not be advan-
tageous to use one.

Review Questions
 1.1. Define the following terms: data, database, DBMS, database system, data-

base catalog, program-data independence, user view, DBA, end user, canned 
transaction, deductive database system, persistent object, meta-data, and 
transaction-processing application.

 1.2. What four main types of actions involve databases? Briefly discuss each.

 1.3. Discuss the main characteristics of the database approach and how it differs 
from traditional file systems.

 1.4. What are the responsibilities of the DBA and the database designers?

 1.5. What are the different types of database end users? Discuss the main activi-
ties of each.

 1.6. Discuss the capabilities that should be provided by a DBMS.

 1.7. Discuss the differences between database systems and information retrieval 
systems.

Exercises
 1.8. Identify some informal queries and update operations that you would expect 

to apply to the database shown in Figure 1.2.

 1.9. What is the difference between controlled and uncontrolled redundancy? 
Illustrate with examples.

 1.10. Specify all the relationships among the records of the database shown in 
Figure 1.2.

 1.11. Give some additional views that may be needed by other user groups for the 
database shown in Figure 1.2.

 1.12. Cite some examples of integrity constraints that you think can apply to the 
database shown in Figure 1.2.

 1.13. Give examples of systems in which it may make sense to use traditional file 
processing instead of a database approach.
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 1.14. Consider Figure 1.2.

 a. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’ 
(Computer Science and Software Engineering) Department and the cor-
responding prefix for the course number also changes, identify the col-
umns in the database that would need to be updated.

 b. Can you restructure the columns in the COURSE, SECTION, and  
PREREQUISITE tables so that only one column will need to be updated?

Selected Bibliography
The October 1991 issue of Communications of the ACM and Kim (1995) include 
several articles describing next-generation DBMSs; many of the database features 
discussed in the former are now commercially available. The March 1976 issue of 
ACM Computing Surveys offers an early introduction to database systems and may 
provide a historical perspective for the interested reader. We will include references 
to other concepts, systems, and applications introduced in this chapter in the later 
text chapters that discuss each topic in more detail.



This page intentionally left blank



31

2chapter 2
Database System Concepts  

and Architecture

The architecture of DBMS packages has evolved 
from the early monolithic systems, where the whole 

DBMS software package was one tightly integrated system, to the modern DBMS 
packages that are modular in design, with a client/server system architecture. The 
recent growth in the amount of data requiring storage has led to database systems 
with distributed architectures comprised of thousands of computers that manage 
the data stores. This evolution mirrors the trends in computing, where large cen-
tralized mainframe computers are replaced by hundreds of distributed worksta-
tions and personal computers connected via communications networks to various 
types of server machines—Web servers, database servers, file servers, application 
servers, and so on. The current cloud computing environments consist of thou-
sands of large servers managing so-called big data for users on the Web.

In a basic client/server DBMS architecture, the system functionality is distributed 
between two types of modules.1 A client module is typically designed so that it 
will run on a mobile device, user workstation, or personal computer (PC). Typi-
cally, application programs and user interfaces that access the database run in the 
client module. Hence, the client module handles user interaction and provides 
the user-friendly interfaces such as apps for mobile devices, or forms- or menu-
based GUIs (graphical user interfaces) for PCs. The other kind of module, called 
a server module, typically handles data storage, access, search, and other func-
tions. We discuss client/server architectures in more detail in Section 2.5. First, 
we must study more basic concepts that will give us a better understanding of 
modern database architectures.

1As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.
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In this chapter we present the terminology and basic concepts that will be used 
throughout the text. Section 2.1 discusses data models and defines the concepts 
of schemas and instances, which are fundamental to the study of database sys-
tems. We discuss the three-schema DBMS architecture and data independence 
in Section 2.2; this provides a user’s perspective on what a DBMS is supposed to 
do. In Section 2.3 we describe the types of interfaces and languages that are typi-
cally provided by a DBMS. Section 2.4 discusses the database system software 
environment. Section 2.5 gives an overview of various types of client/server 
architectures. Finally, Section 2.6 presents a classification of the types of DBMS 
packages. Section 2.7 summarizes the chapter.

The material in Sections 2.4 through 2.6 provides detailed concepts that may be 
considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances
One fundamental characteristic of the database approach is that it provides some 
level of data abstraction. Data abstraction generally refers to the suppression of 
details of data organization and storage, and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the 
database approach is to support data abstraction so that different users can perceive 
data at their preferred level of detail. A data model—a collection of concepts that 
can be used to describe the structure of a database—provides the necessary means 
to achieve this abstraction.2 By structure of a database we mean the data types, rela-
tionships, and constraints that apply to the data. Most data models also include a 
set of basic operations for specifying retrievals and updates on the database.

In addition to the basic operations provided by the data model, it is becoming more 
common to include concepts in the data model to specify the dynamic aspect or 
behavior of a database application. This allows the database designer to specify a set 
of valid user-defined operations that are allowed on the database objects.3 An 
example of a user-defined operation could be COMPUTE_GPA, which can be  
applied to a STUDENT object. On the other hand, generic operations to insert, 
delete, modify, or retrieve any kind of object are often included in the basic data 
model operations. Concepts to specify behavior are fundamental to object-oriented 
data models (see Chapter 12) but are also being incorporated in more traditional 
data models. For example, object-relational models (see Chapter 12) extend the basic 
relational model to include such concepts, among others. In the basic relational data 
model, there is a provision to attach behavior to the relations in the form of persis-
tent stored modules, popularly known as stored procedures (see Chapter 10).

2Sometimes the word model is used to denote a specific database description, or schema—for example, 
the marketing data model. We will not use this interpretation.
3The inclusion of concepts to describe behavior reflects a trend whereby database design and software 
design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is 
associated with software design.
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2.1.1 Categories of Data Models
Many data models have been proposed, which we can categorize according to  
the types of concepts they use to describe the database structure. High-level or 
 conceptual data models provide concepts that are close to the way many users per-
ceive data, whereas low-level or physical data models provide concepts that describe 
the details of how data is stored on the computer storage media, typically magnetic 
disks. Concepts provided by physical data models are generally meant for computer 
specialists, not for end users. Between these two extremes is a class of representational 
(or implementation) data models,4 which provide concepts that may be easily 
understood by end users but that are not too far removed from the way data is orga-
nized in computer storage. Representational data models hide many details of data 
storage on disk but can be implemented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships. 
An entity represents a real-world object or concept, such as an employee or a project 
from the miniworld that is described in the database. An attribute represents some 
property of interest that further describes an entity, such as the employee’s name or 
salary. A relationship among two or more entities represents an association among 
the entities, for example, a works-on relationship between an employee and a 
project. Chapter 3 presents the entity–relationship model—a popular high-level 
conceptual data model. Chapter 4 describes additional abstractions used for advanced 
modeling, such as generalization, specialization, and categories (union types).

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational 
data model, as well as the so-called legacy data models—the network and 
 hierarchical models—that have been widely used in the past. Part 3 of the text is 
devoted to the relational data model, and its constraints, operations, and languages.5 
The SQL standard for relational databases is described in Chapters 6 and 7. Repre-
sentational data models represent data by using record structures and hence are 
sometimes called record-based data models.

We can regard the object data model as an example of a new family of higher-level 
implementation data models that are closer to conceptual data models. A standard 
for object databases called the ODMG object model has been proposed by the 
Object Data Management Group (ODMG). We describe the general characteristics 
of object databases and the object model proposed standard in Chapter 12. Object 
data models are also frequently utilized as high-level conceptual models, particu-
larly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An 

4The term implementation data model is not a standard term; we have introduced it to refer to the avail-
able data models in commercial database systems.

5A summary of the hierarchical and network data models is included in Appendices D and E. They are 
accessible from the book’s Web site.
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access path is a search structure that makes the search for particular database 
records efficient, such as indexing or hashing. We discuss physical storage tech-
niques and access structures in Chapters 16 and 17. An index is an example of an 
access path that allows direct access to data using an index term or a keyword. It is 
similar to the index at the end of this text, except that it may be organized in a lin-
ear, hierarchical (tree-structured), or some other fashion.

Another class of data models is known as self-describing data models. The data 
storage in systems based on these models combines the description of the data with 
the data values themselves. In traditional DBMSs, the description (schema) is sepa-
rated from the data. These models include XML (see Chapter 12) as well as many of 
the key-value stores and NOSQL systems (see Chapter 24) that were recently cre-
ated for managing big data.

2.1.2 Schemas, Instances, and Database State
In a data model, it is important to distinguish between the description of the 
database and the database itself. The description of a database is called the 
 database schema, which is specified during database design and is not expected 
to change frequently.6 Most data models have certain conventions for displaying 
schemas as diagrams.7 A displayed schema is called a schema diagram. Figure 2.1 
shows a schema diagram for the database shown in Figure 1.2; the diagram dis-
plays the structure of each record type but not the actual instances of records. 

6Schema changes are usually needed as the requirements of the database applications change. Most 
database systems include operations for allowing schema changes.

7It is customary in database parlance to use schemas as the plural for schema, even though schemata is 
the proper plural form. The word scheme is also sometimes used to refer to a schema.

Section_identifier SemesterCourse_number InstructorYear

SECTION

Course_name Course_number Credit_hours Department

COURSE

Name Student_number Class Major

STUDENT

Course_number Prerequisite_number
PREREQUISITE

Student_number GradeSection_identifier

GRADE_REPORT

Figure 2.1 
Schema diagram for 
the database in  
Figure 1.2.
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We call each object in the schema—such as STUDENT or COURSE—a schema 
construct.

A schema diagram displays only some aspects of a schema, such as the names of 
record types and data items, and some types of constraints. Other aspects are not 
specified in the schema diagram; for example, Figure 2.1 shows neither the data 
type of each data item nor the relationships among the various files. Many types of 
constraints are not represented in schema diagrams. A constraint such as students 
majoring in computer science must take CS1310 before the end of their sophomore 
year is quite difficult to represent diagrammatically.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a new student or enter a new 
grade. The data in the database at a particular moment in time is called a database 
state or snapshot. It is also called the current set of occurrences or instances in 
the database. In a given database state, each schema construct has its own current 
set of instances; for example, the STUDENT construct will contain the set of indi-
vidual student entities (records) as its instances. Many database states can be con-
structed to correspond to a particular database schema. Every time we insert or 
delete a record or change the value of a data item in a record, we change one state 
of the database into another state.

The distinction between database schema and database state is very important. 
When we define a new database, we specify its database schema only to the 
DBMS. At this point, the corresponding database state is the empty state with 
no data. We get the initial state of the database when the database is first 
 populated or loaded with the initial data. From then on, every time an update 
operation is applied to the database, we get another database state. At any point 
in time, the database has a current state.8 The DBMS is partly responsible for 
ensuring that every state of the database is a valid state—that is, a state that 
satisfies the structure and constraints specified in the schema. Hence, specify-
ing a correct schema to the DBMS is extremely important and the schema must 
be designed with utmost care. The DBMS stores the descriptions of the schema 
constructs and constraints—also called the meta-data—in the DBMS catalog so 
that DBMS software can refer to the schema whenever it needs to. The schema 
is sometimes called the intension, and a database state is called an extension of 
the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently, 
it is not uncommon that changes occasionally need to be applied to the schema as 
the application requirements change. For example, we may decide that another 
data item needs to be stored for each record in a file, such as adding the Date_of_birth 
to the STUDENT schema in Figure 2.1. This is known as schema evolution. Most 
modern DBMSs include some operations for schema evolution that can be applied 
while the database is operational.

8The current state is also called the current snapshot of the database. It has also been called a database 

instance, but we prefer to use the term instance to refer to individual records.
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2.2  Three-Schema Architecture  
and Data Independence

Three of the four important characteristics of the database approach, listed in 
Section 1.3, are (1) use of a catalog to store the database description (schema) so 
as to make it self-describing, (2) insulation of programs and data (program-data 
and program-operation independence), and (3) support of multiple user views. 
In this section we specify an architecture for database systems, called the 
 three-schema architecture,9 that was proposed to help achieve and visualize 
these characteristics. Then we discuss further the concept of data independence.

2.2.1 The Three-Schema Architecture
The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate 
the user applications from the physical database. In this architecture, schemas can 
be defined at the following three levels:

 1. The internal level has an internal schema, which describes the physical 
storage structure of the database. The internal schema uses a physical data 
model and describes the complete details of data storage and access paths for 
the database.

9This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning 
And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).
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Figure 2.2 
The three-schema 
architecture.
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 2. The conceptual level has a conceptual schema, which describes the structure 
of the whole database for a community of users. The conceptual schema hides 
the details of physical storage structures and concentrates on describing enti-
ties, data types, relationships, user operations, and constraints. Usually, a rep-
resentational data model is used to describe the conceptual schema when a 
database system is implemented. This implementation conceptual schema is 
often based on a conceptual schema design in a high-level data model.

 3. The external or view level includes a number of external schemas or user 
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that 
user group. As in the previous level, each external schema is typically imple-
mented using a representational data model, possibly based on an external 
schema design in a high-level conceptual data model.

The three-schema architecture is a convenient tool with which the user can visual-
ize the schema levels in a database system. Most DBMSs do not separate the three 
levels completely and explicitly, but they support the three-schema architecture to 
some extent. Some older DBMSs may include physical-level details in the concep-
tual schema. The three-level ANSI architecture has an important place in database 
technology development because it clearly separates the users’ external level, the 
database’s conceptual level, and the internal storage level for designing a database. 
It is very much applicable in the design of DBMSs, even today. In most DBMSs that 
support user views, external schemas are specified in the same data model that 
describes the conceptual-level information (for example, a relational DBMS like 
Oracle or SQLServer uses SQL for this).

Notice that the three schemas are only descriptions of data; the actual data is stored 
at the physical level only. In the three-schema architecture, each user group refers 
to its own external schema. Hence, the DBMS must transform a request specified 
on an external schema into a request against the conceptual schema, and then into 
a request on the internal schema for processing over the stored database. If the 
request is a database retrieval, the data extracted from the stored database must be 
reformatted to match the user’s external view. The processes of transforming 
requests and results between levels are called mappings. These mappings may be 
time-consuming, so some DBMSs—especially those that are meant to support small 
databases—do not support external views. Even in such systems, however, it is nec-
essary to transform requests between the conceptual and internal levels.

2.2.2 Data Independence
The three-schema architecture can be used to further explain the concept of data 
independence, which can be defined as the capacity to change the schema at one 
level of a database system without having to change the schema at the next higher 
level. We can define two types of data independence:

 1. Logical data independence is the capacity to change the conceptual schema 
without having to change external schemas or application programs. We 
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may change the conceptual schema to expand the database (by adding a 
record type or data item), to change constraints, or to reduce the database 
(by removing a record type or data item). In the last case, external schemas 
that refer only to the remaining data should not be affected. For example, 
the external schema of Figure 1.5(a) should not be affected by changing the 
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one 
shown in Figure 1.6(a). Only the view definition and the mappings need to 
be changed in a DBMS that supports logical data independence. After the 
conceptual schema undergoes a logical reorganization, application pro-
grams that reference the external schema constructs must work as before. 
Changes to constraints can be applied to the conceptual schema without 
affecting the external schemas or application programs.

 2. Physical data independence is the capacity to change the internal schema 
without having to change the conceptual schema. Hence, the external sche-
mas need not be changed as well. Changes to the internal schema may be 
needed because some physical files were reorganized—for example, by cre-
ating additional access structures—to improve the performance of retrieval 
or update. If the same data as before remains in the database, we should not 
have to change the conceptual schema. For example, providing an access 
path to improve retrieval speed of SECTION records (Figure 1.2) by semes-
ter and year should not require a query such as list all sections offered in fall 
2008 to be changed, although the query would be executed more efficiently 
by the DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments where physical details, such as the exact location of data on disk, and hard-
ware details of storage encoding, placement, compression, splitting, merging of 
records, and so on are hidden from the user. Applications remain unaware of these 
details. On the other hand, logical data independence is harder to achieve because it 
allows structural and constraint changes without affecting application programs—a 
much stricter requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include 
information on how to map requests and data among the various levels. The DBMS 
uses additional software to accomplish these mappings by referring to the mapping 
information in the catalog. Data independence occurs because when the schema is 
changed at some level, the schema at the next higher level remains unchanged; only 
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

2.3 Database Languages and Interfaces
In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS 
must provide appropriate languages and interfaces for each category of users. In 
this section we discuss the types of languages and interfaces provided by a DBMS 
and the user categories targeted by each interface.



 2.3 Database Languages and Interfaces 39

2.3.1 DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implement the 
database, the first step is to specify conceptual and internal schemas for the data-
base and any mappings between the two. In many DBMSs where no strict separa-
tion of levels is maintained, one language, called the data definition language 
(DDL), is used by the DBA and by database designers to define both schemas. The 
DBMS will have a DDL compiler whose function is to process DDL statements in 
order to identify descriptions of the schema constructs and to store the schema 
description in the DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and 
internal levels, the DDL is used to specify the conceptual schema only. Another 
language, the storage definition language (SDL), is used to specify the internal 
schema. The mappings between the two schemas may be specified in either one of 
these languages. In most relational DBMSs today, there is no specific language that 
performs the role of SDL. Instead, the internal schema is specified by a combination 
of functions, parameters, and specifications related to storage of files. These permit 
the DBA staff to control indexing choices and mapping of data to storage. For a true 
three-schema architecture, we would need a third language, the view definition 
language (VDL), to specify user views and their mappings to the conceptual 
schema, but in most DBMSs the DDL is used to define both conceptual and external 
schemas. In relational DBMSs, SQL is used in the role of VDL to define user or 
application views as results of predefined queries (see Chapters 6 and 7).

Once the database schemas are compiled and the database is populated with data, 
users must have some means to manipulate the database. Typical manipulations 
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language 
(DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes 
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is 
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 6 and 7), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint 
specification, schema evolution, and many other features. The SDL was a compo-
nent in early versions of SQL but has been removed from the language to keep it at 
the conceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be 
used on its own to specify complex database operations concisely. Many DBMSs 
allow high-level DML statements either to be entered interactively from a display 
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so 
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that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming 
language. This type of DML typically retrieves individual records or objects from 
the database and processes each separately. Therefore, it needs to use programming 
language constructs, such as looping, to retrieve and process each record from a set 
of records. Low-level DMLs are also called record-at-a-time DMLs because of this 
property. High-level DMLs, such as SQL, can specify and retrieve many records in 
a single DML statement; therefore, they are called set-at-a-time or set-oriented 
DMLs. A query in a high-level DML often specifies which data to retrieve rather 
than how to retrieve it; therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a 
general-purpose programming language, that language is called the host language 
and the DML is called the data sublanguage.10 On the other hand, a high-level 
DML used in a standalone interactive manner is called a query language. In gen-
eral, both retrieval and update commands of a high-level DML may be used inter-
actively and are hence considered part of the query language.11

Casual end users typically use a high-level query language to specify their requests, 
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the 
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing. These interfaces pres-
ent the user with lists of options (called menus) that lead the user through the for-
mulation of a request. Menus do away with the need to memorize the specific 
commands and syntax of a query language; rather, the query is composed step-by-
step by picking options from a menu that is displayed by the system. Pull-down 
menus are a very popular technique in Web-based user interfaces. They are also 
often used in browsing interfaces, which allow a user to look through the contents 
of a database in an exploratory and unstructured manner.

Apps for Mobile Devices. These interfaces present mobile users with access to 
their data. For example, banking, reservations, and insurance companies, among 
many others, provide apps that allow users to access their data through a mobile 
phone or mobile device. The apps have built-in programmed interfaces that typically 

10In object databases, the host and data sublanguages typically form one integrated language—for 
example, C++ with some extensions to support database functionality. Some relational systems also 
provide integrated languages—for example, Oracle’s PL/SQL.

11According to the English meaning of the word query, it should really be used to describe retrievals 
only, not updates.
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allow users to login using their account name and password; the apps then provide 
a limited menu of options for mobile access to the user data, as well as options such 
as paying bills (for banks) or making reservations (for reservation Web sites).

Forms-based Interfaces. A forms-based interface displays a form to each user. 
Users can fill out all of the form entries to insert new data, or they can fill out only 
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages, 
which are special languages that help programmers specify such forms. SQL*Forms 
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the Ora-
cle product suite that provides an extensive set of features to design and build 
applications using forms. Some systems have utilities that define a form by letting 
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram. 
In many cases, GUIs utilize both menus and forms.

Natural Language Interfaces. These interfaces accept requests written in Eng-
lish or some other language and attempt to understand them. A natural language 
interface usually has its own schema, which is similar to the database conceptual 
schema, as well as a dictionary of important words. The natural language interface 
refers to the words in its schema, as well as to the set of standard words in its dic-
tionary, that are used to interpret the request. If the interpretation is successful, the 
interface generates a high-level query corresponding to the natural language request 
and submits it to the DBMS for processing; otherwise, a dialogue is started with the 
user to clarify the request.

Keyword-based Database Search. These are somewhat similar to Web search 
engines, which accept strings of natural language (like English or Spanish) words 
and match them with documents at specific sites (for local search engines) or Web 
pages on the Web at large (for engines like Google or Ask). They use predefined 
indexes on words and use ranking functions to retrieve and present resulting docu-
ments in a decreasing degree of match. Such “free form” textual query interfaces are 
not yet common in structured relational databases, although a research area called 
keyword-based querying has emerged recently for relational databases.

Speech Input and Output. Limited use of speech as an input query and speech 
as an answer to a question or result of a request is becoming commonplace. Appli-
cations with limited vocabularies, such as inquiries for telephone directory, flight 
arrival/departure, and credit card account information, are allowing speech for 
input and output to enable customers to access this information. The speech input 
is detected using a library of predefined words and used to set up the parameters 
that are supplied to the queries. For output, a similar conversion from text or num-
bers into speech takes place.
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Interfaces for Parametric Users. Parametric users, such as bank tellers, often 
have a small set of operations that they must perform repeatedly. For example, a 
teller is able to use single function keys to invoke routine and repetitive transactions 
such as account deposits or withdrawals, or balance inquiries. Systems analysts and 
programmers design and implement a special interface for each known class of 
naive users. Usually a small set of abbreviated commands is included, with the goal 
of minimizing the number of keystrokes required for each request.

Interfaces for the DBA. Most database systems contain privileged commands 
that can be used only by the DBA staff. These include commands for creating 
accounts, setting system parameters, granting account authorization, changing a 
schema, and reorganizing the storage structures of a database.

2.4 The Database System Environment
A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules
Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The 
figure is divided into two parts. The top part of the figure refers to the various 
users of the database environment and their interfaces. The lower part shows the 
internal modules of the DBMS responsible for storage of data and processing of 
transactions.

The database and the DBMS catalog are usually stored on disk. Access to the 
disk is controlled primarily by the operating system (OS), which schedules disk 
read/write. Many DBMSs have their own buffer management module to sched-
ule disk read/write, because management of buffer storage has a considerable 
effect on performance. Reducing disk read/write improves performance consid-
erably. A higher-level stored data manager module of the DBMS controls access 
to DBMS information that is stored on disk, whether it is part of the database or 
the catalog.

Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff, 
casual users who work with interactive interfaces to formulate queries, application 
programmers who create programs using some host programming languages, and 
parametric users who do data entry work by supplying parameters to predefined 
transactions. The DBA staff works on defining the database and tuning it by mak-
ing changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores 
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes 
information such as the names and sizes of files, names and data types of data items, 
storage details of each file, mapping information among schemas, and constraints. 



 2.4 The Database System Environment 43

In addition, the catalog stores many other types of information that are needed by 
the DBMS modules, which can then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database 
interact using the interactive query interface in Figure 2.3. We have not explicitly 
shown any menu-based or form-based or mobile interactions that are typically used 
to generate the interactive query automatically or to access canned transactions. 
These queries are parsed and validated for correctness of the query syntax, the 
names of files and data elements, and so on by a query compiler that compiles 
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them into an internal form. This internal query is subjected to query optimization 
(discussed in Chapters 18 and 19). Among other things, the query optimizer is 
concerned with the rearrangement and possible reordering of operations, elimina-
tion of redundancies, and use of efficient search algorithms during execution. It 
consults the system catalog for statistical and other physical information about the 
stored data and generates executable code that performs the necessary operations 
for the query and makes calls on the runtime processor.

Application programmers write programs in host languages such as Java, C, or C++ 
that are submitted to a precompiler. The precompiler extracts DML commands 
from an application program written in a host programming language. These com-
mands are sent to the DML compiler for compilation into object code for database 
access. The rest of the program is sent to the host language compiler. The object 
codes for the DML commands and the rest of the program are linked, forming a 
canned transaction whose executable code includes calls to the runtime database 
processor. It is also becoming increasingly common to use scripting languages such 
as PHP and Python to write database programs. Canned transactions are executed 
repeatedly by parametric users via PCs or mobile apps; these users simply supply 
the parameters to the transactions. Each execution is considered to be a separate 
transaction. An example is a bank payment transaction where the account number, 
payee, and amount may be supplied as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the 
privileged commands, (2) the executable query plans, and (3) the canned transac-
tions with runtime parameters. It works with the system catalog and may update it 
with statistics. It also works with the stored data manager, which in turn uses basic 
operating system services for carrying out low-level input/output (read/write) 
operations between the disk and main memory. The runtime database processor 
handles other aspects of data transfer, such as management of buffers in the main 
memory. Some DBMSs have their own buffer management module whereas others 
depend on the OS for buffer management. We have shown concurrency control 
and backup and recovery systems separately as a module in this figure. They are 
integrated into the working of the runtime database processor for purposes of 
transaction management.

It is common to have the client program that accesses the DBMS running on a 
separate computer or device from the computer on which the database resides. The 
former is called the client computer running DBMS client software and the latter is 
called the database server. In many cases, the client accesses a middle computer, 
called the application server, which in turn accesses the database server. We elabo-
rate on this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical 
DBMS modules. The DBMS interacts with the operating system when disk accesses—
to the database or to the catalog—are needed. If the computer system is shared by 
many users, the OS will schedule DBMS disk access requests and DBMS processing 
along with other processes. On the other hand, if the computer system is mainly 
dedicated to running the database server, the DBMS will control main memory 
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 buffering of disk pages. The DBMS also interfaces with compilers for general- 
purpose host programming languages, and with application servers and client pro-
grams running on separate machines through the system network interface.

2.4.2 Database System Utilities
In addition to possessing the software modules just described, most DBMSs have 
database utilities that help the DBA manage the database system. Common utili-
ties have the following types of functions:

■ Loading. A loading utility is used to load existing data files—such as text 
files or sequential files—into the database. Usually, the current (source) for-
mat of the data file and the desired (target) database file structure are speci-
fied to the utility, which then automatically reformats the data and stores it 
in the database. With the proliferation of DBMSs, transferring data from 
one DBMS to another is becoming common in many organizations. Some 
vendors offer conversion tools that generate the appropriate loading pro-
grams, given the existing source and target database storage descriptions 
(internal schemas).

■ Backup. A backup utility creates a backup copy of the database, usually by 
dumping the entire database onto tape or other mass storage medium. The 
backup copy can be used to restore the database in case of catastrophic disk 
failure. Incremental backups are also often used, where only changes since 
the previous backup are recorded. Incremental backup is more complex, but 
saves storage space.

■ Database storage reorganization. This utility can be used to reorganize a 
set of database files into different file organizations and create new access 
paths to improve performance.

■ Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions 
such as whether or not to reorganize files or whether to add or drop indexes 
to improve performance.

Other utilities may be available for sorting files, handling data compression, 
monitoring access by users, interfacing with the network, and performing other 
functions.

2.4.3  Tools, Application Environments,  
and Communications Facilities

Other tools are often available to database designers, users, and the DBMS. CASE 
tools12 are used in the design phase of database systems. Another tool that can be 
quite useful in large organizations is an expanded data dictionary (or data repository) 

12Although CASE stands for computer-aided software engineering, many CASE tools are used primarily 
for database design.
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system. In addition to storing catalog information about schemas and  constraints, 
the data dictionary stores other information, such as design decisions, usage stan-
dards, application program descriptions, and user information. Such a system is 
also called an information repository. This information can be accessed directly by 
users or the DBA when needed. A data dictionary utility is similar to the DBMS 
catalog, but it includes a wider variety of information and is accessed mainly by 
users rather than by the DBMS software.

Application development environments, such as PowerBuilder (Sybase)  
or JBuilder (Borland), have been quite popular. These systems provide an environ-
ment for developing database applications and include facilities that help in many 
facets of database systems, including database design, GUI development, querying 
and updating, and application program development.

The DBMS also needs to interface with communications software, whose function 
is to allow users at locations remote from the database system site to access the 
database through computer terminals, workstations, or personal computers. These 
are connected to the database site through data communications hardware such as 
Internet routers, phone lines, long-haul networks, local networks, or satellite com-
munication devices. Many commercial database systems have communication 
packages that work with the DBMS. The integrated DBMS and data communica-
tions system is called a DB/DC system. In addition, some distributed DBMSs are 
physically distributed over multiple machines. In this case, communications net-
works are needed to connect the machines. These are often local area networks 
(LANs), but they can also be other types of networks.

2.5  Centralized and Client/Server  
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture
Architectures for DBMSs have followed trends similar to those for general com-
puter system architectures. Older architectures used mainframe computers to pro-
vide the main processing for all system functions, including user application 
programs and user interface programs, as well as all the DBMS functionality. The 
reason was that in older systems, most users accessed the DBMS via computer ter-
minals that did not have processing power and only provided display capabilities. 
Therefore, all processing was performed remotely on the computer system housing 
the DBMS, and only display information and controls were sent from the computer 
to the display terminals, which were connected to the central computer via various 
types of communications networks.

As prices of hardware declined, most users replaced their terminals with PCs and 
workstations, and more recently with mobile devices. At first, database systems 
used these computers similarly to how they had used display terminals, so that the 
DBMS itself was still a centralized DBMS in which all the DBMS functionality, 
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application program execution, and user interface processing were carried out on 
one machine. Figure 2.4 illustrates the physical components in a centralized archi-
tecture. Gradually, DBMS systems started to exploit the available processing power 
at the user side, which led to client/server DBMS architectures.

2.5.2 Basic Client/Server Architectures
First, we discuss client/server architecture in general; then we discuss how it is 
applied to DBMSs. The client/server architecture was developed to deal with com-
puting environments in which a large number of PCs, workstations, file servers, 
printers, database servers, Web servers, e-mail servers, and other software and 
equipment are connected via a network. The idea is to define specialized servers 
with specific functionalities. For example, it is possible to connect a number of PCs 
or small workstations as clients to a file server that maintains the files of the client 
machines. Another machine can be designated as a printer server by being con-
nected to various printers; all print requests by the clients are forwarded to this 
machine. Web servers or e-mail servers also fall into the specialized server cate-
gory. The resources provided by specialized servers can be accessed by many client 
machines. The client machines provide the user with the appropriate interfaces to 
utilize these servers, as well as with local processing power to run local applications. 
This concept can be carried over to other software packages, with specialized pro-
grams—such as a CAD (computer-aided design) package—being stored on specific 
server machines and being made accessible to multiple clients. Figure 2.5 illustrates 
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client/server architecture at the logical level; Figure 2.6 is a simplified diagram that 
shows the physical architecture. Some machines would be client sites only (for 
example, mobile devices or workstations/PCs that have only client software 
installed). Other machines would be dedicated servers, and others would have both 
client and server functionality.

The concept of client/server architecture assumes an underlying framework that 
consists of many PCs/workstations and mobile devices as well as a smaller number 
of server machines, connected via wireless networks or LANs and other types of 
computer networks. A client in this framework is typically a user machine that pro-
vides user interface capabilities and local processing. When a client requires access 
to additional functionality—such as database access—that does not exist at the cli-
ent, it connects to a server that provides the needed functionality. A server is a sys-
tem containing both hardware and software that can provide services to the client 
machines, such as file access, printing, archiving, or database access. In general, 
some machines install only client software, others only server software, and still 
others may include both client and server software, as illustrated in Figure 2.6. 
However, it is more common that client and server software usually run on separate 
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machines. Two main types of basic DBMS architectures were created on this under-
lying client/server framework: two-tier and three-tier.13 We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs
In relational database management systems (RDBMSs), many of which started 
as centralized systems, the system components that were first moved to the 
 client side were the user interface and application programs. Because SQL (see 
Chapters 6 and 7) provided a standard language for RDBMSs, this created a 
logical dividing point between client and server. Hence, the query and transac-
tion functionality related to SQL processing remained on the server side. In 
such an architecture, the server is often called a query server or transaction 
server because it provides these two functionalities. In an RDBMS, the server is 
also often called an SQL server.

The user interface programs and application programs can run on the client side. 
When DBMS access is required, the program establishes a connection to the 
DBMS (which is on the server side); once the connection is created, the client 
program can communicate with the DBMS. A standard called Open Database 
Connectivity (ODBC) provides an application programming interface (API), 
which allows client-side programs to call the DBMS, as long as both client and 
server machines have the necessary software installed. Most DBMS vendors pro-
vide ODBC drivers for their systems. A client program can actually connect to 
several RDBMSs and send query and transaction requests using the ODBC API, 
which are then processed at the server sites. Any query results are sent back to the 
client program, which can process and display the results as needed. A related 
standard for the Java programming language, called JDBC, has also been defined. 
This allows Java client programs to access one or more DBMSs through a stan-
dard interface.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing 
systems. The emergence of the Web changed the roles of clients and servers, leading 
to the three-tier architecture.

2.5.4  Three-Tier and n-Tier Architectures  
for Web Applications

Many Web applications use an architecture called the three-tier architecture, 
which adds an intermediate layer between the client and the database server, as 
illustrated in Figure 2.7(a).

13There are many other variations of client/server architectures. We discuss the two most basic ones 
here.
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This intermediate layer or middle tier is called the application server or the Web 
server, depending on the application. This server plays an intermediary role by 
running application programs and storing business rules (procedures or con-
straints) that are used to access data from the database server. It can also improve 
database security by checking a client’s credentials before forwarding a request to 
the database server. Clients contain user interfaces and Web browsers. The inter-
mediate server accepts requests from the client, processes the request and sends 
database queries and commands to the database server, and then acts as a conduit 
for passing (partially) processed data from the database server to the clients, where 
it may be processed further and filtered to be presented to the users. Thus, the user 
interface, application rules, and data access act as the three tiers. Figure 2.7(b) shows 
another view of the three-tier architecture used by database and other application 
package vendors. The presentation layer displays information to the user and allows 
data entry. The business logic layer handles intermediate rules and constraints before 
data is passed up to the user or down to the DBMS. The bottom layer includes all 
data management services. The middle layer can also act as a Web server, which 
retrieves query results from the database server and formats them into dynamic 
Web pages that are viewed by the Web browser at the client side. The client machine 
is typically a PC or mobile device connected to the Web.

Other architectures have also been proposed. It is possible to divide the layers 
between the user and the stored data further into finer components, thereby giving 
rise to n-tier architectures, where n may be four or five tiers. Typically, the business 
logic layer is divided into multiple layers. Besides distributing programming and 
data throughout a network, n-tier applications afford the advantage that any one 
tier can run on an appropriate processor or operating system platform and can be 
handled independently. Vendors of ERP (enterprise resource planning) and CRM 
(customer relationship management) packages often use a middleware layer, which 

GUI,
Web Interface

Client

Application Server
or

Web Server

Database
Server

Application
Programs,

Web Pages

Database
Management

System

Presentation
Layer

Business
Logic Layer

Database
Services

Layer

(a) (b)

Figure 2.7 
Logical three-tier 
 client/server 
 architecture, with a 
couple of commonly 
used nomenclatures.



 2.6 Classification of Database Management Systems 51

accounts for the front-end modules (clients) communicating with a number of 
back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The 
latter can be done by the hardware or by advanced software. This technology gives 
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts 
of data from servers to clients over wired and wireless networks.

2.6  Classification of Database 
Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on  
which the DBMS is based. The main data model used in many current commercial 
DBMSs is the relational data model, and the systems based on this model are 
known as SQL systems. The object data model has been implemented in some 
commercial systems but has not had widespread use. Recently, so-called big data 
systems, also known as key-value storage systems and NOSQL systems, use vari-
ous data models: document-based, graph-based, column-based, and key-value 
data models. Many legacy applications still run on database systems based on the 
hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been 
incorporating many of the concepts that were developed in object databases. This 
has led to a new class of DBMSs called object-relational DBMSs. We can catego-
rize DBMSs based on the data model: relational, object, object-relational, NOSQL, 
key-value, hierarchical, network, and other.

Some experimental DBMSs are based on the XML (eXtended Markup Language) 
model, which is a tree-structured data model. These have been called native XML 
DBMSs. Several commercial relational DBMSs have added XML interfaces and 
storage to their products.

The second criterion used to classify DBMSs is the number of users supported by 
the system. Single-user systems support only one user at a time and are mostly 
used with PCs. Multiuser systems, which include the majority of DBMSs, support 
concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A 
DBMS is centralized if the data is stored at a single computer site. A centralized 
DBMS can support multiple users, but the DBMS and the database reside totally at 
a single computer site. A distributed DBMS (DDBMS) can have the actual database 
and DBMS software distributed over many sites connected by a computer network. 
Big data systems are often massively distributed, with hundreds of sites. The data is 
often replicated on multiple sites so that failure of a site will not make some data 
unavailable.
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Homogeneous DDBMSs use the same DBMS software at all the sites, whereas 
heterogeneous DDBMSs can use different DBMS software at each site. It is also 
possible to develop middleware software to access several autonomous preexisting 
databases stored under heterogeneous DBMSs. This leads to a federated DBMS (or 
multidatabase system), in which the participating DBMSs are loosely coupled and 
have a degree of local autonomy. Many DDBMSs use client-server architecture, as 
we described in Section 2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs 
based on cost. Today we have open source (free) DBMS products like MySQL and 
PostgreSQL that are supported by third-party vendors with additional services. 
The main RDBMS products are available as free examination 30-day copy versions 
as well as personal versions, which may cost under $100 and allow a fair amount of 
functionality. The giant systems are being sold in modular form with components 
to handle distribution, replication, parallel processing, mobile capability, and so 
on, and with a large number of parameters that must be defined for the configura-
tion. Furthermore, they are sold in the form of licenses—site licenses allow unlim-
ited use of the database system with any number of copies running at the customer 
site. Another type of license limits the number of concurrent users or the number 
of user seats at a location. Standalone single-user versions of some systems like 
Microsoft Access are sold per copy or included in the overall configuration of a 
desktop or laptop. In addition, data warehousing and mining features, as well as 
support for additional data types, are made available at extra cost. It is possible to 
pay millions of dollars for the installation and maintenance of large database sys-
tems annually.

We can also classify a DBMS on the basis of the types of access path options for 
storing files. One well-known family of DBMSs is based on inverted file structures. 
Finally, a DBMS can be general purpose or special purpose. When performance is 
a primary consideration, a special-purpose DBMS can be designed and built for a 
specific application; such a system cannot be used for other applications without 
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special-purpose DBMSs. These fall into the category of online 
transaction processing (OLTP) systems, which must support a large number of 
concurrent transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data 
model. The relational data model represents a database as a collection of tables, 
where each table can be stored as a separate file. The database in Figure 1.2 resem-
bles a basic relational representation. Most relational databases use the high-level 
query language called SQL and support a limited form of user views. We discuss 
the relational model and its languages and operations in Chapters 5 through 8, and 
techniques for programming relational applications in Chapters 10 and 11.

The object data model defines a database in terms of objects, their properties, and 
their operations. Objects with the same structure and behavior belong to a class, 
and classes are organized into hierarchies (or acyclic graphs). The operations of 
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each class are specified in terms of predefined procedures called methods. Rela-
tional DBMSs have been extending their models to incorporate object database 
concepts and other capabilities; these systems are referred to as object-relational or 
extended relational systems. We discuss object databases and object-relational 
systems in Chapter 12.

Big data systems are based on various data models, with the following four data 
models most common. The key-value data model associates a unique key with 
each value (which can be a record or object) and provides very fast access to a 
value given its key. The document data model is based on JSON (Java Script 
Object Notation) and stores the data as documents, which somewhat resemble 
complex objects. The graph data model stores objects as graph nodes and rela-
tionships among objects as directed graph edges. Finally, the column-based data 
models store the columns of rows clustered on disk pages for fast access and 
allow multiple versions of the data. We will discuss some of these in more detail 
in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and 
has been used as a basis for implementing several prototype native XML systems. 
XML uses hierarchical tree structures. It combines database concepts with concepts 
from document representation models. Data is represented as elements; with the 
use of tags, data can be nested to create complex tree structures. This model con-
ceptually resembles the object model but uses different terminology. XML capabili-
ties have been added to many commercial DBMS products. We present an overview 
of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models, 
are the network and hierarchical models. The network model represents data as 
record types and also represents a limited type of 1:N relationship, called a set type. 
A 1:N, or one-to-many, relationship relates one instance of a record to many record 
instances using some pointer linking mechanism in these models. The network 
model, also known as the CODASYL DBTG model,14 has an associated record-at-
a-time language that must be embedded in a host programming language. The net-
work DML was proposed in the 1971 Database Task Group (DBTG) Report as an 
extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierar-
chy represents a number of related records. There is no standard language for the 
hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dom-
inated the DBMS market for over 20 years between 1965 and 1985. Its DML, called 
DL/1, was a de facto industry standard for a long time.15

14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is 
the committee that specified the network model and its language.

15The full chapters on the network and hierarchical models from the second edition of this book are 
available from this book’s Companion Web site at http://www.aw.com/elmasri.
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2.7 Summary
In this chapter we introduced the main concepts used in database systems. We 
defined a data model and we distinguished three main categories:

■ High-level or conceptual data models (based on entities and relationships)

■ Low-level or physical data models

■ Representational or implementation data models (record-based, object-
oriented)

We distinguished the schema, or description of a database, from the database itself. 
The schema does not change very often, whereas the database state changes every 
time data is inserted, deleted, or modified. Then we described the three-schema 
DBMS architecture, which allows three schema levels:

■ An internal schema describes the physical storage structure of the database.

■ A conceptual schema is a high-level description of the whole database.

■ External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings among 
the  schemas to transform requests and query results from one level to the 
next. Most DBMSs do not separate the three levels completely. We used the 
three-schema architecture to define the concepts of logical and physical data 
independence.

Then we discussed the main types of languages and interfaces that DBMSs support. 
A data definition language (DDL) is used to define the database conceptual schema. 
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages or functions exist for specifying storage 
structures. This distinction is fading away in today’s relational implementations, 
with SQL serving as a catchall language to perform multiple roles, including view 
definition. The storage definition part (SDL) was included in SQL’s early versions, 
but is now typically implemented as special commands for the DBA in relational 
DBMSs. The DBMS compiles all schema definitions and stores their descriptions in 
the DBMS catalog.

A data manipulation language (DML) is used for specifying database retrievals and 
updates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-
oriented, procedural). A high-level DML can be embedded in a host programming 
language, or it can be used as a standalone language; in the latter case it is often 
called a query language.

We discussed different types of interfaces provided by DBMSs and the types of 
DBMS users with which each interface is associated. Then we discussed the 
database system environment, typical DBMS software modules, and DBMS 
utilities for helping users and the DBA staff perform their tasks. We continued 
with an overview of the two-tier and three-tier architectures for database 
 applications.
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Finally, we classified DBMSs according to several criteria: data model, number of 
users, number of sites, types of access paths, and cost. We discussed the availabil-
ity of DBMSs and additional modules—from no cost in the form of open source 
software to configurations that annually cost millions to maintain. We also 
pointed out the variety of licensing arrangements for DBMS and related prod-
ucts. The main classification of DBMSs is based on the data model. We briefly 
discussed the main data models used in current commercial DBMSs.

Review Questions
 2.1. Define the following terms: data model, database schema, database state, 

internal schema, conceptual schema, external schema, data independence, 
DDL, DML, SDL, VDL, query language, host language, data sublanguage, 
database utility, catalog, client/server architecture, three-tier architecture, 
and n-tier architecture.

 2.2. Discuss the main categories of data models. What are the basic differences 
among the relational model, the object model, and the XML model?

 2.3. What is the difference between a database schema and a database state?

 2.4. Describe the three-schema architecture. Why do we need mappings among 
schema levels? How do different schema definition languages support this 
architecture?

 2.5. What is the difference between logical data independence and physical data 
independence? Which one is harder to achieve? Why?

 2.6. What is the difference between procedural and nonprocedural DMLs?

 2.7. Discuss the different types of user-friendly interfaces and the types of users 
who typically use each.

 2.8. With what other computer system software does a DBMS interact?

 2.9. What is the difference between the two-tier and three-tier client/server 
architectures?

 2.10. Discuss some types of database utilities and tools and their functions.

 2.11. What is the additional functionality incorporated in n-tier architecture 
(n . 3)?

Exercises
 2.12. Think of different users for the database shown in Figure 1.2. What types of 

applications would each user need? To which user category would each 
belong, and what type of interface would each need?
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 2.13. Choose a database application with which you are familiar. Design a schema 
and show a sample database for that application, using the notation of Fig-
ures 1.2 and 2.1. What types of additional information and constraints 
would you like to represent in the schema? Think of several users of your 
database, and design a view for each.

 2.14. If you were designing a Web-based system to make airline reservations and sell 
airline tickets, which DBMS architecture would you choose from Section 2.5? 
Why? Why would the other architectures not be a good choice?

 2.15. Consider Figure 2.1. In addition to constraints relating the values of col-
umns in one table to columns in another table, there are also constraints that 
impose restrictions on values in a column or a combination of columns 
within a table. One such constraint dictates that a column or a group of col-
umns must be unique across all rows in the table. For example, in the 
 STUDENT table, the Student_number column must be unique (to prevent two 
different students from having the same Student_number). Identify the col-
umn or the group of columns in the other tables that must be unique across 
all rows in the table.
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 Data Modeling Using the Entity–
Relationship (ER) Model

Conceptual modeling is a very important phase in 
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a 
BANK database application that keeps track of customer accounts would include 
programs that implement database updates corresponding to customer deposits 
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the 
bank customers or bank tellers in this example. In addition, it is now common to 
provide interfaces to these programs to BANK customers via mobile devices using 
mobile apps. Hence, a major part of the database application will require the 
design, implementation, and testing of these application programs. Traditionally, 
the design and testing of application programs has been considered to be part of 
software engineering rather than database design. In many software design tools, the 
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database 
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present 
the modeling concepts of the entity–relationship (ER) model, which is a popular 
high-level conceptual data model. This model and its variations are frequently used 
for the conceptual design of database applications, and many database design tools 
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas 
for database applications. We also present the diagrammatic notation associated 
with the ER model, known as ER diagrams.

3chapter  3
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Object modeling methodologies such as the Unified Modeling Language (UML) 
are becoming increasingly popular in both database and software design. These 
methodologies go beyond database design to specify detailed design of software 
modules and their interactions using various types of diagrams. An important part 
of these methodologies—namely, class diagrams1—is similar in many ways to the 
ER diagrams. In class diagrams, operations on objects are specified, in addition to 
specifying the database schema structure. Operations can be used to specify the 
functional requirements during database design, as we will discuss in Section 3.1. 
We present some of the UML notation and concepts for class diagrams that are 
particularly relevant to database design in Section 3.8, and we briefly compare these 
to ER notation and concepts. Additional UML notation and concepts are presented 
in Section 4.6.

This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER 
model. This sample database is used throughout the text. In Section 3.3 we present 
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5 
introduces weak entity types. Section 3.6 shows how a schema design is refined to 
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses 
how to choose the names for database schema constructs such as entity types and 
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec - 
tion  3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If 
a more thorough coverage of data modeling concepts and conceptual database design 
is desired, the reader should continue to Chapter 4, where we describe extensions to 
the ER model that lead to the enhanced–ER (EER) model, which includes concepts 
such as specialization, generalization, inheritance, and union types (categories).

3.1  Using High-Level Conceptual Data Models 
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step 
shown is requirements collection and analysis. During this step, the database 
designers interview prospective database users to understand and document their 
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form 
as possible. In parallel with specifying the data requirements, it is useful to specify 

1A class is similar to an entity type in many ways.
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the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including 
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional 
requirements. We will not discuss any of these techniques here; they are usually 
described in detail in software engineering texts.

Once the requirements have been collected and analyzed, the next step is to create a 
conceptual schema for the database, using a high-level conceptual data model. This 
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Figure 3.1
A simplified diagram to illustrate the main phases of database design.
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step is called conceptual design. The conceptual schema is a concise description of 
the data requirements of the users and includes detailed descriptions of the entity 
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to 
communicate with nontechnical users. The high-level conceptual schema can also 
be used as a reference to ensure that all users’ data requirements are met and that 
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with 
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.

During or after the conceptual schema design, the basic data model operations can 
be used to specify the high-level user queries and operations identified during 
functional analysis. This also serves to confirm that the conceptual schema meets 
all the identified functional requirements. Modifications to the conceptual schema 
can be introduced if some functional requirements cannot be specified using the 
initial schema.

The next step in database design is the actual implementation of the database, using 
a commercial DBMS. Most current commercial DBMSs use an implementation 
data model—such as the relational (SQL) model—so the conceptual schema is 
transformed from the high-level data model into the implementation data model. 
This step is called logical design or data model mapping; its result is a database 
schema in the implementation data model of the DBMS. Data model mapping is 
often automated or semiautomated within the database design tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for 
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the 
high-level transaction specifications.

We present only the basic ER model concepts for conceptual schema design in this 
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application
In this section we describe a sample database application, called COMPANY, which 
serves to illustrate the basic ER model concepts and their use in schema design. We 
list the data requirements for the database here, and then create its conceptual 
schema step-by-step as we introduce the modeling concepts of the ER model. The 
COMPANY database keeps track of a company’s employees, departments, and  
projects. Suppose that after the requirements collection and analysis phase, the 
database designers provide the following description of the miniworld—the part of 
the company that will be represented in the database.
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■ The company is organized into departments. Each department has a unique 
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing 
the department. A department may have several locations.

■ A department controls a number of projects, each of which has a unique 
name, a unique number, and a single location.

■ The database will store each employee’s name, Social Security number,2 
address, salary, sex (gender), and birth date. An employee is assigned to one 
department, but may work on several projects, which are not necessarily 
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as 
well as the direct supervisor of each employee (who is another employee).

■ The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and 
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by 
means of the graphical notation known as ER diagrams. This figure will be 
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain 
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3  Entity Types, Entity Sets, Attributes,  
and Keys

The ER model describes data as entities, relationships, and attributes. In  Section 3.3.1 
we introduce the concepts of entities and their attributes. We discuss entity types 
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic concept that the ER model represents is 
an entity, which is a thing or object in the real world with an independent existence. 
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for 
instance, a company, a job, or a university course). Each entity has attributes—the 
particular properties that describe it. For example, an EMPLOYEE entity may be 
described by the employee’s name, age, address, salary, and job. A particular entity 

2The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the 
United States to keep track of his or her employment, benefits, and taxes. Other countries may have 
similar identification schemes, such as personal identification card numbers.
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will have a value for each of its attributes. The attribute values that describe each 
entity become a major part of the data stored in the database.

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE 
entity e1 has four attributes: Name, Address, Age, and Home_phone; their values  
are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’, 
respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and 
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.
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An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout 
this chapter and is summarized in Figure 3.14.
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Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute 
types and illustrate their use via examples. Then we discuss the concept of a NULL 
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be 
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown 
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the 
values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible 
are called simple or atomic attributes. Composite attributes can form a hierarchy; 
for example, Street_address can be further subdivided into three simple component 
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value 
of a composite attribute is the concatenation of the values of its component simple 
attributes.

Composite attributes are useful to model situations in which a user sometimes 
refers to the composite attribute as a unit but at other times refers specifically to its 

Name = John Smith Name = Sunco Oil

Headquarters = Houston

President = John Smith

Address = 2311 Kirby
Houston, Texas 77001

Age = 55

e1 c1

Home_phone = 713-749-2630

Figure 3.3
Two entities, 
EMPLOYEE e1, and 
COMPANY c1, and 
their attributes.

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can 
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Address

CityStreet_address

Number Street Apartment_number

State Zip

Figure 3.4
A hierarchy of  
composite attributes.
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components. If the composite attribute is referenced only as a whole, there is no 
need to subdivide it into component attributes. For example, if there is no need to 
refer to the individual components of an address (Zip Code, street, and so on), then 
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single 
value for a particular entity; such attributes are called single-valued. For example,  
Age is a single-valued attribute of a person. In some cases an attribute can have a  
set of values for the same entity—for instance, a Colors attribute for a car, or a  
College_degrees attribute for a person. Cars with one color have a single value, 
whereas two-tone cars have two color values. Similarly, one person may not have any 
college degrees, another person may have one, and a third person may have two or 
more degrees; therefore, different people can have different numbers of values for the 
College_degrees attribute. Such attributes are called multivalued. A multivalued  
attribute may have lower and upper bounds to constrain the number of values allowed 
for each individual entity. For example, the Colors attribute of a car may be restricted to 
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a 
particular person entity, the value of Age can be determined from the current 
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence 
called a derived attribute and is said to be derivable from the Birth_date attribute, 
which is called a stored attribute. Some attribute values can be derived from related 
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity  
can be derived by counting the number of employees related to (working for) that 
department.

NULL Values. In some cases, a particular entity may not have an applicable value 
for an attribute. For example, the Apartment_number attribute of an address applies 
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies 
only to people with college degrees. For such situations, a special value called NULL  
is created. An address of a single-family home would have NULL for its  
Apartment_number attribute, and a person with no college degree would have  
NULL for College_degrees. NULL can also be used if we do not know the value of an 
attribute for a particular entity—for example, if we do not know the home phone 
number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is  
not applicable, whereas the meaning of the latter is unknown. The unknown category 
of NULL can be further classified into two cases. The first case arises when it is known 
that the attribute value exists but is missing—for instance, if the Height attribute of a 
person is listed as NULL. The second case arises when it is not known whether the 
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping 



 3.3 Entity Types, Entity Sets, Attributes, and Keys  67

components of a composite attribute between parentheses ( ) and separating  
the components with commas, and by displaying multivalued attributes between 
braces { }. Such attributes are called complex attributes. For example, if a person 
can have more than one residence and each residence can have a single address and 
multiple phones, an attribute Address_phone for a person can be specified as shown 
in Figure 3.5.4 Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that 
are similar. For example, a company employing hundreds of employees may want to 
store similar information concerning each of the employees. These employee entities 
share the same attributes, but each entity has its own value(s) for each attribute. An 
entity type defines a collection (or set) of entities that have the same attributes. Each 
entity type in the database is described by its name and attributes. Figure 3.6 shows 
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes  
for each. A few individual entities of each type are also illustrated, along with the 
values of their attributes. The collection of all entities of a particular entity type in the 

4For those familiar with XML, we should note that complex attributes are similar to complex elements in 
XML (see Chapter 13).

{Address_phone( {Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip) )} 

Figure 3.5
A complex attribute: 
Address_phone.

Entity Type Name:

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary 

(John Smith, 55, 80k)

(Fred Brown, 40, 30K)

(Judy Clark, 25, 20K)

e1 c1

c2e2

e3

(Sunco Oil, Houston, John Smith)

(Fast Computer, Dallas, Bob King)

Figure 3.6
Two entity types, 
EMPLOYEE and 
COMPANY, and some 
member entities of 
each.
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database at any point in time is called an entity set or entity collection; the entity set 
is usually referred to using the same name as the entity type, even though they are 
two separate concepts. For example, EMPLOYEE refers to both a type of entity as  
well as the current collection of all employee entities in the database. It is now more 
common to give separate names to the entity type and entity collection; for example 
in object and object-relational data models (see Chapter 12).

An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box 
enclosing the entity type name. Attribute names are enclosed in ovals and are 
attached to their entity type by straight lines. Composite attributes are attached to 
their component attributes by straight lines. Multivalued attributes are displayed in 
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the 
same structure. The collection of entities of a particular entity type is grouped into 
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an 
entity type is the key or uniqueness constraint on attributes. An entity type usually 
has one or more attributes whose values are distinct for each individual entity in the 
entity set. Such an attribute is called a key attribute, and its values can be used to 
identify each entity uniquely. For example, the Name attribute is a key of the  
COMPANY entity type in Figure 3.6 because no two companies are allowed to have 
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the 
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that 
we describe here is to define a composite attribute and designate it as a key attribute 
of the entity type. Notice that such a composite key must be minimal; that is, all 
component attributes must be included in the composite attribute to have the 
uniqueness property. Superfluous attributes must not be included in a key. In ER 
diagrammatic notation, each key attribute has its name underlined inside the oval, 
as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding 
uniqueness property must hold for every entity set of the entity type. Hence, it is a 
constraint that prohibits any two entities from having the same value for the key 
attribute at the same time. It is not the property of a particular entity set; rather, it is 
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the 
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the  
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in  

5We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many 
other notations are in use; we illustrate some of them later in this chapter when we present UML class 
diagrams, and some additional diagrammatic notations are given in Appendix A.
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its own right. The Registration attribute is an example of a composite key formed 
from two simple component attributes, State and Number, neither of which is a key 
on its own. An entity type may also have no key, in which case it is called a weak 
entity type (see Section 3.5).

In our diagrammatic notation, if two attributes are underlined separately, then each 
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be 
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is 
associated with a value set (or domain of values), which specifies the set of values 
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the 
range of ages allowed for employees is between 16 and 70, we can specify the value 
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16 
and 70. Similarly, we can specify the value set for the Name attribute to be the set of 
strings of alphabetic characters separated by blank characters, and so on. Value sets 
are not typically displayed in basic ER diagrams and are similar to the basic data 
types available in most programming languages, such as integer, string, Boolean, 
float, enumerated type, subrange, and so on. However, data types of attributes can 

Model

Make

Vehicle_id

Year

Color

Registration

State(a)

(b)

Number

CAR

CAR1  
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR2  
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3  
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

 

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color} 

Figure 3.7
The CAR entity type 
with two key attributes, 
Registration and  
Vehicle_id. (a) ER  
diagram notation.  
(b) Entity set with 
three entities.
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be specified in UML class diagrams (see Section 3.8) and in other diagrammatic 
notations used in database design tools. Additional data types to represent common 
database types, such as date, time, and other concepts, are also employed.

Mathematically, an attribute A of entity set E whose value set is V can be defined as 
a function from E to the power set6 P(V) of V:

A : E → P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value  
is represented by the empty set. For single-valued attributes, A(e) is restricted to 
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.7 For a composite attribute A, the value set V is the power set of 
the Cartesian product of P(V1), P(V2), .  .  .  , P(Vn), where V1, V2, .  .  .  , Vn are the 
value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from 
the current state of the miniworld and correspond to the data as it actually exists in 
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the 
requirements described in Section 3.2. After defining several entity types and their 
attributes here, we refine our design in Section 3.4 after we introduce the concept of 
a relationship. According to the requirements listed in Section 3.2, we can identify 
four entity types—one corresponding to each of the four items in the specification 
(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations,  
Manager, and Manager_start_date. Locations is the only multivalued attribute. 
We can specify that both Name and Number are (separate) key attributes 
because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and 
 Controlling_department. Both Name and Number are (separate) key  attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary, 
Birth_date, Department, and Supervisor. Both Name and Address may be  
composite attributes; however, this was not specified in the requirements. 
We must go back to the users to see if any of them will refer to the individual 
components of Name—First_name, Middle_initial, Last_name—or of Address. In 

6The power set P(V ) of a set V is the set of all subsets of V.
7A singleton set is a set with only one element (value).
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our example, Name is modeled as a composite attribute, whereas Address is 
not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex, 
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the 
database has to store the number of hours per week an employee works on each 
project. This requirement is listed as part of the third requirement in Section 3.2, 
and it can be represented by a multivalued composite attribute of EMPLOYEE  
called Works_on with the simple components (Project, Hours). Alternatively, it  
can be represented as a multivalued composite attribute of PROJECT called   
Workers with the simple components (Employee, Hours). We choose the first 

Address

Sex

Birth_date

Project Hours

Works_on

Fname Minit Lname

Department

Salary

Supervisor

Name

EMPLOYEE

Ssn

Sex

Relationship

Employee

Dependent_name
DEPENDENT

Birth_date

Location

Number

Controlling_department

Name

PROJECT

Manager_start_date

Number

ManagerDEPARTMENT

Name

Locations

Figure 3.8
Preliminary design of 
entity types for the 
COMPANY database. 
Some of the shown 
attributes will be refined 
into  relationships.
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 alternative in Figure 3.8; we shall see in the next section that this will be refined into 
a many-to-many relationship, once we introduce the concepts of relationships.

3.4  Relationship Types, Relationship Sets, 
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types. 
In fact, whenever an attribute of one entity type refers to another entity type, some 
relationship exists. For example, the attribute Manager of DEPARTMENT refers to  
an employee who manages the department; the attribute Controlling_department  
of PROJECT refers to the department that controls the project; the attribute  
Supervisor of EMPLOYEE refers to another employee (the one who supervises this 
employee); the attribute Department of EMPLOYEE refers to the department for 
which the employee works; and so on. In the ER model, these references should not 
be represented as attributes but as relationships. The initial COMPANY database 
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships 
explicitly. In the initial design of entity types, relationships are typically captured in 
the form of attributes. As the design is refined, these attributes get converted into 
relationships between entity types.

This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts 
of relationship degree, role names, and recursive relationships in Section 3.4.2, and 
then we discuss structural constraints on relationships—such as cardinality ratios 
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship 
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the 
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the 
relationship set R is a set of relationship instances ri, where each ri associates n 
individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej, 
1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, .  .  . , En; 
 alternatively, it can be defined as a subset of the Cartesian product of the entity sets 
E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the 
relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to 
participate in the relationship instance ri = (e1, e2, . . . , en).

Informally, each relationship instance ri in R is an association of entities, where the 
association includes exactly one entity from each participating entity type. Each 
such relationship instance ri represents the fact that the entities participating in ri 
are related in some way in the corresponding miniworld situation. For example, 
consider a relationship type WORKS_FOR between the two entity types  
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EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship 
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT  
entity. Figure 3.9 illustrates this example, where each relationship instance ri is 
shown connected to the EMPLOYEE and DEPARTMENT entities that participate  
in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work 
for department d1; the employees e2 and e4 work for department d2; and the employ-
ees e5 and e7 work for department d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which 
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box 
(see Figure 3.2).

3.4.2  Relationship Degree, Role Names, and Recursive 
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number 
of participating entity types. Hence, the WORKS_FOR relationship is of degree  
two. A relationship type of degree two is called binary, and one of degree three is 
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance ri associates three entities—a supplier s, a 
part p, and a project j—whenever s supplies part p to project j. Relationships can 

EMPLOYEE WORKS_FOR DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

Figure 3.9
Some instances in  
the WORKS_FOR 
relationship set,  
which represents a 
relationship type 
WORKS_FOR 
between EMPLOYEE 
and DEPARTMENT.
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generally be of any degree, but the ones most common are binary relationships. 
Higher-degree relationships are generally more complex than binary relationships; 
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the 
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called 
Department of the EMPLOYEE entity type, where the value of Department for each 
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that  
employee works. Hence, the value set for this Department attribute is the set of all 
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in 
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the 
COMPANY database. However, when we think of a binary relationship as an attribute, 
we always have two options or two points of view. In this example, the alternative point 
of view is to think of a multivalued attribute Employees of the entity type  
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power 
set of the EMPLOYEE entity set. Either of these two attributes—Department of 
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.8

SUPPLIER

PART

SUPPLY PROJECT

p1

p2

p3

r1

r2

r3

r4

r5

r6

r7

j1

j2

j3

s1

s2

Figure 3.10
Some relationship 
instances in the 
 SUPPLY ternary 
 relationship set.

8This concept of representing relationship types as attributes is used in a class of data models called 
functional data models. In object databases (see Chapter 12), relationships can be represented by 
 reference attributes, either in one direction or in both directions as inverses. In relational databases  
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.
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Role Names and Recursive Relationships. Each entity type that participates 
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in 
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker 
and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used 
as the role name. However, in some cases the same entity type participates more than 
once in a relationship type in different roles. In such cases the role name becomes 
essential for distinguishing the meaning of the role that each participating entity 
plays. Such relationship types are called recursive relationships or self-referencing 
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type 
relates an employee to a supervisor, where both employee and supervisor entities are 
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type  
participates twice in SUPERVISION: once in the role of supervisor (or boss), and  
once in the role of supervisee (or subordinate). Each relationship instance ri in 
SUPERVISION associates two different employee entities ej and ek, one of which  
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the 
lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the 
supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 super-
vises e1 and e4. In this example, each relationship instance must be connected with 
two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

EMPLOYEE
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2

2

SUPERVISION
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1

1

1
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Figure 3.11
A recursive relationship 
SUPERVISION 
between EMPLOYEE 
in the supervisor role 
(1) and EMPLOYEE in 
the subordinate role (2).
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3.4.3 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These 
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee 
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship 
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary 
relationship specifies the maximum number of relationship instances that an entity 
can participate in. For example, in the WORKS_FOR binary relationship type, 
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department 
can be related to (that is, employs) any number of employees (N),9 but an employee 
can be related to (work for) at most one department (1). This means that for  
this particular relationship type WORKS_FOR, a particular department entity can 
be related to any number of employees (N indicates there is no maximum number). 
On the other hand, an employee can be related to a maximum of one department. 
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,  
and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a 
department entity to the employee who manages that department. This represents 
the miniworld constraints that—at any point in time—an employee can manage at 

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is 
used instead of N.
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Figure 3.12
A 1:1 relationship, 
MANAGES.
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most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the 
miniworld rule is that an employee can work on several projects and a project can 
have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this 
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify 
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation 
constraint specifies whether the existence of an entity depends on its being related 
to another entity via the relationship type. This constraint specifies the minimum 
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company 
policy states that every employee must work for a department, then an employee 
entity can exist only if it participates in at least one WORKS_FOR relationship 
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is 
called total participation, meaning that every entity in the total set of employee 
entities must be related to a department entity via WORKS_FOR. Total participation 
is also called existence dependency. In Figure 3.12 we do not expect every  
employee to manage a department, so the participation of EMPLOYEE in the  
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Figure 3.13
An M:N relationship, 
WORKS_ON.
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MANAGES relationship type is partial, meaning that some or part of the set of 
employee entities are related to some department entity via MANAGES, but not 
 necessarily all. We will refer to the cardinality ratio and participation constraints, 
taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double 
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation, 
we can either specify no minimum (partial participation) or a minimum of one (total 
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For 
example, to record the number of hours per week that a particular employee works 
on a particular project, we can include an attribute Hours for the WORKS_ON  
relationship type in Figure 3.13. Another example is to include the date on which  
a manager started managing a department via an attribute Start_date for the  
MANAGES relationship type in Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the 
participating entity types. For example, the Start_date attribute for the MANAGES 
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT, 
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1 
relationship, so every department or employee entity participates in at most one 
relationship instance. Hence, the value of the Start_date attribute can be determined 
separately, either by the participating department entity or by the participating 
employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the 
entity type on the N-side of the relationship. For example, in Figure 3.9, if the 
WORKS_FOR relationship also has an attribute Start_date that indicates when an 
employee started working for a department, this attribute can be included as an 
attribute of EMPLOYEE. This is because each employee works for at most one 
department, and hence participates in at most one relationship instance in  
WORKS_FOR, but a department can have many employees, each with a different start date. 
In both 1:1 and 1:N relationship types, the decision where to place a relationship 
attribute—as a relationship type attribute or as an attribute of a participating entity 
type—is determined subjectively by the schema designer.

For M:N (many-to-many) relationship types, some attributes may be determined 
by the combination of participating entities in a relationship instance, not by any 
single entity. Such attributes must be specified as relationship attributes. An example 
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the  number 
of hours per week an employee currently works on a project is determined by an 
employee-project combination and not separately by either entity.
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3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity types. In 
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity 
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying 
or owner entity type,10 and we call the relationship type that relates a weak entity type 
to its owner the identifying relationship of the weak entity type.11 A weak entity type 
always has a total participation constraint (existence dependency) with respect to its 
identifying relationship because a weak entity cannot be identified without an owner 
entity. However, not every existence dependency results in a weak entity type. For 
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity, 
even though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep 
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our 
example, the attributes of DEPENDENT are Name (the first name of the dependent), 
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct 
employees may, by chance, have the same values for Name, Birth_date, Sex, and  
Relationship, but they are still distinct entities. They are identified as distinct entities 
only after determining the particular employee entity to which each dependent is 
related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the attribute that can 
uniquely identify weak entities that are related to the same owner entity.12 In our 
example, if we assume that no two dependents of the same employee ever have the 
same first name, the attribute Name of DEPENDENT is the partial key. In the worst 
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute 
Dependents for EMPLOYEE, which is a multivalued composite attribute with the 
component attributes Name, Birth_date, Sex, and Relationship. The choice of which 
representation to use is made by the database designer. One criterion that may be 
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.

In general, any number of levels of weak entity types can be defined; an owner 
entity type may itself be a weak entity type. In addition, a weak entity type may have 
more than one identifying entity type and an identifying relationship type of degree 
higher than two, as we illustrate in Section 3.9.

10The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11The weak entity type is also sometimes called the child entity type or the subordinate entity type.
12The partial key is sometimes called the discriminator.
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3.6  Refining the ER Design for  
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that 
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements 
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined 
from the requirements, the users must be questioned further to determine these 
structural constraints.

In our example, we specify the following relationship types:

■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE 
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT  
participation is not clear from the requirements. We question the users, who 
say that a department must have a manager at all times, which implies total 
participation.13 The attribute Start_date is assigned to this relationship type.

■ WORKS_FOR, a 1:N (one-to-many) relationship type between  
DEPARTMENT and EMPLOYEE. Both participations are total.

■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT. 
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some 
departments may control no projects.

■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are 
determined to be partial, after the users indicate that not every employee is a 
supervisor and not every employee has a supervisor.

■ WORKS_ON, determined to be an M:N (many-to-many) relationship type 
with attribute Hours, after the users indicate that a project can have several 
employees working on it. Both participations are determined to be total.

■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and  
DEPENDENT, which is also the identifying relationship for the weak entity 
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of 
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in 
Figure 3.8 all attributes that have been refined into relationships. These include Manager 
and Manager_start_date from DEPARTMENT; Controlling_department from  
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from 
DEPENDENT. It is important to have the least possible redundancy when we design the 
conceptual schema of a database. If some redundancy is desired at the storage level or at 
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules, 
since they are determined by the business or organization that will utilize the database.
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3.7  ER Diagrams, Naming Conventions,  
and Design Issues

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in 
relationship types by displaying their entity sets and relationship sets (or 
 extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database 
design because a database schema changes rarely, whereas the contents of the entity 
sets may change frequently. In addition, the schema is obviously easier to display, 
because it is much smaller.

Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now 
review the full ER diagram notation. Regular (strong) entity types such as 
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are 
shown in diamond-shaped boxes attached to the participating entity types with 
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight 
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the 
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as 
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names 
underlined. Derived attributes are shown in dotted ovals, as illustrated by the  
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by 
having their identifying relationship placed in double diamonds, as illustrated by 
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type. 
The partial key of the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified  
by attaching a 1, M, or N on each participating edge. The cardinality ratio  
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for  
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double 
lines for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relationship type 
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because 
each employee in the role of supervisee has at most one direct supervisor, whereas 
an employee in the role of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams. It is important to note 
that there are many other alternative diagrammatic notations (see Section 3.7.4 and 
Appendix A).
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3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes, 
relationship types, and (particularly) roles is not always straightforward. One 
should choose names that convey, as much as possible, the meanings attached to 
the different constructs in the schema. We choose to use singular names for entity 
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters, 
attribute names have their initial letter capitalized, and role names are in lowercase 
letters. We have used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements, 
the nouns appearing in the narrative tend to give rise to entity type names, and the 
verbs tend to indicate names of relationship types. Attribute names generally arise 
from additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to 
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the 
DEPENDENTS_OF relationship type, which reads from bottom to top. When we 
describe this relationship, we can say that the DEPENDENT entities (bottom entity 
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To 
change this to read from top to bottom, we could rename the relationship type to 
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top 
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom 
entity type). Notice that this issue arises because each binary relationship can be 
described starting from either of the two participating entity types, as discussed in 
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasionally difficult to decide whether a particular concept in the miniworld 
should be modeled as an entity type, an attribute, or a relationship type. In this 
 section, we give some brief guidelines as to which construct should be chosen in 
particular situations.

In general, the schema design process should be considered an iterative refinement 
process, where an initial design is created and then iteratively refined until the most 
suitable design is reached. Some of the refinements that are often used include the 
following:

■ A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another 
entity type. It is often the case that a pair of such attributes that are inverses of 
one another are refined into a binary relationship. We discussed this type of 
refinement in detail in Section 3.6. It is important to note that in our  notation, 
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MeaningSymbol

Entity

Weak Entity

Indentifying Relationship

Relationship

Composite Attribute

. . .

Key Attribute

Attribute

Derived Attribute

Multivalued Attribute

Total Participation of E2 in RRE1 E2

Cardinality Ratio 1: N for E1 : E2 in RRE1 E2
N1

Structural Constraint (min, max)
on Participation of E in RR E

(min, max)

Figure 3.14
Summary of the  
notation for ER  
diagrams.
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once an attribute is replaced by a relationship, the attribute itself should be 
removed from the entity type to avoid duplication and redundancy.

■ Similarly, an attribute that exists in several entity types may be elevated or 
promoted to an independent entity type. For example, suppose that each 
of several entity types in a UNIVERSITY database, such as STUDENT, 
INSTRUCTOR, and COURSE, has an attribute Department in the  
initial design; the designer may then choose to create an entity type  
DEPARTMENT with a single attribute Dept_name and relate it to the three 
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

■ An inverse refinement to the previous case may be applied—for example, if 
an entity type DEPARTMENT exists in the initial design with a single attribute 
Dept_name and is related to only one other entity type, STUDENT. In  
this case, DEPARTMENT may be reduced or demoted to an attribute of  
STUDENT.

■ Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams
There are many alternative diagrammatic notations for displaying ER diagrams. 
Appendix A gives some of the more popular notations. In Section 3.8, we introduce 
the Unified Modeling Language (UML) notation for class diagrams, which has been 
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural 
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N) 
and single/double-line notation for participation constraints. This notation 
involves associating a pair of integer numbers (min, max) with each participation 
of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1. The 
numbers mean that for each entity e in E, e must participate in at least min and at 
most max relationship instances in R at any point in time. In this method,  
min = 0 implies partial participation, whereas min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.14 Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we 
can use it to specify some structural constraints for relationship types of higher 
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.

Figure 3.15 also displays all the role names for the COMPANY database schema.

14In some notations, particularly those used in object modeling methodologies such as UML, the (min, 
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR  
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the 
EMPLOYEE side. Here we used the original notation from Abrial (1974).
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3.8  Example of Other Notation:  
UML Class Diagrams

The UML methodology is being used extensively in software design and has many 
types of diagrams for various software design purposes. We only briefly present the 
basics of UML class diagrams here and compare them with ER diagrams. In some 
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ER diagrams for the company schema, with structural constraints specified using  
(min, max) notation and role names.
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ways, class diagrams can be considered as an alternative notation to ER diagrams. 
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16 
shows how the COMPANY ER database schema in Figure 3.15 can be displayed 
using UML class diagram notation. The entity types in Figure 3.15 are modeled as 
classes in Figure 3.16. An entity in ER corresponds to an object in UML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box 
(see Figure 3.16) that includes three sections: The top section gives the class name 
(similar to entity type name); the middle section includes the attributes; and the 
last section includes operations that can be applied to individual objects (similar to 
individual entities in an entity set) of the class. Operations are not specified in ER 
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn, 
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or 
data type) of an attribute if desired, by placing a colon (:) followed by the domain 
name or description, as illustrated by the Name, Sex, and Bdate attributes  
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a  
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the 
LOCATION class in Figure 3.16.
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The COMPANY conceptual schema in UML class diagram notation.
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Relationship types are called associations in UML terminology, and relationship 
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box 
that is connected to the association’s line by a dashed line. The (min, max) notation 
described in Section 3.7.4 is used to specify relationship constraints, which are 
called multiplicities in UML terminology. Multiplicities are specified in the form 
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig - 
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a 
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2) 
is called a reflexive association in UML, and the role names—like the multiplicities—
are placed at the opposite ends of an association when compared with the placing of 
role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation. 
 Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled 
the locations of a department and the single location of a project as aggregations. 
However, aggregation and association do not have different structural properties, and 
the choice as to which type of relationship to use—aggregation or association—is 
somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations 
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related 
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which 
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to 
EMPLOYEE. In addition, relationship instances may be specified to be ordered.  
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by 
their Start_date attribute value. Association (relationship) names are optional in 
UML, and relationship attributes are displayed in a box attached with a dashed 
line to the line representing the association/aggregation (see Start_date and Hours 
in Figure 3.16).

The operations given in each class are derived from the functional requirements of 
the application, as we discussed in Section 3.1. It is generally sufficient to specify the 
operation names initially for the logical operations that are expected to be applied 
to individual objects of a class, as shown in Figure 3.16. As the design is refined, 
more details are added, such as the exact argument types (parameters) for each 
operation, plus a functional description of each operation. UML has function 
descriptions and sequence diagrams to specify some of the operation details, but 
these are beyond the scope of our discussion.
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Weak entities can be modeled using the UML construct called qualified association 
(or qualified aggregation); this can represent both the identifying relationship  
and the partial key, which is placed in a box attached to the owner class. This is 
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in 
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called 
the discriminator, because its value distinguishes the objects associated with 
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to 
modeling weak entities, and they can be used to model other situations in UML.

This section is not meant to be a complete description of UML class diagrams, but 
rather to illustrate one popular type of alternative diagrammatic notation that can 
be used for representing ER modeling concepts.

3.9  Relationship Types of Degree  
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a 
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree 
relationships.

3.9.1  Choosing between Binary and Ternary  
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a), 
which displays the schema for the SUPPLY relationship type that was displayed at the 
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently 
supplying a PART p to a PROJECT j. In general, a relationship type R of degree n will 
have n edges in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY, 
USES, and SUPPLIES. In general, a ternary relationship type represents different 
information than do three binary relationship types. Consider the three binary 
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that  
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever 
supplier s can supply part p (to any project); USES, between PROJECT and PART, 
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between 
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies 
some part to project j. The existence of three relationship instances (s, p),  
(j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY, 
because the meaning is different. It is often tricky to decide whether a particular 
relationship should be represented as a relationship type of degree n or should be 



 3.9 Relationship Types of Degree Higher than Two  89

broken down into several relationship types of smaller degrees. The designer must 
base this decision on the semantics or meaning of the particular situation being 
represented. The typical solution is to include the ternary relationship plus one or 
more of the binary relationships, if they represent different meanings and if all are 
needed by the application.
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Figure 3.17
Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not  
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.
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Some database design tools are based on variations of the ER model that permit 
only binary relationships. In this case, a ternary relationship such as SUPPLY must 
be represented as a weak entity type, with no partial key and with three identifying 
relationships. The three participating entity types SUPPLIER, PART, and PROJECT 
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the 
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its 
three owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by 
introducing an artificial or surrogate key. In this example, a key attribute Supply_id 
could be used for the supply entity type, converting it into a regular entity type. 
Three binary N:1 relationships relate SUPPLY to each of the three participating 
entity types.

Another example is shown in Figure 3.18. The ternary relationship type OFFERS 
represents information on instructors offering courses during particular semesters; 
hence it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers 
COURSE c during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors 
who taught some course during that semester, and OFFERED_DURING relates a 
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain  
constraints should hold among the relationships. For example, a relationship 
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in 
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance  
(i, c) exists in CAN_TEACH. However, the reverse is not always true;  
we may have instances (i, s), (s, c), and (i, c) in the three binary relationship types 
with no corresponding instance (i, s, c) in OFFERS. Note that in this example,  
based on the meanings of the relationships, we can infer the instances of  
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but  
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OFFERS

TAUGHT_DURING

Figure 3.18
Another example of 
ternary versus binary 
relationship types.
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we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and 
OFFERED_DURING are redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the 
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a 
course can be taught by only one instructor), then the ternary relationship OFFERS 
can be left out because it can be inferred from the three binary relationships  
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer 
must analyze the meaning of each specific situation to decide which of the binary 
and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner 
entity types. An example is shown in Figure 3.19. This example shows part of a 
database that keeps track of candidates interviewing for jobs at various companies, 
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on 
one of the interviews. Here, INTERVIEW is represented as a weak entity with two 
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An  
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2  Constraints on Ternary (or Higher-Degree)  
Relationships

There are two notations for specifying structural constraints on n-ary relationships, 
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary 
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each 

Dept_date

DateDepartment

RESULTS_IN

Name

CANDIDATE

Cname

COMPANY

INTERVIEW JOB_OFFER

CCI

Figure 3.19
A weak entity type 
INTERVIEW with a 
 ternary identifying 
 relationship type.
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 participation arc (both M and N symbols stand for many or any number).15 Let us 
 illustrate this constraint using the SUPPLY relationship in Figure 3.17.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p), 
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint 
exists that for a particular project-part combination, only one supplier will be used 
(only one supplier supplies a particular part to a particular project). In this case, we 
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination 
can appear at most once in the relationship set because each such (PROJECT, PART) 
combination uniquely determines a single supplier. Hence, any relationship 
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying 
key for the relationship set.16 If all three cardinalities are M or N, then the key will 
be the combination of all three participants.

The second notation is based on the (min, max) notation displayed in Figure 3.15 
for binary relationships. A (min, max) on a participation here specifies that each 
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary 
relationship, where n > 2,17 but specify a different type of constraint that places 
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database
We now present another example, a UNIVERSITY database, to illustrate the ER 
modeling concepts. Suppose that a database is needed to keep track of student 
enrollments in classes and students’ final grades. After analyzing the miniworld 
rules and the users’ needs, the requirements for this database were determined to be 
as follows (for brevity, we show the chosen entity type names and attribute names 
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

■ The university is organized into colleges (COLLEGE), and each college has a 
unique name (CName), a main office (COffice) and phone (CPhone), and a 
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a 
unique name (DName), a unique code number (DCode), a main office 
(DOffice) and phone (DPhone), and a particular faculty member who chairs 
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.
17The (min, max) constraints can determine the keys for binary relationships.
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■ A department offers a number of courses (COURSE), each of which has a 
unique course name (CoName), a unique code number (CCode), a course 
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for 
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit 
hours (Credits), and a course description (CDesc). The database also keeps 
track of instructors (INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank); 
in addition, each instructor works for one primary academic department.

■ The database will keep student data (STUDENT) and stores each student’s 
name (SName, composed of first name (FName), middle name (MName), 
last name (LName)), student id (Sid, unique for every student), address 
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep 
track of the student’s grades in each section the student has completed.

■ Courses are offered as sections (SECTION). Each section is related to a single 
course and a single instructor and has a unique section identifier (SecId). A 
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year 
(Year), classroom (CRoom: this is coded as a combination of building code 
(Bldg) and room number (RoomNo) within the building), and days/times 
(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep 
track of all the sections offered for the past several years, in addition to the 
current offerings. The SecId is unique for all sections, not just the sections for 
a particular semester.) The database keeps track of the students in each section, 
and the grade is recorded when available (this is a many-to-many relationship 
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER 
diagrammatic notation. Notice that for the SECTION entity type, we only showed 
SecID as an underlined key, but because of the miniworld constraints, several other 
combinations of values have to be unique for each section entity. For example, each of 
the following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This 
specifies that the section numbers of a particular course must be different 
during each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester 
and year, a classroom cannot be used by two different sections at the same 
days/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)): 
This specifies that in a particular semester and year, an instructor cannot 
teach two sections at the same days/time. Note that this rule will not apply if 
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?
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Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary
In this chapter we presented the modeling concepts of a high-level conceptual data 
model, the entity–relationship (ER) model. We started by discussing the role that a 
high-level data model plays in the database design process, and then we presented a 
sample set of database requirements for the COMPANY database, which is one of the 
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examples that is used throughout this text. We defined the basic ER model  concepts 
of entities and their attributes. Then we discussed NULL values and presented the 
various types of attributes, which can be nested arbitrarily to produce complex 
attributes:

■ Simple or atomic

■ Composite

■ Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the 
ER model concepts at the schema or “intension” level:

■ Entity types and their corresponding entity sets

■ Key attributes of entity types

■ Value sets (domains) of attributes

■ Relationship types and their corresponding relationship sets

■ Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship 
types. The first method distinguished two types of structural constraints:

■ Cardinality ratios (1:1, 1:N, M:N for binary relationships)

■ Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is 
to specify minimum and maximum numbers (min, max) on the participation of 
each entity type in a relationship type. We discussed weak entity types and the 
related concepts of owner entity types, identifying relationship types and partial key 
attributes.

Entity–relationship schemas can be represented diagrammatically as ER diagrams. 
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema. 
We discussed some of the basic concepts of UML class diagrams and how they 
relate to ER modeling concepts. We also described ternary and higher-degree  
relationship types in more detail, and we discussed the circumstances under which 
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the 
ER schema design.

The ER modeling concepts we have presented thus far—entity types, relationship 
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if 
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in 
Chapter 26.
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Review Questions
 3.1. Discuss the role of a high-level data model in the database design process.

 3.2. List the various cases where use of a NULL value would be appropriate.

 3.3. Define the following terms: entity, attribute, attribute value, relationship 
instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among 
an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.

 3.6. What is a relationship type? Explain the differences among a relationship 
instance, a relationship type, and a relationship set.

 3.7. What is a participation role? When is it necessary to use role names in the 
description of relationship types?

 3.8. Describe the two alternatives for specifying structural constraints on rela-
tionship types. What are the advantages and disadvantages of each?

 3.9. Under what conditions can an attribute of a binary relationship type be 
migrated to become an attribute of one of the participating entity types?

 3.10. When we think of relationships as attributes, what are the value sets of these 
attributes? What class of data models is based on this concept?

 3.11. What is meant by a recursive relationship type? Give some examples of 
recursive relationship types.

 3.12. When is the concept of a weak entity used in data modeling? Define the 
terms owner entity type, weak entity type, identifying relationship type, and 
partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater 
than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.

 3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
 3.16. Which combinations of attributes have to be unique for each individual 

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce 
each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.
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 b. During a particular semester and year, an instructor can teach only one 
section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sections 
offered for the same course must all be different.

  Can you think of any other similar constraints?

 3.17. Composite and multivalued attributes can be nested to any number of lev-
els. Suppose we want to design an attribute for a STUDENT entity type to 
keep track of previous college education. Such an attribute will have one 
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded 
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and 
year the degree was awarded, and each transcript entry contains a course 
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that 
uses only entity types (including weak entity types, if needed) and relation-
ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema 
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as 
possible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database 
users. We can consider many entity types to describe such an environment, 
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to 
specify all the entity types that can fully describe a database system and its 
environment; then specify the relationship types among them, and draw an 
ER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in 
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE’s Name 
(e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state 
(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}). 
Each CONGRESS_PERSON in the House of Representatives is described by 
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she 
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’, 
‘Other’}). The database keeps track of each BILL (i.e., proposed law),  
including the Bill_name, the Date_of_vote on the bill, whether the bill  
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the 
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain 
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Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema 
diagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a 
sports league. A team has a number of players, not all of whom participate in 
each game. It is desired to keep track of the players participating in each 
game for each team, the positions they played in that game, and the result of 
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the game. Design an ER schema diagram for this application, stating any 
assumptions you make. Choose your favorite sport (e.g., soccer, baseball, 
football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database. 
Each bank can have multiple branches, and each branch can have multiple 
accounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.

 b. Is there a weak entity type? If so, give its name, partial key, and identify-
ing relationship.

 c. What constraints do the partial key and the identifying relationship of the 
weak entity type specify in this diagram?

 d. List the names of all relationship types, and specify the (min, max) 
 constraint on each participation of an entity type in a relationship type. 
Justify your choices.
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Figure 3.22
An ER diagram for a BANK database schema.
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 e. List concisely the user requirements that led to this ER schema design.

 f. Suppose that every customer must have at least one account but is 
restricted to at most two loans at a time, and that a bank branch cannot 
have more than 1,000 loans. How does this show up on the (min, max) 
constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may 
work in up to two departments or may not be assigned to any department. 
Assume that each department must have one and may have up to three 
phone numbers. Supply (min, max) constraints on this diagram. State clearly 
any additional assumptions you make. Under what conditions would the 
relationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may 
not use a textbook, but that a text by definition is a book that is used in some 
course. A course may not use more than five books. Instructors teach from 
two to four courses. Supply (min, max) constraints on this diagram. State 
clearly any additional assumptions you make. If we add the relationship 
ADOPTS, to indicate the textbook(s) that an instructor uses for a course, 
should it be a binary relationship between INSTRUCTOR and TEXT, or a  
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

EMPLOYEE DEPARTMENT

CONTAINSHAS_PHONE

WORKS_IN

PHONE

Figure 3.23
Part of an ER diagram 
for a COMPANY 
 database.

INSTRUCTOR COURSE

USES

TEACHES

TEXT

Figure 3.24
Part of an ER diagram 
for a COURSES 
 database.
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 3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes 
the section offerings of courses. The attributes of SECTION are  
Section_number, Semester, Year, Course_number, Instructor, Room_no (where 
section is taught), Building (where section is taught), Weekdays (domain is 
the possible combinations of weekdays in which a section can be offered 
{‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible  
time periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50 
a.m.’, .  .  . , ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that  
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during 
a particular semester, its section offerings are numbered 1, 2, 3, and so 
on). There are several composite keys for section, and some attributes 
are components of more than one key. Identify three composite keys, 
and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved 
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the 
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2

1. STUDENT ______________ SOCIAL_SECURITY_CARD

2. STUDENT ______________ TEACHER

3. CLASSROOM ______________ WALL

4. COUNTRY ______________ CURRENT_PRESIDENT

5. COURSE ______________ TEXTBOOK

6. ITEM (that can be found 
in an order)

______________ ORDER

7. STUDENT ______________ CLASS

8. CLASS ______________ INSTRUCTOR

9. INSTRUCTOR ______________ OFFICE

10. EBAY_AUCTION_ITEM ______________ EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.

  Assume that MOVIES is a populated database. ACTOR is used as a generic term 
and includes actresses. Given the constraints shown in the ER schema, respond 
to the following statements with True, False, or Maybe. Assign a response of 
Maybe to statements that, although not explicitly shown to be True, cannot be 
proven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.

 b. There are some actors who have acted in more than ten movies.

 c. Some actors have done a lead role in multiple movies.

 d. A movie can have only a maximum of two lead actors.
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 e. Every director has been an actor in some movie.

 f. No producer has ever been an actor.

 g. A producer cannot be an actor in some other movie.

 h. There are movies with more than a dozen actors.

 i. Some producers have been a director as well.

 j. Most movies have one director and one producer.

 k. Some movies have one director but several producers.

 l. There are some actors who have done a lead role, directed a movie, and 
produced a movie.

 m. No movie has a director who also acted in that movie.

 3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an 
instance diagram using three movies that have been released recently.  
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,  
DIRECTORS involved; make up instances of the relationships as they exist in 
reality for those movies.
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DIRECTSDIRECTOR

ALSO_A_
DIRECTOR

PRODUCESPRODUCER

ACTOR_
PRODUCER

1

1

1

1
1
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Figure 3.25
An ER diagram for a MOVIES database schema.
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 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should 
observe the following requirements:

 a. A student should have the ability to compute his/her GPA and add or 
drop majors and minors.

 b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

 c. Each instructor should be able to assign or change a student’s grade for a 
course.

  Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises
 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER 

schema for this database using a data modeling tool such as ERwin or  
Rational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts 
from customers. The data requirements are summarized as follows:

■ The mail order company has employees, each identified by a unique em-
ployee number, first and last name, and Zip Code.

■ Each customer of the company is identified by a unique customer number, 
first and last name, and Zip Code.

■ Each part sold by the company is identified by a unique part number, a 
part name, price, and quantity in stock.

■ Each order placed by a customer is taken by an employee and is given a 
unique order number. Each order contains specified quantities of one or 
more parts. Each order has a date of receipt as well as an expected ship 
date. The actual ship date is also recorded.

  Design an entity–relationship diagram for the mail order database and build 
the design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie  
industry. The data requirements are summarized as follows:

■ Each movie is identified by title and year of release. Each movie has a 
length in minutes. Each has a production company, and each is classified 
under one or more genres (such as horror, action, drama, and so forth). 
Each movie has one or more directors and one or more actors appear in it. 
Each movie also has a plot outline. Finally, each movie has zero or more 
quotable quotes, each of which is spoken by a particular actor appearing 
in the movie.

■ Actors are identified by name and date of birth and appear in one or more 
movies. Each actor has a role in the movie.
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■ Directors are also identified by name and date of birth and direct one or 
more movies. It is possible for a director to act in a movie (including one 
that he or she may also direct).

■ Production companies are identified by name and each has an address. A 
production company produces one or more movies.

  Design an entity–relationship diagram for the movie database and enter the 
design using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit 
their research papers for consideration. Reviews by reviewers are recorded 
for use in the paper selection process. The database system caters primarily 
to reviewers who record answers to evaluation questions for each paper they 
review and make recommendations regarding whether to accept or reject 
the paper. The data requirements are summarized as follows:

■ Authors of papers are uniquely identified by e-mail id. First and last names 
are also recorded.

■ Each paper is assigned a unique identifier by the system and is described 
by a title, abstract, and the name of the electronic file containing the paper.

■ A paper may have multiple authors, but one of the authors is designated as 
the contact author.

■ Reviewers of papers are uniquely identified by e-mail address. Each re-
viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

■ Each paper is assigned between two and four reviewers. A reviewer rates 
each paper assigned to him or her on a scale of 1 to 10 in four categories: 
technical merit, readability, originality, and relevance to the conference. 
Finally, each reviewer provides an overall recommendation regarding 
each paper.

■ Each review contains two types of written comments: one to be seen by 
the review committee only and the other as feedback to the author(s).

  Design an entity–relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or 
Rational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21. 
Build this design using a data modeling tool such as ERwin or Rational Rose.
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4
The Enhanced Entity–Relationship 

(EER) Model

The ER modeling concepts discussed in Chapter 3 
are sufficient for representing many database sche-

mas for traditional database applications, which include many data-processing 
applications in business and industry. Since the late 1970s, however, designers of 
database applications have tried to design more accurate database schemas that 
reflect the data properties and constraints more precisely. This was particularly 
important for newer applications of database technology, such as databases for 
engineering design and manufacturing (CAD/CAM),1 telecommunications, com-
plex software systems, and geographic information systems (GISs), among many 
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual 
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently 
in related areas of computer science, such as the knowledge representation area of 
artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data 
models and show how the ER model can be enhanced to include these concepts, 
which leads to the enhanced ER (EER) model.2 We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER 
model. Then, in Section 4.2, we add the concepts of specialization and generalization. 
Section 4.3 discusses the various types of constraints on specialization/generalization, 
and Section 4.4 shows how the UNION construct can be modeled by including the 

chapter 4

1CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2EER has also been used to stand for extended ER model.
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concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY 
database schema in the EER model and summarizes the EER model concepts by 
giving formal definitions. We will use the terms object and entity interchangeably 
in this chapter, because many of these concepts are commonly used in object-
oriented models.

We present the UML class diagram notation for representing specialization and 
generalization in Section 4.6, and we briefly compare these with EER notation and 
concepts. This serves as an example of alternative notation, and is a continuation 
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8 
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose 
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance
The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass 
and the related concepts of specialization and generalization (see Sections 4.2  
and 4.3). Another concept included in the EER model is that of a category or union 
type (see Section 4.4), which is used to represent a collection of objects (entities) 
that is the union of objects of different entity types. Associated with these concepts 
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a 
diagrammatic technique for displaying these concepts when they arise in an EER 
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.

The first enhanced ER (EER) model concept we take up is that of a subtype or  
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is 
used to represent both a type of entity and the entity set or collection of entities of that 
type that exist in the database. For example, the entity type EMPLOYEE describes the 
type (that is, the attributes and relationships) of each employee entity, and also refers 
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an 
entity type has numerous subgroupings or subtypes of its entities that are meaningful 
and need to be represented explicitly because of their significance to the database 
application. For example, the entities that are members of the EMPLOYEE entity 
type may be distinguished further into SECRETARY, ENGINEER, MANAGER, 
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or 
collection of entities in each of the latter groupings is a subset of the entities that 
belong to the EMPLOYEE entity set, meaning that every entity that is a member of 
one of these subgroupings is also an employee. We call each of these subgroupings a 
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subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is 
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how 
to represent these concepts diagramatically in EER diagrams. (The circle notation in 
Figure 4.1 will be explained in Section 4.2.)

We call the relationship between a superclass and any one of its subclasses a  
superclass/subclass or supertype/subtype or simply class/subclass relationship.3 

In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN 
are two class/subclass relationships. Notice that a member entity of the subclass 
represents the same real-world entity as some member of the superclass; for 
example, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’ 
Hence, the subclass member is the same as the entity in the superclass, but in a 
distinct specific role. When we implement a superclass/subclass relationship in 
the database system, however, we may represent a member of the subclass as a 
distinct database object—say, a distinct record that is related via the key attribute 
to its superclass entity. In Section 9.2, we discuss various options for representing 
superclass/subclass relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it 
must also be a member of the superclass. Such an entity can be included optionally 

3A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we 
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and 
so on.

MANAGES

d

Minit Lname

Name Birth_date AddressSsn

Fname

Eng_typeTgradeTyping_speed Pay_scale

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

Salary

PROJECT

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

TRADE_UNION

BELONGS_TO

d

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1 
EER diagram  
notation to represent 
subclasses and  
specialization.
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as a member of any number of subclasses. For example, a salaried employee who is 
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE 
of the EMPLOYEE entity type. However, it is not necessary that every entity in a 
superclass is a member of some subclass.

An important concept associated with subclasses (subtypes) is that of type  
inheritance. Recall that the type of an entity is defined by the attributes it possesses 
and the relationship types in which it participates. Because an entity in the subclass 
represents the same real-world entity from the superclass, it should possess values 
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of 
the entity as a member of the superclass. The entity also inherits all the relationships 
in which the superclass participates. Notice that a subclass, with its own specific (or 
local) attributes and relationships together with all the attributes and relationships it 
inherits from the superclass, can be considered an entity type in its own right.4

4.2 Specialization and Generalization

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type; this 
entity type is called the superclass of the specialization. The set of subclasses that 
forms a specialization is defined on the basis of some distinguishing characteristic 
of the entities in the superclass. For example, the set of subclasses {SECRETARY, 
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.  
We may have several specializations of the same entity type based on different 
distinguishing characteristics. For example, another specialization of the 
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,  
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on 
the method of pay.

Figure 4.1 shows how we represent a specialization diagrammatically in an EER 
diagram. The subclasses that define a specialization are attached by lines to a circle 
that represents the specialization, which is connected in turn to the superclass. The 
subset symbol on each line connecting a subclass to the circle indicates the direction 
of the superclass/subclass relationship.5 Attributes that apply only to entities of a 
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of 
the subclass. Similarly, a subclass can participate in specific relationship types, 
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO 

4In some object-oriented programming languages, a common restriction is that an entity (or object) has 
only one type. This is generally too restrictive for conceptual database modeling.
5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and 
other proposed notations in Appendix A.



 4.2 Specialization and Generalization 111

relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1 
and additional EER diagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY, 
ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to 
a subclass represents the same real-world entity as the entity connected to it in the 
EMPLOYEE superclass, even though the same entity is shown twice; for example, e1 
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests, 
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat 
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as 
the entity in the superclass but is playing a specialized role—for example, an 
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in 
the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of 

EMPLOYEE

SECRETARY

ENGINEER

TECHNICIAN

e1

e2

e3
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e7
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e3

e4

e5

e7

e8

Figure 4.2 
Instances of a specialization.



112 Chapter 4 The Enhanced Entity–Relationship (EER) Model

the superclass entity type. A subclass is defined in order to group the entities to 
which these attributes apply. The members of the subclass may still share the 
majority of their attributes with the other members of the superclass. For example, 
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed, 
whereas the ENGINEER subclass has the specific attribute Eng_type, but  
SECRETARY and ENGINEER share their other inherited attributes from the 
EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only 
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by 
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass 
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization
We can think of a reverse process of abstraction in which we suppress the differences 
among several entity types, identify their common features, and generalize them 
into a single superclass of which the original entity types are special subclasses. For 
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because 
they have several common attributes, they can be generalized into the entity type 
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the 

(a)

(b)

Max_speed

Vehicle_id

No_of_passengers

License_plate_no

CAR Price Price

License_plate_no

No_of_axles

Vehicle_id

Tonnage

TRUCK

Vehicle_id Price License_plate_no

VEHICLE

No_of_passengers

Max_speed

CAR TRUCK

No_of_axles

Tonnage

d

Figure 4.3 
Generalization. (a) Two entity types, CAR and TRUCK.  
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.
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generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the 
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization 
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A 
diagrammatic notation to distinguish between generalization and specialization is 
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation 
because the decision as to which process was followed in a particular situation is 
often subjective.

So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a 
superclass or subclass represents a collection of entities of the same type and hence 
also describes an entity type; that is why superclasses and subclasses are all shown in 
rectangles in EER diagrams, like entity types.

4.3  Constraints and Characteristics  
of Specialization and Generalization 
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it 
applies to both specialization and generalization. Then, we discuss differences 
between specialization/generalization lattices (multiple inheritance) and hierarchies 
(single inheritance), and we elaborate on the differences between the specialization 
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization
In general, we may have several specializations defined on the same entity type (or 
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses 
in each of the specializations. A specialization may also consist of a single subclass 
only, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do not 
use the circle notation.

In some specializations we can determine exactly the entities that will become 
members of each subclass by placing a condition on the value of some attribute of 
the superclass. Such subclasses are called predicate-defined (or condition-defined) 
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as 
shown in Figure 4.4, we can specify the condition of membership in the  
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the 
defining predicate of the subclass. This condition is a constraint specifying that 
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type 
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is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by 
writing the predicate condition next to the line that connects the subclass to the 
specialization circle.

If all subclasses in a specialization have their membership condition on the same 
attribute of the superclass, the specialization itself is called an attribute-defined 
specialization, and the attribute is called the defining attribute of the special-
ization.6 In this case, all the entities with the same value for the attribute belong to 
the same subclass. We display an attribute-defined specialization by placing the 
defining attribute name next to the arc from the circle to the superclass, as shown 
in Figure 4.4.

When we do not have a condition for determining membership in a subclass, the 
subclass is called user-defined. Membership in such a subclass is determined by the 
database users when they apply the operation to add an entity to the subclass; hence, 
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness 
constraint, which specifies that the subclasses of the specialization must be disjoint 
sets. This means that an entity can be a member of at most one of the subclasses of 
the specialization. A specialization that is attribute-defined implies the disjointness 
constraint (if the attribute used to define the membership predicate is single- 
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The 
d notation also applies to user-defined subclasses of a specialization that must be 
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} 
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities 

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.

d
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SECRETARY TECHNICIAN ENGINEER
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Figure 4.4 
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for an attribute-defined 
specialization on  
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may be overlapping; that is, the same (real-world) entity may be a member of more 
than one subclass of the specialization. This case, which is the default, is displayed 
by placing an o in the circle, as shown in Figure 4.5.

The second constraint on specialization is called the completeness (or totalness) 
constraint, which may be total or partial. A total specialization constraint specifies 
that every entity in the superclass must be a member of at least one subclass  
in the specialization. For example, if every EMPLOYEE must be either an  
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization  
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization 
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect 
the superclass to the circle. A single line is used to display a partial specialization, 
which allows an entity not to belong to any of the subclasses. For example, if some 
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER, 
TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.7

Notice that the disjointness and completeness constraints are independent. Hence, 
we have the following four possible constraints on a specialization:

 ■ Disjoint, total

 ■ Disjoint, partial

 ■ Overlapping, total

 ■ Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that 
applies to each specialization. In general, a superclass that was identified through 
the generalization process usually is total, because the superclass is derived from the 
subclasses and hence contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a 
consequence of the constraints specified earlier. Some of these rules are as follows:

 ■ Deleting an entity from a superclass implies that it is automatically deleted 
from all the subclasses to which it belongs.

7The notation of using single or double lines is similar to that for partial or total participation of an entity 
type in a relationship type, as described in Chapter 3.

Part_no Description

PARTManufacture_date

Drawing_no

PURCHASED_PART

Supplier_name
Batch_no

List_price

o

MANUFACTURED_PART

Figure 4.5 
EER diagram notation 
for an overlapping  
(nondisjoint)  
specialization.
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 ■ Inserting an entity in a superclass implies that the entity is mandatorily 
inserted in all predicate-defined (or attribute-defined) subclasses for which 
the entity satisfies the defining predicate.

 ■ Inserting an entity in a superclass of a total specialization implies that 
the entity is mandatorily inserted in at least one of the subclasses of the 
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2  Specialization and Generalization Hierarchies  
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or 
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of 
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the 
real-world constraint that every engineering manager is required to be an engineer. 
A specialization hierarchy has the constraint that every subclass participates as a 
subclass in only one class/subclass relationship; that is, each subclass has only one 
parent, which results in a tree structure or strict hierarchy. In contrast, for a  
specialization lattice, a subclass can be a subclass in more than one class/subclass 
relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may 
be part of a conceptual schema for a UNIVERSITY database. Notice that this 
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT 
subclass, which is a subclass in two distinct class/subclass relationships.

d

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

ENGINEERING_MANAGER

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

d

Figure 4.6 
A specialization lattice with shared subclass 
ENGINEERING_MANAGER.
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The requirements for the part of the UNIVERSITY database shown in Figure 4.7 
are the following:

  1. The database keeps track of three types of persons: employees, alumni, and 
students. A person can belong to one, two, or all three of these types. Each 
person has a name, SSN, sex, address, and birth date.

  2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one 
of these types. For each alumnus, a record of the degree or degrees that 
he or she earned at the university is kept, including the name of the 
degree, the year granted, and the major department. Each student has a 
major department.

  3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching 
assistants, and the percent of time that they work is recorded in the database. 
Research assistants have their research project stored, whereas teaching 
assistants have the current course they work on.

STAFF
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FACULTY

Name Sex Address

PERSON

Salary

EMPLOYEE

Major_dept

Birth_date

ALUMNUS

d

o

STUDENT_
ASSISTANT

STUDENT

Degrees

DegreeYear Major

GRADUATE_
STUDENT

d

UNDERGRADUATE_
STUDENT

RESEARCH_ASSISTANT

d

TEACHING_ASSISTANT

Position Rank Degree_program Class

CourseProject

Ssn

Figure 4.7 
A specialization lattice  
with multiple inheritance  
for a UNIVERSITY  
database.
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  4. Students are further classified as either graduate or undergraduate, with 
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on) 
for graduate students and class (freshman, sophomore, and so on) for 
undergraduates.

In Figure 4.7, all person entities represented in the database are members of 
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE, 
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The 
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT, 
UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the 
specialization {STUDENT_ASSISTANT, FACULTY, STAFF} .  Notice that  
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT 
is the superclass for the specialization into {RESEARCH_ASSISTANT,  
TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not 
only of its direct superclass, but also of all its predecessor superclasses all the way to 
the root of the hierarchy or lattice if necessary. For example, an entity in  
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a 
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy, 
where a leaf node is a class that has no subclasses of its own. For example, a member 
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as 
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as 
multiple inheritance, where the shared subclass ENGINEERING_MANAGER 
directly inherits attributes and relationships from multiple superclasses. Notice 
that the existence of at least one shared subclass leads to a lattice (and hence to 
multiple inheritance); if no shared subclasses existed, we would have a hierarchy 
rather than a lattice and only single inheritance would exist. An important rule 
related to multiple inheritance can be illustrated by the example of the shared 
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from 
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the 
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once 
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be 
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the 
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.

It is important to note here that some models and languages are limited to single 
inheritance and do not allow multiple inheritance (shared subclasses). It is also 
important to note that some models do not allow an entity to have multiple 
types, and hence an entity can be a member of only one leaf class.8 In such a 
model, it is necessary to create additional subclasses as leaf nodes to cover all 

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.
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possible combinations of classes that may have some entity that belongs to all 
these classes simultaneously. For example, in the overlapping specialization of 
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would 
be necessary to create seven subclasses of PERSON in order to cover all possible 
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to 
extra complexity.

Although we have used specialization to illustrate our discussion, similar concepts 
apply equally to generalization, as we mentioned at the beginning of this section. 
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3  Utilizing Specialization and Generalization in  
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization 
processes and how they are used to refine conceptual schemas during conceptual 
database design. In the specialization process, the database designers typically start 
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity 
type. For example, when designing the specialization lattice in Figure 4.7, we may 
first specify an entity type PERSON for a university database. Then we discover 
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS, 
STUDENT}. The overlapping constraint is chosen because a person may belong  
to more than one of the subclasses. We specialize EMPLOYEE further into  
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into  
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize 
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}. 
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is 
also a subclass of STUDENT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In 
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS, 
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT, 
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT, 
UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT, 
TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,  
STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT} 
into PERSON.

The final design of hierarchies or lattices resulting from either process may be 
identical; the only difference relates to the manner or order in which the schema 
superclasses and subclasses were created during the design process. In practice, it 
is likely that a combination of the two processes is employed. Notice that the 
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notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques. 
For example, frame-based knowledge representation schemes closely resemble 
class hierarchies. Specialization is also common in software engineering design 
methodologies that are based on the object-oriented paradigm.

4.4  Modeling of UNION Types  
Using Categories

It is sometimes necessary to represent a collection of entities from different entity 
types. In this case, a subclass will represent a collection of entities that is a subset of 
the UNION of entities from distinct entity types; we call such a subclass a union type 
or a category.9

For example, suppose that we have three entity types: PERSON, BANK, and  
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can 
be a person, a bank (holding a lien on a vehicle), or a company. We need to create 
a class (collection of entities) that includes entities of all three types to play the 
role of vehicle owner. A category (union type) OWNER that is a subclass of the 
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created 
for this purpose. We display categories in an EER diagram as shown in Figure 4.8. 
The superclasses COMPANY, BANK, and PERSON are connected to the circle with 
the ∪ symbol, which stands for the set union operation. An arc with the subset 
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we 
have two categories: OWNER, which is a subclass (subset) of the union of PERSON, 
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of 
the union of CAR and TRUCK.

A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships 
always have a single superclass. To better understand the difference,  
we can compare a category, such as OWNER in Figure 4.8, with the  
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of 
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE, 
so an entity that is a member of ENGINEERING_MANAGER must exist in all 
three collections. This represents the constraint that an engineering manager must 
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the  
ENGINEERING_MANAGER entity set is a subset of the intersection of the three 
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the 
superclasses. This represents the constraint that an OWNER may be a COMPANY, 
a BANK, or a PERSON in Figure 4.8.

9Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al., 
1985).



 4.4 Modeling of UNION Types Using Categories  121

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a 
PERSON, or a BANK, depending on the superclass to which the entity belongs. On 
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6) 
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER, 
and MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE 
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig- 
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the  
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily 
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all of them (for example, some cars or trucks may not be registered). In general, 
a specialization or generalization such as that in Figure 4.3(b), if it were partial, 
would not preclude VEHICLE from containing other types of entities, such as 
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8 
implies that only cars and trucks, but not other types of entities, can be members 
of REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in 
its superclasses, whereas a partial category can hold a subset of the union. A total 
category is represented diagrammatically by a double line connecting the category 
and the circle, whereas a partial category is indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated 
by the OWNER category in Figure 4.8, or they may have the same key attribute, as 
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is 
total (not partial), it may be represented alternatively as a total specialization (or a 
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous 
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.

It is important to note that some modeling methodologies do not have union 
types. In these models, a union type must be represented in a roundabout way 
(see Section 9.2).

4.5  A Sample UNIVERSITY EER Schema,  
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to 
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we 
discuss design choices for conceptual schemas, and finally we summarize the EER 
model concepts and define them formally in the same manner in which we formally 
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example
Consider a UNIVERSITY database that has different requirements from the UNIVERSITY 
database presented in Section 3.10. This database keeps track of students and their 
majors, transcripts, and registration as well as of the university’s course offerings. 
The database also keeps track of the sponsored research projects of faculty and 
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.

For each person, the database maintains information on the person’s Name [Name], 
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate]. 
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT. 
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research, 
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visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated 
[BELONGS] (a faculty member can be associated with several departments, so the 
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to his 
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course 
sections he or she is currently attending [REGISTERED], and to the courses completed 
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received 
[Grade] in a section of a course.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR 
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty 
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.

An academic department has the attributes name [Dname], telephone [Dphone], and 
office number [Office] and is related to the faculty member who is its chairperson 
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cname], office number [Coffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course 
description [Cdesc]. Several sections of each course are offered, with each section 
having the attributes section number [Sec#] and the year and quarter in which the 
section was offered ([Year] and [Qtr]).10 Section numbers uniquely identify each  
section. The sections being offered during the current quarter are in a subclass  
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_qtr and 
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and 
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research 
grants and contracts awarded to the university. Each grant has attributes grant title 
[Title], grant number [No], the awarding agency [Agency], and the starting date 
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it 
supports [SUPPORT]. Each instance of support has as attributes the starting date of 
support [Start], the ending date of the support (if known) [End], and the percentage of 
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization
It is not always easy to choose the most appropriate conceptual design for a 
database application. In Section 3.7.3, we presented some of the typical issues 
that confront a database designer when choosing among the concepts of entity 

10We assume that the quarter system rather than the semester system is used in this university.
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types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and 
choices for the EER concepts of specialization/generalization and categories 
(union types).

As we mentioned in Section 3.7.3, conceptual database design should be considered 
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

 ■ In general, many specializations and subclasses can be defined to make 
the conceptual model accurate. However, the drawback is that the 
design becomes quite cluttered. It is important to represent only those 
subclasses that are deemed necessary to avoid extreme cluttering of the 
conceptual schema.

 ■ If a subclass has few specific (local) attributes and no specific relationships, 
it can be merged into the superclass. The specific attributes would hold NULL 
values for entities that are not members of the subclass. A type attribute 
could specify whether an entity is a member of the subclass.

 ■ Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the 
superclass and replaced with one or more type attributes that specify the 
subclass or subclasses that each entity belongs to (see Section 9.2 for how 
this criterion applies to relational databases).

 ■ Union types and categories should generally be avoided unless the situation 
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

 ■ The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the 
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific 
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE 
entity type and add the following attributes to EMPLOYEE:

 ■ An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’} 
would indicate which subclass in the first specialization each employee 
belongs to.

 ■ An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would 
indicate which subclass in the second specialization each employee 
belongs to.
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 ■ An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate 
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts
We now summarize the EER model concepts and give formal definitions. A class11 

defines a type of entity and represents a set or collection of entities of that type; this 
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a 
class whose entities must always be a subset of the entities in another class, called 
the superclass C of the superclass/subclass (or IS-A) relationship. We denote 
such a relationship by C/S. For such a superclass/subclass relationship, we must 
always have

S ⊆ C

A specialization Z = {S1, S2, … , Sn} is a set of subclasses that have the same super-
class G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, … , n. G is called 
a generalized entity type (or the superclass of the specialization, or a generalization 
of the subclasses {S1, S2, … , Sn} ). Z is said to be total if we always (at any point in 
time) have

∪
n

i=1
 Si = G

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have

Si ∩ Sj = ∅ (empty set) for i ≠ j

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of 
C is used to specify which entities in C are members of S; that is, S = C[p], where 
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a 
predicate is called user-defined.

A specialization Z (or generalization G) is said to be attribute-defined if a 
predicate (A = ci), where A is an attribute of G and ci is a constant value from 
the domain of A, is used to specify membership in each subclass Si in Z. Notice 
that if ci ≠ cj for i ≠ j, and A is a single-valued attribute, then the specialization 
will be disjoint.

A category T is a class that is a subset of the union of n defining superclasses D1, D2, 
… , Dn, n > 1 and is formally specified as follows:

T ⊆ (D1 ∪ D2 ...  ∪ Dn)

11The use of the word class here refers to a collection (set) of entities, which differs from its more  
common use in object-oriented programming languages such as C++. In C++, a class is a structured 
type definition along with its applicable functions (operations).
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A predicate pi on the attributes of Di can be used to specify the members of each Di 
that are members of T. If a predicate is specified on every Di, we get

T = (D1[p1] ∪ D2[p2] ... ∪ Dn[pn])

We should now extend the definition of relationship type given in Chapter 3 by 
allowing any class—not only any entity type—to participate in a relationship. 
Hence, we should replace the words entity type with class in that definition. The 
graphical notation of EER is consistent with ER because all classes are represented 
by rectangles.

4.6  Example of Other Notation: Representing 
Specialization and Generalization in UML 
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology 
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding 
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal 
line, which has a triangle connecting the horizontal line through another vertical 
line to the superclass. A blank triangle indicates a specialization/generalization 
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes) 
are called leaf classes.

The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology. 
We focused on the concepts that are relevant to ER and EER database modeling 
rather than on those concepts that are more relevant to software engineering. In 
UML, there are many details that we have not discussed because they are outside 
the scope of this text and are mainly relevant to software engineering. For example, 
classes can be of various types:

 ■ Abstract classes define attributes and operations but do not have objects 
corresponding to those classes. These are mainly used to specify a set of 
attributes and operations that can be inherited.

 ■ Concrete classes can have objects (entities) instantiated to belong to the 
class.

 ■ Template classes specify a template that can be further used to define 
other classes.

In database design, we are mainly concerned with specifying concrete classes whose 
collections of objects are permanently (or persistently) stored in the database. The 
bibliographic notes at the end of this chapter give some references to books that 
describe complete details of UML.
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A UML class diagram corresponding to the EER diagram in Figure 4.7,  
illustrating UML notation for specialization/generalization.

4.7  Data Abstraction, Knowledge 
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we 
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual 
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data modeling but also in artificial intelligence literature when discussing  
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces 
some of the alternative terminology and a few additional concepts.

The goal of KR techniques is to develop concepts for accurately modeling some domain 
of knowledge by creating an ontology12 that describes the concepts of the domain 
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions. 
The goals of KR are similar to those of semantic data models, but there are some 
important similarities and differences between the two disciplines:

 ■ Both disciplines use an abstraction process to identify common properties and 
important aspects of objects in the miniworld (also known as domain of discourse 
in KR) while suppressing insignificant differences and unimportant details.

 ■ Both disciplines provide concepts, relationships, constraints, operations, 
and languages for defining data and representing knowledge.

 ■ KR is generally broader in scope than semantic data models. Different forms 
of knowledge, such as rules (used in inference, deduction, and search), 
incomplete and default knowledge, and temporal and spatial knowledge, are 
represented in KR schemes. Database models are being expanded to include 
some of these concepts (see Chapter 26).

 ■ KR schemes include reasoning mechanisms that deduce additional facts 
from the facts stored in a database. Hence, whereas most current database 
systems are limited to answering direct queries, knowledge-based systems 
using KR schemes can answer queries that involve inferences over the 
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

 ■ Whereas most data models concentrate on the representation of database 
schemas, or meta-knowledge, KR schemes often mix up the schemas with 
the instances themselves in order to provide flexibility in representing 
exceptions. This often results in inefficiencies when these KR schemes are 
implemented, especially when compared with databases and when a large 
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models, 
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation 
and association. The paired concepts of classification and instantiation are inverses 
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their 
relation to the concrete representations used in the EER model to clarify the data 
abstraction process and to improve our understanding of the related process of 
conceptual schema design. We close the section with a brief discussion of ontology, 
which is being used widely in recent knowledge representation research.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.
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4.7.1 Classification and Instantiation
The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in 
KR) the classes rather than the individual objects. Collections of objects that share 
the same types of attributes, relationships, and constraints are classified into classes 
in order to simplify the process of discovering their properties. Instantiation is the 
inverse of classification and refers to the generation and specific examination of 
distinct objects of a class. An object instance is related to its object class by the  
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by 
permitting the display of individual objects. We did not describe this feature in our 
introduction to UML class diagrams.

In general, the objects of a class should have a similar type structure. However, 
some objects may display properties that differ in some respects from the other 
objects of the class; these exception objects also need to be modeled, and KR 
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR 
schemes allow such class properties. UML diagrams also allow specification of 
class properties.

In the EER model, entities are classified into entity types according to their basic 
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them. 
Relationship instances are classified into relationship types. Hence, entity types, 
subclasses, categories, and relationship types are the different concepts that are 
used for classification in the EER model. The EER model does not provide 
explicitly for class properties, but it may be extended to do so. In UML, objects 
are classified into classes, and it is possible to display both class properties and 
individual objects.

Knowledge representation models allow multiple classification schemes in 
which one class is an instance of another class (called a meta-class). Notice that 
this cannot be represented directly in the EER model, because we have only two 
levels—classes and instances. The only relationship among classes in the EER 
model is a superclass/subclass relationship, whereas in some KR schemes an 
additional class/instance relationship can be represented directly in a class 
hierarchy. An instance may itself be another class, allowing multiple-level 
classification schemes.

4.7.2 Identification
Identification is the abstraction process whereby classes and objects are made 
uniquely identifiable by means of some identifier. For example, a class name uniquely 
identifies a whole class within a schema. An additional mechanism is necessary for 
telling distinct object instances apart by means of object identifiers. Moreover, it is 
necessary to identify multiple manifestations in the database of the same real-world 



 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 131

object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> in 
a PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify 
the fact that these two database objects (tuples) represent the same real-world 
entity unless we make a provision at design time for appropriate cross-referencing to 
supply this identification. Hence, identification is needed at two levels:

 ■ To distinguish among database objects and classes

 ■ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of 
unique names for the constructs in a schema. For example, every class in an EER 
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be 
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a 
combination of their own partial key values and the entities they are related to in 
the owner entity type(s). Relationship instances are identified by some combination 
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization
Specialization is the process of classifying a class of objects into more specialized 
subclasses. Generalization is the inverse process of generalizing several classes into 
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization. 
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF 
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association
Aggregation is an abstraction concept for building composite objects from their 
component objects. There are three cases where this concept can be related to the 
EER model. The first case is the situation in which we aggregate attribute values of 
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER 
model does not provide for explicitly, involves the possibility of combining objects 
that are related by a particular relationship instance into a higher-level aggregate 
object. This is sometimes useful when the higher-level aggregate object is itself to be 
related to another object. We call the relationship between the primitive objects and 
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF. 
UML provides for all three types of aggregation.
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The abstraction of association is used to associate objects from several independent 
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This 
abstract relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER 
schema shown in Figure 4.11(a), which stores information about interviews by 
job applicants to various companies. The class COMPANY is an aggregation of 
the attributes (or component objects) Cname (company name) and Caddress 
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name, 
Address, and Phone. The relationship attributes Contact_name and Contact_phone 
represent the name and phone number of the person in the company who is 
responsible for the interview. Suppose that some interviews result in job offers, 
whereas others do not. We would like to treat INTERVIEW as a class to associate it 
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it 
requires each interview relationship instance to have a job offer. The schema 
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.

One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to 
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in 
this book does not have this facility, some semantic data models do allow it and call 
the resulting object a composite or molecular object. Other models treat entity 
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).

To represent this situation correctly in the ER model as described here, we need to 
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to 
JOB_OFFER. Hence, we can always represent these situations correctly in the ER 
model by creating additional entity types, although it may be conceptually more 
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to 
allow relationships among relationships, as in Figure 4.11(c).

The main structural distinction between aggregation and association is that when 
an association instance is deleted, the participating objects may continue to exist. 
However, if we support the notion of an aggregate object—for example, a CAR that 
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate 
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web
In recent years, the amount of computerized data and information available on 
the Web has spiraled out of control. Many different models and formats are used. 
In addition to the database models that we present in this text, much information 
is stored in the form of documents, which have considerably less structure than 
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Figure 4.11 
Aggregation. (a) The  
relationship type INTERVIEW. 
(b) Including JOB_OFFER in a 
ternary relationship type 
(incorrect). (c) Having the 
RESULTS_IN relationship  
participate in other relationships 
(not allowed in ER). (d) Using 
aggregation and a composite 
(molecular) object (generally 
not allowed in ER but allowed 
by some modeling tools).  
(e) Correct representation  
in ER.
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database information does. One ongoing project that is attempting to allow 
information exchange among computers on the Web is called the Semantic 
Web, which attempts to create knowledge representation models that are quite 
general in order to allow meaningful information exchange and search among 
machines. The concept of ontology is considered to be the most promising basis 
for achieving the goals of the Semantic Web and is closely related to knowledge 
representation. In this section, we give a brief introduction to what ontology is 
and how it can be used as a basis to automate information understanding, search, 
and exchange.

The study of ontologies attempts to describe the concepts and relationships that are 
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality. 
Ontology originated in the fields of philosophy and metaphysics. One commonly 
used definition of ontology is a specification of a conceptualization.13

In this definition, a conceptualization is the set of concepts and relationships that 
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are 
used to specify the conceptualization. The ontology includes both specification and 
conceptualization. For example, the same conceptualization may be specified in two 
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to 
describe ontologies are as follows:

 ■ A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

 ■ A taxonomy describes how concepts of a particular area of knowledge 
are related using structures similar to those used in a specialization or 
generalization.

 ■ A detailed database schema is considered by some to be an ontology that 
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

 ■ A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database 
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a 
domain of interest (for example, medical terms, electronic-commerce applications, 
sports, and so on) as completely as possible.

13This definition is given in Gruber (1995).
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4.8 Summary
In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER 
model. We presented the concept of a subclass and its superclass and the related 
mechanism of attribute/relationship inheritance. We saw how it is sometimes 
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main 
processes for defining superclass/subclass hierarchies and lattices: specialization 
and generalization.

Next, we showed how to display these new constructs in an EER diagram. We also 
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We 
discussed the concept of a category or union type, which is a subset of the union of 
two or more classes, and we gave formal definitions of all the concepts presented.

We introduced some of the notation and terminology of UML for representing 
specialization and generalization. In Section 4.7, we briefly discussed the discipline 
of knowledge representation and how it is related to semantic data modeling. We 
also gave an overview and summary of the types of abstract data representation 
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts 
are related to each of these.

Review Questions
 4.1. What is a subclass? When is a subclass needed in data modeling?

 4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-
tionship, IS-A relationship, specialization, generalization, category, specific 
(local) attributes, and specific relationships.

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the 
differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.

 4.7. What is the difference between a specialization hierarchy and a specializa-
tion lattice?

 4.8. What is the difference between specialization and generalization? Why do 
we not display this difference in schema diagrams?
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 4.9. How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the 
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

 4.11. Discuss the main differences between the notation for EER schema dia-
grams and UML class diagrams by comparing how common concepts are 
represented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling 
concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER 
model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database 
modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database 
schema.

Exercises
 4.16. Design an EER schema for a database application that you are interested in. 

Specify all constraints that should hold on the database. Make sure that the 
schema has at least five entity types, four relationship types, a weak entity 
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that it  
is necessary to keep track of different types of ACCOUNTS  
(SAVINGS_ACCTS, CHECKING_ACCTS, … ) and LOANS (CAR_LOANS, 
HOME_LOANS, … ). Suppose that it is also desirable to keep track of 
each ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, … ) 
and each LOAN’s PAYMENTS; both of these include the amount, date, 
and time. Modify the BANK schema, using ER and EER concepts of 
specialization and generalization. State any assumptions you make 
about the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of 
Olympic facilities planned for the summer Olympics. Draw an EER diagram 
that shows the entity types, attributes, relationships, and specializations for 
this application. State any assumptions you make. The Olympic facilities are 
divided into sports complexes. Sports complexes are divided into one-sport 
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so 
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on). A complex has a location, chief organizing individual, total occupied 
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date, 
duration, number of participants, number of officials, and so on. A roster of 
all officials will be maintained together with the list of events each official 
will be involved in. Different equipment is needed for the events (e.g., goal 
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For 
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

 4.19. Identify all the important concepts represented in the library database case 
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and 
specialization/generalization. Specify (min, max) cardinality constraints 
whenever possible. List details that will affect the eventual design but that 
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000 
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per 
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when 
the members want to borrow them. Also, the librarians must know how 
many copies of each book are in the library or out on loan at any given time. 
A catalog of books is available online that lists books by author, title, and 
subject area. For each title in the library, a book description is kept in the 
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members 
request information about a book. Library staff includes chief librarian, 
departmental associate librarians, reference librarians, check-out staff, and 
library assistants.

Books can be checked out for 21 days. Members are allowed to have only 
five books out at a time. Members usually return books within three to four 
weeks. Most members know that they have one week of grace before a 
notice is sent to them, so they try to return books before the grace period 
ends. About 5% of the members have to be sent reminders to return books. 
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most 
active members of the library are defined as those who borrow books at 
least ten times during the year. The top 1% of membership does 15% of the 
borrowing, and the top 10% of the membership does 40% of the borrowing. 
About 20% of the members are totally inactive in that they are members 
who never borrow.

To become a member of the library, applicants fill out a form including their 
SSN, campus and home mailing addresses, and phone numbers. The librari-
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ans issue a numbered, machine-readable card with the member’s photo on it. 
This card is good for four years. A month before a card expires, a notice is 
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her 
information is pulled from the employee records and a library card is mailed 
to his or her campus address. Professors are allowed to check out books for 
three-month intervals and have a two-week grace period. Renewal notices to 
professors are sent to their campus address.

The library does not lend some books, such as reference books, rare books, 
and maps. The librarians must differentiate between books that can be lent 
and those that cannot be lent. In addition, the librarians have a list of some 
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been 
replaced. The librarians must have a system that keeps track of books that 
cannot be lent as well as books that they are interested in acquiring. Some 
books may have the same title; therefore, the title cannot be used as a means 
of identification. Every book is identified by its International Standard Book 
Number (ISBN), a unique international code assigned to all books. Two 
books with the same title can have different ISBNs if they are in different 
languages or have different bindings (hardcover or softcover). Editions of 
the same book have different ISBNs.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

 4.20.  Design a database to keep track of information for an art museum. Assume 
that the following requirements were collected:

 ■ The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a 
unique Id_no, an Artist (if known), a Year (when it was created, if known), 
a Title, and a Description. The art objects are categorized in several ways, as 
discussed below.

 ■ ART_OBJECTS are categorized based on their type. There are three main 
types—PAINTING, SCULPTURE, and STATUE—plus another type called 
OTHER to accommodate objects that do not fall into one of the three main 
types.

 ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on which 
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern, 
abstract, etc.).

 ■ A SCULPTURE or a statue has a Material from which it was created (wood, 
stone, etc.), Height, Weight, and Style.

 ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style.

 ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION 
(objects that are owned by the museum) and BORROWED. Information 
captured about objects in the PERMANENT_COLLECTION includes  
Date_acquired, Status (on display, on loan, or stored), and Cost. Information 



 Exercises 139

captured about BORROWED objects includes the Collection from which it 
was borrowed, Date_borrowed, and Date_returned.

 ■ Information describing the country or culture of Origin (Italian, Egyptian, 
American, Indian, and so forth) and Epoch (Renaissance, Modern, 
Ancient, and so forth) is captured for each ART_OBJECT.

 ■ The museum keeps track of ARTIST information, if known: Name,  
DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch, 
Main_style, and Description. The Name is assumed to be unique.

 ■ Different EXHIBITIONS occur, each having a Name, Start_date, and End_date. 
EXHIBITIONS are related to all the art objects that were on display during 
the exhibition.

 ■ Information is kept on other COLLECTIONS with which the museum 
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions 
you make, and then justify your EER design choices.

 4.21.  Figure 4.12 shows an example of an EER diagram for a small-private-airport 
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number 
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular 
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a 
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number  
[Number], a capacity [Capacity], and a location [Location]. The database also 
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who 
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS 
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate]. 
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service 
record [SERVICE]. Each plane undergoes service many times; hence, it is 
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE 
record includes as attributes the date of maintenance [Date], the number of 
hours spent on the work [Hours], and the type of work done [Work_code]. We 
use a weak entity type [SERVICE] to represent airplane service, because the 
airplane registration number is used to identify a service record. An OWNER 
is either a person or a corporation. Hence, we use a union type (category) 
[OWNER] that is a subset of the union of corporation [CORPORATION] and 
person [PERSON] entity types. Both pilots [PILOT] and employees 
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes 
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in 
the database have data kept on their Social Security number [Ssn], name 
[Name], address [Address], and telephone number [Phone]. For CORPORATION 
entities, the data kept includes name [Name], address [Address], and  
telephone number [Phone]. The database also keeps track of the types of 
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planes each pilot is authorized to fly [FLIES] and the types of planes each 
employee can do maintenance work on [WORKS_ON]. Show how the 
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML 
notation. (Note: We have not discussed how to represent categories (union 
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

 4.22.  Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in 
UML notation.
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Figure 4.12 
EER schema for a SMALL_AIRPORT database.
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 4.23.  Consider the entity sets and attributes shown in the following table. Place a 
checkmark in one column in each row to indicate the relationship between 
the far left and far right columns.

a. The left side has a relationship with the right side.

b. The right side is an attribute of the left side.

c. The left side is a specialization of the right side.

d. The left side is a generalization of the right side.

Entity Set

(a) Has a
Relationship

with

(b) Has an
Attribute 

that is

(c) Is a
Specialization

of

(d) Is a
Generalization

of
Entity Set 

or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age

10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database. 
You may look at http://www.chessgames.com for an application similar to 
what you are designing. State clearly any assumptions you make in your 
UML diagram. A sample of assumptions you can make about the scope is 
as follows:

1. The game of chess is played between two players.

2. The game is played on an 8 × 8 board like the one shown below:
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3. The players are assigned a color of black or white at the start of the game.

4. Each player starts with the following pieces (traditionally called 
chessmen):

a. king
b. queen
c. 2 rooks
d. 2 bishops
e. 2 knights
f. 8 pawns

5. Every piece has its own initial position.

6. Every piece has its own set of legal moves based on the state of the game. 
You do not need to worry about which moves are or are not legal except 
for the following issues:

a. A piece may move to an empty square or capture an opposing piece.
b. If a piece is captured, it is removed from the board.
c. If a pawn moves to the last row, it is “promoted” by converting it to 

another piece (queen, rook, bishop, or knight).

Note: Some of these functions may be spread over multiple classes.

 4.25.  Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus 
on persistent storage aspects of the system. For example, the system would 
need to retrieve all the moves of every game played in sequential order.

 4.26.  Which of the following EER diagrams is/are incorrect and why? State clearly 
any assumptions you make.

a.

b.
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 4.27.  Consider the following EER diagram that describes the computer systems at 
a company. Provide your own attributes and key for each entity type. Supply 
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.
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Laboratory Exercises
 4.28.  Consider a GRADE_BOOK database in which instructors within an academic 

department record points earned by individual students in their classes. The 
data requirements are summarized as follows:

 ■ Each student is identified by a unique identifier, first and last name, and 
an e-mail address.

 ■ Each instructor teaches certain courses each term. Each course is identified 
by a course number, a section number, and the term in which it is taught. For 
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each course he or she teaches, the instructor specifies the minimum number 
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

 ■ Students are enrolled in each course taught by the instructor.

 ■ Each course has a number of grading components (such as midterm 
exam, final exam, project, and so forth). Each grading component has a 
maximum number of points (such as 100 or 50) and a weight (such as 
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

 ■ Finally, the instructor records the points earned by each student in each of 
the grading components in each of the courses. For example, student 1234 
earns 84 points for the midterm exam grading component of the section 2 
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a 
weight of 20% of the course grade.

  Design an enhanced entity–relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.29.  Consider an ONLINE_AUCTION database system in which members (buyers 
and sellers) participate in the sale of items. The data requirements for this 
system are summarized as follows:

 ■ The online site has members, each of whom is identified by a unique 
member number and is described by an e-mail address, name, password, 
home address, and phone number.

 ■ A member may be a buyer or a seller. A buyer has a shipping address 
recorded in the database. A seller has a bank account number and routing 
number recorded in the database.

 ■ Items are placed by a seller for sale and are identified by a unique item 
number assigned by the system. Items are also described by an item title, 
a description, starting bid price, bidding increment, the start date of the 
auction, and the end date of the auction.

 ■ Items are also categorized based on a fixed classification hierarchy (for 
example, a modem may be classified as COMPUTER → HARDWARE → 
MODEM).

 ■ Buyers make bids for items they are interested in. Bid price and time of 
bid are recorded. The bidder at the end of the auction with the highest bid 
price is declared the winner, and a transaction between buyer and seller 
may then proceed.

 ■ The buyer and seller may record feedback regarding their completed 
transactions. Feedback contains a rating of the other party participating 
in the transaction (1–10) and a comment.
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  Design an enhanced entity–relationship diagram for the ONLINE_AUCTION 
database and build the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.30.  Consider a database system for a baseball organization such as the major 
leagues. The data requirements are summarized as follows:

 ■ The personnel involved in the league include players, coaches, managers, 
and umpires. Each is identified by a unique personnel id. They are also 
described by their first and last names along with the date and place of 
birth.

 ■ Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

 ■ Within the players group is a subset of players called pitchers. Pitchers 
have a lifetime ERA (earned run average) associated with them.

 ■ Teams are uniquely identified by their names. Teams are also described by 
the city in which they are located and the division and league in which 
they play (such as Central division of the American League).

 ■ Teams have one manager, a number of coaches, and a number of players.

 ■ Games are played between two teams, with one designated as the home 
team and the other the visiting team on a particular date. The score (runs, 
hits, and errors) is recorded for each team. The team with the most runs is 
declared the winner of the game.

 ■ With each finished game, a winning pitcher and a losing pitcher are 
recorded. In case there is a save awarded, the save pitcher is also recorded.

 ■ With each finished game, the number of hits (singles, doubles, triples, and 
home runs) obtained by each player is also recorded.

  Design an enhanced entity–relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.31.  Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9. 
Enter this design using a data modeling tool such as ERwin or Rational Rose. 
Make a list of the differences in notation between the diagram in the text 
and the corresponding equivalent diagrammatic notation you end up using 
with the tool.

 4.32.  Consider the EER diagram for the small AIRPORT database shown in Fig- 
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational 
Rose. Be careful how you model the category OWNER in this diagram. (Hint: 
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as 
two distinct relationship types.)

 4.33.  Consider the UNIVERSITY database described in Exercise 3.16. You already 
developed an ER schema for this database using a data modeling tool such as 
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ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES 
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS. 
Include appropriate attributes for these new entity types. Then establish 
relationships indicating that junior instructors teach undergraduate courses 
whereas senior instructors teach graduate courses.
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5
The Relational Data Model and 

Relational Database Constraints

This chapter opens Part 3 of the book, which covers 
relational databases. The relational data model was 

first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd, 
1970), and it attracted immediate attention due to its simplicity and mathematical 
foundation. The model uses the concept of a mathematical relation—which looks 
somewhat like a table of values—as its basic building block, and has its theoretical 
basis in set theory and first-order predicate logic. In this chapter we discuss the 
basic characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in 
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM 
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems, as well as a number of open source systems. Current 
popular commercial relational DBMSs (RDBMSs) include DB2 (from IBM), Oracle 
(from Oracle), Sybase DBMS (now from SAP), and SQLServer and Microsoft 
Access (from Microsoft). In addition, several open source systems, such as MySQL 
and PostgreSQL, are available.

Because of the importance of the relational model, all of Part 2 is devoted to this 
model and some of the languages associated with it. In Chapters 6 and 7, we describe 
some aspects of SQL, which is a comprehensive model and language that is the 
standard for commercial relational DBMSs. (Additional aspects of SQL will be cov-
ered in other chapters.) Chapter 8 covers the operations of the relational algebra and 
introduces the relational calculus—these are two formal languages associated with 
the relational model. The relational calculus is considered to be the basis for the 
SQL language, and the relational algebra is used in the internals of many database 
implementations for query processing and optimization (see Part 8 of the book).

chapter 5
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Other features of the relational model are presented in subsequent parts of the 
book. Chapter 9 relates the relational model data structures to the constructs of the 
ER and EER models (presented in Chapters 3 and 4), and presents algorithms for 
designing a relational database schema by mapping a conceptual schema in the ER 
or EER model into a relational representation. These mappings are incorporated 
into many database design and CASE1 tools. Chapters 10 and 11 in Part 4 discuss 
the programming techniques used to access database systems and the notion of 
connecting to relational databases via ODBC and JDBC standard protocols. We 
also introduce the topic of Web database programming in Chapter 11. Chapters 14 
and 15 in Part 6 present another aspect of the relational model, namely the formal 
constraints of functional and multivalued dependencies; these dependencies are 
used to develop a relational database design theory based on the concept known as 
normalization.

In this chapter, we concentrate on describing the basic principles of the relational 
model of data. We begin by defining the modeling concepts and notation of the 
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational 
constraints that are considered an important part of the relational model and are 
automatically enforced in most relational DBMSs. Section 5.3 defines the update 
operations of the relational model, discusses how violations of integrity constraints 
are handled, and introduces the concept of a transaction. Section 5.4 summarizes 
the chapter.

This chapter and Chapter 8 focus on the formal foundations of the relational model, 
whereas Chapters 6 and 7 focus on the SQL practical relational model, which is the 
basis of most commercial and open source relational DBMSs. Many concepts are 
common between the formal and practical models, but a few differences exist that 
we shall point out.

5.1 Relational Model Concepts
The relational model represents the database as a collection of relations. Informally, 
each relation resembles a table of values or, to some extent, a flat file of records. It is 
called a flat file because each record has a simple linear or flat structure. For exam-
ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-
tional model representation. However, there are important differences between 
relations and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a 
collection of related data values. A row represents a fact that typically corresponds 
to a real-world entity or relationship. The table name and column names are used 
to help to interpret the meaning of the values in each row. For example, the 
first table of Figure 1.2 is called STUDENT because each row represents facts 
about a particular student entity. The column names—Name, Student_number, 

1CASE stands for computer-aided software engineering.
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Class, and Major—specify how to interpret the data values in each row, based on the 
column each value is in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column 
header is called an attribute, and the table is called a relation. The data type 
describing the types of values that can appear in each column is represented by a 
domain of possible values. We now define these terms—domain, tuple, attribute, 
and relation—formally.

5.1.1 Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the 
domain is indivisible as far as the formal relational model is concerned. A common 
method of specifying a domain is to specify a data type from which the data values 
forming the domain are drawn. It is also useful to specify a name for the domain, to 
help in interpreting its values. Some examples of domains follow:

 ■ Usa_phone_numbers. The set of ten-digit phone numbers valid in the United 
States.

 ■ Local_phone_numbers. The set of seven-digit phone numbers valid within a 
particular area code in the United States. The use of local phone numbers is 
quickly becoming obsolete, being replaced by standard ten-digit numbers.

 ■ Social_security_numbers. The set of valid nine-digit Social Security numbers. 
(This is a unique identifier assigned to each person in the United States for 
employment, tax, and benefits purposes.)

 ■ Names: The set of character strings that represent names of persons.

 ■ Grade_point_averages. Possible values of computed grade point averages; 
each must be a real (floating-point) number between 0 and 4.

 ■ Employee_ages. Possible ages of employees in a company; each must be an 
integer value between 15 and 80.

 ■ Academic_department_names. The set of academic department names in a 
university, such as Computer Science, Economics, and Physics.

 ■ Academic_department_codes. The set of academic department codes, such as 
‘CS’, ‘ECON’, and ‘PHYS’.

The preceding are called logical definitions of domains. A data type or format is 
also specified for each domain. For example, the data type for the domain  
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-dddd, 
where each d is a numeric (decimal) digit and the first three digits form a valid  
telephone area code. The data type for Employee_ages is an integer number between 
15 and 80. For Academic_department_names, the data type is the set of all character 
strings that represent valid department names. A domain is thus given a name, data 
type, and format. Additional information for interpreting the values of a domain 
can also be given; for example, a numeric domain such as Person_weights should 
have the units of measurement, such as pounds or kilograms.
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A relation schema2 R, denoted by R(A1, A2, … , An), is made up of a relation name 
R and a list of attributes, A1, A2, … , An. Each attribute Ai is the name of a role 
played by some domain D in the relation schema R. D is called the domain of Ai 
and is denoted by dom(Ai). A relation schema is used to describe a relation; R is 
called the name of this relation. The degree (or arity) of a relation is the number of 
attributes n of its relation schema.

A relation of degree seven, which stores information about university students, 
would contain seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string, 
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven 
attributes. In the preceding definition, we showed assignment of generic types such 
as string or integer to the attributes. More precisely, we can specify the following 
previously defined domains for some of the attributes of the STUDENT relation: 
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) = 
USA_phone_numbers3, dom(Office_phone) = USA_phone_numbers, and dom(Gpa) = 
Grade_point_averages. It is also possible to refer to attributes of a relation schema by 
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)4 r of the relation schema R(A1, A2, … , An), also denoted 
by r(R), is a set of n-tuples r = {t1, t2, … , tm}. Each n-tuple t is an ordered list of n 
values t =<v1, v2, … , vn>, where each value vi, 1 ≤ i ≤ n, is an element of dom (Ai) or is 
a special NULL value. (NULL values are discussed further below and in Section 5.1.2.) 
The ith value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or 
t.Ai (or t[i] if we use the positional notation). The terms relation intension for the 
schema R and relation extension for a relation state r(R) are also commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the 
STUDENT schema just specified. Each tuple in the relation represents a particular 
student entity (or object). We display the relation as a table, where each tuple is 
shown as a row and each attribute corresponds to a column header indicating a role 
or interpretation of the values in that column. NULL values represent attributes 
whose values are unknown or do not exist for some individual STUDENT tuple.

2A relation schema is sometimes called a relation scheme.
3With the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-
itan areas in the United States now have multiple area codes, so seven-digit local dialing has been 
 discontinued in most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_
numbers, which would be a more general choice. This illustrates how database requirements can change 
over time.
4This has also been called a relation instance. We will not use this term because instance is also used 
to refer to a single tuple or row.
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The earlier definition of a relation can be restated more formally using set theory 
concepts as follows. A relation (or relation state) r(R) is a mathematical relation of 
degree n on the domains dom(A1), dom(A2), … , dom(An), which is a subset of the 
Cartesian product (denoted by ×) of the domains that define R:

r(R) ⊆ (dom(A1) × dom(A2) × . . . × (dom(An))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a 
domain D by |D| (assuming that all domains are finite), the total number of tuples 
in the Cartesian product is

|dom(A1)| × |dom(A2)| × . . . × |dom(An)|

This product of cardinalities of all domains represents the total number of possible 
instances or tuples that can ever exist in any relation state r(R). Of all these possible 
combinations, a relation state at a given time—the current relation state—reflects 
only the valid tuples that represent a particular state of the real world. In general, as 
the state of the real world changes, so does the relation state, by being transformed 
into another relation state. However, the schema R is relatively static and changes 
very infrequently—for example, as a result of adding an attribute to represent new 
information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attribute names indi-
cate different roles, or interpretations, for the domain. For example, in the STUDENT 
relation, the same domain USA_phone_numbers plays the role of Home_phone, referring 
to the home phone of a student, and the role of Office_phone, referring to the office 
phone of the student. A third possible attribute (not shown) with the same domain 
could be Mobile_phone.

5.1.2 Characteristics of Relations
The earlier definition of relations implies certain characteristics that make a rela-
tion different from a file or a table. We now discuss some of these characteristics.

Relation Name

Tuples

STUDENT

Name

Benjamin Bayer

Chung-cha Kim

Dick Davidson

Rohan Panchal

Barbara Benson

Ssn

305-61-2435

381-62-1245

422-11-2320

489-22-1100

533-69-1238

Home_phone

(817)373-1616

(817)375-4409

NULL

(817)376-9821

(817)839-8461

Address

2918 Bluebonnet Lane

125 Kirby Road

3452 Elgin Road

265 Lark Lane

7384 Fontana Lane

Office_phone

NULL

NULL

(817)749-1253

(817)749-6492

NULL

Age

19

18

25

28

19

3.21

2.89

3.53

3.93

3.25

Gpa

Attributes

Figure 5.1 
The attributes and tuples of a relation STUDENT.
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Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Math-
ematically, elements of a set have no order among them; hence, tuples in a relation 
do not have any particular order. In other words, a relation is not sensitive to the 
ordering of tuples. However, in a file, records are physically stored on disk (or in 
memory), so there always is an order among the records. This ordering indicates 
first, second, ith, and last records in the file. Similarly, when we display a relation as 
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many tuple orders can be specified on the 
same relation. For example, tuples in the STUDENT relation in Figure 5.1 could be 
ordered by values of Name, Ssn, Age, or some other attribute. The definition of a rela-
tion does not specify any order: There is no preference for one ordering over another. 
Hence, the relation displayed in Figure 5.2 is considered identical to the one shown in 
Figure 5.1. When a relation is implemented as a file or displayed as a table, a particular 
ordering may be specified on the records of the file or the rows of the table.

Ordering of Values within a Tuple and an Alternative Definition of a Relation.  
According to the preceding definition of a relation, an n-tuple is an ordered list of n 
values, so the ordering of values in a tuple—and hence of attributes in a relation 
schema—is important. However, at a more abstract level, the order of attributes 
and their values is not that important as long as the correspondence between attri-
butes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values 
in a tuple unnecessary. In this definition, a relation schema R = {A1, A2, … , An} is a 
set of attributes (instead of an ordered list of attributes), and a relation state r(R) is 
a finite set of mappings r = {t1, t2, … , tm}, where each tuple ti is a mapping from R 
to D, and D is the union (denoted by ∪) of the attribute domains; that is, D = 
dom(A1) ∪ dom(A2) ∪ … ∪ dom(An). In this definition, t[Ai] must be in dom(Ai) 
for 1 ≤ i ≤ n for each mapping t in r. Each mapping ti is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a 
set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping 
from an attribute Ai to a value vi from dom(Ai). The ordering of attributes is not 
important, because the attribute name appears with its value. By this definition, the 

Dick Davidson

Barbara Benson

Rohan Panchal

Chung-cha Kim

422-11-2320

533-69-1238

489-22-1100

381-62-1245

NULL

(817)839-8461

(817)376-9821

(817)375-4409

3452 Elgin Road

7384 Fontana Lane

265 Lark Lane

125 Kirby Road

(817)749-1253

NULL

(817)749-6492

NULL

25

19

28

18

3.53

3.25

3.93

2.89

Benjamin Bayer 305-61-2435 (817)373-1616 2918 Bluebonnet Lane NULL 19 3.21

STUDENT
Name Ssn Home_phone Address Office_phone Age Gpa

Figure 5.2 
The relation STUDENT from Figure 5.1 with a different order of tuples.
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two tuples shown in Figure 5.3 are identical. This makes sense at an abstract level, 
since there really is no reason to prefer having one attribute value appear before 
another in a tuple. When the attribute name and value are included together in a 
tuple, it is known as self-describing data, because the description of each value 
(attribute name) is included in the tuple.

We will mostly use the first definition of relation, where the attributes are ordered 
in the relation schema and the values within tuples are similarly ordered, because it 
simplifies much of the notation. However, the alternative definition given here is 
more general.5

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that 
is, it is not divisible into components within the framework of the basic relational 
model. Hence, composite and multivalued attributes (see Chapter 3) are not 
allowed. This model is sometimes called the flat relational model. Much of the 
theory behind the relational model was developed with this assumption in mind, 
which is called the first normal form assumption.6 Hence, multivalued attributes 
must be represented by separate relations, and composite attributes are represented 
only by their simple component attributes in the basic relational model.7

An important concept is that of NULL values, which are used to represent the values of 
attributes that may be unknown or may not apply to a tuple. A special value, called 
NULL, is used in these cases. For example, in Figure 5.1, some STUDENT tuples have 
NULL for their office phones because they do not have an office (that is, office phone 
does not apply to these students). Another student has a NULL for home phone, presum-
ably because either he does not have a home phone or he has one but we do not know it 
(value is unknown). In general, we can have several meanings for NULL values, such as 
value unknown, value exists but is not available, or attribute does not apply to this tuple 
(also known as value undefined). An example of the last type of NULL will occur if we 
add an attribute Visa_status to the STUDENT relation that applies only to tuples repre-
senting foreign students. It is possible to devise different codes for different meanings of 

5We will use the alternative definition of relation when we discuss query processing and optimization in 
Chapter 18.
6We discuss this assumption in more detail in Chapter 14.
7Extensions of the relational model remove these restrictions. For example, object-relational systems 
(Chapter 12) allow complex-structured attributes, as do the non-first normal form or nested relational 
models.

t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),
   (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
    (Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>

Figure 5.3 
Two identical tuples when the order of attributes and values is not part of relation definition.
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NULL values. Incorporating different types of NULL values into relational model opera-
tions has proven difficult and is outside the scope of our presentation.

The exact meaning of a NULL value governs how it fares during arithmetic aggrega-
tions or comparisons with other values. For example, a comparison of two NULL 
values leads to ambiguities—if both Customer A and B have NULL addresses, it does 
not mean they have the same address. During database design, it is best to avoid 
NULL values as much as possible. We will discuss this further in Chapters 7 and 8 in 
the context of operations and queries, and in Chapter 14 in the context of database 
design and normalization.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted 
as a declaration or a type of assertion. For example, the schema of the STUDENT 
relation of Figure 5.1 asserts that, in general, a student entity has a Name, Ssn, 
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can 
then be interpreted as a fact or a particular instance of the assertion. For example, 
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is 
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema 
MAJORS (Student_ssn, Department_code) asserts that students major in academic 
disciplines. A tuple in this relation relates a student to his or her major discipline. 
Hence, the relational model represents facts about both entities and relationships 
uniformly as relations. This sometimes compromises understandability because 
one has to guess whether a relation represents an entity type or a relationship type. 
We introduced the entity–relationship (ER) model in detail in Chapter 3, where the 
entity and relationship concepts were described in detail. The mapping procedures 
in Chapter 9 show how different constructs of the ER/EER conceptual data models 
(see Part 2) get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the 
values in each tuple are interpreted as values that satisfy the predicate. For example, 
the predicate STUDENT (Name, Ssn, …) is true for the five tuples in relation STUDENT 
of Figure 5.1. These tuples represent five different propositions or facts in the 
real world. This interpretation is quite useful in the context of logical programming 
languages, such as Prolog, because it allows the relational model to be used within 
these languages (see Section 26.5). An assumption called the closed world assumption 
states that the only true facts in the universe are those present within the extension 
(state) of the relation(s). Any other combination of values makes the predicate false. 
This interpretation is useful when we consider queries on relations based on 
 relational calculus in Section 8.6.

5.1.3 Relational Model Notation
We will use the following notation in our presentation:

 ■ A relation schema R of degree n is denoted by R(A1, A2, … , An).
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 ■ The uppercase letters Q, R, S denote relation names.

 ■ The lowercase letters q, r, s denote relation states.

 ■ The letters t, u, v denote tuples.

 ■ In general, the name of a relation schema such as STUDENT also indicates 
the current set of tuples in that relation—the current relation state—whereas 
STUDENT(Name, Ssn, …) refers only to the relation schema.

 ■ An attribute A can be qualified with the relation name R to which it belongs 
by using the dot notation R.A—for example, STUDENT.Name or  
STUDENT.Age. This is because the same name may be used for two attri-
butes in different relations. However, all attribute names in a particular 
relation must be distinct.

 ■ An n-tuple t in a relation r(R) is denoted by t = <v1, v2, … , vn>, where vi is 
the value corresponding to attribute Ai. The following notation refers to 
component values of tuples:

 � Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t for attri-
bute Ai.

 � Both t[Au, Aw, … , Az] and t.(Au, Aw, … , Az), where Au, Aw, … , Az is a list 
of attributes from R, refer to the subtuple of values <vu, vw, … , vz> from t 
corresponding to the attributes specified in the list.

As an example, consider the tuple t = <’Barbara Benson’, ‘533-69-1238’,  
‘(817)839-8461’, ‘7384 Fontana Lane’, NULL, 19, 3.25> from the STUDENT relation in Fig-
ure 5.1; we have t[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <‘533-69-1238’, 
3.25, 19>.

5.2  Relational Model Constraints  
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are 
usually related in various ways. The state of the whole database will correspond to 
the states of all its relations at a particular point in time. There are generally many 
restrictions or constraints on the actual values in a database state. These constraints 
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a 
relational database in the form of constraints. Constraints on databases can gener-
ally be divided into three main categories:

  1. Constraints that are inherent in the data model. We call these inherent 
model-based constraints or implicit constraints.

  2. Constraints that can be directly expressed in the schemas of the data model, typi-
cally by specifying them in the DDL (data definition language, see Section 2.3.1). 
We call these schema-based constraints or explicit constraints.
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  3. Constraints that cannot be directly expressed in the schemas of the data 
model, and hence must be expressed and enforced by the application pro-
grams or in some other way. We call these application-based or semantic 
constraints or business rules.

The characteristics of relations that we discussed in Section 5.1.2 are the inherent 
constraints of the relational model and belong to the first category. For example, the 
constraint that a relation cannot have duplicate tuples is an inherent constraint. The 
constraints we discuss in this section are of the second category, namely, constraints 
that can be expressed in the schema of the relational model via the DDL. Constraints 
in the third category are more general, relate to the meaning as well as behavior of 
attributes, and are difficult to express and enforce within the data model, so they are 
usually checked within the application programs that perform database updates. In 
some cases, these constraints can be specified as assertions in SQL (see Chapter 7).

Another important category of constraints is data dependencies, which include 
functional dependencies and multivalued dependencies. They are used mainly for 
testing the “goodness” of the design of a relational database and are utilized in a 
process called normalization, which is discussed in Chapters 14 and 15.

The schema-based constraints include domain constraints, key constraints, con-
straints on NULLs, entity integrity constraints, and referential integrity constraints.

5.2.1 Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must 
be an atomic value from the domain dom(A). We have already discussed the ways in 
which domains can be specified in Section 5.1.1. The data types associated with 
domains typically include standard numeric data types for integers (such as short 
integer, integer, and long integer) and real numbers (float and double-precision float). 
Characters, Booleans, fixed-length strings, and variable-length strings are also avail-
able, as are date, time, timestamp, and other special data types. Domains can also be 
described by a subrange of values from a data type or as an enumerated data type in 
which all possible values are explicitly listed. Rather than describe these in detail here, 
we discuss the data types offered by the SQL relational standard in Section 6.1.

5.2.2 Key Constraints and Constraints on NULL Values
In the formal relational model, a relation is defined as a set of tuples. By definition, 
all elements of a set are distinct; hence, all tuples in a relation must also be distinct. 
This means that no two tuples can have the same combination of values for all their 
attributes. Usually, there are other subsets of attributes of a relation schema R with 
the property that no two tuples in any relation state r of R should have the same 
combination of values for these attributes. Suppose that we denote one such subset 
of attributes by SK; then for any two distinct tuples t1 and t2 in a relation state r of R, 
we have the constraint that:

t1[SK] ≠ t2[SK]
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Any such set of attributes SK is called a superkey of the relation schema R. A super-
key SK specifies a uniqueness constraint that no two distinct tuples in any state r of 
R can have the same value for SK. Every relation has at least one default superkey—
the set of all its attributes. A superkey can have redundant attributes, however, so a 
more useful concept is that of a key, which has no redundancy. A key k of a relation 
schema R is a superkey of R with the additional property that removing any attri-
bute A from K leaves a set of attributes K′ that is not a superkey of R any more. 
Hence, a key satisfies two properties:

  1. Two distinct tuples in any state of the relation cannot have identical values 
for (all) the attributes in the key. This uniqueness property also applies to a 
superkey.

  2. It is a minimal superkey—that is, a superkey from which we cannot remove 
any attributes and still have the uniqueness constraint hold. This minimality 
property is required for a key but is optional for a superkey.

Hence, a key is a superkey but not vice versa. A superkey may be a key (if it is mini-
mal) or may not be a key (if it is not minimal). Consider the STUDENT relation of 
Figure 5.1. The attribute set {Ssn} is a key of STUDENT because no two student 
tuples can have the same value for Ssn.8 Any set of attributes that includes Ssn—for 
example, {Ssn, Name, Age}—is a superkey. However, the superkey {Ssn, Name, Age} 
is not a key of STUDENT because removing Name or Age or both from the set still 
leaves us with a superkey. In general, any superkey formed from a single attribute is 
also a key. A key with multiple attributes must require all its attributes together to 
have the uniqueness property.

The value of a key attribute can be used to identify uniquely each tuple in the rela-
tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-
sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes 
constituting a key is a property of the relation schema; it is a constraint that should 
hold on every valid relation state of the schema. A key is determined from the mean-
ing of the attributes, and the property is time-invariant: It must continue to hold 
when we insert new tuples in the relation. For example, we cannot and should not 
designate the Name attribute of the STUDENT relation in Figure 5.1 as a key because 
it is possible that two students with identical names will exist at some point in a 
valid state.9

In general, a relation schema may have more than one key. In this case, each of the 
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two 
candidate keys: License_number and Engine_serial_number. It is common to designate 
one of the candidate keys as the primary key of the relation. This is the candidate 
key whose values are used to identify tuples in the relation. We use the convention 
that the attributes that form the primary key of a relation schema are underlined, as 
shown in Figure 5.4. Notice that when a relation schema has several candidate keys, 

8Note that Ssn is also a superkey.
9Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—must 
be used to distinguish between persons with identical names.



160 Chapter 5 The Relational Data Model and Relational Database Constraints

the choice of one to become the primary key is somewhat arbitrary; however, it is 
usually better to choose a primary key with a single attribute or a small number 
of attributes. The other candidate keys are designated as unique keys and are 
not underlined.

Another constraint on attributes specifies whether NULL values are or are not per-
mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for 
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

5.2.3 Relational Databases and Relational  
Database Schemas
The definitions and constraints we have discussed so far apply to single relations 
and their attributes. A relational database usually contains many relations, with 
tuples in relations that are related in various ways. In this section, we define a rela-
tional database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R1, R2, … , Rm} and 
a set of integrity constraints IC. A relational database state10 DB of S is a set of 
relation states DB = {r1, r2, … , rm} such that each ri is a state of Ri and such that the 
ri relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a 
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT, 
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. In each relation schema, 
the underlined attribute represents the primary key. Figure 5.6 shows a relational 
database state corresponding to the COMPANY schema. We will use this schema 
and database state in this chapter and in Chapters 4 through 6 for developing 
sample queries in different relational languages. (The data shown here is 
expanded and available for loading as a populated database from the Compan-
ion Website for the text, and can be used for the hands-on project exercises at 
the end of the chapters.)

When we refer to a relational database, we implicitly include both its schema and its 
current state. A database state that does not obey all the integrity constraints is 

CAR

License_number Engine_serial_number Make Model Year

Texas ABC-739

Florida TVP-347

New York MPO-22

California 432-TFY

California RSK-629

Texas RSK-629

A69352

B43696

X83554

C43742

Y82935

U028365

Ford

Oldsmobile

Oldsmobile

Mercedes

Toyota

Jaguar

Mustang

Cutlass

Delta

190-D

Camry

XJS

02

05

01

99

04

04

Figure 5.4 
The CAR relation, with 
two candidate keys: 
License_number and 
Engine_serial_number.

10A relational database state is sometimes called a relational database snapshot or instance. However, 
as we mentioned earlier, we will not use the term instance since it also applies to single tuples.
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called not valid, and a state that satisfies all the constraints in the defined set of 
integrity constraints IC is called a valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS 
stands for the same real-world concept—the number given to a department. That 
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that 
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have 
the same name in different relations. For example, we could have used the attribute 
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case, we 
would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

In some early versions of the relational model, an assumption was made that the 
same real-world concept, when represented by an attribute, would have identical 
attribute names in all relations. This creates problems when the same real-world 
concept is used in different roles (meanings) in the same relation. For example, the 
concept of Social Security number appears twice in the EMPLOYEE relation of 
Figure 5.5: once in the role of the employee’s SSN, and once in the role of the 
supervisor’s SSN. We are required to give them distinct attribute names—Ssn and 
Super_ssn, respectively—because they appear in the same relation and in order to 
distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a 
relational database schema. Current relational DBMSs are mostly using SQL for 
this purpose. We present the SQL DDL in Sections 6.1 and 6.2. 

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.5 
Schema diagram for the 
COMPANY relational 
database schema.
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DEPT_LOCATIONS

Dnumber

Houston

Stafford

Bellaire

Sugarland

Dlocation

DEPARTMENT

Dname

Research

Administration

Headquarters 1

5

4

888665555

333445555

987654321

1981-06-19

1988-05-22

1995-01-01

Dnumber Mgr_ssn Mgr_start_date

WORKS_ON

Essn

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

Pno Hours

PROJECT

Pname

ProductX

ProductY

ProductZ

Computerization

Reorganization

Newbenefits

3

1

2

30

10

20

5

5

5

4

4

1

Houston

Bellaire

Sugarland

Stafford

Stafford

Houston

Pnumber Plocation Dnum

DEPENDENT

333445555

333445555

333445555

987654321

123456789

123456789

123456789

Joy

Alice F

M

F

M

M

F

F

1986-04-05

1983-10-25

1958-05-03

1942-02-28

1988-01-04

1988-12-30

1967-05-05

Theodore

Alice

Elizabeth

Abner

Michael

Spouse

Daughter

Son

Daughter

Spouse

Spouse

Son

Dependent_name Sex Bdate Relationship

EMPLOYEE

Fname

John

Franklin

Jennifer

Alicia

Ramesh

Joyce

James

Ahmad

Narayan

English

Borg

Jabbar

666884444

453453453

888665555

987987987

F

F

M

M

M

M

M

F

4

4

5

5

4

1

5

5

25000

43000

30000

40000

25000

55000

38000

25000

987654321

888665555

333445555

888665555

987654321

NULL

333445555

333445555

Zelaya

Wallace

Smith

Wong

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1968-01-19

1941-06-20

1965-01-09

1955-12-08

1969-03-29

1937-11-10

1962-09-15

1972-07-31

980 Dallas, Houston, TX

450 Stone, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

999887777

987654321

123456789

333445555

Minit Lname Ssn  Bdate Address Sex DnoSalary Super_ssn

B

T

J

S

K

A

V

E

Houston

1

4

5

5

Essn

5

Figure 5.6 
One possible database state for the COMPANY relational database schema.
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Integrity constraints are specified on a database schema and are expected to hold on 
every valid database state of that schema. In addition to domain, key, and NOT NULL 
constraints, two other types of constraints are considered part of the relational 
model: entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys
The entity integrity constraint states that no primary key value can be NULL. This is 
because the primary key value is used to identify individual tuples in a relation. Hav-
ing NULL values for the primary key implies that we cannot identify some tuples. For 
example, if two or more tuples had NULL for their primary keys, we may not be able 
to distinguish them if we try to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations. 
The referential integrity constraint is specified between two relations and is used to 
maintain the consistency among tuples in the two relations. Informally, the referen-
tial integrity constraint states that a tuple in one relation that refers to another rela-
tion must refer to an existing tuple in that relation. For example, in Figure 5.6, the 
attribute Dno of EMPLOYEE gives the department number for which each employee 
works; hence, its value in every EMPLOYEE tuple must match the Dnumber value of 
some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign 
key. The conditions for a foreign key, given below, specify a referential integrity 
constraint between the two relation schemas R1 and R2. A set of attributes FK in 
relation schema R1 is a foreign key of R1 that references relation R2 if it satisfies the 
following rules:

  1. The attributes in FK have the same domain(s) as the primary key attributes 
PK of R2; the attributes FK are said to reference or refer to the relation R2.

  2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value 
of PK for some tuple t2 in the current state r2(R2) or is NULL. In the former 
case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or 
refers to the tuple t2.

In this definition, R1 is called the referencing relation and R2 is the referenced 
relation. If these two conditions hold, a referential integrity constraint from R1 to 
R2 is said to hold. In a database of many relations, there are usually many referential 
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each attribute or set of attributes plays in the various relation sche-
mas of the database. Referential integrity constraints typically arise from the 
relationships among the entities represented by the relation schemas. For example, 
consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute 
Dno refers to the department for which an employee works; hence, we designate Dno 
to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This means 
that a value of Dno in any tuple t1 of the EMPLOYEE relation must match a value of 
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the primary key of DEPARTMENT—the Dnumber attribute—in some tuple t2 of the 
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not 
belong to a department or will be assigned to a department later. For example, in 
Figure 5.6 the tuple for employee ‘John Smith’ references the tuple for the ‘Research’ 
department, indicating that ‘John Smith’ works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute 
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another 
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a 
foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for 
employee ‘John Smith’ references the tuple for employee ‘Franklin Wong,’ indicat-
ing that ‘Franklin Wong’ is the supervisor of ‘John Smith’.

We can diagrammatically display referential integrity constraints by drawing a directed 
arc from each foreign key to the relation it references. For clarity, the arrowhead may 
point to the primary key of the referenced relation. Figure 5.7 shows the schema in 
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (that is, 
specified as part of its definition) if we want the DBMS to enforce these constraints on 

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 5.7 
Referential integrity constraints displayed on the COMPANY relational database schema.
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the database states. Hence, the DDL includes provisions for specifying the various 
types of constraints so that the DBMS can automatically enforce them. In SQL, the 
CREATE TABLE statement of the SQL DDL allows the definition of primary key, 
unique key, NOT NULL, entity integrity, and referential integrity constraints, among 
other constraints (see Sections 6.1 and 6.2) .

5.2.5 Other Types of Constraints
The preceding integrity constraints are included in the data definition language 
because they occur in most database applications. Another class of general con-
straints, sometimes called semantic integrity constraints, are not part of the DDL 
and have to be specified and enforced in a different way. Examples of such con-
straints are the salary of an employee should not exceed the salary of the employee’s 
supervisor and the maximum number of hours an employee can work on all projects 
per week is 56. Such constraints can be specified and enforced within the applica-
tion programs that update the database, or by using a general-purpose constraint 
specification language. Mechanisms called triggers and assertions can be used in 
SQL, through the CREATE ASSERTION and CREATE TRIGGER statements, to specify 
some of these constraints (see Chapter 7). It is more common to check for these 
types of constraints within the application programs than to use constraint specifi-
cation languages because the latter are sometimes difficult and complex to use, as 
we discuss in Section 26.1.

The types of constraints we discussed so far may be called state constraints 
because they define the constraints that a valid state of the database must satisfy. 
Another type of constraint, called transition constraints, can be defined to deal 
with state changes in the database.11 An example of a transition constraint is: “the 
salary of an employee can only increase.” Such constraints are typically enforced 
by the application programs or specified using active rules and triggers, as we dis-
cuss in Section 26.1.

5.3  Update Operations, Transactions,  
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and 
updates. The relational algebra operations, which can be used to specify retrievals, 
are discussed in detail in Chapter 8. A relational algebra expression forms a new 
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database to retrieve information. The user for-
mulates a query that specifies the data of interest, and a new relation is formed by 
applying relational operators to retrieve this data. The result relation becomes the 
answer to (or result of ) the user’s query. Chapter 8 also introduces the language 

11State constraints are sometimes called static constraints, and transition constraints are sometimes 
called dynamic constraints.



166 Chapter 5 The Relational Data Model and Relational Database Constraints

called relational calculus, which is used to define a query declaratively without giv-
ing a specific order of operations.

In this section, we concentrate on the database modification or update operations. 
There are three basic operations that can change the states of relations in the data-
base: Insert, Delete, and Update (or Modify). They insert new data, delete old data, 
or modify existing data records, respectively. Insert is used to insert one or more 
new tuples in a relation, Delete is used to delete tuples, and Update (or Modify) is 
used to change the values of some attributes in existing tuples. Whenever these 
operations are applied, the integrity constraints specified on the relational database 
schema should not be violated. In this section we discuss the types of constraints 
that may be violated by each of these operations and the types of actions that may 
be taken if an operation causes a violation. We use the database shown in Figure 5.6 
for examples and discuss only domain constraints, key constraints, entity integrity 
constraints, and the referential integrity constraints shown in Figure 5.7. For each 
type of operation, we give some examples and discuss any constraints that each 
operation may violate.

5.3.1 The Insert Operation
The Insert operation provides a list of attribute values for a new tuple t that is to be 
inserted into a relation R. Insert can violate any of the four types of constraints. 
Domain constraints can be violated if an attribute value is given that does not 
appear in the corresponding domain or is not of the appropriate data type. Key 
constraints can be violated if a key value in the new tuple t already exists in another 
tuple in the relation r(R). Entity integrity can be violated if any part of the primary 
key of the new tuple t is NULL. Referential integrity can be violated if the value of 
any foreign key in t refers to a tuple that does not exist in the referenced relation. 
Here are some examples to illustrate this discussion.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy, 
TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion violates the entity integrity constraint (NULL for the 
primary key Ssn), so it is rejected.

 ■ Operation:
Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane, Katy, 
TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.
Result: This insertion violates the key constraint because another tuple with 
the same Ssn value already exists in the EMPLOYEE relation, and so it is 
rejected.

 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windswept, 
Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.
Result: This insertion violates the referential integrity constraint specified on 
Dno in EMPLOYEE because no corresponding referenced tuple exists in 
DEPARTMENT with Dnumber = 7.
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 ■ Operation:
Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy Lane, 
Katy, TX’, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the 
insertion. In this case, it would be useful if the DBMS could provide a reason to the 
user as to why the insertion was rejected. Another option is to attempt to correct the 
reason for rejecting the insertion, but this is typically not used for violations caused by 
Insert; rather, it is used more often in correcting violations for Delete and Update. 
In the first operation, the DBMS could ask the user to provide a value for Ssn, and 
could then accept the insertion if a valid Ssn value is provided. In operation 3, the 
DBMS could either ask the user to change the value of Dno to some valid value  
(or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with  
Dnumber = 7 and could accept the original insertion only after such an operation 
was accepted. Notice that in the latter case the insertion violation can cascade back 
to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with 
a value for Mgr_ssn that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation
The Delete operation can violate only referential integrity. This occurs if the tuple 
being deleted is referenced by foreign keys from other tuples in the database. To 
specify deletion, a condition on the attributes of the relation selects the tuple (or 
tuples) to be deleted. Here are some examples.

 ■ Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777’ and Pno = 10.
Result: This deletion is acceptable and deletes exactly one tuple.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘999887777’.
Result: This deletion is not acceptable, because there are tuples in  
WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is 
deleted, referential integrity violations will result.

 ■ Operation:
Delete the EMPLOYEE tuple with Ssn = ‘333445555’.
Result: This deletion will result in even worse referential integrity violations, 
because the tuple involved is referenced by tuples from the EMPLOYEE, 
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first 
option, called restrict, is to reject the deletion. The second option, called cascade, is 
to attempt to cascade (or propagate) the deletion by deleting tuples that reference the 
tuple that is being deleted. For example, in operation 2, the DBMS could automati-
cally delete the offending tuples from WORKS_ON with Essn = ‘999887777’. A 
third option, called set null or set default, is to modify the referencing attribute 
values that cause the violation; each such value is either set to NULL or changed to 
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reference another default valid tuple. Notice that if a referencing attribute that 
causes a violation is part of the primary key, it cannot be set to NULL; otherwise, it 
would violate entity integrity.

Combinations of these three options are also possible. For example, to avoid having 
operation 3 cause a violation, the DBMS may automatically delete all tuples from 
WORKS_ON and DEPENDENT with Essn = ‘333445555’. Tuples in EMPLOYEE with 
Super_ssn = ‘333445555’ and the tuple in DEPARTMENT with Mgr_ssn = ‘333445555’ 
can have their Super_ssn and Mgr_ssn values changed to other valid values or to 
NULL. Although it may make sense to delete automatically the WORKS_ON and 
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to delete 
other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS 
will allow the database designer to specify which of the options applies in case of a 
violation of the constraint. We discuss how to specify these options in the SQL DDL 
in Chapter 6.

5.3.3 The Update Operation
The Update (or Modify) operation is used to change the values of one or more 
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified. 
Here are some examples.

 ■ Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 1.
Result: Acceptable.

 ■ Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 7.
Result: Unacceptable, because it violates referential integrity.

 ■ Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to ‘987654321’.
Result: Unacceptable, because it violates primary key constraint by repeating 
a value that already exists as a primary key in another tuple; it violates refer-
ential integrity constraints because there are other relations that refer to the 
existing value of Ssn.

Updating an attribute that is neither part of a primary key nor part of a foreign key 
usually causes no problems; the DBMS need only check to confirm that the new 
value is of the correct data type and domain. Modifying a primary key value is simi-
lar to deleting one tuple and inserting another in its place because we use the pri-
mary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1 
(Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the 
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DBMS must make sure that the new value refers to an existing tuple in the refer-
enced relation (or is set to NULL). Similar options exist to deal with referential integ-
rity violations caused by Update as those options discussed for the Delete operation. 
In fact, when a referential integrity constraint is specified in the DDL, the DBMS will 
allow the user to choose separate options to deal with a violation caused by Delete 
and a violation caused by Update (see Section 6.2).

5.3.4 The Transaction Concept
A database application program running against a relational database typically exe-
cutes one or more transactions. A transaction is an executing program that includes 
some database operations, such as reading from the database, or applying inser-
tions, deletions, or updates to the database. At the end of the transaction, it must 
leave the database in a valid or consistent state that satisfies all the constraints spec-
ified on the database schema. A single transaction may involve any number of 
retrieval operations (to be discussed as part of relational algebra and calculus in 
Chapter 8, and as a part of the language SQL in Chapters 6 and 7) and any number 
of update operations. These retrievals and updates will together form an atomic 
unit of work against the database. For example, a transaction to apply a bank with-
drawal will typically read the user account record, check if there is a sufficient bal-
ance, and then update the record by the withdrawal amount.

A large number of commercial applications running against relational databases in 
online transaction processing (OLTP) systems are executing transactions at rates 
that reach several hundred per second. Transaction processing concepts, concur-
rent execution of transactions, and recovery from failures will be discussed in 
Chapters 20 to 22.

5.4 Summary
In this chapter we presented the modeling concepts, data structures, and constraints 
provided by the relational model of data. We started by introducing the concepts of 
domains, attributes, and tuples. Then, we defined a relation schema as a list of attri-
butes that describe the structure of a relation. A relation, or relation state, is a set of 
tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first 
is that a relation is not sensitive to the ordering of tuples. The second involves the 
ordering of attributes in a relation schema and the corresponding ordering of val-
ues within a tuple. We gave an alternative definition of relation that does not require 
ordering of attributes, but we continued to use the first definition, which requires 
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL values should be avoided as much as possible.

We classified database constraints into inherent model-based constraints, explicit 
schema-based constraints, and semantic constraints or business rules. Then, we 
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discussed the schema constraints pertaining to the relational model, starting with 
domain constraints, then key constraints (including the concepts of superkey, 
key, and primary key), and the NOT NULL constraint on attributes. We defined 
relational databases and relational database schemas. Additional relational con-
straints include the entity integrity constraint, which prohibits primary key attri-
butes from being NULL. We described the interrelation referential integrity 
constraint, which is used to maintain consistency of references among tuples 
from various relations.

The modification operations on the relational model are Insert, Delete, and Update. 
Each operation may violate certain types of constraints (refer to Section 5.3). When-
ever an operation is applied, the resulting database state must be a valid state. 
Finally, we introduced the concept of a transaction, which is important in relational 
DBMSs because it allows the grouping of several database operations into a single 
atomic action on the database.

Review Questions
 5.1. Define the following terms as they apply to the relational model of data: 

domain, attribute, n-tuple, relation schema, relation state, degree of a rela-
tion, relational database schema, and relational database state.

 5.2. Why are tuples in a relation not ordered?

 5.3. Why are duplicate tuples not allowed in a relation?

 5.4. What is the difference between a key and a superkey?

 5.5. Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

 5.6. Discuss the characteristics of relations that make them different from ordi-
nary tables and files.

 5.7. Discuss the various reasons that lead to the occurrence of NULL values in 
relations.

 5.8. Discuss the entity integrity and referential integrity constraints. Why is each 
considered important?

 5.9. Define foreign key. What is this concept used for?

 5.10. What is a transaction? How does it differ from an Update operation?

Exercises
 5.11. Suppose that each of the following Update operations is applied directly to 

the database state shown in Figure 5.6. Discuss all integrity constraints 
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violated by each operation, if any, and the different ways of enforcing 
these constraints.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1972-06-21’, ‘2365 Newcastle 
Rd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.

b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.

c. Insert <‘Production’, 4, ‘943775543’, ‘2007-10-01’> into DEPARTMENT.

d. Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

e. Insert <‘453453453’, ‘John’, ‘M’, ‘1990-12-12’, ‘spouse’> into DEPENDENT.

f. Delete the WORKS_ON tuples with Essn = ‘333445555’.

g. Delete the EMPLOYEE tuple with Ssn = ‘987654321’.

h. Delete the PROJECT tuple with Pname = ‘ProductX’.

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with 
Dnumber = 5 to ‘123456789’ and ‘2007-10-01’, respectively.

j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn = 
‘999887777’ to ‘943775543’.

k. Modify the Hours attribute of the WORKS_ON tuple with Essn = 
‘999887777’ and Pno = 10 to ‘5.0’.

 5.12.  Consider the AIRLINE relational database schema shown in Figure 5.8, 
which describes a database for airline flight information. Each FLIGHT is 
identified by a Flight_number, and consists of one or more FLIGHT_LEGs 
with Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduled 
arrival and departure times, airports, and one or more LEG_INSTANCEs—
one for each Date on which the flight travels. FAREs are kept for each 
FLIGHT. For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, as 
are the AIRPLANE used on the leg and the actual arrival and departure times 
and airports. An AIRPLANE is identified by an Airplane_id and is of a particu-
lar AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs 
at which they can land. An AIRPORT is identified by an Airport_code. Con-
sider an update for the AIRLINE database to enter a reservation on a particu-
lar flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integ-
rity constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema 
shown in Figure 5.8.

 5.13.  Consider the relation CLASS(Course#, Univ_Section#, Instructor_name,  
Semester, Building_code, Room#, Time_period, Weekdays, Credit_hours). This rep-
resents classes taught in a university, with unique Univ_section#s. Identify what 
you think should be various candidate keys, and write in your own words the 
conditions or assumptions under which each candidate key would be valid.
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AIRPORT
Airport_code Name City State

Flight_number Airline Weekdays

FLIGHT

FLIGHT_LEG
Flight_number Leg_number Departure_airport_code Scheduled_departure_time

Scheduled_arrival_timeArrival_airport_code

LEG_INSTANCE

Flight_number Leg_number Date Number_of_available_seats Airplane_id

FARE

Flight_number Fare_code Amount Restrictions

AIRPLANE_TYPE
Airplane_type_name Max_seats Company

CAN_LAND
Airplane_type_name Airport_code

AIRPLANE
Airplane_id Total_number_of_seats Airplane_type

SEAT_RESERVATION
Leg_number Date Seat_number Customer_name Customer_phoneFlight_number

Arrival_timeArrival_airport_codeDeparture_timeDeparture_airport_code

Figure 5.8 
The AIRLINE relational database schema.

 5.14.  Consider the following six relations for an order-processing database appli-
cation in a company:

CUSTOMER(Cust#, Cname, City)

ORDER(Order#, Odate, Cust#, Ord_amt)

ORDER_ITEM(Order#, Item#, Qty)
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ITEM(Item#, Unit_price)

SHIPMENT(Order#, Warehouse#, Ship_date)

WAREHOUSE(Warehouse#, City)

  Here, Ord_amt refers to total dollar amount of an order; Odate is the date the 
order was placed; and Ship_date is the date an order (or part of an order) is 
shipped from the warehouse. Assume that an order can be shipped from several 
warehouses. Specify the foreign keys for this schema, stating any assumptions 
you make. What other constraints can you think of for this database?

 5.15.  Consider the following relations for a database that keeps track of business 
trips of salespersons in a sales office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)

TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

EXPENSE(Trip_id, Account#, Amount)

  A trip can be charged to one or more accounts. Specify the foreign keys for 
this schema, stating any assumptions you make.

 5.16.  Consider the following relations for a database that keeps track of student 
enrollment in courses and the books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_isbn)

TEXT(Book_isbn, Book_title, Publisher, Author)

  Specify the foreign keys for this schema, stating any assumptions you make.

 5.17.  Consider the following relations for a database that keeps track of automo-
bile sales in a car dealership (OPTION refers to some optional equipment 
installed on an automobile):

CAR(Serial_no, Model, Manufacturer, Price)

OPTION(Serial_no, Option_name, Price)

SALE(Salesperson_id, Serial_no, Date, Sale_price)

SALESPERSON(Salesperson_id, Name, Phone)

  First, specify the foreign keys for this schema, stating any assumptions you 
make. Next, populate the relations with a few sample tuples, and then give 
an example of an insertion in the SALE and SALESPERSON relations that 
violates the referential integrity constraints and of another insertion that 
does not.

 5.18.  Database design often involves decisions about the storage of attributes. For 
example, a Social Security number can be stored as one attribute or split into 
three attributes (one for each of the three hyphen-delineated groups of 
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numbers in a Social Security number—XXX-XX-XXXX). However, Social 
Security numbers are usually represented as just one attribute. The decision 
is based on how the database will be used. This exercise asks you to think 
about specific situations where dividing the SSN is useful.

 5.19.  Consider a STUDENT relation in a UNIVERSITY database with the following 
attributes (Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that 
the cell phone may be from a different city and state (or province) from the 
local phone. A possible tuple of the relation is shown below:

Name Ssn Local_phone Address Cell_phone Age Gpa
George Shaw 123-45-6789 555-1234 123 Main St., 555-4321 19 3.75
William Edwards Anytown, CA 94539

a. Identify the critical missing information from the Local_phone and  
Cell_phone attributes. (Hint: How do you call someone who lives in a dif-
ferent state or province?)

b. Would you store this additional information in the Local_phone and  
Cell_phone attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute. What are the advantages and disadvantages 
of splitting this field from one attribute into three attributes (first name, 
middle name, and last name)?

d. What general guideline would you recommend for deciding when to 
store information in a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two dif-
ferent designs that allow this type of information.

 5.20.  Recent changes in privacy laws have disallowed organizations from using 
Social Security numbers to identify individuals unless certain restrictions 
are satisfied. As a result, most U.S. universities cannot use SSNs as primary 
keys (except for financial data). In practice, Student_id, a unique identifier 
assigned to every student, is likely to be used as the primary key rather than 
SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known 
as surrogate keys) for primary keys (such as Student_id) because they are 
artificial. Can you propose any natural choices of keys that can be used to 
identify the student record in a UNIVERSITY database?

b. Suppose that you are able to guarantee uniqueness of a natural key that 
includes last name. Are you guaranteed that the last name will not change 
during the lifetime of the database? If last name can change, what solu-
tions can you propose for creating a primary key that still includes last 
name but remains unique?

c. What are the advantages and disadvantages of using generated (surro-
gate) keys?



 Selected Bibliography 175

Selected Bibliography
The relational model was introduced by Codd (1970) in a classic paper. Codd also 
introduced relational algebra and laid the theoretical foundations for the relational 
model in a series of papers (Codd, 1971, 1972, 1972a, 1974); he was later given the 
Turing Award, the highest honor of the ACM (Association for Computing Machin-
ery) for his work on the relational model. In a later paper, Codd (1979) discussed 
extending the relational model to incorporate more meta-data and semantics about 
the relations; he also proposed a three-valued logic to deal with uncertainty in rela-
tions and incorporating NULLs in the relational algebra. The resulting model is 
known as RM/T. Childs (1968) had earlier used set theory to model databases. 
Later, Codd (1990) published a book examining over 300 features of the relational 
data model and database systems. Date (2001) provides a retrospective review and 
analysis of the relational data model.

Since Codd’s pioneering work, much research has been conducted on various 
aspects of the relational model. Todd (1976) describes an experimental DBMS 
called PRTV that directly implements the relational algebra operations. Schmidt 
and Swenson (1975) introduce additional semantics into the relational model by 
classifying different types of relations. Chen’s (1976) entity–relationship model, 
which is discussed in Chapter 3, is a means to communicate the real-world seman-
tics of a relational database at the conceptual level. Wiederhold and Elmasri (1979) 
introduce various types of connections between relations to enhance its constraints. 
Extensions of the relational model are discussed in Chapters 11 and 26. Additional 
bibliographic notes for other aspects of the relational model and its languages, sys-
tems, extensions, and theory are given in Chapters 6 to 9, 14, 15, 23, and 30. Maier 
(1983) and Atzeni and De Antonellis (1993) provide an extensive theoretical treat-
ment of the relational data model.
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6
Basic SQL

The SQL language may be considered one of the 
major reasons for the commercial success of rela-

tional databases. Because it became a standard for relational databases, users were 
less concerned about migrating their database applications from other types of 
database systems—for example, older network or hierarchical systems—to rela-
tional systems. This is because even if the users became dissatisfied with the partic-
ular relational DBMS product they were using, converting to another relational 
DBMS product was not expected to be too expensive and time-consuming because 
both systems followed the same language standards. In practice, of course, there 
are differences among various commercial relational DBMS packages. However, 
if the user is diligent in using only those features that are part of the standard, 
and if two relational DBMSs faithfully support the standard, then conversion 
between two systems should be simplified. Another advantage of having such a 
standard is that users may write statements in a database application program 
that can access data stored in two or more relational DBMSs without having to 
change the database sublanguage (SQL), as long as both/all of the relational 
DBMSs support standard SQL.

This chapter presents the practical relational model, which is based on the SQL 
standard for commercial relational DBMSs, whereas Chapter 5 presented the most 
important concepts underlying the formal relational data model. In Chapter 8 (Sec-
tions 8.1 through 8.5 ), we shall discuss the relational algebra operations, which are 
very important for understanding the types of requests that may be specified on a 
relational database. They are also important for query processing and optimization 
in a relational DBMS, as we shall see in Chapters 18 and 19. However, the relational 
algebra operations are too low-level for most commercial DBMS users because a 
query in relational algebra is written as a sequence of operations that, when exe-
cuted, produces the required result. Hence, the user must specify how—that is, in 
what order—to execute the query operations. On the other hand, the SQL language 

chapter 6 
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provides a higher-level declarative language interface, so the user only specifies 
what the result is to be, leaving the actual optimization and decisions on how to 
execute the query to the DBMS. Although SQL includes some features from rela-
tional algebra, it is based to a greater extent on the tuple relational calculus, which 
we describe in Section 8.6. However, the SQL syntax is more user-friendly than 
either of the two formal languages.

The name SQL is presently expanded as Structured Query Language. Originally, 
SQL was called SEQUEL (Structured English QUEry Language) and was designed 
and implemented at IBM Research as the interface for an experimental relational 
database system called SYSTEM R. SQL is now the standard language for com-
mercial relational DBMSs. The standardization of SQL is a joint effort by the 
American National Standards Institute (ANSI) and the International Standards 
Organization (ISO), and the first SQL standard is called SQL-86 or SQL1. A 
revised and much expanded standard called SQL-92 (also referred to as SQL2) 
was subsequently developed. The next standard that is well-recognized is 
SQL:1999, which started out as SQL3. Additional updates to the standard are 
SQL:2003 and SQL:2006, which added XML features (see Chapter 13) among 
other updates to the language. Another update in 2008 incorporated more object 
database features into SQL (see Chapter 12), and a further update is SQL:2011. 
We will try to cover the latest version of SQL as much as possible, but some of the 
newer features are discussed in later chapters. It is also not possible to cover the 
language in its entirety in this text. It is important to note that when new features 
are added to SQL, it usually takes a few years for some of these features to make it 
into the commercial SQL DBMSs.

SQL is a comprehensive database language: It has statements for data definitions, 
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization, 
for defining integrity constraints, and for specifying transaction controls. It also has 
rules for embedding SQL statements into a general-purpose programming lan-
guage such as Java or C/C++.1

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all 
RDBMS vendors that are SQL compliant. The extensions can be implemented as 
optional modules to be purchased independently for specific database applications 
such as data mining, spatial data, temporal data, data warehousing, online analyti-
cal processing (OLAP), multimedia data, and so on.

Because the subject of SQL is both important and extensive, we devote two chap-
ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-
mands for creating schemas and tables, and gives an overview of the basic data 
types in SQL. Section 6.2 presents how basic constraints such as key and referen-
tial integrity are specified. Section 6.3 describes the basic SQL constructs for 

1Originally, SQL had statements for creating and dropping indexes on the files that represent relations, 
but these have been dropped from the SQL standard for some time.
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specifying retrieval queries, and Section 6.4 describes the SQL commands for 
insertion, deletion, and update.

In Chapter 7, we will describe more complex SQL retrieval queries, as well as the 
ALTER commands for changing the schema. We will also describe the CREATE 
ASSERTION statement, which allows the specification of more general constraints 
on the database, and the concept of triggers, which is presented in more detail in 
Chapter 26. We discuss the SQL facility for defining views on the database in Chap-
ter 7. Views are also called virtual or derived tables because they present the user 
with what appear to be tables; however, the information in those tables is derived 
from previously defined tables.

Section 6.5 lists some SQL features that are presented in other chapters of the book; 
these include object-oriented features in Chapter 12, XML in Chapter 13, transac-
tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-
cal processing (OLAP) features in Chapter 29, and security/authorization in 
Chapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss the 
various database programming techniques for programming with SQL.

6.1 SQL Data Definition and Data Types
SQL uses the terms table, row, and column for the formal relational model terms 
relation, tuple, and attribute, respectively. We will use the corresponding terms 
interchangeably. The main SQL command for data definition is the CREATE state-
ment, which can be used to create schemas, tables (relations), types, and domains, 
as well as other constructs such as views, assertions, and triggers. Before we describe 
the relevant CREATE statements, we discuss schema and catalog concepts in Sec-
tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tables 
are created, and Section 6.1.3 describes the most important data types available for 
attribute specification. Because the SQL specification is very large, we give a descrip-
tion of the most important features. Further details can be found in the various SQL 
standards documents (see end-of-chapter bibliographic notes).

6.1.1 Schema and Catalog Concepts in SQL
Early versions of SQL did not include the concept of a relational database schema; 
all tables (relations) were considered part of the same schema. The concept of an 
SQL schema was incorporated starting with SQL2 in order to group together tables 
and other constructs that belong to the same database application (in some systems, 
a schema is called a database). An SQL schema is identified by a schema name and 
includes an authorization identifier to indicate the user or account who owns the 
schema, as well as descriptors for each element in the schema. Schema elements 
include tables, types, constraints, views, domains, and other constructs (such as 
authorization grants) that describe the schema. A schema is created via the CREATE 
SCHEMA statement, which can include all the schema elements’ definitions. Alter-
natively, the schema can be assigned a name and authorization identifier, and the 
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elements can be defined later. For example, the following statement creates a 
schema called COMPANY owned by the user with authorization identifier ‘Jsmith’. 
Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The 
privilege to create schemas, tables, and other constructs must be explicitly granted 
to the relevant user accounts by the system administrator or DBA.

In addition to the concept of a schema, SQL uses the concept of a catalog—a named 
collection of schemas.2 Database installations typically have a default environment 
and schema, so when a user connects and logs in to that database installation, the 
user can refer directly to tables and other constructs within that schema without 
having to specify a particular schema name. A catalog always contains a special 
schema called INFORMATION_SCHEMA, which provides information on all the 
schemas in the catalog and all the element descriptors in these schemas. Integrity 
constraints such as referential integrity can be defined between relations only if 
they exist in schemas within the same catalog. Schemas within the same catalog can 
also share certain elements, such as type and domain definitions.

6.1.2 The CREATE TABLE Command in SQL
The CREATE TABLE command is used to specify a new relation by giving it a name 
and specifying its attributes and initial constraints. The attributes are specified first, 
and each attribute is given a name, a data type to specify its domain of values, and 
possibly attribute constraints, such as NOT NULL. The key, entity integrity, and ref-
erential integrity constraints can be specified within the CREATE TABLE statement 
after the attributes are declared, or they can be added later using the ALTER TABLE 
command (see Chapter 7). Figure 6.1 shows sample data definition statements in 
SQL for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified 
in the environment in which the CREATE TABLE statements are executed. Alterna-
tively, we can explicitly attach the schema name to the relation name, separated by 
a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE table 
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables 
(or base relations); this means that the table and its rows are actually created 

2SQL also includes the concept of a cluster of catalogs.
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CREATE TABLE EMPLOYEE
( Fname
  Minit
  Lname
  Ssn
  Bdate
  Address
  Sex
  Salary
  Super_ssn
  Dno

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)
DATE,
VARCHAR(30),
CHAR,
DECIMAL(10,2),
CHAR(9),
INT

NOT NULL,

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Ssn),

CREATE TABLE DEPARTMENT
( Dname
  Dnumber
  Mgr_ssn
  Mgr_start_date

VARCHAR(15)
INT
CHAR(9)
DATE,

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );

CREATE TABLE DEPT_LOCATIONS
( Dnumber
  Dlocation

INT
VARCHAR(15)

NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );

CREATE TABLE PROJECT
( Pname
  Pnumber
  Plocation
  Dnum

VARCHAR(15)
INT
VARCHAR(15),
INT

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) ); 

CREATE TABLE WORKS_ON
( Essn
  Pno
  Hours

CHAR(9)
INT
DECIMAL(3,1)

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) );

CREATE TABLE DEPENDENT
( Essn
  Dependent_name
  Sex
  Bdate
  Relationship

CHAR(9)
VARCHAR(15)
CHAR,
DATE,
VARCHAR(8),

NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );

Figure 6.1 
SQL CREATE 
TABLE data  
definition statements 
for defining the 
COMPANY schema 
from Figure 5.7.
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and stored as a file by the DBMS. Base relations are distinguished from virtual 
relations, created through the CREATE VIEW statement (see Chapter 7), which 
may or may not correspond to an actual physical file. In SQL, the attributes in a 
base table are considered to be ordered in the sequence in which they are speci-
fied in the CREATE TABLE statement. However, rows (tuples) are not considered 
to be ordered within a table (relation).

It is important to note that in Figure 6.1, there are some foreign keys that may cause 
errors because they are specified either via circular references or because they refer 
to a table that has not yet been created. For example, the foreign key Super_ssn in 
the EMPLOYEE table is a circular reference because it refers to the EMPLOYEE table 
itself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table, 
which has not been created yet. To deal with this type of problem, these constraints 
can be left out of the initial CREATE TABLE statement, and then added later using 
the ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys in 
Figure 6.1 to show the complete COMPANY schema in one place.

6.1.3 Attribute Data Types and Domains in SQL
The basic data types available for attributes include numeric, character string, bit 
string, Boolean, date, and time.

 ■ Numeric data types include integer numbers of various sizes (INTEGER or 
INT, and SMALLINT) and floating-point (real) numbers of various precision 
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be 
declared by using DECIMAL(i, j)—or DEC(i, j) or NUMERIC(i, j)—where i, the 
precision, is the total number of decimal digits and j, the scale, is the number 
of digits after the decimal point. The default for scale is zero, and the default 
for precision is implementation-defined.

 ■ Character-string data types are either fixed length—CHAR(n) or 
CHARACTER(n), where n is the number of characters—or varying length—
VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), where n is 
the maximum number of characters. When specifying a literal string value, 
it is placed between single quotation marks (apostrophes), and it is case sen-
sitive (a distinction is made between uppercase and lowercase).3 For fixed-
length strings, a shorter string is padded with blank characters to the right. 
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is 
padded with five blank characters to become ‘Smith’ if needed. Padded 
blanks are generally ignored when strings are compared. For comparison 
purposes, strings are considered ordered in alphabetic (or lexicographic) 
order; if a string str1 appears before another string str2 in alphabetic order, 
then str1 is considered to be less than str2.4 There is also a concatenation 
operator denoted by || (double vertical bar) that can concatenate two strings 

3This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-

sitive, meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.
4For nonalphabetic characters, there is a defined order.



 6.1 SQL Data Definition and Data Types 183

in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ’. 
Another variable-length string data type called CHARACTER LARGE OBJECT 
or CLOB is also available to specify columns that have large text values, such 
as documents. The CLOB maximum length can be specified in kilobytes 
(K), megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a 
maximum length of 20 megabytes.

 ■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—
BIT VARYING(n), where n is the maximum number of bits. The default for n, 
the length of a character string or bit string, is 1. Literal bit strings are placed 
between single quotes but preceded by a B to distinguish them from character 
strings; for example, B‘10101’.5 Another variable-length bitstring data type 
called BINARY LARGE OBJECT or BLOB is also available to specify columns 
that have large binary values, such as images. As for CLOB, the maximum 
length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G). 
For example, BLOB(30G) specifies a maximum length of 30 gigabits.

 ■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL, 
because of the presence of NULL values, a three-valued logic is used, so a 
third possible value for a Boolean data type is UNKNOWN. We discuss the 
need for UNKNOWN and the three-valued logic in Chapter 7.

 ■ The DATE data type has ten positions, and its components are YEAR, MONTH, 
and DAY in the form YYYY-MM-DD. The TIME data type has at least eight 
positions, with the components HOUR, MINUTE, and SECOND in the form 
HH:MM:SS. Only valid dates and times should be allowed by the SQL imple-
mentation. This implies that months should be between 1 and 12 and days 
must be between 01 and 31; furthermore, a day should be a valid day for the 
corresponding month. The < (less than) comparison can be used with dates 
or times—an earlier date is considered to be smaller than a later date, and 
similarly with time. Literal values are represented by single-quoted strings 
preceded by the keyword DATE or TIME; for example, DATE ‘2014-09-27’ or 
TIME ‘09:12:47’. In addition, a data type TIME(i), where i is called time frac-
tional seconds precision, specifies i + 1 additional positions for TIME—one 
position for an additional period (.) separator character, and i positions for 
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type 
includes an additional six positions for specifying the displacement from the 
standard universal time zone, which is in the range +13:00 to –12:59 in units 
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the 
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is 
not exhaustive; different implementations have added more data types to SQL.

 ■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus 
a minimum of six positions for decimal fractions of seconds and an optional 
WITH TIME ZONE qualifier. Literal values are represented by single-quoted 

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal 
string is preceded by X and each hexadecimal character represents 4 bits.
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strings preceded by the keyword TIMESTAMP, with a blank space between 
data and time; for example, TIMESTAMP ‘2014-09-27 09:12:47.648302’.

 ■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data 
type. This specifies an interval—a relative value that can be used to increment 
or decrement an absolute value of a date, time, or timestamp. Intervals are 
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of 
string. Hence, they can generally be used in string comparisons by being cast (or 
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-
natively, a domain can be declared, and the domain name can be used with the 
attribute specification. This makes it easier to change the data type for a domain 
that is used by numerous attributes in a schema, and improves schema readability. 
For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 6.1 for the attributes Ssn and 
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn 
of DEPENDENT. A domain can also have an optional default specification via a 
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be 
available in some implementations of SQL.

In SQL, there is also a CREATE TYPE command, which can be used to create user 
defined types or UDTs. These can then be used either as data types for attributes, or 
as the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-
ter 12, because it is often used in conjunction with specifying object database features 
that have been incorporated into more recent versions of SQL.

6.2 Specifying Constraints in SQL
This section describes the basic constraints that can be specified in SQL as part of 
table creation. These include key and referential integrity constraints, restrictions 
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion using the CHECK clause. We discuss the specification of more general con-
straints, called assertions, in Chapter 7.

6.2.1 Specifying Attribute Constraints and Attribute Defaults
Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified 
if NULL is not permitted for a particular attribute. This is always implicitly specified for 
the attributes that are part of the primary key of each relation, but it can be specified for 
any other attributes whose values are required not to be NULL, as shown in Figure 6.1.

It is also possible to define a default value for an attribute by appending the clause 
DEFAULT <value> to an attribute definition. The default value is included in any 
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new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustrates 
an example of specifying a default manager for a new department and a default 
department for a new employee. If no default clause is specified, the default default 
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK 
clause following an attribute or domain definition.6 For example, suppose that 
department numbers are restricted to integer numbers between 1 and 20; then, we 
can change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-
ure 6.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM > 0 AND D_NUM < 21);

6The CHECK clause can also be used for other purposes, as we shall see.

CREATE TABLE EMPLOYEE
       (  … ,
          Dno               INT                  NOT NULL          DEFAULT 1,
       CONSTRAINT EMPPK
          PRIMARY KEY (Ssn),
       CONSTRAINT EMPSUPERFK
          FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
                                    ON DELETE SET NULL              ON UPDATE CASCADE,
       CONSTRAINT EMPDEPTFK
          FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
                                    ON DELETE SET DEFAULT       ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
       (  … ,
          Mgr_ssn CHAR(9)               NOT NULL           DEFAULT ‘888665555’,
          … ,
       CONSTRAINT DEPTPK
          PRIMARY KEY(Dnumber),
       CONSTRAINT DEPTSK
          UNIQUE (Dname),
       CONSTRAINT DEPTMGRFK
          FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
                                    ON DELETE SET DEFAULT       ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
       (  … ,
       PRIMARY KEY (Dnumber, Dlocation),
       FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
                                 ON DELETE CASCADE                ON UPDATE CASCADE);

Figure 6.2 
Example illustrating 
how default attribute 
values and referential 
integrity triggered 
actions are specified  
in SQL.
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We can then use the created domain D_NUM as the attribute type for all attributes 
that refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT, 
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

6.2.2 Specifying Key and Referential Integrity Constraints
Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to 
illustrate the specification of keys and referential integrity are shown in Figure 6.1.7 
The PRIMARY KEY clause specifies one or more attributes that make up the primary 
key of a relation. If a primary key has a single attribute, the clause can follow the 
attribute directly. For example, the primary key of DEPARTMENT can be specified as 
follows (instead of the way it is specified in Figure 6.1):

Dnumber INT PRIMARY KEY,

The UNIQUE clause specifies alternate (unique) keys, also known as candidate keys 
as illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1. 
The UNIQUE clause can also be specified directly for a unique key if it is a single 
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig- 
ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can be 
violated when tuples are inserted or deleted, or when a foreign key or primary key 
attribute value is updated. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as 
the RESTRICT option. However, the schema designer can specify an alternative 
action to be taken by attaching a referential triggered action clause to any foreign 
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An 
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this 
with the examples shown in Figure 6.2. Here, the database designer chooses ON 
DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of 
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the 
value of Super_ssn is automatically set to NULL for all employee tuples that were 
referencing the deleted employee tuple. On the other hand, if the Ssn value for a 
supervising employee is updated (say, because it was entered incorrectly), the new 
value is cascaded to Super_ssn for all employee tuples referencing the updated 
employee tuple.8

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the 
same for both ON DELETE and ON UPDATE: The value of the affected referencing 
attributes is changed to NULL for SET NULL and to the specified default value of the 

7Key and referential integrity constraints were not included in early versions of SQL.
8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may 
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at 
the end of Section 6.1.2.
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referencing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to 
delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to 
change the value of the referencing foreign key attribute(s) to the updated (new) 
primary key value for all the referencing tuples. It is the responsibility of the data-
base designer to choose the appropriate action and to specify it in the database 
schema. As a general rule, the CASCADE option is suitable for “relationship” rela-
tions (see Section 9.1) , such as WORKS_ON; for relations that represent multival-
ued attributes, such as DEPT_LOCATIONS; and for relations that represent weak 
entity types, such as DEPENDENT.

6.2.3 Giving Names to Constraints
Figure 6.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular 
schema must be unique. A constraint name is used to identify a particular con-
straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is also 
possible to temporarily defer a constraint until the end of a transaction, as we shall 
discuss in Chapter 20 when we present transaction concepts.

6.2.4 Specifying Constraints on Tuples Using CHECK
In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK 
clauses at the end of a CREATE TABLE statement. These can be called row-based 
constraints because they apply to each row individually and are checked whenever 
a row is inserted or modified. For example, suppose that the DEPARTMENT table in 
Figure 6.1 had an additional attribute Dept_create_date, which stores the date when 
the department was created. Then we could add the following CHECK clause at the 
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a 
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using 
the CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 because 
it requires the full power of queries, which are discussed in Sections 6.3  
and 7.1.

6.3 Basic Retrieval Queries in SQL
SQL has one basic statement for retrieving information from a database: the 
SELECT statement. The SELECT statement is not the same as the SELECT operation 
of relational algebra, which we shall discuss in Chapter 8. There are many options 
and flavors to the SELECT statement in SQL, so we will introduce its features grad-
ually. We will use example queries specified on the schema of Figure 5.5 and will 



188 Chapter 6 Basic SQL

refer to the sample database state shown in Figure 5.6 to show the results of some 
of these queries. In this section, we present the features of SQL for simple retrieval 
queries. Features of SQL for specifying more complex retrieval queries are pre-
sented in Section 7.1.

Before proceeding, we must point out an important distinction between the practical 
SQL model and the formal relational model discussed in Chapter 5: SQL allows a 
table (relation) to have two or more tuples that are identical in all their attribute 
values. Hence, in general, an SQL table is not a set of tuples, because a set does not 
allow two identical members; rather, it is a multiset (sometimes called a bag) of 
tuples. Some SQL relations are constrained to be sets because a key constraint has 
been declared or because the DISTINCT option has been used with the SELECT state-
ment (described later in this section). We should be aware of this distinction as we 
discuss the examples.

6.3.1  The SELECT-FROM-WHERE Structure  
of Basic SQL Queries

Queries in SQL can be very complex. We will start with simple queries, and then 
progress to more complex ones in a step-by-step manner. The basic form of the 
SELECT statement, sometimes called a mapping or a select-from-where block, is 
formed of the three clauses SELECT, FROM, and WHERE and has the following form:9

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

 ■ <attribute list> is a list of attribute names whose values are to be retrieved by 
the query.

 ■ <table list> is a list of the relation names required to process the query.

 ■ <condition> is a conditional (Boolean) expression that identifies the tuples 
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with 
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond 
to the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively, and to the 
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntactic 
difference is the not equal operator. SQL has additional comparison operators that 
we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The 
queries are labeled here with the same query numbers used in Chapter 8 for easy 
cross-reference.

9The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec- 
tion 6.3.3).
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Query 0. Retrieve the birth date and address of the employee(s) whose name is 
‘John B. Smith’.

Q0: SELECT Bdate, Address
 FROM EMPLOYEE
 WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The 
query selects the individual EMPLOYEE tuples that satisfy the condition of the 
WHERE clause, then projects the result on the Bdate and Address attributes listed in 
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved, 
which are called the projection attributes in relational algebra (see Chapter 8) and 
the WHERE clause specifies the Boolean condition that must be true for any 
retrieved tuple, which is known as the selection condition in relational algebra. 
Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or 
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is, 
those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the 
‘Research’ department.

Q1: SELECT Fname, Lname, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condition 
that chooses the particular tuple of interest in the DEPARTMENT table, because Dname 
is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition, 
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE, 
whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in 
EMPLOYEE. The result of query Q1 is shown in Figure 6.3(b). In general, any number 
of selection and join conditions may be specified in a single SQL query.

A query that involves only selection and join conditions plus projection attributes is 
known as a select-project-join query. The next example is a select-project-join 
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the 
controlling department number, and the department manager’s last name, 
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE  Dnum = Dnumber AND Mgr_ssn = Ssn AND  

Plocation = ‘Stafford’
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(a) Bdate

1965-01-09 731Fondren, Houston, TX

Address (b) Fname

John

Franklin

Ramesh

Joyce

Smith

Wong

Narayan

English

731 Fondren, Houston, TX

638 Voss, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Lname Address

(d) E.Fname

John

Franklin

Alicia Zelaya

Joyce

Ramesh

Jennifer Wallace

Ahmad Jabbar

Smith

Wong

Narayan

English

Jennifer

James

Jennifer

Franklin

James

Franklin

Franklin

Wallace

Borg

Wallace

Wong

Borg

Wong

Wong

E.Lname S.Fname S.Lname

Fname

John

Franklin

K

Joyce

Ramesh

A

B

T

M

F

M

M

5

5

5

5

38000

25000

30000

40000

333445555

333445555

333445555

888665555

Narayan

English

Smith

Wong

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1962-09-15

1972-07-31

1965-09-01

1955-12-08

666884444

453453453

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

(g) 

(e) E.Fname

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

(c) Pnumber

10

30

1941-06-20

1941-06-20

4

4

Wallace 291Berry, Bellaire, TX

291Berry, Bellaire, TXWallace

Dnum Lname BdateAddress (f) Ssn

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

Research

Research

Research

Research

Research

Research

Research

Research

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Dname

Figure 6.3 
Results of SQL queries when applied to the COMPANY database state shown  
in Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.
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The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the 
result will be a combination of one project, one department (that controls the proj-
ect), and one employee (that manages the department). The projection attributes 
are used to choose the attributes to be displayed from each combined tuple. The 
result of query Q2 is shown in Figure 6.3(c).

6.3.2  Ambiguous Attribute Names, Aliasing,  
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the 
attributes are in different tables. If this is the case, and a multitable query refers to 
two or more attributes with the same name, we must qualify the attribute name 
with the relation name to prevent ambiguity. This is done by prefixing the rela-
tion name to the attribute name and separating the two by a period. To illustrate 
this, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the 
EMPLOYEE relation were called Dnumber and Name, and the Dname attribute of 
DEPARTMENT was also called Name; then, to prevent ambiguity, query Q1 would 
be rephrased as shown in Q1A. We must prefix the attributes Name and Dnumber 
in Q1A to specify which ones we are referring to, because the same attribute 
names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE  DEPARTMENT.Name = ‘Research’ AND  

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambi-
guity in attribute names. Q1 can be rewritten as Q1′ below with fully qualified 
attribute names. We can also rename the table names to shorter names by creat-
ing an alias for each table name to avoid repeated typing of long table names 
(see Q8 below).

Q1′: SELECT  EMPLOYEE.Fname, EMPLOYEE.LName,  
EMPLOYEE.Address

 FROM EMPLOYEE, DEPARTMENT
 WHERE  DEPARTMENT.DName = ‘Research’ AND  

DEPARTMENT.Dnumber = EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the 
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and the 
first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;
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In this case, we are required to declare alternative relation names E and S, called 
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example, 
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible 
to rename the relation attributes within the query in SQL by giving them aliases. 
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and 
so on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the 
first, E, represents employees in the role of supervisees or subordinates; the second, 
S, represents employees in the role of supervisors. We can now join the two copies. 
Of course, in reality there is only one EMPLOYEE relation, and the join condition is 
meant to join the relation with itself by matching the tuples that satisfy the join 
condition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recur-
sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was not 
possible to specify a general recursive query, with an unknown number of levels, in 
a single SQL statement. A construct for specifying recursive queries has been incor-
porated into SQL:1999 (see Chapter 7).

The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliases 
are given to a relation, we can use these names to represent different references 
to that same relation. This permits multiple references to the same relation 
within a query.

We can use this alias-naming or renaming mechanism in any SQL query to specify 
tuple variables for every table in the WHERE clause, whether or not the same rela-
tion needs to be referenced more than once. In fact, this practice is recommended 
since it results in queries that are easier to comprehend. For example, we could 
specify query Q1 as in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address
 FROM EMPLOYEE AS E, DEPARTMENT AS D
 WHERE D.DName = ‘Research’ AND D.Dnumber = E.Dno;

6.3.3 Unspecified WHERE Clause and Use of the Asterisk
We discuss two more features of SQL here. A missing WHERE clause indicates 
no condition on tuple selection; hence, all tuples of the relation specified in the 
FROM clause qualify and are selected for the query result. If more than one rela-
tion is specified in the FROM clause and there is no WHERE clause, then the 
CROSS PRODUCT—all possible tuple combinations—of these relations is 
selected. For example, Query 9 selects all EMPLOYEE Ssns (Figure 6.3(e)), and 
Query 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT 
Dname, regardless of whether the employee works for the department or not 
(Figure 6.3(f)).
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Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of 
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn
 FROM EMPLOYEE;

Q10: SELECT Ssn, Dname
 FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the WHERE 
clause; if any such condition is overlooked, incorrect and very large relations may 
result. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a 
PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-
butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT 
(except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the 
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all 
the attributes. The * can also be prefixed by the relation name or alias; for example, 
EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

Query Q1C retrieves all the attribute values of any EMPLOYEE who works in 
DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an 
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for 
every employee of the ‘Research’ department, and Q10A specifies the CROSS 
PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C: SELECT *
 FROM EMPLOYEE
 WHERE Dno = 5;

Q1D: SELECT *
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q10A: SELECT *
 FROM EMPLOYEE, DEPARTMENT;

6.3.4 Tables as Sets in SQL
As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset; 
duplicate tuples can appear more than once in a table, and in the result of a query. 
SQL does not automatically eliminate duplicate tuples in the results of queries, for 
the following reasons:

 ■ Duplicate elimination is an expensive operation. One way to implement it is 
to sort the tuples first and then eliminate duplicates.

 ■ The user may want to see duplicate tuples in the result of a query.

 ■ When an aggregate function (see Section 7.1.7) is applied to tuples, in most 
cases we do not want to eliminate duplicates.
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An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.10 If we do want to eliminate duplicate tuples from the result of 
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that 
only distinct tuples should remain in the result. In general, a query with SELECT 
DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-
fying SELECT with neither ALL nor DISTINCT—as in our previous examples—is 
equivalent to SELECT ALL. For example, Q11 retrieves the salary of every employee; 
if several employees have the same salary, that salary value will appear as many 
times in the result of the query, as shown in Figure 6.4(a). If we are interested only 
in distinct salary values, we want each value to appear only once, regardless of how 
many employees earn that salary. By using the keyword DISTINCT as in Q11A, we 
accomplish this, as shown in Figure 6.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary 
values (Q11A).

Q11: SELECT ALL Salary
 FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary
 FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set 
theory, which are also part of relational algebra (see Chapter 8). There are set union 
(UNION), set difference (EXCEPT),11 and set intersection (INTERSECT) operations. 
The relations resulting from these set operations are sets of tuples; that is, duplicate 
tuples are eliminated from the result. These set operations apply only to type- 
compatible relations, so we must make sure that the two relations on which we apply 
the operation have the same attributes and that the attributes appear in the same 
order in both relations. The next example illustrates the use of UNION.

(b)Salary

30000

40000

25000

43000

38000

25000

25000

55000

(c)(a) Salary

30000

40000

25000

43000

38000

55000

Fname     Lname

(d) Fname     Lname

James     Borg

Figure 6.4 
Results of additional 
SQL queries when 
applied to the  
COMPANY database 
state shown in  
Figure 5.6. (a) Q11.  
(b) Q11A. (c) Q16.  
(d) Q18.

10In general, an SQL table is not required to have a key, although in most cases there will be one.
11In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.
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Query 4. Make a list of all project numbers for projects that involve an employee 
whose last name is ‘Smith’, either as a worker or as a manager of the department 
that controls the project.

Q4A: ( SELECT DISTINCT Pnumber
   FROM PROJECT, DEPARTMENT, EMPLOYEE
   WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
  AND Lname = ‘Smith’ )
   UNION
 ( SELECT DISTINCT Pnumber
   FROM PROJECT, WORKS_ON, EMPLOYEE
   WHERE Pnumber = Pno AND Essn = Ssn
    AND Lname = ‘Smith’ );

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of 
the department that controls the project, and the second retrieves the projects that 
involve a ‘Smith’ as a worker on the project. Notice that if several employees have 
the last name ‘Smith’, the project names involving any of them will be retrieved. 
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the key-
word ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets 
(duplicates are not eliminated). The behavior of these operations is illustrated by 
the examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—
is considered as a different tuple when applying these operations.

6.3.5 Substring Pattern Matching and Arithmetic Operators
In this section we discuss several more features of SQL. The first feature allows 
comparison conditions on only parts of a character string, using the LIKE compari-
son operator. This can be used for string pattern matching. Partial strings are spec-
ified using two reserved characters: % replaces an arbitrary number of zero or more 
characters, and the underscore (_) replaces a single character. For example, con-
sider the following query.

T(b)

A

a1

a1

a2

a2

a2

a3

a4

a5

T(c)

A

a2

a3

T(d)

A

a1

a2

R(a)

A

a1

a2

a2

a3

S

A

a1

a2

a4

a5

Figure 6.5 
The results of SQL multiset 
operations. (a) Two tables, 
R(A) and S(A).  
(b) R(A)UNION ALL S(A). 
(c) R(A) EXCEPT ALL S(A). 
(d) R(A) INTERSECT ALL 
S(A).
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Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Address LIKE ‘%Houston,TX%’;

To retrieve all employees who were born during the 1970s, we can use Query Q12A. 
Here, ‘7’ must be the third character of the string (according to our format for date), 
so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore serving as a place-
holder for an arbitrary character.

Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Bdate LIKE ‘_ _ 7 _ _ _ _ _ _ _’;

If an underscore or % is needed as a literal character in the string, the character 
should be preceded by an escape character, which is specified after the string using 
the keyword ESCAPE. For example, ‘AB\_CD\%EF’ ESCAPE ‘\’ represents the lit-
eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-
ter not used in the string can be chosen as the escape character. Also, we need a rule 
to specify apostrophes or single quotation marks (‘ ’) if they are to be included in a 
string because they are used to begin and end strings. If an apostrophe (’) is needed, 
it is represented as two consecutive apostrophes (”) so that it will not be interpreted 
as ending the string. Notice that substring comparison implies that attribute values 
are not atomic (indivisible) values, as we had assumed in the formal relational 
model (see Section 5.1) .

Another feature allows the use of arithmetic in queries. The standard arithmetic 
operators for addition (+), subtraction (−), multiplication (*), and division (/) can 
be applied to numeric values or attributes with numeric domains. For example, 
suppose that we want to see the effect of giving all employees who work on the 
‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salaries 
would become. This example also shows how we can rename an attribute in the 
query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the 
‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
 FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
 WHERE  E.Ssn = W.Essn AND W.Pno = P.Pnumber AND  

P.Pname = ‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append 
two string values. For date, time, timestamp, and interval data types, operators 
include incrementing (+) or decrementing (−) a date, time, or timestamp by an 
interval. In addition, an interval value is the result of the difference between two 
date, time, or timestamp values. Another comparison operator, which can be used 
for convenience, is BETWEEN, which is illustrated in Query 14.
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Query 14. Retrieve all employees in department 5 whose salary is between 
$30,000 and $40,000.

Q14: SELECT *
 FROM EMPLOYEE
 WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

6.3.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one 
or more of the attributes that appear in the query result, by using the ORDER BY 
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on, 
ordered by department and, within each department, ordered alphabetically by 
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname
 FROM  DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W, 

PROJECT AS P
 WHERE  D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno = 

P.Pnumber
 ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values. We can specify the keyword DESC 
if we want to see the result in a descending order of values. The keyword ASC can be 
used to specify ascending order explicitly. For example, if we want descending 
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY 
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

6.3.7 Discussion and Summary of  
Basic SQL Retrieval Queries
A simple retrieval query in SQL can consist of up to four clauses, but only the first 
two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets [ … ] being optional:

SELECT <attribute list>
FROM <table list>
[ WHERE <condition> ]
[ ORDER BY <attribute list> ];

The SELECT clause lists the attributes to be retrieved, and the FROM clause 
specifies all relations (tables) needed in the simple query. The WHERE clause 
identifies the conditions for selecting the tuples from these relations, including 
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join conditions if needed. ORDER BY specifies an order for displaying the results 
of a query. Two additional clauses GROUP BY and HAVING will be described in 
Section 7.1.8.

In Chapter 7, we will present more complex features of SQL retrieval queries. These 
include the following: nested queries that allow one query to be included as part of 
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be 
used to provide additional power to aggregate functions; and various types of joins 
that can combine records from various tables in different ways.

6.4  INSERT, DELETE, and UPDATE  
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and 
UPDATE. We discuss each of these in turn.

6.4.1 The INSERT Command
In its simplest form, INSERT is used to add a single tuple (row) to a relation (table). 
We must specify the relation name and a list of values for the tuple. The values 
should be listed in the same order in which the corresponding attributes were speci-
fied in the CREATE TABLE command. For example, to add a new tuple to the 
EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLE 
EMPLOYEE … command in Figure 6.1, we can use U1:

U1: INSERT INTO EMPLOYEE
 VALUES  ( ‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98  

Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4 );

A second form of the INSERT statement allows the user to specify explicit attribute 
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned 
values in the new tuple. However, the values must include all attributes with NOT 
NULL specification and no default value. Attributes with NULL allowed or DEFAULT 
values are the ones that can be left out. For example, to enter a tuple for a new 
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we 
can use U1A:

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
 VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values 
are listed in the same order as the attributes are listed in the INSERT command itself. 
It is also possible to insert into a relation multiple tuples separated by commas in a 
single INSERT command. The attribute values forming each tuple are enclosed in 
parentheses.
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A DBMS that fully implements SQL should support and enforce all the integrity 
constraints that can be specified in the DDL. For example, if we issue the command 
in U2 on the database shown in Figure 5.6, the DBMS should reject the operation 
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly, 
U2A would be rejected because no Ssn value is provided and it is the primary key, 
which cannot be NULL.

U2: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)
 VALUES  (‘Robert’, ‘Hatcher’, ‘980760540’, 2);
 (U2 is rejected if referential integrity checking is provided by DBMS.)

U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)
 VALUES  (‘Robert’, ‘Hatcher’, 5);
 (U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For 
example, to create a temporary table that has the employee last name, project name, 
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO
 ( Emp_name  VARCHAR(15),
   Proj_name  VARCHAR(15),
   Hours_per_week DECIMAL(3,1) );

U3B: INSERT INTO  WORKS_ON_INFO ( Emp_name, Proj_name, 
Hours_per_week )

 SELECT  E.Lname, P.Pname, W.Hours
 FROM  PROJECT P, WORKS_ON W, EMPLOYEE E
 WHERE  P.Pnumber = W.Pno AND W.Essn = E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query  
WORKS_ON_INFO as we would any other relation; when we do not need it anymore, 
we can remove it by using the DROP TABLE command (see Chapter 7). Notice that 
the WORKS_ON_INFO table may not be up to date; that is, if we update any of the 
PROJECT,WORKS_ON, or EMPLOYEE relations after issuing U3B, the information 
in WORKS_ON_INFO may become outdated. We have to create a view (see Chap- 
ter 7) to keep such a table up to date.

Most DBMSs have bulk loading tools that allow a user to load formatted data from 
a file into a table without having to write a large number of INSERT commands. 
The user can also write a program to read each record in the file, format it as a row 
in the table, and insert it using the looping constructs of a programming language 
(see Chapters 10 and 11, where we discuss database programming techniques).

Another variation for loading data is to create a new table TNEW that has the 
same attributes as an existing table T, and load some of the data currently in T 
into TNEW. The syntax for doing this uses the LIKE clause. For example, if we 
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want to create a table D5EMPS with a similar structure to the EMPLOYEE table 
and load it with the rows of employees who work in department 5, we can write 
the following SQL:

CREATE TABLE D5EMPS LIKE EMPLOYEE
(SELECT  E.*
FROM  EMPLOYEE AS E
WHERE  E.Dno = 5) WITH DATA;

The clause WITH DATA specifies that the table will be created and loaded with 
the data specified in the query, although in some implementations it may be 
left out.

6.4.2 The DELETE Command
The DELETE command removes tuples from a relation. It includes a WHERE 
clause, similar to that used in an SQL query, to select the tuples to be deleted. 
Tuples are explicitly deleted from only one table at a time. However, the deletion 
may propagate to tuples in other relations if referential triggered actions are spec-
ified in the referential integrity constraints of the DDL (see Section 6.2.2).12 
Depending on the number of tuples selected by the condition in the WHERE 
clause, zero, one, or several tuples can be deleted by a single DELETE command. A 
missing WHERE clause specifies that all tuples in the relation are to be deleted; 
however, the table remains in the database as an empty table. We must use the 
DROP TABLE command to remove the table definition (see Chapter 7). The 
DELETE commands in U4A to U4D, if applied independently to the database state 
shown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, from 
the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE 
 WHERE  Lname = ‘Brown’;
U4B: DELETE FROM EMPLOYEE 
 WHERE  Ssn = ‘123456789’;
U4C: DELETE FROM EMPLOYEE
 WHERE  Dno = 5;
U4D: DELETE FROM EMPLOYEE;

6.4.3 The UPDATE Command
The UPDATE command is used to modify attribute values of one or more selected 
tuples. As in the DELETE command, a WHERE clause in the UPDATE command 
selects the tuples to be modified from a single relation. However, updating a pri-
mary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity 

12Other actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.
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constraints of the DDL (see Section 6.2.2). An additional SET clause in the 
UPDATE command specifies the attributes to be modified and their new values. 
For example, to change the location and controlling department number of proj-
ect number 10 to ‘Bellaire’ and 5, respectively, we use U5:

U5: UPDATE PROJECT
 SET Plocation = ‘Bellaire’, Dnum = 5
 WHERE Pnumber = 10;

Several tuples can be modified with a single UPDATE command. An example is to 
give all employees in the ‘Research’ department a 10% raise in salary, as shown in 
U6. In this request, the modified Salary value depends on the original Salary value 
in each tuple, so two references to the Salary attribute are needed. In the SET 
clause, the reference to the Salary attribute on the right refers to the old Salary 
value before modification, and the one on the left refers to the new Salary value 
after modification:

U6: UPDATE EMPLOYEE
 SET Salary = Salary * 1.1
 WHERE Dno = 5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that 
each UPDATE command explicitly refers to a single relation only. To modify multi-
ple relations, we must issue several UPDATE commands.

6.5 Additional Features of SQL
SQL has a number of additional features that we have not described in this chapter 
but that we discuss elsewhere in the book. These are as follows:

 ■ In Chapter 7, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval 
queries, including nested queries, aggregate functions, grouping, joined 
tables, outer joins, case statements, and recursive queries; SQL views, trig-
gers, and assertions; and commands for schema modification.

 ■ SQL has various techniques for writing programs in various programming 
languages that include SQL statements to access one or more databases. 
These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface) 
and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM 
(Persistent Stored Modules). We discuss these techniques in Chapter 10. We 
also describe how to access SQL databases through the Java programming 
language using JDBC and SQLJ.

 ■ Each commercial RDBMS will have, in addition to the SQL commands, a set 
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of 
SQL had commands for creating indexes, but these were removed from the 
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language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands; but they require a special 
privilege. We describe this in Chapter 17.

 ■ SQL has transaction control commands. These are used to specify units of 
database processing for concurrency control and recovery purposes. We 
discuss these commands in Chapter 20 after we discuss the concept of trans-
actions in more detail.

 ■ SQL has language constructs for specifying the granting and revoking of 
privileges to users. Privileges typically correspond to the right to use certain 
SQL commands to access certain relations. Each relation is assigned an 
owner, and either the owner or the DBA staff can grant to selected users the 
privilege to use an SQL statement—such as SELECT, INSERT, DELETE, or 
UPDATE—to access the relation. In addition, the DBA staff can grant the 
privileges to create schemas, tables, or views to certain users. These SQL 
commands—called GRANT and REVOKE—are discussed in Chapter 20, 
where we discuss database security and authorization.

 ■ SQL has language constructs for creating triggers. These are generally 
referred to as active database techniques, since they specify actions that are 
automatically triggered by events such as database updates. We discuss these 
features in Section 26.1, where we discuss active database concepts.

 ■ SQL has incorporated many features from object-oriented models to have 
more powerful capabilities, leading to enhanced relational systems known 
as object-relational. Capabilities such as creating complex-structured attri-
butes, specifying abstract data types (called UDTs or user-defined types) for 
attributes and tables, creating object identifiers for referencing tuples, and 
specifying operations on types are discussed in Chapter 12.

 ■ SQL and relational databases can interact with new technologies such as 
XML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

6.6 Summary
In this chapter, we introduced the SQL database language. This language and its 
variations have been implemented as interfaces to many commercial relational 
DBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and many 
other systems including Sybase and INGRES. Some open source systems also provide 
SQL, such as MySQL and PostgreSQL. The original version of SQL was imple-
mented in the experimental DBMS called SYSTEM R, which was developed at IBM 
Research. SQL is designed to be a comprehensive language that includes statements 
for data definition, queries, updates, constraint specification, and view definition. 
We discussed the following features of SQL in this chapter: the data definition com-
mands for creating tables, SQL basic data types, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter, 
we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.
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Review Questions
 6.1. How do the relations (tables) in SQL differ from the relations defined for-

mally in Chapter 3? Discuss the other differences in terminology. Why does 
SQL allow duplicate tuples in a table or in a query result?

 6.2. List the data types that are allowed for SQL attributes.

 6.3. How does SQL allow implementation of the entity integrity and referential 
integrity constraints described in Chapter 3? What about referential trig-
gered actions?

 6.4. Describe the four clauses in the syntax of a simple SQL retrieval query. Show 
what type of constructs can be specified in each of the clauses. Which are 
required and which are optional?

Exercises
 6.5. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. What are the referential integrity constraints that should hold on the 
schema? Write appropriate SQL DDL statements to define the database.

 6.6. Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

 6.7. Consider the LIBRARY relational database schema shown in Figure 6.6. 
Choose the appropriate action (reject, cascade, set to NULL, set to default) for 
each referential integrity constraint, both for the deletion of a referenced 
tuple and for the update of a primary key attribute value in a referenced 
tuple. Justify your choices.

 6.8. Write appropriate SQL DDL statements for declaring the LIBRARY relational 
database schema of Figure 6.6. Specify the keys and referential triggered 
actions.

 6.9. How can the key and foreign key constraints be enforced by the DBMS? Is 
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

 6.10. Specify the following queries in SQL on the COMPANY relational database 
schema shown in Figure 5.5. Show the result of each query if it is applied to 
the COMPANY database in Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more 
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first 
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin 
Wong’.
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 6.11.  Specify the updates of Exercise 3.11 using the SQL update commands.

 6.12.  Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘cs’ (computer 
science).

b. Retrieve the names of all courses taught by Professor King in 2007 and 
2008.

c. For each section taught by Professor King, retrieve the course number, 
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4) 
majoring in CS. A transcript includes course name, course number, 
credit hours, semester, year, and grade for each course completed by 
the student.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES
Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH
Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER
Card_no Name Address Phone

Figure 6.6 
A relational database 
schema for a  
LIBRARY database.
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 6.13.  Write SQL update statements to do the following on the database schema 
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>.

d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.

 6.14.  Design a relational database schema for a database application of your 
choice.

a. Declare your relations using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database 
application.

c. Based on your expected use of the database, choose some attributes that 
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

 6.15.  Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in 
Figure 6.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK
   FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
                             ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:

a. What happens when the following command is run on the database state 
shown in Figure 5.6?

DELETE EMPLOYEE WHERE Lname = ‘Borg’

b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint 
ON DELETE?

 6.16.  Write SQL statements to create a table EMPLOYEE_BACKUP to back up the 
EMPLOYEE table shown in Figure 5.6.

Selected Bibliography
The SQL language, originally named SEQUEL, was based on the language SQUARE 
(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). The 
syntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) and 
then into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The original 
implementation of SEQUEL was done at IBM Research, San Jose, California. We 
will give additional references to various aspects of SQL at the end of Chapter 7.
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7
More SQL: Complex Queries, 

Triggers, Views, and  
Schema Modification

This chapter describes more advanced features of 
the SQL language for relational databases. We start 

in Section 7.1 by presenting more complex features of SQL retrieval queries, such as 
nested queries, joined tables, outer joins, aggregate functions, and grouping, and 
case statements. In Section 7.2, we describe the CREATE ASSERTION statement, 
which allows the specification of more general constraints on the database. We also 
introduce the concept of triggers and the CREATE TRIGGER statement, which will 
be presented in more detail in Section 26.1 when we present the principles of active 
databases. Then, in Section 7.3, we describe the SQL facility for defining views on 
the database. Views are also called virtual or derived tables because they present the 
user with what appear to be tables; however, the information in those tables is 
derived from previously defined tables. Section 7.4 introduces the SQL ALTER 
TABLE statement, which is used for modifying the database tables and constraints. 
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this 
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries
In Section 6.3, we described some basic types of retrieval queries in SQL. Because of 
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We 
discuss several of these features in this section.

chapter  7
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7.1.1 Comparisons Involving NULL and Three-Valued Logic
SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that 
NULL is used to represent a missing value, but that it usually has one of three differ-
ent interpretations—value unknown (value exists but is not known, or it is not 
known whether or not the value exists), value not available (value exists but is pur-
posely withheld), or value not applicable (the attribute does not apply to this tuple 
or is undefined for this tuple). Consider the following examples to illustrate each of 
the meanings of NULL.

  1. Unknown value. A person’s date of birth is not known, so it is represented 
by NULL in the database. An example of the other case of unknown would be 
NULL for a person’s home phone because it is not known whether or not the 
person has a home phone.

  2. Unavailable or withheld value. A person has a home phone but does not 
want it to be listed, so it is withheld and represented as NULL in the database.

  3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a 
person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for exam-
ple, a NULL for the home phone of a person can have any of the three meanings. 
Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other 
NULL value in the various database records. When a record with NULL in one of its 
attributes is involved in a comparison operation, the result is considered to be 
UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued 
logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued 
(Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the 
results (or truth values) of three-valued logical expressions when the logical con-
nectives AND, OR, and NOT are used. Table 7.1 shows the resulting values.

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

(b) OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

(c) NOT

TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN
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In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the results 
of comparison conditions, which would typically appear in the WHERE clause of an 
SQL query. Each expression result would have a value of TRUE, FALSE, or 
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of using 
the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is 
FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 7.1(c) 
shows the result of the NOT logical operation. Notice that in standard Boolean logic, 
only TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of 
tuples that evaluate the logical expression in the WHERE clause of the query to TRUE 
are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not 
selected. However, there are exceptions to that rule for certain operations, such as 
outer joins, as we shall see in Section 7.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using  
= or <> to compare an attribute value to NULL, SQL uses the comparison operators IS or 
IS NOT. This is because SQL considers each NULL value as being distinct from every 
other NULL value, so equality comparison is not appropriate. It follows that when a join 
condition is specified, tuples with NULL values for the join attributes are not included in 
the result (unless it is an OUTER JOIN; see Section 7.1.6). Query 18 illustrates NULL com-
parison by retrieving any employees who do not have a supervisor.

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Super_ssn IS NULL;

7.1.2  Nested Queries, Tuples,  
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used 
in a comparison condition. Such queries can be conveniently formulated by using 
nested queries, which are complete select-from-where blocks within another SQL 
query. That other query is called the outer query. These nested queries can also 
appear in the WHERE clause or the FROM clause or the SELECT clause or other 
SQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but it 
can be rephrased to use nested queries as shown in Q4A. Q4A introduces the com-
parison operator IN, which compares a value v with a set (or multiset) of values V 
and evaluates to TRUE if v is one of the elements in V.

In Q4A, the first nested query selects the project numbers of projects that have an 
employee with last name ‘Smith’ involved as manager, whereas the second nested query 
selects the project numbers of projects that have an employee with last name ‘Smith’ 
involved as worker. In the outer query, we use the OR logical connective to retrieve a 
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.
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Q4A: SELECT DISTINCT Pnumber
 FROM PROJECT
 WHERE Pnumber IN
  ( SELECT Pnumber
    FROM PROJECT, DEPARTMENT, EMPLOYEE
    WHERE  Dnum = Dnumber AND
   Mgr_ssn = Ssn AND Lname = ‘Smith’ )
  OR
  Pnumber IN
  ( SELECT Pno
    FROM WORKS_ON, EMPLOYEE
    WHERE Essn = Ssn AND Lname = ‘Smith’ );

If a nested query returns a single attribute and a single tuple, the query result will be 
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the 
comparison operator. In general, the nested query will return a table (relation), 
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within 
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN ( SELECT Pno, Hours
    FROM WORKS_ON
    WHERE Essn = ‘123456789’ );

This query will select the Essns of all employees who work the same (project, hours) 
combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’) 
works on. In this example, the IN operator compares the subtuple of values in paren-
theses (Pno, Hours) within each tuple in WORKS_ON with the set of type-compatible 
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used 
to compare a single value v (typically an attribute name) to a set or multiset v (typi-
cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v 
is equal to some value in the set V and is hence equivalent to IN. The two keywords 
ANY and SOME have the same effect. Other operators that can be combined with 
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL V) 
returns TRUE if the value v is greater than all the values in the set (or multiset) V.  
An example is the following query, which returns the names of employees whose 
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ALL ( SELECT Salary
    FROM EMPLOYEE
    WHERE Dno = 5 );
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Notice that this query can also be specified using the MAX aggregate function (see 
Section 7.1.7).

In general, we can have several levels of nested queries. We can once again be faced 
with possible ambiguity among attribute names if attributes of the same name 
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an 
unqualified attribute refers to the relation declared in the innermost nested query. 
For example, in the SELECT clause and WHERE clause of the first nested query of 
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the 
PROJECT relation specified in the FROM clause of the nested query. To refer to an 
attribute of the PROJECT relation specified in the outer query, we specify and refer 
to an alias (tuple variable) for that relation. These rules are similar to scope rules for 
program variables in most programming languages that allow nested procedures 
and functions. To illustrate the potential ambiguity of attribute names in nested 
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the 
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E
 WHERE E.Ssn IN ( SELECT D.Essn
     FROM DEPENDENT AS D
     WHERE E.Fname = D.Dependent_name
    AND E.Sex = D.Sex );

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attri-
bute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute 
called Sex. If there were any unqualified references to Sex in the nested query, they 
would refer to the Sex attribute of DEPENDENT. However, we would not have to 
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested 
query because the DEPENDENT relation does not have attributes called Fname and 
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced 
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q16.

7.1.3 Correlated Nested Queries
Whenever a condition in the WHERE clause of a nested query references some attri-
bute of a relation declared in the outer query, the two queries are said to be correlated. 
We can understand a correlated query better by considering that the nested query is 
evaluated once for each tuple (or combination of tuples) in the outer query. For 
example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the 
nested query, which retrieves the Essn values for all DEPENDENT tuples with the 
same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple 
is in the result of the nested query, then select that EMPLOYEE tuple.
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In general, a query written with nested select-from-where blocks and using the = or 
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E, DEPENDENT AS D
 WHERE E.Ssn = D.Essn AND E.Sex = D.Sex
  AND E.Fname = D.Dependent_name;

7.1.4 The EXISTS and UNIQUE Functions in SQL
EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence, 
they can be used in a WHERE clause condition. The EXISTS function in SQL is used 
to check whether the result of a nested query is empty (contains no tuples) or not. 
The result of EXISTS is a Boolean value TRUE if the nested query result contains at 
least one tuple, or FALSE if the nested query result contains no tuples. We illustrate 
the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate 
Query 16 in an alternative form that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname
 FROM EMPLOYEE AS E 
 WHERE EXISTS ( SELECT *
     FROM DEPENDENT AS D
     WHERE E.Ssn = D.Essn AND E.Sex = D.Sex
    AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested 
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of 
the EMPLOYEE relation from the outer query. We can think of Q16B as follows: For 
each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT 
tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at 
least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE 
tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested 
query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS(Q) returns 
TRUE if there are no tuples in the result of nested query Q, and returns FALSE other-
wise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Q6: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE  NOT EXISTS ( SELECT *
     FROM DEPENDENT
     WHERE Ssn = Essn );

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a 
particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because 
the WHERE-clause condition will evaluate to TRUE in this case. We can explain 
Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all 
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DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is 
empty, no dependents are related to the employee, so we select that EMPLOYEE 
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE EXISTS ( SELECT *
     FROM DEPENDENT
     WHERE Ssn = Essn )
  AND
  EXISTS ( SELECT *
     FROM DEPARTMENT
     WHERE Ssn = Mgr_ssn );

One way to write this query is shown in Q7, where we specify two nested cor-
related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE, 
and the second selects all DEPARTMENT tuples managed by the EMPLOYEE. If at 
least one of the first and at least one of the second exists, we select the EMPLOYEE 
tuple. Can you rewrite this query using only a single nested query or no nested 
queries?

The query Q3: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in 
SQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and 
Q3B. This is an example of certain types of queries that require universal quantifica-
tion, as we will discuss in Section 8.6.7. One way to write this query is to use the 
construct (S2 EXCEPT S1) as explained next, and checking whether the result is 
empty.1 This option is shown as Q3A.

Q3A: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE NOT EXISTS ( ( SELECT   Pnumber
        FROM   PROJECT
        WHERE   Dnum = 5)
        EXCEPT ( SELECT Pno
      FROM WORKS_ON
      WHERE Ssn = Essn) );

In Q3A, the first subquery (which is not correlated with the outer query) selects all 
projects controlled by department 5, and the second subquery (which is corre-
lated) selects all projects that the particular employee being considered works on. 
If the set difference of the first subquery result MINUS (EXCEPT) the second sub-
query result is empty, it means that the employee works on all the projects and is 
therefore selected.

1Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for 
example, in Oracle.
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The second option is shown as Q3B. Notice that we need two-level nesting in Q3B 
and that this formulation is quite a bit more complex than Q3A.

Q3B: SELECT Lname, Fname
 FROM EMPLOYEE
 WHERE NOT EXISTS ( SELECT   *
     FROM   WORKS_ON B
     WHERE ( B.Pno IN ( SELECT  Pnumber
       FROM PROJECT
       WHERE Dnum = 5 )
     AND
     NOT EXISTS  ( SELECT *
       FROM WORKS_ON C
       WHERE C.Essn = Ssn
       AND C.Pno = B.Pno )));

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a 
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the 
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in 
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of 
Q3B matches the following rephrasing of Query 3: Select each employee such that 
there does not exist a project controlled by department 5 that the employee does 
not work on. It corresponds to the way we will write this query in tuple relation 
calculus (see Section 8.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no 
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be 
used to test whether the result of a nested query is a set (no duplicates) or a multiset 
(duplicates exist).

7.1.5 Explicit Sets and Renaming in SQL
We have seen several queries with a nested query in the WHERE clause. It is also 
possible to use an explicit set of values in the WHERE clause, rather than a nested 
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on 
project numbers 1, 2, or 3.

Q17: SELECT DISTINCT Essn
 FROM WORKS_ON
 WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query 
by adding the qualifier AS followed by the desired new name. Hence, the AS con-
struct can be used to alias both attribute and relation names in general, and it can 
be used in appropriate parts of a query. For example, Q8A shows how query Q8 
from Section 4.3.2 can be slightly changed to retrieve the last name of each 
employee and his or her supervisor while renaming the resulting attribute names 
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as Employee_name and Supervisor_name. The new names will appear as column 
headers for the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

7.1.6 Joined Tables in SQL and Outer Joins
The concept of a joined table (or joined relation) was incorporated into SQL to 
permit users to specify a table resulting from a join operation in the FROM clause of 
a query. This construct may be easier to comprehend than mixing together all the 
select and join conditions in the WHERE clause. For example, consider query Q1, 
which retrieves the name and address of every employee who works for the 
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and 
DEPARTMENT relations in the WHERE clause, and then to select the desired tuples 
and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address
 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
 WHERE Dname = ‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table 
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of 
the second table, DEPARTMENT. The concept of a joined table also allows the user to 
specify different types of join, such as NATURAL JOIN and various types of OUTER 
JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an 
implicit EQUIJOIN condition for each pair of attributes with the same name from R 
and S is created. Each such pair of attributes is included only once in the resulting 
relation (see Sections 8.3.2 and 8.4.4 for more details on the various types of join 
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possible 
to rename the attributes so that they match, and then to apply NATURAL JOIN. In 
this case, the AS construct can be used to rename a relation and all its attributes in 
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is 
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name 
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The 
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno, 
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address
 FROM (EMPLOYEE NATURAL JOIN
  (DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))
 WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is 
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result; 
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an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user 
requires that all employees be included, a different type of join called OUTER JOIN 
must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-
tional algebra). There are several variations of OUTER JOIN, as we shall see. In the 
SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a 
joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,
  S.Lname AS Supervisor_name
 FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
  ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN (only 
pairs of tuples that match the join condition are retrieved, same as JOIN), LEFT 
OUTER JOIN (every tuple in the left table must appear in the result; if it does not have 
a matching tuple, it is padded with NULL values for the attributes of the right table), 
RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it does 
not have a matching tuple, it is padded with NULL values for the attributes of the left 
table), and FULL OUTER JOIN. In the latter three options, the keyword OUTER may be 
omitted. If the join attributes have the same name, one can also specify the natural 
join variation of outer joins by using the keyword NATURAL before the operation (for 
example, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specify 
the CARTESIAN PRODUCT operation (see Section 8.2.2), although this should be 
used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may 
itself be a joined table. This allows the specification of the join of three or more tables 
as a single joined table, which is called a multiway join. For example, Q2A is a differ-
ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate
 FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)
  JOIN EMPLOYEE ON Mgr_ssn = Ssn)
 WHERE Plocation = ‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In 
some systems, a different syntax was used to specify outer joins by using the compari-
son operators + =, = +, and + = + for left, right, and full outer join, respectively, when 
specifying the join condition. For example, this syntax is available in Oracle. To specify 
the left outer join in Q8B using this syntax, we could write the query Q8C as follows:

Q8C: SELECT E.Lname, S.Lname
 FROM EMPLOYEE E, EMPLOYEE S
 WHERE E.Super_ssn + = S.Ssn;

7.1.7 Aggregate Functions in SQL
Aggregate functions are used to summarize information from multiple tuples 
into a single-tuple summary. Grouping is used to create subgroups of tuples 
before summarization. Grouping and aggregation are required in many database 
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applications, and we will introduce their use in SQL through examples. A number 
of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.2 The 
COUNT function returns the number of tuples or values as specified in a query. 
The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of 
numeric values and return, respectively, the sum, maximum value, minimum 
value, and average (mean) of those values. These functions can be used in the 
SELECT clause or in a HAVING clause (which we introduce later). The functions 
MAX and MIN can also be used with attributes that have nonnumeric domains if 
the domain values have a total ordering among one another.3 We illustrate the use 
of these functions with several queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary, 
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
 FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table. 
We could use AS to rename the column names in the resulting single-row table; for 
example, as in Q19A.

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,
  MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal
 FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specific 
department—say, the ‘Research’ department—we can write Query 20, where the 
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work 
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-
ment, as well as the maximum salary, the minimum salary, and the average 
salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
 FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
 WHERE Dname = ‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company 
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (*)
 FROM EMPLOYEE;

Q22: SELECT COUNT (*)
 FROM EMPLOYEE, DEPARTMENT
 WHERE DNO = DNUMBER AND DNAME = ‘Research’;

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.
3Total order means that for any two values in the domain, it can be determined that one appears before 
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings 
on their values, as do alphabetic strings.
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Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of 
rows in the result of the query. We may also use the COUNT function to count val-
ues in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)
 FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then 
duplicate values will not be eliminated. However, any tuples with NULL for SALARY 
will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute); the only exception is for 
COUNT(*) because tuples instead of values are counted. In the previous examples, 
any Salary values that are NULL are not included in the aggregate function calcula-
tion. The general rule is as follows: when an aggregate function is applied to a col-
lection of values, NULLs are removed from the collection before the calculation; if 
the collection becomes empty because all values are NULL, the aggregate function 
will return NULL (except in the case of COUNT, where it will return 0 for an empty 
collection of values).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected 
subset of tuples (Q20, Q22), and hence all produce a table with a single row or a 
single value. They illustrate how functions are applied to retrieve a summary value 
or summary tuple from a table. These functions can also be used in selection condi-
tions involving nested queries. We can specify a correlated nested query with an 
aggregate function, and then use the nested query in the WHERE clause of an outer 
query. For example, to retrieve the names of all employees who have two or more 
dependents (Query 5), we can write the following:

Q5: SELECT Lname, Fname 
 FROM EMPLOYEE
 WHERE ( SELECT COUNT (*)
    FROM  DEPENDENT
    WHERE Ssn = Essn ) > =  2;

The correlated nested query counts the number of dependents that each employee 
has; if this is greater than or equal to two, the employee tuple is selected.

SQL also has aggregate functions SOME and ALL that can be applied to a col-
lection of Boolean values; SOME returns TRUE if at least one element in the 
collection is TRUE, whereas ALL returns TRUE if all elements in the collection 
are TRUE.

7.1.8 Grouping: The GROUP BY and HAVING Clauses
In many cases we want to apply the aggregate functions to subgroups of tuples in a 
relation, where the subgroups are based on some attribute values. For example, we 
may want to find the average salary of employees in each department or the number 
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of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will 
consist of the tuples that have the same value of some attribute(s), called the  
grouping attribute(s). We can then apply the function to each such group indepen-
dently to produce summary information about each group. SQL has a GROUP BY 
clause for this purpose. The GROUP BY clause specifies the grouping attributes, 
which should also appear in the SELECT clause, so that the value resulting from 
applying each aggregate function to a group of tuples appears along with the value 
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number 
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)
 FROM EMPLOYEE
 GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having 
the same value for the GROUP BY attribute Dno. Hence, each group contains the 
employees who work in the same department. The COUNT and AVG functions 
are applied to each such group of tuples. Notice that the SELECT clause includes 
only the grouping attribute and the aggregate functions to be applied on each 
group of tuples. Figure 7.1(a) illustrates how grouping works and shows the 
result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all 
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE 
table had some tuples that had NULL for the grouping attribute Dno, there would be 
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and 
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON
 WHERE Pnumber = Pno
 GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this 
case, the grouping and functions are applied after the joining of the two relations in 
the WHERE clause.

Sometimes we want to retrieve the values of these functions only for groups that 
satisfy certain conditions. For example, suppose that we want to modify Query 25 so 
that only projects with more than two employees appear in the result. SQL provides 
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this 
purpose. HAVING provides a condition on the summary information regarding the 
group of tuples associated with each value of the grouping attributes. Only the 
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.
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Figure 7.1 
Results of GROUP BY and HAVING. (a) Q24. (b) Q26.
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Query 26. For each project on which more than two employees work, retrieve the 
project number, the project name, and the number of employees who work on 
the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON
 WHERE Pnumber = Pno
 GROUP BY Pnumber, Pname
 HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to 
which functions are applied, the HAVING clause serves to choose whole groups. Fig-
ure 7.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and 
the number of employees from department 5 who work on the project.

Q27: SELECT Pnumber, Pname, COUNT (*)
 FROM PROJECT, WORKS_ON, EMPLOYEE
 WHERE Pnumber = Pno AND Ssn = Essn AND Dno = 5
 GROUP BY Pnumber, Pname;

In Q27, we restrict the tuples in the relation (and hence the tuples in each group) 
to those that satisfy the condition specified in the WHERE clause—namely, that 
they work in department number 5. Notice that we must be extra careful when 
two different conditions apply (one to the aggregate function in the SELECT 
clause and another to the function in the HAVING clause). For example, suppose 
that we want to count the total number of employees whose salaries exceed 
$40,000 in each department, but only for departments where more than five 
employees work. Here, the condition (SALARY > 40000) applies only to the 
COUNT function in the SELECT clause. Suppose that we write the following 
incorrect query:

SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000
GROUP BY Dno
HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five 
employees who each earn more than $40,000. The rule is that the WHERE clause is 
executed first, to select individual tuples or joined tuples; the HAVING clause is 
applied later, to select individual groups of tuples. In the incorrect query, the tuples 
are already restricted to employees who earn more than $40,000 before the function 
in the HAVING clause is applied. One way to write this query correctly is to use a 
nested query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve the 
department number and the number of its employees who are making more 
than $40,000.
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Q28: SELECT Dno, COUNT (*)
 FROM EMPLOYEE
 WHERE Salary>40000 AND Dno IN
  ( SELECT Dno
    FROM EMPLOYEE
 GROUP BY Dno
    HAVING COUNT (*) > 5)
 GROUP BY Dno;

7.1.9 Other SQL Constructs: WITH and CASE
In this section, we illustrate two additional SQL constructs. The WITH clause 
allows a user to define a table that will only be used in a particular query; it is some-
what similar to creating a view (see Section 7.3) that will be used only in one query 
and then dropped. This construct was introduced as a convenience in SQL:99 and 
may not be available in all SQL based DBMSs. Queries using WITH can generally 
be written using other SQL constructs. For example, we can rewrite Q28 as Q28′:

Q28′: WITH   BIGDEPTS (Dno) AS
  ( SELECT   Dno
    FROM   EMPLOYEE
    GROUP BY   Dno
    HAVING   COUNT (*) > 5)
 SELECT   Dno, COUNT (*)
 FROM   EMPLOYEE
 WHERE   Salary>40000 AND Dno IN BIGDEPTS
 GROUP BY   Dno;

In Q28′, we defined in the WITH clause a temporary table BIG_DEPTS whose 
result holds the Dno’s of departments with more than five employees, then used 
this table in the subsequent query. Once this query is executed, the temporary table 
BIGDEPTS is discarded.

SQL also has a CASE construct, which can be used when a value can be different 
based on certain conditions. This can be used in any part of an SQL query where a 
value is expected, including when querying, inserting or updating tuples. We illus-
trate this with an example. Suppose we want to give employees different raise 
amounts depending on which department they work for; for example, employees in 
department 5 get a $2,000 raise, those in department 4 get $1,500 and those in 
department 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we could 
re-write the update operation U6 from Section 6.4.3 as U6′:

U6′: UPDATE EMPLOYEE
 SET Salary  = 
 CASE WHEN Dno = 5 THEN Salary + 2000
  WHEN Dno = 4 THEN Salary + 1500
  WHEN Dno = 1 THEN Salary + 3000
  ELSE Salary + 0 ;
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In U6′, the salary raise value is determined through the CASE construct based on 
the department number for which each employee works. The CASE construct can 
also be used when inserting tuples that can have different attributes being NULL 
depending on the type of record being inserted into a table, as when a specialization 
(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union type 
is mapped into relations.

7.1.10 Recursive Queries in SQL
In this section, we illustrate how to write a recursive query in SQL. This syntax was 
added in SQL:99 to allow users the capability to specify a recursive query in a 
declarative manner. An example of a recursive relationship between tuples of the 
same type is the relationship between an employee and a supervisor. This relation-
ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig- 
ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) to 
another employee tuple (in the role of supervisor). An example of a recursive oper-
ation is to retrieve all supervisees of a supervisory employee e at all levels—that is, 
all employees e′ directly supervised by e, all employees e′ directly supervised by each 
employee e′, all employees e″′ directly supervised by each employee e″, and so on. 
In SQL:99, this query can be written as follows:

Q29:   WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS
    ( SELECT SupervisorSsn, Ssn
      FROM EMPLOYEE
      UNION
      SELECT E.Ssn, S.SupSsn
      FROM EMPLOYEE AS E, SUP_EMP AS S
      WHERE E.SupervisorSsn = S.EmpSsn)
   SELECT*
   FROM SUP_EMP;

In Q29, we are defining a view SUP_EMP that will hold the result of the recursive 
query. The view is initially empty. It is first loaded with the first level (supervisor, 
supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM 
EMPLOYEE), which is called the base query. This will be combined via UNION 
with each successive level of supervisees through the second part, where the view 
contents are joined again with the base values to get the second level combinations, 
which are UNIONed with the first level. This is repeated with successive levels until 
a fixed point is reached, where no more tuples are added to the view. At this point, 
the result of the recursive query is in the view SUP_EMP.

7.1.11 Discussion and Summary of SQL Queries
A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is 
ended by a semicolon. Query terms are separated by spaces, and parentheses can 
be used to group relevant parts of a query in the standard way. The clauses are 
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specified in the following order, with the clauses between square brackets [ … ] 
being optional:

SELECT <attribute and function list>
FROM <table list>
[ WHERE <condition> ]
[ GROUP BY <grouping attribute(s)> ]
[ HAVING <group condition> ]
[ ORDER BY <attribute list> ];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause 
specifies all relations (tables) needed in the query, including joined relations, but 
not those in nested queries. The WHERE clause specifies the conditions for selecting 
the tuples from these relations, including join conditions if needed. GROUP BY 
specifies grouping attributes, whereas HAVING specifies a condition on the groups 
being selected rather than on the individual tuples. The built-in aggregate functions 
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they 
can also be applied to all the selected tuples in a query without a GROUP BY clause. 
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define 
the meaning or semantics of each query. A query is evaluated conceptually4 by first 
applying the FROM clause (to identify all tables involved in the query or to materialize 
any joined tables), followed by the WHERE clause to select and join tuples, and then by 
GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query 
result. If none of the last three clauses (GROUP BY, HAVING, and ORDER BY) are speci-
fied, we can think conceptually of a query as being executed as follows: For each combi-
nation of tuples—one from each of the relations specified in the FROM clause—evaluate 
the WHERE clause; if it evaluates to TRUE, place the values of the attributes specified in 
the SELECT clause from this tuple combination in the result of the query. Of course, this 
is not an efficient way to implement the query in a real system, and each DBMS has 
special query optimization routines to decide on an execution plan that is efficient to 
execute. We discuss query processing and optimization in Chapters 18 and 19.

In general, there are numerous ways to specify the same query in SQL. This flexibility 
in specifying queries has advantages and disadvantages. The main advantage is that 
users can choose the technique with which they are most comfortable when specifying 
a query. For example, many queries may be specified with join conditions in the 
WHERE clause, or by using joined relations in the FROM clause, or with some form of 
nested queries and the IN comparison operator. Some users may be more comfortable 
with one approach, whereas others may be more comfortable with another. From the 
programmer’s and the system’s point of view regarding query optimization, it is gener-
ally preferable to write a query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that 
this may confuse the user, who may not know which technique to use to specify 

4The actual order of query evaluation is implementation dependent; this is just a way to conceptually 
view a query in order to correctly formulate it.
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particular types of queries. Another problem is that it may be more efficient to 
execute a query specified in one way than the same query specified in an alterna-
tive way. Ideally, this should not be the case: The DBMS should process the same 
query in the same way regardless of how the query is specified. But this is quite 
difficult in practice, since each DBMS has different methods for processing queries 
specified in different ways. Thus, an additional burden on the user is to determine 
which of the alternative specifications is the most efficient to execute. Ideally, the 
user should worry only about specifying the query correctly, whereas the DBMS 
would determine how to execute the query efficiently. In practice, however, it 
helps if the user is aware of which types of constructs in a query are more expen-
sive to process than others.

7.2  Specifying Constraints as Assertions  
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSERTION 
statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATE 
ASSERTION, which can be used to specify additional types of constraints that are 
outside the scope of the built-in relational model constraints (primary and unique 
keys, entity integrity, and referential integrity) that we presented in Section 5.2. 
These built-in constraints can be specified within the CREATE TABLE statement of 
SQL (see Sections 6.1 and 6.2).

In Section 7.2.2 we introduce CREATE TRIGGER, which can be used to specify auto-
matic actions that the database system will perform when certain events and condi-
tions occur. This type of functionality is generally referred to as active databases. 
We only introduce the basics of triggers in this chapter, and present a more com-
plete discussion of active databases in Section 26.1.

7.2.1 Specifying General Constraints as Assertions in SQL
In SQL, users can specify general constraints—those that do not fall into any of the 
categories described in Sections 6.1 and 6.2— via declarative assertions, using the 
CREATE ASSERTION statement. Each assertion is given a constraint name and is 
specified via a condition similar to the WHERE clause of an SQL query. For exam-
ple, to specify the constraint that the salary of an employee must not be greater than 
the salary of the manager of the department that the employee works for in SQL, we 
can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK ( NOT EXISTS ( SELECT *
   FROM EMPLOYEE E, EMPLOYEE M,
  DEPARTMENT D
   WHERE E.Salary>M.Salary
  AND E.Dno = D.Dnumber
  AND D.Mgr_ssn = M.Ssn ) );
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The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, 
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to 
disable the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used, 
but many constraints can be specified using the EXISTS and NOT EXISTS style of 
SQL conditions. Whenever some tuples in the database cause the condition of an 
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database 
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any 
tuples that violate the desired condition. By including this query inside a NOT EXISTS 
clause, the assertion will specify that the result of this query must be empty so that 
the condition will always be TRUE. Thus, the assertion is violated if the result of the 
query is not empty. In the preceding example, the query selects all employees whose 
salaries are greater than the salary of the manager of their department. If the result 
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify 
constraints on individual attributes and domains (see Section 6.2.1) and on indi-
vidual tuples (see Section 6.2.4). A major difference between CREATE  
ASSERTION and the individual domain constraints and tuple constraints is that 
the CHECK clauses on individual attributes, domains, and tuples are checked in 
SQL only when tuples are inserted or updated in a specific table. Hence, con-
straint checking can be implemented more efficiently by the DBMS in these 
cases. The schema designer should use CHECK on attributes, domains, and tuples 
only when he or she is sure that the constraint can only be violated by insertion or 
updating of tuples. On the other hand, the schema designer should use CREATE 
ASSERTION only in cases where it is not possible to use CHECK on attributes, 
domains, or tuples, so that simple checks are implemented more efficiently by 
the DBMS.

7.2.2 Introduction to Triggers in SQL
Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and 
when certain conditions are satisfied. For example, it may be useful to specify a 
condition that, if violated, causes some user to be informed of the violation. A man-
ager may want to be informed if an employee’s travel expenses exceed a certain 
limit by receiving a message whenever this occurs. The action that the DBMS must 
take in this case is to send an appropriate message to that user. The condition is 
thus used to monitor the database. Other actions may be specified, such as execut-
ing a specific stored procedure or triggering other updates. The CREATE TRIGGER 
statement is used to implement such actions in SQL. We discuss triggers in detail in 
Section 26.1 when we describe active databases. Here we just give a simple example 
of how triggers may be used.
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Suppose we want to check whenever an employee’s salary is greater than the salary 
of his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6). 
Several events can trigger this rule: inserting a new employee record, changing an 
employee’s salary, or changing an employee’s supervisor. Suppose that the action to 
take would be to call an external stored procedure SALARY_VIOLATION,5 which will 
notify the supervisor. The trigger could then be written as in R5 below. Here we are 
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION
 BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
  ON EMPLOYEE
 FOR EACH ROW
  WHEN ( NEW.SALARY > ( SELECT SALARY FROM EMPLOYEE
        WHERE SSN = NEW.SUPERVISOR_SSN ) )
        INFORM_SUPERVISOR(NEW.Supervisor_ssn,  
        NEW.Ssn );

The trigger is given the name SALARY_VIOLATION, which can be used to remove or 
deactivate the trigger later. A typical trigger which is regarded as an ECA (Event, 
Condition, Action) rule has three components:

  1. The event(s): These are usually database update operations that are explic-
itly applied to the database. In this example the events are: inserting a new 
employee record, changing an employee’s salary, or changing an employee’s 
supervisor. The person who writes the trigger must make sure that all pos-
sible events are accounted for. In some cases, it may be necessary to write 
more than one trigger to cover all possible cases. These events are specified 
after the keyword BEFORE in our example, which means that the trigger 
should be executed before the triggering operation is executed. An alterna-
tive is to use the keyword AFTER, which specifies that the trigger should be 
executed after the operation specified in the event is completed.

  2. The condition that determines whether the rule action should be executed: 
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event 
occurs. If a condition is specified, it is first evaluated, and only if it evaluates 
to true will the rule action be executed. The condition is specified in the 
WHEN clause of the trigger.

  3. The action to be taken: The action is usually a sequence of SQL statements, 
but it could also be a database transaction or an external program that will 
be automatically executed. In this example, the action is to execute the stored 
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A 
complete discussion is given in Section 26.1.

5Assuming that an appropriate external procedure has been declared. We discuss stored procedures in 
Chapter 10.
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7.3 Views (Virtual Tables) in SQL
In this section we introduce the concept of a view in SQL. We show how views are 
specified, and then we discuss the problem of updating views and how views can be 
implemented by the DBMS.

7.3.1 Concept of a View in SQL
A view in SQL terminology is a single table that is derived from other tables.6  These 
other tables can be base tables or previously defined views. A view does not neces-
sarily exist in physical form; it is considered to be a virtual table, in contrast to base 
tables, whose tuples are always physically stored in the database. This limits the 
possible update operations that can be applied to views, but it does not provide any 
limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference 
frequently, even though it may not exist physically. For example, referring to the 
COMPANY database in Figure 5.5, we may frequently issue queries that retrieve the 
employee name and the project names that the employee works on. Rather than 
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT 
every time we issue this query, we can define a view that is specified as the result of 
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call 
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

7.3.2 Specification of Views in SQL
In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the 
contents of the view. If none of the view attributes results from applying functions 
or arithmetic operations, we do not have to specify new attribute names for the 
view, since they would be the same as the names of the attributes of the defining 
tables in the default case. The views in V1 and V2 create virtual tables whose sche-
mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

V1: CREATE VIEW WORKS_ON1
 AS SELECT Fname, Lname, Pname, Hours
    FROM EMPLOYEE, PROJECT, WORKS_ON
    WHERE Ssn = Essn AND Pno = Pnumber;

V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
 AS SELECT Dname, COUNT (*), SUM (Salary)
    FROM DEPARTMENT, EMPLOYEE
    WHERE Dnumber = Dno
    GROUP BY Dname;

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2, 
since a user view would possibly include many relations.
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In V1, we did not specify any new attribute names for the view WORKS_ON1 
(although we could have); in this case, WORKS_ON1 inherits the names of the 
view attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON. 
View V2 explicitly specifies new attribute names for the view DEPT_INFO, using 
a one-to-one correspondence between the attributes specified in the CREATE 
VIEW clause and those specified in the SELECT clause of the query that defines 
the view.

We can now specify SQL queries on a view—or virtual table—in the same way we 
specify queries involving base tables. For example, to retrieve the last name and first 
name of all employees who work on the ‘ProductX’ project, we can utilize the 
WORKS_ON1 view and specify the query as in QV1:

QV1: SELECT Fname, Lname
 FROM WORKS_ON1
 WHERE Pname = ‘ProductX’;

The same query would require the specification of two joins if specified on the base 
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Section 7.3.4 and Chapter 30).

A view is supposed to be always up-to-date; if we modify the tuples in the base 
tables on which the view is defined, the view must automatically reflect these 
changes. Hence, the view does not have to be realized or materialized at the time of 
view definition but rather at the time when we specify a query on the view. It is the 
responsibility of the DBMS and not the user to make sure that the view is kept up-
to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-
date in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose 
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ON1;

7.3.3 View Implementation, View Update, and Inline Views
The problem of how a DBMS can efficiently implement a view for efficient querying 
is complex. Two main approaches have been suggested. One strategy, called query 
modification, involves modifying or transforming the view query (submitted by the 

DEPT_INFO

Dept_name No_of_emps Total_sal

WORKS_ON1

Fname Lname Pname Hours

Figure 7.2 
Two views specified on 
the database schema of 
Figure 5.5.
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user) into a query on the underlying base tables. For example, the query QV1 would 
be automatically modified to the following query by the DBMS:

SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn = Essn AND Pno = Pnumber
 AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple view queries 
are going to be applied to the same view within a short period of time. The second 
strategy, called view materialization, involves physically creating a temporary or 
permanent view table when the view is first queried or created and keeping that 
table on the assumption that other queries on the view will follow. In this case, an 
efficient strategy for automatically updating the view table when the base tables are 
updated must be developed in order to keep the view up-to-date. Techniques using 
the concept of incremental update have been developed for this purpose, where 
the DBMS can determine what new tuples must be inserted, deleted, or modified in 
a materialized view table when a database update is applied to one of the defining 
base tables. The view is generally kept as a materialized (physically stored) table as 
long as it is being queried. If the view is not queried for a certain period of time, the 
system may then automatically remove the physical table and recompute it from 
scratch when future queries reference the view.

Different strategies as to when a materialized view is updated are possible. The 
immediate update strategy updates a view as soon as the base tables are changed; 
the lazy update strategy updates the view when needed by a view query; and the 
periodic update strategy updates the view periodically (in the latter strategy, a view 
query may get a result that is not up-to-date).

A user can always issue a retrieval query against any view. However, issuing an 
INSERT, DELETE, or UPDATE command on a view table is in many cases not pos-
sible. In general, an update on a view defined on a single table without any aggregate 
functions can be mapped to an update on the underlying base table under certain 
conditions. For a view involving joins, an update operation may be mapped to 
update operations on the underlying base relations in multiple ways. Hence, it is 
often not possible for the DBMS to determine which of the updates is intended. To 
illustrate potential problems with updating a view defined on multiple tables, con-
sider the WORKS_ON1 view, and suppose that we issue the command to update the 
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is 
shown in UV1:

UV1: UPDATE WORKS_ON1
 SET Pname = ‘ProductY’
 WHERE Lname = ‘Smith’ AND Fname = ‘John’
  AND Pname = ‘ProductX’;

This query can be mapped into several updates on the base relations to give the 
desired update effect on the view. In addition, some of these updates will create 
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additional side effects that affect the result of other queries. For example, here are 
two possible updates, (a) and (b), on the base relations corresponding to the view 
update operation in UV1:

(a): UPDATE WORKS_ON
 SET Pno = ( SELECT Pnumber
     FROM PROJECT
     WHERE Pname = ‘ProductY’ )
 WHERE Essn IN ( SELECT Ssn
     FROM EMPLOYEE
     WHERE Lname = ‘Smith’ AND Fname = ‘John’ )
  AND
  Pno = ( SELECT Pnumber
     FROM PROJECT
     WHERE Pname = ‘ProductX’ );

(b): UPDATE PROJECT   SET  Pname = ‘ProductY’
 WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the 
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) would 
also give the desired update effect on the view, but it accomplishes this by changing 
the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quite 
unlikely that the user who specified the view update UV1 wants the update to be 
interpreted as in (b), since it also has the side effect of changing all the view tuples 
with Pname = ‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal 
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to be 
the sum of the individual employee salaries. This incorrect request is shown as UV2:

UV2: UPDATE  DEPT_INFO
 SET Total_sal = 100000
 WHERE Dname = ‘Research’;

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update operation on the view. Whenever an 
update on the view can be mapped to more than one update on the underlying base 
relations, it is usually not permitted. Some researchers have suggested that the 
DBMS have a certain procedure for choosing one of the possible updates as the 
most likely one. Some researchers have developed methods for choosing the most 
likely update, whereas other researchers prefer to have the user choose the desired 
update mapping during view definition. But these options are generally not avail-
able in most commercial DBMSs.

In summary, we can make the following observations:

 ■ A view with a single defining table is updatable if the view attributes contain 
the primary key of the base relation, as well as all attributes with the NOT 
NULL constraint that do not have default values specified.



232 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 ■ Views defined on multiple tables using joins are generally not updatable.

 ■ Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION should be added at the end of the view 
definition if a view is to be updated by INSERT, DELETE, or UPDATE statements. 
This allows the system to reject operations that violate the SQL rules for view 
updates. The full set of SQL rules for when a view may be modified by the user are 
more complex than the rules stated earlier.

It is also possible to define a view table in the FROM clause of an SQL query. This is 
known as an in-line view. In this case, the view is defined within the query itself.

7.3.4 Views as Authorization Mechanisms
We describe SQL query authorization statements (GRANT and REVOKE) in detail 
in Chapter 30, when we present database security and authorization mechanisms. 
Here, we will just give a couple of simple examples to illustrate how views can be 
used to hide certain attributes or tuples from unauthorized users. Suppose a certain 
user is only allowed to see employee information for employees who work for 
department 5; then we can create the following view DEPT5EMP and grant the user 
the privilege to query the view but not the base table EMPLOYEE itself. This user 
will only be able to retrieve employee information for employee tuples whose  
Dno = 5, and will not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS
SELECT *
FROM EMPLOYEE
WHERE Dno = 5;

In a similar manner, a view can restrict a user to only see certain columns; for 
example, only the first name, last name, and address of an employee may be visible 
as follows:

CREATE VIEW BASIC_EMP_DATA AS
SELECT Fname, Lname, Address
FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view 
and not the base tables, they would be restricted to retrieving only the data specified 
in the view. Chapter 30 discusses security and authorization in detail, including the 
GRANT and REVOKE statements of SQL.

7.4 Schema Change Statements in SQL
In this section, we give an overview of the schema evolution commands available 
in SQL, which can be used to alter a schema by adding or dropping tables, attri-
butes, constraints, and other schema elements. This can be done while the database 
is operational and does not require recompilation of the database schema. Certain 
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checks must be done by the DBMS to ensure that the changes do not affect the rest 
of the database and make it inconsistent.

7.4.1 The DROP Command
The DROP command can be used to drop named schema elements, such as tables, 
domains, types, or constraints. One can also drop a whole schema if it is no longer 
needed by using the DROP SCHEMA command. There are two drop behavior 
options: CASCADE and RESTRICT. For example, to remove the COMPANY database 
schema and all its tables, domains, and other elements, the CASCADE option is used 
as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only 
if it has no elements in it; otherwise, the DROP command will not be executed. To 
use the RESTRICT option, the user must first individually drop each element in the 
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition 
can be deleted by using the DROP TABLE command. For example, if we no longer 
wish to keep track of dependents of employees in the COMPANY database of Fig- 
ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is 
not referenced in any constraints (for example, by foreign key definitions in another 
relation) or views (see Section 7.3) or by any other elements. With the CASCADE 
option, all such constraints, views, and other elements that reference the table being 
dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table 
if successful, but also removes the table definition from the catalog. If it is desired to 
delete only the records but to leave the table definition for future use, then the 
DELETE command (see Section 6.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

7.4.2 The ALTER Command
The definition of a base table or of other named schema elements can be changed 
by using the ALTER command. For base tables, the possible alter table actions 
include adding or dropping a column (attribute), changing a column definition, 
and adding or dropping table constraints. For example, to add an attribute for 
keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY 
schema (see Figure 6.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);
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We must still enter a value for the new attribute Job for each individual EMPLOYEE 
tuple. This can be done either by specifying a default clause or by using the UPDATE 
command individually on each tuple (see Section 6.4.3). If no default clause is speci-
fied, the new attribute will have NULLs in all the tuples of the relation immediately after 
the command is executed; hence, the NOT NULL constraint is not allowed in this case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are 
dropped automatically from the schema, along with the column. If RESTRICT is 
chosen, the command is successful only if no views or constraints (or other schema 
elements) reference the column. For example, the following command removes the 
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause 
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
  DROP DEFAULT;
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
  SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a 
named constraint. To be dropped, a constraint must have been given a name when 
it was specified. For example, to drop the constraint named EMPSUPERFK in Fig-
ure 6.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD CONSTRAINT 
keyword in the ALTER TABLE statement followed by the new constraint, which can 
be named or unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of 
SQL. It is also possible to create new tables and views within a database schema 
using the appropriate commands. There are many other details and options; we 
refer the interested reader to the SQL documents listed in the Selected Bibliography 
at the end of this chapter.

7.5 Summary
In this chapter we presented additional features of the SQL database language. We 
started in Section 7.1 by presenting more complex features of SQL retrieval queries, 
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 7.2, we described the CREATE ASSERTION statement, which allows 
the specification of more general constraints on the database, and introduced the 
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Table 7.2 Summary of SQL Syntax

CREATE TABLE <table name> (  <column name> <column type> [ <attribute constraint> ] 
{ , <column name> <column type> [ <attribute constraint> ] } 
[ <table constraint> { , <table constraint> } ] )

DROP TABLE <table name>
ALTER TABLE <table name> ADD <column name> <column type>

SELECT [ DISTINCT ] <attribute list>
FROM ( <table name> { <alias> } | <joined table> ) { , ( <table name> { <alias> } | <joined table> ) }
[ WHERE <condition> ]
[ GROUP BY <grouping attributes> [ HAVING <group selection condition> ] ]
[ ORDER BY <column name> [ <order> ] { , <column name> [ <order> ] } ]

<attribute list> ::= ( * | (  <column name> | <function> ( ( [ DISTINCT ] <column name> | * ) ) ) 
{ , ( <column name> | <function> ( ( [ DISTINCT] <column name> | * ) ) } ) )

<grouping attributes> ::= <column name> { , <column name> }

<order> ::= ( ASC | DESC )

INSERT INTO <table name> [ ( <column name> { , <column name> } ) ]
( VALUES ( <constant value> , { <constant value> } ) { , ( <constant value> { , <constant value> } ) }
| <select statement> )

DELETE FROM <table name>
[ WHERE <selection condition> ]

UPDATE <table name>
SET <column name> = <value expression> { , <column name> = <value expression> }
[ WHERE <selection condition> ]

CREATE [ UNIQUE] INDEX <index name>
ON <table name> ( <column name> [ <order> ] { , <column name> [ <order> ] } )
[ CLUSTER ]

DROP INDEX <index name>

CREATE VIEW <view name> [ ( <column name> { , <column name> } ) ]
AS <select statement>

DROP VIEW <view name>
NOTE: The commands for creating and dropping indexes are not part of standard SQL.

concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, we 
described the SQL facility for defining views on the database. Views are also called 
virtual or derived tables because they present the user with what appear to be tables; 
however, the information in those tables is derived from previously defined tables. 
Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 7.2 summarizes the syntax (or structure) of various SQL statements. This 
summary is not meant to be comprehensive or to describe every possible SQL 
construct; rather, it is meant to serve as a quick reference to the major types of 
constructs available in SQL. We use BNF notation, where nonterminal symbols 
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are shown in angled brackets < … >, optional parts are shown in square brac-
kets [ … ], repetitions are shown in braces { … }, and alternatives are shown in 
parentheses ( … | … | … ).7

Review Questions
 7.1.  Describe the six clauses in the syntax of an SQL retrieval query. Show what 

type of constructs can be specified in each of the six clauses. Which of the six 
clauses are required and which are optional?

 7.2.  Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

 7.3.  Discuss how NULLs are treated in comparison operators in SQL. How are 
NULLs treated when aggregate functions are applied in an SQL query? How 
are NULLs treated if they exist in grouping attributes?

 7.4.  Discuss how each of the following constructs is used in SQL, and discuss 
the various options for each construct. Specify what each construct is 
useful for.

a. Nested queries

b. Joined tables and outer joins

c. Aggregate functions and grouping

d. Triggers

e. Assertions and how they differ from triggers

f. The SQL WITH clause

g. SQL CASE construct

h. Views and their updatability

i. Schema change commands

Exercises
 7.5.  Specify the following queries on the database in Figure 5.5 in SQL. Show the 

query results if each query is applied to the database state in Figure 5.6.

a. For each department whose average employee salary is more than 
$30,000, retrieve the department name and the number of employees 
working for that department.

b. Suppose that we want the number of male employees in each department 
making more than $30,000, rather than all employees (as in Exer- 
cise 7.5a). Can we specify this query in SQL? Why or why not?

7The full syntax of SQL is described in many voluminous documents of hundreds of pages.
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 7.6.  Specify the following queries in SQL on the database schema in Figure 1.2.

a. Retrieve the names and major departments of all straight-A students 
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not 
have a grade of A in any of their courses.

 7.7.  In SQL, specify the following queries on the database in Figure 5.5 using the 
concept of nested queries and other concepts described in this chapter.

a. Retrieve the names of all employees who work in the department that has 
the employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has 
‘888665555’ for Ssn.

c. Retrieve the names of employees who make at least $10,000 more than 
the employee who is paid the least in the company.

 7.8.  Specify the following views in SQL on the COMPANY database schema 
shown in Figure 5.5.

a. A view that has the department name, manager name, and manager sal-
ary for every department

b. A view that has the employee name, supervisor name, and employee sal-
ary for each employee who works in the ‘Research’ department

c. A view that has the project name, controlling department name, number 
of employees, and total hours worked per week on the project for each 
project

d. A view that has the project name, controlling department name, number 
of employees, and total hours worked per week on the project for each 
project with more than one employee working on it

 7.9.  Consider the following view, DEPT_SUMMARY, defined on the COMPANY 
database in Figure 5.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)
AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

State which of the following queries and updates would be allowed on the 
view. If a query or update would be allowed, show what the correspond-
ing query or update on the base relations would look like, and give its 
result when applied to the database in Figure 5.6.

a. SELECT *
FROM DEPT_SUMMARY;

b. SELECT D, C
FROM DEPT_SUMMARY
WHERE TOTAL_S > 100000;
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c. SELECT D, AVERAGE_S
FROM DEPT_SUMMARY
WHERE C > ( SELECT C FROM DEPT_SUMMARY WHERE D = 4);

d. UPDATE DEPT_SUMMARY
SET D = 3
WHERE D = 4;

e. DELETE FROM DEPT_SUMMARY
WHERE C > 4;

Selected Bibliography
Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor of 
SQL, in which she found that users have some difficulty with specifying join condi-
tions and grouping correctly. Date (1984) contains a critique of the SQL language 
that points out its strengths and shortcomings. Date and Darwen (1993) describes 
SQL2. ANSI (1986) outlines the original SQL standard. Various vendor manuals 
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle, 
INGRES, Informix, and other commercial DBMS products. Melton and Simon 
(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2. 
Horowitz (1992) discusses some of the problems related to referential integrity and 
propagation of updates in SQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller 
(1982), and Langerak (1990), among others. View implementation is discussed in 
Blakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

There are many books that describe various aspects of SQL. For example, two refer-
ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-
ther SQL standards—SQL 2006 and SQL 2008—are described in a variety of 
technical reports; but no standard references exist.
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8
The Relational Algebra and 

Relational Calculus

In this chapter we discuss the two formal languages for 
the relational model: the relational algebra and the 

relational calculus. In contrast, Chapters 6 and 7 described the practical language 
for the relational model, namely the SQL standard. Historically, the relational alge-
bra and calculus were developed before the SQL language. SQL is primarily based 
on concepts from relational calculus and has been extended to incorporate some 
concepts from relational algebra as well. Because most relational DBMSs use SQL 
as their language, we presented the SQL language first.

Recall from Chapter 2 that a data model must include a set of operations to 
manipulate the database, in addition to the data model’s concepts for defining the 
database’s structure and constraints. We presented the structures and constraints 
of the formal relational model in Chapter 5. The basic set of operations for the 
formal relational model is the relational algebra. These operations enable a user 
to specify basic retrieval requests as relational algebra expressions. The result of a 
retrieval query is a new relation. The algebra operations thus produce new rela-
tions, which can be further manipulated using operations of the same algebra. A 
sequence of relational algebra operations forms a relational algebra expression, 
whose result will also be a relation that represents the result of a database query 
(or retrieval request).

The relational algebra is very important for several reasons. First, it provides a 
formal foundation for relational model operations. Second, and perhaps more 
important, it is used as a basis for implementing and optimizing queries in the 
query processing and optimization modules that are integral parts of relational 
database management systems (RDBMSs), as we shall discuss in Chapters 18 
and 19. Third, some of its concepts are incorporated into the SQL standard 

chapter 8
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query language for RDBMSs. Although most commercial RDBMSs in use today 
do not provide user interfaces for relational algebra queries, the core operations 
and functions in the internal modules of most relational systems are based on 
relational algebra operations. We will define these operations in detail in Sec-
tions 8.1 through 8.4 of this chapter.

Whereas the algebra defines a set of operations for the relational model, the  
relational calculus provides a higher-level declarative language for specifying rela-
tional queries. In a relational calculus expression, there is no order of operations to 
specify how to retrieve the query result—only what information the result should 
contain. This is the main distinguishing feature between relational algebra and rela-
tional calculus. The relational calculus is important because it has a firm basis in 
mathematical logic and because the standard query language (SQL) for RDBMSs 
has some of its foundations in a variation of relational calculus known as the tuple 
relational calculus.1

The relational algebra is often considered to be an integral part of the relational data 
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is 
defined to be a set of tuples in the formal relational model (see Section 5.1). Set 
operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN 
PRODUCT (also known as CROSS PRODUCT). The other group consists of opera-
tions developed specifically for relational databases—these include SELECT, 
PROJECT, and JOIN, among others. First, we describe the SELECT and PROJECT 
operations in Section 8.1 because they are unary operations that operate on single 
relations. Then we discuss set operations in Section 8.2. In Section 8.3, we discuss 
JOIN and other complex binary operations, which operate on two tables by com-
bining related tuples (records) based on join conditions. The COMPANY relational 
database shown in Figure 5.6 is used for our examples.

Some common database requests cannot be performed with the original relational 
algebra operations, so additional operations were created to express these requests. 
These include aggregate functions, which are operations that can summarize data 
from the tables, as well as additional types of JOIN and UNION operations, known as 
OUTER JOINs and OUTER UNIONs. These operations, which were added to the origi-
nal relational algebra because of their importance to many database applications, 
are described in Section 8.4. We give examples of specifying queries that use rela-
tional operations in Section 8.5. Some of these same queries were used in Chap- 
ters 6 and 7. By using the same query numbers in this chapter, the reader can contrast 
how the same queries are written in the various query languages.

In Sections 8.6 and 8.7 we describe the other main formal language for relational 
databases, the relational calculus. There are two variations of relational calculus. 
The tuple relational calculus is described in Section 8.6 and the domain relational 
calculus is described in Section 8.7. Some of the SQL constructs discussed in 

1SQL is based on tuple relational calculus, but also incorporates some of the operations from the 
relational algebra and its extensions, as illustrated in Chapters 6, 7, and 9.



 8.1 Unary Relational Operations: SELECT and PROJECT  241

Chapters 6 and 7 are based on the tuple relational calculus. The relational calculus 
is a formal language, based on the branch of mathematical logic called predicate 
calculus.2 In tuple relational calculus, variables range over tuples, whereas in 
domain relational calculus, variables range over the domains (values) of attributes. 
In Appendix C we give an overview of the Query-By-Example (QBE) language, 
which is a graphical user-friendly relational language based on domain relational 
calculus. Section 8.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational 
languages, Sections 8.4, 8.6, and 8.7 may be skipped.

8.1  Unary Relational Operations:  
SELECT and PROJECT

8.1.1 The SELECT Operation
The SELECT operation is used to choose a subset of the tuples from a relation that 
satisfies a selection condition.3 We can consider the SELECT operation to be a filter 
that keeps only those tuples that satisfy a qualifying condition. Alternatively, we can 
consider the SELECT operation to restrict the tuples in a relation to only those tuples 
that satisfy the condition. The SELECT operation can also be visualized as a horizon-
tal partition of the relation into two sets of tuples—those tuples that satisfy the con-
dition and are selected, and those tuples that do not satisfy the condition and are 
filtered out. For example, to select the EMPLOYEE tuples whose department is 4, or 
those whose salary is greater than $30,000, we can individually specify each of these 
two conditions with a SELECT operation as follows:

σDno=4(EMPLOYEE) 
σSalary>30000(EMPLOYEE)

In general, the SELECT operation is denoted by

σ<selection condition>(R)

where the symbol σ (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression (condition) specified on the attributes of 
relation R. Notice that R is generally a relational algebra expression whose result is a 
relation—the simplest such expression is just the name of a database relation. The 
relation resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made up of a number 
of clauses of the form

<attribute name> <comparison op> <constant value>

2In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables 
and values—is assumed.
3The SELECT operation is different from the SELECT clause of SQL. The SELECT operation chooses 
tuples from a table, and is sometimes called a RESTRICT or FILTER operation.
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or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, ≤, >, ≥, ≠}, and <constant value> is a constant 
value from the attribute domain. Clauses can be connected by the standard Boolean 
operators and, or, and not to form a general selection condition. For example, to 
select the tuples for all employees who either work in department 4 and make over 
$25,000 per year, or work in department 5 and make over $30,000, we can specify 
the following SELECT operation:

σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result is shown in Figure 8.1(a).

Notice that all the comparison operators in the set {=, <, ≤, >, ≥, ≠} can apply to 
attributes whose domains are ordered values, such as numeric or date domains. 
Domains of strings of characters are also considered to be ordered based on the col-
lating sequence of the characters. If the domain of an attribute is a set of unordered 
values, then only the comparison operators in the set {=, ≠} can be used. An exam-
ple of an unordered domain is the domain Color = { ‘red’, ‘blue’, ‘green’, ‘white’, 
‘yellow’, …}, where no order is specified among the various colors. Some domains 
allow additional types of comparison operators; for example, a domain of character 
strings may allow the comparison operator SUBSTRING_OF.
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Figure 8.1 
Results of SELECT and PROJECT operations. (a) σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE). 
(b) πLname, Fname, Salary(EMPLOYEE). (c) πSex, Salary(EMPLOYEE).
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In general, the result of a SELECT operation can be determined as follows. The 
<selection condition> is applied independently to each individual tuple t in R. This 
is done by substituting each occurrence of an attribute Ai in the selection condition 
with its value in the tuple t[Ai]. If the condition evaluates to TRUE, then tuple t is 
selected. All the selected tuples appear in the result of the SELECT operation. The 
Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

 ■ (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; other-
wise, it is FALSE.

 ■ (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE; 
otherwise, it is FALSE.

 ■ (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover, 
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from 
a SELECT operation—its number of attributes—is the same as the degree of R. The 
number of tuples in the resulting relation is always less than or equal to the number 
of tuples in R. That is, |σc (R)| ≤ |R| for any condition C. The fraction of tuples 
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

σ<cond1>(σ<cond2>(R)) = σ<cond2>(σ<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can 
always combine a cascade (or sequence) of SELECT operations into a single SELECT 
operation with a conjunctive (AND) condition; that is,

σ<cond1>(σ<cond2>(... (σ<condn>(R)) ...)) = σ<cond1> AND<cond2> AND...AND <condn>(R)

In SQL, the SELECT condition is typically specified in the WHERE clause of a query. 
For example, the following operation:

σDno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE
WHERE Dno=4 AND Salary>25000;

8.1.2 The PROJECT Operation
If we think of a relation as a table, the SELECT operation chooses some of the rows 
from the table while discarding other rows. The PROJECT operation, on the other 
hand, selects certain columns from the table and discards the other columns. If we 
are interested in only certain attributes of a relation, we use the PROJECT operation 
to project the relation over these attributes only. Therefore, the result of the PROJECT 
operation can be visualized as a vertical partition of the relation into two relations: 
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one has the needed columns (attributes) and contains the result of the operation, 
and the other contains the discarded columns. For example, to list each employee’s 
first and last name and salary, we can use the PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

The resulting relation is shown in Figure 8.1(b). The general form of the PROJECT 
operation is

π<attribute list>(R)

where π (pi) is the symbol used to represent the PROJECT operation, and <attribute 
list> is the desired sublist of attributes from the attributes of relation R. Again, 
notice that R is, in general, a relational algebra expression whose result is a relation, 
which in the simplest case is just the name of a database relation. The result of the 
PROJECT operation has only the attributes specified in <attribute list> in the same 
order as they appear in the list. Hence, its degree is equal to the number of attributes 
in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are 
likely to occur. The PROJECT operation removes any duplicate tuples, so the 
result of the PROJECT operation is a set of distinct tuples, and hence a valid 
relation. This is known as duplicate elimination. For example, consider the 
following PROJECT operation:

πSex, Salary(EMPLOYEE)

The result is shown in Figure 8.1(c). Notice that the tuple <‘F’, 25000> appears only 
once in Figure 8.1(c), even though this combination of values appears twice in the 
EMPLOYEE relation. Duplicate elimination involves sorting or some other technique to 
detect duplicates and thus adds more processing. If duplicates are not eliminated, the 
result would be a multiset or bag of tuples rather than a set. This was not permitted in 
the formal relational model but is allowed in SQL (see Section 6.3).

The number of tuples in a relation resulting from a PROJECT operation is always 
less than or equal to the number of tuples in R. If the projection list is a superkey of 
R—that is, it includes some key of R—the resulting relation has the same number of 
tuples as R. Moreover,

π<list1> (π<list2>(R)) = π<list1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is 
an incorrect expression. It is also noteworthy that commutativity does not hold 
on PROJECT.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For 
example, the following operation:

πSex, Salary(EMPLOYEE)

would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary
FROM EMPLOYEE
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Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-
cates will not be eliminated. This option is not available in the formal relational 
algebra, but the algebra can be extended to include this operation and allow rela-
tions to be multisets; we do not discuss these extensions here.

8.1.3 Sequences of Operations and the RENAME Operation
The relations shown in Figure 8.1 that depict operation results do not have any 
names. In general, for most queries, we need to apply several relational algebra 
operations one after the other. Either we can write the operations as a single  
relational algebra expression by nesting the operations, or we can apply one operation 
at a time and create intermediate result relations. In the latter case, we must give 
names to the relations that hold the intermediate results. For example, to retrieve 
the first name, last name, and salary of all employees who work in department 
number 5, we must apply a SELECT and a PROJECT operation. We can write a sin-
gle relational algebra expression, also known as an in-line expression, as follows:

πFname, Lname, Salary(σDno=5(EMPLOYEE))

Figure 8.2(a) shows the result of this in-line relational algebra expression. Alterna-
tively, we can explicitly show the sequence of operations, giving a name to each 
intermediate relation, and using the assignment operation, denoted by ← (left 
arrow), as follows:

DEP5_EMPS ← σDno=5(EMPLOYEE)
RESULT ← πFname, Lname, Salary(DEP5_EMPS)

It is sometimes simpler to break down a complex sequence of operations by specify-
ing intermediate result relations than to write a single relational algebra expression. 
We can also use this technique to rename the attributes in the intermediate and 
result relations. This can be useful in connection with more complex operations 
such as UNION and JOIN, as we shall see. To rename the attributes in a relation, we 
simply list the new attribute names in parentheses, as in the following example:

TEMP ← σDno=5(EMPLOYEE)
R(First_name, Last_name, Salary) ← πFname, Lname, Salary(TEMP)

These two operations are illustrated in Figure 8.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a 
SELECT operation are the same as those in the original relation and in the same 
order. For a PROJECT operation with no renaming, the resulting relation has the 
same attribute names as those in the projection list and in the same order in which 
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general 
RENAME operation when applied to a relation R of degree n is denoted by any of the 
following three forms:

ρS(B1, B2, ... , Bn)(R)   or   ρS(R)   or   ρ(B1, B2, ... , Bn)(R)
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where the symbol ρ (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and B1, B2, … , Bn are the new attribute names. The first expression 
renames both the relation and its attributes, the second renames the relation only, 
and the third renames the attributes only. If the attributes of R are (A1, A2, … , An) 
in that order, then each Ai is renamed as Bi.

In SQL, a single query typically represents a complex relational algebra expression. 
Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

8.2  Relational Algebra Operations  
from Set Theory

8.2.1 The UNION, INTERSECTION, and MINUS Operations
The next group of relational algebra operations are the standard mathematical 
operations on sets. For example, to retrieve the Social Security numbers of all 

(b)

(a)

TEMP

Fname
John
Franklin

Ramesh
Joyce

Minit
B
T

K
A

Lname
Smith
Wong

Narayan
English

Ssn
123456789
333445555

666884444
453453453

Bdate
1965-01-09
1955-12-08

1962-09-15
1972-07-31

Address
731 Fondren, Houston,TX
638 Voss, Houston,TX

975 Fire Oak, Humble,TX
5631 Rice, Houston,  TX

Sex
M
M

M
F

Salary
30000
40000

38000
25000

Dno
5
5
5
5

Super_ssn
333445555
888665555

333445555
333445555

Smith
Wong

Narayan
English

30000
40000

38000
25000

Fname Lname Salary
John
Franklin

Ramesh
Joyce

Smith
Wong

Narayan
English

30000
40000

38000
25000

First_name Last_name Salary
John
Franklin

Ramesh
Joyce

R

Figure 8.2 
Results of a sequence of operations. (a) πFname, Lname, Salary (σDno=5(EMPLOYEE)).  
(b) Using intermediate relations and renaming of attributes.
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employees who either work in department 5 or directly supervise an employee who 
works in department 5, we can use the UNION operation as follows:4

DEP5_EMPS ← σDno=5(EMPLOYEE) 
RESULT1 ← πSsn(DEP5_EMPS) 
RESULT2(Ssn) ← πSuper_ssn(DEP5_EMPS) 
RESULT ← RESULT1 ∪ RESULT2

The relation RESULT1 has the Ssn of all employees who work in department 5, 
whereas RESULT2 has the Ssn of all employees who directly supervise an employee 
who works in department 5. The UNION operation produces the tuples that are in 
either RESULT1 or RESULT2 or both (see Figure 8.3) while eliminating any dupli-
cates. Thus, the Ssn value ‘333445555’ appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called 
MINUS or EXCEPT). These are binary operations; that is, each is applied to two sets 
(of tuples). When these operations are adapted to relational databases, the two rela-
tions on which any of these three operations are applied must have the same type of 
tuples; this condition has been called union compatibility or type compatibility. 
Two relations R(A1, A2, … , An) and S(B1, B2, … , Bn) are said to be union  
compatible (or type compatible) if they have the same degree n and if dom(Ai) = 
dom(Bi) for 1 ≤ i ≤ n. This means that the two relations have the same number of 
attributes and each corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE 
on two union-compatible relations R and S as follows:

 ■ UNION: The result of this operation, denoted by R ∪ S, is a relation that 
includes all tuples that are either in R or in S or in both R and S. Duplicate 
tuples are eliminated.

 ■ INTERSECTION: The result of this operation, denoted by R ∩ S, is a relation 
that includes all tuples that are in both R and S.

 ■ SET DIFFERENCE (or MINUS): The result of this operation, denoted by R – S, 
is a relation that includes all tuples that are in R but not in S.

4As a single relational algebra expression, this becomes Result ← πSsn (σDno=5 (EMPLOYEE) ) ∪ 
πSuper_ssn (σDno=5 (EMPLOYEE)).

RESULT1

Ssn

123456789

333445555

666884444

453453453

RESULT

Ssn

123456789

333445555

666884444

453453453

888665555

RESULT2

Ssn

333445555

888665555

Figure 8.3 
Result of the UNION operation 
RESULT ← RESULT1 ∪ RESULT2.
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We will adopt the convention that the resulting relation has the same attribute 
names as the first relation R. It is always possible to rename the attributes in the 
result using the rename operator.

Figure 8.4 illustrates the three operations. The relations STUDENT and INSTRUCTOR 
in Figure 8.4(a) are union compatible and their tuples represent the names of stu-
dents and the names of instructors, respectively. The result of the UNION operation 
in Figure 8.4(b) shows the names of all students and instructors. Note that duplicate 
tuples appear only once in the result. The result of the INTERSECTION operation 
(Figure 8.4(c)) includes only those who are both students and instructors.

Notice that both UNION and INTERSECTION are commutative operations; that is,

R ∪ S = S ∪ R and R ∩ S = S ∩ R

Both UNION and INTERSECTION can be treated as n-ary operations applicable to 
any number of relations because both are also associative operations; that is,

R ∪ (S ∪ T ) = (R ∪ S) ∪ T and (R ∩ S) ∩ T = R ∩ (S ∩ T )

STUDENT(a)

Fn

Susan

Ramesh

Johnny

Barbara

Amy

Jimmy

Ernest

Ln

Yao

Shah

Kohler

Jones

Ford

Wang

Gilbert

(b) Fn

Susan

Ramesh

Johnny

Barbara

Amy

Jimmy
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Ln

Yao

Shah
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Jones

Ford

Wang

Gilbert

John Smith

Ricardo Browne

Francis Johnson

(d) Fn

Johnny

Barbara
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Wang

Gilbert

(c) Fn

Susan

Ramesh

Ln

Yao

Shah

INSTRUCTOR

Fname

John

Ricardo

Susan
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Ramesh
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Smith

Browne

Yao

Johnson

Shah

(e) Fname

John

Ricardo

Francis

Lname

Smith

Browne

Johnson

Figure 8.4 
The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.  
(b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT – INSTRUCTOR.  
(e) INSTRUCTOR – STUDENT.
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The MINUS operation is not commutative; that is, in general,

R − S ≠ S − R

Figure 8.4(d) shows the names of students who are not instructors, and Fig- 
ure 8.4(e) shows the names of instructors who are not students.

Note that INTERSECTION can be expressed in terms of union and set difference as 
follows:

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)

In SQL, there are three operations—UNION, INTERSECT, and EXCEPT—that corre-
spond to the set operations described here. In addition, there are multiset opera-
tions (UNION ALL, INTERSECT ALL, and EXCEPT ALL) that do not eliminate 
duplicates (see Section 6.3.4).

8.2.2  The CARTESIAN PRODUCT (CROSS PRODUCT) 
Operation

Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSS 
PRODUCT or CROSS JOIN—which is denoted by ×. This is also a binary set opera-
tion, but the relations on which it is applied do not have to be union compatible. In 
its binary form, this set operation produces a new element by combining every 
member (tuple) from one relation (set) with every member (tuple) from the other 
relation (set). In general, the result of R(A1, A2, … , An) × S(B1, B2, … , Bm) is a rela-
tion Q with degree n + m attributes Q(A1, A2, … , An, B1, B2, … , Bm), in that order. 
The resulting relation Q has one tuple for each combination of tuples—one from R 
and one from S. Hence, if R has nR tuples (denoted as |R| = nR), and S has nS tuples, 
then R × S will have nR * nS tuples.

The n-ary CARTESIAN PRODUCT operation is an extension of the above concept, 
which produces new tuples by concatenating all possible combinations of tuples 
from n underlying relations. The CARTESIAN PRODUCT operation applied by itself 
is generally meaningless. It is mostly useful when followed by a selection that 
matches values of attributes coming from the component relations. For example, 
suppose that we want to retrieve a list of names of each female employee’s depen-
dents. We can do this as follows:

FEMALE_EMPS ← σSex=‘F’(EMPLOYEE) 
EMPNAMES ← πFname, Lname, Ssn(FEMALE_EMPS) 
EMP_DEPENDENTS ← EMPNAMES × DEPENDENT 
ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS) 
RESULT ← πFname, Lname, Dependent_name(ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 8.5. 
The EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT 
operation to EMPNAMES from Figure 8.5 with DEPENDENT from Figure 5.6. In 
EMP_DEPENDENTS, every tuple from EMPNAMES is combined with every tuple 
from DEPENDENT, giving a result that is not very meaningful (every dependent is 
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Fname
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Lname Ssn Essn Dependent_name Sex . . .Bdate
Jennifer Wallace Abner987654321 987654321 M . . .1942-02-28
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RESULT

Lname Dependent_name
Jennifer Wallace Abner

Figure 8.5 
The CARTESIAN PRODUCT (CROSS PRODUCT) operation.
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combined with every female employee). We want to combine a female employee 
tuple only with her particular dependents—namely, the DEPENDENT tuples whose 
Essn value match the Ssn value of the EMPLOYEE tuple. The ACTUAL_DEPENDENTS 
relation accomplishes this. The EMP_DEPENDENTS relation is a good example of 
the case where relational algebra can be correctly applied to yield results that make 
no sense at all. It is the responsibility of the user to make sure to apply only mean-
ingful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-
tions. We can SELECT related tuples only from the two relations by specifying an 
appropriate selection condition after the Cartesian product, as we did in the pre-
ceding example. Because this sequence of CARTESIAN PRODUCT followed by 
SELECT is quite commonly used to combine related tuples from two relations, a 
special operation, called JOIN, was created to specify this sequence as a single opera-
tion. We discuss the JOIN operation next.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in 
joined tables (see Section 7.1.6). Alternatively, if there are two tables in the FROM 
clause and there is no corresponding join condition in the WHERE clause of the 
SQL query, the result will also be the CARTESIAN PRODUCT of the two tables (see 
Q10 in Section 6.3.3).

8.3  Binary Relational Operations:  
JOIN and DIVISION

8.3.1 The JOIN Operation
The JOIN operation, denoted by , is used to combine related tuples from two rela-
tions into single “longer” tuples. This operation is very important for any relational 
database with more than a single relation because it allows us to process relation-
ships among relations. To illustrate JOIN, suppose that we want to retrieve the name 
of the manager of each department. To get the manager’s name, we need to com-
bine each department tuple with the employee tuple whose Ssn value matches the 
Mgr_ssn value in the department tuple. We do this by using the JOIN operation and 
then projecting the result over the necessary attributes, as follows:

DEPT_MGR ← DEPARTMENT  Mgr_ssn=Ssn EMPLOYEE 
RESULT ← πDname, Lname, Fname(DEPT_MGR)

The first operation is illustrated in Figure 8.6. Note that Mgr_ssn is a foreign key of 
the DEPARTMENT relation that references Ssn, the primary key of the EMPLOYEE 
relation. This referential integrity constraint plays a role in having matching tuples 
in the referenced relation EMPLOYEE.

The JOIN operation can be specified as a CARTESIAN PRODUCT operation fol-
lowed by a SELECT operation. However, JOIN is very important because it is 
used frequently when specifying database queries. Consider the earlier example 
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illustrating CARTESIAN PRODUCT, which included the following sequence of 
operations:

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT 
ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS)

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_DEPENDENTS ← EMPNAMES  Ssn=EssnDEPENDENT

The general form of a JOIN operation on two relations5 R(A1, A2, … , An) and 
S(B1, B2, … , Bm) is

R  <join condition>S

The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, … , An, B1, B2, 
… , Bm) in that order; Q has one tuple for each combination of tuples—one from 
R and one from S—whenever the combination satisfies the join condition. This is 
the main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combi-
nations of tuples satisfying the join condition appear in the result, whereas in the 
CARTESIAN PRODUCT all combinations of tuples are included in the result. The 
join condition is specified on attributes from the two relations R and S and is 
evaluated for each combination of tuples. Each tuple combination for which the 
join condition evaluates to TRUE is included in the resulting relation Q as a single 
combined tuple.

A general join condition is of the form

<condition> AND <condition> AND … AND <condition>

where each <condition> is of the form Ai θ Bj, Ai is an attribute of R, Bj is an attri-
bute of S, Ai and Bj have the same domain, and θ (theta) is one of the comparison 
operators {=, <, ≤, >, ≥, ≠}. A JOIN operation with such a general join condition is 
called a THETA JOIN. Tuples whose join attributes are NULL or for which the join 
condition is FALSE do not appear in the result. In that sense, the JOIN operation 
does not necessarily preserve all of the information in the participating relations, 
because tuples that do not get combined with matching ones in the other relation 
do not appear in the result.

DEPT_MGR

Dname Dnumber Mgr_ssn Fname Minit Lname Ssn

Research 5 333445555 Franklin T Wong 333445555

Administration 4 987654321 Jennifer S Wallace 987654321

Headquarters 1 888665555 James E Borg 888665555

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 8.6 
Result of the JOIN operation DEPT_MGR ← DEPARTMENT  Mgr_ssn=SsnEMPLOYEE.

5Again, notice that R and S can be any relations that result from general relational algebra expressions.
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8.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN
The most common use of JOIN involves join conditions with equality comparisons 
only. Such a JOIN, where the only comparison operator used is =, is called an 
EQUIJOIN. Both previous examples were EQUIJOINs. Notice that in the result of an 
EQUIJOIN we always have one or more pairs of attributes that have identical values 
in every tuple. For example, in Figure 8.6, the values of the attributes Mgr_ssn and 
Ssn are identical in every tuple of DEPT_MGR (the EQUIJOIN result) because the 
equality join condition specified on these two attributes requires the values to be 
identical in every tuple in the result. Because one of each pair of attributes with 
identical values is superfluous, a new operation called NATURAL JOIN—denoted  
by *—was created to get rid of the second (superfluous) attribute in an EQUIJOIN 
condition.6 The standard definition of NATURAL JOIN requires that the two join 
attributes (or each pair of join attributes) have the same name in both relations. If 
this is not the case, a renaming operation is applied first.

Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that 
controls the project. In the following example, first we rename the Dnumber attribute 
of DEPARTMENT to Dnum—so that it has the same name as the Dnum attribute in 
PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT ← PROJECT * ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT 
as follows:

DEPT ← ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT) 
PROJ_DEPT ← PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation, 
because it is the only attribute with the same name in both relations. The resulting 
relation is illustrated in Figure 8.7(a). In the PROJ_DEPT relation, each tuple combines 
a PROJECT tuple with the DEPARTMENT tuple for the department that controls the 
project, but only one join attribute value is kept.

If the attributes on which the natural join is specified already have the same names 
in both relations, renaming is unnecessary. For example, to apply a natural join 
on the Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient 
to write

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 8.7(b), which combines each department 
with its locations and has one tuple for each location. In general, the join condition 
for NATURAL JOIN is constructed by equating each pair of join attributes that have 
the same name in the two relations and combining these conditions with AND. 
There can be a list of join attributes from each relation, and each corresponding 
pair must have the same name.

6NATURAL JOIN is basically an EQUIJOIN followed by the removal of the superfluous attributes.
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Notice that if no combination of tuples satisfies the join condition, the result of a 
JOIN is an empty relation with zero tuples. In general, if R has nR tuples and S has 
nS tuples, the result of a JOIN operation R  <join condition> S will have between zero 
and nR * nS tuples. The expected size of the join result divided by the maximum 
size nR * nS leads to a ratio called join selectivity, which is a property of each join 
condition. If there is no join condition, all combinations of tuples qualify and the 
JOIN degenerates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or 
CROSS JOIN.

As we can see, a single JOIN operation is used to combine data from two relations so 
that related information can be presented in a single table. These operations are 
also known as inner joins, to distinguish them from a different join variation called 
outer joins (see Section 8.4.4). Informally, an inner join is a type of match-and-
combine operation defined formally as a combination of CARTESIAN PRODUCT 
and SELECTION. Note that sometimes a join may be specified between a relation 
and itself, as we will illustrate in Section 8.4.3. The NATURAL JOIN or EQUIJOIN 
operation can also be specified among multiple tables, leading to an n-way join. For 
example, consider the following three-way join:

((PROJECT  Dnum=DnumberDEPARTMENT)  Mgr_ssn=SsnEMPLOYEE)

Pname

PROJ_DEPT

(a)

ProductX

ProductY

ProductZ

Computerization

Reorganization

Newbenefits

3

1

2

30

10

20

Pnumber

Houston

Bellaire

Sugarland

Stafford

Stafford

Houston

Plocation

5

5 333445555

5

4

4

1

Dnum

Research

Research

Research

Administration

Administration

Headquarters

Dname

333445555

333445555

987654321

987654321

888665555

1988-05-22

1988-05-22

1988-05-22

1995-01-01

1995-01-01

1981-06-19

Mgr_ssn Mgr_start_date

Dname

DEPT_LOCS

(b)

5

1

4

5
5

Dnumber

333445555

888665555

987654321

333445555
333445555

Mgr_ssn

1988-05-22

1981-06-19

1995-01-01

Research

Research

Research

Administration

1988-05-22
1988-05-22

Headquarters Houston

Bellaire

Stafford

Sugarland
Houston

LocationMgr_start_date

Figure 8.7 
Results of two natural join operations. (a) proj_dept ← project * dept.  
(b) dept_locs ← department * dept_locations.
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This combines each project tuple with its controlling department tuple into a single 
tuple, and then combines that tuple with an employee tuple that is the department 
manager. The net result is a consolidated relation in which each tuple contains this 
project-department-manager combined information.

In SQL, JOIN can be realized in several different ways. The first method is to specify 
the <join conditions> in the WHERE clause, along with any other selection condi-
tions. This is very common and is illustrated by queries Q1, Q1A, Q1B, Q2, and Q8 
in Sections 6.3.1 and 6.3.2, as well as by many other query examples in Chapters 6 
and 7. The second way is to use a nested relation, as illustrated by queries Q4A 
and Q16 in Section 7.1.2. Another way is to use the concept of joined tables, as 
illustrated by the queries Q1A, Q1B, Q8B, and Q2A in Section 7.1.6. The construct 
of joined tables was added to SQL2 to allow the user to specify explicitly all the 
various types of joins, because the other methods were more limited. It also allows 
the user to clearly distinguish join conditions from the selection conditions in the 
WHERE clause.

8.3.3 A Complete Set of Relational Algebra Operations
It has been shown that the set of relational algebra operations {σ, π, ∪, ρ, –, ×} is a 
complete set; that is, any of the other original relational algebra operations can be 
expressed as a sequence of operations from this set. For example, the INTERSECTION 
operation can be expressed by using UNION and MINUS as follows:

R ∩ S ≡ (R ∪ S) – ((R – S) ∪ (S – R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to 
specify this complex expression every time we wish to specify an intersection. As 
another example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-
lowed by a SELECT operation, as we discussed:

R  <condition>S ≡ σ<condition>(R × S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by 
RENAME and followed by SELECT and PROJECT operations. Hence, the various 
JOIN operations are also not strictly necessary for the expressive power of the rela-
tional algebra. However, they are important to include as separate operations 
because they are convenient to use and are very commonly applied in database 
applications. Other operations have been included in the basic relational algebra 
for convenience rather than necessity. We discuss one of these—the DIVISION 
operation—in the next section.

8.3.4 The DIVISION Operation
The DIVISION operation, denoted by ÷, is useful for a special kind of query that 
sometimes occurs in database applications. An example is Retrieve the names of 
employees who work on all the projects that ‘John Smith’ works on. To express 
this query using the DIVISION operation, proceed as follows. First, retrieve the 
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list of project numbers that ‘John Smith’ works on in the intermediate relation 
SMITH_PNOS:

SMITH ← σFname=‘John’ AND Lname=‘Smith’(EMPLOYEE) 
SMITH_PNOS ← πPno(WORKS_ON  Essn=SsnSMITH)

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee 
whose Ssn is Essn works on the project whose number is Pno in the intermediate 
relation SSN_PNOS:

SSN_PNOS ← πEssn, Pno(WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired 
employees’ Social Security numbers:

SSNS(Ssn) ← SSN_PNOS ÷ SMITH_PNOS 
RESULT ← πFname, Lname(SSNS * EMPLOYEE)

The preceding operations are shown in Figure 8.8(a).

In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the 
attributes of S are a subset of the attributes of R; that is, X ⊆ Z. Let Y be the set of 
attributes of R that are not attributes of S; that is, Y = Z – X (and hence Z = X ∪ Y). 
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123456789

123456789
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453453453
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Figure 8.8 
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T ← R ÷ S.
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The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR appear in 
R with tR [Y] = t, and with tR [X] = tS for every tuple tS in S. This means that, for a 
tuple t to appear in the result T of the DIVISION, the values in t must appear in R in 
combination with every tuple in S. Note that in the formulation of the DIVISION 
operation, the tuples in the denominator relation S restrict the numerator rela-
tion R by selecting those tuples in the result that match all values present in the 
denominator. It is not necessary to know what those values are as they can be 
computed by another operation, as illustrated in the SMITH_PNOS relation in 
the previous example.

Figure 8.8(b) illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}. 
Notice that the tuples (values) b1 and b4 appear in R in combination with all three 
tuples in S; that is why they appear in the resulting relation T. All other values of B 
in R do not appear with all the tuples in S and are not selected: b2 does not appear 
with a2, and b3 does not appear with a1.

The DIVISION operation can be expressed as a sequence of π, ×, and – operations as 
follows:

T1 ← πY(R) 
T2 ← πY((S × T1) – R) 
T ← T1 – T2

The DIVISION operation is defined for convenience for dealing with queries that 
involve universal quantification (see Section 8.6.7) or the all condition. Most 
RDBMS implementations with SQL as the primary query language do not directly 
implement division. SQL has a roundabout way of dealing with the type of query 
just illustrated (see Section 7.1.4, queries Q3A and Q3B). Table 8.1 lists the various 
basic relational algebra operations we have discussed.

8.3.5 Notation for Query Trees
In this section we describe a notation typically used in relational DBMSs (RDBMSs) 
to represent queries internally. The notation is called a query tree or sometimes it is 
known as a query evaluation tree or query execution tree. It includes the relational 
algebra operations being executed and is used as a possible data structure for the 
internal representation of the query in an RDBMS.

A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the 
query tree consists of executing an internal node operation whenever its operands 
(represented by its child nodes) are available, and then replacing that internal node 
by the relation that results from executing the operation. The execution terminates 
when the root node is executed and produces the result relation for the query.

Figure 8.9 shows a query tree for Query 2 (see Section 6.3.1): For every project 
located in ‘Stafford’, list the project number, the controlling department number, and 
the department manager’s last name, address, and birth date. This query is specified 
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Table 8.1  Operations of Relational Algebra

OPERATION PURPOSE NOTATION

SELECT Selects all tuples that satisfy the selection  
condition from a relation R.

σ<selection condition>(R)

PROJECT Produces a new relation with only some of the 
attributes of R, and removes duplicate tuples.

π<attribute list>(R)

THETA JOIN Produces all combinations of tuples from R1  
and R2 that satisfy the join condition.

R1  <join condition> R2

EQUIJOIN Produces all the combinations of tuples from  
R1 and R2 that satisfy a join condition with  
only equality comparisons.

R1  <join condition> R2, OR 
R1  (<join attributes 1>),  

(<join attributes 2>) R2

NATURAL JOIN Same as EQUIJOIN except that the join attributes 
of R2 are not included in the resulting relation;  
if the join attributes have the same names, they 
do not have to be specified at all.

R1*<join condition> R2,  
OR R1* (<join attributes 1>),  

(<join attributes 2>)  
R2 OR R1 * R2

UNION Produces a relation that includes all the tuples  
in R1 or R2 or both R1 and R2; R1 and R2 must  
be union compatible.

R1 ∪ R2

INTERSECTION Produces a relation that includes all the tuples  
in both R1 and R2; R1 and R2 must be union 
compatible.

R1 ∩ R2

DIFFERENCE Produces a relation that includes all the tuples  
in R1 that are not in R2; R1 and R2 must be  
union compatible.

R1 – R2

CARTESIAN PRODUCT Produces a relation that has the attributes of  
R1 and R2 and includes as tuples all possible 
combinations of tuples from R1 and R2.

R1 × R2

DIVISION Produces a relation R(X) that includes all tuples 
t[X] in R1(Z) that appear in R1 in combination 
with every tuple from R2(Y), where Z = X ∪ Y.

R1(Z) ÷ R2(Y)

on the relational schema of Figure 5.5 and corresponds to the following relational 
algebra expression:

πPnumber, Dnum, Lname, Address, Bdate(((σPlocation=‘Stafford’(PROJECT))  
 Dnum=Dnumber(DEPARTMENT))  Mgr_ssn=Ssn(EMPLOYEE))

In Figure 8.9, the three leaf nodes P, D, and E represent the three relations PROJECT, 
DEPARTMENT, and EMPLOYEE. The relational algebra operations in the expression are 
represented by internal tree nodes. The query tree signifies an explicit order of execu-
tion in the following sense. In order to execute Q2, the node marked (1) in Figure 8.9 
must begin execution before node (2) because some resulting tuples of opera- 
tion (1) must be available before we can begin to execute operation (2). Similarly, 
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node (2) must begin to execute and produce results before node (3) can start execution, 
and so on. In general, a query tree gives a good visual representation and understand-
ing of the query in terms of the relational operations it uses and is recommended as 
an additional means for expressing queries in relational algebra. We will revisit query 
trees when we discuss query processing and optimization in Chapters 18 and 19.

8.4 Additional Relational Operations
Some common database requests—which are needed in commercial applications 
for RDBMSs—cannot be performed with the original relational algebra operations 
described in Sections 8.1 through 8.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of 
the original relational algebra.

8.4.1 Generalized Projection
The generalized projection operation extends the projection operation by allowing 
functions of attributes to be included in the projection list. The generalized form 
can be expressed as:

πF1, F2, ..., Fn (R)

where F1, F2, … , Fn are functions over the attributes in relation R and may involve 
arithmetic operations and constant values. This operation is helpful when devel-
oping reports where computed values have to be produced in the columns of a 
query result.

Figure 8.9 
Query tree corresponding 
to the relational algebra 
expression for Q2.

(1)

(2)

(3)

P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdateπ

D.Mgr_ssn=E.Ssn

P.Dnum=D.Dnumber

σ P.Plocation= ‘Stafford’

E

D

P

EMPLOYEE

DEPARTMENT

PROJECT
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As an example, consider the relation

EMPLOYEE (Ssn, Salary, Deduction, Years_service)

A report may be required to show

Net Salary = Salary – Deduction, 
Bonus = 2000 * Years_service, and 
Tax = 0.25 * Salary

Then a generalized projection combined with renaming may be used as follows:

REPORT ← ρ(Ssn, Net_salary, Bonus, Tax)(πSsn, Salary – Deduction, 2000 * Years_service,  

0.25 * Salary(EMPLOYEE))

8.4.2 Aggregate Functions and Grouping
Another type of request that cannot be expressed in the basic relational algebra is 
to specify mathematical aggregate functions on collections of values from the 
database. Examples of such functions include retrieving the average or total salary 
of all employees or the total number of employee tuples. These functions are used 
in simple statistical queries that summarize information from the database 
tuples. Common functions applied to collections of numeric values include SUM, 
AVERAGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting 
tuples or values.

Another common type of request involves grouping the tuples in a relation by the 
value of some of their attributes and then applying an aggregate function indepen-
dently to each group. An example would be to group EMPLOYEE tuples by Dno, so 
that each group includes the tuples for employees working in the same department. 
We can then list each Dno value along with, say, the average salary of employees 
within the department, or the number of employees who work in the department.

We can define an AGGREGATE FUNCTION operation, using the symbol I (pro-
nounced script F)7, to specify these types of requests as follows:

<grouping attributes> ℑ <function list> (R)

where <grouping attributes> is a list of attributes of the relation specified in R, and 
<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function> 
is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM, MINIMUM, 
COUNT—and <attribute> is an attribute of the relation specified by R. The resulting 
relation has the grouping attributes plus one attribute for each element in the function 
list. For example, to retrieve each department number, the number of employees in 
the department, and their average salary, while renaming the resulting attributes as 
indicated below, we write:

ρR(Dno, No_of_employees, Average_sal) (Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE))

7There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A” 
is used.
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The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown in 
Figure 8.10(a).

In the preceding example, we specified a list of attribute names—between parenthe-
ses in the RENAME operation—for the resulting relation R. If no renaming is applied, 
then the attributes of the resulting relation that correspond to the function list will 
each be the concatenation of the function name with the attribute name in the form 
<function>_<attribute>.8 For example, Figure 8.10(b) shows the result of the fol-
lowing operation:

Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE)

If no grouping attributes are specified, the functions are applied to all the tuples  
in the relation, so the resulting relation has a single tuple only. For example, Fig- 
ure 8.10(c) shows the result of the following operation:

ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE)

It is important to note that, in general, duplicates are not eliminated when an 
aggregate function is applied; this way, the normal interpretation of functions such 
as SUM and AVERAGE is computed.9 However, NULL values are not considered in 
the aggregation, as we discussed in Section 7.1.7. It is worth emphasizing that the 
result of applying an aggregate function is a relation, not a scalar number—even 
if it has a single value. This makes the relational algebra a closed mathematical 
system.

8Note that this is an arbitrary notation, consistent with what SQL would do.
9In SQL, the option of eliminating duplicates before applying the aggregate function is available by 
including the keyword DISTINCT (see Section Section 4.4.4).
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Figure 8.10 
The aggregate function operation.

a. ρR(Dno, No_of_employees, Average_sal)(Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)).

b. Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).

c. ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).
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8.4.3 Recursive Closure Operations
Another type of operation that, in general, cannot be specified in the basic original 
relational algebra is recursive closure. This operation is applied to a recursive  
relationship between tuples of the same type, such as the relationship between an 
employee and a supervisor. This relationship is described by the foreign key  
Super_ssn of the EMPLOYEE relation in Figures 5.5 and 5.6, and it relates each 
employee tuple (in the role of supervisee) to another employee tuple (in the role of 
supervisor). An example of a recursive operation is to retrieve all supervisees of an 
employee e at all levels—that is, all employees e′ directly supervised by e, all employ-
ees e′ℑ directly supervised by each employee e′, all employees e″′ directly super-
vised by each employee e″, and so on.

It is relatively straightforward in the relational algebra to specify all employees 
supervised by e at a specific level by joining the table with itself one or more 
times. However, it is difficult to specify all supervisees at all levels. For example, 
to specify the Ssns of all employees e′ directly supervised—at level one—by the 
employee e whose name is ‘James Borg’ (see Figure 5.6), we can apply the follow-
ing operation:

BORG_SSN ← πSsn(σFname=‘James’ AND Lname=‘Borg’(EMPLOYEE)) 
SUPERVISION(Ssn1, Ssn2) ← πSsn,Super_ssn(EMPLOYEE) 
RESULT1(Ssn) ← πSsn1(SUPERVISION  Ssn2=SsnBORG_SSN)

To retrieve all employees supervised by Borg at level 2—that is, all employees e″ 
supervised by some employee e′ who is directly supervised by Borg—we can apply 
another JOIN to the result of the first query, as follows:

RESULT2(Ssn) ← πSsn1(SUPERVISION  Ssn2=SsnRESULT1)

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we can 
apply the UNION operation to the two results, as follows:

RESULT ← RESULT2 ∪ RESULT1

The results of these queries are illustrated in Figure 8.11. Although it is possible to 
retrieve employees at each level and then take their UNION, we cannot, in general, 
specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without 
utilizing a looping mechanism unless we know the maximum number of levels.10 

An operation called the transitive closure of relations has been proposed to com-
pute the recursive relationship as far as the recursion proceeds.

8.4.4 OUTER JOIN Operations
Next, we discuss some additional extensions to the JOIN operation that are nec-
essary to specify certain types of queries. The JOIN operations described earlier 
match tuples that satisfy the join condition. For example, for a NATURAL JOIN 

10The SQL3 standard includes syntax for recursive closure.
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operation R * S, only tuples from R that have matching tuples in S—and vice 
versa—appear in the result. Hence, tuples without a matching (or related) tuple 
are eliminated from the JOIN result. Tuples with NULL values in the join attri-
butes are also eliminated. This type of join, where tuples with no match are elim-
inated, is known as an inner join. The join operations we described earlier in 
Section 8.3 are all inner joins. This amounts to the loss of information if the user 
wants the result of the JOIN to include all the tuples in one or more of the com-
ponent relations.

A set of operations, called outer joins, were developed for the case where the user 
wants to keep all the tuples in R, or all those in S, or all those in both relations in 
the result of the JOIN, regardless of whether or not they have matching tuples in 
the other relation. This satisfies the need of queries in which tuples from two 
tables are to be combined by matching corresponding rows, but without losing 
any tuples for lack of matching values. For example, suppose that we want a list of 
all employee names as well as the name of the departments they manage if they 
happen to manage a department; if they do not manage one, we can indicate it 
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with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by , to 
retrieve the result as follows:

TEMP ← (EMPLOYEE  Ssn=Mgr_ssnDEPARTMENT) 
RESULT ← πFname, Minit, Lname, Dname(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R  S; 
if no matching tuple is found in S, then the attributes of S in the join result are filled or 
padded with NULL values. The result of these operations is shown in Figure 8.12.

A similar operation, RIGHT OUTER JOIN, denoted by , keeps every tuple in the 
second, or right, relation S in the result of R  S. A third operation, FULL OUTER 
JOIN, denoted by , keeps all tuples in both the left and the right relations when no 
matching tuples are found, padding them with NULL values as needed. The three 
outer join operations are part of the SQL2 standard (see Section 7.1.6). These oper-
ations were provided later as an extension of relational algebra in response to the 
typical need in business applications to show related information from multiple 
tables exhaustively. Sometimes a complete reporting of data from multiple tables is 
required whether or not there are matching values.

8.4.5 The OUTER UNION Operation
The OUTER UNION operation was developed to take the union of tuples from two 
relations that have some common attributes, but are not union (type) compatible. 
This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z) 
that are partially compatible, meaning that only some of their attributes, say X, are 
union compatible. The attributes that are union compatible are represented only 
once in the result, and those attributes that are not union compatible from either 
relation are also kept in the result relation T(X, Y, Z). It is therefore the same as a 
FULL OUTER JOIN on the common attributes.

Two tuples t1 in R and t2 in S are said to match if t1[X] = t2[X]. These will be com-
bined (unioned) into a single tuple in t. Tuples in either relation that have no 
matching tuple in the other relation are padded with NULL values. For example, an 
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Figure 8.12 
The result of a LEFT 
OUTER JOIN operation.
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OUTER UNION can be applied to two relations whose schemas are STUDENT(Name, 
Ssn, Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples 
from the two relations are matched based on having the same combination of 
values of the shared attributes—Name, Ssn, Department. The resulting relation, 
STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the 
same (Name, Ssn, Department) combination will appear only once in the result. 
Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereas 
tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A 
tuple that exists in both relations, which represent a student who is also an instruc-
tor, will have values for all its attributes.11

Notice that the same person may still appear twice in the result. For example, we 
could have a graduate student in the Mathematics department who is an instructor 
in the Computer Science department. Although the two tuples representing that 
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they 
will not agree on the Department value, and so will not be matched. This is because 
Department has two different meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an 
instructor). If we wanted to apply the OUTER UNION based on the same (Name, Ssn) 
combination only, we should rename the Department attribute in each table to reflect 
that they have different meanings and designate them as not being part of the 
union-compatible attributes. For example, we could rename the attributes as 
MajorDept in STUDENT and WorkDept in INSTRUCTOR.

8.5 Examples of Queries in Relational Algebra
The following are additional examples to illustrate the use of the relational alge-
bra operations. All examples refer to the database in Figure 5.6. In general, the 
same query can be stated in numerous ways using the various operations. We will 
state each query in one way and leave it to the reader to come up with equivalent 
formulations.

Query 1. Retrieve the name and address of all employees who work for the 
‘Research’ department.

RESEARCH_DEPT ← σDname=‘Research’(DEPARTMENT) 
RESEARCH_EMPS ← (RESEARCH_DEPT  Dnumber=DnoEMPLOYEE) 
RESULT ← πFname, Lname, Address(RESEARCH_EMPS)

As a single in-line expression, this query becomes:

πFname, Lname, Address (σDname=‘Research’(DEPARTMENT  Dnumber=Dno(EMPLOYEE))

11Note that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the com-
mon attributes of the two relations.



266 Chapter 8 The Relational Algebra and Relational Calculus

This query could be specified in other ways; for example, the order of the JOIN 
and SELECT operations could be reversed, or the JOIN could be replaced by a 
NATURAL JOIN after renaming one of the join attributes to match the other join 
attribute name.

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, address, 
and birth date.

STAFFORD_PROJS ← σPlocation=‘Stafford’(PROJECT) 
CONTR_DEPTS ← (STAFFORD_PROJS  Dnum=DnumberDEPARTMENT) 
PROJ_DEPT_MGRS ← (CONTR_DEPTS  Mgr_ssn=SsnEMPLOYEE) 
RESULT ← πPnumber, Dnum, Lname, Address, Bdate(PROJ_DEPT_MGRS)

In this example, we first select the projects located in Stafford, then join them with 
their controlling departments, and then join the result with the department manag-
ers. Finally, we apply a project operation on the desired attributes.

Query 3. Find the names of employees who work on all the projects controlled 
by department number 5.

DEPT5_PROJS ← ρ(Pno)(πPnumber(σDnum=5(PROJECT))) 
EMP_PROJ ← ρ(Ssn, Pno)(πEssn, Pno(WORKS_ON)) 
RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPT5_PROJS 
RESULT ← πLname, Fname(RESULT_EMP_SSNS * EMPLOYEE)

In this query, we first create a table DEPT5_PROJS that contains the project 
numbers of all projects controlled by department 5. Then we create a table 
EMP_PROJ that holds (Ssn, Pno) tuples, and apply the division operation. Notice 
that we renamed the attributes so that they will be correctly used in the division 
operation. Finally, we join the result of the division, which holds only Ssn val-
ues, with the EMPLOYEE table to retrieve the Fname, Lname attributes from 
EMPLOYEE.

Query 4. Make a list of project numbers for projects that involve an employee 
whose last name is ‘Smith’, either as a worker or as a manager of the department 
that controls the project.

SMITHS(Essn) ← πSsn (σLname=‘Smith’(EMPLOYEE)) 
SMITH_WORKER_PROJS ← πPno(WORKS_ON * SMITHS) 
MGRS ← πLname, Dnumber(EMPLOYEE  Ssn=Mgr_ssnDEPARTMENT) 
SMITH_MANAGED_DEPTS(Dnum) ← πDnumber (σLname=‘Smith’(MGRS)) 
SMITH_MGR_PROJS(Pno) ← πPnumber(SMITH_MANAGED_DEPTS * PROJECT) 
RESULT ← (SMITH_WORKER_PROJS ∪ SMITH_MGR_PROJS)

In this query, we retrieved the project numbers for projects that involve an employee 
named Smith as a worker in SMITH_WORKER_PROJS. Then we retrieved the proj-
ect numbers for projects that involve an employee named Smith as manager of the 
department that controls the project in SMITH_MGR_PROJS. Finally, we applied the 
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UNION operation on SMITH_WORKER_PROJS and SMITH_MGR_PROJS. As a single 
in-line expression, this query becomes:

πPno (WORKS_ON  Essn=Ssn (πSsn (σLname=‘Smith’(EMPLOYEE))) ∪ πPno  
((πDnumber (σLname=‘Smith’(πLname, Dnumber(EMPLOYEE)))   

Ssn=Mgr_ssnDEPARTMENT))  Dnum-ber=DnumPROJECT)

Query 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational 
algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT 
aggregate function. We assume that dependents of the same employee have 
distinct Dependent_name values.

T1(Ssn, No_of_dependents)← Essn ℑ COUNT Dependent_name(DEPENDENT) 
T2 ← σNo_of_dependents>2(T1) 
RESULT ← πLname, Fname(T2 * EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE) 
operation.

ALL_EMPS ← πSsn(EMPLOYEE) 
EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT) 
EMPS_WITHOUT_DEPS ← (ALL_EMPS – EMPS_WITH_DEPS) 
RESULT ← πLname, Fname(EMPS_WITHOUT_DEPS * EMPLOYEE)

We first retrieve a relation with all employee Ssns in ALL_EMPS. Then we create  
a table with the Ssns of employees who have at least one dependent in  
EMPS_WITH_DEPS. Then we apply the SET DIFFERENCE operation to retrieve 
employees Ssns with no dependents in EMPS_WITHOUT_DEPS, and finally join 
this with EMPLOYEE to retrieve the desired attributes. As a single in-line expres-
sion, this query becomes:

πLname, Fname((πSsn(EMPLOYEE) – ρSsn(πEssn(DEPENDENT))) * EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.

MGRS(Ssn) ← πMgr_ssn(DEPARTMENT) 
EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT) 
MGRS_WITH_DEPS ← (MGRS ∩ EMPS_WITH_DEPS) 
RESULT ← πLname, Fname(MGRS_WITH_DEPS * EMPLOYEE)

In this query, we retrieve the Ssns of managers in MGRS, and the Ssns of employ-
ees with at least one dependent in EMPS_WITH_DEPS, then we apply the SET 
INTERSECTION operation to get the Ssns of managers who have at least one 
dependent.

As we mentioned earlier, the same query can be specified in many different ways in 
relational algebra. In particular, the operations can often be applied in various 
orders. In addition, some operations can be used to replace others; for example, the 
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INTERSECTION operation in Q7 can be replaced by a NATURAL JOIN. As an exercise, 
try to do each of these sample queries using different operations.12 We showed how to 
write queries as single relational algebra expressions for queries Q1, Q4, and Q6. Try 
to write the remaining queries as single expressions. In Chapters 6 and 7 and in Sec-
tions 8.6 and 8.7, we show how these queries are written in other relational languages.

8.6 The Tuple Relational Calculus
In this and the next section, we introduce another formal query language for the 
relational model called relational calculus. This section introduces the language 
known as tuple relational calculus, and Section 8.7 introduces a variation called 
domain relational calculus. In both variations of relational calculus, we write one 
declarative expression to specify a retrieval request; hence, there is no description 
of how, or in what order, to evaluate a query. A calculus expression specifies what is 
to be retrieved rather than how to retrieve it. Therefore, the relational calculus is 
considered to be a nonprocedural language. This differs from relational algebra, 
where we must write a sequence of operations to specify a retrieval request in a par-
ticular order of applying the operations; thus, it can be considered as a procedural 
way of stating a query. It is possible to nest algebra operations to form a single 
expression; however, a certain order among the operations is always explicitly spec-
ified in a relational algebra expression. This order also influences the strategy for 
evaluating the query. A calculus expression may be written in different ways, but 
the way it is written has no bearing on how a query should be evaluated.

It has been shown that any retrieval that can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the 
expressive power of the languages is identical. This led to the definition of the con-
cept of a relationally complete language. A relational query language L is considered 
relationally complete if we can express in L any query that can be expressed in 
relational calculus. Relational completeness has become an important basis for 
comparing the expressive power of high-level query languages. However, as we saw 
in Section 8.4, certain frequently required queries in database applications cannot 
be expressed in basic relational algebra or calculus. Most relational query languages 
are relationally complete but have more expressive power than relational algebra or 
relational calculus because of additional operations such as aggregate functions, 
grouping, and ordering. As we mentioned in the introduction to this chapter, the 
relational calculus is important for two reasons. First, it has a firm basis in mathe-
matical logic. Second, the standard query language (SQL) for RDBMSs has its basic 
foundation in the tuple relational calculus.

Our examples refer to the database shown in Figures 5.6 and 5.7. We will use the 
same queries that were used in Section 8.5. Sections 8.6.6, 8.6.7, and 8.6.8 discuss 
dealing with universal quantifiers and safety of expression issues. Students inter-
ested in a basic introduction to tuple relational calculus may skip these sections.

12When queries are optimized (see Chapters 18 and 19), the system will choose a particular sequence 
of operations that corresponds to an execution strategy that can be executed efficiently.
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8.6.1 Tuple Variables and Range Relations
The tuple relational calculus is based on specifying a number of tuple variables. 
Each tuple variable usually ranges over a particular database relation, meaning that 
the variable may take as its value any individual tuple from that relation. A simple 
tuple relational calculus query is of the form:

{t | COND(t)}

where t is a tuple variable and COND(t) is a conditional (Boolean) expression 
involving t that evaluates to either TRUE or FALSE for different assignments of 
tuples to the variable t. The result of such a query is the set of all tuples t that evalu-
ate COND(t) to TRUE. These tuples are said to satisfy COND(t). For example, to find 
all employees whose salary is above $50,000, we can write the following tuple calcu-
lus expression:

{t | EMPLOYEE(t) AND t.Salary>50000}

The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is 
EMPLOYEE. Each EMPLOYEE tuple t that satisfies the condition t.Salary>50000 will 
be retrieved. Notice that t.Salary references attribute Salary of tuple variable t; this 
notation resembles how attribute names are qualified with relation names or aliases 
in SQL, as we saw in Chapter 6. In the notation of Chapter 5, t.Salary is the same as 
writing t[Salary].

The previous query retrieves all attribute values for each selected EMPLOYEE tuple 
t. To retrieve only some of the attributes—say, the first and last names—we write

t.Fname, t.Lname | EMPLOYEE(t) AND t.Salary>50000}

Informally, we need to specify the following information in a tuple relational calcu-
lus expression:

 ■ For each tuple variable t, the range relation R of t. This value is specified by 
a condition of the form R(t). If we do not specify a range relation, then the 
variable t will range over all possible tuples “in the universe” as it is not 
restricted to any one relation.

 ■ A condition to select particular combinations of tuples. As tuple variables 
range over their respective range relations, the condition is evaluated for 
every possible combination of tuples to identify the selected combinations 
for which the condition evaluates to TRUE.

 ■ A set of attributes to be retrieved, the requested attributes. The values of 
these attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another query.

Query 0. Retrieve the birth date and address of the employee (or employees) 
whose name is John B. Smith.

Q0: {t.Bdate, t.Address | EMPLOYEE(t) AND t.Fname=‘John’ AND t.Minit=‘B’  
  AND t.Lname=‘Smith’}
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In tuple relational calculus, we first specify the requested attributes t.Bdate and 
t.Address for each selected tuple t. Then we specify the condition for selecting a tuple 
following the bar (|)—namely, that t be a tuple of the EMPLOYEE relation whose 
Fname, Minit, and Lname attribute values are ‘John’, ‘B’, and ‘Smith’, respectively.

8.6.2 Expressions and Formulas in Tuple Relational Calculus
A general expression of the tuple relational calculus is of the form

{t1.Aj, t2.Ak, ... , tn.Am | COND(t1, t2, ..., tn, tn+1, tn+2, ..., tn+m)}

where t1, t2, … , tn, tn+1, … , tn+m are tuple variables, each Ai is an attribute of the 
relation on which ti ranges, and COND is a condition or formula13 of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one 
of the following:

  1. An atom of the form R(ti), where R is a relation name and ti is a tuple vari-
able. This atom identifies the range of the tuple variable ti as the relation 
whose name is R. It evaluates to TRUE if ti is a tuple in the relation R, and 
evaluates to FALSE otherwise.

  2. An atom of the form ti.A op tj.B, where op is one of the comparison opera-
tors in the set {=, <, ≤, >, ≥, ≠}, ti and tj are tuple variables, A is an attribute 
of the relation on which ti ranges, and B is an attribute of the relation on 
which tj ranges.

  3. An atom of the form ti.A op c or c op tj.B, where op is one of the comparison 
operators in the set {=, <, ≤, >, ≥, ≠}, ti and tj are tuple variables, A is an attri-
bute of the relation on which ti ranges, B is an attribute of the relation on 
which tj ranges, and c is a constant value.

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-
nation of tuples; this is called the truth value of an atom. In general, a tuple variable 
t ranges over all possible tuples in the universe. For atoms of the form R(t), if t is 
assigned to a tuple that is a member of the specified relation R, the atom is TRUE; 
otherwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned 
to tuples such that the values of the specified attributes of the tuples satisfy the con-
dition, then the atom is TRUE.

A formula (Boolean condition) is made up of one or more atoms connected via 
the logical operators AND, OR, and NOT and is defined recursively by Rules 1 and 2 
as follows:

 ■ Rule 1: Every atom is a formula.

 ■ Rule 2: If F1 and F2 are formulas, then so are (F1 AND F2), (F1 OR F2), NOT 
(F1), and NOT (F2). The truth values of these formulas are derived from their 
component formulas F1 and F2 as follows:

13Also called a well-formed formula, or WFF, in mathematical logic.
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a. (F1 AND F2) is TRUE if both F1 and F2 are TRUE; otherwise, it is FALSE.

b. (F1 OR F2) is FALSE if both F1 and F2 are FALSE; otherwise, it is TRUE.

c. NOT (F1) is TRUE if F1 is FALSE; it is FALSE if F1 is TRUE.

d. NOT (F2) is TRUE if F2 is FALSE; it is FALSE if F2 is TRUE.

8.6.3 The Existential and Universal Quantifiers
In addition, two special symbols called quantifiers can appear in formulas; these 
are the universal quantifier (∀) and the existential quantifier (∃). Truth values for 
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we 
need to define the concepts of free and bound tuple variables in a formula. Infor-
mally, a tuple variable t is bound if it is quantified, meaning that it appears in an 
(∃t) or (∀t) clause; otherwise, it is free. Formally, we define a tuple variable in a 
formula as free or bound according to the following rules:

 ■ An occurrence of a tuple variable in a formula F that is an atom is free in F.

 ■ An occurrence of a tuple variable t is free or bound in a formula made up of 
logical connectives—(F1 AND F2), (F1 OR F2), NOT(F1), and NOT(F2)—
depending on whether it is free or bound in F1 or F2 (if it occurs in either). 
Notice that in a formula of the form F = (F1 AND F2) or F = (F1 OR F2), a 
tuple variable may be free in F1 and bound in F2, or vice versa; in this case, 
one occurrence of the tuple variable is bound and the other is free in F.

 ■ All free occurrences of a tuple variable t in F are bound in a formula F′ of the 
form F′= (∃t)(F) or F′ = (∀t)(F). The tuple variable is bound to the quanti-
fier specified in F′. For example, consider the following formulas:

F1: d.Dname = ‘Research’ 
F2: (∃t)(d.Dnumber = t.Dno) 
F3: (∀d)(d.Mgr_ssn = ‘333445555’)

The tuple variable d is free in both F1 and F2, whereas it is bound to the (∀) quanti-
fier in F3. Variable t is bound to the (∃) quantifier in F2.

We can now give Rules 3 and 4 for the definition of a formula we started earlier:

 ■ Rule 3: If F is a formula, then so is (∃t)(F), where t is a tuple variable. The 
formula (∃t)(F) is TRUE if the formula F evaluates to TRUE for some (at least 
one) tuple assigned to free occurrences of t in F; otherwise, (∃t)(F) is FALSE.

 ■ Rule 4: If F is a formula, then so is (∀t)(F), where t is a tuple variable. The for-
mula (∀t)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the 
universe) assigned to free occurrences of t in F; otherwise, (∀t)(F) is FALSE.

The (∃) quantifier is called an existential quantifier because a formula (∃t)(F) is 
TRUE if there exists some tuple that makes F TRUE. For the universal quantifier,  
(∀t)(F) is TRUE if every possible tuple that can be assigned to free occurrences of  
t in F is substituted for t, and F is TRUE for every such substitution. It is called the 
universal or for all quantifier because every tuple in the universe of tuples must 
make F TRUE to make the quantified formula TRUE.
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8.6.4 Sample Queries in Tuple Relational Calculus
We will use some of the same queries from Section 8.5 to give a flavor of how the 
same queries are specified in relational algebra and in relational calculus. Notice 
that some queries are easier to specify in the relational algebra than in the relational 
calculus, and vice versa.

Query 1. List the name and address of all employees who work for the ‘Research’ 
department.

Q1:  {t.Fname, t.Lname, t.Address | EMPLOYEE(t) AND (∃d)(DEPARTMENT(d)  
AND d.Dname=‘Research’ AND d.Dnumber=t.Dno)}

The only free tuple variables in a tuple relational calculus expression should be those 
that appear to the left of the bar (|). In Q1, t is the only free variable; it is then bound 
successively to each tuple. If a tuple satisfies the conditions specified after the bar in 
Q1, the attributes Fname, Lname, and Address are retrieved for each such tuple. The 
conditions EMPLOYEE(t) and DEPARTMENT(d) specify the range relations for t  
and d. The condition d.Dname = ‘Research’ is a selection condition and corre-
sponds to a SELECT operation in the relational algebra, whereas the condition 
d.Dnumber = t.Dno is a join condition and is similar in purpose to the (INNER) JOIN 
operation (see Section 8.3).

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth 
date, and address.

Q2:  {p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND 
EMPLOYEE(m) AND p.Plocation=‘Stafford’ AND ((∃d)(DEPARTMENT(d) 
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn))}

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the 
existential quantifier. The query condition is evaluated for every combination of 
tuples assigned to p and m, and out of all possible combinations of tuples to which 
p and m are bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to 
specify Q8—for each employee, retrieve the employee’s first and last name and the 
first and last name of his or her immediate supervisor—we specify two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

Q8:  {e.Fname, e.Lname, s.Fname, s.Lname | EMPLOYEE(e) AND EMPLOYEE(s)  
AND e.Super_ssn=s.Ssn}

Query 3′. List the name of each employee who works on some project controlled 
by department number 5. This is a variation of Q3 in which all is changed to 
some. In this case we need two join conditions and two existential quantifiers.

Q0′:  {e.Lname, e.Fname | EMPLOYEE(e) AND ((∃x)(∃w)(PROJECT(x) AND  
WORKS_ON(w) AND x.Dnum=5 AND w.Essn=e.Ssn AND  
x.Pnumber=w.Pno))}
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Query 4. Make a list of project numbers for projects that involve an employee 
whose last name is ‘Smith’, either as a worker or as manager of the controlling 
department for the project.

Q4:  { p.Pnumber | PROJECT(p) AND (((∃e)(∃w)(EMPLOYEE(e) 
AND WORKS_ON(w) AND w.Pno=p.Pnumber 
AND e.Lname=‘Smith’ AND e.Ssn=w.Essn) ) 
OR 
((∃m)(∃d)(EMPLOYEE(m) AND DEPARTMENT(d) 
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn 
AND m.Lname=‘Smith’)))}

Compare this with the relational algebra version of this query in Section 8.5. The 
UNION operation in relational algebra can usually be substituted with an OR con-
nective in relational calculus.

8.6.5 Notation for Query Graphs
In this section, we describe a notation that has been proposed to represent relational 
calculus queries that do not involve complex quantification in a graphical form. 
These types of queries are known as select-project-join queries because they only 
involve these three relational algebra operations. The notation may be expanded to 
more general queries, but we do not discuss these extensions here. This graphical 
representation of a query is called a query graph. Figure 8.13 shows the query graph 
for Q2. Relations in the query are represented by relation nodes, which are displayed 
as single circles. Constant values, typically from the query selection conditions, are 
represented by constant nodes, which are displayed as double circles or ovals. Selec-
tion and join conditions are represented by the graph edges (the lines that connect 
the nodes), as shown in Figure 8.13. Finally, the attributes to be retrieved from each 
relation are displayed in square brackets above each relation.

The query graph representation does not indicate a particular order to specify which 
operations to perform first, and is hence a more neutral representation of a select-
project-join query than the query tree representation (see Section 8.3.5), where the 
order of execution is implicitly specified. There is only a single query graph corre-
sponding to each query. Although some query optimization techniques were based 
on query graphs, it is now generally accepted that query trees are preferable because, 

[P.Pnumber,P.Dnum] [E.Lname,E.address,E.Bdate]

P.Dnum=D.Dnumber

P.Plocation=‘Stafford’

P D E

‘Stafford’

D.Mgr_ssn=E.Ssn

Figure 8.13 
Query graph for Q2.
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in practice, the query optimizer needs to show the order of operations for query 
execution, which is not possible in query graphs.

In the next section we discuss the relationship between the universal and existential 
quantifiers and show how one can be transformed into the other.

8.6.6 Transforming the Universal and Existential Quantifiers
We now introduce some well-known transformations from mathematical logic that 
relate the universal and existential quantifiers. It is possible to transform a universal 
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Trans-
form one type of quantifier into the other with negation (preceded by NOT); AND 
and OR replace one another; a negated formula becomes unnegated; and an un-
negated formula becomes negated. Some special cases of this transformation can be 
stated as follows, where the ≡ symbol stands for equivalent to:

(∀x) (P(x)) ≡ NOT (∃x) (NOT (P(x))) 
(∃x) (P(x)) ≡ NOT (∀x) (NOT (P(x))) 
(∀x) (P(x) AND Q(x)) ≡ NOT (∃x) (NOT (P(x)) OR NOT (Q(x))) 
(∀x) (P(x) OR Q(x)) ≡ NOT (∃x) (NOT (P(x)) AND NOT (Q(x))) 
(∃x) (P(x)) OR Q(x)) ≡ NOT (∀x) (NOT (P(x)) AND NOT (Q(x))) 
(∃x) (P(x) AND Q(x)) ≡ NOT (∀x) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the ⇒ symbol stands for implies:

(∀x)(P(x)) ⇒ (∃x)(P(x)) 
NOT (∃x)(P(x)) ⇒ NOT (∀x)(P(x))

8.6.7 Using the Universal Quantifier in Queries
Whenever we use a universal quantifier, it is quite judicious to follow a few rules to 
ensure that our expression makes sense. We discuss these rules with respect to the 
query Q3.

Query 3. List the names of employees who work on all the projects controlled 
by department number 5. One way to specify this query is to use the universal 
quantifier as shown:

Q3:  {e.Lname, e.Fname | EMPLOYEE(e) AND ((∀x)(NOT(PROJECT(x)) OR NOT 
(x.Dnum=5) OR ((∃w)(WORKS_ON(w) AND w.Essn=e.Ssn AND  
x.Pnumber=w.Pno))))}

We can break up Q3 into its basic components as follows:

Q3:  {e.Lname, e.Fname | EMPLOYEE(e) AND F′} 
F′ = ((∀x)(NOT(PROJECT(x)) OR F1)) 
F1 = NOT(x.Dnum=5) OR F2 
F2 = ((∃w)(WORKS_ON(w) AND w.Essn=e.Ssn 
AND x.Pnumber=w.Pno))
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We want to make sure that a selected employee e works on all the projects con-
trolled by department 5, but the definition of universal quantifier says that to 
make the quantified formula TRUE, the inner formula must be TRUE for all tuples 
in the universe. The trick is to exclude from the universal quantification all tuples 
that we are not interested in by making the condition TRUE for all such tuples. 
This is necessary because a universally quantified tuple variable, such as x in Q3, 
must evaluate to TRUE for every possible tuple assigned to it to make the quantified 
formula TRUE.

The first tuples to exclude (by making them evaluate automatically to TRUE) are 
those that are not in the relation R of interest. In Q3, using the expression 
NOT(PROJECT(x)) inside the universally quantified formula evaluates to TRUE all 
tuples x that are not in the PROJECT relation. Then we exclude the tuples we are not 
interested in from R itself. In Q3, using the expression NOT(x.Dnum=5) evaluates to 
TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-
ment 5. Finally, we specify a condition F2 that must hold on all the remaining tuples 
in R. Hence, we can explain Q3 as follows:

  1. For the formula F′ = (∀x)(F) to be TRUE, we must have the formula F be 
TRUE for all tuples in the universe that can be assigned to x. However, in Q3 
we are only interested in F being TRUE for all tuples of the PROJECT relation 
that are controlled by department 5. Hence, the formula F is of the form 
(NOT(PROJECT(x)) OR F1). The ‘NOT (PROJECT(x)) OR …’ condition is 
TRUE for all tuples not in the PROJECT relation and has the effect of elimi-
nating these tuples from consideration in the truth value of F1. For every 
tuple in the PROJECT relation, F1 must be TRUE if F′ is to be TRUE.

  2. Using the same line of reasoning, we do not want to consider tuples in the 
PROJECT relation that are not controlled by department number 5, since we 
are only interested in PROJECT tuples whose Dnum=5. Therefore, we can 
write:

IF (x.Dnum=5) THEN F2

which is equivalent to

(NOT (x.Dnum=5) OR F2)

  3. Formula F1, hence, is of the form NOT(x.Dnum=5) OR F2. In the context of 
Q3, this means that, for a tuple x in the PROJECT relation, either its Dnum≠5 
or it must satisfy F2.

  4. Finally, F2 gives the condition that we want to hold for a selected EMPLOYEE 
tuple: that the employee works on every PROJECT tuple that has not been 
excluded yet. Such employee tuples are selected by the query.

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e: 
For every tuple x in the PROJECT relation with x.Dnum=5, there must exist a tuple 
w in WORKS_ON such that w.Essn=e.Ssn and w.Pno=x.Pnumber. This is equivalent 
to saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5. 
(Whew!)
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Using the general transformation from universal to existential quantifiers given in 
Section 8.6.6, we can rephrase the query in Q3 as shown in Q3A, which uses a 
negated existential quantifier instead of the universal quantifier:

Q3A:  {e.Lname, e.Fname | EMPLOYEE(e) AND (NOT (∃x) (PROJECT(x) AND  
(x.Dnum=5) and (NOT (∃w)(WORKS_ON(w) AND w.Essn=e.Ssn  
AND x.Pnumber=w.Pno))))}

We now give some additional examples of queries that use quantifiers.

Query 6. List the names of employees who have no dependents.

Q6:  {e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (∃d)(DEPENDENT(d)  
AND e.Ssn=d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

Q6A:  {e.Fname, e.Lname | EMPLOYEE(e) AND ((∀d)(NOT(DEPENDENT(d))  
OR NOT(e.Ssn=d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Q7:  {e.Fname, e.Lname | EMPLOYEE(e) AND ((∃d)(∃ρ)(DEPARTMENT(d)  
AND DEPENDENT(ρ) AND e.Ssn=d.Mgr_ssn AND ρ.Essn=e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as 
managers for whom there exists some dependent.

8.6.8 Safe Expressions
Whenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we must make sure that the resulting expression 
makes sense. A safe expression in relational calculus is one that is guaranteed to 
yield a finite number of tuples as its result; otherwise, the expression is called unsafe. 
For example, the expression

{t | NOT (EMPLOYEE(t))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples, 
which are infinitely numerous. If we follow the rules for Q3 discussed earlier, we 
will get a safe expression when using universal quantifiers. We can define safe 
expressions more precisely by introducing the concept of the domain of a tuple 
relational calculus expression: This is the set of all values that either appear as 
constant values in the expression or exist in any tuple in the relations referenced 
in the expression. For example, the domain of {t | NOT(EMPLOYEE(t))} is the set 
of all attribute values appearing in some tuple of the EMPLOYEE relation (for any 
attribute). The domain of the expression Q3A would include all values appearing 
in EMPLOYEE, PROJECT, and WORKS_ON (unioned with the value 5 appearing in 
the query itself).

An expression is said to be safe if all values in its result are from the domain of the 
expression. Notice that the result of {t | NOT(EMPLOYEE(t))} is unsafe, since it will, 
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in general, include tuples (and hence values) from outside the EMPLOYEE relation; 
such values are not in the domain of the expression. All of our other examples are 
safe expressions.

8.7 The Domain Relational Calculus
There is another type of relational calculus called the domain relational calculus, or 
simply domain calculus. Historically, while SQL (see Chapters 6 and 7), which was 
based on tuple relational calculus, was being developed by IBM Research at San 
Jose, California, another language called QBE (Query-By-Example), which is 
related to domain calculus, was being developed almost concurrently at the IBM  
T. J. Watson Research Center in Yorktown Heights, New York. The formal specifi-
cation of the domain calculus was proposed after the development of the QBE lan-
guage and system.

Domain calculus differs from tuple calculus in the type of variables used in formu-
las: Rather than having variables range over tuples, the variables range over single 
values from domains of attributes. To form a relation of degree n for a query result, 
we must have n of these domain variables—one for each attribute. An expression 
of the domain calculus is of the form

{x1, x2, ..., xn | COND(x1, x2, ..., xn, xn+1, xn+2, ..., xn+m)}

where x1, x2, … , xn, xn+1, xn+2, … , xn+m are domain variables that range over 
domains (of attributes), and COND is a condition or formula of the domain 
relational calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from 
those for the tuple calculus and can be one of the following:

  1. An atom of the form R(x1, x2, … , xj), where R is the name of a relation of 
degree j and each xi, 1 ≤ i ≤ j, is a domain variable. This atom states that a list 
of values of <x1, x2, … , xj> must be a tuple in the relation whose name is R, 
where xi is the value of the ith attribute value of the tuple. To make a domain 
calculus expression more concise, we can drop the commas in a list of vari-
ables; thus, we can write:

{x1, x2, ..., xn | R(x1 x2 x3) AND ...}

instead of:

{x1, x2, ... , xn | R(x1, x2, x3) AND ...}

  2. An atom of the form xi op xj, where op is one of the comparison operators in 
the set {=, <, ≤, >, ≥, ≠}, and xi and xj are domain variables.

  3. An atom of the form xi op c or c op xj, where op is one of the comparison 
operators in the set {=, <, ≤, >, ≥, ≠}, xi and xj are domain variables, and c is 
a constant value.

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of 
values, called the truth values of the atoms. In case 1, if the domain variables are 
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assigned values corresponding to a tuple of the specified relation R, then the atom is 
TRUE. In cases 2 and 3, if the domain variables are assigned values that satisfy the 
condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms, 
variables, and quantifiers, so we will not repeat the specifications for formulas here. 
Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters l, m, n, … , x, y, z for domain variables.

Query 0. List the birth date and address of the employee whose name is ‘John 
B. Smith’.

Q0:  {u, v | (∃q) (∃r) (∃s) (∃t) (∃w) (∃x) (∃y) (∃z)  
(EMPLOYEE(qrstuvwxyz) AND q=‘John’ AND r=‘B’ AND s=‘Smith’)}

We need ten variables for the EMPLOYEE relation, one to range over each of the 
domains of attributes of EMPLOYEE in order. Of the ten variables q, r, s, … , z, 
only u and v are free, because they appear to the left of the bar and hence should 
not be bound to a quantifier. We first specify the requested attributes, Bdate and 
Address, by the free domain variables u for BDATE and v for ADDRESS. Then we 
specify the condition for selecting a tuple following the bar (|)—namely, that the 
sequence of values assigned to the variables qrstuvwxyz be a tuple of the EMPLOYEE 
relation and that the values for q (Fname), r (Minit), and s (Lname) be equal to 
‘John’, ‘B’, and ‘Smith’, respectively. For convenience, we will quantify only those 
variables actually appearing in a condition (these would be q, r, and s in Q0) in the 
rest of our examples.14

An alternative shorthand notation, used in QBE, for writing this query is to assign 
the constants ‘John’, ‘B’, and ‘Smith’ directly as shown in Q0A. Here, all variables 
not appearing to the left of the bar are implicitly existentially quantified:15

Q0A: {u, v | EMPLOYEE(‘John’, ‘B’, ‘Smith’, t, u, v, w, x, y, z)}

Query 1. Retrieve the name and address of all employees who work for the 
‘Research’ department.

Q1:  {q, s, v | (∃z) (∃l) (∃m) (EMPLOYEE(qrstuvwxyz) AND  
DEPARTMENT(lmno) AND l=‘Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in Q1, is a join condition, whereas a condition that relates a 
domain variable to a constant, such as l = ‘Research’, is a selection condition.

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth 
date, and address.

14Quantifying only the domain variables actually used in conditions and specifying a predicate such as 
EMPLOYEE(qrstuvwxyz) without separating domain variables with commas is an abbreviated notation 
used for convenience; it is not the correct formal notation.
15Again, this is not a formally accurate notation.
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Q2:  {i, k, s, u, v | (∃j)(∃m)(∃n)(∃t)(PROJECT(hijk) AND 
EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(lmno) AND k=m AND  
n=t AND j=‘Stafford’)}

Query 6. List the names of employees who have no dependents.

Q6:  {q, s | (∃t)(EMPLOYEE(qrstuvwxyz) AND  
(NOT(∃l)(DEPENDENT(lmnop) AND t=l)))}

Q6 can be restated using universal quantifiers instead of the existential quantifiers, 
as shown in Q6A:

Q6A:  {q, s | (∃t)(EMPLOYEE(qrstuvwxyz) AND  
((∀l)(NOT(DEPENDENT(lmnop)) OR NOT(t=l))))}

Query 7. List the names of managers who have at least one dependent.

Q7:  {s, q | (∃t)(∃j)(∃l)(EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(hijk)  
AND DEPENDENT(lmnop) AND t=j AND l=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in 
the basic relational algebra can also be expressed in the domain or tuple relational 
calculus. Also, any safe expression in the domain or tuple relational calculus can be 
expressed in the basic relational algebra.

The QBE language was based on the domain relational calculus, although this was 
realized later, after the domain calculus was formalized. QBE was one of the first 
graphical query languages with minimum syntax developed for database systems. It 
was developed at IBM Research and is available as an IBM commercial product as 
part of the Query Management Facility (QMF) interface option to DB2. The basic 
ideas used in QBE have been applied in several other commercial products. Because 
of its important place in the history of relational languages, we have included an 
overview of QBE in Appendix C.

8.8 Summary
In this chapter we presented two formal languages for the relational model of data. 
They are used to manipulate relations and produce new relations as answers to que-
ries. We discussed the relational algebra and its operations, which are used to spec-
ify a sequence of operations to specify a query. Then we introduced two types of 
relational calculi called tuple calculus and domain calculus.

In Sections 8.1 through 8.3, we introduced the basic relational algebra operations 
and illustrated the types of queries for which each is used. First, we discussed the 
unary relational operators SELECT and PROJECT, as well as the RENAME operation. 
Then, we discussed binary set theoretic operations requiring that relations on  
which they are applied be union (or type) compatible; these include UNION,  
INTERSECTION, and SET DIFFERENCE. The CARTESIAN PRODUCT operation is a  
set operation that can be used to combine tuples from two relations, producing  
all possible combinations. It is rarely used in practice; however, we showed how 
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CARTESIAN PRODUCT followed by SELECT can be used to define matching tuples 
from two relations and leads to the JOIN operation. Different JOIN operations called 
THETA JOIN, EQUIJOIN, and NATURAL JOIN were introduced. Query trees were intro-
duced as a graphical representation of relational algebra queries, which can also be used 
as the basis for internal data structures that the DBMS can use to represent a query.

We discussed some important types of queries that cannot be stated with the basic 
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection 
list and the AGGREGATE FUNCTION operation to deal with aggregate types of statis-
tical requests that summarize the information in the tables. We discussed recursive 
queries, for which there is no direct support in the algebra but which can be han-
dled in a step-by-step approach, as we demonstrated. Then we presented the OUTER 
JOIN and OUTER UNION operations, which extend JOIN and UNION and allow all 
information in source relations to be preserved in the result.

The last two sections described the basic concepts behind relational calculus, which 
is based on the branch of mathematical logic called predicate calculus. There are 
two types of relational calculi: (1) the tuple relational calculus, which uses tuple 
variables that range over tuples (rows) of relations, and (2) the domain relational 
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement, 
without specifying any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level declarative language than the 
relational algebra, because a relational calculus expression states what we want to 
retrieve regardless of how the query may be executed.

We introduced query graphs as an internal representation for queries in relational 
calculus. We also discussed the existential quantifier (∃) and the universal quanti-
fier (∀). We discussed the problem of specifying safe queries whose results are 
finite. We also discussed rules for transforming universal into existential quantifi-
ers, and vice versa. It is the quantifiers that give expressive power to the relational 
calculus, making it equivalent to the basic relational algebra. There is no analog to 
grouping and aggregation functions in basic relational calculus, although some 
extensions have been suggested.

Review Questions
 8.1.  List the operations of relational algebra and the purpose of each.

 8.2.  What is union compatibility? Why do the UNION, INTERSECTION, and 
DIFFERENCE operations require that the relations on which they are 
applied be union compatible?

 8.3.  Discuss some types of queries for which renaming of attributes is necessary 
in order to specify the query unambiguously.

 8.4.  Discuss the various types of inner join operations. Why is theta join required?
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 8.5.  What role does the concept of foreign key play when specifying the most 
common types of meaningful join operations?

 8.6.  What is the FUNCTION operation? For what is it used?

 8.7.  How are the OUTER JOIN operations different from the INNER JOIN opera-
tions? How is the OUTER UNION operation different from UNION?

 8.8.  In what sense does relational calculus differ from relational algebra, and in 
what sense are they similar?

 8.9.  How does tuple relational calculus differ from domain relational calculus?

 8.10.  Discuss the meanings of the existential quantifier (∃) and the universal 
quantifier (∀).

 8.11.  Define the following terms with respect to the tuple calculus: tuple variable, 
range relation, atom, formula, and expression.

 8.12.  Define the following terms with respect to the domain calculus: domain 
variable, range relation, atom, formula, and expression.

 8.13.  What is meant by a safe expression in relational calculus?

 8.14.  When is a query language called relationally complete?

Exercises
 8.15.  Show the result of each of the sample queries in Section 8.5 as it would apply 

to the database state in Figure 5.6.

 8.16.  Specify the following queries on the COMPANY relational database schema 
shown in Figure 5.5 using the relational operators discussed in this chapter. 
Also show the result of each query as it would apply to the database state in 
Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more 
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first 
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin 
Wong’.

d. For each project, list the project name and the total hours per week (by all 
employees) spent on that project.

e. Retrieve the names of all employees who work on every project.

f. Retrieve the names of all employees who do not work on any project.

g. For each department, retrieve the department name and the average sal-
ary of all employees working in that department.

h. Retrieve the average salary of all female employees.
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i. Find the names and addresses of all employees who work on at least one 
project located in Houston but whose department has no location in 
Houston.

j. List the last names of all department managers who have no dependents.

 8.17.  Consider the AIRLINE relational database schema shown in Figure 5.8, which 
was described in Exercise 5.12. Specify the following queries in relational 
algebra:

a. For each flight, list the flight number, the departure airport for the first 
leg of the flight, and the arrival airport for the last leg of the flight.

b. List the flight numbers and weekdays of all flights or flight legs that depart 
from Houston Intercontinental Airport (airport code ‘iah’) and arrive in 
Los Angeles International Airport (airport code ‘lax’).

c. List the flight number, departure airport code, scheduled departure time, 
arrival airport code, scheduled arrival time, and weekdays of all flights or 
flight legs that depart from some airport in the city of Houston and arrive 
at some airport in the city of Los Angeles.

d. List all fare information for flight number ‘co197’.

e. Retrieve the number of available seats for flight number ‘co197’ on  
‘2009-10-09’.

 8.18.  Consider the LIBRARY relational database schema shown in Figure 8.14, which 
is used to keep track of books, borrowers, and book loans. Referential integrity 
constraints are shown as directed arcs in Figure 8.14, as in the notation of Fig-
ure 5.7. Write down relational expressions for the following queries:

a. How many copies of the book titled The Lost Tribe are owned by the 
library branch whose name is ‘Sharpstown’?

b. How many copies of the book titled The Lost Tribe are owned by each 
library branch?

c. Retrieve the names of all borrowers who do not have any books 
checked out.

d. For each book that is loaned out from the Sharpstown branch and whose 
Due_date is today, retrieve the book title, the borrower’s name, and the 
borrower’s address.

e. For each library branch, retrieve the branch name and the total number 
of books loaned out from that branch.

f. Retrieve the names, addresses, and number of books checked out for all 
borrowers who have more than five books checked out.

g. For each book authored (or coauthored) by Stephen King, retrieve the 
title and the number of copies owned by the library branch whose name 
is Central.

 8.19.  Specify the following queries in relational algebra on the database schema 
given in Exercise 5.14:
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a. List the Order# and Ship_date for all orders shipped from Warehouse# W2.

b. List the WAREHOUSE information from which the CUSTOMER 
named Jose Lopez was supplied his orders. Produce a listing: Order#, 
Warehouse#.

c. Produce a listing Cname, No_of_orders, Avg_order_amt, where the middle 
column is the total number of orders by the customer and the last column 
is the average order amount for that customer.

d. List the orders that were not shipped within 30 days of ordering.

e. List the Order# for orders that were shipped from all warehouses that the 
company has in New York.

 8.20.  Specify the following queries in relational algebra on the database schema 
given in Exercise 5.15:

a. Give the details (all attributes of trip relation) for trips that exceeded 
$2,000 in expenses.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES
Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH
Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER
Card_no Name Address Phone

Figure 8.14 
A relational database 
schema for a LIBRARY 
database.
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b. Print the Ssns of salespeople who took trips to Honolulu.

c. Print the total trip expenses incurred by the salesperson with SSN = 
‘234-56-7890’.

 8.21.  Specify the following queries in relational algebra on the database schema 
given in Exercise 5.16:

a. List the number of courses taken by all students named John Smith in 
Winter 2009 (i.e., Quarter=W09).

b. Produce a list of textbooks (include Course#, Book_isbn, Book_title) for 
courses offered by the ‘CS’ department that have used more than two books.

c. List any department that has all its adopted books published by ‘Pearson 
Publishing’.

 8.22.  Consider the two tables T1 and T2 shown in Figure 8.15. Show the results of 
the following operations:

a. T1  T1.P = T2.A T2

b. T1  T1.Q = T2.B T2

c. T1  T1.P = T2.A T2

d. T1  T1.Q = T2.B T2

e. T1 ∪ T2

f. T1  (T1.P = T2.A AND T1.R = T2.C) T2

 8.23.  Specify the following queries in relational algebra on the database schema in 
Exercise 5.17:

a. For the salesperson named ‘Jane Doe’, list the following information for 
all the cars she sold: Serial#, Manufacturer, Sale_price.

b. List the Serial# and Model of cars that have no options.

c. Consider the NATURAL JOIN operation between SALESPERSON and 
SALE. What is the meaning of a left outer join for these tables (do not 
change the order of relations)? Explain with an example.

d. Write a query in relational algebra involving selection and one set opera-
tion and say in words what the query does.

 8.24.  Specify queries a, b, c, e, f, i, and j of Exercise 8.16 in both tuple and domain 
relational calculus.

 8.25.  Specify queries a, b, c, and d of Exercise 8.17 in both tuple and domain rela-
tional calculus.

P Q R A B C

10

15

25

a

b

a

5

8

6

10

25

10

b

c

b

6

3

5

TABLE T1 TABLE T2 Figure 8.15 
A database state for the 
relations T1 and T2.
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 8.26.  Specify queries c, d, and f of Exercise 8.18 in both tuple and domain rela-
tional calculus.

 8.27.  In a tuple relational calculus query with n tuple variables, what would be the 
typical minimum number of join conditions? Why? What is the effect of 
having a smaller number of join conditions?

 8.28.  Rewrite the domain relational calculus queries that followed Q0 in Sec- 
tion 8.7 in the style of the abbreviated notation of Q0A, where the objective 
is to minimize the number of domain variables by writing constants in place 
of variables wherever possible.

 8.29.  Consider this query: Retrieve the Ssns of employees who work on at least 
those projects on which the employee with Ssn=123456789 works. This may 
be stated as (FORALL x) (IF P THEN Q), where

 ■ x is a tuple variable that ranges over the PROJECT relation.

 ■ P ≡ employee with Ssn=123456789 works on project x.

 ■ Q ≡ employee e works on project x.

Express the query in tuple relational calculus, using the rules

 ■ (∀ x)(P(x)) ≡ NOT(∃x)(NOT(P(x))).

 ■ (IF P THEN Q) ≡ (NOT(P) OR Q).

 8.30.  Show how you can specify the following relational algebra operations in 
both tuple and domain relational calculus.

a. σA=C(R(A, B, C))

b. π<A, B>(R(A, B, C))

c. R(A, B, C) * S(C, D, E)

d. R(A, B, C) ∪ S(A, B, C)

e. R(A, B, C) ∩ S(A, B, C)

f. R(A, B, C) = S(A, B, C)

g. R(A, B, C) × S(D, E, F)

h. R(A, B) ÷ S(A)

 8.31.  Suggest extensions to the relational calculus so that it may express the fol-
lowing types of operations that were discussed in Section 8.4: (a) aggre-
gate functions and grouping; (b) OUTER JOIN operations; (c) recursive 
closure queries.

 8.32.  A nested query is a query within a query. More specifically, a nested query is 
a parenthesized query whose result can be used as a value in a number of 
places, such as instead of a relation. Specify the following queries on the 
database specified in Figure 5.5 using the concept of nested queries and the 
relational operators discussed in this chapter. Also show the result of each 
query as it would apply to the database state in Figure 5.6.

a. List the names of all employees who work in the department that has the 
employee with the highest salary among all employees.
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b. List the names of all employees whose supervisor’s supervisor has 
‘888665555’ for Ssn.

c. List the names of employees who make at least $10,000 more than the 
employee who is paid the least in the company.

 8.33.  State whether the following conclusions are true or false:

a. NOT (P(x) OR Q(x)) → (NOT (P(x)) AND (NOT (Q(x)))

b. NOT (∃x) (P(x)) → ∀ x (NOT (P(x))

c. (∃x) (P(x)) → ∀ x ((P(x))

Laboratory Exercises
 8.34.  Specify and execute the following queries in relational algebra (RA) using 

the RA interpreter on the COMPANY database schema in Figure 5.5.

a. List the names of all employees in department 5 who work more than 10 
hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first 
name as themselves.

c. List the names of employees who are directly supervised by Franklin Wong.

d. List the names of employees who work on every project.

e. List the names of employees who do not work on any project.

f. List the names and addresses of employees who work on at least one 
project located in Houston but whose department has no location in 
Houston.

g. List the names of department managers who have no dependents.

 8.35.  Consider the following MAILORDER relational schema describing the data 
for a mail order company.

PARTS(Pno, Pname, Qoh, Price, Olevel)
CUSTOMERS(Cno, Cname, Street, Zip, Phone)
EMPLOYEES(Eno, Ename, Zip, Hdate)
ZIP_CODES(Zip, City)
ORDERS(Ono, Cno, Eno, Received, Shipped)
ODETAILS(Ono, Pno, Qty)

  Qoh stands for quantity on hand: the other attribute names are self-
explanatory. Specify and execute the following queries using the RA 
interpreter on the MAILORDER database schema.

a. Retrieve the names of parts that cost less than $20.00.

b. Retrieve the names and cities of employees who have taken orders for 
parts costing more than $50.00.

c. Retrieve the pairs of customer number values of customers who live in 
the same ZIP Code.
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d. Retrieve the names of customers who have ordered parts from employees 
living in Wichita.

e. Retrieve the names of customers who have ordered parts costing less than 
$20.00.

f. Retrieve the names of customers who have not placed an order.

g. Retrieve the names of customers who have placed exactly two orders.

 8.36.  Consider the following GRADEBOOK relational schema describing the data 
for a grade book of a particular instructor. (Note: The attributes A, B, C,  
and D of COURSES store grade cutoffs.)

CATALOG(Cno, Ctitle)
STUDENTS(Sid, Fname, Lname, Minit)
COURSES(Term, Sec_no, Cno, A, B, C, D)
ENROLLS(Sid, Term, Sec_no)

  Specify and execute the following queries using the RA interpreter on the 
GRADEBOOK database schema.

a. Retrieve the names of students enrolled in the Automata class during the 
fall 2009 term.

b. Retrieve the Sid values of students who have enrolled in CSc226 and 
CSc227.

c. Retrieve the Sid values of students who have enrolled in CSc226 or 
CSc227.

d. Retrieve the names of students who have not enrolled in any class.

e. Retrieve the names of students who have enrolled in all courses in the 
CATALOG table.

 8.37.  Consider a database that consists of the following relations.

SUPPLIER(Sno, Sname)
PART(Pno, Pname)
PROJECT(Jno, Jname)
SUPPLY(Sno, Pno, Jno)

  The database records information about suppliers, parts, and projects and 
includes a ternary relationship between suppliers, parts, and projects. This 
relationship is a many-many-many relationship. Specify and execute the fol-
lowing queries using the RA interpreter.

a. Retrieve the part numbers that are supplied to exactly two projects.

b. Retrieve the names of suppliers who supply more than two parts to 
project ‘J1’.

c. Retrieve the part numbers that are supplied by every supplier.

d. Retrieve the project names that are supplied by supplier ‘S1’ only.

e. Retrieve the names of suppliers who supply at least two different parts 
each to at least two different projects.



288 Chapter 8 The Relational Algebra and Relational Calculus

 8.38.  Specify and execute the following queries for the database in Exercise 5.16 
using the RA interpreter.

a. Retrieve the names of students who have enrolled in a course that uses a 
textbook published by Addison-Wesley-Longman.

b. Retrieve the names of courses in which the textbook has been changed at 
least once.

c. Retrieve the names of departments that adopt textbooks published by 
Addison-Wesley only.

d. Retrieve the names of departments that adopt textbooks written by 
Navathe and published by Addison-Wesley.

e. Retrieve the names of students who have never used a book (in a course) 
written by Navathe and published by Addison-Wesley.

 8.39.  Repeat Laboratory Exercises 8.34 through 8.38 in domain relational calculus 
(DRC) by using the DRC interpreter.
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9
Relational Database  

Design by ER- and  
EER-to-Relational Mapping

This chapter discusses how to design a relational 
database schema based on a conceptual schema 

design. Figure 3.1 presented a high-level view of the database design process. In this 
chapter we focus on the logical database design step of database design, which is 
also known as data model mapping. We present the procedures to create a rela-
tional schema from an entity–relationship (ER) or an enhanced ER (EER) schema. 
Our discussion relates the constructs of the ER and EER models, presented in 
Chapters 3 and 4, to the constructs of the relational model, presented in Chapters 5 
through 8. Many computer-aided software engineering (CASE) tools are based on 
the ER or EER models, or other similar models, as we have discussed in Chapters 3 
and 4. Many tools use ER or EER diagrams or variations to develop the schema 
graphically and collect information about the data types and constraints, then con-
vert the ER/EER schema automatically into a relational database schema in the 
DDL of a specific relational DBMS. The design tools employ algorithms similar to 
the ones presented in this chapter.

We outline a seven-step algorithm in Section 9.1 to convert the basic ER model 
constructs—entity types (strong and weak), binary relationships (with various 
structural constraints), n-ary relationships, and attributes (simple, composite, 
and multivalued)—into relations. Then, in Section 9.2, we continue the mapping 
algorithm by describing how to map EER model constructs—specializa- 
tion/generalization and union types (categories)—into relations. Section 9.3 sum-
marizes the chapter.

chapter 9
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9.1  Relational Database Design Using  
ER-to-Relational Mapping

9.1.1 ER-to-Relational Mapping Algorithm
In this section we describe the steps of an algorithm for ER-to-relational mapping. 
We use the COMPANY database example to illustrate the mapping procedure. 
The COMPANY ER schema is shown again in Figure 9.1, and the corresponding 
COMPANY relational database schema is shown in Figure 9.2 to illustrate the 
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Figure 9.1 
The ER conceptual schema diagram for the COMPANY database.
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mapping steps. We assume that the mapping will create tables with simple single-
valued attributes. The relational model constraints defined in Chapter 5, which 
include primary keys, unique keys (if any), and referential integrity constraints on 
the relations, will also be specified in the mapping results.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type 
E in the ER schema, create a relation R that includes all the simple attributes of E. 
Include only the simple component attributes of a composite attribute. Choose one 
of the key attributes of E as the primary key for R. If the chosen key of E is a com-
posite, then the set of simple attributes that form it will together form the primary 
key of R.

If multiple keys were identified for E during the conceptual design, the information 
describing the attributes that form each additional key is kept in order to specify 
additional (unique) keys of relation R. Knowledge about keys is also kept for index-
ing purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in 
Figure 9.2 to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and 
PROJECT from Figure 9.1. The foreign key and relationship attributes, if any,  
are not included yet; they will be added during subsequent steps. These include  
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Figure 9.2 
Result of mapping the 
COMPANY ER schema 
into a relational database 
schema.
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the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and Mgr_start_date of 
DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn, Dnumber, and 
Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT, 
respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are 
unique keys is kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called 
entity relations because each tuple represents an entity instance. The result after 
this mapping step is shown in Figure 9.3(a).

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the 
ER schema with owner entity type E, create a relation R and include all simple 
attributes (or simple components of composite attributes) of W as attributes of 
R. In addition, include as foreign key attributes of R, the primary key attribute(s) 
of the relation(s) that correspond to the owner entity type(s); this takes care of 
mapping the identifying relationship type of W. The primary key of R is the 
combination of the primary key(s) of the owner(s) and the partial key of the 
weak entity type W, if any. If there is a weak entity type E2 whose owner is also 
a weak entity type E1, then E1 should be mapped before E2 to determine its 
primary key first.

In our example, we create the relation DEPENDENT in this step to correspond to  
the weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key 
Ssn of the EMPLOYEE relation—which corresponds to the owner entity type— 
as a foreign key attribute of DEPENDENT; we rename it Essn, although this is not  
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Figure 9.3 
Illustration of some  
mapping steps.
(a) Entity relations  
after step 1.
(b) Additional weak entity 
relation after step 2.
(c) Relationship relations 
after step 5.
(d) Relation representing 
multivalued attribute  
after step 6.
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necessary. The primary key of the DEPENDENT relation is the combination {Essn, 
Dependent_name}, because Dependent_name (also renamed from Name in Figure 9.1) 
is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential trig-
gered action (see Section 6.2) on the foreign key in the relation corresponding to 
the weak entity type, since a weak entity has an existence dependency on its owner 
entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-
tionship type R in the ER schema, identify the relations S and T that correspond  
to the entity types participating in R. There are three possible approaches: (1) the 
foreign key approach, (2) the merged relationship approach, and (3) the cross- 
reference or relationship relation approach. The first approach is the most useful 
and should be followed unless special conditions exist, as we discuss below.

  1. Foreign key approach: Choose one of the relations—S, say—and include as 
a foreign key in S the primary key of T. It is better to choose an entity type 
with total participation in R in the role of S. Include all the simple attributes 
(or simple components of composite attributes) of the 1:1 relationship type 
R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure 9.1 
by choosing the participating entity type DEPARTMENT to serve in the role 
of S because its participation in the MANAGES relationship type is total 
(every department has a manager). We include the primary key of the 
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename 
it to Mgr_ssn. We also include the simple attribute Start_date of the MANAGES 
relationship type in the DEPARTMENT relation and rename it Mgr_start_date 
(see Figure 9.2 ).

Note that it is possible to include the primary key of S as a foreign key in T 
instead. In our example, this amounts to having a foreign key attribute, say 
Department_managed in the EMPLOYEE relation, but it will have a NULL value 
for employee tuples who do not manage a department. This would be a bad 
choice, because if only 2% of employees manage a department, then 98% of 
the foreign keys would be NULL in this case. Another possibility is to have 
foreign keys in both relations S and T redundantly, but this creates redun-
dancy and incurs a penalty for consistency maintenance.

  2. Merged relation approach: An alternative mapping of a 1:1 relationship 
type is to merge the two entity types and the relationship into a single rela-
tion. This is possible when both participations are total, as this would indi-
cate that the two tables will have the exact same number of tuples at all times.

  3. Cross-reference or relationship relation approach: The third option is to 
set up a third relation R for the purpose of cross-referencing the primary 
keys of the two relations S and T representing the entity types. As we will see, 
this approach is required for binary M:N relationships. The relation R is 
called a relationship relation (or sometimes a lookup table), because each 
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tuple in R represents a relationship instance that relates one tuple from S 
with one tuple from T. The relation R will include the primary key attributes 
of S and T as foreign keys to S and T. The primary key of R will be one of the 
two foreign keys, and the other foreign key will be a unique key of R. The 
drawback is having an extra relation, and requiring extra join operations 
when combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types. There are two possible 
approaches: (1) the foreign key approach and (2) the cross-reference or relationship 
relation approach. The first approach is generally preferred as it reduces the num-
ber of tables.

  1. The foreign key approach: For each regular binary 1:N relationship type R, 
identify the relation S that represents the participating entity type at the 
N-side of the relationship type. Include as foreign key in S the primary key of 
the relation T that represents the other entity type participating in R; we do 
this because each entity instance on the N-side is related to at most one 
entity instance on the 1-side of the relationship type. Include any simple 
attributes (or simple components of composite attributes) of the 1:N rela-
tionship type as attributes of S.

To apply this approach to our example, we map the 1:N relationship types 
WORKS_FOR, CONTROLS, and SUPERVISION from Figure 9.1. For  
WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relation 
as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION we 
include the primary key of the EMPLOYEE relation as foreign key in the 
EMPLOYEE relation itself—because the relationship is recursive—and call it 
Super_ssn. The CONTROLS relationship is mapped to the foreign key attri-
bute Dnum of PROJECT, which references the primary key Dnumber of the 
DEPARTMENT relation. These foreign keys are shown in Figure 9.2.

  2. The relationship relation approach: An alternative approach is to use the 
relationship relation (cross-reference) option as in the third option for 
binary 1:1 relationships. We create a separate relation R whose attributes are 
the primary keys of S and T, which will also be foreign keys to S and T. The 
primary key of R is the same as the primary key of S. This option can be used 
if few tuples in S participate in the relationship to avoid excessive NULL val-
ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. In the traditional rela-
tional model with no multivalued attributes, the only option for M:N relationships 
is the relationship relation (cross-reference) option. For each binary M:N rela-
tionship type R, create a new relation S to represent R. Include as foreign key attri-
butes in S the primary keys of the relations that represent the participating entity 
types; their combination will form the primary key of S. Also include any simple 
attributes of the M:N relationship type (or simple components of composite attri-
butes) as attributes of S. Notice that we cannot represent an M:N relationship type 
by a single foreign key attribute in one of the participating relations (as we did for 
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1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must create a 
separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 by 
creating the relation WORKS_ON in Figure 9.2. We include the primary keys of the 
PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename 
them Pno and Essn, respectively (renaming is not required; it is a design choice). 
We also include an attribute Hours in WORKS_ON to represent the Hours attribute 
of the relationship type. The primary key of the WORKS_ON relation is the combi-
nation of the foreign key attributes {Essn, Pno}. This relationship relation is 
shown in Figure 9.3(c).

The propagate (CASCADE) option for the referential triggered action (see Sec- 
tion 4.2) should be specified on the foreign keys in the relation corresponding to the 
relationship R, since each relationship instance has an existence dependency on 
each of the entities it relates. This can be used for both ON UPDATE and ON DELETE.

Although we can map 1:1 or 1:N relationships in a manner similar to M:N relation-
ships by using the cross-reference (relationship relation) approach, as we discussed 
earlier, this is only recommended when few relationship instances exist, in order to 
avoid NULL values in foreign keys. In this case, the primary key of the relationship 
relation will be only one of the foreign keys that reference the participating entity 
relations. For a 1:N relationship, the primary key of the relationship relation will be 
the foreign key that references the entity relation on the N-side. For a 1:1 relation-
ship, either foreign key can be used as the primary key of the relationship relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A, 
create a new relation R. This relation R will include an attribute corresponding to A, 
plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The 
primary key of R is the combination of A and K. If the multivalued attribute is com-
posite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)).  
The attribute Dlocation represents the multivalued attribute LOCATIONS of  
DEPARTMENT, whereas Dnumber—as foreign key—represents the primary key of the 
DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of 
{Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each loca-
tion that a department has. It is important to note that in more recent versions of 
the relational model that allow array data types, the multivalued attribute can be 
mapped to an array attribute rather than requiring a separate table.

The propagate (CASCADE) option for the referential triggered action (see Sec- 
tion 6.2) should be specified on the foreign key in the relation R corresponding to the 
multivalued attribute for both ON UPDATE and ON DELETE. We should also note 
that the key of R when mapping a composite, multivalued attribute requires some 
analysis of the meaning of the component attributes. In some cases, when a multi-
valued attribute is composite, only some of the component attributes are required 
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to be part of the key of R; these attributes are similar to a partial key of a weak entity 
type that corresponds to the multivalued attribute (see Section 3.5).

Figure 9.2 shows the COMPANY relational database schema obtained with steps 1 
through 6, and Figure 5.6 shows a sample database state. Notice that we did not yet 
discuss the mapping of n-ary relationship types (n > 2) because none exist in Fig-
ure 9.1 ; these are mapped in a similar way to M:N relationship types by including 
the following additional step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. We use the relationship  
relation option. For each n-ary relationship type R, where n > 2, create a new relation-
ship relation S to represent R. Include as foreign key attributes in S the primary keys 
of the relations that represent the participating entity types. Also include any simple 
attributes of the n-ary relationship type (or simple components of composite attri-
butes) as attributes of S. The primary key of S is usually a combination of all the 
foreign keys that reference the relations representing the participating entity types. 
However, if the cardinality constraints on any of the entity types E participating in 
R is 1, then the primary key of S should not include the foreign key attribute that 
references the relation E′ corresponding to E (see the discussion in Section 3.9.2 
concerning constraints on n-ary relationships).

Consider the ternary relationship type SUPPLY in Figure 3.17, which relates a 
SUPPLIER s, PART p, and PROJECT j whenever s is currently supplying p to j; this 
can be mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is the 
combination of the three foreign keys {Sname, Part_no, Proj_name}.

9.1.2  Discussion and Summary of Mapping  
for ER Model Constructs

Table 9.1 summarizes the correspondences between ER and relational model con-
structs and constraints.
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Sname

PROJECT

Proj_name

SUPPLY

Sname Proj_name Part_no Quantity

PART

Part_no

. . .

. . .

. . .

Figure 9.4 
Mapping the n-ary  
relationship type  
SUPPLY from  
Figure 3.17(a).



 9.1 Relational Database Design Using ER-to-Relational Mapping  297

Table 9.1   Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or relationship relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

One of the main points to note in a relational schema, in contrast to an ER 
schema, is that relationship types are not represented explicitly; instead, they 
are represented by having two attributes A and B, one a primary key and the 
other a foreign key (over the same domain) included in two relations S and T. 
Two tuples in S and T are related when they have the same value for A and B. By 
using the EQUIJOIN operation (or NATURAL JOIN if the two join attributes have 
the same name) over S.A and T.B, we can combine all pairs of related tuples 
from S and T and materialize the relationship. When a binary 1:1 or 1:N rela-
tionship type is involved and the foreign key mapping is used, a single join 
operation is usually needed. When the relationship relation approach is used, 
such as for a binary M:N relationship type, two join operations are needed, 
whereas for n-ary relationship types, n joins are needed to fully materialize the 
relationship instances.

For example, to form a relation that includes the employee name, project name, 
and hours that the employee works on each project, we need to connect  
each EMPLOYEE tuple to the related PROJECT tuples via the WORKS_ON  
relation in Figure 9.2. Hence, we must apply the EQUIJOIN operation to  
the EMPLOYEE  and WORKS_ON  relations with the join condition  
EMPLOYEE.Ssn = WORKS_ON.Essn, and then apply another EQUIJOIN opera-
tion to the resulting relation and the PROJECT relation with join condition 
WORKS_ON.Pno = PROJECT.Pnumber. In general, when multiple relationships 
need to be traversed, numerous join operations must be specified. The user 
must always be aware of the foreign key attributes in order to use them cor-
rectly in combining related tuples from two or more relations. This is some-
times considered to be a drawback of the relational data model, because the 
foreign key/primary key correspondences are not always obvious upon inspec-
tion of relational schemas. If an EQUIJOIN is performed among attributes of two 
relations that do not represent a foreign key/primary key relationship, the result 
can often be meaningless and may lead to spurious data. For example, the 
reader can try joining the PROJECT and DEPT_LOCATIONS relations on the con-
dition Dlocation = Plocation and examine the result.
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In the relational schema we create a separate relation for each multivalued attribute. 
For a particular entity with a set of values for the multivalued attribute, the key 
attribute value of the entity is repeated once for each value of the multivalued attri-
bute in a separate tuple because the basic relational model does not allow multiple 
values (a list, or a set of values) for an attribute in a single tuple. For example, 
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS 
relation in Figure 3.6; each tuple specifies one of the locations. In our example, we 
apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute to 
get the values of all locations along with other DEPARTMENT attributes. In the result-
ing relation, the values of the other DEPARTMENT attributes are repeated in separate 
tuples for every location that a department has.

The basic relational algebra does not have a NEST or COMPRESS operation that 
would produce a set of tuples of the form {<‘1’, ‘Houston’>, <‘4’, ‘Stafford’>, <‘5’, 
{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6. 
This is a serious drawback of the basic normalized or flat version of the relational 
model. The object data model and object-relational systems (see Chapter 12) do 
allow multivalued attributes by using the array type for the attribute.

9.2  Mapping EER Model Constructs  
to Relations

In this section, we discuss the mapping of EER model constructs to relations by 
extending the ER-to-relational mapping algorithm that was presented in Sec-
tion 9.1.1.

9.2.1 Mapping of Specialization or Generalization
There are several options for mapping a number of subclasses that together form a 
specialization (or alternatively, that are generalized into a superclass), such as the 
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. The 
two main options are to map the whole specialization into a single table, or to map 
it into multiple tables. Within each option are variations that depend on the con-
straints on the specialization/generalization.

We can add a further step to our ER-to-relational mapping algorithm from Sec- 
tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8, 
which follows, gives the most common options; other mappings are also possible. 
We discuss the conditions under which each option should be used. We use Attrs(R) 
to denote the attributes of a relation R, and PK(R) to denote the primary key of R. 
First we describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert 
each specialization with m subclasses {S1, S2, … , Sm} and (generalized) super- 
class C, where the attributes of C are {k, a1, … , an} and k is the (primary) key, into 
relation schemas using one of the following options:
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 ■ Option 8A: Multiple relations—superclass and subclasses. Create a  
relation L for C with attributes Attrs(L) = {k, a1, … , an} and PK(L) = k.  
Create a relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes  
Attrs(Li) = {k} ∪ {attributes of Si} and PK(Li) = k. This option works for any 
specialization (total or partial, disjoint or overlapping).

 ■ Option 8B: Multiple relations—subclass relations only. Create a  
relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes  
Attrs(Li) = {attributes of Si} ∪ {k, a1, … , an} and PK(Li) = k. This option only 
works for a specialization whose subclasses are total (every entity in the 
superclass must belong to (at least) one of the subclasses). Additionally, it is 
only recommended if the specialization has the disjointedness constraint (see 
Section 4.3.1). If the specialization is overlapping, the same entity may be 
duplicated in several relations.

 ■ Option 8C: Single relation with one type attribute. Create a single relation 
L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪ {attri-
butes of Sm} ∪ {t} and PK(L) = k. The attribute t is called a type (or  
discriminating) attribute whose value indicates the subclass to which each 
tuple belongs, if any. This option works only for a specialization whose sub-
classes are disjoint, and has the potential for generating many NULL values if 
many specific (local) attributes exist in the subclasses.

 ■ Option 8D: Single relation with multiple type attributes. Create a single 
relation schema L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes 
of S1} ∪ … ∪ {attributes of Sm} ∪ {t1, t2, …, tm} and PK(L) = k. Each ti,  
1 ≤ i ≤ m, is a Boolean type attribute indicating whether or not a tuple 
belongs to subclass Si. This option is used for a specialization whose sub-
classes are overlapping (but will also work for a disjoint specialization).

Options 8A and 8B are the multiple-relation options, whereas options 8C and 8D are 
the single-relation options. Option 8A creates a relation L for the superclass C and its 
attributes, plus a relation Li for each subclass Si; each Li includes the specific (local) 
attributes of Si, plus the primary key of the superclass C, which is propagated to Li and 
becomes its primary key. It also becomes a foreign key to the superclass relation. An 
EQUIJOIN operation on the primary key between any Li and L produces all the specific 
and inherited attributes of the entities in Si. This option is illustrated in Figure 9.5(a) 
for the EER schema in Figure 4.4. Option 8A works for any constraints on the special-
ization: disjoint or overlapping, total or partial. Notice that the constraint

π<k>(Li) ⊆ π<k>(L)

must hold for each Li. This specifies a foreign key from each Li to L.

In option 8B, the EQUIJOIN operation between each subclass and the superclass is 
built into the schema and the superclass relation L is done away with, as illustrated 
in Figure 9.5(b) for the EER specialization in Figure 4.3(b). This option works well 
only when both the disjoint and total constraints hold. If the specialization is not 
total, an entity that does not belong to any of the subclasses Si is lost. If the special-
ization is not disjoint, an entity belonging to more than one subclass will have its 
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inherited attributes from the superclass C stored redundantly in more than one table Li. 
With option 8B, no relation holds all the entities in the superclass C; consequently, we 
must apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to the Li 
relations to retrieve all the entities in C. The result of the outer union will be similar to 
the relations under options 8C and 8D except that the type fields will be missing. When-
ever we search for an arbitrary entity in C, we must search all the m relations Li.

Options 8C and 8D create a single relation to represent the superclass C and all its 
subclasses. An entity that does not belong to some of the subclasses will have NULL 
values for the specific (local) attributes of these subclasses. These options are not 
recommended if many specific attributes are defined for the subclasses. If few local 
subclass attributes exist, however, these mappings are preferable to options 8A  
and 8B because they do away with the need to specify JOIN operations; therefore, 
they can yield a more efficient implementation for queries.

Option 8C is used to handle disjoint subclasses by including a single type (or image 
or discriminating) attribute t to indicate to which of the m subclasses each tuple 
belongs; hence, the domain of t could be {1, 2, … , m}. If the specialization is partial, t 
can have NULL values in tuples that do not belong to any subclass. If the specialization 
is attribute-defined, that attribute itself serves the purpose of t and t is not needed; this 
option is illustrated in Figure 9.5(c) for the EER specialization in Figure 4.4.

Option 8D is designed to handle overlapping subclasses by including m Boolean 
type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses. 
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Options for mapping specialization or generalization. (a) Mapping the EER schema in Figure 4.4 using option 8A.  
(b) Mapping the EER schema in Figure 4.3(b) using option 8B. (c) Mapping the EER schema in Figure 4.4 using 
option 8C. (d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.
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Each type field ti can have a domain {yes, no}, where a value of yes indicates that the 
tuple is a member of subclass Si. If we use this option for the EER specialization in 
Figure 4.4, we would include three type attributes—Is_a_secretary, Is_a_engineer, and 
Is_a_technician—instead of the Job_type attribute in Figure 9.5(c). Figure 9.5(d) 
shows the mapping of the specialization from Figure 4.5 using option 8D.

For a multilevel specialization (or generalization) hierarchy or lattice, we do not have 
to follow the same mapping option for all the specializations. Instead, we can use one 
mapping option for part of the hierarchy or lattice and other options for other parts. 
Figure 9.6 shows one possible mapping into relations for the EER lattice in Figure 4.6. 
Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS, STUDENT}, and option 
8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT} by including the  
type attribute Employee_type. We then used the single-table option 8D for  
STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT} by including 
the type attributes Ta_flag and Ra_flag in EMPLOYEE. We also used option 8D for  
STUDENT/STUDENT_ASSISTANT by including the type attributes Student_assist_flag 
in STUDENT, and for STUDENT/{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT} 
by including the type attributes Grad_flag and Undergrad_flag in STUDENT. In Figure 9.6, 
all attributes whose names end with type or flag are type fields.

9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)
A shared subclass, such as ENGINEERING_MANAGER in Figure 4.6, is a subclass of 
several superclasses, indicating multiple inheritance. These classes must all have the 
same key attribute; otherwise, the shared subclass would be modeled as a category 
(union type) as we discussed in Section 4.4. We can apply any of the options dis-
cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 of 
the mapping algorithm. In Figure 9.6, options 8C and 8D are used for the shared 
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation 
(Employee_type attribute) and option 8D is used in the STUDENT relation  
(Student_assist_flag attribute).
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Figure 9.6 
Mapping the EER specialization 
lattice in Figure 4.8 using  
multiple options.
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9.2.3 Mapping of Categories (Union Types)
We add another step to the mapping procedure—step 9—to handle categories. A 
category (or union type) is a subclass of the union of two or more superclasses 
that can have different keys because they can be of different entity types (see Sec-
tion 4.4). An example is the OWNER category shown in Figure 4.8, which is a 
subset of the union of three entity types PERSON, BANK, and COMPANY. The 
other category in that figure, REGISTERED_VEHICLE, has two superclasses that 
have the same key attribute.

Step 9: Mapping of Union Types (Categories). For mapping a category whose 
defining superclasses have different keys, it is customary to specify a new key attri-
bute, called a surrogate key, when creating a relation to correspond to the union 
type. The keys of the defining classes are different, so we cannot use any one of 
them exclusively to identify all entities in the relation. In our example in Figure 4.8, 
we create a relation OWNER to correspond to the OWNER category, as illustrated in 
Figure 9.7, and include any attributes of the category in this relation. The primary 
key of the OWNER relation is the surrogate key, which we called Owner_id. We also 
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include the surrogate key attribute Owner_id as foreign key in each relation corre-
sponding to a superclass of the category, to specify the correspondence in values 
between the surrogate key and the original key of each superclass. Notice that if a 
particular PERSON (or BANK or COMPANY) entity is not a member of OWNER, it 
would have a NULL value for its Owner_id attribute in its corresponding tuple in the 
PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the 
OWNER relation. It is also recommended to add a type attribute (not shown in Fig-
ure 9.7) to the OWNER relation to indicate the particular entity type to which each 
tuple belongs (PERSON or BANK or COMPANY).

For a category whose superclasses have the same key, such as VEHICLE in Figure 4.8, 
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE 
category, which illustrates this case, is also shown in Figure 9.7.

9.3 Summary
In Section 9.1, we showed how a conceptual schema design in the ER model can 
be mapped to a relational database schema. An algorithm for ER-to-relational 
mapping was given and illustrated by examples from the COMPANY database. 
Table 9.1 summarized the correspondences between the ER and relational 
model constructs and constraints. Next, we added additional steps to the algo-
rithm in Section 9.2 for mapping the constructs from the EER model into the 
relational model. Similar algorithms are incorporated into graphical database 
design tools to create a relational schema from a conceptual schema design 
automatically.

Review Questions
 9.1. (a) Discuss the correspondences between the ER model constructs and the 

relational model constructs. Show how each ER model construct can be 
mapped to the relational model and discuss any alternative mappings.  
(b) Discuss the options for mapping EER model constructs to relations, and 
the conditions under which each option could be used.

Exercises
 9.2. Map the UNIVERSITY database schema shown in Figure 3.20 into a rela-

tional database schema.

 9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is 
part of a process known as reverse engineering, where a conceptual schema 
is created for an existing implemented database. State any assumptions 
you make.
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 9.4. Figure 9.8 shows an ER schema for a database that can be used to keep track of 
transport ships and their locations for maritime authorities. Map this schema 
into a relational schema and specify all primary keys and foreign keys.

 9.5. Map the BANK ER schema of Exercise 3.23 (shown in Figure 3.21) into a 
relational schema. Specify all primary keys and foreign keys. Repeat for the 
AIRLINE schema (Figure 3.20) of Exercise 3.19 and for the other schemas for 
Exercises 3.16 through 3.24.

 9.6. Map the EER diagrams in Figures 4.9 and 4.12 into relational schemas.  
Justify your choice of mapping options.

 9.7. Is it possible to successfully map a binary M:N relationship type without 
requiring a new relation? Why or why not?
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 9.8. Consider the EER diagram in Figure 9.9 for a car dealer.

  Map the EER schema into a set of relations. For the VEHICLE to CAR/TRUCK/SUV 
generalization, consider the four options presented in Section 9.2.1 and show 
the relational schema design under each of those options.

 9.9. Using the attributes you provided for the EER diagram in Exercise 4.27, map 
the complete schema into a set of relations. Choose an appropriate option 
out of 8A thru 8D from Section 9.2.1 in doing the mapping of generaliza-
tions and defend your choice.

Laboratory Exercises
 9.10. Consider the ER design for the UNIVERSITY database that was modeled using 

a tool like ERwin or Rational Rose in Laboratory Exercise 3.31. Using the 
SQL schema generation feature of the modeling tool, generate the SQL 
schema for an Oracle database.

 9.11. Consider the ER design for the MAIL_ORDER database that was modeled 
using a tool like ERwin or Rational Rose in Laboratory Exercise 3.32. Using 
the SQL schema generation feature of the modeling tool, generate the SQL 
schema for an Oracle database.

 9.12. Consider the ER design for the CONFERENCE_REVIEW database that was 
modeled using a tool like ERwin or Rational Rose in Laboratory Exer- 
cise 3.34. Using the SQL schema generation feature of the modeling tool, 
generate the SQL schema for an Oracle database.
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 9.13. Consider the EER design for the GRADE_BOOK database that was modeled 
using a tool like ERwin or Rational Rose in Laboratory Exercise 4.28. Using 
the SQL schema generation feature of the modeling tool, generate the SQL 
schema for an Oracle database.

 9.14. Consider the EER design for the ONLINE_AUCTION database that was mod-
eled using a tool like ERwin or Rational Rose in Laboratory Exercise 4.29. 
Using the SQL schema generation feature of the modeling tool, generate the 
SQL schema for an Oracle database.

Selected Bibliography
The original ER-to-relational mapping algorithm was described in Chen’s classic 
paper (Chen, 1976). Batini et al. (1992) discuss a variety of mapping algorithms 
from ER and EER models to legacy models and vice versa.
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10
Introduction to SQL  

Programming Techniques

In Chapters 6 and 7, we described several aspects of the 
SQL language, which is the standard for relational 

databases. We described the SQL statements for data definition, schema modifica-
tion, queries, views, and updates. We also described how various constraints on the 
database contents, such as key and referential integrity constraints, are specified.

In this chapter and the next, we discuss some of the methods that have been devel-
oped for accessing databases from programs. Most database access in practical 
applications is accomplished through software programs that implement database 
applications. This software is usually developed in a general-purpose program-
ming language such as Java, C/C++/C#, COBOL (historically), or some other pro-
gramming language. In addition, many scripting languages, such as PHP, Python, 
and JavaScript, are also being used for programming of database access within Web 
applications. In this chapter, we focus on how databases can be accessed from the 
traditional programming languages C/C++ and Java, whereas in the next chapter 
we introduce how databases are accessed from scripting languages such as PHP. 
Recall from Section 2.3.1 that when database statements are included in a program, 
the general-purpose programming language is called the host language, whereas the 
database language—SQL, in our case—is called the data sublanguage. In some 
cases, special database programming languages are developed specifically for writ-
ing database applications. Although many of these were developed as research pro-
totypes, some notable database programming languages have widespread use, such 
as Oracle’s PL/SQL (Programming Language/SQL).

It is important to note that database programming is a very broad topic. There are 
whole textbooks devoted to each database programming technique and how that 
technique is realized in a specific system. New techniques are developed all the 

chapter 10
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time, and changes to existing techniques are incorporated into newer system ver-
sions and languages. An additional difficulty in presenting this topic is that although 
there are SQL standards, these standards themselves are continually evolving, and 
each DBMS vendor may have some variations from the standard. Because of this, 
we have chosen to give an introduction to some of the main types of database pro-
gramming techniques and to compare these techniques, rather than study one par-
ticular method or system in detail. The examples we give serve to illustrate the main 
differences that a programmer would face when using each of these database pro-
gramming techniques. We will try to use the SQL standards in our examples rather 
than describe a specific system. When using a specific system, the materials in this 
chapter can serve as an introduction, but should be augmented with the system 
manuals or with books describing the specific system.

We start our presentation of database programming in Section 10.1 with an over-
view of the different techniques developed for accessing a database from programs. 
Then, in Section 10.2, we discuss the rules for embedding SQL statements into a 
general-purpose programming language, generally known as embedded SQL. This 
section also briefly discusses dynamic SQL, in which queries can be dynamically 
constructed at runtime, and presents the basics of the SQLJ variation of embedded 
SQL that was developed specifically for the programming language Java. In Sec-
tion 10.3, we discuss the technique known as SQL/CLI (Call Level Interface), in which 
a library of procedures and functions is provided for accessing the database. Various 
sets of library functions have been proposed. The SQL/CLI set of functions is the 
one given in the SQL standard. Another widely used library of functions is ODBC 
(Open Data Base Connectivity), which has many similarities to SQL/CLI; in fact, 
SQL/CLI can be thought of as the standardized version of ODBC. A third library of 
classes—which we do describe—is JDBC; this was developed specifically for access-
ing databases from the Java object-oriented programming language (OOPL). In 
OOPL, a library of classes is used instead of a library of functions and procedures, 
and each class has its own operations and functions. In Section 10.4 we discuss 
SQL/PSM (Persistent Stored Modules), which is a part of the SQL standard that 
allows program modules—procedures and functions—to be stored by the DBMS 
and accessed through SQL; this also specifies a procedural database programming 
language for writing the persistent stored modules. We briefly compare the three 
approaches to database programming in Section 10.5, and provide a chapter sum-
mary in Section 10.6.

10.1  Overview of Database Programming 
Techniques and Issues

We now turn our attention to the techniques that have been developed for access-
ing databases from programs and, in particular, to the issue of how to access SQL 
databases from application programs. Our presentation of SQL in Chapters 6 and 7 
focused on the language constructs for various database operations—from schema 
definition and constraint specification to querying, updating, and specifying views. 
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Most database systems have an interactive interface where these SQL commands 
can be typed directly into a monitor for execution by the database system.  
For example, in a computer system where the Oracle RDBMS is installed, the com-
mand SQLPLUS starts the interactive interface. The user can type SQL commands 
or queries directly over several lines, ended by a semicolon and the Enter key (that 
is, ";<cr>"). Alternatively, a file of commands can be created and executed 
through the interactive interface by typing @<filename>. The system will execute 
the commands written in the file and display the results, if any.

The interactive interface is quite convenient for schema and constraint creation or 
for occasional ad hoc queries. However, in practice, the majority of database inter-
actions are executed through programs that have been carefully designed and 
tested. These programs are generally known as application programs or database 
applications, and are used as canned transactions by the end users, as discussed in 
Section 1.4.3. Another common use of database programming is to access a data-
base through an application program that implements a Web interface, for exam-
ple, when making airline reservations or online purchases. In fact, the vast majority 
of Web electronic commerce applications include some database access commands. 
Chapter 11 gives an overview of Web database programming using PHP, a script-
ing language that has recently become widely used.

In this section, first we give an overview of the main approaches to database pro-
gramming. Then we discuss some of the problems that occur when trying to access 
a database from a general-purpose programming language, and the typical sequence 
of commands for interacting with a database from a software program.

10.1.1 Approaches to Database Programming
Several techniques exist for including database interactions in application pro-
grams. The main approaches for database programming are the following:

  1. Embedding database commands in a general-purpose programming  
language. In this approach, database statements are embedded into the host 
programming language, but they are identified by a special prefix. For 
example, the prefix for embedded SQL is the string EXEC SQL, which pre-
cedes all SQL commands in a host language program.1 A precompiler or 
preproccessor scans the source program code to identify database state-
ments and extract them for processing by the DBMS. They are replaced in 
the program by function calls to the DBMS-generated code. This technique 
is generally referred to as embedded SQL.

  2. Using a library of database functions or classes. A library of functions is 
made available to the host programming language for database calls. For 
example, there could be functions to connect to a database, prepare a query, 
execute a query, execute an update, loop over the query result on record at a 
time, and so on. The actual database query and update commands and any 

1Other prefixes are sometimes used, but this is the most common.
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other necessary information are included as parameters in the function calls. 
This approach provides what is known as an application programming 
interface (API) for accessing a database from application programs. For 
object-oriented programming languages (OOPLs), a class library is used. 
For example, Java has the JDBC class library, which can generate various 
types of objects such as: connection objects to a particular database, query 
objects, and query result objects. Each type of object has a set of operations 
associated with the class corresponding to the object.

  3. Designing a brand-new language. A database programming language is 
designed from scratch to be compatible with the database model and query 
language. Additional programming structures such as loops and conditional 
statements are added to the database language to convert it into a full-fledged 
programming language. An example of this approach is Oracle’s PL/SQL. The 
SQL standard has the SQL/PSM language for specifying stored procedures.

In practice, the first two approaches are more common, since many applications 
are already written in general-purpose programming languages but require some 
database access. The third approach is more appropriate for applications that have 
intensive database interaction. One of the main problems with the first two 
approaches is impedance mismatch, which does not occur in the third approach.

10.1.2 Impedance Mismatch
Impedance mismatch is the term used to refer to the problems that occur because 
of differences between the database model and the programming language model. 
For example, the practical relational model has three main constructs: columns 
(attributes) and their data types, rows (also referred to as tuples or records), and 
tables (sets or multisets of records). The first problem that may occur is that the 
data types of the programming language differ from the attribute data types that are 
available in the data model. Hence, it is necessary to have a binding for each host 
programming language that specifies for each attribute type the compatible pro-
gramming language types. A different binding is needed for each programming lan-
guage because different languages have different data types. For example, the data 
types available in C/C++ and Java are different, and both differ from the SQL data 
types, which are the standard data types for relational databases.

Another problem occurs because the results of most queries are sets or multisets of 
tuples (rows), and each tuple is formed of a sequence of attribute values. In the pro-
gram, it is often necessary to access the individual data values within individual 
tuples for printing or processing. Hence, a binding is needed to map the query result 
data structure, which is a table, to an appropriate data structure in the program-
ming language. A mechanism is needed to loop over the tuples in a query result in 
order to access a single tuple at a time and to extract individual values from the 
tuple. The extracted attribute values are typically copied to appropriate program 
variables for further processing by the program. A cursor or iterator variable is 
typically used to loop over the tuples in a query result. Individual values within each 
tuple are then extracted into distinct program variables of the appropriate type.
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Impedance mismatch is less of a problem when a special database programming 
language is designed that uses the same data model and data types as the database 
model. One example of such a language is Oracle’s PL/SQL. The SQL standard also 
has a proposal for such a database programming language, known as SQL/PSM. For 
object databases, the object data model (see Chapter 12) is quite similar to the data 
model of the Java programming language, so the impedance mismatch is greatly 
reduced when Java is used as the host language for accessing a Java-compatible 
object database. Several database programming languages have been implemented 
as research prototypes (see the Selected Bibliography).

10.1.3  Typical Sequence of Interaction  
in Database Programming

When a programmer or software engineer writes a program that requires access to 
a database, it is quite common for the program to be running on one computer 
system while the database is installed on another. Recall from Section 2.5 that a 
common architecture for database access is the three-tier client/server model, 
where a top-tier client program handles display of information on a laptop or 
mobile device usually as a Web client or mobile app, a middle-tier application  
program implements the logic of a business software application but includes some 
calls to one or more database servers at the bottom tier to access or update the 
data.2 When writing such an application program, a common sequence of interac-
tion is the following:

  1. When the application program requires access to a particular database, the 
program must first establish or open a connection to the database server. 
Typically, this involves specifying the Internet address (URL) of the machine 
where the database server is located, plus providing a login account name 
and password for database access.

  2. Once the connection is established, the program can interact with the database 
by submitting queries, updates, and other database commands. In general, 
most types of SQL statements can be included in an application program.

  3. When the program no longer needs access to a particular database, it should 
terminate or close the connection to the database.

A program can access multiple databases if needed. In some database programming 
approaches, only one connection can be active at a time, whereas in other 
approaches multiple connections can be established simultaneously.

In the next three sections, we discuss examples of each of the three main approaches 
to database programming. Section 10.2 describes how SQL is embedded into a pro-
gramming language. Section 10.3 discusses how function calls and class libraries are 
used to access the database using SQL/CLI (similar to ODBC) and JDBC, and Sec-
tion 10.4 discusses an extension to SQL called SQL/PSM that allows general-purpose 

2As we discussed in Section 2.5, there are two-tier and three-tier architectures; to keep our discussion 
simple, we will assume a two-tier client/server architecture here.
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programming constructs for defining modules (procedures and functions) that are 
stored within the database system.3 Section 10.5 compares these approaches.

10.2 Embedded SQL, Dynamic SQL, and SQL J
In this section, we give an overview of the techniques for embedding SQL state-
ments in a general-purpose programming language. We focus on two languages: C 
and Java. The examples used with the C language, known as embedded SQL, are 
presented in Sections 10.2.1 through 10.2.3, and can be adapted to other similar 
programming languages. The examples using Java, known as SQLJ, are presented 
in Sections 10.2.4 and 10.2.5. In this embedded approach, the programming lan-
guage is called the host language. Most SQL statements—including data or con-
straint definitions, queries, updates, or view definitions—can be embedded in a 
host language program.

10.2.1 Retrieving Single Tuples with Embedded SQL
To illustrate the concepts of embedded SQL, we will use C as the host programming 
language.4 In a C program, an embedded SQL statement is distinguished from pro-
gramming language statements by prefixing it with the keywords EXEC SQL so that 
a preprocessor (or precompiler) can separate embedded SQL statements from the 
host language source code. The SQL statements within a program are terminated 
by a matching END-EXEC or by a semicolon (;). Similar rules apply to embedding 
SQL in other programming languages.

Within an embedded SQL command, the programmer can refer to specially 
declared C program variables; these are called shared variables because they are 
used in both the C program and the embedded SQL statements. Shared variables 
are prefixed by a colon (:) when they appear in an SQL statement. This distin-
guishes program variable names from the names of database schema constructs 
such as attributes (column names) and relations (table names). It also allows pro-
gram variables to have the same names as attribute names, since they are distin-
guishable by the colon (:) prefix in the SQL statement. Names of database schema 
constructs—such as attributes and relations—can only be used within the SQL 
commands, but shared program variables can be used elsewhere in the C program 
without the colon (:) prefix.

Suppose that we want to write C programs to process the COMPANY database in 
Figure 5.5. We need to declare program variables to match the types of the database 
attributes that the program will process. The programmer can choose the names of 
the program variables; they may or may not have names that are identical to their 

3SQL/PSM illustrates how typical general-purpose programming language constructs—such as loops 
and conditional structures—can be incorporated into SQL.
4Our discussion here also applies to the C++ or C# programming languages, since we do not use any 
of the object-oriented features, but focus on the database programming mechanism.
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corresponding database attributes. We will use the C program variables declared 
in Figure 10.1 for all our examples and show C program segments without vari-
able declarations. Shared variables are declared within a declare section in the 
program, as shown in Figure 10.1 (lines 1 through 7).5 A few of the common 
bindings of C types to SQL types are as follows. The SQL types INTEGER, SMALLINT, 
REAL, and DOUBLE are mapped to the C data types long, short, float, and 
double, respectively. Fixed-length and varying-length strings (CHAR [i],  
VARCHAR [i]) in SQL can be mapped to arrays of characters (char [i+1],  
varchar [i+1]) in C that are one character longer than the SQL type because 
strings in C are terminated by a NULL character (\0), which is not part of the 
character string itself.6 Although varchar is not a standard C data type, it is per-
mitted when C is used for SQL database programming.

Notice that the only embedded SQL commands in Figure 10.1 are lines 1 and 7, 
which tell the precompiler to take note of the C variable names between BEGIN 
DECLARE and END DECLARE because they can be included in embedded SQL state-
ments—as long as they are preceded by a colon (:). Lines 2 through 5 are regular C 
program declarations. The C program variables declared in lines 2 through 5 cor-
respond to the attributes of the EMPLOYEE and DEPARTMENT tables from the 
COMPANY database in Figure 5.5 that was declared by the SQL DDL in Figure 6.1. 
The variables declared in line 6—SQLCODE and SQLSTATE—are called SQL 
communication variables; they are used to communicate errors and exception 
conditions between the database system and the executing program. Line 0 shows a 
program variable loop that will not be used in any embedded SQL statement, so it is 
declared outside the SQL declare section.

Connecting to the Database. The SQL command for establishing a connection 
to a database has the following form:

CONNECT TO <server name>AS <connection name>
AUTHORIZATION <user account name and password> ;

In general, since a user or program can access several database servers, several con-
nections can be established, but only one connection can be active at any point in 

5We use line numbers in our code segments for easy reference; these numbers are not part of the 
actual code.
6SQL strings can also be mapped to char* types in C.

0) int loop ;
1) EXEC SQL BEGIN DECLARE SECTION ;
2) varchar dname [16], fname [16], lname [16], address [31] ;
3) char ssn [10], bdate [11], sex [2], minit [2] ;
4) float salary, raise ;
5) int dno, dnumber ;
6) int SQLCODE ; char SQLSTATE [6] ;
7) EXEC SQL END DECLARE SECTION ;

Figure 10.1 
C program variables used in the  
embedded SQL examples E1 and E2.
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time. The programmer or user can use the <connection name> to change from the 
currently active connection to a different one by using the following command:

SET CONNECTION <connection name> ;

Once a connection is no longer needed, it can be terminated by the following 
command:

DISCONNECT <connection name> ;

In the examples in this chapter, we assume that the appropriate connection has 
already been established to the COMPANY database, and that it is the currently 
active connection.

Communication variables SQLCODE and SQLSTATE. The two special  
communication variables that are used by the DBMS to communicate exception 
or error conditions to the program are SQLCODE and SQLSTATE. The SQLCODE 
variable shown in Figure 10.1 is an integer variable. After each database command 
is executed, the DBMS returns a value in SQLCODE. A value of 0 indicates that the 
statement was executed successfully by the DBMS. If SQLCODE > 0 (or, more spe-
cifically, if SQLCODE = 100), this indicates that no more data (records) are available 
in a query result. If SQLCODE < 0, this indicates some error has occurred. In some 
systems—for example, in the Oracle RDBMS—SQLCODE is a field in a record 
structure called SQLCA (SQL communication area), so it is referenced as  
SQLCA.SQLCODE. In this case, the definition of SQLCA must be included in the C 
program by including the following line:

EXEC SQL include SQLCA ;

In later versions of the SQL standard, a communication variable called SQLSTATE 
was added, which is a string of five characters. A value of ‘00000’ in SQLSTATE indi-
cates no error or exception; other values indicate various errors or exceptions. For 
example, ‘02000’ indicates ‘no more data’ when using SQLSTATE. Currently, both 
SQLSTATE and SQLCODE are available in the SQL standard. Many of the error and 
exception codes returned in SQLSTATE are supposed to be standardized for all SQL 
vendors and platforms,7 whereas the codes returned in SQLCODE are not stan-
dardized but are defined by the DBMS vendor. Hence, it is generally better to use 
SQLSTATE because this makes error handling in the application programs indepen-
dent of a particular DBMS. As an exercise, the reader should rewrite the examples 
given later in this chapter using SQLSTATE instead of SQLCODE.

Example of Embedded SQL Programming. Our first example to illustrate 
embedded SQL programming is a repeating program segment (loop) that takes as 
input a Social Security number of an employee and prints some information from 
the corresponding EMPLOYEE record in the database. The C program code is shown 
as program segment E1 in Figure 10.2. The program reads (inputs) an Ssn value 

7In particular, SQLSTATE codes starting with the characters 0 through 4 or A through H are supposed to 
be standardized, whereas other values can be implementation-defined.
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and then retrieves the EMPLOYEE tuple with that Ssn from the database via the 
embedded SQL command. The INTO clause (line 5) specifies the program vari-
ables into which attribute values from the database record are retrieved. C program 
variables in the INTO clause are prefixed with a colon (:), as we discussed earlier. 
The INTO clause can be used in this manner only when the query result is a single 
record; if multiple records are retrieved, an error will be generated. We will see how 
multiple records are handled in Section 10.2.2.

Line 7 in E1 illustrates the communication between the database and the program 
through the special variable SQLCODE. If the value returned by the DBMS in 
SQLCODE is 0, the previous statement was executed without errors or exception 
conditions. Line 7 checks this and assumes that if an error occurred, it was because 
no EMPLOYEE tuple existed with the given Ssn; therefore it outputs a message to 
that effect (line 8).

When a single record is retrieved as in example E1, the programmer can assign its 
attribute values directly to C program variables in the INTO clause, as in line 5. In 
general, an SQL query can retrieve many tuples. In that case, the C program will 
typically loop through the retrieved tuples and process them one at a time. The con-
cept of a cursor is used to allow tuple-at-a-time processing of a query result by the 
host language program. We describe cursors next.

10.2.2 Processing Query Results Using Cursors
A cursor is a variable that refers to a single tuple (row) from a query result that 
retrieves a collection of tuples. It is used to loop over the query result, one record at 
a time. The cursor is declared when the SQL query is declared. Later in the pro-
gram, an OPEN CURSOR command fetches the query result from the database and 
sets the cursor to a position before the first row in the result of the query. This 
becomes the current row for the cursor. Subsequently, FETCH commands are 
issued in the program; each FETCH moves the cursor to the next row in the result of 
the query, making it the current row and copying its attribute values into the C 
(host language) program variables specified in the FETCH command by an INTO 

   //Program Segment E1:
0) loop = 1 ;
1) while (loop) {
2)   prompt("Enter a Social Security Number: ", ssn) ;
3)   EXEC SQL
4)     SELECT Fname, Minit, Lname, Address, Salary
5)     INTO :fname, :minit, :lname, :address, :salary
6)     FROM EMPLOYEE WHERE Ssn = :ssn ;
7)   if (SQLCODE = = 0) printf(fname, minit, lname, address, salary)
8)     else printf("Social Security Number does not exist: ", ssn) ;
9)   prompt("More Social Security Numbers (enter 1 for Yes, 0 for No): ", loop) ;
10)  }

Figure 10.2 
Program segment E1, 
a C program segment 
with embedded SQL.
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clause. The cursor variable is basically an iterator that iterates (loops) over the 
tuples in the query result—one tuple at a time.

To determine when all the tuples in the result of the query have been processed, the 
communication variable SQLCODE (or, alternatively, SQLSTATE) is checked. If a 
FETCH command is issued that results in moving the cursor past the last tuple in the 
result of the query, a positive value (SQLCODE > 0) is returned in SQLCODE, 
indicating that no data (tuple) was found (or the string ‘02000’ is returned in 
SQLSTATE). The programmer uses this to terminate the loop over the tuples in the 
query result. In general, numerous cursors can be opened at the same time. A 
CLOSE CURSOR command is issued to indicate that we are done with processing 
the result of the query associated with that cursor.

An example of using cursors to process a query result with multiple records is shown 
in Figure 10.3, where a cursor called EMP is declared in line 4. The EMP cursor  
is associated with the SQL query declared in lines 5 through 6, but the query  
is not executed until the OPEN EMP command (line 8) is processed. The  
OPEN <cursor name> command executes the query and fetches its result as a table 
into the program workspace, where the program can loop through the individual 
rows (tuples) by subsequent FETCH <cursor name> commands (line 9). We assume 

    //Program Segment E2:
  0) prompt("Enter the Department Name: ", dname) ;
  1) EXEC SQL
  2)   SELECT Dnumber INTO :dnumber
  3)   FROM DEPARTMENT WHERE Dname = :dname ;
  4) EXEC SQL DECLARE EMP CURSOR FOR
  5)   SELECT Ssn, Fname, Minit, Lname, Salary
  6)   FROM EMPLOYEE WHERE Dno = :dnumber
  7)   FOR UPDATE OF Salary ;
  8) EXEC SQL OPEN EMP ;
  9) EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
10) while (SQLCODE = = 0) {
11)   printf("Employee name is:", Fname, Minit, Lname) ;
12)   prompt("Enter the raise amount: ", raise) ;
13)   EXEC SQL
14)     UPDATE EMPLOYEE
15)     SET Salary = Salary + :raise
16)     WHERE CURRENT OF EMP ;
17)   EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
18)   }
19) EXEC SQL CLOSE EMP ;

Figure 10.3 
Program segment E2, a C program segment that uses 
cursors with embedded SQL for update purposes.
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that appropriate C program variables have been declared as in Figure 10.1. The pro-
gram segment in E2 reads (inputs) a department name (line 0), retrieves the 
matching department number from the database (lines 1 to 3), and then retrieves 
the employees who work in that department via the declared EMP cursor. A loop 
(lines 10 to 18) iterates over each record in the query result, one at a time, and 
prints the employee name, then reads (inputs) a raise amount for that employee 
(line 12) and updates the employee’s salary in the database by the raise amount 
(lines 14 to 16).

This example also illustrates how the programmer can update database records. 
When a cursor is defined for rows that are to be modified (updated), we must add 
the clause FOR UPDATE OF in the cursor declaration and list the names of any attri-
butes that will be updated by the program. This is illustrated in line 7 of code seg-
ment E2. If rows are to be deleted, the keywords FOR UPDATE must be added 
without specifying any attributes. In the embedded UPDATE (or DELETE) command, 
the condition WHERE CURRENT OF <cursor name> specifies that the current tuple 
referenced by the cursor is the one to be updated (or deleted), as in line 16 of E2.

There is no need to include the FOR UPDATE OF clause in line 7 of E2 if the results 
of the query are to be used for retrieval purposes only (no update or delete).

General Options for a Cursor Declaration. Several options can be specified 
when declaring a cursor. The general form of a cursor declaration is as follows:

DECLARE <cursor name> [ INSENSITIVE ] [ SCROLL ] CURSOR
[ WITH HOLD ] FOR <query specification>
[ ORDER BY <ordering specification> ]
[ FOR READ ONLY | FOR UPDATE [ OF <attribute list> ] ] ;

We already briefly discussed the options listed in the last line. The default is that the 
query is for retrieval purposes (FOR READ ONLY). If some of the tuples in the query 
result are to be updated, we need to specify FOR UPDATE OF <attribute list> and list 
the attributes that may be updated. If some tuples are to be deleted, we need to 
specify FOR UPDATE without any attributes listed.

When the optional keyword SCROLL is specified in a cursor declaration, it is pos-
sible to position the cursor in other ways than for purely sequential access. A fetch 
orientation can be added to the FETCH command, whose value can be one of NEXT, 
PRIOR, FIRST, LAST, ABSOLUTE i, and RELATIVE i. In the latter two commands, i 
must evaluate to an integer value that specifies an absolute tuple position within the 
query result (for ABSOLUTE i), or a tuple position relative to the current cursor 
position (for RELATIVE i). The default fetch orientation, which we used in our 
examples, is NEXT. The fetch orientation allows the programmer to move the cursor 
around the tuples in the query result with greater flexibility, providing random 
access by position or access in reverse order. When SCROLL is specified on the cur-
sor, the general form of a FETCH command is as follows, with the parts in square 
brackets being optional:

FETCH [ [ <fetch orientation> ] FROM ] <cursor name> INTO <fetch target list>;
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The ORDER BY clause orders the tuples so that the FETCH command will fetch them 
in the specified order. It is specified in a similar manner to the corresponding clause 
for SQL queries (see Section 6.3.6). The last two options when declaring a cursor 
(INSENSITIVE and WITH HOLD) refer to transaction characteristics of database pro-
grams, which we will discuss in Chapter 20.

10.2.3 Specifying Queries at Runtime Using Dynamic SQL
In the previous examples, the embedded SQL queries were written as part of the 
host program source code. Hence, anytime we want to write a different query, we 
must modify the program code and go through all the steps involved (compiling, 
debugging, testing, and so on). In some cases, it is convenient to write a program 
that can execute different SQL queries or updates (or other operations) dynamically 
at runtime. For example, we may want to write a program that accepts an SQL 
query typed from the monitor, executes it, and displays its result, such as the inter-
active interfaces available for most relational DBMSs. Another example is when a 
user-friendly interface generates SQL queries dynamically for the user based on 
user input through a Web interface or mobile App. In this section, we give a brief 
overview of dynamic SQL, which is one technique for writing this type of database 
program, by giving a simple example to illustrate how dynamic SQL can work. In 
Section 10.3, we will describe another approach for dealing with dynamic queries 
using function libraries or class libraries.

Program segment E3 in Figure 10.4 reads a string that is input by the user (that 
string should be an SQL update command in this example) into the string program 
variable sqlupdatestring in line 3. It then prepares this as an SQL command in 
line 4 by associating it with the SQL variable sqlcommand. Line 5 then executes 
the command. Notice that in this case no syntax check or other types of checks 
on the command are possible at compile time, since the SQL command is not 
available until runtime. This contrasts with our previous examples of embedded 
SQL, where the query could be checked at compile time because its text was in 
the program source code.

In E3, the reason for separating PREPARE and EXECUTE is that if the command is to 
be executed multiple times in a program, it can be prepared only once. Preparing 
the command generally involves syntax and other types of checks by the system, as 

        //Program Segment E3:
0) EXEC SQL BEGIN DECLARE SECTION ;
1) varchar sqlupdatestring [256] ;
2) EXEC SQL END DECLARE SECTION ;
 ...
3) prompt("Enter the Update Command: ", sqlupdatestring) ;
4) EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring ;
5) EXEC SQL EXECUTE sqlcommand ;
 ...

Figure 10.4 
Program segment E3, a C program segment 
that uses dynamic SQL for updating a table.
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well as generating the code for executing it. It is possible to combine the PREPARE 
and EXECUTE commands (lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

This is useful if the command is to be executed only once. Alternatively, the pro-
grammer can separate the two statements to catch any errors after the PREPARE 
statement as in E3.

Although including a dynamic update command is relatively straightforward in 
dynamic SQL, a dynamic retrieval query is much more complicated. This is because 
the programmer does not know the types or the number of attributes to be retrieved 
by the SQL query when writing the program. A complex data structure is needed to 
allow for different numbers and types of attributes in the query result if no prior 
information is known about the dynamic query. Techniques similar to those that 
we shall discuss in Section 10.3 can be used to assign retrieval query results (and 
query parameters) to host program variables.

10.2.4 SQLJ: Embedding SQL Commands in Java
In the previous subsections, we gave an overview of how SQL commands can be 
embedded in a traditional programming language, using the C language in our 
examples. We now turn our attention to how SQL can be embedded in an object-
oriented programming language,8 in particular, the Java language. SQLJ is a stan-
dard that has been adopted by several vendors for embedding SQL in Java. 
Historically, SQLJ was developed after JDBC, which is used for accessing SQL data-
bases from Java using class libraries and function calls. We discuss JDBC in Sec-
tion 10.3.2. In this section, we focus on SQLJ as it is used in the Oracle RDBMS. An 
SQLJ translator will generally convert SQL statements into Java, which can then be 
executed through the JDBC interface. Hence, it is necessary to install a JDBC driver 
when using SQLJ.9 In this section, we focus on how to use SQLJ concepts to write 
embedded SQL in a Java program.

Before being able to process SQLJ with Java in Oracle, it is necessary to import several 
class libraries, shown in Figure 10.5. These include the JDBC and IO classes (lines 1 
and 2), plus the additional classes listed in lines 3, 4, and 5. In addition, the program 
must first connect to the desired database using the function call getConnection, 
which is one of the methods of the oracle class in line 5 of Figure 10.5. The format of 
this function call, which returns an object of type default context,10 is as follows:

public static DefaultContext
getConnection(String url, String user, String password,
         Boolean autoCommit)
throws SQLException ;

8This section assumes familiarity with object-oriented concepts (see Chapter 12) and basic Java concepts.
9We discuss JDBC drivers in Section 10.3.2.
10A default context, when set, applies to subsequent commands in the program until it is changed.
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For example, we can write the statements in lines 6 through 8 in Figure 10.5 to  
connect to an Oracle database located at the url <url name> using the login of 
<user name> and <password> with automatic commitment of each command,11 

and then set this connection as the default context for subsequent commands.

In the following examples, we will not show complete Java classes or programs 
since it is not our intention to teach Java. Rather, we will show program segments 
that illustrate the use of SQLJ. Figure 10.6 shows the Java program variables used in 
our examples. Program segment J1 in Figure 10.7 reads an employee’s Ssn and 
prints some of the employee’s information from the database.

Notice that because Java already uses the concept of exceptions for error han-
dling, a special exception called SQLException is used to return errors or 
exception conditions after executing an SQL database command. This plays a 
similar role to SQLCODE and SQLSTATE in embedded SQL. Java has many types 
of predefined exceptions. Each Java operation (function) must specify the 
exceptions that can be thrown—that is, the exception conditions that may 
occur while executing the Java code of that operation. If a defined exception 
occurs, the system transfers control to the Java code specified for exception 
handling. In J1, exception handling for an SQLException is specified in lines 7 
and 8. In Java, the following structure

try {<operation>} catch (<exception>) {<exception handling 
  code>} <continuation code>

1) import java.sql.* ;
2) import java.io.* ;
3) import sqlj.runtime.* ;
4) import sqlj.runtime.ref.* ;
5) import oracle.sqlj.runtime.* ;
 ...
6) DefaultContext cntxt = 
7) oracle.getConnection("<url name>", "<user name>", "<password>", true) ;
8) DefaultContext.setDefaultContext(cntxt) ;
 ...

Figure 10.5 
Importing classes needed for including 
SQLJ in Java programs in Oracle, and 
establishing a connection  
and default context.

11Automatic commitment roughly means that each command is applied to the database after it is  
executed. The alternative is that the programmer wants to execute several related database commands 
and then commit them together. We discuss commit concepts in Chapter 20 when we describe database 
transactions.

1) string dname, ssn , fname, fn, lname, ln,  
bdate, address ;

2) char sex, minit, mi ;
3) double salary, sal ;
4) integer dno, dnumber ;

Figure 10.6 
Java program variables  
used in SQLJ examples  
J1 and J2.
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is used to deal with exceptions that occur during the execution of <operation>. If 
no exception occurs, the <continuation code> is processed directly. Exceptions 
that can be thrown by the code in a particular operation should be specified as part 
of the operation declaration or interface—for example, in the following format:

<operation return type> <operation name> (<parameters>)
throws SQLException, IOException ;

In SQLJ, the embedded SQL commands within a Java program are preceded by 
#sql, as illustrated in J1 line 3, so that they can be identified by the preprocessor. 
The #sql is used instead of the keywords EXEC SQL that are used in embedded SQL 
with the C programming language (see Section 10.2.1). SQLJ uses an INTO clause—
similar to that used in embedded SQL—to return the attribute values retrieved from 
the database by an SQL query into Java program variables. The program variables 
are preceded by colons (:) in the SQL statement, as in embedded SQL.

In J1 a single tuple is retrieved by the embedded SQLJ query; that is why we are able 
to assign its attribute values directly to Java program variables in the INTO clause in 
line 4 in Figure 10.7. For queries that retrieve many tuples, SQLJ uses the concept of 
an iterator, which is similar to a cursor in embedded SQL.

10.2.5 Processing Query Results in SQLJ Using Iterators
In SQLJ, an iterator is a type of object associated with a collection (set or multiset) 
of records in a query result.12 The iterator is associated with the tuples and attri-
butes that appear in a query result. There are two types of iterators:

  1. A named iterator is associated with a query result by listing the attribute names 
and types that appear in the query result. The attribute names must correspond 
to appropriately declared Java program variables, as shown in Figure 10.6.

  2. A positional iterator lists only the attribute types that appear in the query 
result.

         //Program Segment J1:
  1) ssn = readEntry("Enter a Social Security Number: ") ;
  2) try {
  3)   #sql { SELECT Fname, Minit, Lname, Address, Salary
  4)     INTO :fname, :minit, :lname, :address, :salary
  5)     FROM EMPLOYEE WHERE Ssn = :ssn} ;
  6) } catch (SQLException se) {
  7)     System.out.println("Social Security Number does not exist: " + ssn) ;
  8)     Return ;
  9)   }
10) System.out.println(fname + " " + minit + " " + lname + " " + address  

  + " " + salary)

Figure 10.7 
Program segment J1, 
a Java program  
segment with SQLJ.

12We shall discuss iterators in more detail in Chapter 12 when we present object database concepts.
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In both cases, the list should be in the same order as the attributes that are listed in 
the SELECT clause of the query. However, looping over a query result is different for 
the two types of iterators. First, we show an example of using a named iterator in 
Figure 10.8, program segment J2A. Line 9 in Figure 10.8 shows how a named itera-
tor type Emp is declared. Notice that the names of the attributes in a named iterator 
type must match the names of the attributes in the SQL query result. Line 10 shows 
how an iterator object e of type Emp is created in the program and then associated 
with a query (lines 11 and 12).

When the iterator object is associated with a query (lines 11 and 12 in Figure 10.8), 
the program fetches the query result from the database and sets the iterator to a 
position before the first row in the result of the query. This becomes the current row 
for the iterator. Subsequently, next operations are issued on the iterator object; 
each next moves the iterator to the next row in the result of the query, making it the 
current row. If the row exists, the operation retrieves the attribute values for that 
row into the corresponding program variables. If no more rows exist, the next 
operation returns NULL, and can thus be used to control the looping. Notice that the 
named iterator does not need an INTO clause, because the program variables corre-
sponding to the retrieved attributes are already specified when the iterator type is 
declared (line 9 in Figure 10.8).

In Figure 10.8, the command (e.next()) in line 13 performs two functions: It 
gets the next tuple in the query result and controls the WHILE loop. Once the 

Figure 10.8 
Program segment J2A, a Java program segment that uses a named iterator to print employee information in a 
particular department.

    //Program Segment J2A:
 0) dname = readEntry("Enter the Department Name: ") ;
 1) try {
 2)   #sql { SELECT Dnumber INTO :dnumber
 3)     FROM DEPARTMENT WHERE Dname = :dname} ;
 4) } catch (SQLException se) {
 5)   System.out.println("Department does not exist: " + dname) ;
 6)   Return ;
 7)   }
 8) System.out.printline("Employee information for Department: " + dname) ;
 9) #sql iterator Emp(String ssn, String fname, String minit, String lname,
      double salary) ;
10) Emp e = null ;
11) #sql e = { SELECT ssn, fname, minit, lname, salary
12)   FROM EMPLOYEE WHERE Dno = :dnumber} ;
13) while (e.next()) {
14)   System.out.printline(e.ssn + " " + e.fname + " " + e.minit + " " +  

    e.lname  + " " + e.salary) ;
15) } ;
16) e.close() ;
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program is done with processing the query result, the command e.close() 
(line 16) closes the iterator.

Next, consider the same example using positional iterators as shown in Figure 10.9 
(program segment J2B). Line 9 in Figure 10.9 shows how a positional iterator type 
Emppos is declared. The main difference between this and the named iterator is that 
there are no attribute names (corresponding to program variable names) in the 
positional iterator—only attribute types. This can provide more flexibility, but it 
makes the processing of the query result slightly more complex. The attribute types 
must still be compatible with the attribute types in the SQL query result and in the 
same order. Line 10 shows how a positional iterator object e of type Emppos is cre-
ated in the program and then associated with a query (lines 11 and 12).

The positional iterator behaves in a manner that is more similar to embedded SQL 
(see Section 10.2.2). A FETCH <iterator variable> INTO <program variables> com-
mand is needed to get the next tuple in a query result. The first time fetch is exe-
cuted, it gets the first tuple (line 13 in Figure 10.9). Line 16 gets the next tuple until 
no more tuples exist in the query result. To control the loop, a positional iterator 
function e.endFetch() is used. This function is automatically set to a value of 
TRUE when the iterator is initially associated with an SQL query (line 11), and is set 
to FALSE each time a fetch command returns a valid tuple from the query result. It 
is set to TRUE again when a fetch command does not find any more tuples. Line 14 
shows how the looping is controlled by negation.

Figure 10.9 
Program segment J2B, a Java program segment that uses a positional iterator to print employee information in a 
particular department.

    //Program Segment J2B:
 0) dname = readEntry("Enter the Department Name: ") ;
 1) try {
 2)   #sql { SELECT Dnumber INTO :dnumber
 3)     FROM DEPARTMENT WHERE Dname = :dname} ;
 4) } catch (SQLException se) {
 5)   System.out.println("Department does not exist: " + dname) ;
 6)   Return ;
 7)   }
 8) System.out.printline("Employee information for Department: " + dname) ;
 9) #sql iterator Emppos(String, String, String, String, double) ;
10) Emppos e = null ;
11) #sql e = { SELECT ssn, fname, minit, lname, salary
12)   FROM EMPLOYEE WHERE Dno = :dnumber} ;
13) #sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;
14) while (!e.endFetch()) {
15)   System.out.printline(ssn + " " + fn + " " + mi + " " + ln + " " + sal) ;
16)   #sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;
17) } ;
18) e.close() ;
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10.3  Database Programming with Function 
Calls and Class Libraries: SQL/CLI  
and JDBC

Embedded SQL (see Section 10.2) is sometimes referred to as a static database pro-
gramming approach because the query text is written within the program source 
code and cannot be changed without recompiling or reprocessing the source code. 
The use of function calls is a more dynamic approach for database programming 
than embedded SQL. We already saw one dynamic database programming technique—
dynamic SQL—in Section 10.2.3. The techniques discussed here provide another 
approach to dynamic database programming. A library of functions, also known 
as an application programming interface (API), is used to access the database. 
Although this provides more flexibility because no preprocessor is needed, one 
drawback is that syntax and other checks on SQL commands have to be done at 
runtime. Another drawback is that it sometimes requires more complex program-
ming to access query results because the types and numbers of attributes in a query 
result may not be known in advance.

In this section, we give an overview of two function call interfaces. We first discuss 
the SQL Call Level Interface (SQL/CLI), which is part of the SQL standard. This 
was developed as a standardization of the popular library of functions known as 
ODBC (Open Database Connectivity). We use C as the host language in our  
SQL/CLI examples. Then we give an overview of JDBC, which is the call function 
interface for accessing databases from Java. Although it is commonly assumed that 
JDBC stands for Java Database Connectivity, JDBC is just a registered trademark of 
Sun Microsystems (now Oracle), not an acronym.

The main advantage of using a function call interface is that it makes it easier 
to access multiple databases within the same application program, even if they 
are stored under different DBMS packages. We discuss this further in Sec- 
tion 10.3.2 when we discuss Java database programming with JDBC, although 
this advantage also applies to database programming with SQL/CLI and ODBC 
(see Section 10.3.1).

10.3.1  Database Programming with SQL/CLI Using C  
as the Host Language

Before using the function calls in SQL/CLI, it is necessary to install the appropriate 
library packages on the database server. These packages are obtained from the ven-
dor of the DBMS being used. We now give an overview of how SQL/CLI can be 
used in a C program.13 We will illustrate our presentation with the sample program 
segment CLI1 shown in Figure 10.10.

13Our discussion here also applies to the C++ and C# programming languages, since we do not use 
any of the object-oriented features but focus on the database programming mechanism.
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Handles to environment, connection, statement, and description 
records. When using SQL/CLI, the SQL statements are dynamically created and 
passed as string parameters in the function calls. Hence, it is necessary to keep track 
of the information about host program interactions with the database in runtime 
data structures because the database commands are processed at runtime. The 
information is kept in four types of records, represented as structs in C data types. 
An environment record is used as a container to keep track of one or more data-
base connections and to set environment information. A connection record keeps 
track of the information needed for a particular database connection. A statement 
record keeps track of the information needed for one SQL statement. A  
description record keeps track of the information about tuples or parameters—for 
example, the number of attributes and their types in a tuple, or the number and 
types of parameters in a function call. This is needed when the programmer does 
not know this information about the query when writing the program. In our 
examples, we assume that the programmer knows the exact query, so we do not 
show any description records.

    //Program CLI1:
 0) #include sqlcli.h ;
 1) void printSal() {
 2) SQLHSTMT stmt1 ;
 3) SQLHDBC con1 ;
 4) SQLHENV env1 ;
 5) SQLRETURN ret1, ret2, ret3, ret4 ;
 6) ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;
 7) if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;
 8) if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",
      SQL_NTS) else exit ;
 9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;
10) SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Ssn = ?",
      SQL_NTS) ;
11) prompt("Enter a Social Security Number: ", ssn) ;
12) SQLBindParameter(stmt1, 1, SQL_CHAR, &ssn, 9, &fetchlen1) ;
13) ret1 = SQLExecute(stmt1) ;
14) if (!ret1) {
15)   SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;
16)   SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17)   ret2 = SQLFetch(stmt1) ;
18)   if (!ret2) printf(ssn, lname, salary)
19)     else printf("Social Security Number does not exist: ", ssn) ;
20)   }
21) }

Figure 10.10 
Program segment CLI1, a C program segment with SQL/CLI.
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Each record is accessible to the program through a C pointer variable—called a 
handle to the record. The handle is returned when a record is first created. To cre-
ate a record and return its handle, the following SQL/CLI function is used:

SQLAllocHandle(<handle_type>, <handle_1>, <handle_2>)

In this function, the parameters are as follows:

 ■ <handle_type> indicates the type of record being created. The possible val-
ues for this parameter are the keywords SQL_HANDLE_ENV, SQL_HANDLE_DBC, 
SQL_HANDLE_STMT, or SQL_HANDLE_DESC, for an environment, connec-
tion, statement, or description record, respectively.

 ■ <handle_1> indicates the container within which the new handle is being 
created. For example, for a connection record this would be the environ-
ment within which the connection is being created, and for a statement 
record this would be the connection for that statement.

 ■ <handle_2> is the pointer (handle) to the newly created record of type 
<handle_type>.

Steps in a database program. When writing a C program that will include 
database calls through SQL/CLI, the following are the typical steps that are taken. 
We illustrate the steps by referring to the example CLI1 in Figure 10.10, which 
reads a Social Security number of an employee and prints the employee’s last name 
and salary.

  1. Including the library of functions. The library of functions comprising 
SQL/CLI must be included in the C program. This is called sqlcli.h, and is 
included using line 0 in Figure 10.10.

  2. Declaring handle variables. Declare handle variables of types SQLHSTMT, 
SQLHDBC, SQLHENV, and SQLHDESC for the statements, connections, envi-
ronments, and descriptions needed in the program, respectively (lines 2 
to 4).14 Also declare variables of type SQLRETURN (line 5) to hold the 
return codes from the SQL/CLI function calls. A return code of 0 (zero) 
indicates successful execution of the function call.

  3. Environment record. An environment record must be set up in the program 
using SQLAllocHandle. The function to do this is shown in line 6. Because 
an environment record is not contained in any other record, the parameter 
<handle_1> is the NULL handle SQL_NULL_HANDLE (NULL pointer) when 
creating an environment. The handle (pointer) to the newly created envi-
ronment record is returned in variable env1 in line 6.

  4. Connecting to the database. A connection record is set up in the program 
using SQLAllocHandle. In line 7, the connection record created has the han-
dle con1 and is contained in the environment env1. A connection is then 
established in con1 to a particular server database using the SQLConnect 

14To keep our presentation simple, we will not show description records here.
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function of SQL/CLI (line 8). In our example, the database server name we 
are connecting to is dbs and the account name and password for login are js 
and xyz, respectively.

  5. Statement record. A statement record is set up in the program using 
SQLAllocHandle. In line 9, the statement record created has the handle 
stmt1 and uses the connection con1.

  6. Preparing an SQL statement and statement parameters. The SQL state-
ment is prepared using the SQL/CLI function SQLPrepare. In line 10, 
this assigns the SQL statement string (the query in our example) to the 
statement handle stmt1. The question mark (?) symbol in line 10 repre-
sents a statement parameter, which is a value to be determined at run-
time—typically by binding it to a C program variable. In general, there 
could be several parameters in a statement string. They are distinguished 
by the order of appearance of the question marks in the statement string 
(the first ? represents parameter 1, the second ? represents parameter 2, 
and so on). The last parameter in SQLPrepare should give the length of 
the SQL statement string in bytes, but if we enter the keyword SQL_NTS, 
this indicates that the string holding the query is a NULL-terminated 
string so that SQL can calculate the string length automatically. This use 
of SQL_NTS also applies to other string parameters in the function calls in 
our examples.

  7. Binding the statement parameters. Before executing the query, any param-
eters in the query string should be bound to program variables using the 
SQL/CLI function SQLBindParameter. In Figure 10.10, the parameter 
(indicated by ?) to the prepared query referenced by stmt1 is bound to the 
C program variable ssn in line 12. If there are n parameters in the SQL state-
ment, we should have n SQLBindParameter function calls, each with a dif-
ferent parameter position (1, 2, … , n).

  8. Executing the statement. Following these preparations, we can now exe-
cute the SQL statement referenced by the handle stmt1 using the func-
tion SQLExecute (line 13). Notice that although the query will be 
executed in line 13, the query results have not yet been assigned to any C 
program variables.

  9. Processing the query result. In order to determine where the result of the 
query is returned, one common technique is the bound columns approach. 
Here, each column in a query result is bound to a C program variable using 
the SQLBindCol function. The columns are distinguished by their order of 
appearance in the SQL query. In Figure 10.10 lines 15 and 16, the two col-
umns in the query (Lname and Salary) are bound to the C program vari-
ables lname and salary, respectively.15

15An alternative technique known as unbound columns uses different SQL/CLI functions, namely 
SQLGetCol or SQLGetData, to retrieve columns from the query result without previously binding them; 
these are applied after the SQLFetch command in line 17.
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 10. Retrieving column values. Finally, in order to retrieve the column values into 
the C program variables, the function SQLFetch is used (line 17). This func-
tion is similar to the FETCH command of embedded SQL. If a query result has 
a collection of tuples, each SQLFetch call gets the next tuple and returns its 
column values into the bound program variables. SQLFetch returns an excep-
tion (nonzero) code if there are no more tuples in the query result.16

As we can see, using dynamic function calls requires a lot of preparation to set up 
the SQL statements and to bind statement parameters and query results to the 
appropriate program variables.

In CLI1 a single tuple is selected by the SQL query. Figure 10.11 shows an example 
of retrieving multiple tuples. We assume that appropriate C program variables have 
been declared as in Figure 10.1. The program segment in CLI2 reads (inputs) a 

16If unbound program variables are used, SQLFetch returns the tuple into a temporary program area. 
Each subsequent SQLGetCol (or SQLGetData) returns one attribute value in order. Basically, for each 
row in the query result, the program should iterate over the attribute values (columns) in that row. This is 
useful if the number of columns in the query result is variable.

    //Program Segment CLI2:
 0) #include sqlcli.h ;
 1) void printDepartmentEmps() {
 2) SQLHSTMT stmt1 ;
 3) SQLHDBC con1 ;
 4) SQLHENV env1 ;
 5) SQLRETURN ret1, ret2, ret3, ret4 ;
 6) ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;
 7) if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;
 8) if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",
      SQL_NTS) else exit ;
 9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;
10) SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Dno = ?",
      SQL_NTS) ;
11) prompt("Enter the Department Number: ", dno) ;
12) SQLBindParameter(stmt1, 1, SQL_INTEGER, &dno, 4, &fetchlen1) ;
13) ret1 = SQLExecute(stmt1) ;
14) if (!ret1) {
15)   SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;
16)   SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17)   ret2 = SQLFetch(stmt1) ;
18)   while (!ret2) {
19)     printf(lname, salary) ;
20)     ret2 = SQLFetch(stmt1) ;
21)     }
22)   }
23) }

Figure 10.11 
Program segment CLI2, a C program segment 
that uses SQL/CLI for a query with a collection 
of tuples in its result.
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department number and then retrieves the employees who work in that depart-
ment. A loop then iterates over each employee record, one at a time, and prints the 
employee’s last name and salary.

10.3.2 JDBC: SQL Class Library for Java Programming
We now turn our attention to how SQL can be called from the Java object-oriented 
programming language.17 The class libraries and associated function calls for this 
access are known as JDBC.18 The Java programming language was designed to be 
platform independent—that is, a program should be able to run on any type of 
computer system that has a Java interpreter installed. Because of this portability, 
many RDBMS vendors provide JDBC drivers so that it is possible to access their 
systems via Java programs.

JDBC drivers. A JDBC driver is basically an implementation of the classes and 
associated objects and function calls specified in JDBC for a particular vendor’s 
RDBMS. Hence, a Java program with JDBC objects and function calls can access 
any RDBMS that has a JDBC driver available.

Because Java is object-oriented, its function libraries are implemented as classes. 
Before being able to process JDBC function calls with Java, it is necessary to import 
the JDBC class libraries, which are called java.sql.*. These can be downloaded 
and installed via the Web.19

JDBC is designed to allow a single Java program to connect to several different 
databases. These are sometimes called the data sources accessed by the Java pro-
gram, and could be stored using RDBMSs from different vendors residing on dif-
ferent machines. Hence, different data source accesses within the same Java 
program may require JDBC drivers from different vendors. To achieve this flexibil-
ity, a special JDBC class called the driver manager class is employed, which keeps 
track of the installed drivers. A driver should be registered with the driver manager 
before it is used. The operations (methods) of the driver manager class include 
getDriver, registerDriver, and deregisterDriver. These can be used to add 
and remove drivers for different systems dynamically. Other functions set up and 
close connections to data sources.

To load a JDBC driver explicitly, the generic Java function for loading a class can be 
used. For example, to load the JDBC driver for the Oracle RDBMS, the following 
command can be used:

Class.forName("oracle.jdbc.driver.OracleDriver")

17This section assumes familiarity with object-oriented concepts (see Chapter 11) and basic Java concepts.
18As we mentioned earlier, JDBC is a registered trademark of Sun Microsystems, although it is commonly 
thought to be an acronym for Java Database Connectivity.
19These are available from several Web sites—for example, at http://industry.java.sun.com/products/
jdbc/drivers.
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This will register the driver with the driver manager and make it available to the 
program. It is also possible to load and register the driver(s) needed in the com-
mand line that runs the program, for example, by including the following in the 
command line:

-Djdbc.drivers = oracle.jdbc.driver

JDBC programming steps. The following are typical steps that are taken when 
writing a Java application program with database access through JDBC function 
calls. We illustrate the steps by referring to the example JDBC1 in Figure 10.12, 
which reads a Social Security number of an employee and prints the employee’s last 
name and salary.

  1. Import the JDBC class library. The JDBC library of classes must be 
imported into the Java program. These classes are called java.sql.*, and 
can be imported using line 1 in Figure 10.12. Any additional Java class 
libraries needed by the program must also be imported.

    //Program JDBC1:
 0) import java.io.* ;
 1) import java.sql.*
    ...
 2) class getEmpInfo {
 3)   public static void main (String args []) throws SQLException, IOException {
 4)     try { Class.forName("oracle.jdbc.driver.OracleDriver")
 5)     } catch (ClassNotFoundException x) {
 6)       System.out.println ("Driver could not be loaded") ;
 7)     }
 8)     String dbacct, passwrd, ssn, lname ;
 9)     Double salary ;
10)     dbacct = readentry("Enter database account:") ;
11)     passwrd = readentry("Enter password:") ;
12)     Connection conn = DriverManager.getConnection
13)       ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
14)     String stmt1 = "select Lname, Salary from EMPLOYEE where Ssn = ?" ;
15)     PreparedStatement p = conn.prepareStatement(stmt1) ;
16)     ssn = readentry("Enter a Social Security Number: ") ;
17)     p.clearParameters() ;
18)     p.setString(1, ssn) ;
19)     ResultSet r = p.executeQuery() ;
20)     while (r.next()) {
21)       lname = r.getString(1) ;
22)       salary = r.getDouble(2) ;
23)       system.out.printline(lname + salary) ;
24)   } }
25) }

Figure 10.12 
Program segment JDBC1, 
a Java program segment 
with JDBC.
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  2. Load the JDBC driver. This is shown in lines 4 to 7. The Java exception in 
line 5 occurs if the driver is not loaded successfully.

  3. Create appropriate variables. These are the variables needed in the Java 
program (lines 8 and 9).

  4. The Connection object. A connection object is created using the  
getConnection function of the DriverManager class of JDBC. In lines 12 
and 13, the Connection object is created by using the function call 
getConnection(urlstring), where urlstring has the form

jdbc:oracle:<driverType>:<dbaccount>/<password>

An alternative form is

getConnection(url, dbaccount, password)

Various properties can be set for a connection object, but they are mainly 
related to transactional properties, which we discuss in Chapter 21.

  5. The Prepared Statement object. A statement object is created in the pro-
gram. In JDBC, there is a basic statement class, Statement, with two spe-
cialized subclasses: PreparedStatement and CallableStatement. The 
example in Figure 10.12 illustrates how PreparedStatement objects are 
created and used. The next example (Figure 10.13) illustrates the other type 
of Statement objects. In line 14 in Figure 10.12, a query string with a sin-
gle parameter—indicated by the ? symbol—is created in the string variable 
stmt1. In line 15, an object p of type PreparedStatement is created based 
on the query string in stmt1 and using the connection object conn. In gen-
eral, the programmer should use PreparedStatement objects if a query is 
to be executed multiple times, since it would be prepared, checked, and 
compiled only once, thus saving this cost for the additional executions of 
the query.

  6. Setting the statement parameters. The question mark (?) symbol in line 14 
represents a statement parameter, which is a value to be determined at run-
time, typically by binding it to a Java program variable. In general, there 
could be several parameters, distinguished by the order of appearance of the 
question marks within the statement string (first ? represents parameter 1, 
second ? represents parameter 2, and so on), as we discussed previously.

  7. Binding the statement parameters. Before executing a PreparedStatement 
query, any parameters should be bound to program variables. Depending 
on the type of the parameter, different functions such as setString, 
setInteger, setDouble, and so on are applied to the PreparedStatement 
object to set its parameters. The appropriate function should be used to cor-
respond to the data type of the parameter being set. In Figure 10.12, the 
parameter (indicated by ?) in object p is bound to the Java program variable 
ssn in line 18. The function setString is used because ssn is a string vari-
able. If there are n parameters in the SQL statement, we should have n set ... 
functions, each with a different parameter position (1, 2, … , n). Generally, it 
is advisable to clear all parameters before setting any new values (line 17).
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  8. Executing the SQL statement. Following these preparations, we can now 
execute the SQL statement referenced by the object p using the function 
executeQuery (line 19). There is a generic function execute in JDBC,  
plus two specialized functions: executeUpdate and executeQuery.  
executeUpdate is used for SQL insert, delete, or update statements, and 
returns an integer value indicating the number of tuples that were affected. 
executeQuery is used for SQL retrieval statements, and returns an object of 
type ResultSet, which we discuss next.

  9. Processing the ResultSet object. In line 19, the result of the query is 
returned in an object r of type ResultSet. This resembles a two-dimensional 
array or a table, where the tuples are the rows and the attributes returned are 
the columns. A ResultSet object is similar to a cursor in embedded SQL 
and an iterator in SQLJ. In our example, when the query is executed, r refers 
to a tuple before the first tuple in the query result. The r.next() function 
(line 20) moves to the next tuple (row) in the ResultSet object and returns 
NULL if there are no more objects. This is used to control the looping. The 

    //Program Segment JDBC2:
 0) import java.io.* ;
 1) import java.sql.*
    ...
 2) class printDepartmentEmps {
 3)   public static void main (String args [])
          throws SQLException, IOException {
 4)     try { Class.forName("oracle.jdbc.driver.OracleDriver")
 5)     } catch (ClassNotFoundException x) {
 6)       System.out.println ("Driver could not be loaded") ;
 7)     }
 8)     String dbacct, passwrd, lname ;
 9)     Double salary ;
10)     Integer dno ;
11)     dbacct = readentry("Enter database account:") ;
12)     passwrd = readentry("Enter password:") ;
13)     Connection conn = DriverManager.getConnection
14)       ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
15)     dno = readentry("Enter a Department Number: ") ;
16)     String q = "select Lname, Salary from EMPLOYEE where Dno = " +
        dno.tostring() ;
17)     Statement s = conn.createStatement() ;
18)     ResultSet r = s.executeQuery(q) ;
19)     while (r.next()) {
20)       lname = r.getString(1) ;
21)       salary = r.getDouble(2) ;
22)       system.out.printline(lname + salary) ;
23)   } }
24) }

Figure 10.13 
Program segment JDBC2, a Java program 
segment that uses JDBC for a query with a 
collection of tuples in its result.
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programmer can refer to the attributes in the current tuple using various 
get ... functions that depend on the type of each attribute (for example, 
getString, getInteger, getDouble, and so on). The programmer can 
either use the attribute positions (1, 2) or the actual attribute names 
("Lname", "Salary") with the get … functions. In our examples, we used 
the positional notation in lines 21 and 22.

In general, the programmer can check for SQL exceptions after each JDBC function 
call. We did not do this to simplify the examples.

Notice that JDBC does not distinguish between queries that return single tuples and 
those that return multiple tuples, unlike some of the other techniques. This is justi-
fiable because a single tuple result set is just a special case.

In example JDBC1, a single tuple is selected by the SQL query, so the loop in lines 20 
to 24 is executed at most once. The example shown in Figure 10.13 illustrates the 
retrieval of multiple tuples. The program segment in JDBC2 reads (inputs) a depart-
ment number and then retrieves the employees who work in that department. A 
loop then iterates over each employee record, one at a time, and prints the employee’s 
last name and salary. This example also illustrates how we can execute a query 
directly, without having to prepare it as in the previous example. This technique is 
preferred for queries that will be executed only once, since it is simpler to program. 
In line 17 of Figure 10.13, the programmer creates a Statement object (instead of 
PreparedStatement, as in the previous example) without associating it with a 
particular query string. The query string q is passed to the statement object s when 
it is executed in line 18.

This concludes our brief introduction to JDBC. The interested reader is referred to 
the Web site http://java.sun.com/docs/books/tutorial/jdbc/, which contains many 
further details about JDBC.

10.4  Database Stored Procedures  
and SQL/PSM

This section introduces two additional topics related to database programming. In 
Section 10.4.1, we discuss the concept of stored procedures, which are program 
modules that are stored by the DBMS at the database server. Then in Section 10.4.2 
we discuss the extensions to SQL that are specified in the standard to include  
general-purpose programming constructs in SQL. These extensions are known as 
SQL/PSM (SQL/Persistent Stored Modules) and can be used to write stored proce-
dures. SQL/PSM also serves as an example of a database programming language 
that extends a database model and language—namely, SQL—with programming 
language constructs, such as conditional statements and loops.

10.4.1 Database Stored Procedures and Functions
In our presentation of database programming techniques so far, there was an 
implicit assumption that the database application program was running on a client 
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machine, or more likely at the application server computer in the middle-tier of a 
three-tier client-server architecture (see Section 2.5.4 and Figure 2.7). In either case, 
the machine where the program is executing is different from the machine on which 
the database server—and the main part of the DBMS software package—is located. 
Although this is suitable for many applications, it is sometimes useful to create 
database program modules—procedures or functions—that are stored and exe-
cuted by the DBMS at the database server. These are historically known as database 
stored procedures, although they can be functions or procedures. The term used in 
the SQL standard for stored procedures is persistent stored modules because these 
programs are stored persistently by the DBMS, similarly to the persistent data 
stored by the DBMS.

Stored procedures are useful in the following circumstances:

 ■ If a database program is needed by several applications, it can be stored at 
the server and invoked by any of the application programs. This reduces 
duplication of effort and improves software modularity.

 ■ Executing a program at the server can reduce data transfer and communica-
tion cost between the client and server in certain situations.

 ■ These procedures can enhance the modeling power provided by views by 
allowing more complex types of derived data to be made available to the 
database users via the stored procedures. Additionally, they can be used to 
check for complex constraints that are beyond the specification power of 
assertions and triggers.

In general, many commercial DBMSs allow stored procedures and functions to be 
written in a general-purpose programming language. Alternatively, a stored proce-
dure can be made of simple SQL commands such as retrievals and updates. The 
general form of declaring stored procedures is as follows:

CREATE PROCEDURE <procedure name> (<parameters>)
<local declarations>
<procedure body> ;

The parameters and local declarations are optional, and are specified only if needed. 
For declaring a function, a return type is necessary, so the declaration form is:

CREATE FUNCTION <function name> (<parameters>)
RETURNS <return type>
<local declarations>
<function body> ;

If the procedure (or function) is written in a general-purpose programming language, 
it is typical to specify the language as well as a file name where the program code is 
stored. For example, the following format can be used:

CREATE PROCEDURE <procedure name> (<parameters>)
LANGUAGE <programming language name>
EXTERNAL NAME <file path name> ;
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In general, each parameter should have a parameter type that is one of the SQL 
data types. Each parameter should also have a parameter mode, which is one of IN, 
OUT, or INOUT. These correspond to parameters whose values are input only, out-
put (returned) only, or both input and output, respectively.

Because the procedures and functions are stored persistently by the DBMS, it 
should be possible to call them from the various SQL interfaces and programming 
techniques. The CALL statement in the SQL standard can be used to invoke a stored 
procedure—either from an interactive interface or from embedded SQL or SQLJ. 
The format of the statement is as follows:

CALL <procedure or function name> (<argument list>) ;

If this statement is called from JDBC, it should be assigned to a statement object of 
type CallableStatement (see Section 10.3.2).

10.4.2  SQL/PSM: Extending SQL for Specifying Persistent 
Stored Modules

SQL/PSM is the part of the SQL standard that specifies how to write persistent 
stored modules. It includes the statements to create functions and procedures that 
we described in the previous section. It also includes additional programming con-
structs to enhance the power of SQL for the purpose of writing the code (or body) 
of stored procedures and functions.

In this section, we discuss the SQL/PSM constructs for conditional (branching) 
statements and for looping statements. These will give a flavor of the type of con-
structs that SQL/PSM has incorporated;20 then we give an example to illustrate how 
these constructs can be used.

The conditional branching statement in SQL/PSM has the following form:

IF <condition> THEN <statement list>
ELSEIF <condition> THEN <statement list>
…
ELSEIF <condition> THEN <statement list>
ELSE <statement list>

END IF ;

Consider the example in Figure 10.14, which illustrates how the conditional branch 
structure can be used in an SQL/PSM function. The function returns a string value 
(line 1) describing the size of a department within a company based on the number 
of employees. There is one IN integer parameter, deptno, which gives a depart-
ment number. A local variable NoOfEmps is declared in line 2. The query in lines 3 
and 4 returns the number of employees in the department, and the conditional 

20We only give a brief introduction to SQL/PSM here. There are many other features in the SQL/PSM 
standard.
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branch in lines 5 to 8 then returns one of the values {‘HUGE’, ‘LARGE’, ‘MEDIUM’, 
‘SMALL’} based on the number of employees.

SQL/PSM has several constructs for looping. There are standard while and repeat 
looping structures, which have the following forms:

WHILE <condition> DO
          <statement list>
END WHILE ;
REPEAT
          <statement list>
UNTIL <condition>
END REPEAT ;

There is also a cursor-based looping structure. The statement list in such a loop is 
executed once for each tuple in the query result. This has the following form:

FOR <loop name> AS <cursor name> CURSOR FOR <query> DO
          <statement list>
END FOR ;

Loops can have names, and there is a LEAVE <loop name> statement to break a loop 
when a condition is satisfied. SQL/PSM has many other features, but they are out-
side the scope of our presentation.

10.5 Comparing the Three Approaches
In this section, we briefly compare the three approaches for database programming 
and discuss the advantages and disadvantages of each approach.

  4. Embedded SQL Approach. The main advantage of this approach is that the 
query text is part of the program source code itself, and hence can be checked 
for syntax errors and validated against the database schema at compile time. 
This also makes the program quite readable, as the queries are readily visible 

//Function PSM1:
0) CREATE FUNCTION Dept_size(IN deptno INTEGER)
1) RETURNS VARCHAR [7]
2) DECLARE No_of_emps INTEGER ;
3) SELECT COUNT(*) INTO No_of_emps
4) FROM EMPLOYEE WHERE Dno = deptno ;
5) IF No_of_emps > 100 THEN RETURN "HUGE"
6) ELSEIF No_of_emps > 25 THEN RETURN "LARGE"
7) ELSEIF No_of_emps > 10 THEN RETURN "MEDIUM"
8) ELSE RETURN "SMALL"
9) END IF ;

Figure 10.14 
Declaring a function in 
SQL/PSM.
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in the source code. The main disadvantages are the loss of flexibility in 
changing the query at runtime, and the fact that all changes to queries must 
go through the whole recompilation process. In addition, because the que-
ries are known beforehand, the choice of program variables to hold the 
query results is a simple task, and so the programming of the application is 
generally easier. However, for complex applications where queries have to 
be generated at runtime, the function call approach will be more suitable.

  5. Library of Classes and Function Calls Approach. This approach provides 
more flexibility in that queries can be generated at runtime if needed. How-
ever, this leads to more complex programming, as program variables that 
match the columns in the query result may not be known in advance. 
Because queries are passed as statement strings within the function calls, no 
checking can be done at compile time. All syntax checking and query valida-
tion has to be done at runtime by preparing the query, and the programmer 
must check and account for possible additional runtime errors within the 
program code.

  6. Database Programming Language Approach. This approach does not suf-
fer from the impedance mismatch problem, as the programming language 
data types are the same as the database data types. However, programmers 
must learn a new programming language rather than use a language they are 
already familiar with. In addition, some database programming languages 
are vendor-specific, whereas general-purpose programming languages can 
easily work with systems from multiple vendors.

10.6 Summary
In this chapter we presented additional features of the SQL database language. In 
particular, we presented an overview of the most important techniques for database 
programming in Section 10.1. Then we discussed the various approaches to data-
base application programming in Sections 10.2 to 10.4.

In Section 10.2, we discussed the general technique known as embedded SQL, 
where the queries are part of the program source code. A precompiler is typically 
used to extract SQL commands from the program for processing by the DBMS, and 
replacing them with function calls to the DBMS compiled code. We presented an 
overview of embedded SQL, using the C programming language as host language in 
our examples. We also discussed the SQLJ technique for embedding SQL in Java 
programs. The concepts of cursor (for embedded SQL) and iterator (for SQLJ) were 
presented and illustrated by examples to show how they are used for looping over 
the tuples in a query result, and extracting the attribute value into program vari-
ables for further processing.

In Section 10.3, we discussed how function call libraries can be used to access SQL 
databases. This technique is more dynamic than embedding SQL, but requires 
more complex programming because the attribute types and number in a query 
result may be determined at runtime. An overview of the SQL/CLI standard was 
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presented, with examples using C as the host language. We discussed some of the 
functions in the SQL/CLI library, how queries are passed as strings, how query 
parameters are assigned at runtime, and how results are returned to program vari-
ables. We then gave an overview of the JDBC class library, which is used with Java, 
and discussed some of its classes and operations. In particular, the ResultSet class 
is used to create objects that hold the query results, which can then be iterated over 
by the next() operation. The get and set functions for retrieving attribute values 
and setting parameter values were also discussed.

In Section 10.4, we gave a brief overview of stored procedures, and discussed  
SQL/PSM as an example of a database programming language. Finally, we briefly 
compared the three approaches in Section 10.5. It is important to note that we chose 
to give a comparative overview of the three main approaches to database program-
ming, since studying a particular approach in depth is a topic that is worthy of its 
own textbook.

Review Questions
 10.1. What is ODBC? How is it related to SQL/CLI?

 10.2. What is JDBC? Is it an example of embedded SQL or of using function calls?

 10.3. List the three main approaches to database programming. What are the 
advantages and disadvantages of each approach?

 10.4. What is the impedance mismatch problem? Which of the three program-
ming approaches minimizes this problem?

 10.5. Describe the concept of a cursor and how it is used in embedded SQL.

 10.6. What is SQLJ used for? Describe the two types of iterators available in SQLJ.

Exercises
 10.7. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. Write a program segment to read a student’s name and print his or 
her grade point average, assuming that A = 4, B = 3, C = 2, and D = 1 points. 
Use embedded SQL with C as the host language.

 10.8. Repeat Exercise 10.7, but use SQLJ with Java as the host language.

 10.9. Consider the library relational database schema in Figure 6.6. Write a pro-
gram segment that retrieves the list of books that became overdue yesterday 
and that prints the book title and borrower name for each. Use embedded 
SQL with C as the host language.

 10.10. Repeat Exercise 10.9, but use SQLJ with Java as the host language.
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 10.11. Repeat Exercises 10.7 and 10.9, but use SQL/CLI with C as the host lan-
guage.

 10.12. Repeat Exercises 10.7 and 10.9, but use JDBC with Java as the host language.

 10.13. Repeat Exercise 10.7, but write a function in SQL/PSM.

 10.14. Create a function in PSM that computes the median salary for the EMPLOYEE 
table shown in Figure 5.5.

Selected Bibliography
There are many books that describe various aspects of SQL database programming. 
For example, Sunderraman (2007) describes programming on the Oracle 10g 
DBMS and Reese (1997) focuses on JDBC and Java programming. Many Web 
resources are also available.
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11
Web Database  

Programming Using PHP

In the previous chapter, we gave an overview of data-
base programming techniques using traditional pro-

gramming languages, and we used the Java and C programming languages in our 
examples. We now turn our attention to how databases are accessed from scripting 
languages. Many Internet applications that provide Web interfaces to access infor-
mation stored in one or more databases use scripting languages. These languages 
are often used to generate HTML documents, which are then displayed by the Web 
browser for interaction with the user. In our presentation, we assume that the 
reader is familiar with basic HTML concepts.

Basic HTML is useful for generating static Web pages with fixed text and other 
objects, but most Internet applications require Web pages that provide interactive 
features with the user. For example, consider the case of an airline customer who 
wants to check the arrival time and gate information of a particular flight. The user 
may enter information such as a date and flight number in certain fields of the Web 
page. The Web interface will send this information to the application program, 
which formulates and submits a query to the airline database server to retrieve the 
information that the user needs. The database information is sent back to the Web 
page for display. Such Web pages, where part of the information is extracted from 
databases or other data sources, are called dynamic Web pages. The data extracted 
and displayed each time will be for different flights and dates.

There are various techniques for programming dynamic features into Web pages. 
We will focus on one technique here, which is based on using the PHP open source 
server side scripting language. PHP originally stood for Personal Home Page, but 
now stands for PHP Hypertext Processor. PHP has experienced widespread use. The 
interpreters for PHP are provided free of charge and are written in the C language so 

chapter 11
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they are available on most computer platforms. A PHP interpreter provides a Hyper-
text Preprocessor, which will execute PHP commands in a text file and create the 
desired HTML file. To access databases, a library of PHP functions needs to be 
included in the PHP interpreter, as we will discuss in Section 11.3. PHP programs 
are executed on the Web server computer. This is in contrast to some scripting lan-
guages, such as JavaScript, that are executed on the client computer. There are many 
other popular scripting languages that can be used to access databases and create 
dynamic Web pages, such as JavaScript, Ruby, Python, and PERL, to name a few.

This chapter is organized as follows. Section 11.1 gives a simple example to illustrate 
how PHP can be used. Section 11.2 gives a general overview of the PHP language 
and how it is used to program some basic functions for interactive Web pages. Sec-
tion 11.3 focuses on using PHP to interact with SQL databases through a library of 
functions known as PEAR DB. Section 11.4 lists some of the additional technologies 
associated with Java for Web and database programming (we already discussed 
JDBC and SQLJ in Chapter 10). Finally, Section 11.5 contains a chapter summary.

11.1 A Simple PHP Example
PHP is an open source general-purpose scripting language. The interpreter engine 
for PHP is written in the C programming language so it can be used on nearly all 
types of computers and operating systems. PHP usually comes installed with the 
UNIX operating system. For computer platforms with other operating systems 
such as Windows, Linux, or Mac OS, the PHP interpreter can be downloaded from: 
http://www.php.net. As with other scripting languages, PHP is particularly suited 
for manipulation of text pages, and in particular for manipulating dynamic HTML 
pages at the Web server computer. This is in contrast to JavaScript, which is down-
loaded with the Web pages to execute on the client computer.

PHP has libraries of functions for accessing databases stored under various types of 
relational database systems such as Oracle, MySQL, SQLServer, and any system 
that supports the ODBC standard (see Chapter 10). Under the three-tier architec-
ture (see Chapter 2), the DBMS would reside at the bottom-tier database server. 
PHP would run at the middle-tier Web server, where the PHP program commands 
would manipulate the HTML files to create the customized dynamic Web pages. 
The HTML is then sent to the client tier for display and interaction with the user.

Consider the PHP example shown in Figure 11.1(a), which prompts a user to enter 
the first and last name and then prints a welcome message to that user. The line 
numbers are not part of the program code; they are used below for explanation 
purposes only:

  1. Suppose that the file containing PHP script in program segment P1 is stored in 
the following Internet location: http://www.myserver.com/example/greeting.php. 
Then if a user types this address in the browser, the PHP interpreter would start 
interpreting the code and produce the form shown in Figure 11.1(b). We will 
explain how that happens as we go over the lines in code segment P1.
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  2. Line 0 shows the PHP start tag <?php, which indicates to the PHP inter-
preter engine that it should process all subsequent text lines until it encoun-
ters the PHP end tag ?>, shown on line 16. Text outside of these tags is 
printed as is. This allows PHP code segments to be included within a larger 
HTML file. Only the sections in the file between <?php and ?> are processed 
by the PHP preprocessor.

  3. Line 1 shows one way of posting comments in a PHP program on a single 
line started by //. Single-line comments can also be started with #, and end 
at the end of the line in which they are entered. Multiple-line comments 
start with /* and end with */.

  4. The auto-global predefined PHP variable $_POST (line 2) is an array that 
holds all the values entered through form parameters. Arrays in PHP are 

Enter your name:

SUBMIT NAME SUBMIT NAME

Enter your name:
(b) (c)

(d)

John Smith

Welcome, John Smith

(a)
    //Program Segment P1:
 0) <?php
 1) // Printing a welcome message if the user submitted their name
    // through the HTML form
 2) if ($_POST['user_name']) {
 3)   print("Welcome, ") ;
 4)   print($_POST['user_name']);
 5) }
 6) else {
 7)   // Printing the form to enter the user name since no name has
      // been entered yet
 8)   print <<<_HTML_
 9)   <FORM method="post" action="$_SERVER['PHP_SELF']">
10)   Enter your name: <input type="text" name="user_name">
11)   <BR/>
12)   <INPUT type="submit" value="SUBMIT NAME">
13)   </FORM>
14)   _HTML_;
15) }
16) ?>

Figure 11.1 
(a) PHP program segment for entering a greeting. 
(b) Initial form displayed by PHP program segment. 
(c) User enters name John Smith. (d) Form prints 
welcome message for John Smith.
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dynamic arrays, with no fixed number of elements. They can be numerically 
indexed arrays whose indexes (positions) are numbered (0, 1, 2, … ), or they 
can be associative arrays whose indexes can be any string values. For exam-
ple, an associative array indexed based on color can have the indexes {“red”, 
“blue”, “green”}. In this example, $_POST is associatively indexed by the 
name of the posted value user_name that is specified in the name attribute of 
the input tag on line 10. Thus $_POST['user_name'] will contain the value 
typed in by the user. We will discuss PHP arrays further in Section 11.2.2.

  5. When the Web page at http://www.myserver.com/example/greeting.php is 
first opened, the if condition in line 2 will evaluate to false because there is 
no value yet in $_POST['user_name']. Hence, the PHP interpreter will 
process lines 6 through 15, which create the text for an HTML file that dis-
plays the form shown in Figure 11.1(b). This is then displayed at the client 
side by the Web browser.

  6. Line 8 shows one way of creating long text strings in an HTML file. We will 
discuss other ways to specify strings later in this section. All text between an 
opening <<<_HTML_ and a closing _HTML_; is printed into the HTML file as 
is. The closing _HTML_; must be alone on a separate line. Thus, the text 
added to the HTML file sent to the client will be the text between lines 9  
and 13. This includes HTML tags to create the form shown in Figure 11.1(b).

  7. PHP variable names start with a $ sign and can include characters, num-
bers, and the underscore character _. The PHP auto-global (predefined) 
variable $_SERVER (line 9) is an array that includes information about the 
local server. The element $_SERVER['PHP_SELF'] in the array is the path 
name of the PHP file currently being executed on the server. Thus, the action 
attribute of the form tag (line 9) instructs the PHP interpreter to reprocess 
the same file, once the form parameters are entered by the user.

  8. Once the user types the name John Smith in the text box and clicks on the 
SUBMIT NAME button (Figure 11.1(c)), program segment P1 is repro-
cessed. This time, $_POST['user_name']  will include the string  
"John Smith", so lines 3 and 4 will now be placed in the HTML file sent to 
the client, which displays the message in Figure 11.1(d).

As we can see from this example, a PHP program can create two different HTML 
commands depending on whether the user just started or whether they had already 
submitted their name through the form. In general, a PHP program can create 
numerous variations of HTML text in an HTML file at the server depending on the 
particular conditional paths taken in the program. Hence, the HTML sent to the 
client will be different depending on the interaction with the user. This is one way 
in which PHP is used to create dynamic Web pages.

11.2 Overview of Basic Features of PHP
In this section we give an overview of a few of the features of PHP that are useful in 
creating interactive HTML pages. Section 11.3 will focus on how PHP programs 
can access databases for querying and updating. We cannot give a comprehensive 
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discussion of PHP; there are many books that focus solely on PHP. Rather, we focus 
on illustrating certain features of PHP that are particularly suited for creating 
dynamic Web pages that contain database access commands. This section covers 
some PHP concepts and features that will be needed when we discuss database 
access in Section 11.3.

11.2.1 PHP Variables, Data Types, and Programming Constructs
PHP variable names start with the $ symbol and can include characters, letters, and 
the underscore character (_). No other special characters are permitted. Variable 
names are case sensitive, and the first character cannot be a number. Variables are 
not typed. The values assigned to the variables determine their type. In fact, the 
same variable can change its type once a new value is assigned to it. Assignment is 
via the = operator.

Since PHP is directed toward text processing, there are several different types of 
string values. There are also many functions available for processing strings. We 
only discuss some basic properties of string values and variables here. Figure 11.2 
illustrates some string values. There are three main ways to express strings and text:

  1. Single-quoted strings. Enclose the string between single quotes, as in lines 
0, 1, and 2. If a single quote is needed within the string, use the escape char-
acter (\) (see line 2).

  2. Double-quoted strings. Enclose strings between double quotes as in  
line 7. In this case, variable names appearing within the string are replaced 
by the values that are currently stored in these variables. The interpreter 
identifies variable names within double-quoted strings by their initial 
character $ and replaces them with the value in the variable. This is known 
as interpolating variables within strings. Interpolation does not occur in 
single-quoted strings.

  3. Here documents. Enclose a part of a document between a <<<DOCNAME  
and end it with a single line containing the document name DOCNAME.  

 0) print 'Welcome to my Web site.';
 1) print 'I said to him, "Welcome Home"';
 2) print 'We\'ll now visit the next Web site';
 3) printf('The cost is $%.2f and the tax is $%.2f',  

$cost, $tax) ;
 4) print strtolower('AbCdE');
 5) print ucwords(strtolower('JOHN smith'));
 6) print 'abc' . 'efg'
 7) print "send your email reply to: $email_address"
 8) print <<<FORM_HTML
 9) <FORM method="post" action="$_SERVER['PHP_SELF']">
10) Enter your name: <input type="text" name="user_name">
11) FORM_HTML

Figure 11.2 
Illustrating basic PHP 
string and text values.
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DOCNAME can be any string as long as it used both to start and end the here 
document. This is illustrated in lines 8 through 11 in Figure 11.2. Variables 
are also interpolated by replacing them with their string values if they appear 
inside here documents. This feature is used in a similar way to double-
quoted strings, but it is more convenient for multiple-line text.

  4. Single and double quotes. Single and double quotes used by PHP to enclose 
strings should be straight quotes ("") on both sides of the string. The text 
editor that creates these quotes should not produce curly opening and clos-
ing quotes (“ ”) around the string.

There is also a string concatenate operator specified by the period (.) symbol, as 
illustrated in line 6 of Figure 11.2. There are many string functions. We only illus-
trate a couple of them here. The function strtolower changes the alphabetic char-
acters in the string to all lowercase, whereas the function ucwords capitalizes all the 
words in a string. These are illustrated in lines 4 and 5 in Figure 11.2.

The general rule is to use single-quoted strings for literal strings that contain no 
PHP program variables and the other two types (double-quoted strings and here 
documents) when the values from variables need to be interpolated into the string. 
For large blocks of multiline text, the program should use the here documents style 
for strings.

PHP also has numeric data types for integers and floating points and generally fol-
lows the rules of the C programming language for processing these types. Numbers 
can be formatted for printing into strings by specifying the number of digits that 
follow the decimal point. A variation of the print function called printf (print 
formatted) allows formatting of numbers within a string, as illustrated in line 3 of 
Figure 11.2.

There are the standard programming language constructs of for-loops, while-loops, 
and conditional if-statements. They are generally similar to their C language coun-
terparts. We will not discuss them here. Similarly, any value evaluates to true if used 
as a Boolean expression except for numeric zero (0) and blank string, which evalu-
ate to false. There are also literal true and false values that can be assigned. The 
comparison operators also generally follow C language rules. They are == (equal), 
!= (not equal), > (greater than), >= (greater than or equal), < (less than),  
and <= (less than or equal).

11.2.2 PHP Arrays
Arrays are very important in PHP, since they allow lists of elements. They are used 
frequently in forms that employ pull-down menus. A single-dimensional array is 
used to hold the list of choices in the pull-down menu. For database query results, 
two-dimensional arrays are used, with the first dimension representing rows of a 
table and the second dimension representing columns (attributes) within a row. 
There are two main types of arrays: numeric and associative. We discuss each of 
these in the context of single-dimensional arrays next.
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A numeric array associates a numeric index (or position or sequence number) with 
each element in the array. Indexes are integer numbers that start at zero and grow 
incrementally. An element in the array is referenced through its index. An  
associative array provides pairs of (key => value) elements. The value of an element 
is referenced through its key, and all key values in a particular array must be unique. 
The element values can be strings or integers, or they can be arrays themselves, thus 
leading to higher dimensional arrays.

Figure 11.3 gives two examples of array variables: $teaching and $courses. The 
first array $teaching is associative (see line 0 in Figure 11.3), and each element 
associates a course name (as key) with the name of the course instructor (as value). 
There are three elements in this array. Line 1 shows how the array may be updated. 
The first command in line 1 assigns a new instructor to the course ‘Graphics’ by 
updating its value. Since the key value ‘Graphics’ already exists in the array, no new 
element is created but the existing value is updated. The second command creates a 
new element since the key value ‘Data Mining’ did not exist in the array before. 
New elements are added at the end of the array.

If we only provide values (no keys) as array elements, the keys are automatically 
numeric and numbered 0, 1, 2, … . This is illustrated in line 5 of Figure 11.3, by 
the $courses array. Both associative and numeric arrays have no size limits. If 
some value of another data type, say an integer, is assigned to a PHP variable that 
was holding an array, the variable now holds the integer value and the array con-
tents are lost. Basically, most variables can be assigned to values of any data type 
at any time.

There are several different techniques for looping through arrays in PHP. We illus-
trate two of these techniques in Figure 11.3. Lines 3 and 4 show one method of 
looping through all the elements in an array using the foreach construct, and 
printing the key and value of each element on a separate line. Lines 7 through 10 
show how a traditional for-loop construct can be used. A built-in function count 

Figure 11.3 
Illustrating basic PHP array processing.

 0) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick',
                      'Graphics' => 'Kam');
 1) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';
 2) sort($teaching);
 3) foreach ($teaching as $key => $value) {
 4)   print " $key : $value\n";}
 5) $courses = array('Database', 'OS', 'Graphics', 'Data Mining');
 6) $alt_row_color = array('blue', 'yellow');
 7) for ($i = 0, $num = count($courses); i < $num; $i++) {
 8)   print '<TR bgcolor="' . $alt_row_color[$i % 2] . '">';
 9)   print "<TD>Course $i is</TD><TD>$course[$i]</TD></TR>\n";
10) }
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(line 7) returns the current number of elements in the array, which is assigned to 
the variable $num and used to control ending the loop.

The example in lines 7 through 10 also illustrates how an HTML table can be  
displayed with alternating row colors, by setting the two colors in an array  
$alt_row_color (line 8). Each time through the loop, the remainder function  
$i % 2 switches from one row (index 0) to the next (index 1) (see line 8). The color 
is assigned to the HTML bgcolor attribute of the <TR> (table row) tag.

The count function (line 7) returns the current number of elements in the array. 
The sort function (line 2) sorts the array based on the element values in it (not the 
keys). For associative arrays, each key remains associated with the same element 
value after sorting. This does not occur when sorting numeric arrays. There are 
many other functions that can be applied to PHP arrays, but a full discussion is 
outside the scope of our presentation.

11.2.3 PHP Functions
As with other programming languages, functions can be defined in PHP to bet-
ter structure a complex program and to share common sections of code that can 
be reused by multiple applications. The newer version of PHP, PHP5, also has 
object-oriented features, but we will not discuss these here because we are focus-
ing on the basics of PHP. Basic PHP functions can have arguments that are 
passed by value. Global variables can be accessed within functions. Standard 
scope rules apply to variables that appear within a function and within the code 
that calls the function.

We now give two simple examples to illustrate basic PHP functions. In Figure 11.4, 
we show how we could rewrite the code segment P1 from Figure 11.1(a) using func-
tions. The code segment P1′ in Figure 11.4 has two functions: display_welcome() 
(lines 0 to 3) and display_empty_form() (lines 5 to 13). Neither of these func-
tions has arguments; nor do they have return values. Lines 14 through 19 show how 
we can call these functions to produce the same effect as the segment of code P1 in 
Figure 11.1(a). As we can see in this example, functions can be used just to make the 
PHP code better structured and easier to follow.

A second example is shown in Figure 11.5. Here we are using the $teaching array 
introduced in Figure 11.3. The function course_instructor() in lines 0 to 8 in 
Figure 11.5 has two arguments: $course (a string holding a course name) and 
$teaching_assignments (an associative array holding course assignments, simi-
lar to the $teaching array shown in Figure 11.3). The function finds the name of 
the instructor who teaches a particular course. Lines 9 to 14 in Figure 11.5 show 
how this function may be used.

The function call in line 11 would return the string: Smith is teaching Database, 
because the array entry with the key ‘Database’ has the value ‘Smith’ for instructor. 
On the other hand, the function call on line 13 would return the string: there is no 
Computer Architecture course because there is no entry in the array with the key 
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Figure 11.4 
Rewriting program segment P1 as P1′ using functions.

    //Program Segment P1′:
 0) function display_welcome() {
 1)     print("Welcome, ") ;
 2)     print($_POST['user_name']);
 3) }
 4) 
 5) function display_empty_form(); {
 6) print <<<_HTML_
 7) <FORM method="post" action="$_SERVER['PHP_SELF']">
 8) Enter your name: <INPUT type="text" name="user_name">
 9) <BR/>
10) <INPUT type="submit" value="Submit name">
11) </FORM>
12) _HTML_;
13) }
14) if ($_POST['user_name']) {
15)   display_welcome();
16) }
17) else {
18)   display_empty_form();
19) }

Figure 11.5 
Illustrating a function with arguments and return value.

 0) function course_instructor ($course, $teaching_assignments) {
 1)   if (array_key_exists($course, $teaching_assignments)) {
 2)   $instructor = $teaching_assignments[$course];
 3)   RETURN "$instructor is teaching $course";
 4)   }
 5)   else {
 6)   RETURN "there is no $course course";
 7)   }
 8) }
 9) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick',
                      'Graphics' => 'Kam');
10) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';
11) $x = course_instructor('Database', $teaching);
12) print($x);
13) $x = course_instructor('Computer Architecture', $teaching);
14) print($x);
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‘Computer Architecture’. A few comments about this example and about PHP 
functions in general:

 ■ The built-in PHP array function array_key_exists($k, $a) returns true 
if the value in variable $k exists as a key in the associative array in the vari-
able $a. In our example, it checks whether the $course value provided 
exists as a key in the array $teaching_assignments (line 1 in Figure 11.5).

 ■ Function arguments are passed by value. Hence, in this example, the calls in 
lines 11 and 13 could not change the array $teaching provided as argu-
ment for the call. The values provided in the arguments are passed (copied) 
to the function arguments when the function is called.

 ■ Return values of a function are placed after the RETURN keyword. A function 
can return any type. In this example, it returns a string type. Two different 
strings can be returned in our example, depending on whether the $course 
key value provided exists in the array or not.

 ■ Scope rules for variable names apply as in other programming languages. 
Global variables outside of the function cannot be used unless they are referred 
to using the built-in PHP array $GLOBALS. Basically, $GLOBALS['abc'] will 
access the value in a global variable $abc defined outside the function. Other-
wise, variables appearing inside a function are local even if there is a global 
variable with the same name.

The previous discussion gives a brief overview of PHP functions. Many details are 
not discussed since it is not our goal to present PHP in detail.

11.2.4 PHP Server Variables and Forms
There are a number of built-in entries in a PHP auto-global built-in array variable 
called $_SERVER that can provide the programmer with useful information about 
the server where the PHP interpreter is running, as well as other information. These 
may be needed when constructing the text in an HTML document (for example, see 
line 7 in Figure 11.4). Here are some of these entries:

  1. $_SERVER['SERVER_NAME']. This provides the Web site name or the Uni-
form Resource Locator (URL) of the server computer where the PHP inter-
preter is running. For example, if the PHP interpreter is running on the  
Web site http://www.uta.edu, then this string would be the value in  
$_SERVER['SERVER_NAME'].

  2. $_SERVER['REMOTE_ADDRESS']. This is the IP (Internet Protocol) address 
of the client user computer that is accessing the server; for example, 
129.107.61.8.

  3. $_SERVER['REMOTE_HOST']. This is the Web site name (URL) of the client 
user computer; for example, abc.uta.edu. In this case, the server will need to 
translate the name into an IP address to access the client.

  4. $_SERVER['PATH_INFO']. This is the part of the URL address that comes 
after a backslash (/) at the end of the URL.
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  5. $_SERVER['QUERY_STRING']. This provides the string that holds parame-
ters in a URL after a question mark (?) at the end of the URL. This can hold 
search parameters, for example.

  6. $_SERVER['DOCUMENT_ROOT']. This is the root directory that holds the 
files on the Web server that are accessible to client users.

These and other entries in the $_SERVER array are usually needed when creating 
the HTML file to be sent to the client for display.

Another important PHP auto-global built-in array variable is called $_POST. This 
provides the programmer with input values submitted by the user through HTML 
forms specified in the HTML <INPUT> tag and other similar tags. For example, in 
Figure 11.4, line 14, the variable $_POST['user_name'] provides the programmer 
with the value typed in by the user in the HTML form specified via the <INPUT> tag 
on line 8 in Figure 11.4. The keys to this array are the names of the various input 
parameters provided via the form, for example by using the name attribute of the 
HTML <INPUT> tag as on line 8. When users enter data through forms, the data 
values are stored in this array.

11.3 Overview of PHP Database Programming
There are various techniques for accessing a database through a programming lan-
guage. We discussed some of the techniques in Chapter 10, in the overviews of how 
to access an SQL database using the C and Java programming languages. In particu-
lar, we discussed embedded SQL, JDBC, SQL/CLI (similar to ODBC), and SQLJ. In 
this section we give an overview of how to access the database using the script lan-
guage PHP, which is suitable for creating Web interfaces for searching and updat-
ing databases, as well as dynamic Web pages.

There is a PHP database access function library that is part of PHP Extension and 
Application Repository (PEAR), which is a collection of several libraries of func-
tions for enhancing PHP. The PEAR DB library provides functions for database 
access. Many database systems can be accessed from this library, including Oracle, 
MySQL, SQLite, and Microsoft SQLServer, among others.

We will discuss several functions that are part of PEAR DB in the context of some 
examples. Section 11.3.1 shows how to connect to a database using PHP. Sec- 
tion 11.3.2 discusses how data collected from HTML forms can be used to insert a 
new record in a database table. Section 11.3.3 shows how retrieval queries can be 
executed and have their results displayed within a dynamic Web page.

11.3.1 Connecting to a Database
To use the database functions in a PHP program, the PEAR DB library module 
called DB.php must be loaded. In Figure 11.6, this is done in line 0 of the example. 
The DB library functions can now be accessed using DB::<function_name>. 
The function for connecting to a database is called DB::connect('string'), 
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where the string argument specifies the database information. The format for 
'string' is:

<DBMS software>://<user account>:<password>@<database server>

In Figure 11.6, line 1 connects to the database that is stored using Oracle (specified 
via the string oci8). The <DBMS software> portion of the 'string' specifies the 
particular DBMS software package being connected to. Some of the DBMS software 
packages that are accessible through PEAR DB are:

 ■ MySQL. Specified as mysql for earlier versions and mysqli for later ver-
sions starting with version 4.1.2.

 ■ Oracle. Specified as oc8i for versions 7, 8, and 9. This is used in line 1 of 
Figure 11.6.

 ■ SQLite. Specified as sqlite.

 ■ Microsoft SQL Server. Specified as mssql.

 ■ Mini SQL. Specified as msql.

 ■ Informix. Specified as ifx.

 ■ Sybase. Specified as sybase.

 ■ Any ODBC-compliant system. Specified as odbc.

The above is not a comprehensive list.

 0) require 'DB.php';
 1) $d = DB::connect('oci8://acct1:pass12@www.host.com/db1');
 2) if (DB::isError($d)) { die("cannot connect − " . $d->getMessage());}
    ...
 3) $q = $d->query("CREATE TABLE EMPLOYEE
 4)   (Emp_id INT,
 5)   Name VARCHAR(15),
 6)   Job VARCHAR(10),
 7)   Dno INT);" );
 8) if (DB::isError($q)) { die("table creation not successful − " .
                           $q->getMessage()); }
      ...
 9) $d->setErrorHandling(PEAR_ERROR_DIE);
    ...
10) $eid = $d->nextID('EMPLOYEE');
11) $q = $d->query("INSERT INTO EMPLOYEE VALUES
12)   ($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno'])" );
    ...
13) $eid = $d->nextID('EMPLOYEE');
14) $q = $d->query('INSERT INTO EMPLOYEE VALUES (?, ?, ?, ?)',
15) array($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno']) );

Figure 11.6 
Connecting to a database, creating a table, and inserting a record.
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Following the <DB software> in the string argument passed to DB::connect is 
the separator :// followed by the user account name <user account> followed by 
the separator : and the account password <password>. These are followed by the 
separator @ and the server name and directory <database server> where the 
database is stored.

In line 1 of Figure 11.6, the user is connecting to the server at www.host.com/db1 
using the account name acct1 and password pass12 stored under the Oracle 
DBMS oci8. The whole string is passed using DB::connect. The connection 
information is kept in the database connection variable $d, which is used whenever 
an operation to this particular database is applied.

Checking for errors. Line 2 in Figure 11.6 shows how to check whether the 
connection to the database was established successfully or not. PEAR DB has a 
function DB::isError, which can determine whether any database access oper-
ation was successful or not. The argument to this function is the database con-
nection variable ($d in this example). In general, the PHP programmer can 
check after every database call to determine whether the last database operation 
was successful or not, and terminate the program (using the die function) if it 
was not successful. An error message is also returned from the database via the 
operation $d->get_message(). This can also be displayed as shown in line 2 of 
Figure 11.6.

Submitting queries and other SQL statements. In general, most SQL com-
mands can be sent to the database once a connection is established by using the 
query function. The function $d->query takes an SQL command as its string argu-
ment and sends it to the database server for execution. In Figure 11.6, lines 3 to 7 
send a CREATE TABLE command to create a table called EMPLOYEE with four attri-
butes. Whenever a query or SQL statement is executed, the result of the query is 
assigned to a query variable, which is called $q in our example. Line 8 checks 
whether the query was executed successfully or not.

The PHP PEAR DB library offers an alternative to having to check for errors after 
every database command. The function

$d–>setErrorHandling(PEAR_ERROR_DIE)

will terminate the program and print the default error messages if any subsequent 
errors occur when accessing the database through connection $d (see line 9 in 
Figure 11.6).

11.3.2  Collecting Data from Forms  
and Inserting Records

It is common in database applications to collect information through HTML or 
other types of Web forms. For example, when purchasing an airline ticket or apply-
ing for a credit card, the user has to enter personal information such as name, 
address, and phone number. This information is typically collected and stored in a 
database record on a database server.
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Lines 10 through 12 in Figure 11.6 illustrate how this may be done. In this exam-
ple, we omitted the code for creating the form and collecting the data, which can 
be a variation of the example in Figure 11.1. We assume that the user entered valid 
values in the input parameters called emp_name, emp_job, and emp_dno. These 
would be accessible via the PHP auto-global array $_POST as discussed at the end 
of Section 11.2.4.

In the SQL INSERT command shown on lines 11 and 12 in Figure 11.6, the array 
entries $POST['emp_name'], $POST['emp_job'], and $POST['emp_dno'] will 
hold the values collected from the user through the input form of HTML. These are 
then inserted as a new employee record in the EMPLOYEE table.

This example also illustrates another feature of PEAR DB. It is common in some 
applications to create a unique record identifier for each new record inserted into 
the database.1

PHP has a function $d–>nextID to create a sequence of unique values for a partic-
ular table. In our example, the field Emp_id of the EMPLOYEE table (see Figure 11.6, 
line 4) is created for this purpose. Line 10 shows how to retrieve the next unique 
value in the sequence for the EMPLOYEE table and insert it as part of the new record 
in lines 11 and 12.

The code for insert in lines 10 to 12 in Figure 11.6 may allow malicious strings to be 
entered that can alter the INSERT command. A safer way to do inserts and other 
queries is through the use of placeholders (specified by the ? symbol). An example 
is illustrated in lines 13 to 15, where another record is to be inserted. In this form of 
the $d->query() function, there are two arguments. The first argument is the SQL 
statement, with one or more ? symbols (placeholders). The second argument is an 
array, whose element values will be used to replace the placeholders in the order 
they are specified (see lines 13 to 15 in Figure 11.6).

11.3.3 Retrieval Queries from Database Tables
We now give three examples of retrieval queries through PHP, shown in Fig- 
ure 11.7. The first few lines 0 to 3 establish a database connection $d and set the 
error handling to the default, as we discussed in the previous section. The first 
query (lines 4 to 7) retrieves the name and department number of all employee 
records. The query variable $q is used to refer to the query result. A while-loop to 
go over each row in the result is shown in lines 5 to 7. The function $q->fetchRow() 
in line 5 serves to retrieve the next record in the query result and to control the 
loop. The looping starts at the first record.

The second query example is shown in lines 8 to 13 and illustrates a dynamic 
query. In this query, the conditions for selection of rows are based on values 
input by the user. Here we want to retrieve the names of employees who have a 

1This would be similar to the system-generated OID discussed in Chapter 12 for object and object-rela-
tional database systems.
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specific job and work for a particular department. The particular job and 
department number are entered through a form in the array variables 
$POST['emp_job']  and $POST['emp_dno'] . If the user had entered  
‘Engineer’ for the job and 5 for the department number, the query would select 
the names of all engineers who worked in department 5. As we can see, this is a 
dynamic query whose results differ depending on the choices that the user 
enters as input. We used two ? placeholders in this example, as discussed at the 
end of Section 11.3.2.

The last query (lines 14 to 17) shows an alternative way of specifying a query and 
looping over its rows. In this example, the function $d=>getAll holds all the 
records in a query result in a single variable, called $allresult. To loop over the 
individual records, a foreach loop can be used, with the row variable $r iterating 
over each row in $allresult.2

As we can see, PHP is suited for both database access and creating dynamic 
Web pages.

 0) require 'DB.php';
 1) $d = DB::connect('oci8://acct1:pass12@www.host.com/dbname');
 2) if (DB::isError($d)) { die("cannot connect − " . $d->getMessage()); }
 3) $d->setErrorHandling(PEAR_ERROR_DIE);
    ...
 4) $q = $d->query('SELECT Name, Dno FROM EMPLOYEE');
 5) while ($r = $q->fetchRow()) {
 6)   print "employee $r[0] works for department $r[1] \n" ;
 7) }
    ...
 8) $q = $d->query('SELECT Name FROM EMPLOYEE WHERE Job = ? AND Dno = ?',
 9)   array($_POST['emp_job'], $_POST['emp_dno']) );
10) print "employees in dept $_POST['emp_dno'] whose job is
      $_POST['emp_job']: \n"
11) while ($r = $q->fetchRow()) {
12)   print "employee $r[0] \n" ;
13) }
    ...
14) $allresult = $d->getAll('SELECT Name, Job, Dno FROM EMPLOYEE');
15) foreach ($allresult as $r) {
16)   print "employee $r[0] has job $r[1] and works for department $r[2] \n" ;
17) }
    ...

Figure 11.7 
Illustrating database retrieval queries.

2The $r variable is similar to the cursors and iterator variables discussed in Chapters 10 and 12.
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11.4  Brief Overview of Java Technologies  
for Database Web Programming

The parts of the PHP scripting language that we discussed run on the application 
server and serve as a conduit that collects client user input through forms, formu-
lates database queries and submits them to the database server, and then creates 
dynamic HTML Web pages to display query results. The Java environment has 
components that run on the server and other components that can run on the client 
machine. It also has standards for exchanging data objects. We briefly discuss some 
of these components here that are related to Web and database access. We already 
discussed JDBC and SQLJ in some detail in Chapter 10.

Java Servlets. Servlets are Java objects that can reside on the Web server 
machine and manage interactions with the client. They can store information 
that was submitted by the client during a session, so that this information can 
be used to generate database queries. Servlet objects can also store query results 
so that parts of these results can be formatted as HTML and sent to the client 
for display. The servlet object can maintain all the information produced dur-
ing a particular client interaction until the client session is terminated.

Java Server Pages (JSP). This allows scripting at the server to produce dynamic Web 
pages to be sent at the client in a manner somewhat similar to PHP. However, it is 
associated with the Java language and the scripting can be combined with Java code.

JavaScript. JavaScript is a scripting language that is different from the Java 
programming language and was developed separately. It is widely used in Web 
applications, and it can run on the client computer or on the server.

Java Script Object Notation (JSON). This is a text-based representation of 
data objects, so that data can be formatted in JSON and exchanged between 
clients and servers over the Web in text format. It can be considered as an alter-
native to XML (see Chapter 13) and represents objects using attribute-value 
pairs. JSON has also been adopted as the data model by some newer database 
systems known as NOSQL systems, such as MongoDB (see Chapter 24).

11.5 Summary
In this chapter, we gave an overview of how to convert some structured data from 
databases into elements to be entered or displayed on a Web page. We focused on 
the PHP scripting language, which is becoming very popular for Web database pro-
gramming. Section 11.1 presented some PHP basics for Web programming through 
a simple example. Section 11.2 gave some of the basics of the PHP language, includ-
ing its array and string data types that are used extensively. Section 11.3 presented 
an overview of how PHP can be used to specify various types of database com-
mands, including creating tables, inserting new records, and retrieving database 
records. PHP runs at the server computer in comparison to some other scripting 
languages that run on the client computer. Section 11.4 introduced some of the 
technologies associated with Java that can be used in similar contexts.



 Selected Bibliography 359

We gave only a very basic introduction to PHP. There are many books as well as 
many Web sites devoted to introductory and advanced PHP programming. Many 
libraries of functions also exist for PHP, as it is an open source product.

Review Questions
 11.1. Why are scripting languages popular for programming Web applications? 

Where in the three-tier architecture does a PHP program execute? Where 
does a JavaScript program execute?

 11.2. What type of programming language is PHP?

 11.3. Discuss the different ways of specifying strings in PHP.

 11.4. Discuss the different types of arrays in PHP.

 11.5. What are PHP auto-global variables? Give some examples of PHP auto-
global arrays, and discuss how each is typically used.

 11.6. What is PEAR? What is PEAR DB?

 11.7. Discuss the main functions for accessing a database in PEAR DB, and how 
each is used.

 11.8. Discuss the different ways for looping over a query result in PHP.

 11.9. What are placeholders? How are they used in PHP database programming?

Exercises
 11.10. Consider the LIBRARY database schema shown in Figure 4.6. Write PHP 

code to create the tables of this schema.

 11.11. Write a PHP program that creates Web forms for entering the information 
about a new BORROWER entity. Repeat for a new BOOK entity.

 11.12. Write PHP Web interfaces for the queries specified in Exercise 6.18.

Selected Bibliography
There are many sources for PHP programming, both in print and on the Web. We 
give two books as examples. A very good introduction to PHP is given in Sklar 
(2005). For advanced Web site development, the book by Schlossnagle (2005) pro-
vides many detailed examples. Nixon (2014) has a popular book on web program-
ming that covers PHP, Javascript, Jquery, CSS and HTML5.
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12
Object and Object-Relational 

Databases

In this chapter, we discuss the features of object- 
oriented data models and show how some of these 

features have been incorporated in relational database systems and the SQL standard. 
Some features of object data models have also been incorporated into the data mod-
els of newer types of database systems, known as NOSQL systems (see Chapter 24). 
In addition, the XML model (see Chapter 13) has similarities to the object model. 
So an introduction to the object model will give a good perspective on many of the 
recent advances in database technology. Database systems that were based on the 
object data model were known originally as object-oriented databases (OODBs) but 
are now referred to as object databases (ODBs).Traditional data models and sys-
tems, such as network, hierarchical, and relational have been quite successful in 
developing the database technologies required for many traditional business data-
base applications. However, they have certain shortcomings when more complex 
database applications must be designed and implemented—for example, databases 
for engineering design and manufacturing (CAD/CAM and CIM1), biological and 
other sciences, telecommunications, geographic information systems, and multi-
media.2 These ODBs were developed for applications that have requirements 
requiring more complex structures for stored objects. A key feature of object data-
bases is the power they give the designer to specify both the structure of complex 
objects and the operations that can be applied to these objects.

chapter 12

1Computer-aided design/computer-aided manufacturing and computer-integrated manufacturing.
2Multimedia databases must store various types of multimedia objects, such as video, audio, images, 
graphics, and documents (see Chapter 26).
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Another reason for the creation of object-oriented databases is the vast increase in 
the use of object-oriented programming languages for developing software applica-
tions. Databases are fundamental components in many software systems, and tradi-
tional databases are sometimes difficult to use with software applications that are 
developed in an object-oriented programming language such as C++ or Java. Object 
databases are designed so they can be directly—or seamlessly—integrated with soft-
ware that is developed using object-oriented programming languages.

Relational DBMS (RDBMS) vendors have also recognized the need for incorporat-
ing features that were proposed for object databases, and newer versions of rela-
tional systems have incorporated many of these features. This has led to database 
systems that are characterized as object-relational or ORDBMSs. A recent version 
of the SQL standard (2008) for RDBMSs, known as SQL/Foundation, includes 
many of these features, which were originally known as SQL/Object and have now 
been merged into the main SQL specification.

Although many experimental prototypes and commercial object-oriented database 
systems have been created, they have not found widespread use because of the pop-
ularity of relational and object-relational systems. The experimental prototypes 
included the Orion system developed at MCC, OpenOODB at Texas Instruments, 
the Iris system at Hewlett-Packard laboratories, the Ode system at AT&T Bell Labs, 
and the ENCORE/ObServer project at Brown University. Commercially available 
systems included GemStone Object Server of GemStone Systems, ONTOS DB  
of Ontos, Objectivity/DB of Objectivity Inc., Versant Object Database and  
FastObjects by Versant Corporation (and Poet), ObjectStore of Object Design, and 
Ardent Database of Ardent.

As commercial object DBMSs became available, the need for a standard model and 
language was recognized. Because the formal procedure for approval of standards 
normally takes a number of years, a consortium of object DBMS vendors and users, 
called ODMG, proposed a standard whose current specification is known as the 
ODMG 3.0 standard.

Object-oriented databases have adopted many of the concepts that were developed 
originally for object-oriented programming languages.3 In Section 12.1, we describe 
the key concepts utilized in many object database systems and that were later incor-
porated into object-relational systems and the SQL standard. These include object 
identity, object structure and type constructors, encapsulation of operations, and the 
definition of methods as part of class declarations, mechanisms for storing objects 
in a database by making them persistent, and type and class hierarchies and inheri-
tance. Then, in Section 12.2 we see how these concepts have been incorporated into 
the latest SQL standards, leading to object-relational databases. Object features 
were originally introduced in SQL:1999, and then updated in SQL:2008. In Sec- 
tion 12.3, we turn our attention to “pure” object database standards by presenting 
features of the object database standard ODMG 3.0 and the object definition  

3Similar concepts were also developed in the fields of semantic data modeling and knowledge  
representation.
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language ODL. Section 12.4 presents an overview of the database design process for 
object databases. Section 12.5 discusses the object query language (OQL), which is 
part of the ODMG 3.0 standard. In Section 12.6, we discuss programming language 
bindings, which specify how to extend object-oriented programming languages to 
include the features of the object database standard. Section 12.7 summarizes the 
chapter. Sections 12.3 through 12.6 may be left out if a less thorough introduction 
to object databases is desired.

12.1 Overview of Object Database Concepts

12.1.1 Introduction to Object-Oriented Concepts and Features
The term object-oriented—abbreviated OO or O-O—has its origins in OO pro-
gramming languages, or OOPLs. Today OO concepts are applied in the areas of 
databases, software engineering, knowledge bases, artificial intelligence, and 
computer systems in general. OOPLs have their roots in the SIMULA language, 
which was proposed in the late 1960s. The programming language Smalltalk, 
developed at Xerox PARC4 in the 1970s, was one of the first languages to explic-
itly incorporate additional OO concepts, such as message passing and inheri-
tance. It is known as a pure OO programming language, meaning that it was 
explicitly designed to be object-oriented. This contrasts with hybrid OO pro-
gramming languages, which incorporate OO concepts into an already existing 
language. An example of the latter is C++, which incorporates OO concepts into 
the popular C programming language.

An object typically has two components: state (value) and behavior (operations). It 
can have a complex data structure as well as specific operations defined by the pro-
grammer.5 Objects in an OOPL exist only during program execution; therefore, 
they are called transient objects. An OO database can extend the existence of objects 
so that they are stored permanently in a database, and hence the objects become 
persistent objects that exist beyond program termination and can be retrieved later 
and shared by other programs. In other words, OO databases store persistent 
objects permanently in secondary storage and allow the sharing of these objects 
among multiple programs and applications. This requires the incorporation of 
other well-known features of database management systems, such as indexing 
mechanisms to efficiently locate the objects, concurrency control to allow object 
sharing among concurrent programs, and recovery from failures. An OO database 
system will typically interface with one or more OO programming languages to 
provide persistent and shared object capabilities.

The internal structure of an object in OOPLs includes the specification of instance 
variables, which hold the values that define the internal state of the object. An 
instance variable is similar to the concept of an attribute in the relational model, 

4Palo Alto Research Center, Palo Alto, California.
5Objects have many other characteristics, as we discuss in the rest of this chapter.
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except that instance variables may be encapsulated within the object and thus are 
not necessarily visible to external users. Instance variables may also be of arbitrarily 
complex data types. Object-oriented systems allow definition of the operations or 
functions (behavior) that can be applied to objects of a particular type. In fact, some 
OO models insist that all operations a user can apply to an object must be pre-
defined. This forces a complete encapsulation of objects. This rigid approach has 
been relaxed in most OO data models for two reasons. First, database users often 
need to know the attribute names so they can specify selection conditions on the 
attributes to retrieve specific objects. Second, complete encapsulation implies that 
any simple retrieval requires a predefined operation, thus making ad hoc queries 
difficult to specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first part, 
called the signature or interface of the operation, specifies the operation name and 
arguments (or parameters). The second part, called the method or body, specifies 
the implementation of the operation, usually written in some general-purpose pro-
gramming language. Operations can be invoked by passing a message to an object, 
which includes the operation name and the parameters. The object then executes 
the method for that operation. This encapsulation permits modification of the 
internal structure of an object, as well as the implementation of its operations, with-
out the need to disturb the external programs that invoke these operations. Hence, 
encapsulation provides a form of data and operation independence (see Chapter 2).

Another key concept in OO systems is that of type and class hierarchies and inheri-
tance. This permits specification of new types or classes that inherit much of their 
structure and/or operations from previously defined types or classes. This makes it 
easier to develop the data types of a system incrementally and to reuse existing type 
definitions when creating new types of objects.

One problem in early OO database systems involved representing relationships 
among objects. The insistence on complete encapsulation in early OO data models 
led to the argument that relationships should not be explicitly represented, but 
should instead be described by defining appropriate methods that locate related 
objects. However, this approach does not work very well for complex databases 
with many relationships because it is useful to identify these relationships and make 
them visible to users. The ODMG object database standard has recognized this 
need and it explicitly represents binary relationships via a pair of inverse references, 
as we will describe in Section 12.3.

Another OO concept is operator overloading, which refers to an operation’s ability 
to be applied to different types of objects; in such a situation, an operation name 
may refer to several distinct implementations, depending on the type of object it is 
applied to. This feature is also called operator polymorphism. For example, an oper-
ation to calculate the area of a geometric object may differ in its method (imple-
mentation), depending on whether the object is of type triangle, circle, or rectangle. 
This may require the use of late binding of the operation name to the appropriate 
method at runtime, when the type of object to which the operation is applied 
becomes known.
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In the next several sections, we discuss in some detail the main characteristics of 
object databases. Section 12.1.2 discusses object identity; Section 12.1.3 shows 
how the types for complex-structured objects are specified via type constructors; 
Section 12.1.4 discusses encapsulation and persistence; and Section 12.1.5 pres-
ents inheritance concepts. Section 12.1.6 discusses some additional OO con-
cepts, and Section 12.1.7 gives a summary of all the OO concepts that we 
introduced. In Section 12.2, we show how some of these concepts have been 
incorporated into the SQL:2008 standard for relational databases. Then in Sec-
tion 12.3, we show how these concepts are realized in the ODMG 3.0 object data-
base standard.

12.1.2 Object Identity, and Objects versus Literals
One goal of an ODB is to maintain a direct correspondence between real-world 
and database objects so that objects do not lose their integrity and identity and 
can easily be identified and operated upon. Hence, a unique identity is assigned 
to each independent object stored in the database. This unique identity is typi-
cally implemented via a unique, system-generated object identifier (OID). The 
value of an OID may not be visible to the external user but is used internally by 
the system to identify each object uniquely and to create and manage interobject 
references. The OID can be assigned to program variables of the appropriate type 
when needed.

The main property required of an OID is that it be immutable; that is, the OID 
value of a particular object should not change. This preserves the identity of the 
real-world object being represented. Hence, an ODMS must have some mechanism 
for generating OIDs and preserving the immutability property. It is also desirable 
that each OID be used only once; that is, even if an object is removed from the data-
base, its OID should not be assigned to another object. These two properties imply 
that the OID should not depend on any attribute values of the object, since the 
value of an attribute may be changed or corrected. We can compare this with the 
relational model, where each relation must have a primary key attribute whose 
value identifies each tuple uniquely. If the value of the primary key is changed, the 
tuple will have a new identity, even though it may still represent the same real-
world object. Alternatively, a real-world object may have different names for key 
attributes in different relations, making it difficult to ascertain that the keys repre-
sent the same real-world object (for example, using the Emp_id of an EMPLOYEE in 
one relation and the Ssn in another).

It is also inappropriate to base the OID on the physical address of the object in stor-
age, since the physical address can change after a physical reorganization of the 
database. However, some early ODMSs have used the physical address as the OID 
to increase the efficiency of object retrieval. If the physical address of the object 
changes, an indirect pointer can be placed at the former address, which gives the 
new physical location of the object. It is more common to use long integers as OIDs 
and then to use some form of hash table to map the OID value to the current physi-
cal address of the object in storage.
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Some early OO data models required that everything—from a simple value to a 
complex object—was represented as an object; hence, every basic value, such as an 
integer, string, or Boolean value, has an OID. This allows two identical basic values 
to have different OIDs, which can be useful in some cases. For example, the integer 
value 50 can sometimes be used to mean a weight in kilograms and at other times to 
mean the age of a person. Then, two basic objects with distinct OIDs could be cre-
ated, but both objects would have the integer 50 as their value. Although useful as a 
theoretical model, this is not very practical, since it leads to the generation of too 
many OIDs. Hence, most ODBs allow for the representation of both objects and 
literals (or values). Every object must have an immutable OID, whereas a literal 
value has no OID and its value just stands for itself. Thus, a literal value is typically 
stored within an object and cannot be referenced from other objects. In many sys-
tems, complex structured literal values can also be created without having a corre-
sponding OID if needed.

12.1.3 Complex Type Structures for Objects and Literals
Another feature of ODBs is that objects and literals may have a type structure of 
arbitrary complexity in order to contain all of the necessary information that 
describes the object or literal. In contrast, in traditional database systems, informa-
tion about a complex object is often scattered over many relations or records, lead-
ing to loss of direct correspondence between a real-world object and its database 
representation. In ODBs, a complex type may be constructed from other types by 
nesting of type constructors. The three most basic constructors are atom, struct (or 
tuple), and collection.

  1. One type constructor has been called the atom constructor, although this 
term is not used in the latest object standard. This includes the basic built-in 
data types of the object model, which are similar to the basic types in many 
programming languages: integers, strings, floating-point numbers, enumer-
ated types, Booleans, and so on. These basic data types are called single-
valued or atomic types, since each value of the type is considered an atomic 
(indivisible) single value.

  2. A second type constructor is referred to as the struct (or tuple) constructor. 
This can create standard structured types, such as the tuples (record types) 
in the basic relational model. A structured type is made up of several com-
ponents and is also sometimes referred to as a compound or composite type. 
More accurately, the struct constructor is not considered to be a type, but 
rather a type generator, because many different structured types can be cre-
ated. For example, two different structured types that can be created are: 
struct Name<FirstName: string, MiddleInitial: char, LastName: string>, and 
struct CollegeDegree<Major: string, Degree: string, Year: date>. To create 
complex nested type structures in the object model, the collection type con-
structors are needed, which we discuss next. Notice that the type construc-
tors atom and struct are the only ones available in the original (basic) 
relational model.
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  3. Collection (or multivalued) type constructors include the set(T), list(T), 
bag(T), array(T), and dictionary(K,T) type constructors. These allow part 
of an object or literal value to include a collection of other objects or values 
when needed. These constructors are also considered to be type generators 
because many different types can be created. For example, set(string), 
set(integer), and set(Employee) are three different types that can be created 
from the set type constructor. All the elements in a particular collection 
value must be of the same type. For example, all values in a collection of type 
set(string) must be string values.

The atom constructor is used to represent all basic atomic values, such as integers, 
real numbers, character strings, Booleans, and any other basic data types that the 
system supports directly. The tuple constructor can create structured values and 
objects of the form <a1:i1, a2:i2, … , an:in>, where each aj is an attribute name6 and 
each ij is a value or an OID.

The other commonly used constructors are collectively referred to as collection 
types but have individual differences among them. The set constructor will create 
objects or literals that are a set of distinct elements {i1, i2, … , in}, all of the same 
type. The bag constructor (also called a multiset) is similar to a set except that the 
elements in a bag need not be distinct. The list constructor will create an ordered list 
[i1, i2, … , in] of OIDs or values of the same type. A list is similar to a bag except that 
the elements in a list are ordered, and hence we can refer to the first, second, or jth 
element. The array constructor creates a single-dimensional array of elements of 
the same type. The main difference between array and list is that a list can have an 
arbitrary number of elements whereas an array typically has a maximum size. 
Finally, the dictionary constructor creates a collection of key-value pairs (K, V), 
where the value of a key K can be used to retrieve the corresponding value V.

The main characteristic of a collection type is that its objects or values will be a col-
lection of objects or values of the same type that may be unordered (such as a set or a 
bag) or ordered (such as a list or an array). The tuple type constructor is often 
called a structured type, since it corresponds to the struct construct in the C and 
C++ programming languages.

An object definition language (ODL)7 that incorporates the preceding type con-
structors can be used to define the object types for a particular database application. 
In Section 12.3 we will describe the standard ODL of ODMG, but first we introduce 
the concepts gradually in this section using a simpler notation. The type construc-
tors can be used to define the data structures for an OO database schema. Fig- 
ure 12.1 shows how we may declare EMPLOYEE and DEPARTMENT types.

In Figure 12.1, the attributes that refer to other objects—such as Dept of EMPLOYEE 
or Projects of DEPARTMENT—are basically OIDs that serve as references to other 
objects to represent relationships among the objects. For example, the attribute Dept 

6Also called an instance variable name in OO terminology.
7This corresponds to the DDL (data definition language) of the database system (see Chapter 2).
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of EMPLOYEE is of type DEPARTMENT and hence is used to refer to a specific 
DEPARTMENT object (the DEPARTMENT object where the employee works). The 
value of such an attribute would be an OID for a specific DEPARTMENT object. A 
binary relationship can be represented in one direction, or it can have an inverse 
reference. The latter representation makes it easy to traverse the relationship in both 
directions. For example, in Figure 12.1 the attribute Employees of DEPARTMENT has 
as its value a set of references (that is, a set of OIDs) to objects of type EMPLOYEE; 
these are the employees who work for the DEPARTMENT. The inverse is the refer-
ence attribute Dept of EMPLOYEE. We will see in Section 12.3 how the ODMG stan-
dard allows inverses to be explicitly declared as relationship attributes to ensure 
that inverse references are consistent.

12.1.4  Encapsulation of Operations  
and Persistence of Objects

Encapsulation of Operations. The concept of encapsulation is one of the main 
characteristics of OO languages and systems. It is also related to the concepts of 
abstract data types and information hiding in programming languages. In tradi-
tional database models and systems this concept was not applied, since it is cus-
tomary to make the structure of database objects visible to users and external 
programs. In these traditional models, a number of generic database operations 

define type EMPLOYEE
 tuple  ( Fname: string;
  Minit : char;
  Lname: string;
  Ssn: string;
  Birth_date: DATE;
  Address: string;
  Sex: char;
  Salary: float;
  Supervisor: EMPLOYEE;
  Dept: DEPARTMENT;
define type DATE
 tuple ( Year: integer;
  Month: integer;
  Day: integer; );
define type DEPARTMENT
 tuple ( Dname: string;
  Dnumber: integer;
  Mgr: tuple ( Manager: EMPLOYEE;
    Start_date: DATE; );
  Locations: set(string);
  Employees: set(EMPLOYEE);
  Projects: set(PROJECT); );

Figure 12.1 
Specifying the object 
types EMPLOYEE, 
DATE, and  
DEPARTMENT using 
type constructors.
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are applicable to objects of all types. For example, in the relational model, the oper-
ations for selecting, inserting, deleting, and modifying tuples are generic and may 
be applied to any relation in the database. The relation and its attributes are visible 
to users and to external programs that access the relation by using these opera-
tions. The concept of encapsulation is applied to database objects in ODBs by 
defining the behavior of a type of object based on the operations that can be exter-
nally applied to objects of that type. Some operations may be used to create (insert) 
or destroy (delete) objects; other operations may update the object state; and oth-
ers may be used to retrieve parts of the object state or to apply some calculations. 
Still other operations may perform a combination of retrieval, calculation, and 
update. In general, the implementation of an operation can be specified in a 
 general-purpose programming language that provides flexibility and power in 
defining the operations.

The external users of the object are only made aware of the interface of the oper-
ations, which defines the name and arguments (parameters) of each operation. 
The implementation is hidden from the external users; it includes the definition 
of any hidden internal data structures of the object and the implementation of the 
operations that access these structures. The interface part of an operation is 
sometimes called the signature, and the operation implementation is sometimes 
called the method.

For database applications, the requirement that all objects be completely encapsu-
lated is too stringent. One way to relax this requirement is to divide the structure of 
an object into visible and hidden attributes (instance variables). Visible attributes 
can be seen by and are directly accessible to the database users and programmers 
via the query language. The hidden attributes of an object are completely encapsu-
lated and can be accessed only through predefined operations. Most ODMSs 
employ high-level query languages for accessing visible attributes. In Section 12.5 
we will describe the OQL query language that is proposed as a standard query lan-
guage for ODBs.

The term class is often used to refer to a type definition, along with the definitions 
of the operations for that type.8 Figure 12.2 shows how the type definitions in Fig-
ure 12.1 can be extended with operations to define classes. A number of operations 
are declared for each class, and the signature (interface) of each operation is 
included in the class definition. A method (implementation) for each operation 
must be defined elsewhere using a programming language. Typical operations 
include the object constructor operation (often called new), which is used to create 
a new object, and the destructor operation, which is used to destroy (delete) an 
object. A number of object modifier operations can also be declared to modify the 
states (values) of various attributes of an object. Additional operations can retrieve 
information about the object.

8This definition of class is similar to how it is used in the popular C++ programming language. The 
ODMG standard uses the word interface in addition to class (see Section 12.3). In the EER model, the 
term class was used to refer to an object type, along with the set of all objects of that type (see  
Chapter 8).
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An operation is typically applied to an object by using the dot notation. For exam-
ple, if d is a reference to a DEPARTMENT object, we can invoke an operation such as 
no_of_emps by writing d.no_of_emps. Similarly, by writing d.destroy_dept, the object 
referenced by d is destroyed (deleted). The only exception is the constructor opera-
tion, which returns a reference to a new DEPARTMENT object. Hence, it is custom-
ary in some OO models to have a default name for the constructor operation that is 
the name of the class itself, although this was not used in Figure 12.2.9 The dot notation 
is also used to refer to attributes of an object—for example, by writing d.Dnumber or 
d.Mgr_Start_date.

define class EMPLOYEE
 type tuple ( Fname: string;
   Minit: char;
   Lname: string;
   Ssn: string;
   Birth_date: DATE;
   Address: string;
   Sex: char;
   Salary: float;
   Supervisor: EMPLOYEE;
   Dept: DEPARTMENT; );
 operations age: integer;
   create_emp: EMPLOYEE;
   destroy_emp: boolean;
end EMPLOYEE;
define class DEPARTMENT 
 type tuple ( Dname: string;
   Dnumber: integer;
   Mgr: tuple ( Manager: EMPLOYEE;
               Start_date: DATE; );
   Locations: set (string);
   Employees: set (EMPLOYEE);
   Projects set(PROJECT); );
 operations no_of_emps: integer;
   create_dept: DEPARTMENT;
   destroy_dept: boolean;
   assign_emp(e: EMPLOYEE): boolean;
   (* adds an employee to the department *)
   remove_emp(e: EMPLOYEE): boolean;
   (* removes an employee from the department *)
end DEPARTMENT;

Figure 12.2 
Adding operations to 
the definitions of 
EMPLOYEE and 
DEPARTMENT.

9Default names for the constructor and destructor operations exist in the C++ programming language. 
For example, for class EMPLOYEE, the default constructor name is EMPLOYEE and the default  

destructor name is ~EMPLOYEE. It is also common to use the new operation to create new objects.
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Specifying Object Persistence via Naming and Reachability. An ODBS is 
often closely coupled with an object-oriented programming language (OOPL). The 
OOPL is used to specify the method (operation) implementations as well as other 
application code. Not all objects are meant to be stored permanently in the data-
base. Transient objects exist in the executing program and disappear once the pro-
gram terminates. Persistent objects are stored in the database and persist after 
program termination. The typical mechanisms for making an object persistent are 
naming and reachability.

The naming mechanism involves giving an object a unique persistent name within 
a particular database. This persistent object name can be given via a specific state-
ment or operation in the program, as shown in Figure 12.3. The named persistent 
objects are used as entry points to the database through which users and applica-
tions can start their database access. Obviously, it is not practical to give names to 
all objects in a large database that includes thousands of objects, so most objects are 
made persistent by using the second mechanism, called reachability. The reach-
ability mechanism works by making the object reachable from some other persis-
tent object. An object B is said to be reachable from an object A if a sequence of 
references in the database lead from object A to object B.

If we first create a named persistent object N, whose state is a set of objects of some 
class C, we can make objects of C persistent by adding them to the set, thus making 
them reachable from N. Hence, N is a named object that defines a persistent  
collection of objects of class C. In the object model standard, N is called the extent 
of C (see Section 12.3).

For example, we can define a class DEPARTMENT_SET (see Figure 12.3) whose 
objects are of type set(DEPARTMENT).10 We can create an object of type  
DEPARTMENT_SET, and give it a persistent name ALL_DEPARTMENTS, as shown in 
Figure 12.3. Any DEPARTMENT object that is added to the set of ALL_DEPARTMENTS 
by using the add_dept operation becomes persistent by virtue of its being reach-
able from ALL_DEPARTMENTS. As we will see in Section 12.3, the ODMG ODL 
standard gives the schema designer the option of naming an extent as part of 
class definition.

Notice the difference between traditional database models and ODBs in this respect. 
In traditional database models, such as the relational model, all objects are assumed 
to be persistent. Hence, when a table such as EMPLOYEE is created in a relational 
database, it represents both the type declaration for EMPLOYEE and a persistent set 
of all EMPLOYEE records (tuples). In the OO approach, a class declaration of 
EMPLOYEE specifies only the type and operations for a class of objects. The user 
must separately define a persistent object of type set(EMPLOYEE) whose value is the 
collection of references (OIDs) to all persistent EMPLOYEE objects, if this is desired, 
as shown in Figure 12.3.11 This allows transient and persistent objects to follow the 

10As we will see in Section 12.3, the ODMG ODL syntax uses set<DEPARTMENT> instead of 
set(DEPARTMENT).
11Some systems, such as POET, automatically create the extent for a class.



374 Chapter 12 Object and Object-Relational Databases

same type and class declarations of the ODL and the OOPL. In general, it is possible 
to define several persistent collections for the same class definition, if desired.

12.1.5 Type Hierarchies and Inheritance

Simplified Model for Inheritance. Another main characteristic of ODBs is that 
they allow type hierarchies and inheritance. We use a simple OO model in this 
section—a model in which attributes and operations are treated uniformly—since 
both attributes and operations can be inherited. In Section 12.3, we will discuss the 
inheritance model of the ODMG standard, which differs from the model discussed 
here because it distinguishes between two types of inheritance. Inheritance allows 
the definition of new types based on other predefined types, leading to a type (or 
class) hierarchy.

A type is defined by assigning it a type name and then defining a number of attri-
butes (instance variables) and operations (methods) for the type.12 In the simplified 
model we use in this section, the attributes and operations are together called func-
tions, since attributes resemble functions with zero arguments. A function name 
can be used to refer to the value of an attribute or to refer to the resulting value of an 
operation (method). We use the term function to refer to both attributes and oper-
ations, since they are treated similarly in a basic introduction to inheritance.13

define class DEPARTMENT_SET
 type set (DEPARTMENT);
 operations add_dept(d: DEPARTMENT): boolean;
  (* adds a department to the DEPARTMENT_SET object *)
   remove_dept(d: DEPARTMENT): boolean;
  (* removes a department from the DEPARTMENT_SET object *)
   create_dept_set: DEPARTMENT_SET;
   destroy_dept_set: boolean;
end Department_Set;
…
persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)
…
d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)
…
b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

Figure 12.3 
Creating persistent 
objects by naming 
and reachability.

12In this section we will use the terms type and class as meaning the same thing—namely, the attributes 
and operations of some type of object.
13We will see in Section 12.3 that types with functions are similar to the concept of interfaces as used in 
ODMG ODL.
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A type in its simplest form has a type name and a list of visible (public) functions. 
When specifying a type in this section, we use the following format, which does not 
specify arguments of functions, to simplify the discussion:

TYPE_NAME: function, function, … , function

For example, a type that describes characteristics of a PERSON may be defined as 
follows:

PERSON: Name, Address, Birth_date, Age, Ssn

In the PERSON type, the Name, Address, Ssn, and Birth_date functions can be imple-
mented as stored attributes, whereas the Age function can be implemented as an 
operation that calculates the Age from the value of the Birth_date attribute and the 
current date.

The concept of subtype is useful when the designer or user must create a new type that 
is similar but not identical to an already defined type. The subtype then inherits all the 
functions of the predefined type, which is referred to as the supertype. For example, 
suppose that we want to define two new types EMPLOYEE and STUDENT as follows:

EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, Seniority
STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON 
plus some additional functions of their own, we can declare them to be subtypes of 
PERSON. Each will inherit the previously defined functions of PERSON—namely, 
Name, Address, Birth_date, Age, and Ssn. For STUDENT, it is only necessary to define 
the new (local) functions Major and Gpa, which are not inherited. Presumably, Major 
can be defined as a stored attribute, whereas Gpa may be implemented as an opera-
tion that calculates the student’s grade point average by accessing the Grade values 
that are internally stored (hidden) within each STUDENT object as hidden attributes. 
For EMPLOYEE, the Salary and Hire_date functions may be stored attributes, whereas 
Seniority may be an operation that calculates Seniority from the value of Hire_date.

Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniority
STUDENT subtype-of PERSON: Major, Gpa

In general, a subtype includes all of the functions that are defined for its supertype 
plus some additional functions that are specific only to the subtype. Hence, it is pos-
sible to generate a type hierarchy to show the supertype/subtype relationships 
among all the types declared in the system.

As another example, consider a type that describes objects in plane geometry, which 
may be defined as follows:

GEOMETRY_OBJECT: Shape, Area, Reference_point

For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domain 
can be an enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and 
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Area is a method that is applied to calculate the area. Reference_point specifies the 
coordinates of a point that determines the object location. Now suppose that we 
want to define a number of subtypes for the GEOMETRY_OBJECT type, as follows:

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height
TRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle
CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Notice that the Area operation may be implemented by a different method for each 
subtype, since the procedure for area calculation is different for rectangles, trian-
gles, and circles. Similarly, the attribute Reference_point may have a different mean-
ing for each subtype; it might be the center point for RECTANGLE and CIRCLE 
objects, and the vertex point between the two given sides for a TRIANGLE object.

Notice that type definitions describe objects but do not generate objects on their 
own. When an object is created, typically it belongs to one or more of these types 
that have been declared. For example, a circle object is of type CIRCLE and  
GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of one 
or more persistent collections of objects (or extents), which are used to group 
together collections of objects that are persistently stored in the database.

Constraints on Extents Corresponding to a Type Hierarchy. In most ODBs, 
an extent is defined to store the collection of persistent objects for each type or sub-
type. In this case, the constraint is that every object in an extent that corresponds to 
a subtype must also be a member of the extent that corresponds to its supertype. 
Some OO database systems have a predefined system type (called the ROOT class or 
the OBJECT class) whose extent contains all the objects in the system.14

Classification then proceeds by assigning objects into additional subtypes that are 
meaningful to the application, creating a type hierarchy (or class hierarchy) for the 
system. All extents for system- and user-defined classes are subsets of the extent 
corresponding to the class OBJECT, directly or indirectly. In the ODMG model (see 
Section 12.3), the user may or may not specify an extent for each class (type), 
depending on the application.

An extent is a named persistent object whose value is a persistent collection that 
holds a collection of objects of the same type that are stored permanently in the 
database. The objects can be accessed and shared by multiple programs. It is also 
possible to create a transient collection, which exists temporarily during the execu-
tion of a program but is not kept when the program terminates. For example, a 
transient collection may be created in a program to hold the result of a query that 
selects some objects from a persistent collection and copies those objects into the 
transient collection. The program can then manipulate the objects in the transient 
collection, and once the program terminates, the transient collection ceases to exist. 
In general, numerous collections—transient or persistent—may contain objects of 
the same type.

14This is called OBJECT in the ODMG model (see Section 12.3).
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The inheritance model discussed in this section is very simple. As we will see in Sec-
tion 12.3, the ODMG model distinguishes between type inheritance—called inter-
face inheritance and denoted by a colon (:)—and the extent inheritance 
constraint—denoted by the keyword EXTEND.

12.1.6 Other Object-Oriented Concepts

Polymorphism of Operations (Operator Overloading). Another characteris-
tic of OO systems in general is that they provide for polymorphism of operations, 
which is also known as operator overloading. This concept allows the same opera-
tor name or symbol to be bound to two or more different implementations of the 
operator, depending on the type of objects to which the operator is applied. A sim-
ple example from programming languages can illustrate this concept. In some lan-
guages, the operator symbol “+” can mean different things when applied to 
operands (objects) of different types. If the operands of “+” are of type integer, the 
operation invoked is integer addition. If the operands of “+” are of type floating 
point, the operation invoked is floating-point addition. If the operands of “+” are of 
type set, the operation invoked is set union. The compiler can determine which 
operation to execute based on the types of operands supplied.

In OO databases, a similar situation may occur. We can use the GEOMETRY_OBJECT 
example presented in Section 12.1.5 to illustrate operation polymorphism15  
in ODB. In this example, the function Area is declared for all objects of type  
GEOMETRY_OBJECT. However, the implementation of the method for Area may 
differ for each subtype of GEOMETRY_OBJECT. One possibility is to have a general 
implementation for calculating the area of a generalized GEOMETRY_OBJECT (for 
example, by writing a general algorithm to calculate the area of a polygon) and then 
to rewrite more efficient algorithms to calculate the areas of specific types of geo-
metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the 
Area function is overloaded by different implementations.

The ODMS must now select the appropriate method for the Area function based on 
the type of geometric object to which it is applied. In strongly typed systems, this 
can be done at compile time, since the object types must be known. This is termed 
early (or static) binding. However, in systems with weak typing or no typing (such 
as Smalltalk, LISP, PHP, and most scripting languages), the type of the object to 
which a function is applied may not be known until runtime. In this case, the func-
tion must check the type of object at runtime and then invoke the appropriate 
method. This is often referred to as late (or dynamic) binding.

Multiple Inheritance and Selective Inheritance.  Multiple inheritance occurs 
when a certain subtype T is a subtype of two (or more) types and hence inherits the 
functions (attributes and methods) of both supertypes. For example, we may create 

15In programming languages, there are several kinds of polymorphism. The interested reader is referred to 
the Selected Bibliography at the end of this chapter for works that include a more thorough discussion.



378 Chapter 12 Object and Object-Relational Databases

a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and  
ENGINEER. This leads to the creation of a type lattice rather than a type hierarchy. 
One problem that can occur with multiple inheritance is that the supertypes from 
which the subtype inherits may have distinct functions of the same name, creating an 
ambiguity. For example, both MANAGER and ENGINEER may have a function called 
Salary. If the Salary function is implemented by different methods in the MANAGER 
and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by 
the subtype ENGINEERING_MANAGER. It is possible, however, that both ENGINEER 
and MANAGER inherit Salary from the same supertype (such as EMPLOYEE) higher 
up in the lattice. The general rule is that if a function is inherited from some com-
mon supertype, then it is inherited only once. In such a case, there is no ambiguity; 
the problem only arises if the functions are distinct in the two supertypes.

There are several techniques for dealing with ambiguity in multiple inheritance. 
One solution is to have the system check for ambiguity when the subtype is created, 
and to let the user explicitly choose which function is to be inherited at this time. A 
second solution is to use some system default. A third solution is to disallow mul-
tiple inheritance altogether if name ambiguity occurs, instead forcing the user to 
change the name of one of the functions in one of the supertypes. Indeed, some OO 
systems do not permit multiple inheritance at all. In the object database standard 
(see Section 12.3), multiple inheritance is allowed for operation inheritance of 
interfaces, but is not allowed for EXTENDS inheritance of classes.

Selective inheritance occurs when a subtype inherits only some of the functions of 
a supertype. Other functions are not inherited. In this case, an EXCEPT clause may 
be used to list the functions in a supertype that are not to be inherited by the sub-
type. The mechanism of selective inheritance is not typically provided in ODBs, but 
it is used more frequently in artificial intelligence applications.16

12.1.7 Summary of Object Database Concepts
To conclude this section, we give a summary of the main concepts used in ODBs 
and object-relational systems:

 ■ Object identity. Objects have unique identities that are independent of their 
attribute values and are generated by the ODB system.

 ■ Type constructors. Complex object structures can be constructed by apply-
ing in a nested manner a set of basic type generators/constructors, such as 
tuple, set, list, array, and bag.

 ■ Encapsulation of operations. Both the object structure and the operations that 
can be applied to individual objects are included in the class/type definitions.

 ■ Programming language compatibility. Both persistent and transient objects 
are handled seamlessly. Objects are made persistent by being reachable from 

16In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (see 
Section 12.3).
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a persistent collection (extent) or by explicit naming (assigning a unique 
name by which the object can be referenced/retrieved).

 ■ Type hierarchies and inheritance. Object types can be specified by using a 
type hierarchy, which allows the inheritance of both attributes and methods 
(operations) of previously defined types. Multiple inheritance is allowed in 
some models.

 ■ Extents. All persistent objects of a particular class/type C can be stored in an 
extent, which is a named persistent object of type set(C). Extents corre-
sponding to a type hierarchy have set/subset constraints enforced on their 
collections of persistent objects.

 ■ Polymorphism and operator overloading. Operations and method names 
can be overloaded to apply to different object types with different imple-
mentations.

In the following sections we show how these concepts are realized, first in the SQL 
standard (Section 12.2) and then in the ODMG standard (Section 12.3).

12.2 Object Database Extensions to SQL
We introduced SQL as the standard language for RDBMSs in Chapters 6 and 7. As 
we discussed, SQL was first specified by Chamberlin and Boyce (1974) and under-
went enhancements and standardization in 1989 and 1992. The language continued 
its evolution with a new standard, initially called SQL3 while being developed and 
later known as SQL:99 for the parts of SQL3 that were approved into the standard. 
Starting with the version of SQL known as SQL3, features from object databases 
were incorporated into the SQL standard. At first, these extensions were known as 
SQL/Object, but later they were incorporated in the main part of SQL, known as 
SQL/Foundation in SQL:2008.

The relational model with object database enhancements is sometimes referred to 
as the object-relational model. Additional revisions were made to SQL in 2003 and 
2006 to add features related to XML (see Chapter 13).

The following are some of the object database features that have been included in SQL:

 ■ Some type constructors have been added to specify complex objects. These 
include the row type, which corresponds to the tuple (or struct) constructor. 
An array type for specifying collections is also provided. Other collection 
type constructors, such as set, list, and bag constructors, were not part of the 
original SQL/Object specifications in SQL:99 but were later included in the 
standard in SQL:2008.

 ■ A mechanism for specifying object identity through the use of reference 
type is included.

 ■ Encapsulation of operations is provided through the mechanism of 
user-defined types (UDTs) that may include operations as part of their 
declaration. These are somewhat similar to the concept of abstract data 
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types that were developed in programming languages. In addition, the 
concept of user-defined routines (UDRs) allows the definition of general 
methods (operations).

 ■ Inheritance mechanisms are provided using the keyword UNDER.

We now discuss each of these concepts in more detail. In our discussion, we will 
refer to the example in Figure 12.4.

12.2.1  User-Defined Types Using CREATE TYPE  
and Complex Objects

To allow the creation of complex-structured objects and to separate the declaration 
of a class/type from the creation of a table (which is the collection of objects/rows 
and hence corresponds to the extent discussed in Section 12.1), SQL now provides 
user-defined types (UDTs). In addition, four collection types have been included 
to allow for collections (multivalued types and attributes) in order to specify com-
plex-structured objects rather than just simple (flat) records. The user will create 
the UDTs for a particular application as part of the database schema. A UDT may 
be specified in its simplest form using the following syntax:

CREATE TYPE TYPE_NAME AS (<component declarations>);

Figure 12.4 illustrates some of the object concepts in SQL. We will explain the 
examples in this figure gradually as we explain the concepts. First, a UDT can be 
used as either the type for an attribute or as the type for a table. By using a UDT as 
the type for an attribute within another UDT, a complex structure for objects 
(tuples) in a table can be created, much like that achieved by nesting type construc-
tors/generators as discussed in Section 12.1. This is similar to using the struct  
type constructor of Section 12.1.3. For example, in Figure 12.4(a), the UDT 
STREET_ADDR_TYPE is used as the type for the STREET_ADDR attribute in the UDT 
USA_ADDR_TYPE. Similarly, the UDT USA_ADDR_TYPE is in turn used as the type 
for the ADDR attribute in the UDT PERSON_TYPE in Figure 12.4(b). If a UDT does 
not have any operations, as in the examples in Figure 12.4(a), it is possible to use  
the concept of ROW TYPE to directly create a structured attribute by using the  
keyword ROW. For example, we could use the following instead of declaring 
STREET_ADDR_TYPE as a separate type as in Figure 12.4(a):

CREATE TYPE USA_ADDR_TYPE AS (
 STREET_ADDR ROW ( NUMBER VARCHAR (5),
   STREET_NAME VARCHAR (25),
   APT_NO VARCHAR (5),
   SUITE_NO VARCHAR (5) ),
 CITY VARCHAR (25),
 ZIP VARCHAR (10)
 );

To allow for collection types in order to create complex-structured objects, four 
constructors are now included in SQL: ARRAY, MULTISET, LIST, and SET. These are 
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(a) CREATE TYPE STREET_ADDR_TYPE AS (
  NUMBER VARCHAR (5),
  STREET NAME VARCHAR (25),
  APT_NO VARCHAR (5),
  SUITE_NO VARCHAR (5)
 );
 CREATE TYPE USA_ADDR_TYPE AS (
  STREET_ADDR STREET_ADDR_TYPE,
  CITY VARCHAR (25),
  ZIP VARCHAR (10)
 );
 CREATE TYPE USA_PHONE_TYPE AS (
  PHONE_TYPE VARCHAR (5),
  AREA_CODE CHAR (3),
  PHONE_NUM CHAR (7)
 );

(b) CREATE TYPE PERSON_TYPE AS (
  NAME VARCHAR (35),
  SEX CHAR,
  BIRTH_DATE DATE,
  PHONES USA_PHONE_TYPE ARRAY [4],
  ADDR USA_ADDR_TYPE
 INSTANTIABLE
 NOT FINAL
 REF IS SYSTEM GENERATED
 INSTANCE METHOD AGE() RETURNS INTEGER;
 CREATE INSTANCE METHOD AGE() RETURNS INTEGER
  FOR PERSON_TYPE
  BEGIN
    RETURN /*  CODE TO CALCULATE A PERSON’S AGE FROM 

TODAY’S DATE AND SELF.BIRTH_DATE */
  END;
 );

(c) CREATE TYPE GRADE_TYPE AS (
  COURSENO CHAR (8),
  SEMESTER VARCHAR (8),
  YEAR CHAR (4),
  GRADE CHAR
 );
 CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
  MAJOR_CODE CHAR (4),
  STUDENT_ID CHAR (12),
  DEGREE VARCHAR (5),
  TRANSCRIPT GRADE_TYPE ARRAY [100]

Figure 12.4 
Illustrating some of the object  
features of SQL. (a) Using UDTs  
as types for attributes such as  
Address and Phone, (b) specifying  
UDT for PERSON_TYPE,  
(c) specifying UDTs for  
STUDENT_TYPE and EMPLOYEE_TYPE 
as two subtypes of PERSON_TYPE.

(continues)
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 INSTANTIABLE
 NOT FINAL
 INSTANCE METHOD GPA( ) RETURNS FLOAT;
 CREATE INSTANCE METHOD GPA( ) RETURNS FLOAT
  FOR STUDENT_TYPE
  BEGIN
    RETURN /*  CODE TO CALCULATE A STUDENT’S GPA FROM  

SELF.TRANSCRIPT */
  END;
 );
 CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (
  JOB_CODE CHAR (4),
  SALARY FLOAT,
  SSN CHAR (11)
 INSTANTIABLE
 NOT FINAL
 );
 CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
   DEPT_MANAGED CHAR (20)
 INSTANTIABLE
 );

(d) CREATE TABLE PERSON OF PERSON_TYPE
  REF IS PERSON_ID SYSTEM GENERATED;
 CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
  UNDER PERSON;
 CREATE TABLE MANAGER OF MANAGER_TYPE
  UNDER EMPLOYEE;
 CREATE TABLE STUDENT OF STUDENT_TYPE
  UNDER PERSON;

(e) CREATE TYPE COMPANY_TYPE AS (
  COMP_NAME VARCHAR (20),
  LOCATION VARCHAR (20));
 CREATE TYPE EMPLOYMENT_TYPE AS (
  Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
  Company REF (COMPANY_TYPE) SCOPE (COMPANY) );
 CREATE TABLE COMPANY OF COMPANY_TYPE (
  REF IS COMP_ID SYSTEM GENERATED,
  PRIMARY KEY (COMP_NAME) );
 CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;

Figure 12.4 
(continued)
llustrating some of  
the object features of  
SQL. (c) (continued)  
Specifying UDTs for  
STUDENT_TYPE and  
EMPLOYEE_TYPE as  
two subtypes of  
PERSON_TYPE,  
(d) Creating tables based  
on some of the UDTs,  
and illustrating table  
inheritance,  
(e) Specifying  
relationships using REF 
and SCOPE.
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similar to the type constructors discussed in Section 12.1.3. In the initial specifica-
tion of SQL/Object, only the ARRAY type was specified, since it can be used to simu-
late the other types, but the three additional collection types were included in a  
later version of the SQL standard. In Figure 12.4(b), the PHONES attribute of  
PERSON_TYPE has as its type an array whose elements are of the previously defined 
UDT USA_PHONE_TYPE. This array has a maximum of four elements, meaning 
that we can store up to four phone numbers per person. An array can also have no 
maximum number of elements if desired.

An array type can have its elements referenced using the common notation of 
square brackets. For example, PHONES[1] refers to the first location value in a 
PHONES attribute (see Figure 12.4(b)). A built-in function CARDINALITY can return 
the current number of elements in an array (or any other collection type). For 
example, PHONES[CARDINALITY (PHONES)] refers to the last element in the array.

The commonly used dot notation is used to refer to components of a ROW TYPE or 
a UDT. For example, ADDR.CITY refers to the CITY component of an ADDR attribute 
(see Figure 12.4(b)).

12.2.2 Object Identifiers Using Reference Types
Unique system-generated object identifiers can be created via the reference type 
using the keyword REF. For example, in Figure 12.4(b), the phrase:

REF IS SYSTEM GENERATED

indicates that whenever a new PERSON_TYPE object is created, the system will 
assign it a unique system-generated identifier. It is also possible not to have a system-
generated object identifier and use the traditional keys of the basic relational model 
if desired.

In general, the user can specify that system-generated object identifiers for the indi-
vidual rows in a table should be created. By using the syntax:

REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;

the user declares that the attribute named <OID_ATTRIBUTE> will be used to identify 
individual tuples in the table. The options for <VALUE_GENERATION_METHOD> 
are SYSTEM GENERATED or DERIVED. In the former case, the system will  
automatically generate a unique identifier for each tuple. In the latter case, the 
traditional method of using the user-provided primary key value to identify 
tuples is applied.

12.2.3 Creating Tables Based on the UDTs
For each UDT that is specified to be instantiable via the phrase INSTANTIABLE (see 
Figure 12.4(b)), one or more tables may be created. This is illustrated in Fig- 
ure 12.4(d), where we create a table PERSON based on the PERSON_TYPE UDT. Notice 
that the UDTs in Figure 12.4(a) are noninstantiable and hence can only be used as 
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types for attributes, but not as a basis for table creation. In Figure 12.4(b), the attri-
bute PERSON_ID will hold the system-generated object identifier whenever a new 
PERSON record (object) is created and inserted in the table.

12.2.4 Encapsulation of Operations
In SQL, a user-defined type can have its own behavioral specification by specifying 
methods (or operations) in addition to the attributes. The general form of a UDT 
specification with methods is as follows:

CREATE TYPE <TYPE-NAME> (
  <LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>
  <DECLARATION OF FUNCTIONS (METHODS)>
);

For example, in Figure 12.4(b), we declared a method Age() that calculates the age of 
an individual object of type PERSON_TYPE.

The code for implementing the method still has to be written. We can refer to the 
method implementation by specifying the file that contains the code for the method, 
or we can write the actual code within the type declaration itself (see Figure 12.4(b)).

SQL provides certain built-in functions for user-defined types. For a UDT called 
TYPE_T, the constructor function TYPE_T( ) returns a new object of that type. In 
the new UDT object, every attribute is initialized to its default value. An observer 
function A is implicitly created for each attribute A to read its value. Hence, A(X) 
or X.A returns the value of attribute A of TYPE_T if X is a variable that refers to an 
object/row of type TYPE_T. A mutator function for updating an attribute sets the 
value of the attribute to a new value. SQL allows these functions to be blocked from 
public use; an EXECUTE privilege is needed to have access to these functions.

In general, a UDT can have a number of user-defined functions associated with it. 
The syntax is

INSTANCE METHOD <NAME> (<ARGUMENT_LIST>) RETURNS  
<RETURN_TYPE>;

Two types of functions can be defined: internal SQL and external. Internal functions 
are written in the extended PSM language of SQL (see Chapter 10). External func-
tions are written in a host language, with only their signature (interface) appearing 
in the UDT definition. An external function definition can be declared as follows:

DECLARE EXTERNAL <FUNCTION_NAME> <SIGNATURE>
LANGUAGE <LANGUAGE_NAME>;

Attributes and functions in UDTs are divided into three categories:

 ■ PUBLIC (visible at the UDT interface)

 ■ PRIVATE (not visible at the UDT interface)

 ■ PROTECTED (visible only to subtypes)
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It is also possible to define virtual attributes as part of UDTs, which are computed 
and updated using functions.

12.2.5 Specifying Inheritance and Overloading of Functions
In SQL, inheritance can be applied to types or to tables; we will discuss the meaning 
of each in this section. Recall that we already discussed many of the principles of 
inheritance in Section 12.1.5. SQL has rules for dealing with type inheritance 
(specified via the UNDER keyword). In general, both attributes and instance meth-
ods (operations) are inherited. The phrase NOT FINAL must be included in a UDT if 
subtypes are allowed to be created under that UDT (see Figures 12.4(a) and (b), 
where PERSON_TYPE, STUDENT_TYPE, and EMPLOYEE_TYPE are declared to be 
NOT FINAL). Associated with type inheritance are the rules for overloading of func-
tion implementations and for resolution of function names. These inheritance rules 
can be summarized as follows:

 ■ All attributes are inherited.

 ■ The order of supertypes in the UNDER clause determines the inheritance 
hierarchy.

 ■ An instance of a subtype can be used in every context in which a supertype 
instance is used.

 ■ A subtype can redefine any function that is defined in its supertype, with the 
restriction that the signature be the same.

 ■ When a function is called, the best match is selected based on the types of all 
arguments.

 ■ For dynamic linking, the types of the parameters are considered at runtime.

Consider the following examples to illustrate type inheritance, which are illustrated 
in Figure 12.4(c). Suppose that we want to create two subtypes of PERSON_TYPE: 
EMPLOYEE_TYPE and STUDENT_TYPE. In addition, we also create a subtype 
MANAGER_TYPE that inherits all the attributes (and methods) of EMPLOYEE_TYPE 
but has an additional attribute DEPT_MANAGED. These subtypes are shown in 
Figure 12.4(c).

In general, we specify the local (specific) attributes and any additional specific 
methods for the subtype, which inherits the attributes and operations (methods) of 
its supertype.

Another facility in SQL is table inheritance via the supertable/subtable facility. 
This is also specified using the keyword UNDER (see Figure 12.4(d)). Here, a new 
record that is inserted into a subtable, say the MANAGER table, is also inserted into 
its supertables EMPLOYEE and PERSON. Notice that when a record is inserted in 
MANAGER, we must provide values for all its inherited attributes. INSERT, DELETE, 
and UPDATE operations are appropriately propagated. Basically, table inheritance 
corresponds to the extent inheritance discussed in Section 12.1.5. The rule is that a 
tuple in a sub-table must also exist in its super-table to enforce the set/subset con-
straint on the objects.
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12.2.6 Specifying Relationships via Reference
A component attribute of one tuple may be a reference (specified using the key-
word REF) to a tuple of another (or possibly the same) table. An example is shown 
in Figure 12.4(e).

The keyword SCOPE specifies the name of the table whose tuples can be referenced 
by the reference attribute. Notice that this is similar to a foreign key, except that the 
system-generated OID value is used rather than the primary key value.

SQL uses a dot notation to build path expressions that refer to the component 
attributes of tuples and row types. However, for an attribute whose type is REF, the 
dereferencing symbol –> is used. For example, the query below retrieves employees 
working in the company named ‘ABCXYZ’ by querying the EMPLOYMENT table:

SELECT E.Employee–>NAME
FROM EMPLOYMENT AS E
WHERE E.Company–>COMP_NAME = ‘ABCXYZ’;

In SQL, –> is used for dereferencing and has the same meaning assigned to it in the 
C programming language. Thus, if r is a reference to a tuple (object) and a is a com-
ponent attribute in that tuple, then r –> a is the value of attribute a in that tuple.

If several relations of the same type exist, SQL provides the SCOPE keyword by 
which a reference attribute may be made to point to a tuple within a specific table of 
that type.

12.3  The ODMG Object Model and the Object 
Definition Language ODL

As we discussed in the introduction to Chapter 6, one of the reasons for the success 
of commercial relational DBMSs is the SQL standard. The lack of a standard for 
ODBs for several years may have caused some potential users to shy away from con-
verting to this new technology. Subsequently, a consortium of ODB vendors and 
users, called ODMG (Object Data Management Group), proposed a standard that is 
known as the ODMG-93 or ODMG 1.0 standard. This was revised into ODMG 2.0, 
and later to ODMG 3.0. The standard is made up of several parts, including the 
object model, the object definition language (ODL), the object query language 
(OQL), and the bindings to object-oriented programming languages.

In this section, we describe the ODMG object model and the ODL. In Section 12.4, 
we discuss how to design an ODB from an EER conceptual schema. We will give an 
overview of OQL in Section 12.5, and the C++ language binding in Section 12.6. 
Examples of how to use ODL, OQL, and the C++ language binding will use the 
UNIVERSITY database example introduced in Chapter 4. In our description, we will 
follow the ODMG 3.0 object model as described in Cattell et al. (2000).17 It is 

17The earlier versions of the object model were published in 1993 and 1997.
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important to note that many of the ideas embodied in the ODMG object model are 
based on two decades of research into conceptual modeling and object databases by 
many researchers.

The incorporation of object concepts into the SQL relational database standard, 
leading to object-relational technology, was presented in Section 12.2.

12.3.1 Overview of the Object Model of ODMG
The ODMG object model is the data model upon which the object definition lan-
guage (ODL) and object query language (OQL) are based. It is meant to provide a 
standard data model for object databases, just as SQL describes a standard data 
model for relational databases. It also provides a standard terminology in a field 
where the same terms were sometimes used to describe different concepts. We will 
try to adhere to the ODMG terminology in this chapter. Many of the concepts in 
the ODMG model have already been discussed in Section 12.1, and we assume the 
reader has read this section. We will point out whenever the ODMG terminology 
differs from that used in Section 12.1.

Objects and Literals. Objects and literals are the basic building blocks of the 
object model. The main difference between the two is that an object has both an 
object identifier and a state (or current value), whereas a literal has a value 
(state) but no object identifier.18 In either case, the value can have a complex 
structure. The object state can change over time by modifying the object value. A 
literal is basically a constant value, possibly having a complex structure, but it 
does not change.

An object has five aspects: identifier, name, lifetime, structure, and creation.

  1. The object identifier is a unique system-wide identifier (or Object_id).19 

Every object must have an object identifier.

  2. Some objects may optionally be given a unique name within a particular 
ODMS—this name can be used to locate the object, and the system should 
return the object given that name.20 Obviously, not all individual objects 
will have unique names. Typically, a few objects, mainly those that hold 
collections of objects of a particular object class/type—such as extents—will 
have a name. These names are used as entry points to the database; that is, 
by locating these objects by their unique name, the user can then locate 
other objects that are referenced from these objects. Other important 
objects in the application may also have unique names, and it is possible to 
give more than one name to an object. All names within a particular ODB 
must be unique.

18We will use the terms value and state interchangeably here.
19This corresponds to the OID of Section 12.1.2.
20This corresponds to the naming mechanism for persistence, described in Section 12.1.4.
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  3. The lifetime of an object specifies whether it is a persistent object (that is, a 
database object) or transient object (that is, an object in an executing pro-
gram that disappears after the program terminates). Lifetimes are indepen-
dent of classes/types—that is, some objects of a particular class may be 
transient whereas others may be persistent.

  4. The structure of an object specifies how the object is constructed by using 
the type constructors. The structure specifies whether an object is atomic or 
not. An atomic object refers to a single object that follows a user-defined 
type, such as Employee or Department. If an object is not atomic, then it will be 
composed of other objects. For example, a collection object is not an atomic 
object, since its state will be a collection of other objects.21 The term atomic 
object is different from how we defined the atom constructor in Sec- 
tion 12.1.3, which referred to all values of built-in data types. In the ODMG 
model, an atomic object is any individual user-defined object. All values of 
the basic built-in data types are considered to be literals.

  5. Object creation refers to the manner in which an object can be created. This 
is typically accomplished via an operation new for a special Object_Factory 
interface. We shall describe this in more detail later in this section.

In the object model, a literal is a value that does not have an object identifier. How-
ever, the value may have a simple or complex structure. There are three types of 
literals: atomic, structured, and collection.

  1. Atomic literals22 correspond to the values of basic data types and are pre-
defined. The basic data types of the object model include long, short, and 
unsigned integer numbers (these are specified by the keywords long, short, 
unsigned long, and unsigned short in ODL), regular and double precision 
floating-point numbers (float, double), Boolean values (boolean), single 
characters (char), character strings (string), and enumeration types (enum), 
among others.

  2. Structured literals correspond roughly to values that are constructed using 
the tuple constructor described in Section 12.1.3. The built-in structured lit-
erals include Date, Interval, Time, and Timestamp (see Figure 12.5(b)). Addi-
tional user-defined structured literals can be defined as needed by each 
application.23 User-defined structures are created using the STRUCT key-
word in ODL, as in the C and C++ programming languages.

21In the ODMG model, atomic objects do not correspond to objects whose values are basic data types. 
All basic values (integers, reals, and so on) are considered literals.
22The use of the word atomic in atomic literal corresponds to the way we used atom constructor in 
Section 12.1.3.
23The structures for Date, Interval, Time, and Timestamp can be used to create either literal values or 
objects with identifiers.
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(continues)

(a)  nterface Object {
  …
  boolean same_as(in object other_object);
  object copy();
  void delete();
 };

(b) Class Date : Object {
  enum Weekday
    { Sunday, Monday, Tuesday, Wednesday,  
      Thursday, Friday, Saturday };
  enum Month
    { January, February, March, April, May, June,  
      July, August, September, October, November,  
      December };
  unsigned short year();
  unsigned short month();
  unsigned short day();
  …
  boolean is_equal(in Date other_date);
  boolean is_greater(in Date other_date);
  … };
 Class Time : Object {
  …
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  boolean is_equal(in Time a_time);
  boolean is_greater(in Time a_time);
  …
  Time add_interval(in Interval an_interval);
  Time subtract_interval(in Interval an_interval);
  Interval subtract_time(in Time other_time); };
 class Timestamp : Object {
  …
  unsigned short year();
  unsigned short month();
  unsigned short day();
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  Timestamp plus(in Interval an_interval);

Figure 12.5 
Overview of the interface definitions  
for part of the ODMG object model.  
(a) The basic Object interface, inherited 
by all objects, (b) Some standard  
interfaces for structured literals.
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  Timestamp minus(in Interval an_interval);
  boolean is_equal(in Timestamp a_timestamp);
  boolean is_greater(in Timestamp a_timestamp);
  …  };
  class Interval : Object {
  unsigned short day();
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  Interval plus(in Interval an_interval);
  Interval minus(in Interval an_interval);
  Interval product(in long a_value);
  Interval quotient(in long a_value);
  boolean is_equal(in interval an_interval);
  boolean is_greater(in interval an_interval);
  …  };

(c) interface Collection : Object {
  …
  exception ElementNotFound{ Object element; };
  unsigned long cardinality();
  boolean is_empty();
  …
  boolean contains_element(in Object element);
  void insert_element(in Object element);
  void remove_element(in Object element)
    raises(ElementNotFound);
  iterator create_iterator(in boolean stable);
  …  };
 interface Iterator {
  exception NoMoreElements();
  …
  boolean at_end();
  void reset();
  Object get_element() raises(NoMoreElements);
  void next_position() raises(NoMoreElements);
  …  };
 interface set : Collection {
  set create_union(in set other_set);
  …
  boolean is_subset_of(in set other_set);
  …  };
 interface bag : Collection {
  unsigned long occurrences_of(in Object element);

Figure 12.5  
(continued)
Overview of the 
interface  
definitions for  
part of the ODMG  
object model.
(b) (continued) Some  
standard interfaces  
for structured literals,  
(c) Interfaces for  
collections and  
iterators.
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  bag create_union(in Bag other_bag);
  …  };
 interface list : Collection {
  exception lnvalid_lndex{unsigned_long index; );
  void remove_element_at(in unsigned long index)
    raises(lnvalidlndex);
  Object retrieve_element_at(in unsigned long index)
    raises(lnvalidlndex);
  void replace_element_at(in Object element, in unsigned long index)
    raises(lnvalidlndex);
  void insert_element_after(in Object element, in unsigned long index)
    raises(lnvalidlndex);
  …
  void insert_element_first(in Object element);
  …
  void remove_first_element() raises(ElementNotFound);
  …
  Object retrieve_first_element() raises(ElementNotFound);
  …
  list concat(in list other_list);
  void append(in list other_list);
 };
 interface array : Collection {
  exception lnvalid_lndex{unsigned_long index; };
  exception lnvalid_Size{unsigned_long size; };
  void remove_element_at(in unsigned long index)
    raises(InvalidIndex);
  Object retrieve_element_at(in unsigned long index)
    raises(InvalidIndex);
  void replace_element_at(in unsigned long index, in Object element)
    raises(InvalidIndex);
  void resize(in unsigned long new_size)
    raises(InvalidSize);
 };
 struct association { Object key; Object value; };
 interface dictionary : Collection {
  exception DuplicateName{string key; };
  exception KeyNotFound{Object key; };
  void bind(in Object key, in Object value)
    raises(DuplicateName);
  void unbind(in Object key) raises(KeyNotFound);
  Object lookup(in Object key) raises(KeyNotFound);
  boolean contains_key(in Object key);
 };

Figure 12.5  
(continued)
Overview of the
interface  
definitions for  
part of the  
ODMG object  
model.  
(c) (continued)  
Interfaces for  
collections and  
iterators.
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  3. Collection literals specify a literal value that is a collection of objects or 
values but the collection itself does not have an Object_id. The collections 
in the object model can be defined by the type generators set<T>, bag<T>, 
list<T>, and array<T>, where T is the type of objects or values in the collec-
tion.24 Another collection type is dictionary<K, V>, which is a collection of 
associations <K, V>, where each K is a key (a unique search value) associ-
ated with a value V; this can be used to create an index on a collection of 
values V.

Figure 12.5 gives a simplified view of the basic types and type generators of the 
object model. The notation of ODMG uses three concepts: interface, literal, and 
class. Following the ODMG terminology, we use the word behavior to refer to 
operations and state to refer to properties (attributes and relationships). An  
interface specifies only behavior of an object type and is typically noninstantiable 
(that is, no objects are created corresponding to an interface). Although an inter-
face may have state properties (attributes and relationships) as part of its specifi-
cations, these cannot be inherited from the interface. Hence, an interface serves 
to define operations that can be inherited by other interfaces, as well as by classes 
that define the user-defined objects for a particular application. A class specifies 
both state (attributes) and behavior (operations) of an object type and is 
instantiable. Hence, database and application objects are typically created based 
on the user-specified class declarations that form a database schema. Finally, a 
literal declaration specifies state but no behavior. Thus, a literal instance holds a 
simple or complex structured value but has neither an object identifier nor 
encapsulated operations.

Figure 12.5 is a simplified version of the object model. For the full specifications, 
see Cattell et al. (2000). We will describe some of the constructs shown in Fig- 
ure 12.5 as we describe the object model. In the object model, all objects inherit the 
basic interface operations of Object, shown in Figure 12.5(a); these include opera-
tions such as copy (creates a new copy of the object), delete (deletes the object), and 
same_as (compares the object’s identity to another object).25 In general, operations 
are applied to objects using the dot notation. For example, given an object O, to 
compare it with another object P, we write

O.same_as(P)

The result returned by this operation is Boolean and would be true if the identity of 
P is the same as that of O, and false otherwise. Similarly, to create a copy P of object 
O, we write

P = O.copy()

An alternative to the dot notation is the arrow notation: O–>same_as(P) or 
O–>copy().

24These are similar to the corresponding type constructors described in Section 12.1.3.
25Additional operations are defined on objects for locking purposes, which are not shown in Figure 12.5. 
We discuss locking concepts for databases in Chapter 22.
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12.3.2 Inheritance in the Object Model of ODMG
In the ODMG object model, two types of inheritance relationships exist: behavior-
only inheritance and state plus behavior inheritance. Behavior inheritance  
is also known as ISA or interface inheritance and is specified by the colon (:) 
notation.26 Hence, in the ODMG object model, behavior inheritance requires 
the supertype to be an interface, whereas the subtype could be either a class or 
another interface.

The other inheritance relationship, called EXTENDS inheritance, is specified by the 
keyword extends. It is used to inherit both state and behavior strictly among classes, 
so both the supertype and the subtype must be classes. Multiple inheritance via 
extends is not permitted. However, multiple inheritance is allowed for behavior 
inheritance via the colon (:) notation. Hence, an interface may inherit behavior 
from several other interfaces. A class may also inherit behavior from several inter-
faces via colon (:) notation, in addition to inheriting behavior and state from at 
most one other class via extends. In Section 12.3.4 we will give examples of how these 
two inheritance relationships—“:” and extends—may be used.

12.3.3 Built-in Interfaces and Classes in the Object Model
Figure 12.5 shows the built-in interfaces of the object model. All interfaces, such as 
Collection, Date, and Time, inherit the basic Object interface. In the object model, 
there is a distinction between collections, whose state contains multiple objects or 
literals, versus atomic (and structured) objects, whose state is an individual object 
or literal. Collection objects inherit the basic Collection interface shown in Fig- 
ure 12.5(c), which shows the operations for all collection objects. Given a collection 
object O, the O.cardinality() operation returns the number of elements in the collec-
tion. The operation O.is_empty() returns true if the collection O is empty, and 
returns false otherwise. The operations O.insert_element(E) and O.remove_element(E) 
insert or remove an element E from the collection O. Finally, the operation  
O.contains_element(E) returns true if the collection O includes element E, and 
returns false otherwise. The operation I = O.create_iterator() creates an iterator 
object I for the collection object O, which can iterate over each element in the  
collection. The interface for iterator objects is also shown in Figure 12.5(c). The  
I.reset() operation sets the iterator at the first element in a collection (for an unor-
dered collection, this would be some arbitrary element), and I.next_position() sets the 
iterator to the next element. The I.get_element() retrieves the current element, 
which is the element at which the iterator is currently positioned.

The ODMG object model uses exceptions for reporting errors or particular condi-
tions. For example, the ElementNotFound exception in the Collection interface would be 
raised by the O.remove_element(E) operation if E is not an element in the collection O. 

26The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/specializa-
tion relationships, although in the literature these terms have been used to describe inheritance of both 
state and operations (see Chapter 8 and Section 12.1).
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The NoMoreElements exception in the iterator interface would be raised by the  
I.next_position() operation if the iterator is currently positioned at the last element in 
the collection, and hence no more elements exist for the iterator to point to.

Collection objects are further specialized into set, list, bag, array, and dictionary, which 
inherit the operations of the Collection interface. A set<T> type generator can be 
used to create objects such that the value of object O is a set whose elements are of 
type T. The Set interface includes the additional operation P = O.create_union(S) 
(see Figure 12.5(c)), which returns a new object P of type set<T> that is the union of 
the two sets O and S. Other operations similar to create_union (not shown in Fig- 
ure 12.5(c)) are create_intersection(S) and create_difference(S). Operations for set com-
parison include the O.is_subset_of(S) operation, which returns true if the set object 
O is a subset of some other set object S, and returns false otherwise. Similar opera-
tions (not shown in Figure 12.5(c)) are is_proper_subset_of(S), is_superset_of(S), and 
is_proper_superset_of(S). The bag<T> type generator allows duplicate elements in 
the collection and also inherits the Collection interface. It has three operations—
create_union(b), create_intersection(b), and create_difference(b)—that all return a new 
object of type bag<T>.

A list<T> type generator inherits the Collection operations and can be used to create 
collections of objects of type T where the order of the elements is important. The 
value of each such object O is an ordered list whose elements are of type T. Hence, we 
can refer to the first, last, and ith element in the list. Also, when we add an element to 
the list, we must specify the position in the list where the element is inserted. Some of 
the list operations are shown in Figure 12.5(c). If O is an object of type list<T>, the 
operation O.insert_element_first(E) inserts the element E before the first element in the 
list O, so that E becomes the first element in the list. A similar operation (not shown) 
is O.insert_element_last(E). The operation O.insert_element_after(E, I) in Figure 12.5(c) 
inserts the element E after the ith element in the list O and will raise the exception 
InvalidIndex if no ith element exists in O. A similar operation (not shown) is 
O.insert_element_before(E, I). To remove elements from the list, the operations are  
E = O.remove_first_element(), E = O.remove_last_element(), and E = O.remove_element _at(I); 
these operations remove the indicated element from the list and return the element as 
the operation’s result. Other operations retrieve an element without removing it from 
the list. These are E = O.retrieve_first_element(), E = O.retrieve _last_element(), and  
E = O.retrieve_element_at(I). Also, two operations to manipulate lists are defined. They 
are P = O.concat(I), which creates a new list P that is the concatenation of lists O and I 
(the elements in list O followed by those in list I), and O.append(I), which appends 
the elements of list I to the end of list O (without creating a new list object).

The array<T> type generator also inherits the Collection operations and is similar to 
list. Specific operations for an array object O are O.replace_element_at(I, E), which 
replaces the array element at position I with element E; E = O.remove_element_at(I), 
which retrieves the ith element and replaces it with a NULL value; and  
E = O.retrieve_element_at(I), which simply retrieves the ith element of the array. Any 
of these operations can raise the exception InvalidIndex if I is greater than the array’s 
size. The operation O.resize(N) changes the number of array elements to N.
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The last type of collection objects are of type dictionary<K,V>. This allows the cre-
ation of a collection of association pairs <K,V>, where all K (key) values are unique. 
Making the key values unique allows for associative retrieval of a particular pair 
given its key value (similar to an index). If O is a collection object of type 
dictionary<K,V>, then O.bind(K,V) binds value V to the key K as an association 
<K,V> in the collection, whereas O.unbind(K) removes the association with key K 
from O, and V = O.lookup(K) returns the value V associated with key K in O. The 
latter two operations can raise the exception KeyNotFound. Finally, O.contains_key(K) 
returns true if key K exists in O, and returns false otherwise.

Figure 12.6 is a diagram that illustrates the inheritance hierarchy of the built-in 
constructs of the object model. Operations are inherited from the supertype to the 
subtype. The collection interfaces described above are not directly instantiable; that 
is, one cannot directly create objects based on these interfaces. Rather, the inter-
faces can be used to generate user-defined collection types—of type set, bag, list, 
array, or dictionary—for a particular database application. If an attribute or class has 
a collection type, say a set, then it will inherit the operations of the set interface. For 
example, in a UNIVERSITY database application, the user can specify a type for 
set<STUDENT>, whose state would be sets of STUDENT objects. The programmer 
can then use the operations for set<T> to manipulate an object of type 
set<STUDENT>. Creating application classes is typically done by utilizing the object 
definition language ODL (see Section 12.3.6).

It is important to note that all objects in a particular collection must be of the same 
type. Hence, although the keyword any appears in the specifications of collection 
interfaces in Figure 12.5(c), this does not mean that objects of any type can be inter-
mixed within the same collection. Rather, it means that any type can be used when 
specifying the type of elements for a particular collection (including other collec-
tion types!).

12.3.4 Atomic (User-Defined) Objects
The previous section described the built-in collection types of the object model. 
Now we discuss how object types for atomic objects can be constructed. These are 

Collection

Object

Iterator Date IntervalTime

set list bag dictionary

Timestamp

array

Figure 12.6 
Inheritance hierarchy for the built-in 
interfaces of the object model.
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specified using the keyword class in ODL. In the object model, any user-defined 
object that is not a collection object is called an atomic object.27

For example, in a UNIVERSITY database application, the user can specify an object 
type (class) for STUDENT objects. Most such objects will be structured objects; for 
example, a STUDENT object will have a complex structure, with many attributes, 
relationships, and operations, but it is still considered atomic because it is not a 
collection. Such a user-defined atomic object type is defined as a class by specify-
ing its properties and operations. The properties define the state of the object and 
are further distinguished into attributes and relationships. In this subsection, we 
elaborate on the three types of components—attributes, relationships, and 
 operations—that a user-defined object type for atomic (structured) objects can 
include. We illustrate our discussion with the two classes EMPLOYEE and DEPARTMENT 
shown in Figure 12.7.

An attribute is a property that describes some aspect of an object. Attributes have 
values (which are typically literals having a simple or complex structure) that are 
stored within the object. However, attribute values can also be Object_ids of other 
objects. Attribute values can even be specified via methods that are used to calculate 
the attribute value. In Figure 12.728 the attributes for EMPLOYEE are Name, Ssn, 
Birth_date, Sex, and Age, and those for DEPARTMENT are Dname, Dnumber, Mgr,  
Locations, and Projs. The Mgr and Projs attributes of DEPARTMENT have complex 
structure and are defined via struct, which corresponds to the tuple constructor of 
Section 12.1.3. Hence, the value of Mgr in each DEPARTMENT object will have two 
components: Manager, whose value is an Object_id that references the EMPLOYEE 
object that manages the DEPARTMENT, and Start_date, whose value is a date. The 
locations attribute of DEPARTMENT is defined via the set constructor, since each 
DEPARTMENT object can have a set of locations.

A relationship is a property that specifies that two objects in the database are related. 
In the object model of ODMG, only binary relationships (see Section 3.4) are 
explicitly represented, and each binary relationship is represented by a pair of 
inverse references specified via the keyword relationship. In Figure 12.7, one rela-
tionship exists that relates each EMPLOYEE to the DEPARTMENT in which he or she 
works—the Works_for relationship of EMPLOYEE. In the inverse direction, each 
DEPARTMENT is related to the set of EMPLOYEES that work in the DEPARTMENT—
the Has_emps relationship of DEPARTMENT. The keyword inverse specifies that 
these two properties define a single conceptual relationship in inverse directions.29

By specifying inverses, the database system can maintain the referential integrity of 
the relationship automatically. That is, if the value of Works_for for a particular 

27As mentioned earlier, this definition of atomic object in the ODMG object model is different from the 
definition of atom constructor given in Section 12.1.3, which is the definition used in much of the object-
oriented database literature.
28We are using the Object Definition Language (ODL) notation in Figure 12.7, which will be discussed in 
more detail in Section 12.3.6.
29Section 7.4 discusses how a relationship can be represented by two attributes in inverse directions.
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EMPLOYEE E refers to DEPARTMENT D, then the value of Has_emps for DEPARTMENT 
D must include a reference to E in its set of EMPLOYEE references. If the database 
designer desires to have a relationship to be represented in only one direction, then 
it has to be modeled as an attribute (or operation). An example is the Manager com-
ponent of the Mgr attribute in DEPARTMENT.

In addition to attributes and relationships, the designer can include operations in 
object type (class) specifications. Each object type can have a number of operation 
signatures, which specify the operation name, its argument types, and its returned 
value, if applicable. Operation names are unique within each object type, but they 
can be overloaded by having the same operation name appear in distinct object 
types. The operation signature can also specify the names of exceptions that  
can occur during operation execution. The implementation of the operation  
will include the code to raise these exceptions. In Figure 12.7 the EMPLOYEE class 

class EMPLOYEE
( extent ALL_EMPLOYEES
 key Ssn )
{
 attribute string Name;
 attribute string Ssn;
 attribute date Birth_date;
 attribute enum Gender{M, F} Sex;
 attribute short Age;
 relationship DEPARTMENT Works_for
   inverse DEPARTMENT::Has_emps;
 void reassign_emp(in string New_dname)
   raises(dname_not_valid);
};
class DEPARTMENT
( extent ALL_DEPARTMENTS
 key Dname, Dnumber )
{
 attribute string Dname;
 attribute short Dnumber;
 attribute struct Dept_mgr {EMPLOYEE Manager, date Start_date}
   Mgr;
 attribute set<string> Locations;
 attribute struct Projs {string Proj_name, time Weekly_hours)
   Projs;
 relationship set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;
 void add_emp(in string New_ename) raises(ename_not_valid);
 void change_manager(in string New_mgr_name; in date
   Start_date);
};

Figure 12.7 
The attributes, relationships, 
and operations in a class 
definition.
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has one operation: reassign_emp, and the DEPARTMENT class has two operations: 
add_emp and change_manager.

12.3.5 Extents, Keys, and Factory Objects
In the ODMG object model, the database designer can declare an extent (using the 
keyword extent) for any object type that is defined via a class declaration. The extent 
is given a name, and it will contain all persistent objects of that class. Hence, the 
extent behaves as a set object that holds all persistent objects of the class. In Fig- 
ure 12.7 the EMPLOYEE and DEPARTMENT classes have extents called ALL_EMPLOYEES 
and ALL_DEPARTMENTS, respectively. This is similar to creating two objects—one 
of type set<EMPLOYEE> and the second of type set<DEPARTMENT>—and making 
them persistent by naming them ALL_EMPLOYEES and ALL_DEPARTMENTS. Extents 
are also used to automatically enforce the set/subset relationship between the 
extents of a supertype and its subtype. If two classes A and B have extents ALL_A and 
ALL_B, and class B is a subtype of class A (that is, class B extends class A), then the 
collection of objects in ALL_B must be a subset of those in ALL_A at any point. This 
constraint is automatically enforced by the database system.

A class with an extent can have one or more keys. A key consists of one or more 
properties (attributes or relationships) whose values are constrained to be unique 
for each object in the extent. For example, in Figure 12.7 the EMPLOYEE class has 
the Ssn attribute as key (each EMPLOYEE object in the extent must have a unique 
Ssn value), and the DEPARTMENT class has two distinct keys: Dname and Dnumber 
(each DEPARTMENT must have a unique Dname and a unique Dnumber). For a 
composite key30 that is made of several properties, the properties that form the 
key are contained in parentheses. For example, if a class VEHICLE with an extent 
ALL_VEHICLES has a key made up of a combination of two attributes State and 
License_number, they would be placed in parentheses as (State, License_number) in 
the key declaration.

Next, we present the concept of factory object—an object that can be used to gen-
erate or create individual objects via its operations. Some of the interfaces of factory 
objects that are part of the ODMG object model are shown in Figure 12.8. The 
interface ObjectFactory has a single operation, new(), which returns a new object 
with an Object_id. By inheriting this interface, users can create their own factory 
interfaces for each user-defined (atomic) object type, and the programmer can 
implement the operation new differently for each type of object. Figure 12.8 also 
shows a DateFactory interface, which has additional operations for creating a new 
calendar_date and for creating an object whose value is the current_date, among other 
operations (not shown in Figure 12.8). As we can see, a factory object basically pro-
vides the constructor operations for new objects.

Finally, we discuss the concept of a database. Because an ODB system can create 
many different databases, each with its own schema, the ODMG object model has 

30A composite key is called a compound key in the ODMG report.
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interface ObjectFactory {
 Object new();
};

interface SetFactory : ObjectFactory {
 Set new_of_size(in long size);
};

interface ListFactory : ObjectFactory {
 List new_of_size(in long size);
};

interface ArrayFactory : ObjectFactory {
 Array new_of_size(in long size);
};

interface DictionaryFactory : ObjectFactory {
 Dictionary new_of_size(in long size);
};

interface DateFactory : ObjectFactory {
 exception InvalidDate{};
 …
 Date calendar_date( in unsigned short year,
    in unsigned short month,
    in unsigned short day )
  raises(InvalidDate);
 …
 Date current();
};

interface DatabaseFactory {
 Database new();
};

interface Database {
 …
 void open(in string database_name)
   raises(DatabaseNotFound, DatabaseOpen);
 void close() raises(DatabaseClosed, …);
 void bind(in Object an_object, in string name)
   raises(DatabaseClosed, ObjectNameNotUnique, …);
 Object unbind(in string name)
   raises(DatabaseClosed, ObjectNameNotFound, …);
 Object Iookup(in string object_name)
   raises(DatabaseClosed, ObjectNameNotFound, …);
 … };

Figure 12.8 
Interfaces to illustrate factory 
objects and database objects.
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interfaces for DatabaseFactory and Database objects, as shown in Figure 12.8. Each 
database has its own database name, and the bind operation can be used to assign 
individual unique names to persistent objects in a particular database. The lookup 
operation returns an object from the database that has the specified persistent 
object_name, and the unbind operation removes the name of a persistent named 
object from the database.

12.3.6 The Object Definition Language ODL
After our overview of the ODMG object model in the previous section, we now 
show how these concepts can be utilized to create an object database schema using 
the object definition language ODL.31

The ODL is designed to support the semantic constructs of the ODMG object 
model and is independent of any particular programming language. Its main use is 
to create object specifications—that is, classes and interfaces. Hence, ODL is not a 
programming language. A user can specify a database schema in ODL indepen-
dently of any programming language, and then use the specific language bindings 
to specify how ODL constructs can be mapped to constructs in specific program-
ming languages, such as C++, Smalltalk, and Java. We will give an overview of the 
C++ binding in Section 12.6.

Figure 12.9(b) shows a possible object schema for part of the UNIVERSITY data-
base, which was presented in Chapter 4. We will describe the concepts of ODL 
using this example, and the one in Figure 12.11. The graphical notation for Fig-
ure 12.9(b) is shown in Figure 12.9(a) and can be considered as a variation of EER 
diagrams (see Chapter 4) with the added concept of interface inheritance but 
without several EER concepts, such as categories (union types) and attributes of 
relationships.

Figure 12.10 shows one possible set of ODL class definitions for the UNIVERSITY 
database. In general, there may be several possible mappings from an object schema 
diagram (or EER schema diagram) into ODL classes. We will discuss these options 
further in Section 12.4.

Figure 12.10 shows the straightforward way of mapping part of the UNIVERSITY 
database from Chapter 4. Entity types are mapped into ODL classes, and inher-
itance is done using extends. However, there is no direct way to map categories 
(union types) or to do multiple inheritance. In Figure 12.10 the classes  
PERSON, FACULTY, STUDENT, and GRAD_STUDENT have the extents PERSONS, 
FACULTY, STUDENTS, and GRAD_STUDENTS, respectively. Both FACULTY and 
STUDENT extends PERSON and GRAD_STUDENT extends STUDENT. Hence, the 
collection of STUDENTS (and the collection of FACULTY) will be constrained to 
be a subset of the collection of PERSONs at any time. Similarly, the collection of 

31The ODL syntax and data types are meant to be compatible with the Interface Definition language 
(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships and 
other database concepts.
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Figure 12.9 
An example of a database schema.  
(a) Graphical notation for representing ODL 
schemas. (b) A graphical object database 
schema for part of the UNIVERSITY  
database (GRADE and DEGREE classes 
are not shown).

GRAD_STUDENTs will be a subset of STUDENTs. At the same time, individual 
STUDENT and FACULTY objects will inherit the properties (attributes and rela-
tionships) and operations of PERSON, and individual GRAD_STUDENT objects 
will inherit those of STUDENT.

The classes DEPARTMENT, COURSE, SECTION, and CURR_SECTION in Figure 12.10 
are straightforward mappings of the corresponding entity types in Figure 12.9(b). 
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class PERSON
( extent PERSONS
 key Ssn )
{ attribute struct Pname { string Fname,
    string Mname,
    string Lname } Name;
 attribute string   Ssn;
 attribute date    Birth_date;
 attribute enum Gender{M, F}   Sex;
 attribute struct Address { short No,
    string Street,
    short Apt_no,
    string City,
    string State,
    short Zip } Address;
 short Age(); };
class FACULTY extends PERSON
( extent FACULTY )
{ attribute string Rank;
 attribute float  Salary;
 attribute string Office;
 attribute string Phone;
 relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;
 relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;
 relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;
 void give_raise(in float raise);
 void promote(in string new rank); };
class GRADE
( extent GRADES )
{
 attribute enum GradeValues{A,B,C,D,F,l, P} Grade;
 relationship SECTION Section inverse SECTION::Students;
 relationship STUDENT Student inverse STUDENT::Completed_sections; };
class STUDENT extends PERSON
( extent STUDENTS )
{ attribute string Class;
 attribute Department Minors_in;
 relationship Department Majors_in inverse DEPARTMENT::Has_majors;
 relationship set<GRADE> Completed_sections inverse GRADE::Student;
 relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;
 void change_major(in string dname) raises(dname_not_valid);
 float gpa();
 void register(in short secno) raises(section_not_valid);
 void assign_grade(in short secno; IN GradeValue grade)
   raises(section_not_valid,grade_not_valid); };

Figure 12.10 
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).
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class DEGREE
{ attribute string College;
 attribute string Degree; 
 attribute string Year; };
class GRAD_STUDENT extends STUDENT
( extent GRAD_STUDENTS )
{ attribute set<Degree> Degrees;
 relationship Faculty advisor inverse FACULTY::Advises;
 relationship set<FACULTY> Committee inverse FACULTY::On_committee_of;
 void assign_advisor(in string Lname; in string Fname)
   raises(facuIty_not_valid);
 void assign_committee_member(in string Lname; in string Fname)
   raises(facuIty_not_valid); };
class DEPARTMENT
( extent DEPARTMENTS
 key Dname )
{ attribute string Dname;
 attribute string Dphone;
 attribute string Doffice;
 attribute string College;
 attribute FACULTY Chair;
 relationship set<FACULTY> Has_faculty inverse FACULTY::Works_in;
 relationship set<STUDENT> Has_majors inverse STUDENT::Majors_in;
 relationship set<COURSE> Offers inverse COURSE::Offered_by; };
class COURSE
( extent COURSES
 key Cno )
{ attribute string Cname;
 attribute string Cno;
 attribute string Description;
 relationship set<SECTION> Has_sections inverse SECTION::Of_course;
 relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };
class SECTION
( extent SECTIONS )
{ attribute short Sec_no; 
 attribute string  Year;
 attribute enum Quarter{Fall, Winter, Spring, Summer}
   Qtr;
 relationship set<Grade> Students inverse Grade::Section;
 relationship COURSE Of_course inverse COURSE::Has_sections; };
class CURR_SECTION extends SECTION
( extent CURRENT_SECTIONS )
{ relationship set<STUDENT> Registered_students
   inverse STUDENT::Registered_in
 void register_student(in string Ssn)
   raises(student_not_valid, section_full); };

Figure 12.10 (continued)
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).
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However, the class GRADE requires some explanation. The GRADE class corre-
sponds to the M:N relationship between STUDENT and SECTION in Figure 12.9(b). 
The reason it was made into a separate class (rather than as a pair of inverse rela-
tionships) is because it includes the relationship attribute Grade.32

Hence, the M:N relationship is mapped to the class GRADE, and a pair of 1:N rela-
tionships, one between STUDENT and GRADE and the other between SECTION and 

32We will discuss alternative mappings for attributes of relationships in Section 12.4.

TRIANGLE

GeometryObject

CIRCLERECTANGLE . . . 

Figure 12.11 
An illustration of  
interface inheritance 
via “:”. (a) Graphical 
schema representation,  
(b) Corresponding 
interface and class 
definitions in ODL.

(b) interface GeometryObject
 { attribute enum Shape{RECTANGLE, TRIANGLE, CIRCLE, … } 
     Shape;
  attribute struct Point {short x, short y} Reference_point;
  float perimeter();
  float area();
  void translate(in short x_translation; in short y_translation);
  void rotate(in float angle_of_rotation); };
 class RECTANGLE : GeometryObject
 ( extent RECTANGLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Length;
  attribute short Height;
  attribute float Orientation_angle; };
 class TRIANGLE : GeometryObject
 ( extent TRIANGLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Side_1;
  attribute short Side_2;
  attribute float Side1_side2_angle;
  attribute float Side1_orientation_angle; };
 class CIRCLE : GeometryObject
 ( extent CIRCLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Radius; };
 …

(a)
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GRADE.33 These relationships are represented by the following relationship proper-
ties: Completed_sections of STUDENT; Section and Student of GRADE; and Students of 
SECTION (see Figure 12.10). Finally, the class DEGREE is used to represent the com-
posite, multivalued attribute degrees of GRAD_STUDENT (see Figure 8.10).

Because the previous example does not include any interfaces, only classes, we now 
utilize a different example to illustrate interfaces and interface (behavior) inheri-
tance. Figure 12.11(a) is part of a database schema for storing geometric objects. An 
interface GeometryObject is specified, with operations to calculate the perimeter and 
area of a geometric object, plus operations to translate (move) and rotate an object. 
Several classes (RECTANGLE, TRIANGLE, CIRCLE, …) inherit the GeometryObject 
interface. Since GeometryObject is an interface, it is noninstantiable—that is, no 
objects can be created based on this interface directly. However, objects of type 
RECTANGLE, TRIANGLE, CIRCLE, … can be created, and these objects inherit all the 
operations of the GeometryObject interface. Note that with interface inheritance, 
only operations are inherited, not properties (attributes, relationships). Hence, if a 
property is needed in the inheriting class, it must be repeated in the class defini-
tion, as with the Reference_point attribute in Figure 12.11(b). Notice that the inher-
ited operations can have different implementations in each class. For example, the 
implementations of the area and perimeter operations may be different for 
RECTANGLE, TRIANGLE, and CIRCLE.

Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of 
interfaces by another interface. However, with extends (class) inheritance, multiple 
inheritance is not permitted. Hence, a class can inherit via extends from at most one 
class (in addition to inheriting from zero or more interfaces).

12.4 Object Database Conceptual Design
Section 12.4.1 discusses how object database (ODB) design differs from relational 
database (RDB) design. Section 12.4.2 outlines a mapping algorithm that can be 
used to create an ODB schema, made of ODMG ODL class definitions, from a con-
ceptual EER schema.

12.4.1 Differences between Conceptual Design  
of ODB and RDB
One of the main differences between ODB and RDB design is how relationships are 
handled. In ODB, relationships are typically handled by having relationship prop-
erties or reference attributes that include OID(s) of the related objects. These can be 
considered as OID references to the related objects. Both single references and col-
lections of references are allowed. References for a binary relationship can be 

33This is similar to how an M:N relationship is mapped in the relational model (see Section 9.1) and in 
the legacy network model (see Appendix E).
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declared in a single direction, or in both directions, depending on the types of 
access expected. If declared in both directions, they may be specified as inverses of 
one another, thus enforcing the ODB equivalent of the relational referential integ-
rity constraint.

In RDB, relationships among tuples (records) are specified by attributes with 
matching values. These can be considered as value references and are specified via 
foreign keys, which are values of primary key attributes repeated in tuples of the 
referencing relation. These are limited to being single-valued in each record because 
multivalued attributes are not permitted in the basic relational model. Thus, M:N 
relationships must be represented not directly, but as a separate relation (table), as 
discussed in Section 9.1.

Mapping binary relationships that contain attributes is not straightforward in 
ODBs, since the designer must choose in which direction the attributes should be 
included. If the attributes are included in both directions, then redundancy in stor-
age will exist and may lead to inconsistent data. Hence, it is sometimes preferable to 
use the relational approach of creating a separate table by creating a separate class 
to represent the relationship. This approach can also be used for n-ary relation-
ships, with degree n > 2.

Another major area of difference between ODB and RDB design is how inheritance 
is handled. In ODB, these structures are built into the model, so the mapping is 
achieved by using the inheritance constructs, such as derived (:) and extends. In 
relational design, as we discussed in Section 9.2, there are several options to choose 
from since no built-in construct exists for inheritance in the basic relational model. 
It is important to note, though, that object-relational and extended-relational sys-
tems are adding features to model these constructs directly as well as to include 
operation specifications in abstract data types (see Section 12.2).

The third major difference is that in ODB design, it is necessary to specify the oper-
ations early on in the design since they are part of the class specifications. Although 
it is important to specify operations during the design phase for all types of data-
bases, the design of operations may be delayed in RDB design as it is not strictly 
required until the implementation phase.

There is a philosophical difference between the relational model and the object 
model of data in terms of behavioral specification. The relational model does not 
mandate the database designers to predefine a set of valid behaviors or operations, 
whereas this is a tacit requirement in the object model. One of the claimed advan-
tages of the relational model is the support of ad hoc queries and transactions, 
whereas these are against the principle of encapsulation.

In practice, it is becoming commonplace to have database design teams apply 
object-based methodologies at early stages of conceptual design so that both the 
structure and the use or operations of the data are considered, and a complete spec-
ification is developed during conceptual design. These specifications are then 
mapped into relational schemas, constraints, and behavioral artifacts such as trig-
gers or stored procedures (see Sections 5.2 and 13.4).
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12.4.2 Mapping an EER Schema to an ODB Schema
It is relatively straightforward to design the type declarations of object classes 
for an ODBMS from an EER schema that contains neither categories nor n-ary 
relationships with n > 2. However, the operations of classes are not specified in 
the EER diagram and must be added to the class declarations after the struc-
tural mapping is completed. The outline of the mapping from EER to ODL is 
as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the 
ODL class should include all the attributes of the EER class.34 Multivalued attributes 
are typically declared by using the set, bag, or list constructors.35 If the values of the 
multivalued attribute for an object should be ordered, the list constructor is chosen; 
if duplicates are allowed, the bag constructor should be chosen; otherwise, the set 
constructor is chosen. Composite attributes are mapped into a tuple constructor (by 
using a struct declaration in ODL).

Declare an extent for each class, and specify any key attributes as keys of the extent.

Step 2. Add relationship properties or reference attributes for each binary relation-
ship into the ODL classes that participate in the relationship. These may be created 
in one or both directions. If a binary relationship is represented by references in both 
directions, declare the references to be relationship properties that are inverses of 
one another, if such a facility exists.36 If a binary relationship is represented by a 
reference in only one direction, declare the reference to be an attribute in the refer-
encing class whose type is the referenced class name.

Depending on the cardinality ratio of the binary relationship, the relationship 
properties or reference attributes may be single-valued or collection types. They 
will be single-valued for binary relationships in the 1:1 or N:1 directions; they will 
be collection types (set-valued or list-valued37) for relationships in the 1:N or 
M:N direction. An alternative way to map binary M:N relationships is discussed in 
step 7.

If relationship attributes exist, a tuple constructor (struct) can be used to create a 
structure of the form <reference, relationship attributes>, which may be included 
instead of the reference attribute. However, this does not allow the use of the inverse 
constraint. Additionally, if this choice is represented in both directions, the attribute 
values will be represented twice, creating redundancy.

34This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tuple 
constructor is not explicitly shown in the ODL class declarations.
35Further analysis of the application domain is needed to decide which constructor to use because this 
information is not available from the EER schema.
36The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS products 
may not provide this support; in such cases, programmers must maintain every relationship explicitly by 
coding the methods that update the objects appropriately.
37The decision whether to use set or list is not available from the EER schema and must be determined 
from the requirements.
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Step 3. Include appropriate operations for each class. These are not available from 
the EER schema and must be added to the database design by referring to the origi-
nal requirements. A constructor method should include program code that checks 
any constraints that must hold when a new object is created. A destructor method 
should check any constraints that may be violated when an object is deleted. Other 
methods should include any further constraint checks that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via 
extends) the attributes, relationships, and methods of its superclass in the ODL 
schema. Its specific (local) attributes, relationship references, and operations are 
specified, as discussed in steps 1, 2, and 3.

Step 5. Weak entity types can be mapped in the same way as regular entity types. 
An alternative mapping is possible for weak entity types that do not participate in 
any relationships except their identifying relationship; these can be mapped as 
though they were composite multivalued attributes of the owner entity type, by using 
the set<struct<…>> or list<struct<…>> constructors. The attributes of the weak entity 
are included in the struct<…> construct, which corresponds to a tuple constructor. 
Attributes are mapped as discussed in steps 1 and 2.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is 
possible to create a mapping similar to the EER-to-relational mapping (see Sec- 
tion 9.2) by declaring a class to represent the category and defining 1:1 relationships 
between the category and each of its superclasses.

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class, 
with appropriate references to each participating class. These references are based on 
mapping a 1:N relationship from each class that represents a participating entity 
type to the class that represents the n-ary relationship. An M:N binary relationship, 
especially if it contains relationship attributes, may also use this mapping option, 
if desired.

The mapping has been applied to a subset of the UNIVERSITY database schema in 
Figure 4.10 in the context of the ODMG object database standard. The mapped 
object schema using the ODL notation is shown in Figure 12.10.

12.5 The Object Query Language OQL
The object query language OQL is the query language proposed for the ODMG 
object model. It is designed to work closely with the programming languages for 
which an ODMG binding is defined, such as C++, Smalltalk, and Java. Hence, an 
OQL query embedded into one of these programming languages can return objects 
that match the type system of that language. Additionally, the implementations of 
class operations in an ODMG schema can have their code written in these pro-
gramming languages. The OQL syntax for queries is similar to the syntax of the 
relational standard query language SQL, with additional features for ODMG con-
cepts, such as object identity, complex objects, operations, inheritance, polymor-
phism, and relationships.
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In Section 12.5.1 we will discuss the syntax of simple OQL queries and the concept 
of using named objects or extents as database entry points. Then, in Section 12.5.2 
we will discuss the structure of query results and the use of path expressions to tra-
verse relationships among objects. Other OQL features for handling object identity, 
inheritance, polymorphism, and other object-oriented concepts are discussed in 
Section 12.5.3. The examples to illustrate OQL queries are based on the UNIVERSITY 
database schema given in Figure 12.10.

12.5.1  Simple OQL Queries, Database Entry Points,  
and Iterator Variables

The basic OQL syntax is a select … from … where … structure, as it is for SQL. For 
example, the query to retrieve the names of all departments in the college of  
‘Engineering’ can be written as follows:

Q0: select D.Dname
 from D in DEPARTMENTS
 where D.College = ‘Engineering’;

In general, an entry point to the database is needed for each query, which can be 
any named persistent object. For many queries, the entry point is the name of the 
extent of a class. Recall that the extent name is considered to be the name of a persis-
tent object whose type is a collection (in most cases, a set) of objects from the class. 
Looking at the extent names in Figure 12.10, the named object DEPARTMENTS is of 
type set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY is of type 
set<FACULTY>; and so on.

The use of an extent name—DEPARTMENTS in Q0—as an entry point refers to a 
persistent collection of objects. Whenever a collection is referenced in an OQL 
query, we should define an iterator variable38—D in Q0—that ranges over each 
object in the collection. In many cases, as in Q0, the query will select certain objects 
from the collection, based on the conditions specified in the where clause. In Q0, 
only persistent objects D in the collection of DEPARTMENTS that satisfy the condi-
tion D.College = ‘Engineering’ are selected for the query result. For each selected 
object D, the value of D.Dname is retrieved in the query result. Hence, the type of the 
result for Q0 is bag<string> because the type of each Dname value is string (even 
though the actual result is a set because Dname is a key attribute). In general, the 
result of a query would be of type bag for select … from … and of type set for select 
distinct … from … , as in SQL (adding the keyword distinct eliminates duplicates).

Using the example in Q0, there are three syntactic options for specifying iterator 
variables:

D in DEPARTMENTS
DEPARTMENTS D
DEPARTMENTS AS D

38This is similar to the tuple variables that range over tuples in SQL queries.
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We will use the first construct in our examples.39

The named objects used as database entry points for OQL queries are not limited to 
the names of extents. Any named persistent object, whether it refers to an atomic 
(single) object or to a collection object, can be used as a database entry point.

12.5.2 Query Results and Path Expressions
In general, the result of a query can be of any type that can be expressed in the 
ODMG object model. A query does not have to follow the select … from … where … 
structure; in the simplest case, any persistent name on its own is a query, whose 
result is a reference to that persistent object. For example, the query

Q1: DEPARTMENTS;

returns a reference to the collection of all persistent DEPARTMENT objects, whose 
type is set<DEPARTMENT>. Similarly, suppose we had given (via the database bind 
operation, see Figure 12.8) a persistent name CS_DEPARTMENT to a single 
DEPARTMENT object (the Computer Science department); then, the query

Q1A: CS_DEPARTMENT;

returns a reference to that individual object of type DEPARTMENT. Once an entry point 
is specified, the concept of a path expression can be used to specify a path to related 
attributes and objects. A path expression typically starts at a persistent object name, or at 
the iterator variable that ranges over individual objects in a collection. This name will 
be followed by zero or more relationship names or attribute names connected using 
the dot notation. For example, referring to the UNIVERSITY database in Figure 12.10, 
the following are examples of path expressions, which are also valid queries in OQL:

Q2: CS_DEPARTMENT.Chair;
Q2A: CS_DEPARTMENT.Chair.Rank;
Q2B: CS_DEPARTMENT.Has_faculty;

The first expression Q2 returns an object of type FACULTY, because that is the type 
of the attribute Chair of the DEPARTMENT class. This will be a reference to the  
FACULTY object that is related to the DEPARTMENT object whose persistent name is 
CS_DEPARTMENT via the attribute Chair; that is, a reference to the FACULTY object 
who is chairperson of the Computer Science department. The second expression 
Q2A is similar, except that it returns the Rank of this FACULTY object (the Computer 
Science chair) rather than the object reference; hence, the type returned by Q2A is 
string, which is the data type for the Rank attribute of the FACULTY class.

Path expressions Q2 and Q2A return single values, because the attributes Chair (of 
DEPARTMENT) and Rank (of FACULTY) are both single-valued and they are applied to 
a single object. The third expression, Q2B, is different; it returns an object of type 
set<FACULTY> even when applied to a single object, because that is the type of the 
relationship Has_faculty of the DEPARTMENT class. The collection returned will include 

39Note that the latter two options are similar to the syntax for specifying tuple variables in SQL queries.
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a set of references to all FACULTY objects that are related to the DEPARTMENT object 
whose persistent name is CS_DEPARTMENT via the relationship Has_faculty; that is, a 
set of references to all FACULTY objects who are working in the Computer Science 
department. Now, to return the ranks of Computer Science faculty, we cannot write

Q3′: CS_DEPARTMENT.Has_faculty.Rank;

because it is not clear whether the object returned would be of type set<string> or 
bag<string> (the latter being more likely, since multiple faculty may share the same 
rank). Because of this type of ambiguity problem, OQL does not allow expressions 
such as Q3′. Rather, one must use an iterator variable over any collections, as in 
Q3A or Q3B below:

Q3A: select F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Q3B: select distinct F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Here, Q3A returns bag<string> (duplicate rank values appear in the result), whereas 
Q3B returns set<string> (duplicates are eliminated via the distinct keyword). Both 
Q3A and Q3B illustrate how an iterator variable can be defined in the from clause to 
range over a restricted collection specified in the query. The variable F in Q3A and 
Q3B ranges over the elements of the collection CS_DEPARTMENT.Has_faculty, which 
is of type set<FACULTY>, and includes only those faculty who are members of the 
Computer Science department.

In general, an OQL query can return a result with a complex structure specified in 
the query itself by utilizing the struct keyword. Consider the following examples:

Q4: CS_DEPARTMENT.Chair.Advises;

Q4A: select struct ( name: struct ( last_name: S.name.Lname, first_name: 
S.name.Fname),

     degrees:( select struct ( deg: D.Degree, 
yr: D.Year, 
college: D.College)

        from D in S.Degrees ))
 from S in CS_DEPARTMENT.Chair.Advises;

Here, Q4 is straightforward, returning an object of type set<GRAD_STUDENT> as its 
result; this is the collection of graduate students who are advised by the chair of the 
Computer Science department. Now, suppose that a query is needed to retrieve the 
last and first names of these graduate students, plus the list of previous degrees of 
each. This can be written as in Q4A, where the variable S ranges over the collection 
of graduate students advised by the chairperson, and the variable D ranges over the 
degrees of each such student S. The type of the result of Q4A is a collection of (first-
level) structs where each struct has two components: name and degrees.40

40As mentioned earlier, struct corresponds to the tuple constructor discussed in Section 12.1.3.
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The name component is a further struct made up of last_name and first_name, each 
being a single string. The degrees component is defined by an embedded query and 
is itself a collection of further (second level) structs, each with three string compo-
nents: deg, yr, and college.

Note that OQL is orthogonal with respect to specifying path expressions. That is, 
attributes, relationships, and operation names (methods) can be used interchange-
ably within the path expressions, as long as the type system of OQL is not compro-
mised. For example, one can write the following queries to retrieve the grade point 
average of all senior students majoring in Computer Science, with the result ordered 
by GPA, and within that by last and first name:

Q5A: select struct (  last_name: S.name.Lname, first_name: S.name.Fname, 
gpa: S.gpa )

 from S in CS_DEPARTMENT.Has_majors
 where S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5B: select struct (  last_name: S.name.Lname, first_name: S.name.Fname,  
gpa: S.gpa )

 from  S in STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’ and
  S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5A used the named entry point CS_DEPARTMENT to directly locate the reference 
to the Computer Science department and then locate the students via the relation-
ship Has_majors, whereas Q5B searches the STUDENTS extent to locate all students 
majoring in that department. Notice how attribute names, relationship names, and 
operation (method) names are all used interchangeably (in an orthogonal manner) 
in the path expressions: gpa is an operation; Majors_in and Has_majors are relation-
ships; and Class, Name, Dname, Lname, and Fname are attributes. The implementa-
tion of the gpa operation computes the grade point average and returns its value as 
a float type for each selected STUDENT.

The order by clause is similar to the corresponding SQL construct, and specifies in 
which order the query result is to be displayed. Hence, the collection returned by a 
query with an order by clause is of type list.

12.5.3 Other Features of OQL

Specifying Views as Named Queries. The view mechanism in OQL uses the 
concept of a named query. The define keyword is used to specify an identifier of the 
named query, which must be a unique name among all named objects, class names, 
method names, and function names in the schema. If the identifier has the same 
name as an existing named query, then the new definition replaces the previous 
definition. Once defined, a query definition is persistent until it is redefined or 
deleted. A view can also have parameters (arguments) in its definition.
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For example, the following view V1 defines a named query Has_minors to retrieve 
the set of objects for students minoring in a given department:

V1: define Has_minors(Dept_name) as
 select S
 from S in STUDENTS
 where S.Minors_in.Dname = Dept_name;

Because the ODL schema in Figure 12.10 only provided a unidirectional Minors_in 
attribute for a STUDENT, we can use the above view to represent its inverse without 
having to explicitly define a relationship. This type of view can be used to represent 
inverse relationships that are not expected to be used frequently. The user can now 
utilize the above view to write queries such as

Has_minors(‘Computer Science’);

which would return a bag of students minoring in the Computer Science depart-
ment. Note that in Figure 12.10, we defined Has_majors as an explicit relationship, 
presumably because it is expected to be used more often.

Extracting Single Elements from Singleton Collections. An OQL query will, 
in general, return a collection as its result, such as a bag, set (if distinct is specified), or 
list (if the order by clause is used). If the user requires that a query only return a sin-
gle element, there is an element operator in OQL that is guaranteed to return a  
single element E from a singleton collection C that contains only one element. If C 
contains more than one element or if C is empty, then the element operator raises 
an exception. For example, Q6 returns the single object reference to the Computer 
Science department:

Q6: element ( select D
    from D in DEPARTMENTS
    where D.Dname = ‘Computer Science’ );

Since a department name is unique across all departments, the result should be one 
department. The type of the result is D:DEPARTMENT.

Collection Operators (Aggregate Functions, Quantifiers). Because many 
query expressions specify collections as their result, a number of operators have been 
defined that are applied to such collections. These include aggregate operators as 
well as membership and quantification (universal and existential) over a collection.

The aggregate operators (min, max, count, sum, avg) operate over a collection.41 The 
operator count returns an integer type. The remaining aggregate operators (min, 
max, sum, avg) return the same type as the type of the operand collection. Two 
examples follow. The query Q7 returns the number of students minoring in Com-
puter Science and Q8 returns the average GPA of all seniors majoring in Computer 
Science.

41These correspond to aggregate functions in SQL.
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Q7: count ( S in Has_minors(‘Computer Science’));

Q8: avg ( select S.Gpa
  from S in STUDENTS
  where S.Majors_in.Dname = ‘Computer Science’ and 
   S.Class = ‘Senior’);

Notice that aggregate operations can be applied to any collection of the appropriate 
type and can be used in any part of a query. For example, the query to retrieve all 
department names that have more than 100 majors can be written as in Q9:

Q9: select D.Dname
 from D in DEPARTMENTS
 where count (D.Has_majors) > 100;

The membership and quantification expressions return a Boolean type—that is, true or 
false. Let V be a variable, C a collection expression, B an expression of type Boolean (that 
is, a Boolean condition), and E an element of the type of elements in collection C. Then:

(E in C) returns true if element E is a member of collection C.
(for all V in C : B) returns true if all the elements of collection C satisfy B.
(exists V in C : B) returns true if there is at least one element in C satisfying B.

To illustrate the membership condition, suppose we want to retrieve the names of 
all students who completed the course called ‘Database Systems I’. This can be writ-
ten as in Q10, where the nested query returns the collection of course names that 
each STUDENT S has completed, and the membership condition returns true if 
‘Database Systems I’ is in the collection for a particular STUDENT S:

Q10: select S.name.Lname, S.name.Fname
 from S in STUDENTS
 where ‘Database Systems I’ in
  ( select C.Section.Of_course.Cname
    from C in S.Completed_sections);

Q10 also illustrates a simpler way to specify the select clause of queries that return a 
collection of structs; the type returned by Q10 is bag<struct(string, string)>.

One can also write queries that return true/false results. As an example, let us 
assume that there is a named object called JEREMY of type STUDENT. Then, query 
Q11 answers the following question: Is Jeremy a Computer Science minor? Similarly, 
Q12 answers the question Are all Computer Science graduate students advised by 
Computer Science faculty? Both Q11 and Q12 return true or false, which are inter-
preted as yes or no answers to the above questions:

Q11: JEREMY in Has_minors(‘Computer Science’);

Q12: for all G in
  ( select S
    from S in GRAD_STUDENTS
    where S.Majors_in.Dname = ‘Computer Science’ )
  : G.Advisor in CS_DEPARTMENT.Has_faculty;
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Note that query Q12 also illustrates how attribute, relationship, and operation 
inheritance applies to queries. Although S is an iterator that ranges over the extent 
GRAD_STUDENTS, we can write S.Majors_in because the Majors_in relationship is 
inherited by GRAD_STUDENT from STUDENT via extends (see Figure 12.10). Finally, 
to illustrate the exists quantifier, query Q13 answers the following question: Does 
any graduate Computer Science major have a 4.0 GPA? Here, again, the operation 
gpa is inherited by GRAD_STUDENT from STUDENT via extends.

Q13: exists G in
 ( select S
   from S in GRAD_STUDENTS
   where S.Majors_in.Dname = ‘Computer Science’ )
 : G.Gpa = 4;

Ordered (Indexed) Collection Expressions. As we discussed in Section 12.3.3, 
collections that are lists and arrays have additional operations, such as retrieving 
the ith, first, and last elements. Additionally, operations exist for extracting a sub-
collection and concatenating two lists. Hence, query expressions that involve lists 
or arrays can invoke these operations. We will illustrate a few of these operations 
using sample queries. Q14 retrieves the last name of the faculty member who earns 
the highest salary:

Q14: first ( select struct(facname: F.name.Lname, salary: F.Salary)
  from F in FACULTY
  order by salary desc );

Q14 illustrates the use of the first operator on a list collection that contains the sala-
ries of faculty members sorted in descending order by salary. Thus, the first element 
in this sorted list contains the faculty member with the highest salary. This query 
assumes that only one faculty member earns the maximum salary. The next query, 
Q15, retrieves the top three Computer Science majors based on GPA.

Q15: ( select struct(  last_name: S.name.Lname, first_name: S.name.Fname,  
gpa: S.Gpa )

   from S in CS_DEPARTMENT.Has_majors
   order by gpa desc ) [0:2];

The select-from-order-by query returns a list of Computer Science students ordered 
by GPA in descending order. The first element of an ordered collection has an 
index position of 0, so the expression [0:2] returns a list containing the first, second, 
and third elements of the select … from … order by … result.

The Grouping Operator. The group by clause in OQL, although similar to the 
corresponding clause in SQL, provides explicit reference to the collection of objects 
within each group or partition. First we give an example, and then we describe the 
general form of these queries.

Q16 retrieves the number of majors in each department. In this query, the students 
are grouped into the same partition (group) if they have the same major; that is, the 
same value for S.Majors_in.Dname:
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Q16: ( select struct( dept_name, number_of_majors: count (partition) )
   from S in STUDENTS
   group by dept_name: S.Majors_in.Dname;

The result of the grouping specification is of type set<struct(dept_name: string, partition: 
bag<struct(S:STUDENT>)>), which contains a struct for each group (partition) that 
has two components: the grouping attribute value (dept_name) and the bag of the 
STUDENT objects in the group (partition). The select clause returns the grouping 
attribute (name of the department), and a count of the number of elements in each 
partition (that is, the number of students in each department), where partition is the 
keyword used to refer to each partition. The result type of the select clause is 
set<struct(dept_name: string, number_of_majors: integer)>. In general, the syntax for 
the group by clause is

group by F1: E1, F2: E2, … , Fk: Ek

where F1: E1, F2: E2, … , Fk: Ek is a list of partitioning (grouping) attributes and each 
partitioning attribute specification Fi: Ei defines an attribute (field) name Fi and an 
expression Ei. The result of applying the grouping (specified in the group by clause) 
is a set of structures:

set<struct(F1: T1, F2: T2, … , Fk: Tk, partition: bag)>

where Ti is the type returned by the expression Ei, partition is a distinguished field 
name (a keyword), and B is a structure whose fields are the iterator variables (S in 
Q16) declared in the from clause having the appropriate type.

Just as in SQL, a having clause can be used to filter the partitioned sets (that is, select 
only some of the groups based on group conditions). In Q17, the previous query is 
modified to illustrate the having clause (and also shows the simplified syntax for the 
select clause). Q17 retrieves for each department having more than 100 majors, the 
average GPA of its majors. The having clause in Q17 selects only those partitions 
(groups) that have more than 100 elements (that is, departments with more than 
100 students).

Q17: select dept_name, avg_gpa: avg ( select P.gpa from P in partition)
 from S in STUDENTS
 group by dept_name: S.Majors_in.Dname
 having count (partition) > 100;

Note that the select clause of Q17 returns the average GPA of the students in the 
partition. The expression

select P.Gpa from P in partition

returns a bag of student GPAs for that partition. The from clause declares an iterator 
variable P over the partition collection, which is of type bag<struct(S: STUDENT)>. 
Then the path expression P.gpa is used to access the GPA of each student in the 
partition.
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12.6  Overview of the C++ Language Binding  
in the ODMG Standard

The C++ language binding specifies how ODL constructs are mapped to C++ con-
structs. This is done via a C++ class library that provides classes and operations 
that implement the ODL constructs. An object manipulation language (OML) is 
needed to specify how database objects are retrieved and manipulated within a 
C++ program, and this is based on the C++ programming language syntax and 
semantics. In addition to the ODL/OML bindings, a set of constructs called physi-
cal pragmas are defined to allow the programmer some control over physical stor-
age issues, such as clustering of objects, utilizing indexes, and memory 
management.

The class library added to C++ for the ODMG standard uses the prefix d_ for 
class declarations that deal with database concepts.42 The goal is that the pro-
grammer should think that only one language is being used, not two separate 
languages. For the programmer to refer to database objects in a program, a class 
D_Ref<T> is defined for each database class T in the schema. Hence, program 
variables of type D_Ref<T> can refer to both persistent and transient objects of 
class T.

In order to utilize the various built-in types in the ODMG object model such as 
collection types, various template classes are specified in the library. For example, 
an abstract class D_Object<T> specifies the operations to be inherited by all objects. 
Similarly, an abstract class D_Collection<T> specifies the operations of collections. 
These classes are not instantiable, but only specify the operations that can be 
inherited by all objects and by collection objects, respectively. A template class is 
specified for each type of collection; these include D_Set<T>, D_List<T>,  
D_Bag<T>, D_Varray<T>, and D_Dictionary<T>, and they correspond to the collection 
types in the object model (see Section 12.3.1). Hence, the programmer can create 
classes of types such as D_Set<D_Ref<STUDENT>> whose instances would be sets 
of references to STUDENT objects, or D_Set<string> whose instances would be sets 
of strings. Additionally, a class d_Iterator corresponds to the Iterator class of the 
object model.

The C++ ODL allows a user to specify the classes of a database schema using  
the constructs of C++ as well as the constructs provided by the object database  
library. For specifying the data types of attributes,43 basic types such as d_Short 
(short integer), d_Ushort (unsigned short integer), d_Long (long integer), and  
d_Float (floating-point number) are provided. In addition to the basic data types, 
several structured literal types are provided to correspond to the structured literal 
types of the ODMG object model. These include d_String, d_Interval, d_Date, d_Time, 
and d_Timestamp (see Figure 12.5(b)).

42Presumably, d_ stands for database classes.
43That is, member variables in object-oriented programming terminology.
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To specify relationships, the keyword rel_ is used within the prefix of type names; 
for example, by writing

d_Rel_Ref<DEPARTMENT, Has_majors> Majors_in;

in the STUDENT class, and

d_Rel_Set<STUDENT, Majors_in> Has_majors;

in the DEPARTMENT class, we are declaring that Majors_in and Has_majors are rela-
tionship properties that are inverses of one another and hence represent a 1:N 
binary relationship between DEPARTMENT and STUDENT.

For the OML, the binding overloads the operation new so that it can be used to 
create either persistent or transient objects. To create persistent objects, one 
must provide the database name and the persistent name of the object. For 
example, by writing

D_Ref<STUDENT> S = new(DB1, ‘John_Smith’) STUDENT;

the programmer creates a named persistent object of type STUDENT in database 
DB1 with persistent name John_Smith. Another operation, delete_object() can be 
used to delete objects. Object modification is done by the operations (methods) 
defined in each class by the programmer.

The C++ binding also allows the creation of extents by using the library class  
d_Extent. For example, by writing

D_Extent<PERSON> ALL_PERSONS(DB1);

the programmer would create a named collection object ALL_PERSONS—whose 
type would be D_Set<PERSON>—in the database DB1 that would hold persistent 
objects of type PERSON. However, key constraints are not supported in the C++ 
binding, and any key checks must be programmed in the class methods.44 Also, 
the C++ binding does not support persistence via reachability; the object must be 
statically declared to be persistent at the time it is created.

12.7 Summary
In this chapter, we started in Section 12.1 with an overview of the concepts utilized 
in object databases, and we discussed how these concepts were derived from gen-
eral object-oriented principles. The main concepts we discussed were: object iden-
tity and identifiers; encapsulation of operations; inheritance; complex structure of 
objects through nesting of type constructors; and how objects are made persistent. 

44We have only provided a brief overview of the C++ binding. For full details, see Cattell et al. (2000), 
Chapter 5.



 12.7 Summary 419

Then, in Section 12.2, we showed how many of these concepts were incorporated 
into the relational model and the SQL standard; we showed that this incorporation 
leads to expanded relational database functionality. These systems have been called 
object-relational databases.

We then discussed the ODMG 3.0 standard for object databases. We started by 
describing the various constructs of the object model in Sction 12.3. The various 
built-in types, such as Object, Collection, Iterator, set, list, and so on, were described by 
their interfaces, which specify the built-in operations of each type. These built-in 
types are the foundation upon which the object definition language (ODL) and 
object query language (OQL) are based. We also described the difference between 
objects, which have an ObjectId, and literals, which are values with no OID. Users 
can declare classes for their application that inherit operations from the appropriate 
built-in interfaces. Two types of properties can be specified in a user-defined class—
attributes and relationships—in addition to the operations that can be applied to 
objects of the class. The ODL allows users to specify both interfaces and classes, and 
permits two different types of inheritance—interface inheritance via “:” and class 
inheritance via extends. A class can have an extent and keys. A description of ODL 
followed, and an example database schema for the UNIVERSITY database was used to 
illustrate the ODL constructs.

Following the description of the ODMG object model, we described a general tech-
nique for designing object database schemas in Section 12.4. We discussed how 
object databases differ from relational databases in three main areas: references to 
represent relationships, inclusion of operations, and inheritance. Finally, we 
showed how to map a conceptual database design in the EER model to the con-
structs of object databases.

In Section 12.5, we presented an overview of the object query language (OQL). The 
OQL follows the concept of orthogonality in constructing queries, meaning that an 
operation can be applied to the result of another operation as long as the type of the 
result is of the correct input type for the operation. The OQL syntax follows many 
of the constructs of SQL but includes additional concepts such as path expressions, 
inheritance, methods, relationships, and collections. Examples of how to use OQL 
over the UNIVERSITY database were given.

Next we gave an overview of the C++ language binding in Section 12.6, which 
extends C++ class declarations with the ODL type constructors but permits seam-
less integration of C++ with the ODBMS.

In 1997 Sun endorsed the ODMG API (Application Program Interface). O2 tech-
nologies was the first corporation to deliver an ODMG-compliant DBMS. Many 
ODBMS vendors, including Object Design (now eXcelon), Gemstone Systems, POET 
Software, and Versant Corporation45, have endorsed the ODMG standard.

45The Versant Object Technology product now belongs to Actian Corporation.
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Review Questions
 12.1. What are the origins of the object-oriented approach?

 12.2. What primary characteristics should an OID possess?

 12.3. Discuss the various type constructors. How are they used to create complex 
object structures?

 12.4. Discuss the concept of encapsulation, and tell how it is used to create abstract 
data types.

 12.5. Explain what the following terms mean in object-oriented database termi-
nology: method, signature, message, collection, extent.

 12.6. What is the relationship between a type and its subtype in a type hierarchy? 
What is the constraint that is enforced on extents corresponding to types in 
the type hierarchy?

 12.7. What is the difference between persistent and transient objects? How is 
persistence handled in typical OO database systems?

 12.8. How do regular inheritance, multiple inheritance, and selective inheritance 
differ?

 12.9. Discuss the concept of polymorphism/operator overloading.

 12.10. Discuss how each of the following features is realized in SQL 2008: object identi-
fier, type inheritance, encapsulation of operations, and complex object structures.

 12.11. In the traditional relational model, creating a table defined both the table 
type (schema or attributes) and the table itself (extension or set of current 
tuples). How can these two concepts be separated in SQL 2008?

 12.12. Describe the rules of inheritance in SQL 2008.

 12.13. What are the differences and similarities between objects and literals in the 
ODMG object model?

 12.14. List the basic operations of the following built-in interfaces of the 
ODMG object model: Object, Collection, Iterator, Set, List, Bag, Array, and 
Dictionary.

 12.15. Describe the built-in structured literals of the ODMG object model and the 
operations of each.

 12.16. What are the differences and similarities of attribute and relationship prop-
erties of a user-defined (atomic) class?

 12.17. What are the differences and similarities of class inhertance via extends and 
interface inheritance via “:” in the ODMG object model?

 12.18. Discuss how persistence is specified in the ODMG object model in the C++ 
binding.
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 12.19. Why are the concepts of extents and keys important in database applica-
tions?

 12.20. Describe the following OQL concepts: database entry points, path expressions, 
iterator variables, named queries (views), aggregate functions, grouping, 
and quantifiers.

 12.21. What is meant by the type orthogonality of OQL?

 12.22. Discuss the general principles behind the C++ binding of the ODMG 
standard.

 12.23. What are the main differences between designing a relational database and 
an object database?

 12.24. Describe the steps of the algorithm for object database design by EER-to-
OO mapping.

Exercises
 12.25. Convert the example of GEOMETRY_OBJECTs given in Section 12.1.5 from 

the functional notation to the notation given in Figure 12.2 that distin-
guishes between attributes and operations. Use the keyword INHERIT to 
show that one class inherits from another class.

 12.26. Compare inheritance in the EER model (see Chapter 4) to inheritance in the 
OO model described in Section 12.1.5.

 12.27. Consider the UNIVERSITY EER schema in Figure 4.10. Think of what opera-
tions are needed for the entity types/classes in the schema. Do not consider 
constructor and destructor operations.

 12.28. Consider the COMPANY ER schema in Figure 3.2. Think of what operations 
are needed for the entity types/classes in the schema. Do not consider con-
structor and destructor operations.

 12.29. Design an OO schema for a database application that you are interested in. 
Construct an EER schema for the application, and then create the corre-
sponding classes in ODL. Specify a number of methods for each class, and 
then specify queries in OQL for your database application.

 12.30. Consider the AIRPORT database described in Exercise 4.21. Specify a num-
ber of operations/methods that you think should be applicable to that appli-
cation. Specify the ODL classes and methods for the database.

 12.31. Map the COMPANY ER schema in Figure 3.2 into ODL classes. Include 
appropriate methods for each class.

 12.32. Specify in OQL the queries in the exercises of Chapters 6 and 7 that apply to 
the COMPANY database.
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Selected Bibliography
Object-oriented database concepts are an amalgam of concepts from OO pro-
gramming languages and from database systems and conceptual data models. A 
number of textbooks describe OO programming languages—for example, 
Stroustrup (1997) for C++, and Goldberg and Robson (1989) for Smalltalk. 
Books by Cattell (1994) and Lausen and Vossen (1997) describe OO database 
concepts. Other books on OO models include a detailed description of the 
experimental OODBMS developed at Microelectronic Computer Corporation 
called ORION and related OO topics by Kim and Lochovsky (1989). Bancilhon 
et al. (1992) describes the story of building the O2 OODBMS with a detailed 
discussion of design decisions and language implementation. Dogac et al. 
(1994) provides a thorough discussion on OO database topics by experts at a 
NATO workshop.

There is a vast bibliography on OO databases, so we can only provide a repre-
sentative sample here. The October 1991 issue of CACM and the December 
1990 issue of ieee Computer describe OO database concepts and systems. Dit-
trich (1986) and Zaniolo et al. (1986) survey the basic concepts of OO data 
models. An early paper on OO database system implementation is Baroody and 
DeWitt (1981). Su et al. (1988) presents an OO data model that was used in 
CAD/CAM applications. Gupta and Horowitz (1992) discusses OO applica-
tions to CAD, Network Management, and other areas. Mitschang (1989) 
extends the relational algebra to cover complex objects. Query languages and 
graphical user interfaces for OO are described in Gyssens et al. (1990), Kim 
(1989), Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), and 
Cruz (1992).

The Object-Oriented Manifesto by Atkinson et al. (1990) is an interesting arti-
cle that reports on the position by a panel of experts regarding the mandatory 
and optional features of OO database management. Polymorphism in databases 
and OO programming languages is discussed in Osborn (1989), Atkinson and 
Buneman (1987), and Danforth and Tomlinson (1988). Object identity is dis-
cussed in Abiteboul and Kanellakis (1989). OO programming languages for 
databases are discussed in Kent (1991). Object constraints are discussed in Del-
cambre et al. (1991) and Elmasri, James, and Kouramajian (1993). Authoriza-
tion and security in OO databases are examined in Rabitti et al. (1991) and 
Bertino (1992).

Cattell et al. (2000) describe the ODMG 3.0 standard, which is described in this 
chapter, and Cattell et al. (1993) and Cattell et al. (1997) describe the earlier 
versions of the standard. Bancilhon and Ferrari (1995) give a tutorial presenta-
tion of the important aspects of the ODMG standard. Several books describe 
the CORBA architecture—for example, Baker (1996).

The O2 system is described in Deux et al. (1991), and Bancilhon et al. (1992) 
includes a list of references to other publications describing various aspects of 
O2. The O2 model was formalized in Velez et al. (1989). The ObjectStore system 
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is described in Lamb et al. (1991). Fishman et al. (1987) and Wilkinson et al. 
(1990) discuss IRIS, an object-oriented DBMS developed at Hewlett-Packard 
Laboratories. Maier et al. (1986) and Butterworth et al. (1991) describe the design 
of GEMSTONE. The ODE system developed at AT&T Bell Labs is described in 
Agrawal and Gehani (1989). The ORION system developed at MCC is described 
in Kim et al. (1990). Morsi et al. (1992) describes an OO testbed.

Cattell (1991) surveys concepts from both relational and object databases and 
discusses several prototypes of object-based and extended relational database sys-
tems. Alagic (1997) points out discrepancies between the ODMG data model and 
its language bindings and proposes some solutions. Bertino and Guerrini (1998) 
propose an extension of the ODMG model for supporting composite objects. 
Alagic (1999) presents several data models belonging to the ODMG family.
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13
XML: Extensible  

Markup Language

Many Internet applications provide Web inter-
faces to access information stored in one or 

more databases. These databases are often referred to as data sources. It is common 
to use the three-tier client/server architectures for Internet applications (see Sec-
tion 2.5). Internet database applications are designed to interact with the user through 
Web interfaces that display Web pages on desktops, laptops, and mobile devices. 
The common method of specifying the contents and formatting of Web pages is 
through the use of hypertext documents. There are various languages for writing 
these documents, the most common being HTML (HyperText Markup Language). 
Although HTML is widely used for formatting and structuring Web documents, it 
is not suitable for specifying structured data that is extracted from databases. A new 
language—namely, XML (Extensible Markup Language)—has emerged as the stan-
dard for structuring and exchanging data over the Web in text files. Another lan-
guage that can be used for the same purpose is JSON (JavaScript Object Notation; 
see Section 11.4). XML can be used to provide information about the structure and 
meaning of the data in the Web pages rather than just specifying how the Web 
pages are formatted for display on the screen. Both XML and JSON documents 
provide descriptive information, such as attribute names, as well as the values of 
these attributes, in a text file; hence, they are known as self-describing documents. 
The formatting aspects of Web pages are specified separately—for example, by 
using a formatting language such as XSL (Extensible Stylesheet Language) or a 
transformation language such as XSLT (Extensible Stylesheet Language for Trans-
formations or simply XSL Transformations). Recently, XML has also been pro-
posed as a possible model for data storage and retrieval, although only a few 
experimental database systems based on XML have been developed so far.

chapter 13
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Basic HTML is useful for generating static Web pages with fixed text and other 
objects, but most e-commerce applications require Web pages that provide interac-
tive features with the user and use the information provided by the user for select-
ing specific data from a database for display. Such Web pages are called dynamic 
Web pages, because the data extracted and displayed each time will be different 
depending on user input. For example, a banking app would get the user’s account 
number, then extract the balance for that user’s account from the database for dis-
play. We discussed how scripting languages, such as PHP, can be used to generate 
dynamic Web pages for applications such as those presented in Chapter 11. XML 
can be used to transfer information in self-describing textual files among various 
programs on different computers when needed by the applications.

In this chapter, we will focus on describing the XML data model and its associated 
languages, and how data extracted from relational databases can be formatted as 
XML documents to be exchanged over the Web. Section 13.1 discusses the differ-
ence among structured, semistructured, and unstructured data. Section 13.2 pres-
ents the XML data model, which is based on tree (hierarchical) structures as 
compared to the flat relational data model structures. In Section 13.3, we focus on 
the structure of XML documents and the languages for specifying the structure of 
these documents, such as DTD (Document Type Definition) and XML Schema. 
Section 13.4 shows the relationship between XML and relational databases. Sec-
tion 13.5 describes some of the languages associated with XML, such as XPath and 
XQuery. Section 13.6 discusses how data extracted from relational databases can be 
formatted as XML documents. In Section 13.7, we discuss the new functions that 
have been incorporated into XML for the purpose of generating XML documents 
from relational databases. Finally, Section 13.8 is the chapter summary.

13.1  Structured, Semistructured,  
and Unstructured Data

The information stored in relational databases is known as structured data because 
it is represented in a strict format. For example, each record in a relational database 
table—such as each of the tables in the COMPANY database in Figure 5.6—follows 
the same format as the other records. For structured data, it is common to carefully 
design the database schema using techniques such as those described in Chapters 3 
and 4 in order to define the database structure. The DBMS then checks to ensure 
that all data follows the structures and constraints specified in the schema.

However, not all data is collected and inserted into carefully designed structured 
databases. In some applications, data is collected in an ad hoc manner before it is 
known how it will be stored and managed. This data may have a certain structure, 
but not all the information collected will have the identical structure. Some attri-
butes may be shared among the various entities, but other attributes may exist only 
in a few entities. Moreover, additional attributes can be introduced in some of the 
newer data items at any time, and there is no predefined schema. This type of data 
is known as semistructured data. A number of data models have been introduced 
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for representing semistructured data, often based on using tree or graph data struc-
tures rather than the flat relational model structures.

A key difference between structured and semistructured data concerns how the 
schema constructs (such as the names of attributes, relationships, and entity types) 
are handled. In semistructured data, the schema information is mixed in with the 
data values, since each data object can have different attributes that are not known 
in advance. Hence, this type of data is sometimes referred to as self-describing 
data. Many of the newer NOSQL systems adopt self-describing storage schemes 
(see Chapter 24). Consider the following example. We want to collect a list of bib-
liographic references related to a certain research project. Some of these may be 
books or technical reports, others may be research articles in journals or conference 
proceedings, and still others may refer to complete journal issues or conference 
proceedings. Clearly, each of these may have different attributes and different types 
of information. Even for the same type of reference—say, conference articles—we 
may have different information. For example, one article citation may be com-
plete, with full information about author names, title, proceedings, page numbers, 
and so on, whereas another citation may not have all the information available. 
New types of bibliographic sources may appear in the future—for instance, references 
to Web pages or to conference tutorials—and these may have new attributes that 
describe them.

One model for displaying semistructured data is a directed graph, as shown in 
Figure 13.1. The information shown in Figure 13.1 corresponds to some of the 
structured data shown in Figure 5.6. As we can see, this model somewhat resem-
bles the object model (see Section 12.1.3) in its ability to represent complex objects 
and nested structures. In Figure 13.1, the labels or tags on the directed edges 
represent the schema names: the names of attributes, object types (or entity types 
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Representing  
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or classes), and relationships. The internal nodes represent individual objects or 
composite attributes. The leaf nodes represent actual data values of simple 
(atomic) attributes.

There are two main differences between the semistructured model and the object 
model that we discussed in Chapter 12:

  1. The schema information—names of attributes, relationships, and classes 
(object types) in the semistructured model—is intermixed with the objects 
and their data values in the same data structure.

  2. In the semistructured model, there is no requirement for a predefined 
schema to which the data objects must conform, although it is possible 
to define a schema if necessary. The object model of Chapter 12 requires 
a schema.

In addition to structured and semistructured data, a third category exists, known as 
unstructured data because there is very limited indication of the type of data. A 
typical example is a text document that contains information embedded within it. 
Web pages in HTML that contain some data are considered to be unstructured 
data. Consider part of an HTML file, shown in Figure 13.2. Text that appears 
between angled brackets, <…>, is an HTML tag. A tag with a slash, </…>, indicates 
an end tag, which represents the ending of the effect of a matching start tag. The 
tags mark up the document1 in order to instruct an HTML processor how to dis-
play the text between a start tag and a matching end tag. Hence, the tags specify 
document formatting rather than the meaning of the various data elements in the 
document. HTML tags specify information, such as font size and style (boldface, 
italics, and so on), color, heading levels in documents, and so on. Some tags provide 
text structuring in documents, such as specifying a numbered or unnumbered list 
or a table. Even these structuring tags specify that the embedded textual data is to be 
displayed in a certain manner rather than indicating the type of data represented in 
the table.

HTML uses a large number of predefined tags, which are used to specify a variety of 
commands for formatting Web documents for display. The start and end tags spec-
ify the range of text to be formatted by each command. A few examples of the tags 
shown in Figure 13.2 follow:

 ■ The <HTML> … </HTML> tags specify the boundaries of the document.

 ■ The document header information—within the <HEAD> … </HEAD> 
tags—specifies various commands that will be used elsewhere in the docu-
ment. For example, it may specify various script functions in a language 
such as JavaScript or PERL, or certain formatting styles (fonts, paragraph 
styles, header styles, and so on) that can be used in the document. It can also 
specify a title to indicate what the HTML file is for, and other similar infor-
mation that will not be displayed as part of the document.

1That is why it is known as HyperText Markup Language.
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<HTML>
 <HEAD>
 …
 </HEAD>
 <BODY>
  <H1>List of company projects and the employees in each project</H1>
  <H2>The ProductX project:</H2>
  <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
   <TR>
    <TD width=“50%”><FONT size=“2” face=“Arial”>John Smith:</FONT></TD>
    <TD>32.5 hours per week</TD>
   </TR>
   <TR>
    <TD width=“50%”><FONT size=“2” face=“Arial”>Joyce English:</FONT></TD>
    <TD>20.0 hours per week</TD>
   </TR>
  </TABLE>
  <H2>The ProductY project:</H2>
  <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
   <TR>
    <TD width=“50%”><FONT size=“2” face=“Arial”>John Smith:</FONT></TD>
    <TD>7.5 hours per week</TD>
   </TR>
   <TR>
    <TD width=“50%”><FONT size=“2” face=“Arial”>Joyce English:</FONT></TD>
    <TD>20.0 hours per week</TD>
   </TR>
   <TR>
    <TD width=“50%”><FONT size=“2” face=“Arial”>Franklin Wong:</FONT></TD>
    <TD>10.0 hours per week</TD>
   </TR>
  </TABLE>
 …
 </BODY>
</HTML>

Figure 13.2 
Part of an HTML document  
representing unstructured data.

 ■ The body of the document—specified within the <BODY> … </BODY> 
tags—includes the document text and the markup tags that specify how the 
text is to be formatted and displayed. It can also include references to other 
objects, such as images, videos, voice messages, and other documents.

 ■ The <H1> … </H1> tags specify that the text is to be displayed as a level 1 
heading. There are many heading levels (<H2>, <H3>, and so on), each 
displaying text in a less prominent heading format.

 ■ The <TABLE> … </TABLE> tags specify that the following text is to be dis-
played as a table. Each table row in the table is enclosed within <TR> … </TR> 
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tags, and the individual table data elements in a row are displayed within 
<TD> … </TD> tags.2

 ■ Some tags may have attributes, which appear within the start tag and 
describe additional properties of the tag.3

In Figure 13.2, the <TABLE> start tag has four attributes describing various charac-
teristics of the table. The following <TD> and <FONT> start tags have one and two 
attributes, respectively.

HTML has a very large number of predefined tags, and whole books are devoted to 
describing how to use these tags. If designed properly, HTML documents can be 
formatted so that humans are able to easily understand the document contents and 
are able to navigate through the resulting Web documents. However, the source 
HTML text documents are very difficult to interpret automatically by computer pro-
grams because they do not include schema information about the type of data in the 
documents. As e-commerce and other Internet applications become increasingly 
automated, it is becoming crucial to be able to exchange Web documents among 
various computer sites and to interpret their contents automatically. This need was 
one of the reasons that led to the development of XML. In addition, an extendible 
version of HTML called XHTML was developed that allows users to extend the tags 
of HTML for different applications and allows an XHTML file to be interpreted by 
standard XML processing programs. Our discussion will focus on XML only.

The example in Figure 13.2 illustrates a static HTML page, since all the information 
to be displayed is explicitly spelled out as fixed text in the HTML file. In many cases, 
some of the information to be displayed may be extracted from a database. For 
example, the project names and the employees working on each project may be 
extracted from the database in Figure 5.6 through the appropriate SQL query. We 
may want to use the same HTML formatting tags for displaying each project and the 
employees who work on it, but we may want to change the particular projects (and 
employees) being displayed. For example, we may want to see a Web page displaying 
the information for ProjectX, and then later a page displaying the information for 
ProjectY. Although both pages are displayed using the same HTML formatting tags, 
the actual data items displayed will be different. Such Web pages are called dynamic, 
since the data parts of the page may be different each time it is displayed, even though 
the display appearance is the same. We discussed in Chapter 11 how scripting lan-
guages, such as PHP, can be used to generate dynamic Web pages.

13.2 XML Hierarchical (Tree) Data Model
We now introduce the data model used in XML. The basic object in XML is the XML 
document. Two main structuring concepts are used to construct an XML document: 
elements and attributes. It is important to note that the term attribute in XML is not 

2<TR> stands for table row and <TD> stands for table data.
3This is how the term attribute is used in document markup languages, which differs from how it is used 
in database models.
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used in the same manner as is customary in database terminology, but rather as it is used 
in document description languages such as HTML and SGML.4 Attributes in XML 
provide additional information that describes elements, as we will see. There are addi-
tional concepts in XML, such as entities, identifiers, and references, but first we concen-
trate on describing elements and attributes to show the essence of the XML model.

Figure 13.3 shows an example of an XML element called <Projects>. As in HTML, 
elements are identified in a document by their start tag and end tag. The tag names 
are enclosed between angled brackets < … >, and end tags are further identified by 
a slash, </ … >.5

Complex elements are constructed from other elements hierarchically, whereas 
simple elements contain data values. A major difference between XML and HTML 
is that XML tag names are defined to describe the meaning of the data elements in 
the document rather than to describe how the text is to be displayed. This makes it 
possible to process the data elements in the XML document automatically by com-
puter programs. Also, the XML tag (element) names can be defined in another doc-
ument, known as the schema document, to give a semantic meaning to the tag 
names that can be exchanged among multiple programs and users. In HTML, all 
tag names are predefined and fixed; that is why they are not extendible.

It is straightforward to see the correspondence between the XML textual representa-
tion shown in Figure 13.3 and the tree structure shown in Figure 13.1. In the tree 
representation, internal nodes represent complex elements, whereas leaf nodes rep-
resent simple elements. That is why the XML model is called a tree model or a  
hierarchical model. In Figure 13.3, the simple elements are the ones with the tag 
names <Name>, <Number>, <Location>, <Dept_no>, <Ssn>, <Last_name>, <First_name>, 
and <Hours>. The complex elements are the ones with the tag names <Projects>,  
<Project>, and <Worker>. In general, there is no limit on the levels of nesting of elements.

It is possible to characterize three main types of XML documents:

 ■ Data-centric XML documents. These documents have many small data 
items that follow a specific structure and hence may be extracted from a 
structured database. They are formatted as XML documents in order to 
exchange them over the Web. These usually follow a predefined schema that 
defines the tag names.

 ■ Document-centric XML documents. These are documents with large 
amounts of text, such as news articles or books. There are few or no struc-
tured data elements in these documents.

 ■ Hybrid XML documents. These documents may have parts that contain 
structured data and other parts that are predominantly textual or unstruc-
tured. They may or may not have a predefined schema.

4SGML (Standard Generalized Markup Language) is a more general language for describing documents 
and provides capabilities for specifying new tags. However, it is more complex than HTML and XML.
5The left and right angled bracket characters (< and >) are reserved characters, as are the ampersand 
(&), apostrophe (’), and single quotation mark (‘). To include them within the text of a document, they 
must be encoded with escapes as &lt;, &gt;, &amp;, &apos;, and &quot;, respectively.
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<?xml version=“1.0” standalone=“yes”?>
 <Projects>
  <Project>
   <Name>ProductX</Name>
   <Number>1</Number>
   <Location>Bellaire</Location>
   <Dept_no>5</Dept_no>
   <Worker>
    <Ssn>123456789</Ssn>
    <Last_name>Smith</Last_name>
    <Hours>32.5</Hours>
   </Worker>
   <Worker>
    <Ssn>453453453</Ssn>
    <First_name>Joyce</First_name>
    <Hours>20.0</Hours>
   </Worker>
  </Project>
  <Project>
   <Name>ProductY</Name>
   <Number>2</Number>
   <Location>Sugarland</Location>
   <Dept_no>5</Dept_no>
   <Worker>
    <Ssn>123456789</Ssn>
    <Hours>7.5</Hours>
   </Worker>
   <Worker>
    <Ssn>453453453</Ssn>
    <Hours>20.0</Hours>
   </Worker>
   <Worker>
    <Ssn>333445555</Ssn>
    <Hours>10.0</Hours>
   </Worker>
  </Project>
 …
 </Projects>

Figure 13.3 
A complex XML  
element called  
<Projects>.

XML documents that do not follow a predefined schema of element names and cor-
responding tree structure are known as schemaless XML documents. It is impor-
tant to note that data-centric XML documents can be considered either as 
semistructured data or as structured data as defined in Section 13.1. If an XML 
document conforms to a predefined XML schema or DTD (see Section 13.3), then 
the document can be considered as structured data. On the other hand, XML allows 
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documents that do not conform to any schema; these would be considered as  
semistructured data and are schemaless XML documents. When the value of the 
standalone attribute in an XML document is yes, as in the first line in Figure 13.3, 
the document is standalone and schemaless.

XML attributes are generally used in a manner similar to how they are used in 
HTML (see Figure 13.2), namely, to describe properties and characteristics of the 
elements (tags) within which they appear. It is also possible to use XML attributes 
to hold the values of simple data elements; however, this is generally not recom-
mended. An exception to this rule is in cases that need to reference another ele-
ment in another part of the XML document. To do this, it is common to use 
attribute values in one element as the references. This resembles the concept of for-
eign keys in relational databases, and it is a way to get around the strict hierarchical 
model that the XML tree model implies. We discuss XML attributes further in Sec-
tion 13.3 when we discuss XML schema and DTD.

13.3 XML Documents, DTD, and XML Schema

13.3.1  Well-Formed and Valid XML Documents and XML DTD
In Figure 13.3, we saw what a simple XML document may look like. An XML docu-
ment is well formed if it follows a few conditions. In particular, it must start with an 
XML declaration to indicate the version of XML being used as well as any other 
relevant attributes, as shown in the first line in Figure 13.3. It must also follow the 
syntactic guidelines of the tree data model. This means that there should be a single 
root element, and every element must include a matching pair of start and end tags 
within the start and end tags of the parent element. This ensures that the nested ele-
ments specify a well-formed tree structure.

A well-formed XML document is syntactically correct. This allows it to be pro-
cessed by generic processors that traverse the document and create an internal tree 
representation. A standard model with an associated set of API (application pro-
gramming interface) functions called DOM (Document Object Model) allows pro-
grams to manipulate the resulting tree representation corresponding to a 
well-formed XML document. However, the whole document must be parsed 
beforehand when using DOM in order to convert the document to that standard 
DOM internal data structure representation. Another API called SAX (Simple API 
for XML) allows processing of XML documents on the fly by notifying the process-
ing program through callbacks whenever a start or end tag is encountered. This 
makes it easier to process large documents and allows for processing of so-called 
streaming XML documents, where the processing program can process the tags as 
they are encountered. This is also known as event-based processing. There are also 
other specialized processors that work with various programming and scripting 
languages for parsing XML documents.

A well-formed XML document can be schemaless; that is, it can have any tag 
names for the elements within the document. In this case, there is no predefined 
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set of elements (tag names) that a program processing the document knows to 
expect. This gives the document creator the freedom to specify new elements but 
limits the possibilities for automatically interpreting the meaning or semantics of 
the elements within the document.

A stronger criterion is for an XML document to be valid. In this case, the document 
must be well formed, and it must follow a particular schema. That is, the element 
names used in the start and end tag pairs must follow the structure specified in a 
separate XML DTD (Document Type Definition) file or XML schema file. We 
first discuss XML DTD here, and then we give an overview of XML schema in Sec-
tion 13.3.2. Figure 13.4 shows a simple XML DTD file, which specifies the elements 
(tag names) and their nested structures. Any valid documents conforming to this 
DTD should follow the specified structure. A special syntax exists for specifying 
DTD files, as illustrated in Figure 13.4(a). First, a name is given to the root tag of 
the document, which is called Projects in the first line in Figure 13.4. Then the ele-
ments and their nested structure are specified.

When specifying elements, the following notation is used:

 ■ A * following the element name means that the element can be repeated zero 
or more times in the document. This kind of element is known as an optional 
multivalued (repeating) element.

 ■ A + following the element name means that the element can be repeated one 
or more times in the document. This kind of element is a required multival-
ued (repeating) element.

 ■ A ? following the element name means that the element can be repeated zero 
or one times. This kind is an optional single-valued (nonrepeating) element.

 ■ An element appearing without any of the preceding three symbols must 
appear exactly once in the document. This kind is a required single-valued 
(nonrepeating) element.

 ■ The type of the element is specified via parentheses following the element. If 
the parentheses include names of other elements, these latter elements are 
the children of the element in the tree structure. If the parentheses include 
the keyword #PCDATA or one of the other data types available in XML DTD, 
the element is a leaf node. PCDATA stands for parsed character data, which is 
roughly similar to a string data type.

 ■ The list of attributes that can appear within an element can also be specified 
via the keyword !ATTLIST. In Figure 13.3, the Project element has an attribute 
ProjId. If the type of an attribute is ID, then it can be referenced from another 
attribute whose type is IDREF within another element. Notice that attributes 
can also be used to hold the values of simple data elements of type #PCDATA.

 ■ Parentheses can be nested when specifying elements.

 ■ A bar symbol ( e1 | e2 ) specifies that either e1 or e2 can appear in the document.

We can see that the tree structure in Figure 13.1 and the XML document in Fig-
ure 13.3 conform to the XML DTD in Figure 13.4. To require that an XML 
document be checked for conformance to a DTD, we must specify this in the 
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declaration of the document. For example, we could change the first line in Fig-
ure 13.3 to the following:

<?xml version = “1.0” standalone = “no”?>
<!DOCTYPE Projects SYSTEM “proj.dtd”>

When the value of the standalone attribute in an XML document is “no”, the docu-
ment needs to be checked against a separate DTD document or XML schema docu-
ment (see Section 13.2.2). The DTD file shown in Figure 13.4 should be stored in 

Figure 13.4 
(a) An XML DTD  
file called Projects. 
(b) An XML  
DTD file called 
Company.

(a) <!DOCTYPE Projects [
  <!ELEMENT Projects (Project+)>
  <!ELEMENT Project (Name, Number, Location, Dept_no?, Workers)>
   <!ATTLIST Project
    ProjId ID #REQUIRED>
  <!ELEMENT Name (#PCDATA)>
  <!ELEMENT Number (#PCDATA)
  <!ELEMENT Location (#PCDATA)>
  <!ELEMENT Dept_no (#PCDATA)>
  <!ELEMENT Workers (Worker*)>
  <!ELEMENT Worker (Ssn, Last_name?, First_name?, Hours)>
  <!ELEMENT Ssn (#PCDATA)>
  <!ELEMENT Last_name (#PCDATA)>
  <!ELEMENT First_name (#PCDATA)>
  <!ELEMENT Hours (#PCDATA)>
 ] >

(b) <!DOCTYPE Company [
  <!ELEMENT Company( (Employee|Department|Project)*)>
  <!ELEMENT Department (DName, Location+)>
   <!ATTLIST Department
    DeptId ID #REQUIRED>

  <!ELEMENT Employee (EName, Job, Salary)>
   <!ATTLIST Project
    EmpId ID #REQUIRED
    DeptId IDREF #REQUIRED>
  <!ELEMENT Project (PName, Location)
   <!ATTLIST Project
    ProjId ID #REQUIRED
    Workers IDREFS #IMPLIED>
  <!ELEMENT DName (#PCDATA)>
  <!ELEMENT EName (#PCDATA)>
  <!ELEMENT PName (#PCDATA)>
  <!ELEMENT Job (#PCDATA)
  <!ELEMENT Location (#PCDATA)>
  <!ELEMENT Salary (#PCDATA)>
 ] >
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the same file system as the XML document and should be given the file name  
proj.dtd. Alternatively, we could include the DTD document text at the beginning of 
the XML document itself to allow the checking.

Figure 13.4(b) shows another DTD document called Company to illustrate the use 
of IDREF. A Company document can have any number of Department, Employee, 
and Project elements, with IDs DeptID, EmpId, and ProjID, respectively. The 
Employee element has an attribute DeptId of type IDREF, which is a reference to 
the Department element where the employee works; this is similar to a foreign key. 
The Project element has an attribute Workers of type IDREFS, which will hold a list 
of Employee EmpIDs that work on that project; this is similar to a collection or list 
of foreign keys. The #IMPLIED keyword means that this attribute is optional. It is 
also possible to provide a default value for any attribute.

Although XML DTD is adequate for specifying tree structures with required, 
optional, and repeating elements, and with various types of attributes, it has several 
limitations. First, the data types in DTD are not very general. Second, DTD has its 
own special syntax and thus requires specialized processors. It would be advanta-
geous to specify XML schema documents using the syntax rules of XML itself so 
that the same processors used for XML documents could process XML schema 
descriptions. Third, all DTD elements are always forced to follow the specified 
ordering of the document, so unordered elements are not permitted. These draw-
backs led to the development of XML schema, a more general but also more com-
plex language for specifying the structure and elements of XML documents.

13.3.2 XML Schema
The XML schema language is a standard for specifying the structure of XML docu-
ments. It uses the same syntax rules as regular XML documents, so that the same pro-
cessors can be used on both. To distinguish the two types of documents, we will use the 
term XML instance document or XML document for a regular XML document that con-
tains both tag names and data values, and XML schema document for a document that 
specifies an XML schema. An XML schema document would contain only tag names, 
tree structure information, constraints, and other descriptions but no data values. Fig-
ure 13.5 shows an XML schema document corresponding to the COMPANY database 
shown in Figure 5.5. Although it is unlikely that we would want to display the whole 
database as a single document, there have been proposals to store data in native XML 
format as an alternative to storing the data in relational databases. The schema in Fig-
ure 13.5 would serve the purpose of specifying the structure of the COMPANY database 
if it were stored in a native XML system. We discuss this topic further in Section 13.4.

As with XML DTD, XML schema is based on the tree data model, with elements and 
attributes as the main structuring concepts. However, it borrows additional concepts 
from database and object models, such as keys, references, and identifiers. Here we 
describe the features of XML schema in a step-by-step manner, referring to the sam-
ple XML schema document in Figure 13.5 for illustration. We introduce and describe 
some of the schema concepts in the order in which they are used in Figure 13.5.
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Figure 13.5 
An XML schema file called company.

<?xml version=“1.0” encoding=“UTF-8” ?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <xsd:annotation>
  <xsd:documentation xml:lang=“en”>Company Schema (Element Approach) - Prepared by Babak
   Hojabri</xsd:documentation>
 </xsd:annotation>
<xsd:element name=“company”>
 <xsd:complexType>
  <xsd:sequence>
   <xsd:element name=“department” type=“Department” minOccurs=“0” maxOccurs=“unbounded” />
   <xsd:element name=“employee” type=“Employee” minOccurs=“0” maxOccurs=“unbounded”>
    <xsd:unique name=“dependentNameUnique”>
     <xsd:selector xpath=“employeeDependent” />
     <xsd:field xpath=“dependentName” />
    </xsd:unique>
   </xsd:element>
   <xsd:element name=“project” type=“Project” minOccurs=“0” maxOccurs=“unbounded” />
  </xsd:sequence>
 </xsd:complexType>
 <xsd:unique name=“departmentNameUnique”>
  <xsd:selector xpath=“department” />
  <xsd:field xpath=“departmentName” />
 </xsd:unique>
 <xsd:unique name=“projectNameUnique”>
  <xsd:selector xpath=“project” />
  <xsd:field xpath=“projectName” />
 </xsd:unique>
 <xsd:key name=“projectNumberKey”>
  <xsd:selector xpath=“project” />
  <xsd:field xpath=“projectNumber” />
 </xsd:key>
 <xsd:key name=“departmentNumberKey”>
  <xsd:selector xpath=“department” />
  <xsd:field xpath=“departmentNumber” />
 </xsd:key>
 <xsd:key name=“employeeSSNKey”>
  <xsd:selector xpath=“employee” />
  <xsd:field xpath=“employeeSSN” />
 </xsd:key>
 <xsd:keyref name=“departmentManagerSSNKeyRef” refer=“employeeSSNKey”>
  <xsd:selector xpath=“department” />
  <xsd:field xpath=“departmentManagerSSN” />
 </xsd:keyref>

(continues)
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 <xsd:keyref name=“employeeDepartmentNumberKeyRef”
  refer=“departmentNumberKey”>
  <xsd:selector xpath=“employee” />
  <xsd:field xpath=“employeeDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“employeeSupervisorSSNKeyRef” refer=“employeeSSNKey”>
  <xsd:selector xpath=“employee” />
  <xsd:field xpath=“employeeSupervisorSSN” />
 </xsd:keyref>
 <xsd:keyref name=“projectDepartmentNumberKeyRef” refer=“departmentNumberKey”>
  <xsd:selector xpath=“project” />
  <xsd:field xpath=“projectDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“projectWorkerSSNKeyRef” refer=“employeeSSNKey”>
  <xsd:selector xpath=“project/projectWorker” />
  <xsd:field xpath=“SSN” />
 </xsd:keyref>
 <xsd:keyref name=“employeeWorksOnProjectNumberKeyRef”
  refer=“projectNumberKey”>
  <xsd:selector xpath=“employee/employeeWorksOn” />
  <xsd:field xpath=“projectNumber” />
 </xsd:keyref>
</xsd:element>
<xsd:complexType name=“Department”>
 <xsd:sequence>
  <xsd:element name=“departmentName” type=“xsd:string” />
  <xsd:element name=“departmentNumber” type=“xsd:string” />
  <xsd:element name=“departmentManagerSSN” type=“xsd:string” />
  <xsd:element name=“departmentManagerStartDate” type=“xsd:date” />
  <xsd:element name=“departmentLocation” type=“xsd:string” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Employee”>
 <xsd:sequence>
  <xsd:element name=“employeeName” type=“Name” />
  <xsd:element name=“employeeSSN” type=“xsd:string” />
  <xsd:element name=“employeeSex” type=“xsd:string” />
  <xsd:element name=“employeeSalary” type=“xsd:unsignedInt” />
  <xsd:element name=“employeeBirthDate” type=“xsd:date” />
  <xsd:element name=“employeeDepartmentNumber” type=“xsd:string” />
  <xsd:element name=“employeeSupervisorSSN” type=“xsd:string” />
  <xsd:element name=“employeeAddress” type=“Address” />
  <xsd:element name=“employeeWorksOn” type=“WorksOn” minOccurs=“1” maxOccurs=“unbounded” />
  <xsd:element name=“employeeDependent” type=“Dependent” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>

Figure 13.5 (continued) 
An XML schema file called company.
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<xsd:complexType name=“Project”>
 <xsd:sequence>
  <xsd:element name=“projectName” type=“xsd:string” />
  <xsd:element name=“projectNumber” type=“xsd:string” />
  <xsd:element name=“projectLocation” type=“xsd:string” />
  <xsd:element name=“projectDepartmentNumber” type=“xsd:string” />
  <xsd:element name=“projectWorker” type=“Worker” minOccurs=“1” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Dependent”>
 <xsd:sequence>
  <xsd:element name=“dependentName” type=“xsd:string” />
  <xsd:element name=“dependentSex” type=“xsd:string” />
  <xsd:element name=“dependentBirthDate” type=“xsd:date” />
  <xsd:element name=“dependentRelationship” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Address”>
 <xsd:sequence>
  <xsd:element name=“number” type=“xsd:string” />
  <xsd:element name=“street” type=“xsd:string” />
  <xsd:element name=“city” type=“xsd:string” />
  <xsd:element name=“state” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Name”>
 <xsd:sequence>
  <xsd:element name=“firstName” type=“xsd:string” />
  <xsd:element name=“middleName” type=“xsd:string” />
  <xsd:element name=“lastName” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Worker”>
 <xsd:sequence>
  <xsd:element name=“SSN” type=“xsd:string” />
  <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“WorksOn”>
 <xsd:sequence>
  <xsd:element name=“projectNumber” type=“xsd:string” />
  <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 13.5 (continued) 
An XML schema file called company.
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  1. Schema descriptions and XML namespaces. It is necessary to identify the 
specific set of XML schema language elements (tags) being used by specify-
ing a file stored at a Web site location. The second line in Figure 13.5 speci-
fies the file used in this example, which is http://www.w3.org/2001/XMLSchema. 
This is a commonly used standard for XML schema commands. Each such 
definition is called an XML namespace because it defines the set of com-
mands (names) that can be used. The file name is assigned to the variable xsd 
(XML schema description) using the attribute xmlns (XML namespace), and 
this variable is used as a prefix to all XML schema commands (tag names). 
For example, in Figure 13.5, when we write xsd:element or xsd:sequence, we 
are referring to the definitions of the element and sequence tags as defined in 
the file http://www.w3.org/2001/XMLSchema.

  2. Annotations, documentation, and language used. The next couple of lines 
in Figure 13.5 illustrate the XML schema elements (tags) xsd:annotation and 
xsd:documentation, which are used for providing comments and other 
descriptions in the XML document. The attribute xml:lang of the 
xsd:documentation element specifies the language being used, where en stands 
for the English language.

  3. Elements and types. Next, we specify the root element of our XML schema. 
In XML schema, the name attribute of the xsd:element tag specifies the ele-
ment name, which is called company for the root element in our example (see 
Figure 13.5). The structure of the company root element can then be speci-
fied, which in our example is xsd:complexType. This is further specified to be 
a sequence of departments, employees, and projects using the xsd:sequence 
structure of XML schema. It is important to note here that this is not the 
only way to specify an XML schema for the COMPANY database. We will 
discuss other options in Section 13.6.

  4. First-level elements in the COMPANY database. Next, we specify the three 
first-level elements under the company root element in Figure 13.5. These 
elements are named employee, department, and project, and each is specified 
in an xsd:element tag. Notice that if a tag has only attributes and no further 
subelements or data within it, it can be ended with the backslash symbol (/>) 
directly instead of having a separate matching end tag. These are called 
empty elements; examples are the xsd:element elements named department 
and project in Figure 13.5.

  5. Specifying element type and minimum and maximum occurrences. In 
XML schema, the attributes type, minOccurs, and maxOccurs in the xsd:element 
tag specify the type and multiplicity of each element in any document that 
conforms to the schema specifications. If we specify a type attribute in an 
xsd:element, the structure of the element must be described separately, typi-
cally using the xsd:complexType element of XML schema. This is illustrated 
by the employee, department, and project elements in Figure 13.5. On the other 
hand, if no type attribute is specified, the element structure can be defined 
directly following the tag, as illustrated by the company root element in Fig-
ure 13.5. The minOccurs and maxOccurs tags are used for specifying lower 
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and upper bounds on the number of occurrences of an element in any XML 
document that conforms to the schema specifications. If they are not speci-
fied, the default is exactly one occurrence. These serve a similar role to the *, 
+, and ? symbols of XML DTD.

  6. Specifying keys. In XML schema, it is possible to specify constraints that 
correspond to unique and primary key constraints in a relational database 
(see Section 5.2.2), as well as foreign keys (or referential integrity) con-
straints (see Section 5.2.4). The xsd:unique tag specifies elements that cor-
respond to unique attributes in a relational database. We can give each 
such uniqueness constraint a name, and we must specify xsd:selector and 
xsd:field tags for it to identify the element type that contains the unique ele-
ment and the element name within it that is unique via the xpath attribute. 
This is illustrated by the departmentNameUnique and projectNameUnique ele-
ments in Figure 13.5. For specifying primary keys, the tag xsd:key is used 
instead of xsd:unique, as illustrated by the projectNumberKey, department-
NumberKey, and employeeSSNKey elements in Figure 13.5. For specifying 
foreign keys, the tag xsd:keyref is used, as illustrated by the six xsd:keyref 
elements in Figure 13.5. When specifying a foreign key, the attribute refer 
of the xsd:keyref tag specifies the referenced primary key, whereas the tags 
xsd:selector and xsd:field specify the referencing element type and foreign 
key (see Figure 13.5).

  7. Specifying the structures of complex elements via complex types. The 
next part of our example specifies the structures of the complex elements 
Department, Employee, Project, and Dependent, using the tag xsd:complexType 
(see Figure 13.5). We specify each of these as a sequence of subelements cor-
responding to the database attributes of each entity type (see Figure 7.7)by 
using the xsd:sequence and xsd:element tags of XML schema. Each element is 
given a name and type via the attributes name and type of xsd:element. We can 
also specify minOccurs and maxOccurs attributes if we need to change the 
default of exactly one occurrence. For (optional) database attributes where 
null is allowed, we need to specify minOccurs = 0, whereas for multivalued 
database attributes we need to specify maxOccurs = “unbounded” on the cor-
responding element. Notice that if we were not going to specify any key con-
straints, we could have embedded the subelements within the parent element 
definitions directly without having to specify complex types. However, when 
unique, primary key and foreign key constraints need to be specified; we 
must define complex types to specify the element structures.

  8. Composite (compound) attributes. Composite attributes from Figure 9.2 
are also specified as complex types in Figure 13.7, as illustrated by the 
Address, Name, Worker, and WorksOn complex types. These could have been 
directly embedded within their parent elements.

This example illustrates some of the main features of XML schema. There are other 
features, but they are beyond the scope of our presentation. In the next section, we 
discuss the different approaches to creating XML documents from relational data-
bases and storing XML documents.
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13.4  Storing and Extracting XML Documents 
from Databases

Several approaches to organizing the contents of XML documents to facilitate their 
subsequent querying and retrieval have been proposed. The following are the most 
common approaches:

  1. Using a file system or a DBMS to store the documents as text. An XML 
document can be stored as a text file within a traditional file system. Alter-
natively, a relational DBMS can be used to store whole XML documents as 
text fields within the DBMS recordss. This approach can be used if the 
DBMS has a special module for document processing, and it would work for 
storing schemaless and document-centric XML documents.

  2. Using a DBMS to store the document contents as data elements. This 
approach would work for storing a collection of documents that follow a 
specific XML DTD or XML schema. Because all the documents have the 
same structure, one can design a relational database to store the leaf-level 
data elements within the XML documents. This approach would require 
mapping algorithms to design a database schema that is compatible with the 
XML document structure as specified in the XML schema or DTD and to 
re-create the XML documents from the stored data. These algorithms can be 
implemented either as an internal DBMS module or as separate middleware 
that is not part of the DBMS. If all elements in an XML document have IDs, 
a simple representation would be to have a table with attributes XDOC(CId, 
PId, Etag, Val) where CID and PId are the parent and child element IDs, 
Etag is the name of the element of the Cid, and Val is the value if it is a leaf 
node, assuming all values are the same type.

  3. Designing a specialized system for storing native XML data. A new type 
of database system based on the hierarchical (tree) model could be designed 
and implemented. Such systems are referred to as native XML DBMSs. The 
system would include specialized indexing and querying techniques and 
would work for all types of XML documents. It could also include data com-
pression techniques to reduce the size of the documents for storage. Tamino 
by Software AG and the Dynamic Application Platform of eXcelon are two 
popular products that offer native XML DBMS capability. Oracle also offers 
a native XML storage option.

  4. Creating or publishing customized XML documents from preexisting 
relational databases. Because there are enormous amounts of data already 
stored in relational databases, parts of this data may need to be formatted as 
documents for exchanging or displaying over the Web. This approach would 
use a separate middleware software layer to handle the conversions needed 
between the relational data and the extracted XML documents. Section 13.6 
discusses this approach, in which data-centric XML documents are extracted 
from existing databases, in more detail. In particular, we show how tree 
structured documents can be created from flat relational databases that have 
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been designed using the ER graph-structured data model. Section 13.6.2 
discusses the problem of cycles and how to deal with it.

All of these approaches have received considerable attention. We focus on the 
fourth approach in Section 13.6, because it gives a good conceptual understanding 
of the differences between the XML tree data model and the traditional database 
models based on flat files (relational model) and graph representations (ER model). 
But first we give an overview of XML query languages in Section 13.5.

13.5 XML Languages
There have been several proposals for XML query languages, and two query language 
standards have emerged. The first is XPath, which provides language constructs for 
specifying path expressions to identify certain nodes (elements) or attributes within 
an XML document that match specific patterns. The second is XQuery, which is a 
more general query language. XQuery uses XPath expressions but has additional con-
structs. We give an overview of each of these languages in this section. Then we dis-
cuss some additional languages related to HTML in Section 13.5.3.

13.5.1 XPath: Specifying Path Expressions in XML
An XPath expression generally returns a sequence of items that satisfy a certain pat-
tern as specified by the expression. These items are either values (from leaf nodes) 
or elements or attributes. The most common type of XPath expression returns a col-
lection of element or attribute nodes that satisfy certain patterns specified in the 
expression. The names in the XPath expression are node names in the XML docu-
ment tree that are either tag (element) names or attribute names, possibly with 
additional qualifier conditions to further restrict the nodes that satisfy the pattern. 
Two main separators are used when specifying a path: single slash (/) and double 
slash (//). A single slash before a tag specifies that the tag must appear as a direct 
child of the previous (parent) tag, whereas a double slash specifies that the tag can 
appear as a descendant of the previous tag at any level. To refer to an attribute name 
instead of an element (tag) name, the prefix @ is used before the attribute name. Let 
us look at some examples of XPath as shown in Figure 13.6.

The first XPath expression in Figure 13.6 returns the company root node and all its 
descendant nodes, which means that it returns the whole XML document. We 
should note that it is customary to include the file name in the XPath query. This 
allows us to specify any local file name or even any path name that specifies a file on 
the Web. For example, if the COMPANY XML document is stored at the location

www.company.com/info.XML

then the first XPath expression in Figure 13.6 can be written as

doc(www.company.com/info.XML)/company

This prefix would also be included in the other examples of XPath expressions.
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The second example in Figure 13.6 returns all department nodes (elements) and 
their descendant subtrees. Note that the nodes (elements) in an XML document are 
ordered, so the XPath result that returns multiple nodes will do so in the same order 
in which the nodes are ordered in the document tree.

The third XPath expression in Figure 13.6 illustrates the use of //, which is conve-
nient to use if we do not know the full path name we are searching for, but we do 
know the name of some tags of interest within the XML document. This is particu-
larly useful for schemaless XML documents or for documents with many nested 
levels of nodes.6

The expression returns all employeeName nodes that are direct children of an 
employee node, such that the employee node has another child element employeeSalary 
whose value is greater than 70000. This illustrates the use of qualifier conditions, 
which restrict the nodes selected by the XPath expression to those that satisfy the 
condition. XPath has a number of comparison operations for use in qualifier condi-
tions, including standard arithmetic, string, and set comparison operations.

The fourth XPath expression in Figure 13.6 should return the same result as the pre-
vious one, except that we specified the full path name in this example. The fifth 
expression in Figure 13.6 returns all projectWorker nodes and their descendant 
nodes that are children under a path /company/project and have a child node, hours, 
with a value greater than 20.0 hours.

When we need to include attributes in an XPath expression, the attribute name is 
prefixed by the @ symbol to distinguish it from element (tag) names. It is also pos-
sible to use the wildcard symbol *, which stands for any element, as in the following 
example, which retrieves all elements that are child elements of the root, regardless 
of their element type. When wildcards are used, the result can be a sequence of dif-
ferent types of elements.

/company/*

The examples above illustrate simple XPath expressions, where we can only move 
down in the tree structure from a given node. A more general model for path 
expressions has been proposed. In this model, it is possible to move in multiple 
directions from the current node in the path expression. These are known as the 

1. /company

2. /company/department

3. //employee [employeeSalary gt 70000]/employeeName

4. /company/employee [employeeSalary gt 70000]/employeeName

5. /company/project/projectWorker [hours ge 20.0]

Figure 13.6 
Some examples of 
XPath expressions 
on XML documents 
that follow the XML 
schema file company 
in Figure 13.5.

6We use the terms node, tag, and element interchangeably here.
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axes of an XPath expression. Our examples above used only three of these axes: child 
of the current node (/), descendent or self at any level of the current node (//), and 
attribute of the current node (@). Other axes include parent, ancestor (at any level), 
previous sibling (a node at same level to the left), and next sibling (a node at the 
same level to the right). These axes allow for more complex path expressions.

The main restriction of XPath path expressions is that the path that specifies the pat-
tern also specifies the items to be retrieved. Hence, it is difficult to specify certain 
conditions on the pattern while separately specifying which result items should be 
retrieved. The XQuery language separates these two concerns and provides more 
powerful constructs for specifying queries.

13.5.2 XQuery: Specifying Queries in XML
XPath allows us to write expressions that select items from a tree-structured XML 
document. XQuery permits the specification of more general queries on one or 
more XML documents. The typical form of a query in XQuery is known as a 
FLWOR expression, which stands for the five main clauses of XQuery and has the 
following form:

FOR <variable bindings to individual nodes (elements)>
LET <variable bindings to collections of nodes (elements)>
WHERE <qualifier conditions>
ORDER BY <ordering specifications>
RETURN <query result specification>

There can be zero or more instances of the FOR clause, as well as of the LET clause 
in a single XQuery. The WHERE and ORDER BY clauses are optional but can appear 
at most once, and the RETURN clause must appear exactly once. Let us illustrate 
these clauses with the following simple example of an XQuery.

LET $d : = doc(www.company.com/info.xml)
FOR  $x IN $d/company/project[projectNumber = 5]/projectWorker, 

$y IN $d/company/employee
WHERE $x/hours gt 20.0 AND $y.ssn = $x.ssn
ORDER BY $x/hours
RETURN <res>  $y/employeeName/firstName, $y/employeeName/lastName,  

$x/hours </res>

  1. Variables are prefixed with the $ sign. In the above example, $d, $x, and $y 
are variables. The LET clause assigns a variable to a particular expression for 
the rest of the query. In this example, $d is assigned to the document file 
name. It is possible to have a query that refers to multiple documents by 
assigning multiple variables in this way.

  2. The FOR clause assigns a variable to range over each of the individual ele-
ments in a sequence. In our example, the sequences are specified by path 
expressions. The $x variable ranges over elements that satisfy the path expres-
sion $d/company/project[projectNumber = 5]/projectWorker. The $y variable 
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ranges over elements that satisfy the path expression $d/company/employee. 
Hence, $x ranges over projectWorker elements for workers who work in proj-
ect 5, whereas $y ranges over employee elements.

  3. The WHERE clause specifies additional conditions on the selection of items. 
In this example, the first condition selects only those projectWorker elements 
that satisfy the condition (hours gt 20.0). The second condition specifies a 
join condition that combines an employee with a projectWorker only if they 
have the same ssn value.

  4. The ORDER BY clause specifies that the result elements will be ordered by the 
value of the hours per week they work on the project in ascending value of hours.

  5. Finally, the RETURN clause specifies which elements or attributes should be 
retrieved from the items that satisfy the query conditions. In this example, it 
will return a sequence of elements each containing <firstName, lastName, hours> 
for employees who work more that 20 hours per week on project number 5.

Figure 13.7 includes some additional examples of queries in XQuery that can be 
specified on an XML instance documents that follow the XML schema document 
in Figure 13.5. The first query retrieves the first and last names of employees who 
earn more than $70,000. The variable $x is bound to each employeeName element 
that is a child of an employee element, but only for employee elements that satisfy 
the qualifier that their employeeSalary value is greater than $70,000. The result 
retrieves the firstName and lastName child elements of the selected employeeName 
elements. The second query is an alternative way of retrieving the same elements 
retrieved by the first query.

The third query illustrates how a join operation can be performed by using more 
than one variable. Here, the $x variable is bound to each projectWorker element that 
is a child of project number 5, whereas the $y variable is bound to each employee 
element. The join condition matches ssn values in order to retrieve the employee 
names. Notice that this is an alternative way of specifying the same query in our 
earlier example, but without the LET clause.

XQuery has very powerful constructs to specify complex queries. In particular, it can 
specify universal and existential quantifiers in the conditions of a query, aggregate 
functions, ordering of query results, selection based on position in a sequence, and 
even conditional branching. Hence, in some ways, it qualifies as a full-fledged pro-
gramming language.

This concludes our brief introduction to XQuery. The interested reader is referred to 
www.w3.org, which contains documents describing the latest standards related to 
XML and XQuery. The next section briefly discusses some additional languages and 
protocols related to XML.

13.5.3 Other Languages and Protocols Related to XML
There are several other languages and protocols related to XML technology. 
The long-term goal of these and other languages and protocols is to provide the 
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technology for realization of the Semantic Web, where all information in the 
Web can be intelligently located and processed.

 ■ The Extensible Stylesheet Language (XSL) can be used to define how a docu-
ment should be rendered for display by a Web browser.

 ■ The Extensible Stylesheet Language for Transformations (XSLT) can be 
used to transform one structure into a different structure. Hence, it can con-
vert documents from one form to another.

 ■ The Web Services Description Language (WSDL) allows for the description 
of Web Services in XML. This makes the Web Service available to users and 
programs over the Web.

 ■ The Simple Object Access Protocol (SOAP) is a platform-independent and 
programming language-independent protocol for messaging and remote 
procedure calls.

 ■ The Resource Description Framework (RDF) provides languages and tools 
for exchanging and processing of meta-data (schema) descriptions and 
specifications over the Web.

13.6  Extracting XML Documents from  
Relational Databases

13.6.1  Creating Hierarchical XML Views over  
Flat or Graph-Based Data

This section discusses the representational issues that arise when converting data 
from a database system into XML documents. As we have discussed, XML uses a 
hierarchical (tree) model to represent documents. The database systems with the 
most widespread use follow the flat relational data model. When we add referential 

1. FOR $x IN 
doc(www.company.com/info.xml) 
//employee [employeeSalary gt 70000]/employeeName 
RETURN <res> $x/firstName, $x/lastName </res>

2. FOR $x IN 
doc(www.company.com/info.xml)/company/employee 
WHERE $x/employeeSalary gt 70000 
RETURN <res> $x/employeeName/firstName, $x/employeeName/lastName </res>

3. FOR $x IN 
doc(www.company.com/info.xml)/company/project[projectNumber=5]/projectWorker, 
$y IN doc(www.company.com/info.xml)/company/employee 
WHERE $x/hours gt 20.0 AND $y.ssn=$x.ssn 
RETURN <res> $y/employeeName/firstName, $y/employeeName/lastName, $x/hours </res>

Figure 13.7 
Some examples of XQuery 
queries on XML documents 
that follow the XML schema 
file company in Figure 13.5.
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integrity constraints, a relational schema can be considered to be a graph structure 
(for example, see Figure 3.7). Similarly, the ER model represents data using graph-
like structures (for example, see Figure 7.2). We saw in Chapter 9 that there are 
straightforward mappings between the ER and relational models, so we can con-
ceptually represent a relational database schema using the corresponding ER 
schema. Although we will use the ER model in our discussion and examples to clar-
ify the conceptual differences between tree and graph models, the same issues apply 
to converting relational data to XML.

We will use the simplified UNIVERSITY ER schema shown in Figure 13.8 to illus-
trate our discussion. Suppose that an application needs to extract XML docu-
ments for student, course, and grade information from the UNIVERSITY database. 
The data needed for these documents is contained in the database attributes of 
the entity types COURSE, SECTION, and STUDENT from Figure 13.8, and the 
relationships S-S and C-S between them. In general, most documents extracted 
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Figure 13.8 
An ER schema diagram for a simplified UNIVERSITY database.
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from a database will only use a subset of the attributes, entity types, and relation-
ships in the database. In this example, the subset of the database that is needed is 
shown in Figure 13.9.

At least three possible document hierarchies can be extracted from the database 
subset in Figure 13.9. First, we can choose COURSE as the root, as illustrated in 
Figure 13.10. Here, each course entity has the set of its sections as subelements, and 
each section has its students as subelements. We can see one consequence of mod-
eling the information in a hierarchical tree structure. If a student has taken multiple 
sections, that student’s information will appear multiple times in the document—
once under each section. A possible simplified XML schema for this view is shown 
in Figure 13.11. The Grade database attribute in the S-S relationship is migrated to 
the STUDENT element. This is because STUDENT becomes a child of SECTION in this 
hierarchy, so each STUDENT element under a specific SECTION element can have a 
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Hierarchical (tree) view with 
COURSE as the root.
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needed for XML document extraction.
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<xsd:element name=“root”>
 <xsd:sequence>
 <xsd:element name=“course” minOccurs=“0” maxOccurs=“unbounded”>
  <xsd:sequence>
   <xsd:element name=“cname” type=“xsd:string” />
   <xsd:element name=“cnumber” type=“xsd:unsignedInt” />
   <xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”>
    <xsd:sequence>
     <xsd:element name=“secnumber” type=“xsd:unsignedInt” />
     <xsd:element name=“year” type=“xsd:string” />
     <xsd:element name=“quarter” type=“xsd:string” />
     <xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”>
      <xsd:sequence>
       <xsd:element name=“ssn” type=“xsd:string” />
       <xsd:element name=“sname” type=“xsd:string” />
       <xsd:element name=“class” type=“xsd:string” />
       <xsd:element name=“grade” type=“xsd:string” />
      </xsd:sequence>
     </xsd:element>
    </xsd:sequence>
   </xsd:element>
  </xsd:sequence>
 </xsd:element>
 </xsd:sequence>
 </xsd:element>

Figure 13.11 
XML schema document with course as the root.

specific grade in that section. In this document hierarchy, a student taking more 
than one section will have several replicas, one under each section, and each replica 
will have the specific grade given in that particular section.

In the second hierarchical document view, we can choose STUDENT as root (Fig-
ure 13.12). In this hierarchical view, each student has a set of sections as its child 
elements, and each section is related to one course as its child, because the rela-
tionship between SECTION and COURSE is N:1. Thus, we can merge the COURSE 
and SECTION elements in this view, as shown in Figure 13.12. In addition, the 
GRADE database attribute can be migrated to the SECTION element. In this hier-
archy, the combined COURSE/SECTION information is replicated under each stu-
dent who completed the section. A possible simplified XML schema for this view 
is shown in Figure 13.13.

The third possible way is to choose SECTION as the root, as shown in Figure 13.14. 
Similar to the second hierarchical view, the COURSE information can be merged 
into the SECTION element. The GRADE database attribute can be migrated to the 
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Figure 13.12 
Hierarchical (tree) view with 
STUDENT as the root.

Figure 13.13 
XML schema document 
with student as the root.

<xsd:element name=“root”>
<xsd:sequence>
<xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:sequence>
  <xsd:element name=“ssn” type=“xsd:string” />
  <xsd:element name=“sname” type=“xsd:string” />
  <xsd:element name=“class” type=“xsd:string” />
  <xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”>
   <xsd:sequence>
    <xsd:element name=“secnumber” type=“xsd:unsignedInt” />
    <xsd:element name=“year” type=“xsd:string” />
    <xsd:element name=“quarter” type=“xsd:string” />
    <xsd:element name=“cnumber” type=“xsd:unsignedInt” />
    <xsd:element name=“cname” type=“xsd:string” />
    <xsd:element name=“grade” type=“xsd:string” />
   </xsd:sequence>
  </xsd:element>
 </xsd:sequence>
</xsd:element>
</xsd:sequence>
</xsd:element>
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STUDENT element. As we can see, even in this simple example, there can be numer-
ous hierarchical document views, each corresponding to a different root and a dif-
ferent XML document structure.

13.6.2 Breaking Cycles to Convert Graphs into Trees
In the previous examples, the subset of the database of interest had no cycles. It is 
possible to have a more complex subset with one or more cycles, indicating multi-
ple relationships among the entities. In this case, it is more difficult to decide how 
to create the document hierarchies. Additional duplication of entities may be 
needed to represent the multiple relationships. We will illustrate this with an exam-
ple using the ER schema in Figure 13.8.

Suppose that we need the information in all the entity types and relationships in 
Figure 13.8 for a particular XML document, with STUDENT as the root element. 
Figure 13.15 illustrates how a possible hierarchical tree structure can be created for 
this document. First, we get a lattice with STUDENT as the root, as shown in Fig- 
ure 13.15(a). This is not a tree structure because of the cycles. One way to break the 
cycles is to replicate the entity types involved in the cycles. First, we replicate 
INSTRUCTOR as shown in Figure 13.15(b), calling the replica to the right  
INSTRUCTOR1. The INSTRUCTOR replica on the left represents the relationship 
between instructors and the sections they teach, whereas the INSTRUCTOR1 replica 
on the right represents the relationship between instructors and the department 
each works in. After this, we still have the cycle involving COURSE, so we can repli-
cate COURSE in a similar manner, leading to the hierarchy shown in Fig- 
ure 13.15(c). The COURSE1 replica to the left represents the relationship between 
courses and their sections, whereas the COURSE replica to the right represents the 
relationship between courses and the department that offers each course.

In Figure 13.15(c), we have converted the initial graph to a hierarchy. We can do 
further merging if desired (as in our previous example) before creating the final 
hierarchy and the corresponding XML schema structure.

1

Ssn Students
attended

Name
STUDENT

1

Number

Qtr

Year
SECTION

1

N

Grade

Class

COURSE

Course_number

Course_nameFigure 13.14 
Hierarchical (tree) 
view with SECTION as 
the root.
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13.6.3  Other Steps for Extracting XML Documents  
from Databases

In addition to creating the appropriate XML hierarchy and corresponding XML 
schema document, several other steps are needed to extract a particular XML docu-
ment from a database:

  1. It is necessary to create the correct query in SQL to extract the desired infor-
mation for the XML document.

  2. Once the query is executed, its result must be restructured from the flat rela-
tional form to the XML tree structure.

  3. The query can be customized to select either a single object or multiple 
objects into the document. For example, in the view in Figure 13.13, the 
query can select a single student entity and create a document corresponding 
to that single student, or it may select several—or even all—of the students and 
create a document with multiple students.

13.7  XML/SQL: SQL Functions for Creating 
XML Data

In this section, we discuss some of the functions that have been added to the recent 
versions of the SQL standard for the purpose of generating XML data from relational 
databases. These functions can be used to format the results of queries into XML ele-
ments and documents, and to specify the roots of an XML hierarchy so that nested 
hierarchical data can be created from flat relational data. First we list and briefly 
describe some of the functions that were added to SQL; then we show a few examples.

COURSE

INSTRUCTOR

1 1 N N

1 1NN

(a) (b)

STUDENT

DEPARTMENTSECTION COURSE

INSTRUCTOR INSTRUCTOR1

STUDENT

DEPARTMENTSECTION

(c)

STUDENT

DEPARTMENTSECTION

INSTRUCTOR COURSE1 INSTRUCTOR1 COURSE

1
M

N
N

Figure 13.15 
Converting a graph with cycles into a hierarchical (tree) structure.
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We discuss the following functions:

  1. XMLELEMENT: This is used to specify a tag (element) name that will 
appear in the XML result. It can specify a tag name for a complex element or 
for an individual column.

  2. XMLFOREST: If several tags (elements) are needed in the XML result, this 
function can create multiple element names in a simpler manner than 
XMLELEMENT. The column names can be listed directly, separated by 
commas, with or without renaming. If a column name is not renamed, it will 
be used as the element (tag) name.

  3. XMLAGG: This can group together (or aggregate) several elements so they 
can be placed under a parent element as a collection of subelements.

  4. XMLROOT: This allows the selected elements to be formatted as an XML 
document with a single root element.

  5. XMLATTRIBUTES: This allows the creation of attributes for the elements 
of the XML result.

We now illustrate these functions with a few SQL/XML examples that refer to the 
EMPLOYEE table from Figures 5.5 and 5.6. The first example X1 shows how to cre-
ate an XML element that contains the EMPLOYEE lastname for the employee 
whose ssn is “123456789”:

X1: SELECT XMLELEMENT (NAME “lastname”, E.LName)
 FROM EMPLOYEE E
 WHERE E.Ssn = “123456789” ;

The SQL keyword NAME specifies the XML element (tag) name. The result on the 
data shown in Figure 5.6 would be:

<lastname>Smith</lastname>

If we want to retrieve multiple columns for a single row, we can use multiple list-
ings of XMLELEMENT within the parent element, but a simpler way would be 
to use XMLFOREST, which allows the specification of multiple columns without 
repeating the keyword XMLELEMENT multiple times. This is shown as X2:

X2: SELECT XMLELEMENT (NAME “employee”,
   XMLFOREST (
    E.Lname AS “ln”,
    E.Fname AS “fn”,
    E.Salary AS “sal” ) )
 FROM EMPLOYEE AS E
 WHERE E.Ssn = “123456789” ;

The result of X2 on the data shown in Figure 5.6 would be:

<employee><ln>Smith</ln><fn>John</fn><sal>30000</sal></employee>

Suppose we want to create XML data that has the last name, first name, and 
salary of the employees who work in department 4, and format it as an XML 
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document with the root tag “dept4emps”. Then we can write the SQL/XML 
query X3:

X3: SELECT XMLROOT (
  XMLELEMENT (NAME “dept4emps”,

  XMLAGG (
   XMLELEMENT (NAME “emp”
   XMLFOREST (Lname, Fname, Salary)
   ORDER BY Lname ) ) )

 FROM EMPLOYEE
 WHERE Dno = 4 ;

The XMLROOT function creates a single root element, so the XML data would be a 
well-formed document (a tree with a single root). The result of X3 on the data 
shown in Figure 5.6 would be:

<dept4emps>
<emp><Lname>Jabbar</Lname><Fname>Ahmad</Fname><Salary>25000 
 </Salary></emp>
<emp><Lname>Wallace</Lname><Fname>Jennifer 
 </Fname><Salary>43000</Salary></emp>
<emp><Lname>Zelaya</Lname><Fname>Alicia</Fname><Salary>25000 
 </Salary></emp>
</dept4emps>

These examples give a flavor of how the SQL standard has been extended to allow 
users to format query results as XML data.

13.8 Summary
This chapter provided an overview of the XML standard for representing and 
exchanging data over the Internet. First we discussed some of the differences between 
various types of data, classifying three main types: structured, semistructured, and 
unstructured. Structured data is stored in traditional databases. Semistructured data 
mixes data types names and data values, but the data does not all have to follow a 
fixed predefined structure. Unstructured data refers to information displayed on the 
Web, specified via HTML, where information on the types of data items is missing. 
We described the XML standard and its tree-structured (hierarchical) data model, 
and we discussed XML documents and the languages for specifying the structure of 
these documents, namely, XML DTD (Document Type Definition) and XML 
schema. We gave an overview of the various approaches for storing XML docu-
ments, whether in their native (text) format, in a compressed form, or in relational 
and other types of databases. We gave an overview of the XPath and XQuery lan-
guages proposed for querying XML data, and we discussed the mapping issues that 
arise when it is necessary to convert data stored in traditional relational databases 
into XML documents. Finally, we discussed SQL/XML, which provides SQL with 
additional functionality to format SQL query results as XML data.
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Review Questions
 13.1. What are the differences between structured, semistructured, and unstruc-

tured data?

 13.2. Under which of the categories mentioned in Question 13.1 do XML docu-
ments fall? What about self-describing data?

 13.3. What are the differences between the use of tags in XML versus HTML?

 13.4. What is the difference between data-centric and document-centric XML 
documents?

 13.5. What is the difference between attributes and elements in XML? List some 
of the important attributes used to specify elements in XML schema.

 13.6. What is the difference between XML schema and XML DTD?

Exercises
 13.7. Create part of an XML instance document to correspond to the data stored 

in the relational database shown in Figure 5.6 such that the XML document 
conforms to the XML schema document in Figure 13.5.

 13.8. Create XML schema documents and XML DTDs to correspond to the hier-
archies shown in Figures 13.14 and 13.15(c).

 13.9. Consider the LIBRARY relational database schema in Figure 6.6. Create an 
XML schema document that corresponds to this database schema.

 13.10. Specify the following views as queries in XQuery on the company XML 
schema shown in Figure 13.5.

a. A view that has the department name, manager name, and manager salary 
for every department

b. A view that has the employee name, supervisor name, and employee salary 
for each employee who works in the Research department

c. A view that has the project name, controlling department name, number of 
employees, and total hours worked per week on the project for each project

d. A view that has the project name, controlling department name, number 
of employees, and total hours worked per week on the project for each 
project with more than one employee working on it

Selected Bibliography
There are so many articles and books on various aspects of XML that it would be 
impossible to make even a modest list. We will mention one book: Chaudhri, 
Rashid, and Zicari, editors (2003). This book discusses various aspects of XML and 
contains a list of references to XML research and practice.
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14
Basics of Functional 

Dependencies and Normalization 
for Relational Databases

In Chapters 5 through 8, we presented various aspects 
of the relational model and the languages associated 

with it. Each relation schema consists of a number of attributes, and the relational 
database schema consists of a number of relation schemas. So far, we have assumed 
that attributes are grouped to form a relation schema by using the common sense of 
the database designer or by mapping a database schema design from a conceptual 
data model such as the ER or enhanced-ER (EER) data model. These models make 
the designer identify entity types and relationship types and their respective attri-
butes, which leads to a natural and logical grouping of the attributes into relations 
when the mapping procedures discussed in Chapter 9 are followed. However, we 
still need some formal way of analyzing why one grouping of attributes into a rela-
tion schema may be better than another. While discussing database design in 
 Chapters 3, 4, and 9, we did not develop any measure of appropriateness or  goodness 
to measure the quality of the design, other than the intuition of the designer. In this 
chapter we discuss some of the theory that has been developed with the goal of 
evaluating relational schemas for design quality—that is, to measure formally why 
one set of groupings of attributes into relation schemas is better than another.

There are two levels at which we can discuss the goodness of relation schemas. The 
first is the logical (or conceptual) level—how users interpret the relation schemas 
and the meaning of their attributes. Having good relation schemas at this level 
enables users to understand clearly the meaning of the data in the relations, and 
hence to formulate their queries correctly. The second is the implementation (or 
physical storage) level—how the tuples in a base relation are stored and updated. 

chapter 14
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This level applies only to schemas of base relations—which will be physically stored 
as files—whereas at the logical level we are interested in schemas of both base rela-
tions and views (virtual relations). The relational database design theory developed 
in this chapter applies mainly to base relations, although some criteria of appropri-
ateness also apply to views, as shown in Section 14.1.

As with many design problems, database design may be performed using two 
approaches: bottom-up or top-down. A bottom-up design methodology (also called 
design by synthesis) considers the basic relationships among individual attributes as 
the starting point and uses those to construct relation schemas. This approach is not 
very popular in practice1 because it suffers from the problem of having to collect a 
large number of binary relationships among attributes as the starting point. For prac-
tical situations, it is next to impossible to capture binary relationships among all such 
pairs of attributes. In contrast, a top-down design methodology (also called design by 
analysis) starts with a number of groupings of attributes into relations that exist 
together naturally, for example, on an invoice, a form, or a report. The relations are 
then analyzed individually and collectively, leading to further decomposition until all 
desirable properties are met. The theory described in this chapter is applicable pri-
marily to the top-down design approach, and as such is more appropriate when per-
forming design of databases by analysis and decomposition of sets of attributes that 
appear together in files, in reports, and on forms in real-life situations.

Relational database design ultimately produces a set of relations. The implicit goals 
of the design activity are information preservation and minimum redundancy. 
Information is very hard to quantify—hence we consider information preservation 
in terms of maintaining all concepts, including attribute types, entity types, and 
relationship types as well as generalization/specialization relationships, which are 
described using a model such as the EER model. Thus, the relational design must 
preserve all of these concepts, which are originally captured in the conceptual 
design after the conceptual to logical design mapping. Minimizing redundancy 
implies minimizing redundant storage of the same information and reducing the 
need for multiple updates to maintain consistency across multiple copies of the 
same information in response to real-world events that require making an update.

We start this chapter by informally discussing some criteria for good and bad rela-
tion schemas in Section 14.1. In Section 14.2, we define the concept of functional 
dependency, a formal constraint among attributes that is the main tool for formally 
measuring the appropriateness of attribute groupings into relation schemas. In Sec-
tion 14.3, we discuss normal forms and the process of normalization using func-
tional dependencies. Successive normal forms are defined to meet a set of desirable 
constraints expressed using primary keys and functional dependencies. The normal-
ization procedure consists of applying a series of tests to relations to meet these 
increasingly stringent requirements and decompose the relations when necessary. In 
Section 14.4, we discuss more general definitions of normal forms that can be directly 

1An exception in which this approach is used in practice is based on a model called the binary relational 

model. An example is the NIAM methodology (Verheijen and VanBekkum, 1982).
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applied to any given design and do not require step-by-step analysis and normaliza-
tion. Sections 14.5 to 14.7 discuss further normal forms up to the fifth normal form. 
In Section 14.6 we introduce the multivalued dependency (MVD), followed by the 
join dependency (JD) in Section 14.7. Section 14.8 summarizes the chapter.

Chapter 15 continues the development of the theory related to the design of good 
relational schemas. We discuss desirable properties of relational decomposition—
nonadditive join property and functional dependency preservation property. A 
general algorithm that tests whether or not a decomposition has the nonadditive 
(or lossless) join property (Algorithm 15.3 is also presented). We then discuss prop-
erties of functional dependencies and the concept of a minimal cover of dependen-
cies. We consider the bottom-up approach to database design consisting of a set of 
algorithms to design relations in a desired normal form. These algorithms assume 
as input a given set of functional dependencies and achieve a relational design in a 
target normal form while adhering to the above desirable properties. In Chapter 15 
we also define additional types of dependencies that further enhance the evaluation 
of the goodness of relation schemas.

If Chapter 15 is not covered in a course, we recommend a quick introduction to the 
desirable properties of decomposition from Section 15.2. and the importance of the 
non-additive join property during decomposition.

14.1  Informal Design Guidelines  
for Relation Schemas

Before discussing the formal theory of relational database design, we discuss four 
informal guidelines that may be used as measures to determine the quality of relation 
schema design:

 ■ Making sure that the semantics of the attributes is clear in the schema

 ■ Reducing the redundant information in tuples

 ■ Reducing the NULL values in tuples

 ■ Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another, as we will see.

14.1.1 Imparting Clear Semantics to Attributes in Relations
Whenever we group attributes to form a relation schema, we assume that attri-
butes belonging to one relation have certain real-world meaning and a proper 
interpretation associated with them. The semantics of a relation refers to its mean-
ing resulting from the interpretation of attribute values in a tuple. In Chapter 5 we 
discussed how a relation can be interpreted as a set of facts. If the conceptual 
design described in Chapters 3 and 4 is done carefully and the mapping procedure 
in Chapter 9 is followed systematically, the relational schema design should have a 
clear meaning.
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In general, the easier it is to explain the semantics of the relation—or in other words, 
what a relation exactly means and stands for—the better the relation schema design 
will be. To illustrate this, consider Figure 14.1, a simplified version of the COMPANY 
relational database schema in Figure 5.5, and Figure 14.2, which presents an example 
of populated relation states of this schema. The meaning of the EMPLOYEE relation 
schema is simple: Each tuple represents an employee, with values for the employee’s 
name (Ename), Social Security number (Ssn), birth date (Bdate), and address 
(Address), and the number of the department that the employee works for (Dnumber). 
The Dnumber attribute is a foreign key that represents an implicit relationship between 
EMPLOYEE and DEPARTMENT. The semantics of the DEPARTMENT and PROJECT 
schemas are also straightforward: Each DEPARTMENT tuple represents a department 
entity, and each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of 
DEPARTMENT relates a department to the employee who is its manager, whereas 
Dnum of PROJECT relates a project to its controlling department; both are foreign key 
attributes. The ease with which the meaning of a relation’s attributes can be explained 
is an informal measure of how well the relation is designed.

DEPARTMENT

DnumberDname

Ename Bdate Address Dnumber

EMPLOYEE

P.K.

P.K.

F.K.

Pname Pnumber Plocation Dnum

PROJECT F.K.

F.K.

DEPT_LOCATIONS

Dnumber Dlocation

P.K.

P.K.

Pnumber Hours

WORKS_ON
F.K. F.K.

P.K.

F.K.

Ssn

Dmgr_ssn

Ssn

Figure 14.1 
A simplified COMPANY relational 
database schema.
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Ename

EMPLOYEE

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.
Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321
666884444

987987987

888665555

666884444

123456789

123456789

333445555

453453453
453453453

333445555

333445555
333445555

999887777

987987987

999887777
987987987

987654321

987654321
888665555

3

1

2

2

1
2

3

10

20

10

30
10

30

30

20

20

40.0

32.5

7.5

10.0

20.0
20.0

10.0

10.0

10.0

35.0

30.0
10.0

5.0

20.0

15.0

Null

1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20
1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Dnumber

Dname

DEPARTMENT

Research

Administration

Headquarters 888665555

333445555

987654321

Dnumber

5

1

4

DEPT_LOCATIONS

1

4

5

Dnumber

Houston

Dlocation

Bellaire

Stafford

Houston

Sugarland

5

5

PROJECT

ProductX

ProductY

ProductZ

Pname

1

Pnumber Plocation Dnum

3

2

20

10

Reorganization

30

5

5

5

1

4

4

Bellaire

Houston

Sugarland

Houston

Stafford

StaffordNewbenefits

Computerization

WORKS_ON

Pnumber Hours

Ssn

Dmgr_ssn

Ssn

Figure 14.2 
Sample database state for the relational database schema in Figure 14.1.
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The semantics of the other two relation schemas in Figure 14.1 are slightly more 
complex. Each tuple in DEPT_LOCATIONS gives a department number (Dnumber) 
and one of the locations of the department (Dlocation). Each tuple in WORKS_ON 
gives an employee Social Security number (Ssn), the project number of one of the 
projects that the employee works on (Pnumber), and the number of hours per week 
that the employee works on that project (Hours). However, both schemas have a 
well-defined and unambiguous interpretation. The schema DEPT_LOCATIONS rep-
resents a multivalued attribute of DEPARTMENT, whereas WORKS_ON represents 
an M:N relationship between EMPLOYEE and PROJECT. Hence, all the relation 
schemas in Figure 14.1 may be considered as easy to explain and therefore good 
from the standpoint of having clear semantics. We can thus formulate the following 
informal design guideline.

Guideline 1. Design a relation schema so that it is easy to explain its meaning. Do 
not combine attributes from multiple entity types and relationship types into a sin-
gle relation. Intuitively, if a relation schema corresponds to one entity type or one 
relationship type, it is straightforward to explain its meaning. Otherwise, if the rela-
tion corresponds to a mixture of multiple entities and relationships, semantic ambi-
guities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1. The relation schemas in Figures 14.3(a)  
and 14.3(b) also have clear semantics. (The reader should ignore the lines under the 
relations for now; they are used to illustrate functional dependency notation, dis-
cussed in Section 14.2.) A tuple in the EMP_DEPT relation schema in Figure 14.3(a) 
represents a single employee but includes, along with the Dnumber (the identifier 
for the department he/she works for), additional information—namely, the  
name (Dname) of the department for which the employee works and the Social 
Security number (Dmgr_ssn) of the department manager. For the EMP_PROJ rela-
tion in Figure 14.3(b), each tuple relates an employee to a project but also includes 

Ssn

EMP_PROJ

(b)

(a)

FD1

FD2

FD3

Pnumber Hours Ename Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Figure 14.3 
Two relation schemas 
suffering from update 
anomalies.  
(a) EMP_DEPT and  
(b) EMP_PROJ.



 14.1 Informal Design Guidelines for Relation Schemas  465

the employee name (Ename), project name (Pname), and project location (Plocation). 
Although there is nothing wrong logically with these two relations, they violate 
Guideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixes 
attributes of employees and departments, and EMP_PROJ mixes attributes of 
employees and projects and the WORKS_ON relationship. Hence, they fare poorly 
against the above measure of design quality. They may be used as views, but they 
cause problems when used as base relations, as we discuss in the following section.

14.1.2 Redundant Information in Tuples and Update Anomalies
One goal of schema design is to minimize the storage space used by the base rela-
tions (and hence the corresponding files). Grouping attributes into relation sche-
mas has a significant effect on storage space. For example, compare the space used 
by the two base relations EMPLOYEE and DEPARTMENT in Figure 14.2 with that 
for an EMP_DEPT base relation in Figure 14.4, which is the result of applying the 
NATURAL JOIN operation to EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attri-
bute values pertaining to a particular department (Dnumber, Dname, Dmgr_ssn) are 
repeated for every employee who works for that department. In contrast, each depart-
ment’s information appears only once in the DEPARTMENT relation in Figure 14.2. 
Only the department number (Dnumber) is repeated in the EMPLOYEE relation for 
each employee who works in that department as a foreign key. Similar comments 
apply to the EMP_PROJ relation (see Figure 14.4), which augments the WORKS_ON 
relation with additional attributes from EMPLOYEE and PROJECT.

Storing natural joins of base relations leads to an additional problem referred to as 
update anomalies. These can be classified into insertion anomalies, deletion anom-
alies, and modification anomalies.2

Insertion Anomalies. Insertion anomalies can be differentiated into two types, 
illustrated by the following examples based on the EMP_DEPT relation:

 ■ To insert a new employee tuple into EMP_DEPT, we must include either the 
attribute values for the department that the employee works for, or NULLs (if 
the employee does not work for a department as yet). For example, to insert 
a new tuple for an employee who works in department number 5, we must 
enter all the attribute values of department 5 correctly so that they are con-
sistent with the corresponding values for department 5 in other tuples in 
EMP_DEPT. In the design of Figure 14.2, we do not have to worry about this 
consistency problem because we enter only the department number in the 
employee tuple; all other attribute values of department 5 are recorded only 
once in the database, as a single tuple in the DEPARTMENT relation.

 ■ It is difficult to insert a new department that has no employees as yet in the 
EMP_DEPT relation. The only way to do this is to place NULL values in the 

2These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, as 
we shall discuss in Section 15.3.
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attributes for employee. This violates the entity integrity for EMP_DEPT 
because its primary key Ssn cannot be null. Moreover, when the first 
employee is assigned to that department, we do not need this tuple with 
NULL values anymore. This problem does not occur in the design of Fig- 
ure 14.2 because a department is entered in the DEPARTMENT relation whether 
or not any employees work for it, and whenever an employee is assigned to 
that department, a corresponding tuple is inserted in EMPLOYEE.

Ename

EMP_DEPT

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 FireOak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnumber Dname Dmgr_ssn

Ssn

EMP_PROJ

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987654321

987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3

10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

Null

Hours

Narayan, Ramesh K.

Smith, John B.

Smith, John B.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

Wong, Franklin T.

English, Joyce A.

English, Joyce A.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Wallace, Jennifer S.

Borg, James E.

Ename

ProductZ

ProductX

ProductY

ProductY

ProductZ

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Pname Plocation

Computerization

Redundancy Redundancy

Redundancy

Figure 14.4 
Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations  
in Figure 14.2. These may be stored as base relations for performance reasons.
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Deletion Anomalies. The problem of deletion anomalies is related to the second 
insertion anomaly situation just discussed. If we delete from EMP_DEPT an employee 
tuple that happens to represent the last employee working for a particular depart-
ment, the information concerning that department is lost inadvertently from the 
database. This problem does not occur in the database of Figure 14.2 because 
DEPARTMENT tuples are stored separately.

Modification Anomalies. In EMP_DEPT, if we change the value of one of the attri-
butes of a particular department—say, the manager of department 5—we must 
update the tuples of all employees who work in that department; otherwise, the 
database will become inconsistent. If we fail to update some tuples, the same depart-
ment will be shown to have two different values for manager in different employee 
tuples, which would be wrong.3

It is easy to see that these three anomalies are undesirable and cause difficulties to 
maintain consistency of data as well as require unnecessary updates that can be 
avoided; hence, we can state the next guideline as follows.

Guideline 2. Design the base relation schemas so that no insertion, deletion, or 
modification anomalies are present in the relations. If any anomalies are present,4 

note them clearly and make sure that the programs that update the database will 
operate correctly.

The second guideline is consistent with and, in a way, a restatement of the first 
guideline. We can also see the need for a more formal approach to evaluating 
whether a design meets these guidelines. Sections 14.2 through 14.4 provide these 
needed formal concepts. It is important to note that these guidelines may some-
times have to be violated in order to improve the performance of certain queries. If 
EMP_DEPT is used as a stored relation (known otherwise as a materialized view) in 
addition to the base relations of EMPLOYEE and DEPARTMENT, the anomalies in 
EMP_DEPT must be noted and accounted for (for example, by using triggers or 
stored procedures that would make automatic updates). This way, whenever the 
base relation is updated, we do not end up with inconsistencies. In general, it is 
advisable to use anomaly-free base relations and to specify views that include the 
joins for placing together the attributes frequently referenced in important queries.

14.1.3 NULL Values in Tuples
In some schema designs we may group many attributes together into a “fat” rela-
tion. If many of the attributes do not apply to all tuples in the relation, we end up 
with many NULLs in those tuples. This can waste space at the storage level and may 
also lead to problems with understanding the meaning of the attributes and with 

3This is not as serious as the other problems, because all tuples can be updated by a single SQL query.

4Other application considerations may dictate and make certain anomalies unavoidable. For example, the 
EMP_DEPT relation may correspond to a query or a report that is frequently required.
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specifying JOIN operations at the logical level.5 Another problem with NULLs is how 
to account for them when aggregate operations such as COUNT or SUM are applied. 
SELECT and JOIN operations involve comparisons; if NULL values are present, the 
results may become unpredictable.6 Moreover, NULLs can have multiple interpreta-
tions, such as the following:

 ■ The attribute does not apply to this tuple. For example, Visa_status may not 
apply to U.S. students.

 ■ The attribute value for this tuple is unknown. For example, the Date_of_birth 
may be unknown for an employee.

 ■ The value is known but absent; that is, it has not been recorded yet. For 
example, the Home_Phone_Number for an employee may exist, but may not 
be available and recorded yet.

Having the same representation for all NULLs compromises the different meanings 
they may have. Therefore, we state another guideline.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose 
values may frequently be NULL. If NULLs are unavoidable, make sure that they apply 
in exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins with NULL values are the two overriding 
criteria that determine whether to include the columns that may have NULLs in a 
relation or to have a separate relation for those columns (with the appropriate key 
columns). For example, if only 15% of employees have individual offices, there is 
little justification for including an attribute Office_number in the EMPLOYEE rela-
tion; rather, a relation EMP_OFFICES(Essn, Office_number) can be created to include 
tuples for only the employees with individual offices.

14.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.5(a), 
which can be used instead of the single EMP_PROJ relation in Figure 14.3(b). A 
tuple in EMP_LOCS means that the employee whose name is Ename works on at 
least one project located at Plocation. A tuple in EMP_PROJ1 refers to the fact that the 
employee whose Social Security number is Ssn works the given Hours per week on 
the project whose name, number, and location are Pname, Pnumber, and Plocation. 
Figure 14.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 corresponding 
to the EMP_PROJ relation in Figure 14.4, which are obtained by applying the appro-
priate PROJECT (π) operations to EMP_PROJ.

5This is because inner and outer joins produce different results when NULLs are involved in joins. The users 
must thus be aware of the different meanings of the various types of joins. Although this is reasonable for 
sophisticated users, it may be difficult for others.

6In Section 5.5.1 we presented comparisons involving NULL values where the outcome (in three-valued 
logic) is TRUE, FALSE, and UNKNOWN.
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Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of 
EMP_PROJ. This produces a particularly bad schema design because we cannot 
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and 
EMP_LOCS. If we attempt a NATURAL JOIN operation on EMP_PROJ1 and  
EMP_LOCS, the result produces many more tuples than the original set of tuples  
in EMP_PROJ. In Figure 14.6, the result of applying the join to only the tuples for 
employee with Ssn = “123456789” is shown (to reduce the size of the resulting rela-
tion). Additional tuples that were not in EMP_PROJ are called spurious tuples 
because they represent spurious information that is not valid. The spurious 
tuples are marked by asterisks (*) in Figure 14.6. It is left to the reader to complete 
the result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCS 
tables in their entirety and to mark the spurious tuples in this result.

Ssn Pnumber Hours Pname Plocation

Ename

P.K.

EMP_PROJ1

Plocation

P.K.

EMP_LOCS

Ename
Smith, John B.
Smith, John B.
Narayan, Ramesh K.
English, Joyce A.
English, Joyce A.
Wong, Franklin T.
Wong, Franklin T.
Wong, Franklin T.
Zelaya, Alicia J.
Jabbar, Ahmad V.
Wallace, Jennifer S.
Wallace, Jennifer S.
Borg, James E.

Houston

Bellaire
Sugarland

Sugarland

Bellaire
Sugarland

Stafford

Houston

Stafford
Houston

Houston
Stafford
Stafford

Plocation

(b)

(a)

EMP_PROJ1

Ssn
123456789
123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777
999887777
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987987987
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987654321

888665555

3

1

2

2

1

2

30

30

30

10

10

3
10

20

20

20

Pnumber

40.0

32.5

7.5

10.0

10.0

10.0

10.0

20.0

20.0

30.0

5.0

10.0

35.0

20.0

15.0

NULL

ProductZ

ProductX

ProductY

ProductY

ProductZ

Computerization

Reorganization

ProductX

ProductY

Newbenefits

Newbenefits

Computerization

Computerization

Newbenefits

Reorganization

Reorganization

Houston

Bellaire

Sugarland

Sugarland

Houston

Stafford

Houston

Bellaire

Sugarland

Stafford

Stafford

Stafford

Stafford

Stafford

Houston

Houston

Hours Pname Plocation

EMP_LOCS
Figure 14.5 
Particularly poor design for the EMP_PROJ relation in 
Figure 14.3(b). (a) The two relation schemas EMP_LOCS 
and EMP_PROJ1. (b) The result of projecting the  
extension of EMP_PROJ from Figure 14.4 onto the  
relations EMP_LOCS and EMP_PROJ1.
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Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because 
when we JOIN them back using NATURAL JOIN, we do not get the correct original 
information. This is because in this case Plocation happens to be the attribute that 
relates EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a 
foreign key in either EMP_LOCS or EMP_PROJ1. We now informally state another 
design guideline.

Guideline 4. Design relation schemas so that they can be joined with equality 
conditions on attributes that are appropriately related (primary key, foreign key) 
pairs in a way that guarantees that no spurious tuples are generated. Avoid relations 
that contain matching attributes that are not (foreign key, primary key) combina-
tions because joining on such attributes may produce spurious tuples.

Ssn
123456789

123456789

123456789

123456789

123456789

666884444
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10.0
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333445555 3 10.0 ProductZ Houston

333445555 10 10.0 Computerization Stafford
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333445555 20

*

*

*

*

*

*

*

*

*

*

*

10.0 Reorganization Houston

Smith, John B.

Smith, John B.

English, Joyce A.

Narayan, Ramesh K.

Wong, Franklin T.

Smith, John B.

English, Joyce A.

English, Joyce A.

Wong, Franklin T.

Smith, John B.

Smith, John B.

English, Joyce A.

Wong, Franklin T.

English, Joyce A.

Wong, Franklin T.

Narayan, Ramesh K.
Wong, Franklin T.

Wong, Franklin T.
Narayan, Ramesh K.

Wong, Franklin T.

Plocation Ename

* 
* 

*

Figure 14.6 
Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCS  
of Figure 14.5 just for employee with Ssn = “123456789”. Generated spurious  
tuples are marked by asterisks.
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This informal guideline obviously needs to be stated more formally. In Section 15.2 
we discuss a formal condition called the nonadditive (or lossless) join property that 
guarantees that certain joins do not produce spurious tuples.

14.1.5 Summary and Discussion of Design Guidelines
In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead to 
problematic relation schemas and we proposed informal guidelines for a good rela-
tional design. The problems we pointed out, which can be detected without addi-
tional tools of analysis, are as follows:

 ■ Anomalies that cause redundant work to be done during insertion into and 
modification of a relation, and that may cause accidental loss of information 
during a deletion from a relation

 ■ Waste of storage space due to NULLs and the difficulty of performing selec-
tions, aggregation operations, and joins due to NULL values

 ■ Generation of invalid and spurious data during joins on base relations with 
matched attributes that may not represent a proper (foreign key, primary 
key) relationship

In the rest of this chapter we present formal concepts and theory that may be used 
to define the goodness and badness of individual relation schemas more precisely. 
First we discuss functional dependency as a tool for analysis. Then we specify the 
three normal forms and Boyce-Codd normal form (BCNF) for relation schemas as 
the established and accepted standards of quality in relational design. The strategy 
for achieving a good design is to decompose a badly designed relation appropriately 
to achieve higher normal forms. We also briefly introduce additional normal forms 
that deal with additional dependencies. In Chapter 15, we discuss the properties of 
decomposition in detail and provide a variety of algorithms related to functional 
dependencies, goodness of decomposition, and the bottom-up design of relations 
by using the functional dependencies as a starting point.

14.2 Functional Dependencies
So far we have dealt with the informal measures of database design. We now intro-
duce a formal tool for analysis of relational schemas that enables us to detect and 
describe some of the above-mentioned problems in precise terms. The single most 
important concept in relational schema design theory is that of a functional depen-
dency. In this section we formally define the concept, and in Section 14.3 we see 
how it can be used to define normal forms for relation schemas.

14.2.1 Definition of Functional Dependency
A functional dependency is a constraint between two sets of attributes from the 
database. Suppose that our relational database schema has n attributes A1, A2, 
… , An; let us think of the whole database as being described by a single universal 



472 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 relation schema R = {A1, A2, … , An}.7 We do not imply that we will actually store 
the database as a single universal table; we use this concept only in developing the 
formal theory of data dependencies.8

Definition. A functional dependency, denoted by X → Y, between two sets of 
attributes X and Y that are subsets of R specifies a constraint on the possible 
tuples that can form a relation state r of R. The constraint is that, for any two 
tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on, or are deter-
mined by, the values of the X component; alternatively, the values of the X component 
of a tuple uniquely (or functionally) determine the values of the Y component. We 
also say that there is a functional dependency from X to Y, or that Y is functionally 
dependent on X. The abbreviation for functional dependency is FD or f.d. The set of 
attributes X is called the left-hand side of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever 
two tuples of r(R) agree on their X-value, they must necessarily agree on their 
Y-value. Note the following:

 ■ If a constraint on R states that there cannot be more than one tuple with a 
given X-value in any relation instance r(R)—that is, X is a candidate key of 
R—this implies that X → Y for any subset of attributes Y of R (because the 
key constraint implies that no two tuples in any legal state r(R) will have the 
same value of X). If X is a candidate key of R, then X → R.

 ■ If X → Y in R, this does not say whether or not Y → X in R.

A functional dependency is a property of the semantics or meaning of the  
attributes. The database designers will use their understanding of the semantics of the 
attributes of R—that is, how they relate to one another—to specify the functional 
dependencies that should hold on all relation states (extensions) r of R. Relation 
extensions r(R) that satisfy the functional dependency constraints are called legal 
relation states (or legal extensions) of R. Hence, the main use of functional depen-
dencies is to describe further a relation schema R by specifying constraints on its 
attributes that must hold at all times. Certain FDs can be specified without referring 
to a specific relation, but as a property of those attributes given their commonly 
understood meaning. For example, {State, Driver_license_number} → Ssn should 
normally hold for any adult in the United States and hence should hold whenever 
these attributes appear in a relation.9 It is also possible that certain functional 

7This concept of a universal relation is important when we discuss the algorithms for relational database 
design in Chapter 15.

8This assumption implies that every attribute in the database should have a distinct name. In Chapter 5 
we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinct  
relations had the same name.

9Note that there are databases, such as those of credit card agencies or police departments, where this 
functional dependency may not hold because of fraudulent records resulting from the same driver’s 
license number being used by two or more different individuals.



 14.2 Functional Dependencies 473

dependencies may cease to exist in the real world if the relationship changes. For 
example, the FD Zip_code → Area_code used to exist as a relationship between postal 
codes and telephone number codes in the United States, but with the proliferation 
of telephone area codes it is no longer true.

Consider the relation schema EMP_PROJ in Figure 14.3(b); from the semantics of 
the attributes and the relation, we know that the following functional dependencies 
should hold:

 a. Ssn → Ename

 b. Pnumber → {Pname, Plocation}

 c. {Ssn, Pnumber} → Hours

These functional dependencies specify that (a) the value of an employee’s Social 
Security number (Ssn) uniquely determines the employee name (Ename), (b) the 
value of a project’s number (Pnumber) uniquely determines the project name 
(Pname) and location (Plocation), and (c) a combination of Ssn and Pnumber values 
uniquely determines the number of hours the employee currently works on the 
project per week (Hours). Alternatively, we say that Ename is functionally deter-
mined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the 
value of Ename, and so on.

A functional dependency is a property of the relation schema R, not of a particular 
legal relation state r of R. Therefore, an FD cannot be inferred automatically from a 
given relation extension r but must be defined explicitly by someone who knows 
the semantics of the attributes of R. For example, Figure 14.7 shows a particular 
state of the TEACH relation schema. Although at first glance we may think that  
Text → Course, we cannot confirm this unless we know that it is true for all possible 
legal states of TEACH. It is, however, sufficient to demonstrate a single counterexam-
ple to disprove a functional dependency. For example, because ‘Smith’ teaches both 
‘Data Structures’ and ‘Database Systems,’ we can conclude that Teacher does not 
functionally determine Course.

Given a populated relation, we cannot determine which FDs hold and which do not 
unless we know the meaning of and the relationships among the attributes. All we can 
say is that a certain FD may exist if it holds in that particular extension. We cannot 
guarantee its existence until we understand the meaning of the corresponding attri-
butes. We can, however, emphatically state that a certain FD does not hold if there are 

TEACH

Teacher
Smith

Smith

Hall

Brown

Bartram

Martin

Hoffman

Horowitz

Compilers

Data Structures

Data Management

Data Structures

Course Text

Figure 14.7 
A relation state of TEACH with a 
possible functional dependency 
TEXT → COURSE. However, 
TEACHER → COURSE,  
TEXT → TEACHER and  
COURSE → TEXT are ruled out.
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tuples that show the violation of such an FD. See the illustrative example relation in 
Figure 14.8. Here, the following FDs may hold because the four tuples in the current 
extension have no violation of these constraints: B → C; C → B; {A, B} → C; {A, B} → D; 
and {C, D} → B. However, the following do not hold because we already have viola-
tions of them in the given extension: A → B (tuples 1 and 2 violate this constraint);  
B → A (tuples 2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD is 
displayed as a horizontal line. The left-hand-side attributes of the FD are connected 
by vertical lines to the line representing the FD, whereas the right-hand-side attri-
butes are connected by the lines with arrows pointing toward the attributes.

We denote by F the set of functional dependencies that are specified on relation 
schema R. Typically, the schema designer specifies the functional dependencies that 
are semantically obvious; usually, however, numerous other functional dependen-
cies hold in all legal relation instances among sets of attributes that can be derived 
from and satisfy the dependencies in F. Those other dependencies can be inferred 
or deduced from the FDs in F. We defer the details of inference rules and properties 
of functional dependencies to Chapter 15.

14.3 Normal Forms Based on Primary Keys
Having introduced functional dependencies, we are now ready to use them to spec-
ify how to use them to develop a formal methodology for testing and improving 
relation schemas. We assume that a set of functional dependencies is given for each 
relation, and that each relation has a designated primary key; this information com-
bined with the tests (conditions) for normal forms drives the normalization process 
for relational schema design. Most practical relational design projects take one of 
the following two approaches:

 ■ Perform a conceptual schema design using a conceptual model such as ER 
or EER and map the conceptual design into a set of relations.

 ■ Design the relations based on external knowledge derived from an existing 
implementation of files or forms or reports.

Following either of these approaches, it is then useful to evaluate the relations for 
goodness and decompose them further as needed to achieve higher normal forms 
using the normalization theory presented in this chapter and the next. We focus in 

Figure 14.8
A relation R (A, B, C, D) 
with its extension.

A B C D

a1 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d3

a3 b3 c4 d3
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this section on the first three normal forms for relation schemas and the intuition 
behind them, and we discuss how they were developed historically. More general 
definitions of these normal forms, which take into account all candidate keys of a 
relation rather than just the primary key, are deferred to Section 14.4.

We start by informally discussing normal forms and the motivation behind their 
development, as well as reviewing some definitions from Chapter 3 that are needed 
here. Then we discuss the first normal form (1NF) in Section 14.3.4, and we present 
the definitions of second normal form (2NF) and third normal form (3NF), which 
are based on primary keys, in Sections 14.3.5 and 14.3.6, respectively.

14.3.1 Normalization of Relations
The normalization process, as first proposed by Codd (1972a), takes a relation 
schema through a series of tests to certify whether it satisfies a certain normal form. 
The process, which proceeds in a top-down fashion by evaluating each relation 
against the criteria for normal forms and decomposing relations as necessary, can 
thus be considered as relational design by analysis. Initially, Codd proposed three 
normal forms, which he called first, second, and third normal form. A stronger 
definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed later 
by Boyce and Codd. All these normal forms are based on a single analytical tool: the 
functional dependencies among the attributes of a relation. Later, a fourth normal 
form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of 
multivalued dependencies and join dependencies, respectively; these are briefly dis-
cussed in Sections 14.6 and 14.7.

Normalization of data can be considered a process of analyzing the given relation 
schemas based on their FDs and primary keys to achieve the desirable properties of 
(1) minimizing redundancy and (2) minimizing the insertion, deletion, and update 
anomalies discussed in Section 14.1.2. It can be considered as a “filtering” or “purifi-
cation” process to make the design have successively better quality. An unsatisfactory 
relation schema that does not meet the condition for a normal form—the normal 
form test—is decomposed into smaller relation schemas that contain a subset of the 
attributes and meet the test that was otherwise not met by the original relation. Thus, 
the normalization procedure provides database designers with the following:

 ■ A formal framework for analyzing relation schemas based on their keys and 
on the functional dependencies among their attributes

 ■ A series of normal form tests that can be carried out on individual relation 
schemas so that the relational database can be normalized to any desired 
degree

Definition. The normal form of a relation refers to the highest normal form 
condition that it meets, and hence indicates the degree to which it has been 
normalized.

Normal forms, when considered in isolation from other factors, do not guarantee a 
good database design. It is generally not sufficient to check separately that each 
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relation schema in the database is, say, in BCNF or 3NF. Rather, the process of nor-
malization through decomposition must also confirm the existence of additional 
properties that the relational schemas, taken together, should possess. These would 
include two properties:

 ■ The nonadditive join or lossless join property, which guarantees that the 
spurious tuple generation problem discussed in Section 14.1.4 does not 
occur with respect to the relation schemas created after decomposition

 ■ The dependency preservation property, which ensures that each functional 
dependency is represented in some individual relation resulting after 
decomposition

The nonadditive join property is extremely critical and must be achieved at any 
cost, whereas the dependency preservation property, although desirable, is some-
times sacrificed, as we discuss in Section 15.2.2. We defer the discussion of the for-
mal concepts and techniques that guarantee the above two properties to Chapter 15.

14.3.2 Practical Use of Normal Forms
Most practical design projects in commercial and governmental environment acquire 
existing designs of databases from previous designs, from designs in legacy models, or 
from existing files. They are certainly interested in assuring that the designs are good 
quality and sustainable over long periods of time. Existing designs are evaluated by 
applying the tests for normal forms, and normalization is carried out in practice so 
that the resulting designs are of high quality and meet the desirable properties stated 
previously. Although several higher normal forms have been defined, such as the 4NF 
and 5NF that we discuss in Sections 14.6 and 14.7, the practical utility of these normal 
forms becomes questionable. The reason is that the constraints on which they are 
based are rare and hard for the database designers and users to understand or to 
detect. Designers and users must either already know them or discover them as a part 
of the business. Thus, database design as practiced in industry today pays particular 
attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need not normalize to the 
highest possible normal form. Relations may be left in a lower normalization status, 
such as 2NF, for performance reasons, such as those discussed at the end of Sec- 
tion 14.1.2. Doing so incurs the corresponding penalties of dealing with the anomalies.

Definition. Denormalization is the process of storing the join of higher nor-
mal form relations as a base relation, which is in a lower normal form.

14.3.3 Definitions of Keys and Attributes Participating in Keys
Before proceeding further, let’s look again at the definitions of keys of a relation 
schema from Chapter 3.

Definition. A superkey of a relation schema R = {A1, A2, … , An} is a set of attri-
butes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation 
state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional property 
that removal of any attribute from K will cause K not to be a superkey anymore.
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The difference between a key and a superkey is that a key has to be minimal; that is, 
if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of R for any Ai, 
1 ≤ i ≤ k. In Figure 14.1, {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename}, 
{Ssn, Ename, Bdate}, and any set of attributes that includes Ssn are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of 
the candidate keys is arbitrarily designated to be the primary key, and the others 
are called secondary keys. In a practical relational database, each relation schema 
must have a primary key. If no candidate key is known for a relation, the entire rela-
tion can be treated as a default superkey. In Figure 14.1, {Ssn} is the only candidate 
key for EMPLOYEE, so it is also the primary key.

Definition. An attribute of relation schema R is called a prime attribute of R if 
it is a member of some candidate key of R. An attribute is called nonprime if it 
is not a prime attribute—that is, if it is not a member of any candidate key.

In Figure 14.1, both Ssn and Pnumber are prime attributes of WORKS_ON, whereas 
other attributes of WORKS_ON are nonprime.

We now present the first three normal forms: 1NF, 2NF, and 3NF. These were pro-
posed by Codd (1972a) as a sequence to achieve the desirable state of 3NF relations 
by progressing through the intermediate states of 1NF and 2NF if needed. As we 
shall see, 2NF and 3NF independently attack different types of problems arising 
from problematic functional dependencies among attributes. However, for histori-
cal reasons, it is customary to follow them in that sequence; hence, by definition a 
3NF relation already satisfies 2NF.

14.3.4 First Normal Form
First normal form (1NF)is now considered to be part of the formal definition of a 
relation in the basic (flat) relational model; historically, it was defined to disallow 
multivalued attributes, composite attributes, and their combinations. It states that 
the domain of an attribute must include only atomic (simple, indivisible) values and 
that the value of any attribute in a tuple must be a single value from the domain of 
that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a 
combination of both as an attribute value for a single tuple. In other words, 1NF 
disallows relations within relations or relations as attribute values within tuples. The 
only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 14.1, whose primary 
key is Dnumber, and suppose that we extend it by including the Dlocations attribute 
as shown in Figure 14.9(a). We assume that each department can have a number of 
locations. The DEPARTMENT schema and a sample relation state are shown in Fig-
ure 14.9. As we can see, this is not in 1NF because Dlocations is not an atomic attri-
bute, as illustrated by the first tuple in Figure 14.9(b). There are two ways we can 
look at the Dlocations attribute:

 ■ The domain of Dlocations contains atomic values, but some tuples can have a 
set of these values. In this case, Dlocations is not functionally dependent on 
the primary key Dnumber.
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 ■ The domain of Dlocations contains sets of values and hence is nonatomic. In 
this case, Dnumber → Dlocations because each set is considered a single mem-
ber of the attribute domain.10

In either case, the DEPARTMENT relation in Figure 14.9 is not in 1NF; in fact, it does 
not even qualify as a relation according to our definition of relation in Section 3.1. 
There are three main techniques to achieve first normal form for such a relation:

  1. Remove the attribute Dlocations that violates 1NF and place it in a separate 
relation DEPT_LOCATIONS along with the primary key Dnumber of  
DEPARTMENT. The primary key of this newly formed relation is the combi-
nation {Dnumber, Dlocation}, as shown in Figure 14.2. A distinct tuple in 
DEPT_LOCATIONS exists for each location of a department. This decom-
poses the non-1NF relation into two 1NF relations.

Dname
DEPARTMENT
(a)

DEPARTMENT
(b)

DEPARTMENT
(c)

Dnumber Dmgr_ssn Dlocations

Dname
Research

Administration

Headquarters 1

5

4

Dnumber

888665555

333445555

987654321

Dmgr_ssn

{Houston}

{Bellaire, Sugarland, Houston}

{Stafford}

Dlocations

Dname
Research

Research

Research

Administration

Headquarters

Bellaire

Sugarland

Houston

Stafford

Houston

5

5

5

4

1

Dnumber

333445555

333445555

333445555

987654321

888665555

Dmgr_ssn Dlocation
Figure 14.9 
Normalization into 1NF. (a) A 
relation schema that is not in 
1NF. (b) Sample state of  
relation DEPARTMENT.  
(c) 1NF version of the same 
relation with redundancy.

10In this case we can consider the domain of Dlocations to be the power set of the set of single  
locations; that is, the domain is made up of all possible subsets of the set of single locations.
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  2. Expand the key so that there will be a separate tuple in the original  
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Fig-
ure 14.9(c). In this case, the primary key becomes the combination {Dnumber, 
Dlocation}. This solution has the disadvantage of introducing redundancy in 
the relation and hence is rarely adopted.

  3. If a maximum number of values is known for the attribute—for example, if it 
is known that at most three locations can exist for a department—replace the 
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and 
Dlocation3. This solution has the disadvantage of introducing NULL values if 
most departments have fewer than three locations. It further introduces 
spurious semantics about the ordering among the location values; that 
ordering is not originally intended. Querying on this attribute becomes more 
difficult; for example, consider how you would write the query: List the 
departments that have ‘Bellaire’ as one of their locations in this design. For all 
these reasons, it is best to avoid this alternative.

Of the three solutions above, the first is generally considered best because it 
does not suffer from redundancy and it is completely general; it places no max-
imum limit on the number of values. In fact, if we choose the second solution, it 
will be decomposed further during subsequent normalization steps into the 
first solution.

First normal form also disallows multivalued attributes that are themselves com-
posite. These are called nested relations because each tuple can have a relation 
within it. Figure 14.10 shows how the EMP_PROJ relation could appear if nesting is 
allowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber, 
Hours) within each tuple represents the employee’s projects and the hours per week 
that employee works on each project. The schema of this EMP_PROJ relation can be 
represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

The set braces { } identify the attribute PROJS as multivalued, and we list the com-
ponent attributes that form PROJS between parentheses ( ). Interestingly, recent 
trends for supporting complex objects (see Chapter 12) and XML data (see Chap-
ter 13) attempt to allow and formalize nested relations within relational database 
systems, which were disallowed early on by 1NF.

Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 14.10(a)  
and (b), whereas Pnumber is the partial key of the nested relation; that is, within each 
tuple, the nested relation must have unique values of Pnumber. To normalize this 
into 1NF, we remove the nested relation attributes into a new relation and propa-
gate the primary key into it; the primary key of the new relation will combine the 
partial key with the primary key of the original relation. Decomposition and pri-
mary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2, as shown in 
Figure 14.10(c).

This procedure can be applied recursively to a relation with multiple-level nesting 
to unnest the relation into a set of 1NF relations. This is useful in converting an 
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unnormalized relation schema with many levels of nesting into 1NF relations. As 
an example, consider the following:

CANDIDATE (Ssn, Name, {JOB_HIST (Company, Highest_position,  
{SAL_HIST (Year, Max_sal)})})

The foregoing describes data about candidates applying for jobs with their job his-
tory as a nested relation within which the salary history is stored as a deeper nested 

EMP_PROJ
(a)

Projs
Pnumber HoursSsn Ename

EMP_PROJ1
(c)

Ssn Ename

EMP_PROJ2

HoursSsn Pnumber

EMP_PROJ
(b)

Ssn

123456789

666884444

453453453

333445555

999887777

987987987

987654321

888665555

Zelaya, Alicia J.

Jabbar, Ahmad V.

Wallace, Jennifer S.

Borg, James E.

32.5

7.5
40.0

20.0

20.0

10.0
10.0

10.0

10.0

30.0
10.0

35.0

5.0
20.0

15.0

NULL

English, Joyce A.

Narayan, Ramesh K.

Smith, John B.

Wong, Franklin  T.

Ename

3

1

2

1

2

2

20

3

10

30
10

10

20

30
30

20

Pnumber Hours

Figure 14.10 
Normalizing nested  
relations into 1NF.  
(a) Schema of the  
EMP_PROJ relation with 
a nested relation attribute 
PROJS. (b) Sample  
extension of the  
EMP_PROJ relation 
showing nested relations 
within each tuple.  
(c) Decomposition of  
EMP_PROJ into relations 
EMP_PROJ1 and  
EMP_PROJ2 by  
propagating the primary 
key.
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relation. The first normalization using internal partial keys Company and Year, 
respectively, results in the following 1NF relations:

CANDIDATE_1 (Ssn, Name)
CANDIDATE_JOB_HIST (Ssn, Company, Highest_position)
CANDIDATE_SAL_HIST (Ssn, Company, Year, Max-sal)

The existence of more than one multivalued attribute in one relation must be han-
dled carefully. As an example, consider the following non-1NF relation:

PERSON (Ss#, {Car_lic#}, {Phone#})

This relation represents the fact that a person has multiple cars and multiple phones. 
If strategy 2 above is followed, it results in an all-key relation:

PERSON_IN_1NF (Ss#, Car_lic#, Phone#)

To avoid introducing any extraneous relationship between Car_lic# and Phone#, all 
possible combinations of values are represented for every Ss#, giving rise to redun-
dancy. This leads to the problems that are typically discovered at a later stage of 
normalization and that are handled by multivalued dependencies and 4NF, which 
we will discuss in Section 14.6. The right way to deal with the two multivalued attri-
butes in PERSON shown previously is to decompose it into two separate relations, 
using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

A note about the relations that involve attributes that go beyond just numeric and 
character string data. It is becoming common in today’s databases to incorporate 
images, documents, video clips, audio clips, and so on. When these are stored in a 
relation, the entire object or file is treated as an atomic value, which is stored as a 
BLOB (binary large object) or CLOB (character large object) data type using SQL. 
For practical purposes, the object is treated as an atomic, single-valued attribute 
and hence it maintains the 1NF status of the relation.

14.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. 
A functional dependency X → Y is a full functional dependency if removal of any 
attribute A from X means that the dependency does not hold anymore; that is, for 
any attribute A ε X, (X − {A}) does not functionally determine Y. A functional 
dependency X → Y is a partial dependency if some attribute A ε X can be removed 
from X and the dependency still holds; that is, for some A ε X, (X − {A}) → Y. In 
Figure 14.3(b), {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours 
nor Pnumber → Hours holds). However, the dependency {Ssn, Pnumber} → Ename is 
partial because Ssn → Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is 
fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side 
attributes are part of the primary key. If the primary key contains a single attribute, 
the test need not be applied at all. The EMP_PROJ relation in Figure 14.3(b) is in 
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1NF but is not in 2NF. The nonprime attribute Ename violates 2NF because of FD2, 
as do the nonprime attributes Pname and Plocation because of FD3. Each of the func-
tional dependencies FD2 and FD3 violates 2NF because Ename can be functionally 
determined by only Ssn, and both Pname and Plocation can be functionally deter-
mined by only Pnumber. Attributes Ssn and Pnumber are a part of the primary key 
{Ssn, Pnumber} of EMP_PROJ, thus violating the 2NF test.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized 
into a number of 2NF relations in which nonprime attributes are associated only 
with the part of the primary key on which they are fully functionally dependent. 
Therefore, the functional dependencies FD1, FD2, and FD3 in Figure 14.3(b) lead to 
the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3 
shown in Figure 14.11(a), each of which is in 2NF.

Ssn

EMP_PROJ
(a)

(b)

FD1

FD2

FD3

2NF Normalization

Pnumber Hours Ename Pname Plocation

Ssn

EP1

FD1

Pnumber Hours

Ename Ssn

ED1
Bdate Address Dnumber

Ssn

EP2

FD2

Ename Pnumber

EP3

FD3

Pname Plocation

Ename Ssn

EMP_DEPT
Bdate Address Dnumber Dname Dmgr_ssn

Dnumber

ED2
Dname Dmgr_ssn

3NF Normalization

Figure 14.11 
Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into  
2NF relations. (b) Normalizing EMP_DEPT into 3NF relations.
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14.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A func-
tional dependency X → Y in a relation schema R is a transitive dependency if there 
exists a set of attributes Z in R that is neither a candidate key nor a subset of any key of 
R,11 and both X → Z and Z → Y hold. The dependency Ssn → Dmgr_ssn is transitive 
through Dnumber in EMP_DEPT in Figure 14.3(a), because both the dependencies  
Ssn → Dnumber and Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor a 
subset of the key of EMP_DEPT. Intuitively, we can see that the dependency of Dmgr_ssn 
on Dnumber is undesirable in EMP_DEPT since Dnumber is not a key of EMP_DEPT.

Definition. According to Codd’s original definition, a relation schema R is in 
3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent 
on the primary key.

The relation schema EMP_DEPT in Figure 14.3(a) is in 2NF, since no partial depen-
dencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitive 
dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. We can normalize 
EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2 
shown in Figure 14.11(b). Intuitively, we see that ED1 and ED2 represent indepen-
dent facts about employees and departments, both of which are entities in their 
own right. A NATURAL JOIN operation on ED1 and ED2 will recover the original 
relation EMP_DEPT without generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is 
part (a proper subset) of the primary key, or any functional dependency in which the 
left-hand side is a nonkey attribute, is a problematic FD. 2NF and 3NF normalization 
remove these problem FDs by decomposing the original relation into new relations. In 
terms of the normalization process, it is not necessary to remove the partial dependen-
cies before the transitive dependencies, but historically, 3NF has been defined with the 
assumption that a relation is tested for 2NF first before it is tested for 3NF. Moreover, 
the general definition of 3NF we present in Section 14.4.2 automatically covers the 
condition that the relation also satisfies 2NF. Table 14.1 informally summarizes the 
three normal forms based on primary keys, the tests used in each case, and the corre-
sponding remedy or normalization performed to achieve the normal form.

14.4  General Definitions of Second  
and Third Normal Forms

In general, we want to design our relation schemas so that they have neither partial 
nor transitive dependencies because these types of dependencies cause the update 
anomalies discussed in Section 14.1.2. The steps for normalization into 3NF rela-
tions that we have discussed so far disallow partial and transitive dependencies on 

11This is the general definition of transitive dependency. Because we are concerned only with primary 
keys in this section, we allow transitive dependencies where X is the primary key but Z may be (a subset 
of) a candidate key.
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the primary key. The normalization procedure described so far is useful for analysis 
in practical situations for a given database where primary keys have already been 
defined. These definitions, however, do not take other candidate keys of a relation, if 
any, into account. In this section we give the more general definitions of 2NF and 
3NF that take all candidate keys of a relation into account. Notice that this does not 
affect the definition of 1NF since it is independent of keys and functional depen-
dencies. As a general definition of prime attribute, an attribute that is part of any 
candidate key will be considered as prime. Partial and full functional dependencies 
and transitive dependencies will now be considered with respect to all candidate keys 
of a relation.

14.4.1 General Definition of Second Normal Form
Definition. A relation schema R is in second normal form (2NF) if every 
nonprime attribute A in R is not partially dependent on any key of R.12

The test for 2NF involves testing for functional dependencies whose left-hand side 
attributes are part of the primary key. If the primary key contains a single attribute, 
the test need not be applied at all. Consider the relation schema LOTS shown in 
Figure 14.12(a), which describes parcels of land for sale in various counties of a 
state. Suppose that there are two candidate keys: Property_id# and {County_name, 
Lot#}; that is, lot numbers are unique only within each county, but Property_id# 
numbers are unique across counties for the entire state.

Table 14.1 Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form Test Remedy (Normalization)

First (1NF) Relation should have no multivalued  
attributes or nested relations.

Form new relations for each multivalued 
attribute or nested relation.

Second (2NF) For relations where primary key  
contains multiple attributes, no nonkey 
attribute should be functionally  
dependent on a part of the primary key.

Decompose and set up a new relation 
for each partial key with its dependent 
attribute(s). Make sure to keep a relation 
with the original primary key and any 
attributes that are fully functionally 
dependent on it.

Third (3NF) Relation should not have a nonkey  
attribute functionally determined by 
another nonkey attribute (or by a set of 
nonkey attributes). That is, there should 
be no transitive dependency of a nonkey 
attribute on the primary key.

Decompose and set up a relation that 
includes the nonkey attribute(s) that 
functionally determine(s) other nonkey 
attribute(s).

12This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A 
in R is fully functionally dependent on every key of R.
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Figure 14.12 
Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies  
FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2.  
(c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressive  
normalization of LOTS into a 3NF design.
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Based on the two candidate keys Property_id# and {County_name, Lot#}, the func-
tional dependencies FD1 and FD2 in Figure 14.12(a) hold. We choose Property_id# 
as the primary key, so it is underlined in Figure 14.12(a), but no special consider-
ation will be given to this key over the other candidate key. Suppose that the follow-
ing two additional functional dependencies hold in LOTS:

FD3: County_name → Tax_rate
FD4: Area → Price

In words, the dependency FD3 says that the tax rate is fixed for a given county (does 
not vary lot by lot within the same county), whereas FD4 says that the price of a lot 
is determined by its area regardless of which county it is in. (Assume that this is the 
price of the lot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because Tax_rate is 
partially dependent on the candidate key {County_name, Lot#}, due to FD3. To nor-
malize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2, 
shown in Figure 14.12(b). We construct LOTS1 by removing the attribute Tax_rate 
that violates 2NF from LOTS and placing it with County_name (the left-hand side of 
FD3 that causes the partial dependency) into another relation LOTS2. Both LOTS1 
and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to 
LOTS1.

14.4.2 General Definition of Third Normal Form
Definition. A relation schema R is in third normal form (3NF) if, whenever a 
nontrivial functional dependency X → A holds in R, either (a) X is a superkey 
of R, or (b) A is a prime attribute of R.13

According to this definition, LOTS2 (Figure 14.12(b)) is in 3NF. However, FD4 in 
LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute 
in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the relation sche-
mas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A by 
removing the attribute Price that violates 3NF from LOTS1 and placing it with Area 
(the left-hand side of FD4 that causes the transitive dependency) into another rela-
tion LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

 ■ LOTS1 violates 3NF because Price is transitively dependent on each of the 
candidate keys of LOTS1 via the nonprime attribute Area.

 ■ This general definition can be applied directly to test whether a relation schema 
is in 3NF; it does not have to go through 2NF first. In other words, if a relation 
passes the general 3NF test, then it automatically passes the 2NF test.

13Note that based on inferred f.d.’s (which are discussed in Section 15.1), the f.d. Y → YA also holds 
whenever Y → A is true. Therefore, a slightly better way of saying this statement is that {A-X} is a prime 
attribute of R.
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If we apply the above 3NF definition to LOTS with the dependencies FD1 through 
FD4, we find that both FD3 and FD4 violate 3NF by the general definition above 
because the LHS County_name in FD3 is not a superkey. Therefore, we could 
decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive 
and partial dependencies that violate 3NF can be removed in any order.

14.4.3 Interpreting the General Definition of Third Normal Form
A relation schema R violates the general definition of 3NF if a functional depen-
dency X → A holds in R that meets either of the two conditions, namely (a) and (b). 
The first condition “catches” two types of problematic dependencies:

 ■ A nonprime attribute determines another nonprime attribute. Here we typi-
cally have a transitive dependency that violates 3NF.

 ■ A proper subset of a key of R functionally determines a nonprime attribute. 
Here we have a partial dependency that violates 2NF.

Thus, condition (a) alone addresses the problematic dependencies that were causes 
for second and third normalization as we discussed.

Therefore, we can state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute 
of R meets both of the following conditions:

 ■ It is fully functionally dependent on every key of R.

 ■ It is nontransitively dependent on every key of R.

However, note the clause (b) in the general definition of 3NF. It allows certain func-
tional dependencies to slip through or escape in that they are OK with the 3NF 
definition and hence are not “caught” by the 3NF definition even though they may 
be potentially problematic. The Boyce-Codd normal form “catches” these depen-
dencies in that it does not allow them. We discuss that normal form next.

14.5 Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it 
was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; 
however, a relation in 3NF is not necessarily in BCNF. We pointed out in the last 
subsection that although 3NF allows functional dependencies that conform to the 
clause (b) in the 3NF definition, BCNF disallows them and hence is a stricter defini-
tion of a normal form.

Intuitively, we can see the need for a stronger normal form than 3NF by going back to 
the LOTS relation schema in Figure 14.12(a) with its four functional dependencies FD1 
through FD4. Suppose that we have thousands of lots in the relation but the lots are 
from only two counties: DeKalb and Fulton. Suppose also that lot sizes in DeKalb 
County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County 
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are restricted to 1.1, 1.2, … , 1.9, and 2.0 acres. In such a situation we would have the 
additional functional dependency FD5: Area → County_name. If we add this to the other 
dependencies, the relation schema LOTS1A still is in 3NF because this f.d. conforms to 
clause (b) in the general definition of 3NF, County_name being a prime attribute.

The area of a lot that determines the county, as specified by FD5, can be represented 
by 16 tuples in a separate relation R(Area, County_name), since there are only 16 pos-
sible Area values (see Figure 14.13). This representation reduces the redundancy of 
repeating the same information in the thousands of LOTS1A tuples. BCNF is a 
stronger normal form that would disallow LOTS1A and suggest the need for decom-
posing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional 
dependency X → A holds in R, then X is a superkey of R.

The formal definition of BCNF differs from the definition of 3NF in that clause (b) 
of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent from 
BCNF. That makes BCNF a stronger normal form compared to 3NF. In our exam-
ple, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A. We 
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown 
in Figure 14.13(a). This decomposition loses the functional dependency FD2 
because its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if there 
exists some f.d. X → A that holds in a relation schema R with X not being a superkey 
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Figure 14.13 
Boyce-Codd normal form. (a) BCNF 
normalization of LOTS1A with the 
functional dependency FD2 being 
lost in the decomposition. (b) A 
schematic relation with FDs; it is in 
3NF, but not in BCNF due to the 
f.d. C → B.
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and A being a prime attribute will R be in 3NF but not in BCNF. The relation schema 
R shown in Figure 14.13(b) illustrates the general case of such a relation. Such  
an f.d. leads to potential redundancy of data, as we illustrated above in case of  
FD5: Area → County_name.in LOTS1A relation. Ideally, relational database design 
should strive to achieve BCNF or 3NF for every relation schema. Achieving the normal-
ization status of just 1NF or 2NF is not considered adequate, since both were developed 
historically to be intermediate normal forms as stepping stones to 3NF and BCNF.

14.5.1 Decomposition of Relations not in BCNF
As another example, consider Figure 14.14, which shows a relation TEACH with the 
following dependencies:

FD1: {Student, Course} → Instructor
FD2:14  Instructor → Course

Note that {Student, Course} is a candidate key for this relation and that the depen-
dencies shown follow the pattern in Figure 14.13(b), with Student as A, Course as B, 
and Instructor as C. Hence this relation is in 3NF but not BCNF. Decomposition of 
this relation schema into two schemas is not straightforward because it may be 
decomposed into one of the three following possible pairs:

  1. R1 (Student, Instructor) and R2(Student, Course)

  2. R1 (Course, Instructor) and R2(Course, Student)

  3. R1 (Instructor, Course) and R2(Instructor, Student)

All three decompositions lose the functional dependency FD1. The question then 
becomes: Which of the above three is a desirable decomposition? As we pointed out 
earlier (Section 14.3.1), we strive to meet two properties of decomposition during 

14This dependency means that each instructor teaches one course is a constraint for this application.
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the normalization process: the nonadditive join property and the functional depen-
dency preservation property. We are not able to meet the functional dependency 
preservation for any of the above BCNF decompositions as seen above; but we must 
meet the nonadditive join property. A simple test comes in handy to test the binary 
decomposition of a relation into two relations:

NJB (Nonadditive Join Test for Binary Decompositions). A decomposition 
D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a 
set of functional dependencies F on R if and only if either

 ■ The FD ((R1 ∩ R2) → (R1 − R2)) is in F+15, or

 ■ The FD ((R1 ∩ R2) → (R2 − R1)) is in F+

If we apply this test to the above three decompositions, we find that only the third 
decomposition meets the test. In the third decomposition, the R1 ∩ R2 for the above 
test is Instructor and R1 − R2 is Course. Because Instructor → Course, the NJB test 
is satisfied and the decomposition is nonadditive. (It is left as an exercise for the 
reader to show that the first two decompositions do not meet the NJB test.) Hence, 
the proper decomposition of TEACH into BCNF relations is:

TEACH1 (Instructor, Course) and TEACH2 (Instructor, Student)

We make sure that we meet this property, because nonadditive decomposition is 
a must during normalization. You should verify that this property holds with 
respect to our informal successive normalization examples in Sections 14.3 
and  14.4 and also by the decomposition of LOTS1A into two BCNF relations 
 LOTS1AX and LOTS1AY.

In general, a relation R not in BCNF can be decomposed so as to meet the nonaddi-
tive join property by the following procedure.16 It decomposes R successively into a 
set of relations that are in BCNF:

Let R be the relation not in BCNF, let X ⊆ R, and let X → A be the FD that 
causes a violation of BCNF. R may be decomposed into two relations:

R –A

XA

If either R –A or XA. is not in BCNF, repeat the process.

The reader should verify that if we applied the above procedure to LOTS1A, we 
obtain relations LOTS1AX and LOTS1AY as before. Similarly, applying this proce-
dure to TEACH results in relations TEACH1 and TEACH2

15The notation F+ refers to the cover of the set of functional dependencies and includes all f.d.’s implied 
by F. It is discussed in detail in Section 15.1. Here, it is enough to make sure that one of the two f.d.’s 
actually holds for the nonadditive decomposition into R1 and R2 to pass this test.

16Note that this procedure is based on Algorithm 15.5 from Chapter 15 for producing BCNF schemas 
by decomposition of a universal schema.
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Note that if we designate (Student, Instructor) as a primary key of the relation TEACH, 
the FD instructor → Course causes a partial (non-fully-functional) dependency of 
Course on a part of this key. This FD may be removed as a part of second normaliza-
tion (or by a direct application of the above procedure to achieve BCNF) yielding 
exactly the same two relations in the result. This is an example of a case where we 
may reach the same ultimate BCNF design via alternate paths of normalization.

14.6  Multivalued Dependency  
and Fourth Normal Form

Consider the relation EMP shown in Figure 14.15(a). A tuple in this EMP relation 
represents the fact that an employee whose name is Ename works on the project 
whose name is Pname and has a dependent whose name is Dname. An employee 
may work on several projects and may have several dependents, and the employee’s 
projects and dependents are independent of one another.17 To keep the relation 
state consistent and to avoid any spurious relationship between the two indepen-
dent attributes, we must have a separate tuple to represent every combination of an 
employee’s dependent and an employee’s project. In the relation state shown in 
Figure 14.15(a), the employee with Ename Smith works on two projects ‘X’ and ‘Y’ 
and has two dependents ‘John’ and ‘Anna’, and therefore there are four tuples to 
represent these facts together. The relation EMP is an all-key relation (with key 
made up of all attributes) and therefore has no f.d.’s and as such qualifies to be a 
BCNF relation. We can see that there is an obvious redundancy in the relation 
EMP—the dependent information is repeated for every project and the project 
information is repeated for every dependent.

As illustrated by the EMP relation, some relations have constraints that cannot be 
specified as functional dependencies and hence are not in violation of BCNF. To 
address this situation, the concept of multivalued dependency (MVD) was proposed 
and, based on this dependency, the fourth normal form was defined. A more formal 
discussion of MVDs and their properties is deferred to Chapter 15. Multivalued depen-
dencies are a consequence of first normal form (1NF) (see Section 14.3.4), which disal-
lows an attribute in a tuple to have a set of values. If more than one multivalued attribute 
is present, the second option of normalizing the relation (see Section 14.3.4) intro-
duces a multivalued dependency. Informally, whenever two independent 1:N relation-
ships A:B and A:C are mixed in the same relation, R(A, B, C), an MVD may arise.18

14.6.1 Formal Definition of Multivalued Dependency
Definition. A multivalued dependency X → Y specified on relation schema R, 
where X and Y are both subsets of R, specifies the following constraint on any 

17In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type  
(see Chapter 7).

18This MVD is denoted as A →→ B|C.



492 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then 
two tuples t3 and t4 should also exist in r with the following properties,19 where 
we use Z to denote (R − (X ∪ Y)):20

 ■ t3[X] = t4[X] = t1[X] = t2[X]

 ■ t3[Y] = t1[Y] and t4[Y] = t2[Y]

 ■ t3[Z] = t2[Z] and t4[Z] = t1[Z]
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Figure 14.15 
Fourth and fifth normal forms.
(a) The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname.
(b)  Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and  

EMP_DEPENDENTS.
(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3).
(d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

19The tuples t1, t2, t3, and t4 are not necessarily distinct.

20Z is shorthand for the attributes in R after the attributes in (X ∪ Y ) are removed from R.
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Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symme-
try in the definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y 
implies X →→ Z and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R. 
For example, the relation EMP_PROJECTS in Figure 14.15(b) has the trivial  
MVD Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD 
Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial 
MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because 
it does not specify any significant or meaningful constraint on R.

If we have a nontrivial MVD in a relation, we may have to repeat values redun-
dantly in the tuples. In the EMP relation of Figure 14.15(a), the values ‘X’ and ‘Y’ of 
Pname are repeated with each value of Dname (or, by symmetry, the values ‘John’ 
and ‘Anna’ of Dname are repeated with each value of Pname). This redundancy is 
clearly undesirable. However, the EMP schema is in BCNF because no functional 
dependencies hold in EMP. Therefore, we need to define a fourth normal form that 
is stronger than BCNF and disallows relation schemas such as EMP. Notice that 
relations containing nontrivial MVDs tend to be all-key relations—that is, their 
key is all their attributes taken together. Furthermore, it is rare that such all-key 
relations with a combinatorial occurrence of repeated values would be designed in 
practice. However, recognition of MVDs as a potential problematic dependency is 
essential in relational design.

We now present the definition of fourth normal form (4NF), which is violated 
when a relation has undesirable multivalued dependencies and hence can be used 
to identify and decompose such relations.

Definition. A relation schema R is in 4NF with respect to a set of dependencies 
F (that includes functional dependencies and multivalued dependencies) if, for 
every nontrivial multivalued dependency X →→ Y in F+,21 X is a superkey for R.

We can state the following points:

 ■ An all-key relation is always in BCNF since it has no FDs.

 ■ An all-key relation such as the EMP relation in Figure 14.15(a), which has no 
FDs but has the MVD Ename →→ Pname | Dname, is not in 4NF.

 ■ A relation that is not in 4NF due to a nontrivial MVD must be decomposed 
to convert it into a set of relations in 4NF.

 ■ The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF 
consists of decomposing it so that each MVD is represented by a separate relation 
where it becomes a trivial MVD. Consider the EMP relation in Figure 14.15(a). EMP is 
not in 4NF because in the nontrivial MVDs Ename →→ Pname and Ename →→ Dname, 

21F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. This is 
defined in Section 15.1.
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and Ename is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and 
EMP_DEPENDENTS, shown in Figure 14.15(b). Both EMP_PROJECTS and 
EMP_DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in  
EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No 
other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No 
FDs hold in these relation schemas either.

14.7 Join Dependencies and Fifth Normal Form
In our discussion so far, we have pointed out the problematic functional dependen-
cies and shown how they were eliminated by a process of repeated binary decompo-
sition during the process of normalization to achieve 1NF, 2NF, 3NF, and BCNF. 
These binary decompositions must obey the NJB property for which we introduced 
a test in Section 14.5 while discussing the decomposition to achieve BCNF. Achiev-
ing 4NF typically involves eliminating MVDs by repeated binary decompositions as 
well. However, in some cases there may be no nonadditive join decomposition of R 
into two relation schemas, but there may be a nonadditive join decomposition into 
more than two relation schemas. Moreover, there may be no functional dependency 
in R that violates any normal form up to BCNF, and there may be no nontrivial 
MVD present in R either that violates 4NF. We then resort to another dependency 
called the join dependency and, if it is present, carry out a multiway decomposition 
into fifth normal form (5NF). It is important to note that such a dependency is a 
peculiar semantic constraint that is difficult to detect in practice; therefore, normal-
ization into 5NF is rarely done in practice.

Definition. A join dependency (JD), denoted by JD(R1, R2, … , Rn), specified 
on relation schema R, specifies a constraint on the states r of R. The constraint 
states that every legal state r of R should have a nonadditive join decomposition 
into R1, R2, … , Rn. Hence, for every such r we have

* (πR1
(r), πR2

(r), … , πRn
(r)) = r

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted  
as JD(R1, R2) implies an MVD (R1 ∩ R2) →→ (R1 − R2)(or, by symmetry,  
(R1 ∩ R2) →→ (R2 − R1)). A join dependency JD(R1, R2, … , Rn), specified on relation 
schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, … , Rn) is equal 
to R. Such a dependency is called trivial because it has the nonadditive join property 
for any relation state r of R and thus does not specify any constraint on R. We can 
now define the fifth normal form, which is also called project-join normal form.

Definition. A relation schema R is in fifth normal form (5NF) (or project-join 
normal form (PJNF)) with respect to a set F of functional, multivalued, and 
join dependencies if, for every nontrivial join dependency JD(R1, R2, … , Rn) in 
F+ (that is, implied by F),22 every Ri is a superkey of R.

22Again, F+ refers to the cover of functional dependencies F, or all dependencies that are implied by F. 
This is defined in Section 15.1.
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For an example of a JD, consider once again the SUPPLY all-key relation in Fig- 
ure 14.15(c). Suppose that the following additional constraint always holds: Whenever 
a supplier s supplies part p, and a project j uses part p, and the supplier s supplies at 
least one part to project j, then supplier s will also be supplying part p to project j. 
This constraint can be restated in other ways and specifies a join dependency 
JD(R1, R2, R3) among the three projections R1 (Sname, Part_name), R2 (Sname, 
Proj_name), and R3 (Part_name, Proj_name) of SUPPLY. If this constraint holds, the 
tuples below the dashed line in Figure 14.15(c) must exist in any legal state of the 
SUPPLY relation that also contains the tuples above the dashed line. Figure 14.15(d) 
shows how the SUPPLY relation with the join dependency is decomposed into three 
relations R1, R2, and R3 that are each in 5NF. Notice that applying a natural join to 
any two of these relations produces spurious tuples, but applying a natural join to 
all three together does not. The reader should verify this on the sample relation in 
Figure 14.15(c) and its projections in Figure 14.15(d). This is because only the JD 
exists, but no MVDs are specified. Notice, too, that the JD(R1, R2, R3) is specified on 
all legal relation states, not just on the one shown in Figure 14.15(c).

Discovering JDs in practical databases with hundreds of attributes is next to impos-
sible. It can be done only with a great degree of intuition about the data on the part 
of the designer. Therefore, the current practice of database design pays scant atten-
tion to them. One result due to Date and Fagin (1992) relates to conditions detected 
using f.d.’s alone and ignores JDs completely. It states: “If a relation schema is in 
3NF and each of its keys consists of a single attribute, it is also in 5NF.”

14.8 Summary
In this chapter we discussed several pitfalls in relational database design using intu-
itive arguments. We identified informally some of the measures for indicating 
whether a relation schema is good or bad, and we provided informal guidelines for 
a good design. These guidelines are based on doing a careful conceptual design in 
the ER and EER model, following the mapping procedure in Chapter 9 to map enti-
ties and relationships into relations. Proper enforcement of these guidelines and 
lack of redundancy will avoid the insertion/deletion/update anomalies and genera-
tion of spurious data. We recommended limiting NULL values, which cause prob-
lems during SELECT, JOIN, and aggregation operations. Then we presented some 
formal concepts that allow us to do relational design in a top-down fashion by ana-
lyzing relations individually. We defined this process of design by analysis and 
decomposition by introducing the process of normalization.

We defined the concept of functional dependency, which is the basic tool for ana-
lyzing relational schemas, and we discussed some of its properties. Functional 
dependencies specify semantic constraints among the attributes of a relation 
schema. Next we described the normalization process for achieving good designs 
by testing relations for undesirable types of problematic functional dependencies. 
We provided a treatment of successive normalization based on a predefined pri-
mary key in each relation, and we then relaxed this requirement and provided more 
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general definitions of second normal form (2NF) and third normal form (3NF) that 
take all candidate keys of a relation into account. We presented examples to illus-
trate how, by using the general definition of 3NF, a given relation may be analyzed 
and decomposed to eventually yield a set of relations in 3NF.

We presented Boyce-Codd normal form (BCNF) and discussed how it is a stronger 
form of 3NF. We also illustrated how the decomposition of a non-BCNF relation 
must be done by considering the nonadditive decomposition requirement. We pre-
sented a test for the nonadditive join property of binary decompositions and also 
gave a general algorithm to convert any relation not in BCNF into a set of BCNF 
relations. We motivated the need for an additional constraint beyond the functional 
dependencies based on mixing of independent multivalued attributes into a single 
relation. We introduced multivalued dependency (MVD) to address such condi-
tions and defined the fourth normal form based on MVDs. Finally, we introduced 
the fifth normal form, which is based on join dependency and which identifies a 
peculiar constraint that causes a relation to be decomposed into several compo-
nents so that they always yield the original relation after a join. In practice, most 
commercial designs have followed the normal forms up to BCNF. The need to 
decompose into 5NF rarely arises in practice, and join dependencies are difficult to 
detect for most practical situations, making 5NF more of theoretical value.

Chapter 15 presents synthesis as well as decomposition algorithms for relational 
database design based on functional dependencies. Related to decomposition, we 
discuss the concepts of nonadditive (or lossless) join and dependency preservation, 
which are enforced by some of these algorithms. Other topics in Chapter 15 include 
a more detailed treatment of functional and multivalued dependencies, and other 
types of dependencies.

Review Questions
 14.1. Discuss attribute semantics as an informal measure of goodness for a rela-

tion schema.

 14.2. Discuss insertion, deletion, and modification anomalies. Why are they con-
sidered bad? Illustrate with examples.

 14.3. Why should NULLs in a relation be avoided as much as possible? Discuss the 
problem of spurious tuples and how we may prevent it.

 14.4. State the informal guidelines for relation schema design that we discussed. 
Illustrate how violation of these guidelines may be harmful.

 14.5. What is a functional dependency? What are the possible sources of the 
information that defines the functional dependencies that hold among the 
attributes of a relation schema?

 14.6. Why can we not infer a functional dependency automatically from a partic-
ular relation state?
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 14.7. What does the term unnormalized relation refer to? How did the normal forms 
develop historically from first normal form up to Boyce-Codd normal form?

 14.8. Define first, second, and third normal forms when only primary keys are 
considered. How do the general definitions of 2NF and 3NF, which consider 
all keys of a relation, differ from those that consider only primary keys?

 14.9. What undesirable dependencies are avoided when a relation is in 2NF?

 14.10. What undesirable dependencies are avoided when a relation is in 3NF?

 14.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-
nitions beyond primary keys?

 14.12. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it 
considered a stronger form of 3NF?

 14.13. What is multivalued dependency? When does it arise?

 14.14. Does a relation with two or more columns always have an MVD? Show with 
an example.

 14.15. Define fourth normal form. When is it violated? When is it typically applicable?

 14.16. Define join dependency and fifth normal form.

 14.17. Why is 5NF also called project-join normal form (PJNF)?

 14.18. Why do practical database designs typically aim for BCNF and not aim for 
higher normal forms?

Exercises
 14.19. Suppose that we have the following requirements for a university database 

that is used to keep track of students’ transcripts:

a. The university keeps track of each student’s name (Sname), student num-
ber (Snum), Social Security number (Ssn), current address (Sc_addr) and 
phone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone), 
birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, … , 
‘graduate’), major department (Major_code), minor department  
(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, … , ‘ph.d.’). 
Both Ssn and student number have unique values for each student.

b. Each department is described by a name (Dname), department code 
(Dcode), office number (Doffice), office phone (Dphone), and college  
(Dcollege). Both name and code have unique values for each department.

c. Each course has a course name (Cname), description (Cdesc), course 
number (Cnum), number of semester hours (Credit), level (Level), and 
offering department (Cdept). The course number is unique for each 
course.
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d. Each section has an instructor (Iname), semester (Semester), year (Year), 
course (Sec_course), and section number (Sec_num). The section number 
distinguishes different sections of the same course that are taught during 
the same semester/year; its values are 1, 2, 3, … , up to the total number of 
sections taught during each semester.

e. A grade record refers to a student (Ssn), a particular section, and a 
grade (Grade).

Design a relational database schema for this database application. First show 
all the functional dependencies that should hold among the attributes. Then 
design relation schemas for the database that are each in 3NF or BCNF. Spec-
ify the key attributes of each relation. Note any unspecified requirements, 
and make appropriate assumptions to render the specification complete.

 14.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of 
Figures 14.3 and 14.4?

 14.21. In what normal form is the LOTS relation schema in Figure 14.12(a) with 
respect to the restrictive interpretations of normal form that take only the 
primary key into account? Would it be in the same normal form if the gen-
eral definitions of normal form were used?

 14.22. Prove that any relation schema with two attributes is in BCNF.

 14.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and 
EMP_ LOCS relations in Figure 14.5 (result shown in Figure 14.6)?

 14.24. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set 
of functional dependencies F = {{A, B}→{C}, {A}→{D, E}, {B}→{F},  
{F}→{G, H}, {D}→{I, J}}. What is the key for R? Decompose R into 2NF and 
then 3NF relations.

 14.25. Repeat Exercise 14.24 for the following different set of functional dependen-
cies G = {{A, B}→{C}, {B, D}→{E, F}, {A, D}→{G, H}, {A}→{I}, {H}→{J}}.

 14.26. Consider the following relation:

A B C TUPLE#

10 b1 c1 1

10 b2 c2 2

11 b4 c1 3

12 b3 c4 4

13 b1 c1 5

14 b3 c4 6

a. Given the previous extension (state), which of the following dependen-
cies may hold in the above relation? If the dependency cannot hold, 
explain why by specifying the tuples that cause the violation.

 i. A → B, ii. B → C, iii. C → B, iv. B → A, v. C → A
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b. Does the above relation have a potential candidate key? If it does, what is 
it? If it does not, why not?

 14.27. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB → C, CD → E, DE → B

  Is AB a candidate key of this relation? If not, is ABD? Explain your answer.

 14.28. Consider the relation R, which has attributes that hold schedules of courses 
and sections at a university; R = {Course_no, Sec_no, Offering_dept,  
Credit_hours, Course_level, Instructor_ssn, Semester, Year, Days_hours, Room_no, 
No_of_students}. Suppose that the following functional dependencies hold on R:

{Course_no} → {Offering_dept, Credit_hours, Course_level}
{Course_no, Sec_no, Semester, Year} → {Days_hours, Room_no,
 No_of_students, Instructor_ssn}
{Room_no, Days_hours, Semester, Year} → {Instructor_ssn, Course_no,
 Sec_no}

  Try to determine which sets of attributes form keys of R. How would you 
normalize this relation?

 14.29. Consider the following relations for an order-processing application data-
base at ABC, Inc.

ORDER (O#, Odate, Cust#, Total_amount)
ORDER_ITEM(O#, I#, Qty_ordered, Total_price, Discount%)

  Assume that each item has a different discount. The Total_price refers to one 
item, Odate is the date on which the order was placed, and the Total_amount 
is the amount of the order. If we apply a natural join on the relations  
ORDER_ITEM and ORDER in this database, what does the resulting relation 
schema RES look like? What will be its key? Show the FDs in this resulting 
relation. Is RES in 2NF? Is it in 3NF? Why or why not? (State assumptions, 
if you make any.)

 14.30. Consider the following relation:

 CAR_SALE(Car#, Date_sold, Salesperson#, Commission%, Discount_amt)

  Assume that a car may be sold by multiple salespeople, and hence {Car#, 
Salesperson#} is the primary key. Additional dependencies are

Date_sold → Discount_amt and
Salesperson# → Commission%

  Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why 
or why not? How would you successively normalize it completely?

 14.31. Consider the following relation for published books:

BOOK (Book_title, Author_name, Book_type, List_price, Author_affil,
  Publisher)



500 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

  Author_affil refers to the affiliation of author. Suppose the following depen-
dencies exist:

Book_title → Publisher, Book_type
Book_type → List_price
Author_name → Author_affil

a. What normal form is the relation in? Explain your answer.

b. Apply normalization until you cannot decompose the relations further. 
State the reasons behind each decomposition.

 14.32. This exercise asks you to convert business statements into dependencies. 
Consider the relation DISK_DRIVE (Serial_number, Manufacturer, Model, Batch, 
Capacity, Retailer). Each tuple in the relation DISK_DRIVE contains information 
about a disk drive with a unique Serial_number, made by a manufacturer, with a 
particular model number, released in a certain batch, which has a certain stor-
age capacity and is sold by a certain retailer. For example, the tuple Disk_drive 
(‘1978619’, ‘WesternDigital’, ‘A2235X’, ‘765234’, 500, ‘CompUSA’) specifies 
that WesternDigital made a disk drive with serial number 1978619 and model 
number A2235X, released in batch 765234; it is 500GB and sold by CompUSA.

  Write each of the following dependencies as an FD:

a. The manufacturer and serial number uniquely identifies the drive.

b. A model number is registered by a manufacturer and therefore can’t be 
used by another manufacturer.

c. All disk drives in a particular batch are the same model.

d. All disk drives of a certain model of a particular manufacturer have 
exactly the same capacity.

 14.33. Consider the following relation:

R (Doctor#, Patient#, Date, Diagnosis, Treat_code, Charge)

  In the above relation, a tuple describes a visit of a patient to a doctor along 
with a treatment code and daily charge. Assume that diagnosis is determined 
(uniquely) for each patient by a doctor. Assume that each treatment code 
has a fixed charge (regardless of patient). Is this relation in 2NF? Justify your 
answer and decompose if necessary. Then argue whether further normaliza-
tion to 3NF is necessary, and if so, perform it.

 14.34. Consider the following relation:

CAR_SALE (Car_id, Option_type, Option_listprice, Sale_date,
 Option_discountedprice)

  This relation refers to options installed in cars (e.g., cruise control) that were 
sold at a dealership, and the list and discounted prices of the options.

  If CarID → Sale_date and Option_type → Option_listprice and CarID, Option_type 
→ Option_discountedprice, argue using the generalized definition of the 3NF 
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that this relation is not in 3NF. Then argue from your knowledge of 2NF, 
why it is not even in 2NF.

 14.35. Consider the relation:

BOOK (Book_Name, Author, Edition, Year)

  with the data:

Book_Name Author Edition Copyright_Year

DB_fundamentals Navathe 4 2004

DB_fundamentals Elmasri 4 2004

DB_fundamentals Elmasri 5 2007

DB_fundamentals Navathe 5 2007

a. Based on a common-sense understanding of the above data, what are the 
possible candidate keys of this relation?

b. Justify that this relation has the MVD {Book} →→ {Author} | {Edition, Year}.

c. What would be the decomposition of this relation based on the above 
MVD? Evaluate each resulting relation for the highest normal form it 
possesses.

 14.36. Consider the following relation:

TRIP (Trip_id, Start_date, Cities_visited, Cards_used)

  This relation refers to business trips made by company salespeople. Suppose 
the TRIP has a single Start_date but involves many Cities and salespeople 
may use multiple credit cards on the trip. Make up a mock-up population of 
the table.

a. Discuss what FDs and/or MVDs exist in this relation.

b. Show how you will go about normalizing the relation.

Laboratory Exercises
Note: The following exercises use the DBD (Data Base Designer) system that is 
described in the laboratory manual.

The relational schema R and set of functional dependencies F need to be coded as 
lists. As an example, R and F for this problem are coded as:

 R = [a, b, c, d, e, f, g, h, i, j]
 F = [[[a, b],[c]],
        [[a],[d, e]],
        [[b],[f]],
        [[f],[g, h]],
        [[d],[i, j]]]
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Since DBD is implemented in Prolog, use of uppercase terms is reserved for vari-
ables in the language and therefore lowercase constants are used to code the attri-
butes. For further details on using the DBD system, please refer to the laboratory 
manual.

 14.37. Using the DBD system, verify your answers to the following exercises:

a. 14.24 (3NF only)

b. 14.25

c. 14.27

d. 14.28

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original 
definitions of first, second, and third normal form were also defined in Codd 
(1972a), where a discussion on update anomalies can be found. Boyce-Codd nor-
mal form was defined in Codd (1974). The alternative definition of third normal 
form is given in Ullman (1988), as is the definition of BCNF that we give here. Ull-
man (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many of 
the theorems and proofs concerning functional dependencies. Date and Fagin 
(1992) give some simple and practical results related to higher normal forms.

Additional references to relational design theory are given in Chapter 15.
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15
Relational Database Design 

Algorithms and Further 
Dependencies

Chapter 14 presented a top-down relational design 
technique and related concepts used extensively 

in commercial database design projects today. The procedure involves designing an 
ER or EER conceptual schema and then mapping it to the relational model by a 
procedure such as the one described in Chapter 9. Primary keys are assigned to 
each relation based on known functional dependencies. In the subsequent process, 
which may be called relational design by analysis, initially designed relations from 
the above procedure—or those inherited from previous files, forms, and other 
sources—are analyzed to detect undesirable functional dependencies. These depen-
dencies are removed by the successive normalization procedure that we described 
in Section 14.3 along with definitions of related normal forms, which are succes-
sively better states of design of individual relations. In Section 14.3 we assumed that 
primary keys were assigned to individual relations; in Section 14.4 a more general 
treatment of normalization was presented where all candidate keys are considered 
for each relation, and Section 14.5 discussed a further normal form called BCNF. 
Then in Sections 14.6 and 14.7 we discussed two more types of dependencies—
multivalued dependencies and join dependencies—that can also cause redundancies 
and showed how they can be eliminated with further normalization.

In this chapter, we use the theory of normal forms and functional, multivalued, and 
join dependencies developed in the last chapter and build upon it while maintain-
ing three different thrusts. First, we discuss the concept of inferring new functional 
dependencies from a given set and discuss notions including closure, cover, mini-
mal cover, and equivalence. Conceptually, we need to capture the semantics of 

chapter 15
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attibutes within a relation completely and succinctly, and the minimal cover allows 
us to do it. Second, we discuss the desirable properties of nonadditive (lossless) 
joins and preservation of functional dependencies. A general algorithm to test for 
nonadditivity of joins among a set of relations is presented. Third, we present an 
approach to relational design by synthesis of functional dependencies. This is a 
bottom-up approach to design that presupposes that the known functional depen-
dencies among sets of attributes in the Universe of Discourse (UoD) have been 
given as input. We present algorithms to achieve the desirable normal forms, 
namely 3NF and BCNF, and achieve one or both of the desirable properties of non-
additivity of joins and functional dependency preservation. Although the synthesis 
approach is theoretically appealing as a formal approach, it has not been used in 
practice for large database design projects because of the difficulty of providing all 
possible functional dependencies up front before the design can be attempted. 
Alternately, with the approach presented in Chapter 14, successive decompositions 
and ongoing refinements to design become more manageable and may evolve over 
time. The final goal of this chapter is to discuss further the multivalued dependency 
(MVD) concept we introduced in Chapter 14 and briefly point out other types of 
dependencies that have been identified.

In Section 15.1 we discuss the rules of inference for functional dependencies and 
use them to define the concepts of a cover, equivalence, and minimal cover among 
functional dependencies. In Section 15.2, first we describe the two desirable 
properties of decompositions, namely, the dependency preservation property 
and the nonadditive (or lossless) join property, which are both used by the design 
algorithms to achieve desirable decompositions. It is important to note that it is 
insufficient to test the relation schemas independently of one another for compli-
ance with higher normal forms like 2NF, 3NF, and BCNF. The resulting relations 
must collectively satisfy these two additional properties to qualify as a good design. 
Section 15.3 is devoted to the development of relational design algorithms that 
start off with one giant relation schema called the universal relation, which is a 
hypothetical relation containing all the attributes. This relation is decomposed (or 
in other words, the given functional dependencies are synthesized) into relations 
that satisfy a certain normal form like 3NF or BCNF and also meet one or both of 
the desirable properties.

In Section 15.5 we discuss the multivalued dependency (MVD) concept further by 
applying the notions of inference, and equivalence to MVDs. Finally, in Sec- 
tion 15.6 we complete the discussion on dependencies among data by introducing 
inclusion dependencies and template dependencies. Inclusion dependencies can 
represent referential integrity constraints and class/subclass constraints across rela-
tions. We also describe some situations where a procedure or function is needed to 
state and verify a functional dependency among attributes. Then we briefly discuss 
domain-key normal form (DKNF), which is considered the most general normal 
form. Section 15.7 summarizes this chapter.

It is possible to skip some or all of Sections 15.3, 15.4, and 15.5 in an introductory 
database course.
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15.1  Further Topics in Functional  
Dependencies: Inference Rules,  
Equivalence, and Minimal Cover

We introduced the concept of functional dependencies (FDs) in Section 14.2, illus-
trated it with some examples, and developed a notation to denote multiple FDs over 
a single relation. We identified and discussed problematic functional dependencies 
in Sections 14.3 and 14.4 and showed how they can be eliminated by a proper decom-
position of a relation. This process was described as normalization, and we showed 
how to achieve the first through third normal forms (1NF through 3NF) given pri-
mary keys in Section 14.3. In Sections 14.4 and 14.5 we provided generalized tests for 
2NF, 3NF, and BCNF given any number of candidate keys in a relation and showed 
how to achieve them. Now we return to the study of functional dependencies and 
show how new dependencies can be inferred from a given set and discuss the con-
cepts of closure, equivalence, and minimal cover that we will need when we later 
consider a synthesis approach to design of relations given a set of FDs.

15.1.1 Inference Rules for Functional Dependencies
We denote by F the set of functional dependencies that are specified on relation 
schema R. Typically, the schema designer specifies the functional dependencies 
that are semantically obvious; usually, however, numerous other functional 
dependencies hold in all legal relation instances among sets of attributes that can 
be derived from and satisfy the dependencies in F. Those other dependencies can 
be inferred or deduced from the FDs in F. We call them as inferred or implied 
functional dependencies.

Definition: An FD X → Y is inferred from or implied by a set of dependencies 
F specified on R if X → Y holds in every legal relation state r of R; that is, when-
ever r satisfies all the dependencies in F, X → Y also holds in r.

In real life, it is impossible to specify all possible functional dependencies for a given 
situation. For example, if each department has one manager, so that Dept_no 
uniquely determines Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a unique 
phone number called Mgr_phone (Mgr_ssn → Mgr_phone), then these two dependen-
cies together imply that Dept_no → Mgr_phone. This is an inferred or implied FD 
and need not be explicitly stated in addition to the two given FDs. Therefore, it is 
useful to define a concept called closure formally that includes all possible depen-
dencies that can be inferred from the given set F.

Definition. Formally, the set of all dependencies that include F as well as all 
dependencies that can be inferred from F is called the closure of F; it is denoted 
by F+.

For example, suppose that we specify the following set F of obvious functional 
dependencies on the relation schema in Figure 14.3(a):

F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }
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Some of the additional functional dependencies that we can infer from F are the 
following:

Ssn → {Dname, Dmgr_ssn}
Ssn → Ssn
Dnumber → Dname

The closure F+ of F is the set of all functional dependencies that can be inferred 
from F. To determine a systematic way to infer dependencies, we must discover a 
set of inference rules that can be used to infer new dependencies from a given set of 
dependencies. We consider some of these inference rules next. We use the notation 
F |=X → Y to denote that the functional dependency X → Y is inferred from the set 
of functional dependencies F.

In the following discussion, we use an abbreviated notation when discussing func-
tional dependencies. We concatenate attribute variables and drop the commas  
for convenience. Hence, the FD {X,Y} → Z is abbreviated to XY → Z, and the  
FD {X, Y, Z} → {U, V} is abbreviated to XYZ → UV. We present below three rules 
IR1 through IR3 that are well-known inference rules for functional dependencies. 
They were proposed first by Armstrong (1974) and hence are known as  
Armstrong’s axioms.1

IR1 (reflexive rule)2: If X ⊇ Y, then X →Y.

IR2 (augmentation rule)3: {X → Y} |=XZ → YZ.

IR3 (transitive rule): {X → Y, Y → Z} |=X → Z.

Armstrong has shown that inference rules IR1 through IR3 are sound and complete. 
By sound, we mean that given a set of functional dependencies F specified on a rela-
tion schema R, any dependency that we can infer from F by using IR1 through IR3 
holds in every relation state r of R that satisfies the dependencies in F. By complete, 
we mean that using IR1 through IR3 repeatedly to infer dependencies until no more 
dependencies can be inferred results in the complete set of all possible dependencies 
that can be inferred from F. In other words, the set of dependencies F+, which we 
called the closure of F, can be determined from F by using only inference rules IR1 
through IR3.

The reflexive rule (IR1) states that a set of attributes always determines itself or any of its 
subsets, which is obvious. Because IR1 generates dependencies that are always true, such 
dependencies are called trivial. Formally, a functional dependency X → Y is trivial if 
X ⊇ Y; otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the 
same set of attributes to both the left- and right-hand sides of a dependency results in 
another valid dependency. According to IR3, functional dependencies are transitive.

1They are actually inference rules rather than axioms. In the strict mathematical sense, the axioms (given 
facts) are the functional dependencies in F, since we assume that they are correct, whereas IR1 through 
IR3 are the inference rules for inferring new functional dependencies (new facts).
2The reflexive rule can also be stated as X → X; that is, any set of attributes functionally determines itself.
3The augmentation rule can also be stated as X → Y |= XZ → Y; that is, augmenting the left-hand-side 
attributes of an FD produces another valid FD.
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Each of the preceding inference rules can be proved from the definition of functional 
dependency, either by direct proof or by contradiction. A proof by contradiction 
assumes that the rule does not hold and shows that this is not possible. We now prove 
that the first three rules IR1 through IR3 are valid. The second proof is by contradiction.

Proof of IR1. Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some rela-
tion instance r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y; 
hence, X → Y must hold in r.

Proof of IR2 (by contradiction). Assume that X → Y holds in a relation instance 
r of R but that XZ → YZ does not hold. Then there must exist two tuples t1 
and t2 in r such that (1) t1 [X] = t2 [X], (2) t1 [Y] = t2 [Y], (3) t1 [XZ] = t2 [XZ], 
and (4) t1 [YZ] ≠ t2 [YZ]. This is not possible because from (1) and (3) we 
deduce (5) t1 [Z] = t2 [Z], and from (2) and (5) we deduce (6) t1 [YZ] = t2 [YZ], 
contradicting (4).

Proof of IR3. Assume that (1) X → Y and (2) Y → Z both hold in a relation r. 
Then for any two tuples t1 and t2 in r such that t1 [X] = t2 [X], we must have (3) 
t1 [Y] = t2 [Y], from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z] 
from (3) and assumption (2); thus X → Z must hold in r.

There are three other inference rules that follow from IR1, IR2 and IR3. They are 
as follows:

IR4 (decomposition, or projective, rule): {X → YZ} |=X → Y.

IR5 (union, or additive, rule): {X → Y, X → Z} |=X → YZ.

IR6 (pseudotransitive rule): {X → Y, WY → Z} |=WX → Z.

The decomposition rule (IR4) says that we can remove attributes from the right-
hand side of a dependency; applying this rule repeatedly can decompose the  
FD X → {A1, A2, … , An} into the set of dependencies {X → A1, X → A2, … , X → An}. 
The union rule (IR5) allows us to do the opposite; we can combine a set of depen-
dencies {X → A1, X → A2, … , X → An} into the single FD X → {A1, A2, … , An}. 
The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left-
hand side of a dependency with another set X that functionally determines Y, and 
can be derived from IR2 and IR3 if we augment the first functional dependency  
X → Y with W (the augmentation rule) and then apply the transitive rule.

One important cautionary note regarding the use of these rules: Although X → A and 
X → B implies X → AB by the union rule stated above, X → A and Y → B does imply 
that XY → AB. Also, XY → A does not necessarily imply either X → A or Y → A.

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any 
additional valid inference rules. However, a simpler way to prove that an inference 
rule for functional dependencies is valid is to prove it by using inference rules that 
have already been shown to be valid. Thus IR4, IR5, and IR6 are regarded as a corol-
lary of the Armstrong’s basic inference rules. For example, we can prove IR4 through 
IR6 by using IR1 through IR3. We present the proof of IR5 below. Proofs of IR4 and IR6 
using IR1 through IR3 are left as an exercise for the reader.
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Proof of IR5 (using IR1 through IR3).

1. X →Y (given).

2. X → Z (given).

3. X → XY (using IR2 on 1 by augmenting with X; notice that XX = X).

4. XY → YZ (using IR2 on 2 by augmenting with Y).

5. X → YZ (using IR3 on 3 and 4).

Typically, database designers first specify the set of functional dependencies F that 
can easily be determined from the semantics of the attributes of R; then IR1, IR2, 
and IR3 are used to infer additional functional dependencies that will also hold on 
R. A systematic way to determine these additional functional dependencies is first 
to determine each set of attributes X that appears as a left-hand side of some func-
tional dependency in F and then to determine the set of all attributes that are depen-
dent on X.

Definition. For each such set of attributes X, we determine the set X+ of attri-
butes that are functionally determined by X based on F; X+ is called the closure 
of X under F.

Algorithm 15.1 can be used to calculate X+.

Algorithm 15.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is 
a subset of R.

X+ := X;
repeat
 oldX+ := X+;
 for each functional dependency Y → Z in F do
  if X+ ⊇ Y then X+ := X+ ∪ Z;
 until (X+ = oldX+);

Algorithm 15.1 starts by setting X+ to all the attributes in X. By IR1, we know that all 
these attributes are functionally dependent on X. Using inference rules IR3 and IR4, 
we add attributes to X+, using each functional dependency in F. We keep going 
through all the dependencies in F (the repeat loop) until no more attributes are 
added to X+ during a complete cycle (of the for loop) through the dependencies in F. 
The closure concept is useful in understanding the meaning and implications of 
attributes or sets of attributes in a relation. For example, consider the following 
relation schema about classes held at a university in a given academic year.

CLASS ( Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity).

Let F, the set of functional dependencies for the above relation include the 
following f.d.s:

FD1: Sectionid → Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity;
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FD2: Course# → Credit_hrs;
FD3: {Course#, Instr_name} → Text, Classroom;
FD4: Text → Publisher
FD5: Classroom → Capacity

Note that the above FDs express certain semantics about the data in the relation 
CLASS. For example, FD1 states that each class has a unique Classid. FD3 states 
that when a given course is offered by a certain instructor, the text is fixed and the 
instructor teaches that class in a fixed room. Using the inference rules about the 
FDs and applying the definition of closure, we can define the following closures:

{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher, 
Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}
{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher, 

Classroom, Capacity }

Note that each closure above has an interpretation that is revealing about the 
attribute(s) on the left-hand side. For example, the closure of Course# has only 
Credit_hrs besides itself. It does not include Instr_name because different instruc-
tors could teach the same course; it does not include Text because different instruc-
tors may use different texts for the same course. Note also that the closure of 
{Course#, Instr_nam} does not include Classid, which implies that it is not a candi-
date key. This further implies that a course with given Course# could be offered by 
different instructors, which would make the courses distinct classes.

15.1.2 Equivalence of Sets of Functional Dependencies
In this section, we discuss the equivalence of two sets of functional dependencies. 
First, we give some preliminary definitions.

Definition. A set of functional dependencies F is said to cover another set of 
functional dependencies E if every FD in E is also in F+; that is, if every 
dependency in E can be inferred from F; alternatively, we can say that E is 
covered by F.

Definition. Two sets of functional dependencies E and F are equivalent if  
E+ = F+. Therefore, equivalence means that every FD in E can be inferred from 
F, and every FD in F can be inferred from E; that is, E is equivalent to F if both 
the conditions—E covers F and F covers E—hold.

We can determine whether F covers E by calculating X+ with respect to F for each 
FD X → Y in E, and then checking whether this X+ includes the attributes in Y. If 
this is the case for every FD in E, then F covers E. We determine whether E and F are 
equivalent by checking that E covers F and F covers E. It is left to the reader as an 
exercise to show that the following two sets of FDs are equivalent:

F = {A → C, AC → D, E → AD, E → H} 
and G = {A → CD, E → AH}
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15.1.3 Minimal Sets of Functional Dependencies
Just as we applied inference rules to expand on a set F of FDs to arrive at F+, its closure, 
it is possible to think in the opposite direction to see if we could shrink or reduce the set 
F to its minimal form so that the minimal set is still equivalent to the original set F. 
Informally, a minimal cover of a set of functional dependencies E is a set of functional 
dependencies F that satisfies the property that every dependency in E is in the closure 
F+ of F. In addition, this property is lost if any dependency from the set F is removed; F 
must have no redundancies in it, and the dependencies in F are in a standard form.

We will use the concept of an extraneous attribute in a functional dependency for 
defining the minimum cover.

Definition: An attribute in a functional dependency is considered an extraneous 
attribute if we can remove it without changing the closure of the set of depen-
dencies. Formally, given F, the set of functional dependencies, and a functional 
dependency X → A in F, attribute Y is extraneous in X if Y ⊂ X, and F logically 
implies (F − (X → A) ∪ { (X − Y) → A } ).

We can formally define a set of functional dependencies F to be minimal if it satis-
fies the following conditions:

  1. Every dependency in F has a single attribute for its right-hand side.

  2. We cannot replace any dependency X → A in F with a dependency Y → A, 
where Y is a proper subset of X, and still have a set of dependencies that is 
equivalent to F.

  3. We cannot remove any dependency from F and still have a set of dependen-
cies that is equivalent to F.

We can think of a minimal set of dependencies as being a set of dependencies in a 
standard or canonical form and with no redundancies. Condition 1 just represents 
every dependency in a canonical form with a single attribute on the right-hand side, 
and it is a preparatory step before we can evaluate if conditions 2 and 3 are met.4 

Conditions 2 and 3 ensure that there are no redundancies in the dependencies 
either by having redundant attributes (referred to as extraneous attributes) on the 
left-hand side of a dependency (Condition 2) or by having a dependency that can be 
inferred from the remaining FDs in F (Condition 3).

Definition. A minimal cover of a set of functional dependencies E is a mini-
mal set of dependencies (in the standard canonical form5 and without redun-
dancy) that is equivalent to E. We can always find at least one minimal cover F 
for any set of dependencies E using Algorithm 15.2.

4This is a standard form to simplify the conditions and algorithms that ensure no redundancy exists in F. 
By using the inference rule IR4, we can convert a single dependency with multiple attributes on the 
right-hand side into a set of dependencies with single attributes on the right-hand side.
5It is possible to use the inference rule IR5 and combine the FDs with the same left-hand side into a 
single FD in the minimum cover in a nonstandard form. The resulting set is still a minimum cover, as 
illustrated in the example.
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If several sets of FDs qualify as minimal covers of E by the definition above, it is 
customary to use additional criteria for minimality. For example, we can choose the 
minimal set with the smallest number of dependencies or with the smallest total 
length (the total length of a set of dependencies is calculated by concatenating the 
dependencies and treating them as one long character string).

Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Depen-
dencies E

Input: A set of functional dependencies E.

Note: Explanatory comments are given at the end of some of the steps. They 
follow the format: (*comment*).

  1. Set F := E.

  2. Replace each functional dependency X → {A1, A2, … , An} in F by the n 
functional dependencies X →A1, X →A2, … , X → An. (*This places the FDs 
in a canonical form for subsequent testing*)

  3. For each functional dependency X → A in F

 for each attribute B that is an element of X

  if { {F − {X → A} } ∪ { (X − {B} ) → A} } is equivalent to F

   then replace X → A with (X − {B} ) → A in F. 

(*This constitutes removal of an extraneous attribute B contained in the left-
hand side X of a functional dependency X → A when possible*)

  4. For each remaining functional dependency X → A in F

if {F − {X → A} } is equivalent to F,

then remove X → A from F. (*This constitutes removal of a redundant func-
tional dependency X → A from F when possible*)

We illustrate the above algorithm with the following examples:

Example 1:  Let the given set of FDs be E: {B → A, D → A, AB → D}. We have to 
find the minimal cover of E.

 ■ All above dependencies are in canonical form (that is, they have only one 
attribute on the right-hand side), so we have completed step 1 of Algo- 
rithm 15.2 and can proceed to step 2. In step 2 we need to determine if  
AB → D has any redundant (extraneous) attribute on the left-hand side; that 
is, can it be replaced by B → D or A → D?

 ■ Since B → A, by augmenting with B on both sides (IR2), we have BB → AB, 
or B → AB (i). However, AB → D as given (ii).

 ■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Thus 
AB → D may be replaced by B → D.

 ■ We now have a set equivalent to original E, say E′: {B → A, D → A, B → D}. 
No further reduction is possible in step 2 since all FDs have a single attribute 
on the left-hand side.
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 ■ In step 3 we look for a redundant FD in E′. By using the transitive rule on 
B → D and D → A, we derive B → A. Hence B → A is redundant in E′ and 
can be eliminated.

 ■ Therefore, the minimal cover of E is F: {B → D, D → A}.

The reader can verify that the original set F can be inferred from E; in other words, 
the two sets F and E are equivalent.

Example 2:  Let the given set of FDs be G: {A → BCDE, CD → E}.

 ■ Here, the given FDs are NOT in the canonical form. So we first convert 
them into:

E: {A → B, A→ C, A→ D, A→ E, CD → E}.

 ■ In step 2 of the algorithm, for CD → E, neither C nor D is extraneous on the 
left-hand side, since we cannot show that C → E or D → E from the given 
FDs. Hence we cannot replace it with either.

 ■ In step 3, we want to see if any FD is redundant. Since A→ CD and 
CD → E, by transitive rule (IR3), we get A→ E. Thus, A→ E is redundant 
in G.

 ■ So we are left with the set F, equivalent to the original set G as: {A → B, 
A→ C, A→ D, CD → E}. F is the minimum cover. As we pointed out in foot-
note 6, we can combine the first three FDs using the union rule (IR5) and 
express the minimum cover as:

Minimum cover of G, F: {A → BCD, CD → E}.

In Section 15.3, we will show algorithms that synthesize 3NF or BCNF relations 
from a given set of dependencies E by first finding the minimal cover F for E.

Next, we provide a simple algorithm to determine the key of a relation:

Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Depen-
dencies

Input: A relation R and a set of functional dependencies F on the attributes 
of R.

  1. Set K := R.

  2. For each attribute A in K

{compute (K − A)+ with respect to F;

if (K − A)+ contains all the attributes in R, then set K := K − {A} };

In Algorithm 15.2(a), we start by setting K to all the attributes of R; we can say 
that R itself is always a default superkey. We then remove one attribute at a time 
and check whether the remaining attributes still form a superkey. Notice, too, 
that Algorithm 15.2(a) determines only one key out of the possible candidate keys 
for R; the key returned depends on the order in which attributes are removed 
from R in step 2.
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15.2 Properties of Relational Decompositions
We now turn our attention to the process of decomposition that we used through-
out Chapter 14 to get rid of unwanted dependencies and achieve higher normal 
forms. In Section 15.2.1, we give examples to show that looking at an individual 
relation to test whether it is in a higher normal form does not, on its own, guarantee 
a good design; rather, a set of relations that together form the relational database 
schema must possess certain additional properties to ensure a good design. In Sec-
tions 15.2.2 and 15.2.3, we discuss two of these properties: the dependency preser-
vation property and the nonadditive (or lossless) join property. Section 15.2.4 
discusses binary decompositions, and Section 15.2.5 discusses successive nonaddi-
tive join decompositions.

15.2.1  Relation Decomposition and Insufficiency  
of Normal Forms

The relational database design algorithms that we present in Section 15.3 start from 
a single universal relation schema R = {A1, A2, … , An} that includes all the attri-
butes of the database. We implicitly make the universal relation assumption, 
which states that every attribute name is unique. The set F of functional dependen-
cies that should hold on the attributes of R is specified by the database designers 
and is made available to the design algorithms. Using the functional dependencies, 
the algorithms decompose the universal relation schema R into a set of relation 
schemas D = {R1, R2, … , Rm} that will become the relational database schema; D is 
called a decomposition of R.

We must make sure that each attribute in R will appear in at least one relation 
schema Ri in the decomposition so that no attributes are lost; formally, we have

R Ri
i

m

=
=

1
U

This is called the attribute preservation condition of a decomposition.

Another goal is to have each individual relation Ri in the decomposition D be in 
BCNF or 3NF. However, this condition is not sufficient to guarantee a good data-
base design on its own. We must consider the decomposition of the universal rela-
tion as a whole, in addition to looking at the individual relations. To illustrate this 
point, consider the EMP_LOCS(Ename, Plocation) relation in Figure 14.5, which is in 
3NF and also in BCNF. In fact, any relation schema with only two attributes is auto-
matically in BCNF.6 Although EMP_LOCS is in BCNF, it still gives rise to spurious 
tuples when joined with EMP_PROJ (Ssn, Pnumber, Hours, Pname, Plocation), which is 
not in BCNF (see the partial result of the natural join in Figure 14.6). Hence,  
EMP_LOCS represents a particularly bad relation schema because of its convoluted 

6As an exercise, the reader should prove that this statement is true.
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semantics by which Plocation gives the location of one of the projects on which an 
employee works. Joining EMP_LOCS with PROJECT(Pname, Pnumber, Plocation, 
Dnum) in Figure 14.2—which is in BCNF—using Plocation as a joining attribute also 
gives rise to spurious tuples. This underscores the need for other criteria that, 
together with the conditions of 3NF or BCNF, prevent such bad designs. In the next 
three subsections we discuss such additional conditions that should hold on a 
decomposition D as a whole.

15.2.2  Dependency Preservation Property  
of a Decomposition

It would be useful if each functional dependency X → Y specified in F either 
appeared directly in one of the relation schemas Ri in the decomposition D or 
could be inferred from the dependencies that appear in some Ri. Informally, this 
is the dependency preservation condition. We want to preserve the dependencies 
because each dependency in F represents a constraint on the database. If one of 
the dependencies is not represented in some individual relation Ri of the decom-
position, we cannot enforce this constraint by dealing with an individual relation. 
We may have to join multiple relations so as to include all attributes involved in 
that dependency.

It is not necessary that the exact dependencies specified in F appear themselves in 
individual relations of the decomposition D. It is sufficient that the union of the 
dependencies that hold on the individual relations in D be equivalent to F. We now 
define these concepts more formally.

Definition. Given a set of dependencies F on R, the projection of F on Ri, 
denoted by πRi

(F) where Ri is a subset of R, is the set of dependencies X → Y in 
F+ such that the attributes in X ∪ Y are all contained in Ri. Hence, the projection 
of F on each relation schema Ri in the decomposition D is the set of functional 
dependencies in F+, the closure of F, such that all the left- and right-hand-side 
attributes of those dependencies are in Ri. We say that a decomposition  
D = {R1, R2, … , Rm} of R is dependency-preserving with respect to F if the 
union of the projections of F on each Ri in D is equivalent to F; that is, 
((πR1

(F)) ∪ K ∪ (πRm
(F)))+ = F+.

If a decomposition is not dependency-preserving, some dependency is lost in 
the decomposition. To check that a lost dependency holds, we must take the 
JOIN of two or more relations in the decomposition to get a relation that 
includes all left- and right-hand-side attributes of the lost dependency, and 
then check that the dependency holds on the result of the JOIN—an option that 
is not practical.

An example of a decomposition that does not preserve dependencies is shown in 
Figure 14.13(a), in which the functional dependency FD2 is lost when LOTS1A is 
decomposed into {LOTS1AX, LOTS1AY}. The decompositions in Figure 14.12, how-
ever, are dependency-preserving. Similarly, for the example in Figure 14.14, no 
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matter what decomposition is chosen for the relation TEACH(Student, Course, 
Instructor) from the three provided in the text, one or both of the dependencies orig-
inally present are bound to be lost. We now state a claim related to this property 
without providing any proof.

Claim 1. It is always possible to find a dependency-preserving decomposition 
D with respect to F such that each relation Ri in D is in 3NF.

15.2.3  Nonadditive (Lossless) Join Property  
of a Decomposition

Another property that a decomposition D should possess is the nonadditive join 
property, which ensures that no spurious tuples are generated when a NATURAL 
JOIN operation is applied to the relations resulting from the decomposition. We 
already illustrated this problem in Section 14.1.4 with the example in Fig- 
ures 14.5 and 14.6. Because this is a property of a decomposition of relation  
schemas, the condition of no spurious tuples should hold on every legal relation 
state—that is, every relation state that satisfies the functional dependencies in F. 
Hence, the lossless join property is always defined with respect to a specific set F 
of dependencies.

Definition. Formally, a decomposition D = {R1, R2, … , Rm} of R has the  
lossless (nonadditive) join property with respect to the set of dependencies  
F on R if, for every relation state r of R that satisfies F, the following holds,  
where * is the NATURAL JOIN of all the relations in D: *(πR1

(r), … , πRm
(r)) = r.

The word loss in lossless refers to loss of information, not to loss of tuples. If a 
decomposition does not have the lossless join property, we may get additional spu-
rious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied; 
these additional tuples represent erroneous or invalid information. We prefer the 
term nonadditive join because it describes the situation more accurately. Although 
the term lossless join has been popular in the literature, we used the term nonaddi-
tive join in describing the NJB property in Section 14.5.1. We will henceforth use the 
term nonadditive join, which is self-explanatory and unambiguous. The nonaddi-
tive join property ensures that no spurious tuples result after the application of 
PROJECT and JOIN operations. We may, however, sometimes use the term lossy 
design to refer to a design that represents a loss of information. The decomposition 
of EMP_PROJ(Ssn, Pnumber, Hours, Ename, Pname, Plocation) in Figure 14.3 into  
EMP_LOCS(Ename, Plocation) and EMP_PROJ1(Ssn, Pnumber, Hours, Pname, Plocation) 
in Figure 14.5 obviously does not have the nonadditive join property, as illustrated 
by the partial result of NATURAL JOIN in Figure 14.6. We provided a simpler test 
in case of binary decompositions to check if the decomposition is nonadditive—it 
was called the NJB property in Section 14.5.1. We provide a general procedure for 
testing whether any decomposition D of a relation into n relations is nonadditive 
with respect to a set of given functional dependencies F in the relation; it is pre-
sented as Algorithm 15.3.
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Algorithm 15.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition D = {R1, R2, … , Rm} of R, and a 
set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They 
follow the format: (*comment*).

  1. Create an initial matrix S with one row i for each relation Ri in D, and one 
column j for each attribute Aj in R.

  2. Set S(i, j): = bij for all matrix entries. (*Each bij is a distinct symbol associated 
with indices (i, j)*)

  3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

  {if (relation Ri includes attribute Aj) then set S(i, j): = aj;};}; (*Each aj is 
a distinct symbol associated with index (j)*)

  4. Repeat the following loop until a complete loop execution results in no 
changes to S
{for each functional dependency X → Y in F

{for all rows in S that have the same symbols in the columns corresponding 
to attributes in X

{make the symbols in each column that correspond to an attribute 
in Y be the same in all these rows as follows: If any of the rows has 
an a symbol for the column, set the other rows to that same a symbol 
in the column. If no a symbol exists for the attribute in any of the 
rows, choose one of the b symbols that appears in one of the rows for 
the attribute and set the other rows to that same b symbol in the 
column ;} ; } ;};

  5. If a row is made up entirely of a symbols, then the decomposition has the 
nonadditive join property; otherwise, it does not.

Given a relation R that is decomposed into a number of relations R1, R2, … , Rm, 
Algorithm 15.3 begins the matrix S that we consider to be some relation state r of 
R. Row i in S represents a tuple ti (corresponding to relation Ri) that has a symbols 
in the columns that correspond to the attributes of Ri and b symbols in the remain-
ing columns. The algorithm then transforms the rows of this matrix (during the 
loop in step 4) so that they represent tuples that satisfy all the functional depen-
dencies in F. At the end of step 4, any two rows in S—which represent two tuples 
in r—that agree in their values for the left-hand-side attributes X of a functional 
dependency X → Y in F will also agree in their values for the right-hand-side attri-
butes Y. It can be shown that after applying the loop of step 4, if any row in S ends 
up with all a symbols, then the decomposition D has the nonadditive join property 
with respect to F.

If, on the other hand, no row ends up being all a symbols, D does not satisfy the 
lossless join property. In this case, the relation state r represented by S at the end of 
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the algorithm will be an example of a relation state r of R that satisfies the depen-
dencies in F but does not satisfy the nonadditive join condition. Thus, this relation 
serves as a counterexample that proves that D does not have the nonadditive join 
property with respect to F. Note that the a and b symbols have no special meaning 
at the end of the algorithm.

Figure 15.1(a) shows how we apply Algorithm 15.3 to the decomposition of the 
EMP_PROJ relation schema from Figure 14.3(b)into the two relation schemas  
EMP_PROJ1 and EMP_LOCS in Figure 14.5(a). The loop in step 4 of the algorithm 
cannot change any b symbols to a symbols; hence, the resulting matrix S does not 
have a row with all a symbols, and so the decomposition does not have the non-
additive join property.

Figure 15.1(b) shows another decomposition of EMP_PROJ (into EMP, PROJECT, 
and WORKS_ON) that does have the nonadditive join property, and Figure 15.1(c) 
shows how we apply the algorithm to that decomposition. Once a row consists only 
of a symbols, we conclude that the decomposition has the nonadditive join prop-
erty, and we can stop applying the functional dependencies (step 4 in the algorithm) 
to the matrix S.

15.2.4  Testing Binary Decompositions for the Nonadditive  
Join Property

Algorithm 15.3 allows us to test whether a particular decomposition D into n rela-
tions obeys the nonadditive join property with respect to a set of functional depen-
dencies F. There is a special case of a decomposition called a binary 
decomposition—decomposition of a relation R into two relations. A test called the 
NJB property test, which is easier to apply than Algorithm 15.3 but is limited only to 
binary decompositions, was given in Section 14.5.1. It was used to do binary decom-
position of the TEACH relation, which met 3NF but did not meet BCNF, into two 
relations that satisfied this property.

15.2.5 Successive Nonadditive Join Decompositions
We saw the successive decomposition of relations during the process of second and 
third normalization in Sections 14.3 and 14.4. To verify that these decompositions 
are nonadditive, we need to ensure another property, as set forth in Claim 2.

Claim 2 (Preservation of Nonadditivity in Successive Decompositions). If a 
decomposition D = {R1, R2, … , Rm} of R has the nonadditive (lossless) join 
property with respect to a set of functional dependencies F on R, and if a decom-
position Di = {Q1, Q2, … , Qk} of Ri has the nonadditive join property with 
respect to the projection of F on Ri, then the decomposition D2 = {R1, R2, … , 
Ri−1, Q1, Q2, … , Qk, Ri+1, … , Rm} of R has the nonadditive join property with 
respect to F.
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Pnumber

PROJECT(b)
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D = {R1, R2 }

(No changes to matrix after applying functional dependencies)

Ename Pnumber Pname HoursPlocation

Ssn

EMP

(a) R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP_LOCS = {Ename, Plocation}
R2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

(c)

Ename Ssn

WORKS_ON
Pnumber Hours

Ssn

a1 b32 a3 b34 b35 a6
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b22

b13

a3

b14

a4
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R2

R3 a1 a2b32 b34a3 a4 a5 a6

(Original matrix S at start of algorithm)

Ename Pnumber Pname HoursPlocation

Ssn

(Matrix S after applying the first two functional dependencies;
last row is all “a” symbols so we stop)

Ename Pnumber Pname HoursPlocation

F = {Ssn      Ename; Pnumber      {Pname, Plocation}; {Ssn, Pnumber}      Hours}

D = {R1, R2,  R3}R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours}
R1 = EMP = {Ssn, Ename}
R2 = PROJ = {Pnumber, Pname, Plocation}
R3 = WORKS_ON = {Ssn, Pnumber, Hours}

F = {Ssn      Ename; Pnumber      {Pname, Plocation}; {Ssn, Pnumber}      Hours}

b35

Figure 15.1 
Nonadditive join test for n-ary decompositions. (a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1  
and EMP_LOCS fails test. (b) A decomposition of EMP_PROJ that has the lossless join property.  
(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.



 15.3 Algorithms for Relational Database Schema Design 519

15.3  Algorithms for Relational Database 
Schema Design

We now give two algorithms for creating a relational decomposition from a universal 
relation. The first algorithm decomposes a universal relation into dependency- 
preserving 3NF relations that also possess the nonadditive join property. The second 
algorithm decomposes a universal relation schema into BCNF schemas that possess the 
nonadditive join property. It is not possible to design an algorithm to produce BCNF 
relations that satisfy both dependency preservation and nonadditive join decomposition

15.3.1  Dependency-Preserving and Nonadditive (Lossless)  
Join Decomposition into 3NF Schemas

By now we know that it is not possible to have all three of the following: (1) guaran-
teed nonlossy (nonadditive) design, (2) guaranteed dependency preservation, and 
(3) all relations in BCNF. As we have stressed repeatedly, the first condition is a 
must and cannot be compromised. The second condition is desirable, but not a 
must, and may have to be relaxed if we insist on achieving BCNF. The original lost 
FDs can be recovered by a JOIN operation over the results of decomposition. Now 
we give an algorithm where we achieve conditions 1 and 2 and only guarantee 3NF. 
Algorithm 15.4 yields a decomposition D of R that does the following:

 ■ Preserves dependencies

 ■ Has the nonadditive join property

 ■ Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 15.4 Relational Synthesis into 3NF with Dependency Preservation 
and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the 
attributes of R.

  1. Find a minimal cover G for F (use Algorithm 15.2).

  2. For each left-hand-side X of a functional dependency that appears in G, create 
a relation schema in D with attributes {X ∪ {A1} ∪ {A2} … ∪ {Ak} }, where 
X → A1, X → A2, … , X → Ak are the only dependencies in G with X as left-
hand side (X is the key of this relation).

  3. If none of the relation schemas in D contains a key of R, then create one 
more relation schema in D that contains attributes that form a key of R. 
(Algorithm 15.2(a) may be used to find a key.)

  4. Eliminate redundant relations from the resulting set of relations in the rela-
tional database schema. A relation R is considered redundant if R is a projec-
tion of another relation S in the schema; alternately, R is subsumed by S.7

7Note that there is an additional type of dependency: R is a projection of the join of two or more relations 
in the schema. This type of redundancy is considered join dependency, as we discussed in Section 15.7. 
Hence, technically, it may continue to exist without disturbing the 3NF status for the schema.
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Step 3 of Algorithm 15.4 involves identifying a key K of R. Algorithm 15.2(a) can be 
used to identify a key K of R based on the set of given functional dependencies F. 
Notice that the set of functional dependencies used to determine a key in Algo-
rithm 15.2(a) could be either F or G, since they are equivalent.

Example 1 of Algorithm 15.4. Consider the following universal relation:

U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

Emp_ssn, Esal, and Ephone refer to the Social Security number, salary, and phone 
number of the employee. Pno, Pname, and Plocation refer to the number, name, and 
location of the project. Dno is the department number.

The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal 
relation. Hence F, the set of given FDs, includes {Emp_ssn → Esal, Ephone, Dno; 
Pno → Pname, Plocation; Emp_ssn, Pno → Esal, Ephone, Dno, Pname, Plocation}.

By applying the minimal cover Algorithm 15.2, in step 3 we see that Pno is an extra-
neous attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is extrane-
ous in Emp_ssn, Pno → Pname, Plocation. Hence the minimal cover consists of FD1 
and FD2 only (FD3 being completely redundant) as follows (if we group attributes 
with the same left-hand side into one FD):

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

The second step of Algorithm 15.4 produces relations R1 and R2 as:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U. 
Hence, the resulting design contains:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

R3 (Emp_ssn, Pno)

This design achieves both the desirable properties of dependency preservation and 
nonadditive join.

Example 2 of Algorithm 15.4 (Case X ). Consider the relation schema LOTS1A 
shown in Figure 14.13(a).

Assume that this relation is given as a universal relation U (Property_id, County, Lot#, 
Area) with the following functional dependencies:
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FD1: Property_id → Lot#, County, Area

FD2: Lot#, County → Area, Property_id

FD3: Area → County

These were called FD1, FD2, and FD5 in Figure 14.13(a). The meanings of the above 
attributes and the implication of the above functional dependencies were explained 
in Section 14.4.For ease of reference, let us abbreviate the above attributes with the 
first letter for each and represent the functional dependencies as the set

F: { P → LCA, LC → AP, A → C }

The universal relation with abbreviated attributes is U (P, C, L, A). If we apply the 
minimal cover Algorithm 15.2 to F, (in step 2) we first represent the set F as

F: {P → L, P → C, P → A, LC → A, LC → P, A → C}

In the set F, P → A can be inferred from P → LC and LC → A; hence P → A by tran-
sitivity and is therefore redundant. Thus, one possible minimal cover is

Minimal cover GX: {P → LC, LC → AP, A → C}

In step 2 of Algorithm 15.4, we produce design X (before removing redundant rela-
tions) using the above minimal cover as

Design X: R1 (P, L, C), R2 (L, C, A, P), and R3 (A, C)

In step 4 of the algorithm, we find that R3 is subsumed by R2 (that is, R3 is always a 
projection of R2 and R1 is a projection of R2 as well). Hence both of those relations 
are redundant. Thus the 3NF schema that achieves both of the desirable properties 
is (after removing redundant relations)

Design X: R2 (L, C, A, P).

or, in other words it is identical to the relation LOTS1A (Property_id, Lot#, County, 
Area) that we had determined to be in 3NF in Section 14.4.2.

Example 2 of Algorithm 15.4 (Case Y ). Starting with LOTS1A as the universal 
relation and with the same given set of functional dependencies, the second step of 
the minimal cover Algorithm 15.2 produces, as before,

F: {P → C, P → A, P → L, LC → A, LC → P, A → C}

The FD LC → A may be considered redundant because LC → P and P → A implies  
LC → A by transitivity. Also, P → C may be considered to be redundant because  
P → A and A → C implies P → C by transitivity. This gives a different minimal cover as

Minimal cover GY: { P → LA, LC → P, A → C }

The alternative design Y produced by the algorithm now is

Design Y: S1 (P, A, L), S2 (L, C, P), and S3 (A, C)

Note that this design has three 3NF relations, none of which can be considered as 
redundant by the condition in step 4. All FDs in the original set F are preserved. The 
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reader will notice that of the above three relations, relations S1 and S3 were produced 
as the BCNF design by the procedure given in Section 14.5 (implying that S2 is 
redundant in the presence of S1 and S3). However, we cannot eliminate relation S2 
from the set of three 3NF relations above since it is not a projection of either S1 or S3. 
It is easy to see that S2 is a valid and meaningful relation that has the two candidate 
keys (L, C), and P placed side-by-side. Notice further that S2 preserves the FD LC → P, 
which is lost if the final design contains only S1 and S3. Design Y therefore remains 
as one possible final result of applying Algorithm 15.4 to the given universal relation 
that provides relations in 3NF.

The above two variations of applying Algorithm 15.4 to the same universal relation 
with a given set of FDs have illustrated two things:

 ■ It is possible to generate alternate 3NF designs by starting from the same set 
of FDs.

 ■ It is conceivable that in some cases the algorithm actually produces relations 
that satisfy BCNF and may include relations that maintain the dependency 
preservation property as well.

15.3.2 Nonadditive Join Decomposition into BCNF Schemas
The next algorithm decomposes a universal relation schema R = {A1, A2, … , An} 
into a decomposition D = {R1, R2, … , Rm} such that each Ri is in BCNF and the 
decomposition D has the lossless join property with respect to F. Algorithm 15.5 
utilizes property NJB and claim 2 (preservation of nonadditivity in successive 
decompositions) to create a nonadditive join decomposition D = {R1, R2, … , Rm} of 
a universal relation R based on a set of functional dependencies F, such that each Ri 
in D is in BCNF.

Algorithm 15.5. Relational Decomposition into BCNF with Nonadditive 
Join Property

Input: A universal relation R and a set of functional dependencies F on the 
attributes of R.

  1. Set D := {R} ;

  2. While there is a relation schema Q in D that is not in BCNF do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

} ;

Each time through the loop in Algorithm 15.5, we decompose one relation schema 
Q that is not in BCNF into two relation schemas. According to property NJB for 
binary decompositions and claim 2, the decomposition D has the nonadditive 
join property. At the end of the algorithm, all relation schemas in D will be in 
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BCNF. We illustrated the application of this algorithm to the TEACH relation 
schema from Figure 14.14; it is decomposed into TEACH1(Instructor, Student) 
and TEACH2(Instructor, Course) because the dependency FD2 Instructor → Course 
violates BCNF.

In step 2 of Algorithm 15.5, it is necessary to determine whether a relation schema 
Q is in BCNF or not. One method for doing this is to test, for each functional depen-
dency X → Y in Q, whether X+ fails to include all the attributes in Q, thereby deter-
mining whether or not X is a (super) key in Q. Another technique is based on an 
observation that whenever a relation schema Q has a BCNF violation, there exists a 
pair of attributes A and B in Q such that {Q − {A, B} } → A; by computing the clo-
sure {Q − {A, B} }+ for each pair of attributes {A, B} of Q and checking whether the 
closure includes A (or B), we can determine whether Q is in BCNF.

It is important to note that the theory of nonadditive join decompositions is based 
on the assumption that no NULL values are allowed for the join attributes. The next 
section discusses some of the problems that NULLs may cause in relational decom-
positions and provides a general discussion of the algorithms for relational design 
by synthesis presented in this section.

15.4  About Nulls, Dangling Tuples, and 
Alternative Relational Designs

In this section, we discuss a few general issues related to problems that arise when 
relational design is not approached properly.

15.4.1 Problems with NULL Values and Dangling Tuples
We must carefully consider the problems associated with NULLs when designing a 
relational database schema. There is no fully satisfactory relational design theory as 
yet that includes NULL values. One problem occurs when some tuples have NULL 
values for attributes that will be used to join individual relations in the decomposi-
tion. To illustrate this, consider the database shown in Figure 15.2(a), where two 
relations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—
‘Berger’ and ‘Benitez’—represent newly hired employees who have not yet been 
assigned to a department (assume that this does not violate any integrity con-
straints). Now suppose that we want to retrieve a list of (Ename, Dname) values for 
all the employees. If we apply the NATURAL JOIN operation on EMPLOYEE and 
DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples will not appear in 
the result. The OUTER JOIN operation, discussed in Chapter 8, can deal with this 
problem. Recall that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT, 
tuples in EMPLOYEE that have NULL for the join attribute will still appear in the 
result, joined with an imaginary tuple in DEPARTMENT that has NULLs for all its 
attribute values. Figure 15.2(c) shows the result.

In general, whenever a relational database schema is designed in which two or 
more relations are interrelated via foreign keys, particular care must be devoted to 
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watching for potential NULL values in foreign keys. This can cause unexpected loss 
of information in queries that involve joins on that foreign key. Moreover, if NULLs 
occur in other attributes, such as Salary, their effect on built-in functions such as 
SUM and AVERAGE must be carefully evaluated.

A related problem is that of dangling tuples, which may occur if we carry a decom-
position too far. Suppose that we decompose the EMPLOYEE relation in Fig- 
ure 15.2(a) further into EMPLOYEE_1 and EMPLOYEE_2, shown in Figures 15.3(a) 
and 15.3(b). If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2, 
we get the original EMPLOYEE relation. However, we may use the alternative repre-
sentation, shown in Figure 15.3(c), where we do not include a tuple in EMPLOYEE_3 
if the employee has not been assigned a department (instead of including a tuple 
with NULL for Dnum as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of 
EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3, the 
tuples for Berger and Benitez will not appear in the result; these are called dangling 
tuples in EMPLOYEE_1 because they are represented in only one of the two rela-
tions that represent employees, and hence they are lost if we apply an (INNER) 
JOIN operation.

15.4.2  Discussion of Normalization Algorithms  
and Alternative Relational Designs

One of the problems with the normalization algorithms we described is that the 
database designer must first specify all the relevant functional dependencies among 
the database attributes. This is not a simple task for a large database with hundreds 
of attributes. Failure to specify one or two important dependencies may result in an 
undesirable design. Another problem is that these algorithms are not deterministic 
in general. For example, the synthesis algorithms (Algorithms 15.4 and 15.5) require 
the specification of a minimal cover G for the set of functional dependencies F. 
Because there may be, in general, many minimal covers corresponding to F, as we 
illustrated in Example 2 of Algorithm 15.4 above, the algorithm can give different 
designs depending on the particular minimal cover used. Some of these designs 
may not be desirable. The decomposition algorithm to achieve BCNF (Algo- 
rithm 15.5) depends on the order in which the functional dependencies are supplied 
to the algorithm to check for BCNF violation. Again, it is possible that many different 
designs may arise. Some of the designs may be preferred, whereas others may 
be undesirable.

It is not always possible to find a decomposition into relation schemas that pre-
serves dependencies and allows each relation schema in the decomposition to be 
in BCNF (instead of 3NF, as in Algorithm 15.4). We can check the 3NF relation 
schemas in the decomposition individually to see whether each satisfies BCNF. If 
some relation schema Ri is not in BCNF, we can choose to decompose it further 
or to leave it as it is in 3NF (with some possible update anomalies). We showed by 
using the bottom-up approach to design that different minimal covers in cases X 
and Y of Example 2 under Algorithm 15.4 produced different sets of relations 
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(b)

Ename

EMPLOYEE
(a)

Ssn Bdate Address Dnum

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

5

5

4

4

5

4

1

Berger, Anders C. 999775555 1965-04-26 6530 Braes, Bellaire, TX NULL

Benitez, Carlos M. 888664444 1963-01-09 7654 Beech, Houston, TX NULL

5

Dname

DEPARTMENT

Dnum Dmgr_ssn

Research

Administration
Headquarters

5

4
1

333445555

987654321
888665555

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

Ssn

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

987654321

333445555

Dnum Dname Dmgr_ssn

(c)

Ename

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

999887777

123456789

333445555

453453453

987654321

666884444

987987987

888665555 1937-11-10

1968-07-19

1965-01-09

1955-12-08

1972-07-31

1969-03-29

1941-06-20

1962-09-15

Bdate

3321 Castle, Spring, TX

731 Fondren, Houston, TX 5

638 Voss, Houston, TX

5631 Rice, Houston, TX

980 Dallas, Houston, TX

450 Stone, Houston, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

Address

4

5

5

4

1

4

5

Administration

Research

Research

Research

Administration

Headquarters

Administration

Research

987654321

333445555

333445555

333445555

987654321

888665555

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555 1963-01-09

1965-04-26 6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

NULL

NULL

NULL

NULL

NULL

NULL

987654321

333445555

Dnum Dname Dmgr_ssnSsn

Figure 15.2 
Issues with NULL-value 
joins. (a) Some 
EMPLOYEE tuples have 
NULL for the join attribute 
Dnum. (b) Result of  
applying NATURAL JOIN 
to the EMPLOYEE and 
DEPARTMENT relations. 
(c) Result of applying 
LEFT OUTER JOIN to 
EMPLOYEE and 
DEPARTMENT.
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Ename

EMPLOYEE_1(a)

(b)

Ssn Bdate Address

Smith, John B.

Wong, Franklin T.

Zelaya, Alicia J.

Wallace, Jennifer S.

Narayan, Ramesh K.

English, Joyce A.

Jabbar, Ahmad V.

Borg, James E.

987987987

888665555

1969-03-29

1937-11-10

980 Dallas, Houston, TX

450 Stone, Houston, TX

123456789

333445555

999887777

987654321

666884444

453453453

1965-01-09

1955-12-08

1968-07-19

1941-06-20

1962-09-15

1972-07-31

731 Fondren, Houston, TX

638 Voss, Houston, TX

3321 Castle, Spring, TX

291 Berry, Bellaire, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Berger, Anders C.

Benitez, Carlos M.

999775555

888665555

1965-04-26

1963-01-09

6530 Braes, Bellaire, TX

7654 Beech, Houston, TX

EMPLOYEE_2

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

999775555

888664444

4

5

5

5

4

5

NULL

4

1

NULL

Dnum

(c) EMPLOYEE_3

Ssn

123456789

333445555

999887777

987654321

666884444

453453453

987987987

888665555

4

5

5

5

4

5

4

1

Dnum

Figure 15.3 
The dangling tuple problem.
(a) The relation EMPLOYEE_1 (includes 

all attributes of EMPLOYEE from  
Figure 15.2(a) except Dnum).

(b) The relation EMPLOYEE_2 (includes 
Dnum attribute with NULL values).

(c) The relation EMPLOYEE_3 (includes 
Dnum attribute but does not include 
tuples for which Dnum has NULL  
values).

based on minimal cover. The design X produced the 3NF design as LOTS1A 
(Property_id, County, Lot#, Area) relation, which is in 3NF but not BCNF. Alternately, 
design Y produced three relations: S1 (Property_id, Area, Lot#), S2 (Lot#, County,  
Property_id), and S3 (Area, County). If we test each of these three relations, we find that 
they are in BCNF. We also saw previously that if we apply Algorithm 15.5 to LOTS1Y 
to decompose it into BCNF relations, the resulting design contains only S1 and S3 as a 
BCNF design. In summary, the above examples of cases (called Case X and Case Y) 
driven by different minimum covers for the same universal schema amply illustrate 
that alternate designs will result by the application of the bottom-up design algo-
rithms we presented in Section 15.3.

Table 15.1 summarizes the properties of the algorithms discussed in this chapter 
so far.
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Table 15.1 Summary of the Algorithms Discussed in This Chapter

Algorithm Input Output Properties/Purpose Remarks

15.1 An attribute or a set 
of attributes X, and a 
set of FDs F

A set of attributes in 
the closure of X with 
respect to F

Determine all the 
attributes that can be 
functionally deter-
mined from X

The closure of a key 
is the entire relation

15.2 A set of functional 
dependencies F

The minimal cover 
of functional depen-
dencies

To determine the 
minimal cover of a 
set of dependencies F

Multiple minimal 
covers may exist—
depends on the order 
of selecting func-
tional dependencies

15.2a Relation schema R 
with a set of func-
tional dependencies F

Key K of R To find a key K (that 
is a subset of R)

The entire relation R 
is always a default 
superkey

15.3 A decomposition D 
of R and a set F of 
functional depen-
dencies

Boolean result: yes 
or no for nonaddi-
tive join property

Testing for nonaddi-
tive join decomposi-
tion

See a simpler test 
NJB in Section 14.5 
for binary decompo-
sitions

15.4 A relation R and a 
set of functional 
dependencies F

A set of relations in 
3NF

Nonadditive join 
and dependency-
preserving decom-
position

May not achieve 
BCNF, but achieves 
all desirable proper-
ties and 3NF

15.5 A relation R and a 
set of functional 
dependencies F

A set of relations in 
BCNF

Nonadditive join 
decomposition

No guarantee of 
dependency preser-
vation

15.6 A relation R and a 
set of functional and 
multivalued depen-
dencies

A set of relations in 
4NF

Nonadditive join 
decomposition

No guarantee of 
dependency preser-
vation

15.5  Further Discussion of Multivalued 
Dependencies and 4NF

We introduced and defined the concept of multivalued dependencies and used it to 
define the fourth normal form in Section 14.6. In this section, we discuss MVDs to 
make our treatment complete by stating the rules of inference with MVDs.

15.5.1  Inference Rules for Functional  
and Multivalued Dependencies

As with functional dependencies (FDs), inference rules for MVDs have been 
developed. It is better, though, to develop a unified framework that includes both 
FDs and MVDs so that both types of constraints can be considered together. The 
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following inference rules IR1 through IR8 form a sound and complete set for infer-
ring functional and multivalued dependencies from a given set of dependencies. 
Assume that all attributes are included in a universal relation schema R = {A1, A2, 
… , An} and that X, Y, Z, and W are subsets of R.

IR1 (reflexive rule for FDs): If X ⊇ Y, then X → Y.

IR2 (augmentation rule for FDs): {X → Y} |= XZ → YZ.

IR3 (transitive rule for FDs): {X → Y, Y → Z} |= X → Z.

IR4 (complementation rule for MVDs): {X →→ R} |= {X →→(R − (X ∪))}.

IR5 (augmentation rule for MVDs): If X →→ Y and W ⊇ Z, then WX →→ YZ.

IR6 (transitive rule for MVDs): {X →→ Y, Y →→ Z} | = X →→ (X − Y).

IR7 (replication rule for FD to MVD): {X → Y} | = X →→ Y.

IR8 (coalescence rule for FDs and MVDs): If X →→ Y and there exists W with 
the properties that (a) W ∩ Y is empty, (b) W → Z, and (c) Y ⊇ Z, then X → Z.

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6 
are inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs. 
In particular, IR7 says that a functional dependency is a special case of a multi-
valued dependency; that is, every FD is also an MVD because it satisfies the formal 
definition of an MVD. However, this equivalence has a catch: An FD X → Y is an 
MVD X →→ Y with the additional implicit restriction that at most one value of Y 
is associated with each value of X.8 Given a set F of functional and multivalued 
dependencies specified on R = {A1, A2, … , An}, we can use IR1 through IR8 to infer 
the (complete) set of all dependencies (functional or multivalued) F+ that will hold 
in every relation state r of R that satisfies F. We again call F+ the closure of F.

15.5.2 Fourth Normal Form Revisited
We restate the definition of fourth normal form (4NF) from Section 14.6:

Definition. A relation schema R is in 4NF with respect to a set of dependencies F 
(that includes functional dependencies and multivalued dependencies) if, for every 
nontrivial multivalued dependency X →→ Y in F+, X in F+, X is a superkey for R.

To illustrate the importance of 4NF, Figure 15.4(a) shows the EMP relation in Fig-
ure 14.15 with an additional employee, ‘Brown’, who has three dependents (‘Jim’, 
‘Joan’, and ‘Bob’) and works on four different projects (‘W’, ‘X’, ‘Y’, and ‘Z’). There 
are 16 tuples in EMP in Figure 15.4(a). If we decompose EMP into EMP_PROJECTS 
and EMP_DEPENDENTS, as shown in Figure 15.4(b), we need to store a total of 
only 11 tuples in both relations. Not only would the decomposition save on stor-
age, but the update anomalies associated with multivalued dependencies would 
also be avoided. For example, if ‘Brown’ starts working on a new additional project 
‘P’, we must insert three tuples in EMP—one for each dependent. If we forget to 

8That is, the set of values of Y determined by a value of X is restricted to being a singleton set with only 
one value. Hence, in practice, we never view an FD as an MVD.
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insert any one of those, the relation violates the MVD and becomes inconsistent in 
that it incorrectly implies a relationship between project and dependent.

If the relation has nontrivial MVDs, then insert, delete, and update operations on 
single tuples may cause additional tuples to be modified besides the one in ques-
tion. If the update is handled incorrectly, the meaning of the relation may change. 
However, after normalization into 4NF, these update anomalies disappear. For 
example, to add the information that ‘Brown’ will be assigned to project ‘P’, only a 
single tuple need be inserted in the 4NF relation EMP_PROJECTS.

The EMP relation in Figure 14.15(a) is not in 4NF because it represents two inde-
pendent 1:N relationships—one between employees and the projects they work on 
and the other between employees and their dependents. We sometimes have a rela-
tionship among three entities that is a legitimate three-way relationship and not a 
combination of two binary relationships among three participating entities, such as 
the SUPPLY relation shown in Figure 14.15(c). (Consider only the tuples in Fig- 
ure 14.5(c) above the dashed line for now.) In this case a tuple represents a supplier sup-
plying a specific part to a particular project, so there are no nontrivial MVDs. Hence, 
the SUPPLY all-key relation is already in 4NF and should not be decomposed.

(a) EMP

Ename

Smith

Smith

Smith

Smith

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

Brown

John

Anna

Anna

John

Jim

Jim

Jim

Jim

Joan

Joan

Joan

Joan

Bob

Bob

Bob

Bob

X

Y

X

Y

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Pname Dname

(b) EMP_PROJECTS

Ename

Smith

Smith

Brown

Brown

Brown

Brown

W

X

Y

Z

X

Y

Pname

EMP_DEPENDENTS

Ename

Smith
Smith

Brown
Brown

Brown

Jim
Joan

Bob

Anna
John

Dname

Figure 15.4 
Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation with  
additional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS and  
EMP_DEPENDENTS.
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15.5.3 Nonadditive Join Decomposition into 4NF Relations
Whenever we decompose a relation schema R into R1 = (X ∪ Y) and R2 = (R − Y) 
based on an MVD X →→ Y that holds in R, the decomposition has the nonadditive 
join property. It can be shown that this is a necessary and sufficient condition for 
decomposing a schema into two schemas that have the nonadditive join property, 
as given by Property NJB′ that is a further generalization of Property NJB given 
earlier in Section 14.5.1. Property NJB dealt with FDs only, whereas NJB′ deals with 
both FDs and MVDs (recall that an FD is also an MVD).

Property NJB′. The relation schemas R1 and R2 form a nonadditive join 
decomposition of R with respect to a set F of functional and multivalued depen-
dencies if and only if

(R1 ∩ R2) →→ (R1 – R2)

or, by symmetry, if and only if

(R1 ∩ R2) →→ (R2 – R1)

We can use a slight modification of Algorithm 15.5 to develop Algorithm 15.7, 
which creates a nonadditive join decomposition into relation schemas that are in 
4NF (rather than in BCNF). As with Algorithm 15.5, Algorithm 15.7 does not nec-
essarily produce a decomposition that preserves FDs.

Algorithm 15.7. Relational Decomposition into 4NF Relations with Nonad-
ditive Join Property

Input: A universal relation R and a set of functional and multivalued depen-
dencies F

  1. Set D:= { R };

  2. While there is a relation schema Q in D that is not in 4NF, do

{ choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X →→ Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

};

15.6 Other Dependencies and Normal Forms

15.6.1 Join Dependencies and the Fifth Normal Form
We already introduced another type of dependency called join dependency (JD) in 
Section 14.7. It arises when a relation is decomposable into a set of projected rela-
tions that can be joined back to yield the original relation. After defining JD, we 
defined the fifth normal form based on it in Section 14.7. Fifth normal form has also 
been known as project join normal form or PJNF (Fagin, 1979). A practical problem 
with this and some additional dependencies (and related normal forms such as 
DKNF, which is defined in Section 15.6.3) is that they are difficult to discover. 
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Furthermore, there are no sets of sound and complete inference rules to reason 
about them. In the remaining part of this section, we introduce some other types of 
dependencies that have been identified. Among them, the inclusion dependencies 
and those based on arithmetic or similar functions are used frequently.

15.6.2 Inclusion Dependencies
Inclusion dependencies were defined in order to formalize two types of interrela-
tional constraints:

 ■ The foreign key (or referential integrity) constraint cannot be specified as a 
functional or multivalued dependency because it relates attributes across 
relations.

 ■ The constraint between two relations that represent a class/subclass rela-
tionship (see Chapters 4 and 9) also has no formal definition in terms of the 
functional, multivalued, and join dependencies.

Definition. An inclusion dependency R.X < S.Y between two sets of attri-
butes—X of relation schema R, and Y of relation schema S—specifies the con-
straint that, at any specific time when r is a relation state of R and s is a relation 
state of S, we must have

πX(r(R)) ⊆ πY(s(S))

The ⊆ (subset) relationship does not necessarily have to be a proper subset. Obviously, 
the sets of attributes on which the inclusion dependency is specified—X of R and Y of 
S—must have the same number of attributes. In addition, the domains for each pair of 
corresponding attributes should be compatible. For example, if X = {A1, A2, … , An} 
and Y = {B1, B2, … , Bn}, one possible correspondence is to have dom(Ai) compatible 
with dom(Bi) for 1 ≤ i ≤ n. In this case, we say that Ai corresponds to Bi.

For example, we can specify the following inclusion dependencies on the relational 
schema in Figure 14.1:

DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn

WORKS_ON.Ssn < EMPLOYEE.Ssn

EMPLOYEE.Dnumber < DEPARTMENT.Dnumber

PROJECT.Dnum < DEPARTMENT.Dnumber

WORKS_ON.Pnumber < PROJECT.Pnumber

DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

All the preceding inclusion dependencies represent referential integrity  
constraints. We can also use inclusion dependencies to represent class/subclass 
relationships. For example, in the relational schema of Figure 9.6, we can specify 
the following inclusion dependencies:

EMPLOYEE.Ssn < PERSON.Ssn

ALUMNUS.Ssn < PERSON.Ssn

STUDENT.Ssn < PERSON.Ssn
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As with other types of dependencies, there are inclusion dependency inference rules 
(IDIRs). The following are three examples:

IDIR1 (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y, where X = {A1, A2, … , An} and 
Y = {B1, B2, … , Bn} and Ai corresponds to Bi, then R.Ai < S.Bi for 1 ≤ i ≤ n.

IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X < T.Z.

The preceding inference rules were shown to be sound and complete for inclusion 
dependencies. So far, no normal forms have been developed based on inclusion 
dependencies.

15.6.3  Functional Dependencies Based on Arithmetic  
Functions and Procedures

Sometimes some attributes in a relation may be related via some arithmetic func-
tion or a more complicated functional relationship. As long as a unique value of Y 
is associated with every X, we can still consider that the FD X → Y exists. For exam-
ple, in the relation

ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,  
Discounted_price)

each tuple represents an item from an order with a particular quantity, and the 
price per unit for that item. In this relation, (Quantity, Unit_price ) → Extended_price 
by the formula

Extended_price = Unit_price * Quantity

Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price), 
and thus it conforms to the definition of functional dependency.

Moreover, there may be a procedure that takes into account the quantity discounts, 
the type of item, and so on and computes a discounted price for the total quantity 
ordered for that item. Therefore, we can say

(Item#, Quantity, Unit_price ) → Discounted_price, or
(Item#, Quantity, Extended_price) → Discounted_price

To check the above FDs, a more complex procedure COMPUTE_TOTAL_PRICE may 
have to be called into play. Although the above kinds of FDs are technically present 
in most relations, they are not given particular attention during normalization. They 
may be relevant during the loading of relations and during query processing because 
populating or retrieving the attribute on the right-hand side of the dependency 
requires the execution of a procedure such as the one mentioned above.

15.6.4 Domain-Key Normal Form
There is no hard-and-fast rule about defining normal forms only up to 5NF. His-
torically, the process of normalization and the process of discovering undesirable 
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dependencies were carried through 5NF, but it has been possible to define stricter 
normal forms that take into account additional types of dependencies and con-
straints. The idea behind domain-key normal form (DKNF) is to specify (theoreti-
cally, at least) the ultimate normal form that takes into account all possible types of 
dependencies and constraints. A relation schema is said to be in DKNF if all con-
straints and dependencies that should hold on the valid relation states can be 
enforced simply by enforcing the domain constraints and key constraints on the 
relation. For a relation in DKNF, it becomes straightforward to enforce all database 
constraints by simply checking that each attribute value in a tuple is of the appro-
priate domain and that every key constraint is enforced.

However, because of the difficulty of including complex constraints in a DKNF 
relation, its practical utility is limited, since it may be quite difficult to specify gen-
eral integrity constraints. For example, consider a relation CAR(Make, Vin#) (where 
Vin# is the vehicle identification number) and another relation MANUFACTURE(Vin#, 
Country) (where Country is the country of manufacture). A general constraint may be 
of the following form: If the Make is either ‘Toyota’ or ‘Lexus’, then the first character 
of the Vin# is a ‘J’ if the country of manufacture is ‘Japan’; if the Make is ‘Honda’ or 
‘Acura’, the second character of the Vin# is a ‘J’ if the country of manufacture is 
‘Japan’. There is no simplified way to represent such constraints short of writing a 
procedure (or general assertions) to test them. The procedure COMPUTE_TOTAL_PRICE 
above is an example of such procedures needed to enforce an appropriate integrity 
constraint.

For these reasons, although the concept of DKNF is appealing and appears straight-
forward, it cannot be directly tested or implemented with any guarantees of consis-
tency or non-redundancy of design. Hence it is not used much in practice.

15.7 Summary
In this chapter we presented a further set of topics related to dependencies, a dis-
cussion of decomposition, and several algorithms related to them as well as to the 
process of designing 3NF, BCNF, and 4NF relations from a given set of functional 
dependencies and multivalued dependencies. In Section 15.1 we presented infer-
ence rules for functional dependencies (FDs), the notion of closure of an attribute, 
the notion of closure of a set of functional dependencies, equivalence among sets 
of functional dependencies, and algorithms for finding the closure of an attribute 
(Algorithm 15.1) and the minimal cover of a set of FDs (Algorithm 15.2). We then 
discussed two important properties of decompositions: the nonadditive join prop-
erty and the dependency-preserving property. An algorithm to test for an n-way 
nonadditive decomposition of a relation (Algorithm 15.3) was presented. A sim-
pler test for checking for nonadditive binary decompositions (property NJB) has 
already been described in Section 14.5.1. We then discussed relational design by 
synthesis, based on a set of given functional dependencies. The relational synthesis 
algorithm (Algorithm 15.4) creates 3NF relations from a universal relation 
schema based on a given set of functional dependencies that has been specified by 



534 Chapter 15 Relational Database Design Algorithms and Further Dependencies

the database designer. The relational decomposition algorithms (such as Algo-
rithms 15.5 and 15.6) create BCNF (or 4NF) relations by successive nonadditive 
decomposition of unnormalized relations into two component relations at a time. 
We saw that it is possible to synthesize 3NF relation schemas that meet both of the 
above properties; however, in the case of BCNF, it is possible to aim only for the 
nonadditiveness of joins—dependency preservation cannot be necessarily guaran-
teed. If the designer has to aim for one of these two, the nonadditive join condition 
is an absolute must. In Section 15.4 we showed how certain difficulties arise in a 
collection of relations due to null values that may exist in relations in spite of the 
relations being individually in 3NF or BCNF. Sometimes when decomposition is 
improperly carried too far, certain “dangling tuples” may result that do not par-
ticipate in results of joins and hence may become invisible. We also showed how 
algorithms such as 15.4 for 3NF synthesis could lead to alternative designs based 
on the choice of minimum cover. We revisited multivalued dependencies (MVDs) 
in Section 15.5. MVDs arise from an improper combination of two or more inde-
pendent multivalued attributes in the same relation, and MVDs result in a combi-
national expansion of the tuples used to define fourth normal form (4NF). We 
discussed inference rules applicable to MVDs and discussed the importance of 
4NF. Finally, in Section 15.6 we discussed inclusion dependencies, which are used 
to specify referential integrity and class/subclass constraints, and pointed out the 
need for arithmetic functions or more complex procedures to enforce certain 
functional dependency constraints. We concluded with a brief discussion of the 
domain-key normal form (DKNF).

Review Questions
 15.1. What is the role of Armstrong’s inference rules (inference rules IR1 through 

IR3) in the development of the theory of relational design?

 15.2. What is meant by the completeness and soundness of Armstrong’s infer-
ence rules?

 15.3. What is meant by the closure of a set of functional dependencies? Illustrate 
with an example.

 15.4. When are two sets of functional dependencies equivalent? How can we 
determine their equivalence?

 15.5. What is a minimal set of functional dependencies? Does every set of depen-
dencies have a minimal equivalent set? Is it always unique?

 15.6. What is meant by the attribute preservation condition on a decomposition?

 15.7. Why are normal forms alone insufficient as a condition for a good schema 
design?

 15.8. What is the dependency preservation property for a decomposition? Why is 
it important?
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 15.9. Why can we not guarantee that BCNF relation schemas will be produced by 
dependency-preserving decompositions of non-BCNF relation schemas? 
Give a counterexample to illustrate this point.

 15.10. What is the lossless (or nonadditive) join property of a decomposition? Why 
is it important?

 15.11. Between the properties of dependency preservation and losslessness, which 
one must definitely be satisfied? Why?

 15.12. Discuss the NULL value and dangling tuple problems.

 15.13. Illustrate how the process of creating first normal form relations may lead to 
multivalued dependencies. How should the first normalization be done 
properly so that MVDs are avoided?

 15.14. What types of constraints are inclusion dependencies meant to represent?

 15.15. How do template dependencies differ from the other types of dependencies 
we discussed?

 15.16. Why is the domain-key normal form (DKNF) known as the ultimate nor-
mal form?

Exercises
 15.17. Show that the relation schemas produced by Algorithm 15.4 are in 3NF.

 15.18. Show that, if the matrix S resulting from Algorithm 15.3 does not have a row 
that is all a symbols, projecting S on the decomposition and joining it back 
will always produce at least one spurious tuple.

 15.19. Show that the relation schemas produced by Algorithm 15.5 are in BCNF.

 15.20. Write programs that implement Algorithms 15.4 and 15.5.

 15.21. Consider the relation REFRIG(Model#, Year, Price, Manuf_plant, Color), which 
is abbreviated as REFRIG(M, Y, P, MP, C), and the following set F of functional 
dependencies: F = {M → MP, {M, Y} → P, MP → C}

a. Evaluate each of the following as a candidate key for REFRIG, giving rea-
sons why it can or cannot be a key: {M}, {M, Y}, {M, C}.

b. Based on the above key determination, state whether the relation REFRIG 
is in 3NF and in BCNF, and provide proper reasons.

c. Consider the decomposition of REFRIG into D = {R1(M, Y, P),  
R2(M, MP, C)}. Is this decomposition lossless? Show why. (You may 
consult the test under Property NJB in Section 14.5.1.)

 15.22. Specify all the inclusion dependencies for the relational schema in Figure 5.5.

 15.23. Prove that a functional dependency satisfies the formal definition of multi-
valued dependency.
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 15.24. Consider the example of normalizing the LOTS relation in Sections 14.4 
and 14.5. Determine whether the decomposition of LOTS into {LOTS1AX, 
LOTS1AY, LOTS1B, LOTS2} has the lossless join property by applying 
Algorithm 15.3 and also by using the test under property NJB from Sec-
tion 14.5.1.

 15.25. Show how the MVDs Ename →→ and Ename →→ Dname in Figure 14.15(a) 
may arise during normalization into 1NF of a relation, where the attributes 
Pname and Dname are multivalued.

 15.26. Apply Algorithm 15.2(a) to the relation in Exercise 14.24 to determine a key 
for R. Create a minimal set of dependencies G that is equivalent to F, and apply 
the synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations.

 15.27. Repeat Exercise 15.26 for the functional dependencies in Exercise 14.25.

 15.28. Apply the decomposition algorithm (Algorithm 15.5) to the relation R and 
the set of dependencies F in Exercise 15.24. Repeat for the dependencies G in 
Exercise 15.25.

 15.29. Apply Algorithm 15.2(a) to the relations in Exercises 14.27 and 14.28 to 
determine a key for R. Apply the synthesis algorithm (Algorithm 15.4) to 
decompose R into 3NF relations and the decomposition algorithm (Algo-
rithm 15.5) to decompose R into BCNF relations.

 15.31. Consider the following decompositions for the relation schema R of Exer-
cise 14.24. Determine whether each decomposition has (1) the dependency 
preservation property, and (2) the lossless join property, with respect to F. 
Also determine which normal form each relation in the decomposition is in.

a. D1 = {R1, R2, R3, R4, R5}; R1 = {A, B, C}, R2 = {A, D, E}, R3 = {B, F},  
R4 = {F, G, H}, R5 = {D, I, J}

b. D2 = {R1, R2, R3}; R1 = {A, B, C, D, E}, R2 = {B, F, G, H}, R3 = {D, I, J}

c. D3 = {R1, R2, R3, R4, R5}; R1 = {A, B, C, D}, R2 = {D, E}, R3 = {B, F},  
R4 = {F, G, H}, R5 = {D, I, J}

Laboratory Exercises
Note: These exercises use the DBD (Data Base Designer) system that is described 
in the laboratory manual. The relational schema R and set of functional dependen-
cies F need to be coded as lists. As an example, R and F for Problem 14.24 are 
coded as:

R = [a, b, c, d, e, f, g, h, i, j]
F = [[[a, b],[c]],

[[a],[d, e]],
[[b],[f]],
[[f],[g, h]],
[[d],[i, j]]]
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Since DBD is implemented in Prolog, use of uppercase terms is reserved for variables 
in the language and therefore lowercase constants are used to code the attributes. For 
further details on using the DBD system, please refer to the laboratory manual.

 15.33. Using the DBD system, verify your answers to the following exercises:

a. 15.24

b. 15.26

c. 15.27

d. 15.28

e. 15.29

f. 15.31 (a) and (b)

g. 15.32 (a) and (c)
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16
Disk Storage, Basic File 

Structures, Hashing, and Modern 
Storage Architectures

Databases are stored physically as files of records, 
which are typically stored on magnetic disks. This 

chapter and the next deal with the organization of databases in storage and the 
techniques for accessing them efficiently using various algorithms, some of which 
require auxiliary data structures called indexes. These structures are often referred 
to as physical database file structures and are at the physical level of the three-
schema architecture described in Chapter 2. We start in Section 16.1 by introducing 
the concepts of computer storage hierarchies and how they are used in database 
systems. Section 16.2 is devoted to a description of magnetic disk storage devices 
and their characteristics, flash memory, and solid-state drives and optical drives 
and magnetic tape storage devices used for archiving data. We also discuss tech-
niques for making access from disks more efficient. After discussing different stor-
age technologies, we turn our attention to the methods for physically organizing 
data on disks. Section 16.3 covers the technique of double buffering, which is used 
to speed retrieval of multiple disk blocks. We also discuss buffer management and 
buffer replacement strategies. In Section 16.4 we discuss various ways of formatting 
and storing file records on disk. Section 16.5 discusses the various types of opera-
tions that are typically applied to file records. We present three primary methods 
for organizing file records on disk: unordered records, in Section 16.6; ordered 
records, in Section 16.7; and hashed records, in Section 16.8.

Section 16.9 briefly introduces files of mixed records and other primary methods 
for organizing records, such as B-trees. These are particularly relevant for storage of 
object-oriented databases, which we discussed in Chapter 11. Section 16.10 

chapter 16 
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describes RAID (redundant arrays of inexpensive (or independent) disks)—a data 
storage system architecture that is commonly used in large organizations for better 
reliability and performance. Finally, in Section 16.11 we describe modern develop-
ments in the storage architectures that are important for storing enterprise data: 
storage area networks (SANs), network-attached storage (NAS), iSCSI (Internet 
SCSI—small computer system interface), and other network-based storage proto-
cols, which make storage area networks more affordable without the use of the 
Fibre Channel infrastructure and hence are becoming widely accepted in industry. 
We also discuss storage tiering and object-based storage. Section 16.12 summarizes 
the chapter. In Chapter 17 we discuss techniques for creating auxiliary data struc-
tures, called indexes, which speed up the search for and retrieval of records. These 
techniques involve storage of auxiliary data, called index files, in addition to the file 
records themselves.

Chapters 16 and 17 may be browsed through or even omitted by readers who have 
already studied file organizations and indexing in a separate course. The material 
covered here, in particular Sections 16.1 through 16.8, is necessary for understand-
ing Chapters 18 and 19, which deal with query processing and optimization, as well 
as database tuning for improving performance of queries.

16.1 Introduction
The collection of data that makes up a computerized database must be stored phys-
ically on some computer storage medium. The DBMS software can then retrieve, 
update, and process this data as needed. Computer storage media form a storage 
hierarchy that includes two main categories:

 ■ Primary storage. This category includes storage media that can be operated 
on directly by the computer’s central processing unit (CPU), such as the 
computer’s main memory and smaller but faster cache memories. Primary 
storage usually provides fast access to data but is of limited storage capacity. 
Although main memory capacities have been growing rapidly in recent 
years, they are still more expensive and have less storage capacity than 
demanded by typical enterprise-level databases. The contents of main mem-
ory are lost in case of power failure or a system crash.

 ■ Secondary storage. The primary choice of storage medium for online stor-
age of enterprise databases has been magnetic disks. However, flash memo-
ries are becoming a common medium of choice for storing moderate 
amounts of permanent data. When used as a substitute for a disk drive, such 
memory is called a solid-state drive (SSD).

 ■ Tertiary storage. Optical disks (CD-ROMs, DVDs, and other similar stor-
age media) and tapes are removable media used in today’s systems as offline 
storage for archiving databases and hence come under the category called 
tertiary storage. These devices usually have a larger capacity, cost less, and 
provide slower access to data than do primary storage devices. Data in sec-
ondary or tertiary storage cannot be processed directly by the CPU; first it 
must be copied into primary storage and then processed by the CPU.
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We first give an overview of the various storage devices used for primary, second-
ary, and tertiary storage in Section 16.1.1, and in Section 16.1.2 we discuss how 
databases are typically handled in the storage hierarchy.

16.1.1 Memory Hierarchies and Storage Devices1

In a modern computer system, data resides and is transported throughout a hierar-
chy of storage media. The highest-speed memory is the most expensive and is 
therefore available with the least capacity. The lowest-speed memory is offline tape 
storage, which is essentially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes, at the most expensive 
end, cache memory, which is a static RAM (random access memory). Cache mem-
ory is typically used by the CPU to speed up execution of program instructions 
using techniques such as prefetching and pipelining. The next level of primary stor-
age is DRAM (dynamic RAM), which provides the main work area for the CPU for 
keeping program instructions and data. It is popularly called main memory. The 
advantage of DRAM is its low cost, which continues to decrease; the drawback is its 
volatility2 and lower speed compared with static RAM.

At the secondary and tertiary storage level, the hierarchy includes magnetic disks; 
mass storage in the form of CD-ROM (compact disk–read-only memory) and 
DVD (digital video disk or digital versatile disk) devices; and finally tapes at the 
least expensive end of the hierarchy. The storage capacity is measured in kilobytes 
(Kbyte or 1,000 bytes), megabytes (MB or 1 million bytes), gigabytes (GB or 1 bil-
lion bytes), and even terabytes (1,000 GB). The word petabyte (1,000 terabytes or 
10**15 bytes) is now becoming relevant in the context of very large repositories of 
data in physics, astronomy, earth sciences, and other scientific applications.

Programs reside and execute in dynamic random-access memory ( DRAM ). Gen-
erally, large permanent databases reside on secondary storage (magnetic disks), and 
portions of the database are read into and written from buffers in main memory as 
needed. Nowadays, personal computers and workstations have large main memo-
ries of hundreds of megabytes of RAM and DRAM, so it is becoming possible to 
load a large part of the database into main memory. Eight to sixteen GB of main 
memory is becoming commonplace on laptops, and servers with 256 GB capacity 
are not uncommon. In some cases, entire databases can be kept in main memory 
(with a backup copy on magnetic disk), which results in main memory databases; 
these are particularly useful in real-time applications that require extremely fast 
response times. An example is telephone switching applications, which store data-
bases that contain routing and line information in main memory.

Flash Memory. Between DRAM and magnetic disk storage, another form of 
memory, flash memory, is becoming common, particularly because it is nonvolatile. 

2Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile memory 
does not.

1The authors appreciate the valuable input of Dan Forsyth regarding the current status of storage 
systems in enterprises. The authors also wish to thank Satish Damle for his suggestions.
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Flash memories are high-density, high-performance memories using EEPROM 
(electrically erasable programmable read-only memory) technology. The advantage 
of flash memory is the fast access speed; the disadvantage is that an entire block 
must be erased and written over simultaneously. Flash memories come in two types 
called NAND and NOR flash based on the type of logic circuits used. The NAND 
flash devices have a higher storage capacity for a given cost and are used as the data 
storage medium in appliances with capacities ranging from 8 GB to 64 GB for the 
popular cards that cost less than a dollar per GB. Flash devices are used in cameras, 
MP3/MP4 players, cell phones, PDAs (personal digital assistants), and so on. USB 
(universal serial bus) flash drives or USB sticks have become the most portable 
medium for carrying data between personal computers; they have a flash memory 
storage device integrated with a USB interface.

Optical Drives. The most popular form of optical removable storage is CDs (com-
pact disks) and DVDs. CDs have a 700-MB capacity whereas DVDs have capacities 
ranging from 4.5 to 15 GB. CD-ROM(compact disk – read only memory) disks 
store data optically and are read by a laser. CD-ROMs contain prerecorded data 
that cannot be overwritten. The version of compact and digital video disks called 
CD-R (compact disk recordable) and DVD-R or DVD+R, which are also known as 
WORM (write-once-read-many) disks, are a form of optical storage used for 
archiving data; they allow data to be written once and read any number of times 
without the possibility of erasing. They hold about half a gigabyte of data per disk 
and last much longer than magnetic disks.3 A higher capacity format for DVDs 
called Blu-ray DVD can store 27 GB per layer, or 54 GB in a two-layer disk. Optical 
jukebox memories use an array of CD-ROM platters, which are loaded onto drives 
on demand. Although optical jukeboxes have capacities in the hundreds of giga-
bytes, their retrieval times are in the hundreds of milliseconds, quite a bit slower 
than magnetic disks. This type of tertiary storage is continuing to decline because 
of the rapid decrease in cost and the increase in capacities of magnetic disks. Most 
personal computer disk drives now read CD-ROM and DVD disks. Typically, 
drives are CD-R (compact disk recordable) that can create CD-ROMs and audio 
CDs, as well as record on DVDs.

Magnetic Tapes. Finally, magnetic tapes are used for archiving and backup stor-
age of data. Tape jukeboxes—which contain a bank of tapes that are catalogued 
and can be automatically loaded onto tape drives—are becoming popular as  tertiary 
storage to hold terabytes of data. For example, NASA’s EOS (Earth Observation 
 Satellite) system stores archived databases in this fashion.

Many large organizations are using terabyte-sized databases. The term very large 
database can no longer be precisely defined because disk storage capacities are on 

3Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transfer 
rates (around 100 to 200 KB/second) for a 1X drive. nX drives (e.g., 16X (n = 16) are supposed to 
give n times higher transfer rate by multiplying the rpm n times. The 1X DVD transfer rate is about 
1.385 MB/s.
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the rise and costs are declining. Soon the term very large database may be reserved 
for databases containing hundreds of terabytes or petabytes.

To summarize, a hierarchy of storage devices and storage systems is available today 
for storage of data. Depending upon the intended use and application requirements, 
data is kept in one or more levels of this hierarchy. Table 16.1 summarizes the cur-
rent state of these devices and systems and shows the range of capacities, average 
access times, bandwidths (transfer speeds), and costs on the open commodity mar-
ket. Cost of storage is generally going down at all levels of this hierarchy.

16.1.2 Storage Organization of Databases
Databases typically store large amounts of data that must persist over long periods 
of time, and hence the data is often referred to as persistent data. Parts of this data 
are accessed and processed repeatedly during the storage period. This contrasts 
with the notion of transient data, which persists for only a limited time during 
program execution. Most databases are stored permanently (or persistently) on 
magnetic disk secondary storage, for the following reasons:

 ■ Generally, databases are too large to fit entirely in main memory.4

 ■ The circumstances that cause permanent loss of stored data arise less fre-
quently for disk secondary storage than for primary storage. Hence, we refer 
to disk—and other secondary storage devices—as nonvolatile storage, 
whereas main memory is often called volatile storage.

 ■ The cost of storage per unit of data is an order of magnitude less for disk 
secondary storage than for primary storage.

Table 16.1 Types of Storage with Capacity, Access Time, Max Bandwidth (Transfer Speed), and Commodity Cost

 
Type

 
Capacity*

Access  
Time

 
Max Bandwidth

Commodity 
Prices (2014)**

Main Memory- RAM 4GB–1TB 30ns 35GB/sec $100–$20K

Flash Memory- SSD 64 GB–1TB 50μs 750MB/sec $50–$600

Flash Memory- USB stick 4GB–512GB 100μs 50MB/sec $2–$200

Magnetic Disk 400 GB–8TB 10ms 200MB/sec $70–$500

Optical Storage 50GB–100GB 180ms 72MB/sec $100

Magnetic Tape 2.5TB–8.5TB 10s–80s 40–250MB/sec $2.5K–$30K

Tape jukebox 25TB–2,100,000TB 10s–80s 250MB/sec–1.2PB/sec $3K–$1M+

*Capacities are based on commercially available popular units in 2014.

**Costs are based on commodity online marketplaces.

4This statement is being challenged by recent developments in main memory database systems.  
Examles of prominent commercial systems include HANA by SAP and TIMESTEN by Oracle.
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Some of the newer technologies—such as solid-state drive (SSD) disks are likely to 
provide viable alternatives to the use of magnetic disks. In the future, databases may 
therefore reside at different levels of the memory hierarchy from those described in 
Section 16.1.1. The levels may range from the highest speed main memory level 
storage to the tape jukebox low speed offline storage. However, it is anticipated that 
magnetic disks will continue to be the primary medium of choice for large data-
bases for years to come. Hence, it is important to study and understand the proper-
ties and characteristics of magnetic disks and the way data files can be organized on 
disk in order to design effective databases with acceptable performance.

Magnetic tapes are frequently used as a storage medium for backing up databases 
because storage on tape costs much less than storage on disk. With some interven-
tion by an operator—or an automatic loading device—tapes or optical removable 
disks must be loaded and read before the data becomes available for processing. In 
contrast, disks are online devices that can be accessed directly at any time.

The techniques used to store large amounts of structured data on disk are impor-
tant for database designers, the DBA, and implementers of a DBMS. Database 
designers and the DBA must know the advantages and disadvantages of each stor-
age technique when they design, implement, and operate a database on a specific 
DBMS. Usually, the DBMS has several options available for organizing the data. 
The process of physical database design involves choosing the particular data 
organization techniques that best suit the given application requirements from 
among the options. DBMS system implementers must study data organization 
techniques so that they can implement them efficiently and thus provide the DBA 
and users of the DBMS with sufficient options.

Typical database applications need only a small portion of the database at a time for 
processing. Whenever a certain portion of the data is needed, it must be located on 
disk, copied to main memory for processing, and then rewritten to the disk if the 
data is changed. The data stored on disk is organized as files of records. Each record 
is a collection of data values that can be interpreted as facts about entities, their 
attributes, and their relationships. Records should be stored on disk in a manner 
that makes it possible to locate them efficiently when they are needed. We will dis-
cuss some of the techniques for making disk access more efficient in Section 17.2.2.

There are several primary file organizations, which determine how the file 
records are physically placed on the disk, and hence how the records can be accessed. 
A heap file (or unordered file) places the records on disk in no particular order by 
appending new records at the end of the file, whereas a sorted file (or sequential 
file) keeps the records ordered by the value of a particular field (called the sort key). 
A hashed file uses a hash function applied to a particular field (called the hash key) 
to determine a record’s placement on disk. Other primary file organizations, such 
as B-trees, use tree structures. We discuss primary file organizations in Sec-
tions 16.6 through 16.9. A secondary organization or auxiliary access structure 
allows efficient access to file records based on alternate fields than those that have 
been used for the primary file organization. Most of these exist as indexes and will 
be discussed in Chapter 17.
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16.2 Secondary Storage Devices
In this section, we describe some characteristics of magnetic disk and magnetic tape 
storage devices. Readers who have already studied these devices may simply browse 
through this section.

16.2.1 Hardware Description of Disk Devices
Magnetic disks are used for storing large amounts of data. The device that holds the 
disks is referred to as a hard disk drive, or HDD. The most basic unit of data on the 
disk is a single bit of information. By magnetizing an area on a disk in certain ways, 
one can make that area represent a bit value of either 0 (zero) or 1 (one). To code 
information, bits are grouped into bytes (or characters). Byte sizes are typically 4 to 
8 bits, depending on the computer and the device; 8 bits is the most common. We 
assume that one character is stored in a single byte, and we use the terms byte and 
character interchangeably. The capacity of a disk is the number of bytes it can store, 
which is usually very large. Small floppy disks were used with laptops and desk-
tops for many years—they contained a single disk typically holding from 400 KB 
to 1.5 MB; they are almost completely out of circulation. Hard disks for personal 
computers currently hold from several hundred gigabytes up to a few terabytes; and 
large disk packs used with servers and mainframes have capacities of hundreds of 
gigabytes. Disk capacities continue to grow as technology improves.

Whatever their capacity, all disks are made of magnetic material shaped as a thin 
circular disk, as shown in Figure 16.1(a), and protected by a plastic or acrylic cover. 
A disk is single-sided if it stores information on one of its surfaces only and double-
sided if both surfaces are used. To increase storage capacity, disks are assembled 
into a disk pack, as shown in Figure 16.1(b), which may include many disks and 
therefore many surfaces. The two most common form factors are 3.5 and 2.5 inch 
diameter. Information is stored on a disk surface in concentric circles of small 
width,5 each having a distinct diameter. Each circle is called a track. In disk packs, 
tracks with the same diameter on the various surfaces are called a cylinder because 
of the shape they would form if connected in space. The concept of a cylinder is 
important because data stored on one cylinder can be retrieved much faster than if 
it were distributed among different cylinders.

The number of tracks on a disk ranges from a few thousand to 152,000 on the disk 
drives shown in Table 16.2, and the capacity of each track typically ranges from tens 
of kilobytes to 150 Kbytes. Because a track usually contains a large amount of infor-
mation, it is divided into smaller blocks or sectors. The division of a track into 
 sectors is hard-coded on the disk surface and cannot be changed. One type of  sector 
organization, as shown in Figure 16.2(a), calls a portion of a track that subtends a 
fixed angle at the center a sector. Several other sector organizations are possible, 
one of which is to have the sectors subtend smaller angles at the center as one moves 

5In some disks, the circles are now connected into a kind of continuous spiral.
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(a) A single-sided disk with read/write hardware. (b) A disk pack with read/write hardware.
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Table 16.2  Specifications of Typical High-End Enterprise Disks from Seagate (a) Seagate Enterprise Performance 
10 K HDD - 1200 GB

Specifications 1200GB

SED Model Number ST1200MM0017

SED FIPS 140-2 Model Number ST1200MM0027

Model Name Enterprise Performance 10K HDD v7

Interface 6Gb/s SAS

Capacity

Formatted 512 Bytes/Sector (GB) 1200

External Transfer Rate (MB/s) 600

Performance

Spindle Speed (RPM) 10K

Average Latency (ms) 2.9

Sustained Transfer Rate Outer to Inner Diameter (MB/s) 204 to 125

Cache, Multisegmented (MB) 64

Configuration/Reliability

Disks 4

Heads 8

Nonrecoverable Read Errors per Bits Read 1 per 10E16

Annualized Failure Rate (AFR) 0.44%

Physical

Height (in/mm, max) 0.591/15.00

Width (in/mm, max) 2.760/70.10

Depth (in/mm, max) 3.955/100.45

Weight (lb/kg) 0.450/0.204

Courtesy Seagate Technology

(Continued)

away, thus maintaining a uniform density of recording, as shown in Figure 16.2(b). 
A technique called ZBR (zone bit recording) allows a range of cylinders to have the 
same number of sectors per arc. For example, cylinders 0–99 may have one sector 
per track, 100–199 may have two per track, and so on. A common sector size is 512 
bytes. Not all disks have their tracks divided into sectors.

The division of a track into equal-sized disk blocks (or pages) is set by the operat-
ing system during disk formatting (or initialization). Block size is fixed during 
initialization and cannot be changed dynamically. Typical disk block sizes range 
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from 512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdi-
vided or combined into blocks during initialization. Blocks are separated by fixed-
size interblock gaps, which include specially coded control information written 
during disk initialization. This information is used to determine which block on the 
track follows each interblock gap. Table 16.2 illustrates the specifications of typical 
disks used on large servers in industry. The 10K prefix on disk names refers to the 
rotational speeds in rpm (revolutions per minute.

There is continuous improvement in the storage capacity and transfer rates associ-
ated with disks; they are also progressively getting cheaper—currently costing only 
a fraction of a dollar per megabyte of disk storage. Costs are going down so rapidly 
that costs as low as $100/TB are already on the market.

A disk is a random access addressable device. Transfer of data between main mem-
ory and disk takes place in units of disk blocks. The hardware address of a block—
a combination of a cylinder number, track number (surface number within the 
cylinder on which the track is located), and block number (within the track)—is 
supplied to the disk I/O (input/output) hardware. In many modern disk drives, a 
single number called LBA (logical block address), which is a number between 0 and 
n (assuming the total capacity of the disk is n + 1 blocks), is mapped automatically 
to the right block by the disk drive controller. The address of a buffer—a contiguous 

Table 16.2 (b) Internal Drive Characteristics of 300 GB–900 GB Seagate Drives

ST900MM0006
ST900MM0026
ST900MM0046
ST900MM0036

ST600MM0006
ST600MM0026
ST600MM0046

ST450MM0006
ST450MM0026
ST450MM0046

ST300MM0006
ST300MM0026
ST300MM0046

Drive capacity 900 600 450 300 GB (formatted, 
rounded off value)

Read/write data 
heads

6 4 3 2

Bytes per track 997.9 997.9 997.9 997.9 KBytes (avg, rounded 
off values)

Bytes per surface 151,674 151,674 151,674 151,674 MB (unformatted, 
rounded off value)

Tracks per surface 
(total)

152 152 152 152 KTracks (user  
accessible)

Tracks per inch 279 279 279 279 KTPI (average)

Peak bits per inch 1925 1925 1925 1925 KBPI

Areal density 538 538 538 538 Gb/in2

Disk rotation speed 10K 10K 10K 10K rpm

Avg rotational 
latency

2.9 2.9 2.9 2.9 ms



 16.2 Secondary Storage Devices 551

reserved area in main storage that holds one disk block—is also provided. For a 
read command, the disk block is copied into the buffer; whereas for a write com-
mand, the contents of the buffer are copied into the disk block. Sometimes several 
contiguous blocks, called a cluster, may be transferred as a unit. In this case, the 
buffer size is adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write 
head, which is part of a system called a disk drive. A disk or disk pack is mounted 
in the disk drive, which includes a motor that rotates the disks. A read/write head 
includes an electronic component attached to a mechanical arm. Disk packs with 
multiple surfaces are controlled by several read/write heads—one for each surface, 
as shown in Figure 16.1(b). All arms are connected to an actuator attached to 
another electrical motor, which moves the read/write heads in unison and positions 
them precisely over the cylinder of tracks specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed (typ-
ically ranging between 5,400 and 15,000 rpm). Once the read/write head is posi-
tioned on the right track and the block specified in the block address moves under 
the read/write head, the electronic component of the read/write head is activated to 
transfer the data. Some disk units have fixed read/write heads, with as many heads as 
there are tracks. These are called fixed-head disks, whereas disk units with an actua-
tor are called movable-head disks. For fixed-head disks, a track or cylinder is 
selected by electronically switching to the appropriate read/write head rather than by 
actual mechanical movement; consequently, it is much faster. However, the cost of 
the additional read/write heads is high, so fixed-head disks are not commonly used.

Interfacing Disk Drives to Computer Systems. A disk controller, typically 
embedded in the disk drive, controls the disk drive and interfaces it to the computer 
system. One of the standard interfaces used for disk drives on PCs and workstations 
was called SCSI (small computer system interface). Today to connect HDDs, CDs, and 
DVDs to a computer, the interface of choice is SATA. SATA stands for serial ATA, 
wherein ATA represents attachment; so SATA becomes serial AT attachment. It has 
its origin in PC/AT attachment, which referred to the direct attachment to the 16-bit 
bus introduced by IBM. The AT referred to advanced technology but is not used in the 
expansion of SATA due to trademark issues. Another popular interface used today is 
called SAS (serial attached SCSI). SATA was introduced in 2002 and allows the disk 
controller to be in the disk drive; only a simple circuit is required on the motherboard. 
SATA transfer speeds underwent an evolution from 2002 to 2008, going from 1.5 Gbps 
(gigabits per second) to 6 Gbps. SATA is now called NL-SAS for nearline SAS. The 
largest 3.5-inch SATA and SAS drives are 8TB, whereas 2.5-inch SAS drives are smaller 
and go up to 1.2TB. The 3.5-inch drives use 7,200 or 10,000 rpm speed whereas 
 2.5-inch drives use up to 15,000 rpm. In terms of IOPs (input/output operations) per 
second as a price to performance index, SAS is considered superior to SATA.

The controller accepts high-level I/O commands and takes appropriate action to 
position the arm and causes the read/write action to take place. To transfer a disk 
block, given its address, the disk controller must first mechanically position the 
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read/write head on the correct track. The time required to do this is called the seek 
time. Typical seek times are 5 to 10 msec on desktops and 3 to 8 msec on servers. 
Following that, there is another delay—called the rotational delay or latency—while 
the beginning of the desired block rotates into position under the read/write head. It 
depends on the rpm of the disk. For example, at 15,000 rpm, the time per rotation is 
4 msec and the average rotational delay is the time per half revolution, or 2 msec. At 
10,000 rpm the average rotational delay increases to 3 msec. Finally, some additional 
time is needed to transfer the data; this is called the block transfer time. Hence, the 
total time needed to locate and transfer an arbitrary block, given its address, is the 
sum of the seek time, rotational delay, and block transfer time. The seek time and 
rotational delay are usually much larger than the block transfer time. To make the 
transfer of multiple blocks more efficient, it is common to transfer several consecu-
tive blocks on the same track or cylinder. This eliminates the seek time and rota-
tional delay for all but the first block and can result in a substantial saving of time 
when numerous contiguous blocks are transferred. Usually, the disk manufacturer 
provides a bulk transfer rate for calculating the time required to transfer consecu-
tive blocks. Appendix B contains a discussion of these and other disk parameters.

The time needed to locate and transfer a disk block is in the order of milliseconds, 
usually ranging from 9 to 60 msec. For contiguous blocks, locating the first block 
takes from 9 to 60 msec, but transferring subsequent blocks may take only 0.4 
to 2 msec each. Many search techniques take advantage of consecutive retrieval of 
blocks when searching for data on a disk. In any case, a transfer time in the order of 
milliseconds is considered high compared with the time required to process data in 
main memory by current CPUs. Hence, locating data on disk is a major bottleneck 
in database applications. The file structures we discuss here and in Chapter 17 
attempt to minimize the number of block transfers needed to locate and transfer the 
required data from disk to main memory. Placing “related information” on contig-
uous blocks is the basic goal of any storage organization on disk.

16.2.2 Making Data Access More Efficient on Disk
In this subsection, we list some of the commonly used techniques to make accessing 
data more efficient on HDDs.

  1. Buffering of data: In order to deal with the incompatibility of speeds 
between a CPU and the electromechanical device such as an HDD, which is 
inherently slower, buffering of data is done in memory so that new data can 
be held in a buffer while old data is processed by an application. We discuss 
the double buffering strategy followed by general issues of buffer manage-
ment and buffer replacement strategies in Section 16.3.

  2. Proper organization of data on disk: Given the structure and organization 
of data on disk, it is advantageous to keep related data on contiguous blocks; 
when multiple cylinders are needed by a relation, contiguous cylinders 
should be used. Doing so avoids unnecessary movement of the read/write 
arm and related seek times.
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  3. Reading data ahead of request: To minimize seek times, whenever a block 
is read into the buffer, blocks from the rest of the track can also be read even 
though they may not have been requested yet. This works well for applica-
tions that are likely to need consecutive blocks; for random block reads this 
strategy is counterproductive.

  4. Proper scheduling of I/O requests: If it is necessary to read several blocks 
from disk, total access time can be minimized by scheduling them so that the 
arm moves only in one direction and picks up the blocks along its move-
ment. One popular algorithm is called the elevator algorithm; this algorithm 
mimics the behavior of an elevator that schedules requests on multiple floors 
in a proper sequence. In this way, the arm can service requests along its out-
ward and inward movements without much disruption.

  5. Use of log disks to temporarily hold writes: A single disk may be assigned 
to just one function called logging of writes. All blocks to be written can go 
to that disk sequentially, thus eliminating any seek time. This works much 
faster than doing the writes to a file at random locations, which requires a 
seek for each write. The log disk can order these writes in (cylinder, track) 
ordering to minimize arm movement when writing. Actually, the log disk 
can only be an area (extent) of a disk. Having the data file and the log file on 
the same disk is a cheaper solution but compromises performance. Although 
the idea of a log disk can improve write performance, it is not feasible for 
most real-life application data.

  6. Use of SSDs or flash memory for recovery purposes: In applications 
where updates occur with high frequency, updates can be lost from main 
memory if the system crashes. A preventive measure would be to increase 
the speed of updates/writes to disk. One possible approach involves writing 
the updates to a nonvolatile SSD buffer, which may be a flash memory or 
battery-operated DRAM, both of which operate at must faster speeds 
(see Table 16.1). The disk controller then updates the data file during its idle 
time and also when the buffer becomes full. During recovery from a crash, 
unwritten SSD buffers must be written to the data file on HDD. For further 
discussion of recovery and logs, consult Chapter 22.

16.2.3 SolidState Device (SSD) Storage
This type of storage is sometimes known as flash storage because it is based on the 
flash memory technology, which we discussed in Section 16.1.1.

The recent trend is to use flash memories as an intermediate layer between main 
memory and secondary rotating storage in the form of magnetic disks (HDDs). 
Since they resemble disks in terms of the ability to store data in secondary storage 
without the need for continuous power supply, they are called solid-state disks or 
solid-state drives (SSDs). We will discuss SSDs in general terms first and then 
comment on their use at the enterprise level, where they are sometimes referred to 
as enterprise flash drives (EFDs), a term first introduced by EMC Corporation.



554 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

The main component of an SSD is a controller and a set of interconnected flash 
memory cards. Use of NAND flash memory is most common. Using form factors 
compatible with 3.5 inch or 2.5 inch HDDs makes SSDs pluggable into slots already 
available for mounting HDDs on laptops and servers. For ultrabooks, tablets, and 
the like, card-based form factors such as mSATA and M.2 are being standardized. 
Interfaces like SATA express have been created to keep up with advancements in 
SSDs. Because there are no moving parts, the unit is more rugged, runs silently, is 
faster in terms of access time and provides higher transfer rates than HDD. As 
opposed to HDDs, where related data from the same relation must be placed on 
contiguous blocks, preferably on contiguous cylinders, there is no restriction on 
placement of data on an SSD since any address is directly addressable. As a result, 
the data is less likely to be fragmented; hence no reorganization is needed. Typi-
cally, when a write to disk occurs on an HDD, the same block is overwritten with 
new data. In SDDs, the data is written to different NAND cells to attain wear-leveling, 
which prolongs the life of the SSD. The main issue preventing a wide-scale adop-
tion of SSDs today is their prohibitive cost (see Table 16.1), which tends to be about 
70 to 80 cents per GB as opposed to about 15 to 20 cents per GB for HDDs.

In addition to flash memory, DRAM-based SSDs are also available. They are cost-
lier than flash memory, but they offer faster access times of around 10 μs (microsec-
onds) as opposed to 100 μs for flash. Their main drawback is that they need an 
internal battery or an adapter to supply power.

As an example of an enterprise level SSD, we can consider CISCO’s UCS (Unified 
Computing System©) Invicta series SSDs. They have made it possible to deploy 
SSDs at the data center level to unify workloads of all types, including databases and 
virtual desktop infrastructure (VDI), and to enable a cost-effective, energy-efficient, 
and space-saving solution. CISCO’s claim is that Invicta SSDs offer a better price-
to-performance ratio to applications in a multitenant, multinetworked architecture 
because of the advantages of SSDs stated above. CISCO states that typically four 
times as many HDD drives may be needed to match an SSD-based RAID in perfor-
mance.6 The SSD configuration can have a capacity from 6 to 144 TB, with up to 1.2 
million I/O operations/second, and a bandwidth of up to 7.2 GB/sec with an aver-
age latency of 200 μs.7 Modern data centers are undergoing rapid transformation 
and must provide real-time response using cloud-based architectures. In this envi-
ronment, SSDs are likely to play a major role.

16.2.4 Magnetic Tape Storage Devices
Disks are random access secondary storage devices because an arbitrary disk block 
may be accessed at random once we specify its address. Magnetic tapes are sequen-
tial access devices; to access the nth block on tape, first we must scan the preceding 

6Based on the CISCO White Paper (CISCO, 2014)

7Data sheet for CISCO UCS Invicta Scaling System.



 16.2 Secondary Storage Devices 555

n – 1 blocks. Data is stored on reels of high-capacity magnetic tape, somewhat sim-
ilar to audiotapes or videotapes. A tape drive is required to read the data from or 
write the data to a tape reel. Usually, each group of bits that forms a byte is stored 
across the tape, and the bytes themselves are stored consecutively on the tape.

A read/write head is used to read or write data on tape. Data records on tape are 
also stored in blocks—although the blocks may be substantially larger than those 
for disks, and interblock gaps are also quite large. With typical tape densities of 
1,600 to 6,250 bytes per inch, a typical interblock gap8 of 0.6 inch corresponds to 
960 to 3,750 bytes of wasted storage space. It is customary to group many records 
together in one block for better space utilization.

The main characteristic of a tape is its requirement that we access the data blocks in 
sequential order. To get to a block in the middle of a reel of tape, the tape is mounted 
and then scanned until the required block gets under the read/write head. For this 
reason, tape access can be slow and tapes are not used to store online data, except for 
some specialized applications. However, tapes serve a very important function—
backing up the database. One reason for backup is to keep copies of disk files in case 
the data is lost due to a disk crash, which can happen if the disk read/write head 
touches the disk surface because of mechanical malfunction. For this reason, disk 
files are copied periodically to tape. For many online critical applications, such as 
airline reservation systems, to avoid any downtime, mirrored systems are used to 
keep three sets of identical disks—two in online operation and one as backup. Here, 
offline disks become a backup device. The three are rotated so that they can be 
switched in case there is a failure on one of the live disk drives. Tapes can also be 
used to store excessively large database files. Database files that are seldom used or 
are outdated but required for historical recordkeeping can be archived on tape. 
Originally, half-inch reel tape drives were used for data storage employing the so-
called nine-track tapes. Later, smaller 8-mm magnetic tapes (similar to those used in 
camcorders) that can store up to 50 GB, as well as 4-mm helical scan data cartridges 
and writable CDs and DVDs, became popular media for backing up data files from 
PCs and workstations. They are also used for storing images and system libraries.

Backing up enterprise databases so that no transaction information is lost is a major 
undertaking. Tape libraries were in vogue and featured slots for several hundred 
cartridges; these tape libraries used digital and superdigital linear tapes (DLTs and 
SDLTs), both of which have capacities in the hundreds of gigabytes and record data 
on linear tracks. These tape libraries are no longer in further development. The LTO 
(Linear Tape Open) consortium set up by IBM, HP, and Seagate released the latest 
LTO-6 standard in 2012 for tapes. It uses 1/2-inch-wide magnetic tapes like those 
used in earlier tape drives but in a somewhat smaller, single-reel enclosed cartridge. 
Current generation of libraries use LTO-6 drives, at 2.5-TB cartridge with 160 MB/s 
transfer rate. Average seek time is about 80 seconds. The T10000D drive of  
Oracle/StorageTek handles 8.5 TB on a single cartridge with transfer rate upto 
252 MB/s.

8Called interrecord gaps in tape terminology.
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Robotic arms write on multiple cartridges in parallel using multiple tape drives and 
automatic labeling software to identify the backup cartridges. An example of a giant 
library is the SL8500 model of Sun Storage Technology. The SL8500 scales from 
1,450 to just over 10,000 slots and from 1 to 64 tape drives within each library. It 
accepts both DLT/SDLT and LTO tapes. Up to 10 SL8500s can be connected within 
a single library complex for over 100,000 slots and up to 640 drives. With 100,000 
slots, the SL8500 can store 2.1 exabytes (exabyte = 1,000 petabytes, or million TB = 
10**18 bytes). We defer the discussion of disk storage technology called RAID, and 
of storage area networks, network-attached storage, and iSCSI storage systems, to 
the end of the chapter.

16.3 Buffering of Blocks
When several blocks need to be transferred from disk to main memory and all the 
block addresses are known, several buffers can be reserved in main memory to 
speed up the transfer. While one buffer is being read or written, the CPU can pro-
cess data in the other buffer because an independent disk I/O processor (controller) 
exists that, once started, can proceed to transfer a data block between memory and 
disk independent of and in parallel to CPU processing.

Figure 16.3 illustrates how two processes can proceed in parallel. Processes A and B 
are running concurrently in an interleaved fashion, whereas processes C and D are 
running concurrently in a parallel fashion. When a single CPU controls multiple 
processes, parallel execution is not possible. However, the processes can still run 
concurrently in an interleaved way. Buffering is most useful when processes can 
run concurrently in a parallel fashion, either because a separate disk I/O processor 
is available or because multiple CPU processors exist.

Figure 16.4 illustrates how reading and processing can proceed in parallel when the 
time required to process a disk block in memory is less than the time required to 
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Figure 16.3 
Interleaved concurrency 
versus parallel execution.
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read the next block and fill a buffer. The CPU can start processing a block once its 
transfer to main memory is completed; at the same time, the disk I/O processor can 
be reading and transferring the next block into a different buffer. This technique is 
called double buffering and can also be used to read a continuous stream of blocks 
from disk to memory. Double buffering permits continuous reading or writing of 
data on consecutive disk blocks, which eliminates the seek time and rotational delay 
for all but the first block transfer. Moreover, data is kept ready for processing, thus 
reducing the waiting time in the programs.

16.3.1 Buffer Management

Buffer management and Replacement Strategies. For most large database 
files containing millions of pages, it is not possible to bring all of the data into main 
memory at the same time. We alluded to double buffering as a technique whereby 
we can gain efficiency in terms of performing the I/O operation between the disk 
and main memory into one buffer area concurrently with processing the data from 
another buffer. The actual management of buffers and decisions about what buffers 
to use to place a newly read page in the buffer is a more complex process. We use 
the term buffer to refer to a part of main memory that is available to receive blocks 
or pages of data from disk.9 Buffer manager is a software component of a DBMS 
that responds to requests for data and decides what buffer to use and what pages to 
replace in the buffer to accommodate the newly requested blocks. The buffer man-
ager views the available main memory storage as a buffer pool, which has a collec-
tion of pages. The size of the shared buffer pool is typically a parameter for the 
DBMS controlled by DBAs. In this section, we briefly discuss the workings of the 
buffer manager and discuss a few replacement strategies.
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Figure 16.4 
Use of two buffers, A and B, for reading from disk.

9We use the terms page and block interchangeably in the current context.
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There are two kinds of buffer managers; the first kind controls the main memory 
directly, as in most RDBMSs. The second kind allocates buffers in virtual memory, 
which allows the control to transfer to the operating system (OS). The OS in turn con-
trols which buffers are actually in main memory and which ones are on disk under the 
control of OS. This second kind of buffer manager is common in main memory data-
base systems and some object-oriented DBMSs. The overall goal of the buffer manager 
is twofold: (1) to maximize the probability that the requested page is found in main 
memory, and (2) in case of reading a new disk block from disk, to find a page to replace 
that will cause the least harm in the sense that it will not be required shortly again.

To enable its operation, the buffer manager keeps two types of information on hand 
about each page in the buffer pool:

  1. A pin-count: the number of times that page has been requested, or the num-
ber of current users of that page. If this count falls to zero, the page is consid-
ered unpinned. Initially the pin-count for every page is set to zero. 
Incrementing the pin-count is called pinning. In general, a pinned block 
should not be allowed to be written to disk.

  2. A dirty bit, which is initially set to zero for all pages but is set to 1 whenever 
that page is updated by any application program.

In terms of storage management, the buffer manager has the following responsibil-
ity: It must make sure that the number of buffers fits in main memory. If the 
requested amount of data exceeds available buffer space, the buffer manager must 
select what buffers must be emptied, as governed by the buffer replacement policy 
in force. If the buffer manager allocates space in virtual memory and all buffers in 
use exceed the actual main memory, then the common operating system problem 
of “thrashing” happens and pages get moved back and forth into the swap space on 
disk without performing useful work.

When a certain page is requested, the buffer manager takes following actions: it 
checks if the requested page is already in a buffer in the buffer pool; if so, it incre-
ments its pin-count and releases the page. If the page is not in the buffer pool, the 
buffer manager does the following:

a. It chooses a page for replacement, using the replacement policy, and incre-
ments its pin-count.

b. If the dirty bit of the replacement page is on, the buffer manager writes that 
page to disk by replacing its old copy on disk. If the dirty bit is not on, this page 
is not modified and the buffer manager is not required to write it back to disk.

c. It reads the requested page into the space just freed up.

d. The main memory address of the new page is passed to the requesting 
application.

If there is no unpinned page available in the buffer pool and the requested page is 
not available in the buffer pool, the buffer manager may have to wait until a page 
gets released. A transaction requesting this page may go into a wait state or may 
even be aborted.
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16.3.2 Buffer Replacement Strategies:
The following are some popular replacement strategies that are similar to those 
used elsewhere, such as in operating systems:

  1. Least recently used (LRU): The strategy here is to throw out that page that 
has not been used (read or written) for the longest time. This requires the 
buffer manager to maintain a table where it records the time every time a 
page in a buffer is accessed. Whereas this constitutes an overhead, the strat-
egy works well because for a buffer that is not used for a long time, its chance 
of being accessed again is small.

  2. Clock policy: This is a round-robin variant of the LRU policy. Imagine the 
buffers are arranged like a circle similar to a clock. Each buffer has a flag 
with a 0 or 1 value. Buffers with a 0 are vulnerable and may be used for 
replacement and their contents read back to disk. Buffers with a 1 are not 
vulnerable. When a block is read into a buffer, the flag is set to 1. When the 
buffer is accessed, the flag is set to 1 also. The clock hand is positioned on a 
“current buffer.” When the buffer manager needs a buffer for a new block, it 
rotates the hand until it finds a buffer with a 0 and uses that to read and 
place the new block. (If the dirty bit is on for the page being replaced, that 
page will be written to disk, thus overwriting the old page at its address on 
disk.) If the clock hand passes buffers with 1s, it sets them to a zero. Thus, a 
block is replaced from its buffer only if it is not accessed until the hand com-
pletes a rotation and returns to it and finds the block with the 0 that it set the 
last time.

  3. First-in-first-out (FIFO): Under this policy, when a buffer is required, the 
one that has been occupied the longest by a page is used for replacement. 
Under this policy, the manager notes the time each page gets loaded into a 
buffer; but it does not have to keep track of the time pages are accessed. 
Although FIFO needs less maintenance than LRU, it can work counter to 
desirable behavior. A block that remains in the buffer for a long time because 
it is needed continuously, such as a root block of an index, may be thrown 
out but may be immediately required to be brought back.

LRU and clock policies are not the best policies for database applications if they 
require sequential scans of data and the file cannot fit into the buffer at one time. 
There are also situations when certain pages in buffers cannot be thrown out and 
written out to disk because certain other pinned pages point to those pages. Also, 
policies like FIFO can be modified to make sure that pinned blocks, such as root 
block of an index, are allowed to remain in the buffer. Modification of the clock 
policy also exists where important buffers can be set to higher values than 1 and 
therefore will not be subjected to replacement for several rotations of the hand. 
There are also situations when the DBMS has the ability to write certain blocks to 
disk even when the space occupied by those blocks is not needed. This is called 
force-writing and occurs typically when log records have to be written to disk 
ahead of the modified pages in a transaction for recovery purposes. (See Chapter 22.) 
There are some other replacement strategies such as MRU (most recently used)  
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that work well for certain types of database transactions, such as when a block that 
is used most recently is not needed until all the remaining blocks in the relation are 
processed.

16.4 Placing File Records on Disk
Data in a database is regarded as a set of records organized into a set of files. In this 
section, we define the concepts of records, record types, and files. Then we discuss 
techniques for placing file records on disk. Note that henceforth in this chapter we 
will be referring to the random access persistent secondary storage as “disk drive” or 
“disk.” The disk may be in different forms; for example, magnetic disks with rota-
tional memory or solid-state disks with electronic access and no mechanical delays.

16.4.1 Records and Record Types
Data is usually stored in the form of records. Each record consists of a collection of 
related data values or items, where each value is formed of one or more bytes and 
corresponds to a particular field of the record. Records usually describe entities and 
their attributes. For example, an EMPLOYEE record represents an employee entity, 
and each field value in the record specifies some attribute of that employee, such as 
Name, Birth_date, Salary, or Supervisor. A collection of field names and their corre-
sponding data types constitutes a record type or record format definition. A data 
type, associated with each field, specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in program-
ming. These include numeric (integer, long integer, or floating point), string of 
characters (fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE 
values only), and sometimes specially coded date and time data types. The number 
of bytes required for each data type is fixed for a given computer system. An integer 
may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte, 
a date 10 bytes (assuming a format of YYYY-MM-DD), and a fixed-length string of 
k characters k bytes. Variable-length strings may require as many bytes as there are 
characters in each field value. For example, an EMPLOYEE record type may be 
defined—using the C programming language notation—as the following structure:

struct employee{
 char name[30];
 char ssn[9];
 int salary;
 int job_code;
 char department[20];
} ;

In some database applications, the need may arise for storing data items that consist 
of large unstructured objects, which represent images, digitized video or audio 
streams, or free text. These are referred to as BLOBs (binary large objects). A BLOB 
data item is typically stored separately from its record in a pool of disk blocks, and 
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a pointer to the BLOB is included in the record. For storing free text, some DBMSs 
(e.g., Oracle, DB2, etc.) provide a data type called CLOB (character large object); 
some DBMSs call this data type text.

16.4.2  Files, Fixed-Length Records,  
and Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the same 
record type. If every record in the file has exactly the same size (in bytes), the file is 
said to be made up of fixed-length records. If different records in the file have dif-
ferent sizes, the file is said to be made up of variable-length records. A file may 
have variable-length records for several reasons:

 ■ The file records are of the same record type, but one or more of the fields are 
of varying size (variable-length fields). For example, the Name field of 
EMPLOYEE can be a variable-length field.

 ■ The file records are of the same record type, but one or more of the fields may 
have multiple values for individual records; such a field is called a repeating 
field and a group of values for the field is often called a repeating group.

 ■ The file records are of the same record type, but one or more of the fields are 
optional; that is, they may have values for some but not all of the file records 
(optional fields).

 ■ The file contains records of different record types and hence of varying size 
(mixed file). This would occur if related records of different types were clustered 
(placed together) on disk blocks; for example, the GRADE_REPORT records of 
a particular student may be placed following that STUDENT’s record.

The fixed-length EMPLOYEE records in Figure 16.5(a) have a record size of 71 bytes. 
Every record has the same fields, and field lengths are fixed, so the system can iden-
tify the starting byte position of each field relative to the starting position of the 
record. This facilitates locating field values by programs that access such files. 
Notice that it is possible to represent a file that logically should have variable-length 
records as a fixed-length records file. For example, in the case of optional fields, we 
could have every field included in every file record but store a special NULL value if 
no value exists for that field. For a repeating field, we could allocate as many spaces 
in each record as the maximum possible number of occurrences of the field. In either 
case, space is wasted when certain records do not have values for all the physical 
spaces provided in each record. Now we consider other options for formatting 
records of a file of variable-length records.

For variable-length fields, each record has a value for each field, but we do not know 
the exact length of some field values. To determine the bytes within a particular 
record that represent each field, we can use special separator characters (such as ? 
or % or $)—which do not appear in any field value—to terminate variable-length 
fields, as shown in Figure 16.5(b), or we can store the length in bytes of the field in 
the record, preceding the field value.
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A file of records with optional fields can be formatted in different ways. If the total 
number of fields for the record type is large, but the number of fields that actually 
appear in a typical record is small, we can include in each record a sequence of 
<field-name, field-value> pairs rather than just the field values. Three types of sepa-
rator characters are used in Figure 16.5(c), although we could use the same separa-
tor character for the first two purposes—separating the field name from the field 
value and separating one field from the next field. A more practical option is to 
assign a short field type code—say, an integer number—to each field and include in 
each record a sequence of <field-type, field-value> pairs rather than <field-name, 
field-value> pairs.

A repeating field needs one separator character to separate the repeating values of 
the field and another separator character to indicate termination of the field. Finally, 
for a file that includes records of different types, each record is preceded by a record 

Name = Smith, John Ssn = 123456789 DEPARTMENT = Computer

Smith, John

Name

1

(a)

(b)

(c)

1 12 21 25 29

Name Ssn Salary Job_code Department Hire_date

31 40 44 48 68

Ssn Salary Job_code Department

Separator Characters123456789 XXXX XXXX Computer

Separator Characters

Separates field name
 from field value

Separates fields

Terminates record

=

Figure 16.5 
Three record storage formats. (a) A fixed-length record with six fields and size of 71 bytes. (b) A record with  
two variable-length fields and three fixed-length fields. (c) A variable-field record with three types of separator 
characters.
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type indicator. Understandably, programs that process files of variable-length 
records—which are usually part of the file system and hence hidden from the typi-
cal programmers—need to be more complex than those for fixed-length records, 
where the starting position and size of each field are known and fixed.10

16.4.3  Record Blocking and Spanned  
versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of data 
transfer between disk and memory. When the block size is larger than the record size, 
each block will contain numerous records, although some files may have unusually 
large records that cannot fit in one block. Suppose that the block size is B bytes. For a 
file of fixed-length records of size R bytes, with B ≥ R, we can fit bfr = ⎣B/R⎦ records 
per block, where the ⎣(x)⎦ (floor function) rounds down the number x to an integer. 
The value bfr is called the blocking factor for the file. In general, R may not divide B 
exactly, so we have some unused space in each block equal to

B − (bfr * R) bytes

To utilize this unused space, we can store part of a record on one block and the rest 
on another. A pointer at the end of the first block points to the block containing the 
remainder of the record in case it is not the next consecutive block on disk. This 
organization is called spanned because records can span more than one block. 
Whenever a record is larger than a block, we must use a spanned organization. If 
records are not allowed to cross block boundaries, the organization is called 
unspanned. This is used with fixed-length records having B > R because it makes 
each record start at a known location in the block, simplifying record processing. For 
variable-length records, either a spanned or an unspanned organization can be used. 
If the average record is large, it is advantageous to use spanning to reduce the lost 
space in each block. Figure 16.6 illustrates spanned versus unspanned organization.

For variable-length records using spanned organization, each block may store a dif-
ferent number of records. In this case, the blocking factor bfr represents the average 

10Other schemes are also possible for representing variable-length records.

Record 1Block i Record 2 Record 3 Record 4 P

Record 4 (rest)Block i + 1 Record 5 Record 6 Record 7 P

Record 1Block i

(b)

(a) Record 2 Record 3

Record 4Block i + 1 Record 5 Record 6

Figure 16.6 
Types of record 
organization.  
(a) Unspanned.  
(b) Spanned.
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number of records per block for the file. We can use bfr to calculate the number of 
blocks b needed for a file of r records:

b = ⎡(r/bfr)⎤ blocks

where the ⎡(x)⎤ (ceiling function) rounds the value x up to the next integer.

16.4.4 Allocating File Blocks on Disk
There are several standard techniques for allocating the blocks of a file on disk. In 
contiguous allocation, the file blocks are allocated to consecutive disk blocks. This 
makes reading the whole file very fast using double buffering, but it makes expanding 
the file difficult. In linked allocation, each file block contains a pointer to the next file 
block. This makes it easy to expand the file but makes it slow to read the whole file. A 
combination of the two allocates clusters of consecutive disk blocks, and the clusters 
are linked. Clusters are sometimes called file segments or extents. Another possibil-
ity is to use indexed allocation, where one or more index blocks contain pointers to 
the actual file blocks. It is also common to use combinations of these techniques.

16.4.5 File Headers
A file header or file descriptor contains information about a file that is needed by 
the system programs that access the file records. The header includes information 
to determine the disk addresses of the file blocks as well as to record format descrip-
tions, which may include field lengths and the order of fields within a record for 
fixed-length unspanned records and field type codes, separator characters, and 
record type codes for variable-length records.

To search for a record on disk, one or more blocks are copied into main memory 
buffers. Programs then search for the desired record or records within the buffers, 
using the information in the file header. If the address of the block that contains the 
desired record is not known, the search programs must do a linear search through 
the file blocks. Each file block is copied into a buffer and searched until the record 
is located or all the file blocks have been searched unsuccessfully. This can be very 
time-consuming for a large file. The goal of a good file organization is to avoid lin-
ear search or full scan of the file and to locate the block that contains a desired 
record with a minimal number of block transfers.

16.5 Operations on Files
Operations on files are usually grouped into retrieval operations and update 
 operations. The former do not change any data in the file, but only locate certain 
records so that their field values can be examined and processed. The latter change 
the file by insertion or deletion of records or by modification of field values. In 
either case, we may have to select one or more records for retrieval, deletion, or 
modification based on a selection condition (or filtering condition), which specifies 
criteria that the desired record or records must satisfy.
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Consider an EMPLOYEE file with fields Name, Ssn, Salary, Job_code, and Department. 
A simple selection condition may involve an equality comparison on some field 
value—for example, (Ssn = ‘123456789’) or (Department = ‘Research’). More com-
plex conditions can involve other types of comparison operators, such as > or ≥ ; an 
example is (Salary ≥ 30000). The general case is to have an arbitrary Boolean expres-
sion on the fields of the file as the selection condition.

Search operations on files are generally based on simple selection conditions. A 
complex condition must be decomposed by the DBMS (or the programmer) to 
extract a simple condition that can be used to locate the records on disk. Each 
located record is then checked to determine whether it satisfies the full selection 
condition. For example, we may extract the simple condition (Department = 
‘Research’) from the complex condition ((Salary ≥ 30000) AND (Department = 
‘Research’)); each record satisfying (Department = ‘Research’) is located and then 
tested to see if it also satisfies (Salary ≥ 30000).

When several file records satisfy a search condition, the first record—with respect 
to the physical sequence of file records—is initially located and designated the 
 current record. Subsequent search operations commence from this record and 
locate the next record in the file that satisfies the condition.

Actual operations for locating and accessing file records vary from system to sys-
tem. In the following list, we present a set of representative operations. Typically, 
high-level programs, such as DBMS software programs, access records by using 
these commands, so we sometimes refer to program variables in the following 
descriptions:

 ■ Open. Prepares the file for reading or writing. Allocates appropriate buffers 
(typically at least two) to hold file blocks from disk, and retrieves the file 
header. Sets the file pointer to the beginning of the file.

 ■ Reset. Sets the file pointer of an open file to the beginning of the file.

 ■ Find (or Locate). Searches for the first record that satisfies a search condi-
tion. Transfers the block containing that record into a main memory buffer 
(if it is not already there). The file pointer points to the record in the buffer 
and it becomes the current record. Sometimes, different verbs are used to 
indicate whether the located record is to be retrieved or updated.

 ■ Read (or Get). Copies the current record from the buffer to a program vari-
able in the user program. This command may also advance the current 
record pointer to the next record in the file, which may necessitate reading 
the next file block from disk.

 ■ FindNext. Searches for the next record in the file that satisfies the search 
condition. Transfers the block containing that record into a main memory 
buffer (if it is not already there). The record is located in the buffer and 
becomes the current record. Various forms of FindNext (for example, 
 FindNext record within a current parent record, FindNext record of a given 
type, or FindNext record where a complex condition is met) are available in 
legacy DBMSs based on the hierarchical and network models.
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 ■ Delete. Deletes the current record and (eventually) updates the file on disk 
to reflect the deletion.

 ■ Modify. Modifies some field values for the current record and (eventually) 
updates the file on disk to reflect the modification.

 ■ Insert. Inserts a new record in the file by locating the block where the record 
is to be inserted, transferring that block into a main memory buffer (if it is 
not already there), writing the record into the buffer, and (eventually) writ-
ing the buffer to disk to reflect the insertion.

 ■ Close. Completes the file access by releasing the buffers and performing any 
other needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time operations 
because each operation applies to a single record. It is possible to streamline the 
operations Find, FindNext, and Read into a single operation, Scan, whose descrip-
tion is as follows:

 ■ Scan. If the file has just been opened or reset, Scan returns the first record; 
otherwise it returns the next record. If a condition is specified with the oper-
ation, the returned record is the first or next record satisfying the condition.

In database systems, additional set-at-a-time higher-level operations may be 
applied to a file. Examples of these are as follows:

 ■ FindAll. Locates all the records in the file that satisfy a search condition.

 ■ Find (or Locate) n. Searches for the first record that satisfies a search condi-
tion and then continues to locate the next n − 1 records satisfying the same 
condition. Transfers the blocks containing the n records to the main mem-
ory buffer (if not already there).

 ■ FindOrdered. Retrieves all the records in the file in some specified order.

 ■ Reorganize. Starts the reorganization process. As we shall see, some file 
organizations require periodic reorganization. An example is to reorder the 
file records by sorting them on a specified field.

At this point, it is worthwhile to note the difference between the terms file organiza-
tion and access method. A file organization refers to the organization of the data of 
a file into records, blocks, and access structures; this includes the way records and 
blocks are placed on the storage medium and interlinked. An access method, on 
the other hand, provides a group of operations—such as those listed earlier—that 
can be applied to a file. In general, it is possible to apply several access methods to a 
file organized using a certain organization. Some access methods, though, can be 
applied only to files organized in certain ways. For example, we cannot apply an 
indexed access method to a file without an index (see Chapter 17).

Usually, we expect to use some search conditions more than others. Some files may 
be static, meaning that update operations are rarely performed; other, more 
dynamic files may change frequently, so update operations are constantly applied 
to them. If a file is not updatable by the end user, it is regarded as a read-only file. 
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Most data warehouses (see Chapter 29) predominantly contain read-only files. A 
successful file organization should perform as efficiently as possible the operations 
we expect to apply frequently to the file. For example, consider the EMPLOYEE file, 
as shown in Figure 16.5(a), which stores the records for current employees in a 
company. We expect to insert records (when employees are hired), delete records 
(when employees leave the company), and modify records (for example, when an 
employee’s salary or job is changed). Deleting or modifying a record requires a 
selection condition to identify a particular record or set of records. Retrieving one 
or more records also requires a selection condition.

If users expect mainly to apply a search condition based on Ssn, the designer must 
choose a file organization that facilitates locating a record given its Ssn value. This 
may involve physically ordering the records by Ssn value or defining an index on 
Ssn (see Chapter 17). Suppose that a second application uses the file to generate 
employees’ paychecks and requires that paychecks are grouped by department. For 
this application, it is best to order employee records by department and then by 
name within each department. The clustering of records into blocks and the orga-
nization of blocks on cylinders would now be different than before. However, this 
arrangement conflicts with ordering the records by Ssn values. If both applications 
are important, the designer should choose an organization that allows both opera-
tions to be done efficiently. Unfortunately, in many cases a single organization does 
not allow all needed operations on a file to be implemented efficiently. Since a file 
can be stored only once using one particular organization, the DBAs are often faced 
with making a difficult design choice about the file organization. They make it 
based on the expected importance and mix of retrieval and update operations.

In the following sections and in Chapter 17, we discuss methods for organizing 
records of a file on disk. Several general techniques, such as ordering, hashing, and 
indexing, are used to create access methods. Additionally, various general tech-
niques for handling insertions and deletions work with many file organizations.

16.6 Files of Unordered Records (Heap Files)
In this simplest and most basic type of organization, records are placed in the file in 
the order in which they are inserted, so new records are inserted at the end of the 
file. Such an organization is called a heap or pile file.11 This organization is often 
used with additional access paths, such as the secondary indexes discussed in Chap-
ter 17. It is also used to collect and store data records for future use.

Inserting a new record is very efficient. The last disk block of the file is copied into a 
buffer, the new record is added, and the block is then rewritten back to disk. The 
address of the last file block is kept in the file header. However, searching for a 
record using any search condition involves a linear search through the file block by 
block—an expensive procedure. If only one record satisfies the search condition, 
then, on the average, a program will read into memory and search half the file 

11Sometimes this organization is called a sequential file.
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blocks before it finds the record. For a file of b blocks, this requires searching (b/2) 
blocks, on average. If no records or several records satisfy the search condition, the 
program must read and search all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a buffer, 
delete the record from the buffer, and finally rewrite the block back to the disk. 
This leaves unused space in the disk block. Deleting a large number of records in 
this way results in wasted storage space. Another technique used for record deletion 
is to have an extra byte or bit, called a deletion marker, stored with each record. A 
record is deleted by setting the deletion marker to a certain value. A different value 
for the marker indicates a valid (not deleted) record. Search programs consider 
only valid records in a block when conducting their search. Both of these deletion 
techniques require periodic reorganization of the file to reclaim the unused space 
of deleted records. During reorganization, the file blocks are accessed consecu-
tively, and records are packed by removing deleted records. After such a reorgani-
zation, the blocks are filled to capacity once more. Another possibility is to use the 
space of deleted records when inserting new records, although this requires extra 
bookkeeping to keep track of empty locations.

We can use either spanned or unspanned organization for an unordered file, and it 
may be used with either fixed-length or variable-length records. Modifying a vari-
able-length record may require deleting the old record and inserting a modified 
record because the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of 
the file. Sorting is an expensive operation for a large disk file, and special techniques 
for external sorting are used (see Chapter 18).

For a file of unordered fixed-length records using unspanned blocks and contiguous 
allocation, it is straightforward to access any record by its position in the file. If the 
file records are numbered 0, 1, 2, … , r − 1 and the records in each block are num-
bered 0, 1, …, bfr − 1, where bfr is the blocking factor, then the ith record of the file 
is located in block ⎣(i/bfr)⎦ and is the (i mod bfr)th record in that block. Such a file 
is often called a relative or direct file because records can easily be accessed directly 
by their relative positions. Accessing a record by its position does not help locate a 
record based on a search condition; however, it facilitates the construction of access 
paths on the file, such as the indexes discussed in Chapter 17.

16.7 Files of Ordered Records (Sorted Files)
We can physically order the records of a file on disk based on the values of one of 
their fields—called the ordering field. This leads to an ordered or sequential file.12 

If the ordering field is also a key field of the file—a field guaranteed to have a unique 
value in each record—then the field is called the ordering key for the file. Figure 16.7 

12The term sequential file has also been used to refer to unordered files, although it is more appropriate 
for ordered files.
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Name

Aaron, Ed

Abbott, Diane

Block 1

Acosta, Marc

Ssn Birth_date

...

Job Salary Sex

...

Adams, John

Adams, Robin

Block 2

Akers, Jan

...

Alexander, Ed

Alfred, Bob

Block 3

Allen, Sam

...

Allen, Troy

Anders, Keith

Block 4

Anderson, Rob

...

Anderson, Zach

Angeli, Joe

Block 5

Archer, Sue

...

Arnold, Mack

Arnold, Steven

Block 6

Atkins, Timothy

Wong, James

Wood, Donald

Block n–1

Woods, Manny

...

Wright, Pam

Wyatt, Charles

Block n

Zimmer, Byron

...

Figure 16.7 
Some blocks of an ordered (sequential) file of EMPLOYEE records with 
Name as the ordering key field.
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shows an ordered file with Name as the ordering key field (assuming that employees 
have distinct names).

Ordered records have some advantages over unordered files. First, reading the 
records in order of the ordering key values becomes extremely efficient because no 
sorting is required. The search condition may be of the type < key = value>, or a 
range condition such as < value1 < key < value2>. Second, finding the next record 
from the current one in order of the ordering key usually requires no additional 
block accesses because the next record is in the same block as the current one 
(unless the current record is the last one in the block). Third, using a search condi-
tion based on the value of an ordering key field results in faster access when the 
binary search technique is used, which constitutes an improvement over linear 
searches, although it is not often used for disk files. Ordered files are blocked and 
stored on contiguous cylinders to minimize the seek time.

A binary search for disk files can be done on the blocks rather than on the records. 
Suppose that the file has b blocks numbered 1, 2, …, b; the records are ordered by 
ascending value of their ordering key field; and we are searching for a record whose 
ordering key field value is K. Assuming that disk addresses of the file blocks are 
available in the file header, the binary search can be described by Algorithm 16.1. A 
binary search usually accesses log2(b) blocks, whether the record is found or not—an 
improvement over linear searches, where, on the average, (b/2) blocks are accessed 
when the record is found and b blocks are accessed when the record is not found.

Algorithm 16.1. Binary Search on an Ordering Key of a Disk File
l ← 1; u ← b; (*b is the number of file blocks*)
while (u ≥ l ) do
 begin i ← (l + u) div 2;
 read block i of the file into the buffer;
 if K < (ordering key field value of the first record in block i )
  then u ← i − 1
 else if K > (ordering key field value of the last record in block i )
  then l ← i + 1
 else if the record with ordering key field value = K is in the buffer
  then goto found
 else goto notfound;
 end;
goto notfound;

A search criterion involving the conditions >, <, ≥, and ≤ on the ordering field is 
efficient, since the physical ordering of records means that all records satisfying the 
condition are contiguous in the file. For example, referring to Figure 16.7, if the 
search criterion is (Name > ‘G’)—where > means alphabetically before—the records 
satisfying the search criterion are those from the beginning of the file up to the first 
record that has a Name value starting with the letter ‘G’.

Ordering does not provide any advantages for random or ordered access of the 
records based on values of the other nonordering fields of the file. In these cases, we 



 16.7 Files of Ordered Records (Sorted Files) 571

do a linear search for random access. To access the records in order based on a non-
ordering field, it is necessary to create another sorted copy—in a different order—of 
the file.

Inserting and deleting records are expensive operations for an ordered file because 
the records must remain physically ordered. To insert a record, we must find its 
correct position in the file, based on its ordering field value, and then make space in 
the file to insert the record in that position. For a large file this can be very time-
consuming because, on the average, half the records of the file must be moved to 
make space for the new record. This means that half the file blocks must be read 
and rewritten after records are moved among them. For record deletion, the prob-
lem is less severe if deletion markers and periodic reorganization are used.

One option for making insertion more efficient is to keep some unused space in each 
block for new records. However, once this space is used up, the original problem 
resurfaces. Another frequently used method is to create a temporary unordered file 
called an overflow or transaction file. With this technique, the actual ordered file is 
called the main or master file. New records are inserted at the end of the overflow 
file rather than in their correct position in the main file. Periodically, the overflow 
file is sorted and merged with the master file during file reorganization. Insertion 
becomes very efficient, but at the cost of increased complexity in the search algo-
rithm. One option is to keep the highest value of the key in each block in a separate 
field after taking into account the keys that have overflown from that block. Other-
wise, the overflow file must be searched using a linear search if, after the binary 
search, the record is not found in the main file. For applications that do not require 
the most up-to-date information, overflow records can be ignored during a search.

Modifying a field value of a record depends on two factors: the search condition to 
locate the record and the field to be modified. If the search condition involves the 
ordering key field, we can locate the record using a binary search; otherwise we 
must do a linear search. A nonordering field can be modified by changing the 
record and rewriting it in the same physical location on disk—assuming fixed-
length records. Modifying the ordering field means that the record can change its 
position in the file. This requires deletion of the old record followed by insertion of 
the modified record.

Reading the file records in order of the ordering field is efficient if we ignore the 
records in overflow, since the blocks can be read consecutively using double buffer-
ing. To include the records in overflow, we must merge them in their correct posi-
tions; in this case, first we can reorganize the file, and then read its blocks 
sequentially. To reorganize the file, first we sort the records in the overflow file, and 
then merge them with the master file. The records marked for deletion are removed 
during the reorganization.

Table 16.3 summarizes the average access time in block accesses to find a specific 
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access 
path, called a primary index, is used; this results in an indexed-sequential file. 
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This further improves the random access time on the ordering key field. (We dis-
cuss indexes in Chapter 17.) If the ordering attribute is not a key, the file is called a 
clustered file.

16.8 Hashing Techniques
Another type of primary file organization is based on hashing, which provides very 
fast access to records under certain search conditions. This organization is usually 
called a hash file.13 The search condition must be an equality condition on a single 
field, called the hash field. In most cases, the hash field is also a key field of the file, 
in which case it is called the hash key. The idea behind hashing is to provide a func-
tion h, called a hash function or randomizing function, which is applied to the 
hash field value of a record and yields the address of the disk block in which the 
record is stored. A search for the record within the block can be carried out in a 
main memory buffer. For most records, we need only a single-block access to 
retrieve that record.

Hashing is also used as an internal search structure within a program whenever 
a group of records is accessed exclusively by using the value of one field. We 
describe the use of hashing for internal files in Section 16.8.1; then we show 
how it is modified to store external files on disk in Section 16.8.2. In Sec-
tion 16.8.3 we discuss techniques for extending hashing to dynamically growing 
files.

16.8.1 Internal Hashing
For internal files, hashing is typically implemented as a hash table through the use 
of an array of records. Suppose that the array index range is from 0 to M – 1, as 
shown in Figure 16.8(a); then we have M slots whose addresses correspond to the 
array indexes. We choose a hash function that transforms the hash field value into 
an integer between 0 and M − 1. One common hash function is the h(K) = K mod 
M function, which returns the remainder of an integer hash field value K after divi-
sion by M; this value is then used for the record address.

Table 16.3  Average Access Times for a File of b Blocks under Basic File Organizations

 
Type of Organization

 
Access/Search Method

Average Blocks to Access  
a Specific Record

Heap (unordered) Sequential scan (linear search) b/2

Ordered Sequential scan b/2

Ordered Binary search log2 b

13A hash file has also been called a direct file.
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Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with 
characters can be used in the transformation—for example, by multiplying those 
code values. For a hash field whose data type is a string of 20 characters, Algo-
rithm 16.2(a) can be used to calculate the hash address. We assume that the code 
function returns the numeric code of a character and that we are given a hash field 
value K of type K: array [1..20] of char (in Pascal) or char K[20] (in C).
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Algorithm 16.2. Two simple hashing algorithms: (a) Applying the mod hash 
function to a character string K. (b) Collision resolution by open addressing.

(a) temp ← 1;
for i ← 1 to 20 do temp ← temp * code(K[i ] ) mod M ;
hash_address ← temp mod M;

(b) i ← hash_address(K); a ← i;
if location i is occupied
 then begin i ← (i + 1) mod M;
  while (i ≠ a) and location i is occupied
   do i ← (i + 1) mod M;
  if (i = a) then all positions are full
  else new_hash_address ← i;
  end;

Other hashing functions can be used. One technique, called folding, involves apply-
ing an arithmetic function such as addition or a logical function such as exclusive or 
to different portions of the hash field value to calculate the hash address (for exam-
ple, with an address space from 0 to 999 to store 1,000 keys, a 6-digit key 235469 
may be folded and stored at the address: (235+964) mod 1000 = 199). Another tech-
nique involves picking some digits of the hash field value—for instance, the third, 
fifth, and eighth digits—to form the hash address (for example, storing 1,000 
employees with Social Security numbers of 10 digits into a hash file with 1,000 posi-
tions would give the Social Security number 301-67-8923 a hash value of 172 by this 
hash function).14 The problem with most hashing functions is that they do not 
guarantee that distinct values will hash to distinct addresses, because the hash field 
space—the number of possible values a hash field can take—is usually much larger 
than the address space—the number of available addresses for records. The hash-
ing function maps the hash field space to the address space.

A collision occurs when the hash field value of a record that is being inserted hashes 
to an address that already contains a different record. In this situation, we must 
insert the new record in some other position, since its hash address is occupied. The 
process of finding another position is called collision resolution. There are numer-
ous methods for collision resolution, including the following:

 ■ Open addressing. Proceeding from the occupied position specified by the 
hash address, the program checks the subsequent positions in order until an 
unused (empty) position is found. Algorithm 16.2(b) may be used for this 
purpose.

 ■ Chaining. For this method, various overflow locations are kept, usually by 
extending the array with a number of overflow positions. Additionally, a 
pointer field is added to each record location. A collision is resolved by plac-
ing the new record in an unused overflow location and setting the pointer of 
the occupied hash address location to the address of that overflow location. 

14 A detailed discussion of hashing functions is outside the scope of our presentation.
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A linked list of overflow records for each hash address is thus maintained, as 
shown in Figure 16.8(b).

 ■ Multiple hashing. The program applies a second hash function if the first 
results in a collision. If another collision results, the program uses open 
addressing or applies a third hash function and then uses open addressing if 
necessary. Note that the series of hash functions are used in the same order 
for retrieval.

Each collision resolution method requires its own algorithms for insertion, retrieval, 
and deletion of records. The algorithms for chaining are the simplest. Deletion 
algorithms for open addressing are rather tricky. Data structures textbooks discuss 
internal hashing algorithms in more detail.

The goal of a good hashing function is twofold: first, to distribute the records uni-
formly over the address space so as to minimize collisions, thus making it possible 
to locate a record with a given key in a single access. The second, somewhat con-
flicting, goal is to achieve the above yet occupy the buckets fully, thus not leaving 
many unused locations. Simulation and analysis studies have shown that it is usu-
ally best to keep a hash file between 70 and 90% full so that the number of collisions 
remains low and we do not waste too much space. Hence, if we expect to have r 
records to store in the table, we should choose M locations for the address space 
such that (r/M) is between 0.7 and 0.9. It may also be useful to choose a prime num-
ber for M, since it has been demonstrated that this distributes the hash addresses 
better over the address space when the mod hashing function is used modulo a 
prime number. Other hash functions may require M to be a power of 2.

16.8.2 External Hashing for Disk Files
Hashing for disk files is called external hashing. To suit the characteristics of disk 
storage, the target address space is made of buckets, each of which holds multiple 
records. A bucket is either one disk block or a cluster of contiguous disk blocks. 
The hashing function maps a key into a relative bucket number rather than 
assigning an absolute block address to the bucket. A table maintained in the file 
header converts the bucket number into the corresponding disk block address, as 
illustrated in Figure 16.9.

The collision problem is less severe with buckets, because as many records as will fit 
in a bucket can hash to the same bucket without causing problems. However, we 
must make provisions for the case where a bucket is filled to capacity and a new 
record being inserted hashes to that bucket. We can use a variation of chaining in 
which a pointer is maintained in each bucket to a linked list of overflow records for 
the bucket, as shown in Figure 16.10. The pointers in the linked list should be 
record pointers, which include both a block address and a relative record position 
within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given 
the value of its hash field. Although most good hash functions do not maintain 
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records in order of hash field values, some functions—called order preserving—
do. A simple example of an order-preserving hash function is to take the leftmost 
three digits of an invoice number field that yields a bucket address as the hash 
address and keep the records sorted by invoice number within each bucket. Another 
example is to use an integer hash key directly as an index to a relative file, if the hash 
key values fill up a particular interval; for example, if employee numbers in a com-
pany are assigned as 1, 2, 3, … up to the total number of employees, we can use the 
identity hash function (i.e., Relative Address = Key) that maintains order. Unfortu-
nately, this only works if sequence keys are generated in order by some application.

The hashing scheme described so far is called static hashing because a fixed num-
ber of buckets M is allocated. The function does key-to-address mapping, whereby 
we are fixing the address space. This can be a serious drawback for dynamic files. 
Suppose that we allocate M buckets for the address space and let m be the maxi-
mum number of records that can fit in one bucket; then at most (m * M) records 
will fit in the allocated space. If the number of records turns out to be substantially 
fewer than (m * M), we are left with a lot of unused space. On the other hand, if the 
number of records increases to substantially more than (m * M), numerous colli-
sions will result and retrieval will be slowed down because of the long lists of over-
flow records. In either case, we may have to change the number of blocks M 
allocated and then use a new hashing function (based on the new value of M) to 
redistribute the records. These reorganizations can be quite time-consuming for 
large files. Newer dynamic file organizations based on hashing allow the number of 
buckets to vary dynamically with only localized reorganization (see Section 16.8.3).

When using external hashing, searching for a record given a value of some field 
other than the hash field is as expensive as in the case of an unordered file. Record 
deletion can be implemented by removing the record from its bucket. If the bucket 
has an overflow chain, we can move one of the overflow records into the bucket to 
replace the deleted record. If the record to be deleted is already in overflow, we sim-
ply remove it from the linked list. Notice that removing an overflow record implies 
that we should keep track of empty positions in overflow. This is done easily by 
maintaining a linked list of unused overflow locations.

Modifying a specific record’s field value depends on two factors: the search condi-
tion to locate that specific record and the field to be modified. If the search condi-
tion is an equality comparison on the hash field, we can locate the record efficiently 
by using the hashing function; otherwise, we must do a linear search. A nonhash 
field can be modified by changing the record and rewriting it in the same bucket. 
Modifying the hash field means that the record can move to another bucket, which 
requires deletion of the old record followed by insertion of the modified record.

16.8.3 Hashing Techniques That Allow Dynamic File Expansion
A major drawback of the static hashing scheme just discussed is that the hash 
address space is fixed. Hence, it is difficult to expand or shrink the file dynamically. 
The schemes described in this section attempt to remedy this situation. The first 
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scheme—extendible hashing—stores an access structure in addition to the file, and 
hence is somewhat similar to indexing (see Chapter 17). The main difference is that 
the access structure is based on the values that result after application of the hash 
function to the search field. In indexing, the access structure is based on the values 
of the search field itself. The second technique, called linear hashing, does not 
require additional access structures. Another scheme, called dynamic hashing, uses 
an access structure based on binary tree data structures.

These hashing schemes take advantage of the fact that the result of applying a hash-
ing function is a nonnegative integer and hence can be represented as a binary 
number. The access structure is built on the binary representation of the hashing 
function result, which is a string of bits. We call this the hash value of a record. 
Records are distributed among buckets based on the values of the leading bits in 
their hash values.

Extendible Hashing. In extendible hashing, proposed by Fagin (1979), a type of 
directory—an array of 2d bucket addresses—is maintained, where d is called the 
global depth of the directory. The integer value corresponding to the first (high-
order) d bits of a hash value is used as an index to the array to determine a directory 
entry, and the address in that entry determines the bucket in which the correspond-
ing records are stored. However, there does not have to be a distinct bucket for each 
of the 2d directory locations. Several directory locations with the same first d′ bits 
for their hash values may contain the same bucket address if all the records that 
hash to these locations fit in a single bucket. A local depth d′—stored with each 
bucket—specifies the number of bits on which the bucket contents are based. Fig-
ure 16.11 shows a directory with global depth d = 3.

The value of d can be increased or decreased by one at a time, thus doubling or 
halving the number of entries in the directory array. Doubling is needed if a bucket, 
whose local depth d′ is equal to the global depth d, overflows. Halving occurs if 
d > d′ for all the buckets after some deletions occur. Most record retrievals require 
two block accesses—one to the directory and the other to the bucket.

To illustrate bucket splitting, suppose that a new inserted record causes overflow in 
the bucket whose hash values start with 01—the third bucket in Figure 16.11. The 
records will be distributed between two buckets: the first contains all records whose 
hash values start with 010, and the second all those whose hash values start with 011. 
Now the two directory locations for 010 and 011 point to the two new distinct 
buckets. Before the split, they pointed to the same bucket. The local depth d′ of the 
two new buckets is 3, which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a local depth d′ equal to the 
global depth d of the directory, then the size of the directory must now be doubled 
so that we can use an extra bit to distinguish the two new buckets. For example, if 
the bucket for records whose hash values start with 111 in Figure 16.11 overflows, 
the two new buckets need a directory with global depth d = 4, because the two 
buckets are now labeled 1110 and 1111, and hence their local depths are both 4. 
The directory size is hence doubled, and each of the other original locations in the 
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directory is also split into two locations, both of which have the same pointer value 
as did the original location.

The main advantage of extendible hashing that makes it attractive is that the perfor-
mance of the file does not degrade as the file grows, as opposed to static external 
hashing, where collisions increase and the corresponding chaining effectively 
increases the average number of accesses per key. Additionally, no space is allocated 
in extendible hashing for future growth, but additional buckets can be allocated 
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dynamically as needed. The space overhead for the directory table is negligible. The 
maximum directory size is 2k, where k is the number of bits in the hash value. 
Another advantage is that splitting causes minor reorganization in most cases, since 
only the records in one bucket are redistributed to the two new buckets. The only 
time reorganization is more expensive is when the directory has to be doubled (or 
halved). A disadvantage is that the directory must be searched before accessing the 
buckets themselves, resulting in two block accesses instead of one in static hashing. 
This performance penalty is considered minor and thus the scheme is considered 
quite desirable for dynamic files.

Dynamic Hashing. A precursor to extendible hashing was dynamic hashing pro-
posed by Larson (1978), in which the addresses of the buckets were either the n 
high-order bits or n − 1 high-order bits, depending on the total number of keys 
belonging to the respective bucket. The eventual storage of records in buckets for 
dynamic hashing is somewhat similar to extendible hashing. The major difference 
is in the organization of the directory. Whereas extendible hashing uses the notion 
of global depth (high-order d bits) for the flat directory and then combines adjacent 
collapsible buckets into a bucket of local depth d − 1, dynamic hashing maintains a 
tree-structured directory with two types of nodes:

 ■ Internal nodes that have two pointers—the left pointer corresponding to the 
0 bit (in the hashed address) and a right pointer corresponding to the 1 bit.

 ■ Leaf nodes—these hold a pointer to the actual bucket with records.

An example of the dynamic hashing appears in Figure 16.12. Four buckets are 
shown (“000”, “001”, “110”, and “111”) with high-order 3-bit addresses (corre-
sponding to the global depth of 3), and two buckets (“01” and “10”) are shown 
with high-order 2-bit addresses (corresponding to the local depth of 2). The latter 
two are the result of collapsing the “010” and “011” into “01” and collapsing “100” 
and “101” into “10”. Note that the directory nodes are used implicitly to deter-
mine the “global” and “local” depths of buckets in dynamic hashing. The search 
for a record given the hashed address involves traversing the directory tree, which 
leads to the bucket holding that record. It is left to the reader to develop algo-
rithms for insertion, deletion, and searching of records for the dynamic hashing 
scheme.

Linear Hashing. The idea behind linear hashing, proposed by Litwin (1980), is to 
allow a hash file to expand and shrink its number of buckets dynamically without 
needing a directory. Suppose that the file starts with M buckets numbered 0, 1, … , 
M − 1 and uses the mod hash function h(K) = K mod M; this hash function is called 
the initial hash function hi. Overflow because of collisions is still needed and can 
be handled by maintaining individual overflow chains for each bucket. However, 
when a collision leads to an overflow record in any file bucket, the first bucket in the 
file—bucket 0—is split into two buckets: the original bucket 0 and a new bucket M 
at the end of the file. The records originally in bucket 0 are distributed between the 
two buckets based on a different hashing function hi+1(K) = K mod 2M. A key prop-
erty of the two hash functions hi and hi+1 is that any records that hashed to bucket 0 
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based on hi will hash to either bucket 0 or bucket M based on hi+1; this is necessary 
for linear hashing to work.

As further collisions lead to overflow records, additional buckets are split in the 
linear order 1, 2, 3, … . If enough overflows occur, all the original file buckets 0, 1, 
… , M − 1 will have been split, so the file now has 2M instead of M buckets, and all 
buckets use the hash function hi+1. Hence, the records in overflow are eventually 
redistributed into regular buckets, using the function hi+1 via a delayed split of their 
buckets. There is no directory; only a value n—which is initially set to 0 and is 
incremented by 1 whenever a split occurs—is needed to determine which buckets 
have been split. To retrieve a record with hash key value K, first apply the function 
hi to K; if hi(K) < n, then apply the function hi+1 on K because the bucket is already 
split. Initially, n = 0, indicating that the function hi applies to all buckets; n grows 
linearly as buckets are split.
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When n = M after being incremented, this signifies that all the original buckets have 
been split and the hash function hi+1 applies to all records in the file. At this point, 
n is reset to 0 (zero), and any new collisions that cause overflow lead to the use of a 
new hashing function hi+2(K) = K mod 4M. In general, a sequence of hashing func-
tions hi+j(K) = K mod (2jM) is used, where j = 0, 1, 2, … ; a new hashing function 
hi+j+1 is needed whenever all the buckets 0, 1, …, (2jM) − 1 have been split and n is 
reset to 0. The search for a record with hash key value K is given by Algorithm 16.3.

Splitting can be controlled by monitoring the file load factor instead of by splitting 
whenever an overflow occurs. In general, the file load factor l can be defined as 
l = r/(bfr * N), where r is the current number of file records, bfr is the maximum 
number of records that can fit in a bucket, and N is the current number of file buck-
ets. Buckets that have been split can also be recombined if the load factor of the file 
falls below a certain threshold. Blocks are combined linearly, and N is decremented 
appropriately. The file load can be used to trigger both splits and combinations; in 
this manner the file load can be kept within a desired range. Splits can be triggered 
when the load exceeds a certain threshold—say, 0.9—and combinations can be trig-
gered when the load falls below another threshold—say, 0.7. The main advantages 
of linear hashing are that it maintains the load factor fairly constantly while the file 
grows and shrinks, and it does not require a directory.15

Algorithm 16.3. The Search Procedure for Linear Hashing
if n = 0
 then m ← hj (K) (*m is the hash value of record with hash key K*)
 else begin
  m ← hj (K);
  if m < n then m ← hj+1 (K)
  end;

search the bucket whose hash value is m (and its overflow, if any);

16.9 Other Primary File Organizations

16.9.1 Files of Mixed Records
The file organizations we have studied so far assume that all records of a particular 
file are of the same record type. The records could be of EMPLOYEEs, PROJECTs, 
STUDENTs, or DEPARTMENTs, but each file contains records of only one type. In 
most database applications, we encounter situations in which numerous types of 
entities are interrelated in various ways, as we saw in Chapter 7. Relationships among 
records in various files can be represented by connecting fields.16 For example, a 

15For details of insertion and deletion into Linear hashed files, refer to Litwin (1980) and Salzberg (1988).

16The concept of foreign keys in the relational data model (Chapter 3) and references among objects in 
object-oriented models (Chapter 11) are examples of connecting fields.



 16.9 Other Primary File Organizations 583

STUDENT record can have a connecting field Major_dept whose value gives the name 
of the DEPARTMENT in which the student is majoring. This Major_dept field refers to 
a DEPARTMENT entity, which should be represented by a record of its own in the 
DEPARTMENT file. If we want to retrieve field values from two related records, we 
must retrieve one of the records first. Then we can use its connecting field value to 
retrieve the related record in the other file. Hence, relationships are implemented by 
logical field references among the records in distinct files.

File organizations in object DBMSs, as well as legacy systems such as hierarchical 
and network DBMSs, often implement relationships among records as physical 
relationships realized by physical contiguity (or clustering) of related records or by 
physical pointers. These file organizations typically assign an area of the disk to 
hold records of more than one type so that records of different types can be 
 physically clustered on disk. If a particular relationship is expected to be used 
 frequently, implementing the relationship physically can increase the system’s 
 efficiency at retrieving related records. For example, if the query to retrieve a 
DEPARTMENT record and all records for STUDENTs majoring in that department is 
frequent, it would be desirable to place each DEPARTMENT record and its cluster of 
STUDENT records contiguously on disk in a mixed file. The concept of physical 
clustering of object types is used in object DBMSs to store related objects together 
in a mixed file. In data warehouses (see Chapter 29), the input data comes from a 
variety of sources and undergoes an integration initially to collect the required data 
into an operational data store (ODS). An ODS typically contains files where 
records of multiple types are kept together. It is passed on to a data warehouse after 
ETL (extract, transform and load) processing operations are performed on it.

To distinguish the records in a mixed file, each record has—in addition to its field 
values—a record type field, which specifies the type of record. This is typically the 
first field in each record and is used by the system software to determine the type of 
record it is about to process. Using the catalog information, the DBMS can deter-
mine the fields of that record type and their sizes, in order to interpret the data 
values in the record.

16.9.2  B-Trees and Other Data Structures  
as Primary Organization

Other data structures can be used for primary file organizations. For example, if 
both the record size and the number of records in a file are small, some DBMSs 
offer the option of a B-tree data structure as the primary file organization. We 
will describe B-trees in Section 17.3.1, when we discuss the use of the B-tree data 
structure for indexing. In general, any data structure that can be adapted to the 
characteristics of disk devices can be used as a primary file organization for 
record placement on disk. Recently, column-based storage of data has been pro-
posed as a primary method for storage of relations in relational databases. We 
will briefly introduce it in Chapter 17 as a possible alternative storage scheme for 
relational databases.
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16.10  Parallelizing Disk Access Using  
RAID Technology

With the exponential growth in the performance and capacity of semiconductor 
devices and memories, faster microprocessors with larger and larger primary mem-
ories are continually becoming available. To match this growth, it is natural to 
expect that secondary storage technology must also take steps to keep up with pro-
cessor technology in performance and reliability.

A major advance in secondary storage technology is represented by the develop-
ment of RAID, which originally stood for redundant arrays of inexpensive disks. 
More recently, the I in RAID is said to stand for independent. The RAID idea 
received a very positive industry endorsement and has been developed into an elab-
orate set of alternative RAID architectures (RAID levels 0 through 6). We highlight 
the main features of the technology in this section.

The main goal of RAID is to even out the widely different rates of performance 
improvement of disks against those in memory and microprocessors.17 Although 
RAM capacities have quadrupled every two to three years, disk access times are 
improving at less than 10% per year, and disk transfer rates are improving at roughly 
20% per year. Disk capacities are indeed improving at more than 50% per year, but 
the speed and access time improvements are of a much smaller magnitude.

A second qualitative disparity exists between the ability of special microprocessors 
that cater to new applications involving video, audio, image, and spatial data pro-
cessing (see Chapters 26 for details of these applications), with corresponding lack 
of fast access to large, shared data sets.

The natural solution is a large array of small independent disks acting as a single 
higher performance logical disk. A concept called data striping is used, which utilizes 
parallelism to improve disk performance. Data striping distributes data transpar-
ently over multiple disks to make them appear as a single large, fast disk. Figure 
16.13 shows a file distributed or striped over four disks. In bit-level striping, a byte is 
split and individual bits are stored on independent disks. Figure 16.13(a) illustrates 
bit-striping across four disks where the bits (0, 4) are assigned to disk 0, bits (1, 5) to 
disk 1, and so on. With this striping, every disk participates in every read or write 
operation; the number of accesses per second would remain the same as on a single 
disk, but the amount of data read in a given time would increase fourfold. Thus, 
striping improves overall I/O performance by providing high overall transfer rates. 
Block-level striping stripes blocks across disks. It treats the array of disks as if it is 
one disk. Blocks are logically numbered from 0 in sequence. Disks in an m-disk array 
are numbered 0 to m – 1. With striping, block j goes to disk (j mod m). Figure 
16.13(b) illustrates block striping with four disks (m = 4). Data striping also accom-
plishes load balancing among disks. Moreover, by storing redundant information on 

17This was predicted by Gordon Bell to be about 40% every year between 1974 and 1984 and is now 
supposed to exceed 50% per year.
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disks using parity or some other error-correction code, reliability can be improved. 
In Sections 16.10.1 and 16.10.2, we discuss how RAID achieves the two important 
objectives of improved reliability and higher performance. Section 16.10.3 discusses 
RAID organizations and levels.

16.10.1 Improving Reliability with RAID
For an array of n disks, the likelihood of failure is n times as much as that for one 
disk. Hence, if the MTBF (mean time between failures) of a disk drive is assumed to 
be 200,000 hours or about 22.8 years (for the disk drive in Table 16.1 called Seagate 
Enterprise Performance 10K HDD, it is 1.4 million hours), the MTBF for a bank of 
100 disk drives becomes only 2,000 hours or 83.3 days (for a bank of 1,000 Seagate 
Enterprise Performance 10K HDD disks it would be 1,400 hours or 58.33 days). 
Keeping a single copy of data in such an array of disks will cause a significant loss of 
reliability. An obvious solution is to employ redundancy of data so that disk failures 
can be tolerated. The disadvantages are many: additional I/O operations for write, 
extra computation to maintain redundancy and to do recovery from errors, and 
additional disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing. 
Data is written redundantly to two identical physical disks that are treated as one 
logical disk. When data is read, it can be retrieved from the disk with shorter 
queuing, seek, and rotational delays. If a disk fails, the other disk is used until the 
first is repaired. Suppose the mean time to repair is 24 hours; then the mean time 
to data loss of a mirrored disk system using 100 disks with MTBF of 200,000 
hours each is (200,000)2/(2 * 24) = 8.33 * 108 hours, which is 95,028 years.18 Disk 
mirroring also doubles the rate at which read requests are handled, since a read 
can go to either disk. The transfer rate of each read, however, remains the same as 
that for a single disk.
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Figure 16.13 
Striping of data 
across multiple disks. 
(a) Bit-level striping 
across four disks.  
(b) Block-level striping 
across four disks.

18The formulas for MTBF calculations appear in Chen et al. (1994).
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Another solution to the problem of reliability is to store extra information that is not 
normally needed but that can be used to reconstruct the lost information in case of 
disk failure. The incorporation of redundancy must consider two problems: select-
ing a technique for computing the redundant information, and selecting a method of 
distributing the redundant information across the disk array. The first problem is 
addressed by using error-correcting codes involving parity bits, or specialized codes 
such as Hamming codes. Under the parity scheme, a redundant disk may be consid-
ered as having the sum of all the data in the other disks. When a disk fails, the miss-
ing information can be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redun-
dant information on a small number of disks or to distribute it uniformly across all 
disks. The latter results in better load balancing. The different levels of RAID choose 
a combination of these options to implement redundancy and improve reliability.

16.10.2 Improving Performance with RAID
The disk arrays employ the technique of data striping to achieve higher transfer 
rates. Note that data can be read or written only one block at a time, so a typical 
transfer contains 512 to 8,192 bytes. Disk striping may be applied at a finer granu-
larity by breaking up a byte of data into bits and spreading the bits to different 
disks. Thus, bit-level data striping consists of splitting a byte of data and writing 
bit j to the jth disk. With 8-bit bytes, eight physical disks may be considered as one 
logical disk with an eightfold increase in the data transfer rate. Each disk partici-
pates in each I/O request and the total amount of data read per request is eight 
times as much. Bit-level striping can be generalized to a number of disks that is 
either a multiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk 
which is (n mod 4). Figure 16.13(a) shows bit-level striping of data.

The granularity of data interleaving can be higher than a bit; for example, blocks of 
a file can be striped across disks, giving rise to block-level striping. Figure 16.13(b) 
shows block-level data striping assuming the data file contains four blocks. With 
block-level striping, multiple independent requests that access single blocks (small 
requests) can be serviced in parallel by separate disks, thus decreasing the queuing 
time of I/O requests. Requests that access multiple blocks (large requests) can be 
parallelized, thus reducing their response time. In general, the more the number of 
disks in an array, the larger the potential performance benefit. However, assuming 
independent failures, the disk array of 100 disks collectively has 1/100th the reli-
ability of a single disk. Thus, redundancy via error-correcting codes and disk mir-
roring is necessary to provide reliability along with high performance.

16.10.3 RAID Organizations and Levels
Different RAID organizations were defined based on different combinations of the 
two factors of granularity of data interleaving (striping) and pattern used to com-
pute redundant information. In the initial proposal, levels 1 through 5 of RAID 
were proposed, and two additional levels—0 and 6—were added later.
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RAID level 0 uses data striping, has no redundant data, and hence has the best write 
performance since updates do not have to be duplicated. It splits data evenly across 
two or more disks. However, its read performance is not as good as RAID level 1, 
which uses mirrored disks. In the latter, performance improvement is possible by 
scheduling a read request to the disk with shortest expected seek and rotational 
delay. RAID level 2 uses memory-style redundancy by using Hamming codes, 
which contain parity bits for distinct overlapping subsets of components. Thus, in 
one particular version of this level, three redundant disks suffice for four original 
disks, whereas with mirroring—as in level 1—four would be required. Level 2 
includes both error detection and correction, although detection is generally not 
required because broken disks identify themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out 
which disk has failed. Levels 4 and 5 use block-level data striping, with level 5 dis-
tributing data and parity information across all disks. Figure 16.14(b) shows an 
illustration of RAID level 5, where parity is shown with subscript p. If one disk fails, 
the missing data is calculated based on the parity available from the remaining 
disks. Finally, RAID level 6 applies the so-called P + Q redundancy scheme using 
Reed-Soloman codes to protect against up to two disk failures by using just two 
redundant disks.

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require 
the reconstruction of a failed disk by reading multiple disks. Level 1 is used for 
critical applications such as storing logs of transactions. Levels 3 and 5 are pre-
ferred for large volume storage, with level 3 providing higher transfer rates. Most 
popular use of RAID technology currently uses level 0 (with striping), level 1 (with 
mirroring), and level 5 with an extra drive for parity. A combination of multiple 
RAID levels are also used—for example, 0 + 1 combines striping and mirroring 
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using a  minimum of four disks. Other nonstandard RAID levels include: RAID 1.5, 
RAID 7, RAID-DP, RAID S or Parity RAID, Matrix RAID, RAID-K, RAID-Z, 
RAIDn, Linux MD RAID 10, IBM ServeRAID 1E, and unRAID. A discussion of 
these nonstandard levels is beyond the scope of this text. Designers of a RAID setup 
for a given application mix have to confront many design decisions such as the level 
of RAID, the number of disks, the choice of parity schemes, and grouping of disks 
for block-level striping. Detailed performance studies on small reads and writes 
(referring to I/O requests for one striping unit) and large reads and writes (referring 
to I/O requests for one stripe unit from each disk in an error-correction group) have 
been performed.

16.11 Modern Storage Architectures
In this section, we describe some recent developments in storage systems that are 
becoming an integral part of most enterprise’s information system architectures. 
We already mentioned the SATA and SAS interface, which has almost replaced the 
previously popular SCSI (small computer system interface) in laptops and small 
servers. The Fibre Channel (FC) interface is the predominant choice for storage 
networks in data centers. We review some of the modern storage architectures next.

16.11.1 Storage Area Networks
With the rapid growth of electronic commerce, enterprise resource planning (ERP) 
systems that integrate application data across organizations, and data warehouses 
that keep historical aggregate information (see Chapter 29), the demand for storage 
has gone up substantially. For today’s Internet-driven organizations, it has become 
necessary to move from a static fixed data center-oriented operation to a more flex-
ible and dynamic infrastructure for the organizations’ information processing 
requirements. The total cost of managing all data is growing so rapidly that in many 
instances the cost of managing server-attached storage exceeds the cost of the server 
itself. Furthermore, the procurement cost of storage is only a small fraction—typi-
cally, only 10 to 15% of the overall cost of storage management. Many users of 
RAID systems cannot use the capacity effectively because it has to be attached in a 
fixed manner to one or more servers. Therefore, most large organizations have 
moved to a concept called storage area networks (SANs). In a SAN, online storage 
peripherals are configured as nodes on a high-speed network and can be attached 
and detached from servers in a very flexible manner.

Several companies have emerged as SAN providers and supply their own proprie-
tary topologies. They allow storage systems to be placed at longer distances from 
the servers and provide different performance and connectivity options. Existing 
storage management applications can be ported into SAN configurations using 
Fibre Channel networks that encapsulate the legacy SCSI protocol. As a result, the 
SAN-attached devices appear as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point 
connections between servers and storage systems via Fiber Channel; use of a Fiber 
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Channel switch to connect multiple RAID systems, tape libraries, and so on to serv-
ers; and the use of Fiber Channel hubs and switches to connect servers and storage 
systems in different configurations. Organizations can slowly move up from sim-
pler topologies to more complex ones by adding servers and storage devices as 
needed. We do not provide further details here because they vary among SAN ven-
dors. The main advantages claimed include:

 ■ Flexible many-to-many connectivity among servers and storage devices 
using Fiber Channel hubs and switches

 ■ Up to 10 km separation between a server and a storage system using appro-
priate fiber optic cables

 ■ Better isolation capabilities allowing nondisruptive addition of new periph-
erals and servers

 ■ High-speed data replication across multiple storage systems. Typical tech-
nologies use synchronous replication for local and asynchronous replication 
for disaster recovery (DR) solutions.

SANs are growing very rapidly but are still faced with many problems, such as com-
bining storage options from multiple vendors and dealing with evolving standards 
of storage management software and hardware. Most major companies are evaluat-
ing SANs as a viable option for database storage.

16.11.2 Network-Attached Storage
With the phenomenal growth in digital data, particularly generated from multi-
media and other enterprise applications, the need for high-performance storage 
solutions at low cost has become extremely important. Network-attached storage 
(NAS) devices are among the storage devices being used for this purpose. These 
devices are, in fact, servers that do not provide any of the common server services, 
but simply allow the addition of storage for file sharing. NAS devices allow vast 
amounts of hard-disk storage space to be added to a network and can make that 
space available to multiple servers without shutting them down for maintenance 
and upgrades. NAS devices can reside anywhere on a local area network (LAN) and 
may be combined in different configurations. A single hardware device, often called 
the NAS box or NAS head, acts as the interface between the NAS system and net-
work clients. These NAS devices require no monitor, keyboard, or mouse. One or 
more disk or tape drives can be attached to many NAS systems to increase total 
capacity. Clients connect to the NAS head rather than to the individual storage 
devices. A NAS can store any data that appears in the form of files, such as e-mail 
boxes, Web content, remote system backups, and so on. In that sense, NAS devices 
are being deployed as a replacement for traditional file servers.

NAS systems strive for reliable operation and easy administration. They include 
built-in features such as secure authentication, or the automatic sending of e-mail 
alerts in case of error on the device. The NAS devices (or appliances, as some ven-
dors refer to them) are being offered with a high degree of scalability, reliability, 



590 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

flexibility, and performance. Such devices typically support RAID levels 0, 1, and 5. 
Traditional storage area networks (SANs) differ from NAS in several ways. Specifi-
cally, SANs often utilize Fibre Channel rather than Ethernet, and a SAN often 
incorporates multiple network devices or endpoints on a self-contained or private 
LAN, whereas NAS relies on individual devices connected directly to the existing 
public LAN. Whereas Windows, UNIX, and NetWare file servers each demand 
specific protocol support on the client side, NAS systems claim greater operating 
system independence of clients. In summary, NAS provides a file system interface 
with support for networked files using protocols such as common internet file sys-
tem (CIFS) or network file system (NFS).

16.11.3 iSCSI and Other Network-Based Storage Protocols
A new protocol called iSCSI (Internet SCSI) has been proposed recently. It is a 
block-storage protocol like SAN. It allows clients (called initiators) to send SCSI 
commands to SCSI storage devices on remote channels. The main advantage of 
iSCSI is that it does not require the special cabling needed by Fibre Channel and it 
can run over longer distances using existing network infrastructure. By carrying 
SCSI commands over IP networks, iSCSI facilitates data transfers over intranets 
and manages storage over long distances. It can transfer data over local area net-
works (LANs), wide area networks (WANs), or the Internet.

iSCSI works as follows. When a DBMS needs to access data, the operating system 
generates the appropriate SCSI commands and data request, which then go through 
encapsulation and, if necessary, encryption procedures. A packet header is added 
before the resulting IP packets are transmitted over an Ethernet connection. When 
a packet is received, it is decrypted (if it was encrypted before transmission) and 
disassembled, separating the SCSI commands and request. The SCSI commands go 
via the SCSI controller to the SCSI storage device. Because iSCSI is bidirectional, 
the protocol can also be used to return data in response to the original request. 
Cisco and IBM have marketed switches and routers based on this technology.

 iSCSI storage has mainly impacted small- and medium-sized businesses because 
of its combination of simplicity, low cost, and the functionality of iSCSI devices. It 
allows them not to learn the ins and outs of Fibre Channel (FC) technology and 
instead benefit from their familiarity with the IP protocol and Ethernet hardware. 
iSCSI implementations in the data centers of very large enterprise businesses are 
slow in development due to their prior investment in Fibre Channel–based SANs.

iSCSI is one of two main approaches to storage data transmission over IP networks. 
The other method, Fibre Channel over IP (FCIP), translates Fibre Channel control 
codes and data into IP packets for transmission between geographically distant 
Fibre Channel storage area networks. This protocol, known also as Fibre Channel 
tunneling or storage tunneling, can only be used in conjunction with Fibre Channel 
technology, whereas iSCSI can run over existing Ethernet networks.

The latest idea to enter the enterprise IP storage race is Fibre Channel over 
 Ethernet (FCoE), which can be thought of as iSCSI without the IP. It uses many 
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elements of SCSI and FC ( just like iSCSI), but it does not include TCP/IP compo-
nents. FCoE has been successfully productized by CISCO (termed “Data Center 
Ethernet”) and Brocade. It takes advantage of a reliable ethernet technology that 
uses buffering and end-to-end flow control to avoid dropped packets. This prom-
ises excellent performance, especially on 10 Gigabit Ethernet (10GbE), and is 
 relatively easy for vendors to add to their products.

16.11.4 Automated Storage Tiering
Another trend in storage is automated storage tiering (AST), which automati-
cally moves data between different storage types such as SATA, SAS, and solid-
state drives (SSDs) depending on the need. The storage administrator can set up 
a tiering policy in which less frequently used data is moved to slower and cheaper 
SATA drives and more frequently used data is moved up to solid-state drives 
(see Table  16.1 for the various tiers of storage ordered by increasing speed of 
access). This automated tiering can improve database performance tremendously.

EMC has an implementation of this technology called FAST (fully automated stor-
age tiering) that does continuous monitoring of data activity and takes actions to 
move the data to the appropriate tier based on the policy.

16.11.5 Object-Based Storage
During the last few years, there have been major developments in terms of rapid 
growth of the cloud concept, distributed architectures for databases and for analyt-
ics, and development of data-intensive applications on the Web (see Chapters 23, 
24, and 25). These developments have caused fundamental changes in enterprise 
storage infrastructure. The hardware-oriented file-based systems are evolving into 
new open-ended architectures for storage. The latest among these is object-based 
storage. Under this scheme, data is managed in the form of objects rather than files 
made of blocks. Objects carry metadata that contains properties that can be used for 
managing those objects. Each object carries a unique global identifier that is used to 
locate it. Object storage has its origins in research projects at CMU (Gibson et al., 
1996) on scaling up of network attached storage and in the Oceanstore system at 
UC Berkeley (Kubiatowicz et al., 2000), which attempted to build a global infra-
structure over all forms of trusted and untrusted servers for continuous access to 
persistent data. There is no need to do lower level storage operations in terms of 
capacity management or making decisions like what type of RAID architecture 
should be used for fault protection.

Object storage also allows additional flexibility in terms of interfaces—it gives con-
trol to applications that can control the objects directly and also allows the objects 
to be addressable across a wide namespace spanning multiple devices. Replication 
and distribution of objects is also supported. In general, object storage is ideally 
suited for scalable storage of massive amounts of unstructured data such as Web 
pages, images, and audio/video clips and files. Object-based storage device com-
mands (OSDs) were proposed as part of SCSI protocol a long time ago but did not 
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become a commercial product until Seagate adopted OSDs in its Kinetic Open 
Storage Platform. Currently, Facebook uses an object storage system to store pho-
tos at the level of over 350 Petabytes of storage; Spotify uses an object storage sys-
tem for storing songs; and Dropbox uses it for its storage infrastructure. Object 
storage is the choice of many cloud offerings, such as Amazon’s AWS (Amazon 
Web Service) S3, and Microsoft’s Azure, which stores files, relations, messages, and 
so on as objects. Other examples of products include Hitachi’s HCP, EMC’s Atmos, 
and Scality’s RING. Openstack Swift is an open source project that allows one to 
use HTTP GET and PUT to retrieve and store objects—that’s basically the whole 
API. Openstack Swift uses very cheap hardware, is fully fault resistant, automati-
cally takes advantage of geographic redundancy, and scales to very large numbers of 
objects. Since object storage forces locking to occur at the object level, it is not 
clear how suitable it is for concurrent transaction processing in high-throughput 
transaction-oriented systems. Therefore, it is still not considered viable for main-
stream enterprise-level database applications.

16.12  Summary
We began this chapter by discussing the characteristics of memory hierarchies and 
then concentrated on secondary storage devices. In particular, we focused on mag-
netic disks because they are still the preferred medium to store online database files. 
Table 16.1 presented a perspective on the memory hierarchies and their current 
capacities, access speeds, transfer rates, and costs.

Data on disk is stored in blocks; accessing a disk block is expensive because of the 
seek time, rotational delay, and block transfer time. To reduce the average block 
access time, double buffering can be used when accessing consecutive disk blocks. 
(Other disk parameters are discussed in Appendix B.) We introduced the various 
interface technologies in use today for disk drives and optical devices. We presented 
a list of strategies employed to improve access of data from disks. We also intro-
duced solid-state drives, which are rapidly becoming popular, and optical drives, 
which are mainly used as tertiary storage. We discussed the working of the buffer 
manager, which is responsible for handling data requests and we presented various 
buffer replacement policies. We presented different ways of storing file records on 
disk. File records are grouped into disk blocks and can be fixed length or variable 
length, spanned or unspanned, and of the same record type or mixed types. We dis-
cussed the file header, which describes the record formats and keeps track of the disk 
addresses of the file blocks. Information in the file header is used by system software 
accessing the file records.

Then we presented a set of typical commands for accessing individual file records 
and discussed the concept of the current record of a file. We discussed how com-
plex record search conditions are transformed into simple search conditions that 
are used to locate records in the file.

Three primary file organizations were then discussed: unordered, ordered, and 
hashed. Unordered files require a linear search to locate records, but record 
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insertion is very simple. We discussed the deletion problem and the use of dele-
tion markers.

Ordered files shorten the time required to read records in order of the ordering 
field. The time required to search for an arbitrary record, given the value of its 
ordering key field, is also reduced if a binary search is used. However, maintaining 
the records in order makes insertion very expensive; thus the technique of using an 
unordered overflow file to reduce the cost of record insertion was discussed. Over-
flow records are merged with the master file periodically, and deleted records are 
physically dropped during file reorganization.

Hashing provides very fast access to an arbitrary record of a file, given the value of 
its hash key. The most suitable method for external hashing is the bucket technique, 
with one or more contiguous blocks corresponding to each bucket. Collisions caus-
ing bucket overflow are handled by open addressing, chaining, or multiple hashing. 
Access on any nonhash field is slow, and so is ordered access of the records on any 
field. We discussed three hashing techniques for files that grow and shrink in the 
number of records dynamically: extendible, dynamic, and linear hashing. The first 
two use the higher-order bits of the hash address to organize a directory. Linear 
hashing is geared to keep the load factor of the file within a given range and adds 
new buckets linearly.

We briefly discussed other possibilities for primary file storage and organization, 
such as B-trees, and files of mixed records, which implement relationships among 
records of different types physically as part of the storage structure. We reviewed 
the recent advances in disk technology represented by RAID (redundant arrays of 
inexpensive (or independent) disks), which has become a standard technique in 
large enterprises to provide better reliability and fault tolerance features in storage. 
Finally, we reviewed some modern trends in enterprise storage systems: storage 
area networks (SANs), network-attached storage (NAS), iSCSI and other network 
based protocols, automatic storage tiering, and finally object-based storage, 
which is playing a major role in storage architecture of data centers offering 
cloud-based services.

Review Questions
 16.1. What is the difference between primary and secondary storage?

 16.2. Why are disks, not tapes, used to store online database files?

 16.3. Define the following terms: disk, disk pack, track, block, cylinder, sector, 
interblock gap, and read/write head.

 16.4. Discuss the process of disk initialization.

 16.5. Discuss the mechanism used to read data from or write data to the disk.

 16.6. What are the components of a disk block address?
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 16.7. Why is accessing a disk block expensive? Discuss the time components 
involved in accessing a disk block.

 16.8. How does double buffering improve block access time?

 16.9. What are the reasons for having variable-length records? What types of sep-
arator characters are needed for each?

 16.10. Discuss the techniques for allocating file blocks on disk.

 16.11. What is the difference between a file organization and an access method?

 16.12. What is the difference between static and dynamic files?

 16.13. What are the typical record-at-a-time operations for accessing a file? Which 
of these depend on the current file record?

 16.14. Discuss the techniques for record deletion.

 16.15. Discuss the advantages and disadvantages of using (a) an unordered file, 
(b) an ordered file, and (c) a static hash file with buckets and chaining. 
Which operations can be performed efficiently on each of these organiza-
tions, and which operations are expensive?

 16.16. Discuss the techniques for allowing a hash file to expand and shrink dynam-
ically. What are the advantages and disadvantages of each?

 16.17. What is the difference between the directories of extendible and dynamic 
hashing?

 16.18. What are mixed files used for? What are other types of primary file organi-
zations?

 16.19. Describe the mismatch between processor and disk technologies.

 16.20. What are the main goals of the RAID technology? How does it achieve them?

 16.21. How does disk mirroring help improve reliability? Give a quantitative 
example.

 16.22. What characterizes the levels in RAID organization?

 16.23. What are the highlights of the popular RAID levels 0, 1, and 5?

 16.24. What are storage area networks? What flexibility and advantages do they offer?

 16.25. Describe the main features of network-attached storage as an enterprise 
storage solution.

 16.26. How have new iSCSI systems improved the applicability of storage area  
networks?

 16.27. What are SATA, SAS, and FC protocols?

 16.28. What are solid-state drives (SSDs) and what advantage do they offer over 
HDDs?
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 16.29. What is the function of a buffer manager? What does it do to serve a request 
for data?

 16.30. What are some of the commonly used buffer replacement strategies?

 16.31. What are optical and tape jukeboxes? What are the different types of optical 
media served by optical drives?

 16.32. What is automatic storage tiering? Why is it useful?

 16.33. What is object-based storage? How is it superior to conventional storage 
systems?

Exercises
 16.34. Consider a disk with the following characteristics (these are not parameters 

of any particular disk unit): block size B = 512 bytes; interblock gap size 
G =  128 bytes; number of blocks per track = 20; number of tracks per 
 surface = 400. A disk pack consists of 15 double-sided disks.

a. What is the total capacity of a track, and what is its useful capacity 
(excluding interblock gaps)?

b. How many cylinders are there?

c. What are the total capacity and the useful capacity of a cylinder?

d. What are the total capacity and the useful capacity of a disk pack?

e. Suppose that the disk drive rotates the disk pack at a speed of 2,400 rpm 
(revolutions per minute); what are the transfer rate (tr) in bytes/msec and 
the block transfer time (btt) in msec? What is the average rotational delay 
(rd) in msec? What is the bulk transfer rate? (See Appendix B.)

f. Suppose that the average seek time is 30 msec. How much time does it 
take (on the average) in msec to locate and transfer a single block, given 
its block address?

g. Calculate the average time it would take to transfer 20 random blocks, 
and compare this with the time it would take to transfer 20 consecutive 
blocks using double buffering to save seek time and rotational delay.

 16.35. A file has r = 20,000 STUDENT records of fixed length. Each record has the 
following fields: Name (30 bytes), Ssn (9 bytes), Address (40 bytes), PHONE 
(10 bytes), Birth_date (8 bytes), Sex (1 byte), Major_dept_code (4 bytes), 
Minor_dept_code (4 bytes), Class_code (4 bytes, integer), and Degree_program 
(3 bytes). An additional byte is used as a deletion marker. The file is stored 
on the disk whose parameters are given in Exercise 16.27.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assum-
ing an unspanned organization.
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c. Calculate the average time it takes to find a record by doing a linear search 
on the file if (i) the file blocks are stored contiguously, and double buffer-
ing is used; (ii) the file blocks are not stored contiguously.

d. Assume that the file is ordered by Ssn; by doing a binary search, calculate 
the time it takes to search for a record given its Ssn value.

 16.36. Suppose that only 80% of the STUDENT records from Exercise 16.28 have a 
value for Phone, 85% for Major_dept_code, 15% for Minor_dept_code, and 90% 
for Degree_program; and suppose that we use a variable-length record file. 
Each record has a 1-byte field type for each field in the record, plus the 1-byte 
deletion marker and a 1-byte end-of-record marker. Suppose that we use a 
spanned record organization, where each block has a 5-byte pointer to the 
next block (this space is not used for record storage).

a. Calculate the average record length R in bytes.

b. Calculate the number of blocks needed for the file.

 16.37. Suppose that a disk unit has the following parameters: seek time s = 20 msec; 
rotational delay rd = 10 msec; block transfer time btt = 1 msec; block size 
B = 2400 bytes; interblock gap size G = 600 bytes. An EMPLOYEE file has 
the following fields: Ssn, 9 bytes; Last_name, 20 bytes; First_name, 20 bytes; 
Middle_init, 1 byte; Birth_date, 10 bytes; Address, 35 bytes; Phone, 12 bytes; 
Supervisor_ssn, 9 bytes; Department, 4 bytes; Job_code, 4 bytes; deletion 
marker, 1 byte. The EMPLOYEE file has r = 30,000 records, fixed-length  
format, and unspanned blocking. Write appropriate formulas and calculate 
the following values for the above EMPLOYEE file:

a. Calculate the record size R (including the deletion marker), the blocking 
factor bfr, and the number of disk blocks b.

b. Calculate the wasted space in each disk block because of the unspanned 
organization.

c. Calculate the transfer rate tr and the bulk transfer rate btr for this disk 
unit (see Appendix B for definitions of tr and btr).

d. Calculate the average number of block accesses needed to search for an 
arbitrary record in the file, using linear search.

e. Calculate in msec the average time needed to search for an arbitrary 
record in the file, using linear search, if the file blocks are stored on con-
secutive disk blocks and double buffering is used.

f. Calculate in msec the average time needed to search for an arbitrary 
record in the file, using linear search, if the file blocks are not stored on 
consecutive disk blocks.

g. Assume that the records are ordered via some key field. Calculate the 
average number of block accesses and the average time needed to search 
for an arbitrary record in the file, using binary search.

 16.38. A PARTS file with Part# as the hash key includes records with the following 
Part# values: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 
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3943, 4750, 6975, 4981, and 9208. The file uses eight buckets, numbered 0 to 
7. Each bucket is one disk block and holds two records. Load these records 
into the file in the given order, using the hash function h(K) = K mod 8. Cal-
culate the average number of block accesses for a random retrieval on Part#.

 16.39. Load the records of Exercise 16.31 into expandable hash files based on 
extendible hashing. Show the structure of the directory at each step, and the 
global and local depths. Use the hash function h(K) = K mod 128.

 16.40. Load the records of Exercise 16.31 into an expandable hash file, using linear 
hashing. Start with a single disk block, using the hash function h0 = K mod 20, 
and show how the file grows and how the hash functions change as the 
records are inserted. Assume that blocks are split whenever an overflow 
occurs, and show the value of n at each stage.

 16.41. Compare the file commands listed in Section 16.5 to those available on a file 
access method you are familiar with.

 16.42. Suppose that we have an unordered file of fixed-length records that uses an 
unspanned record organization. Outline algorithms for insertion, deletion, 
and modification of a file record. State any assumptions you make.

 16.43. Suppose that we have an ordered file of fixed-length records and an unor-
dered overflow file to handle insertion. Both files use unspanned records. 
Outline algorithms for insertion, deletion, and modification of a file record 
and for reorganizing the file. State any assumptions you make.

 16.44. Can you think of techniques other than an unordered overflow file that can 
be used to make insertions in an ordered file more efficient?

 16.45. Suppose that we have a hash file of fixed-length records, and suppose that 
overflow is handled by chaining. Outline algorithms for insertion, deletion, 
and modification of a file record. State any assumptions you make.

 16.46. Can you think of techniques other than chaining to handle bucket overflow 
in external hashing?

 16.47. Write pseudocode for the insertion algorithms for linear hashing and for 
extendible hashing.

 16.48. Write program code to access individual fields of records under each of the fol-
lowing circumstances. For each case, state the assumptions you make concern-
ing pointers, separator characters, and so on. Determine the type of information 
needed in the file header in order for your code to be general in each case.

a. Fixed-length records with unspanned blocking

b. Fixed-length records with spanned blocking

c. Variable-length records with variable-length fields and spanned blocking

d. Variable-length records with repeating groups and spanned blocking

e. Variable-length records with optional fields and spanned blocking

f. Variable-length records that allow all three cases in parts c, d, and e
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 16.49. Suppose that a file initially contains r = 120,000 records of R = 200 bytes each 
in an unsorted (heap) file. The block size B = 2,400 bytes, the average seek 
time s = 16 ms, the average rotational latency rd = 8.3 ms, and the block 
transfer time btt = 0.8 ms. Assume that 1 record is deleted for every 2 records 
added until the total number of active records is 240,000.

a. How many block transfers are needed to reorganize the file?

b. How long does it take to find a record right before reorganization?

c. How long does it take to find a record right after reorganization?

 16.50. Suppose we have a sequential (ordered) file of 100,000 records where each 
record is 240 bytes. Assume that B = 2,400 bytes, s = 16 ms, rd = 8.3 ms, and 
btt = 0.8 ms. Suppose we want to make X independent random record reads 
from the file. We could make X random block reads or we could perform 
one exhaustive read of the entire file looking for those X records. The ques-
tion is to decide when it would be more efficient to perform one exhaustive 
read of the entire file than to perform X individual random reads. That is, 
what is the value for X when an exhaustive read of the file is more efficient 
than random X reads? Develop this as a function of X.

 16.51. Suppose that a static hash file initially has 600 buckets in the primary area 
and that records are inserted that create an overflow area of 600 buckets. If 
we reorganize the hash file, we can assume that most of the overflow is elim-
inated. If the cost of reorganizing the file is the cost of the bucket transfers 
(reading and writing all of the buckets) and the only periodic file operation 
is the fetch operation, then how many times would we have to perform a 
fetch (successfully) to make the reorganization cost effective? That is, the 
reorganization cost and subsequent search cost are less than the search 
cost before reorganization. Support your answer. Assume s = 16 msec, 
rd = 8.3 msec, and btt = 1 msec.

 16.52. Suppose we want to create a linear hash file with a file load factor of 0.7 and 
a blocking factor of 20 records per bucket, which is to contain 112,000 
records initially.

a. How many buckets should we allocate in the primary area?

b. What should be the number of bits used for bucket addresses?
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17
Indexing Structures for Files and 

Physical Database Design

In this chapter, we assume that a file already exists with 
some primary organization such as the unordered, 

ordered, or hashed organizations that were described in Chapter 16. We will 
describe additional auxiliary access structures called indexes, which are used to 
speed up the retrieval of records in response to certain search conditions. The index 
structures are additional files on disk that provide secondary access paths, which 
provide alternative ways to access the records without affecting the physical place-
ment of records in the primary data file on disk. They enable efficient access to 
records based on the indexing fields that are used to construct the index. Basically, 
any field of the file can be used to create an index, and multiple indexes on different 
fields—as well as indexes on multiple fields—can be constructed on the same file. A 
variety of indexes are possible; each of them uses a particular data structure to speed 
up the search. To find a record or records in the data file based on a search condi-
tion on an indexing field, the index is searched, which leads to pointers to one or 
more disk blocks in the data file where the required records are located. The most 
prevalent types of indexes are based on ordered files (single-level indexes) and use 
tree data structures (multilevel indexes, B+-trees) to organize the index. Indexes can 
also be constructed based on hashing or other search data structures. We also dis-
cuss indexes that are vectors of bits called bitmap indexes.

We describe different types of single-level ordered indexes—primary, secondary, 
and clustering—in Section 17.1. By viewing a single-level index as an ordered file, 
one can develop additional indexes for it, giving rise to the concept of multilevel 
indexes. A popular indexing scheme called ISAM (indexed sequential access 
method) is based on this idea. We discuss multilevel tree-structured indexes in Sec-
tion 17.2. In Section 17.3, we describe B-trees and B+-trees, which are data struc-
tures that are commonly used in DBMSs to implement dynamically changing 

chapter 17
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multilevel indexes. B+-trees have become a commonly accepted default structure 
for generating indexes on demand in most relational DBMSs. Section 17.4 is devoted 
to alternative ways to access data based on a combination of multiple keys. In Sec-
tion 17.5, we discuss hash indexes and introduce the concept of logical indexes, 
which give an additional level of indirection from physical indexes and allow the 
physical index to be flexible and extensible in its organization. In Section 17.6, we 
discuss multikey indexing and bitmap indexes used for searching on one or more keys. 
Section 17.7 covers physical design and Section 7.8 summarizes the chapter.

17.1 Types of Single-Level Ordered Indexes
The idea behind an ordered index is similar to that behind the index used in a text-
book, which lists important terms at the end of the book in alphabetical order along 
with a list of page numbers where the term appears in the book. We can search the 
book index for a certain term in the textbook to find a list of addresses—page num-
bers in this case—and use these addresses to locate the specified pages first and then 
search for the term on each specified page. The alternative, if no other guidance is 
given, would be to sift slowly through the whole textbook word by word to find the 
term we are interested in; this corresponds to doing a linear search, which scans the 
whole file. Of course, most books do have additional information, such as chapter 
and section titles, which help us find a term without having to search through the 
whole book. However, the index is the only exact indication of the pages where each 
term occurs in the book.

For a file with a given record structure consisting of several fields (or attributes), an 
index access structure is usually defined on a single field of a file, called an indexing 
field (or indexing attribute).1 The index typically stores each value of the index field 
along with a list of pointers to all disk blocks that contain records with that field 
value. The values in the index are ordered so that we can do a binary search on the 
index. If both the data file and the index file are ordered, and since the index file is 
typically much smaller than the data file, searching the index using a binary search 
is a better option. Tree-structured multilevel indexes (see Section 17.2) implement 
an extension of the binary search idea that reduces the search space by two-way 
partitioning at each search step to an n-ary partitioning approach that divides the 
search space in the file n-ways at each stage.

There are several types of ordered indexes. A primary index is specified on the 
ordering key field of an ordered file of records. Recall from Section 16.7 that an 
ordering key field is used to physically order the file records on disk, and every 
record has a unique value for that field. If the ordering field is not a key field—that 
is, if numerous records in the file can have the same value for the ordering field—
another type of index, called a clustering index, can be used. The data file is called 
a clustered file in this latter case. Notice that a file can have at most one physical 
ordering field, so it can have at most one primary index or one clustering index, but 

1We use the terms field and attribute interchangeably in this chapter.
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not both. A third type of index, called a secondary index, can be specified on any 
nonordering field of a file. A data file can have several secondary indexes in addition 
to its primary access method. We discuss these types of single-level indexes in the 
next three subsections.

17.1.1 Primary Indexes
A primary index is an ordered file whose records are of fixed length with two 
fields, and it acts like an access structure to efficiently search for and access the 
data records in a data file. The first field is of the same data type as the ordering 
key field—called the primary key—of the data file, and the second field is a 
pointer to a disk block (a block address). There is one index entry (or index 
record) in the index file for each block in the data file. Each index entry has the 
value of the primary key field for the first record in a block and a pointer to that 
block as its two field values. We will refer to the two field values of index entry i as 
<K(i), P(i)>. In the rest of this chapter, we refer to different types of index entries 
< K (i), X > as follows:

 ■ X may be the physical address of a block (or page) in the file, as in the case of 
P(i) above.

 ■ X may be the record address made up of a block address and a record id (or 
offset) within the block.

 ■ X may be a logical address of the block or of the record within the file and is 
a relative number that would be mapped to a physical address (see further 
explanation in Section 17.6.1).

To create a primary index on the ordered file shown in Figure 16.7, we use the Name 
field as primary key, because that is the ordering key field of the file (assuming that 
each value of Name is unique). Each entry in the index has a Name value and a 
pointer. The first three index entries are as follows:

<K(1) = (Aaron, Ed), P(1) = address of block 1>
<K(2) = (Adams, John), P(2) = address of block 2>
<K(3) = (Alexander, Ed), P(3) = address of block 3>

Figure 17.1 illustrates this primary index. The total number of entries in the index is 
the same as the number of disk blocks in the ordered data file. The first record in 
each block of the data file is called the anchor record of the block, or simply the 
block anchor.2

Indexes can also be characterized as dense or sparse. A dense index has an index 
entry for every search key value (and hence every record) in the data file. A sparse 
(or nondense) index, on the other hand, has index entries for only some of the 
search values. A sparse index has fewer entries than the number of records in 
the file. Thus, a primary index is a nondense (sparse) index, since it includes an 

2We can use a scheme similar to the one described here, with the last record in each block (rather than 
the first) as the block anchor. This slightly improves the efficiency of the search algorithm.
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entry for each disk block of the data file and the keys of its anchor record rather 
than for every search value (or every record).3

The index file for a primary index occupies a much smaller space than does the data 
file, for two reasons. First, there are fewer index entries than there are records in the 
data file. Second, each index entry is typically smaller in size than a data record 
because it has only two fields, both of which tend to be short in size; consequently, 
more index entries than data records can fit in one block. Therefore, a binary search 
on the index file requires fewer block accesses than a binary search on the data file. 
Referring to Table 16.3, note that the binary search for an ordered data file required 
log2b block accesses. But if the primary index file contains only bi blocks, then to 
locate a record with a search key value requires a binary search of that index and 
access to the block containing that record: a total of log2bi + 1 accesses.

A record whose primary key value is K lies in the block whose address is P(i), where 
K(i) ≤ K < K(i + 1). The ith block in the data file contains all such records because of 
the physical ordering of the file records on the primary key field. To retrieve a 
record, given the value K of its primary key field, we do a binary search on the index 
file to find the appropriate index entry i, and then retrieve the data file block whose 
address is P(i).4 Example 1 illustrates the saving in block accesses that is attainable 
when a primary index is used to search for a record.

Example 1. Suppose that we have an ordered file with r = 300,000 records stored on 
a disk with block size B = 4,096 bytes.5 File records are of fixed size and are unspanned, 
with record length R = 100 bytes. The blocking factor for the file would be 
bfr = ⎣(B/R)⎦ = ⎣(4,096/100)⎦ = 40 records per block. The number of blocks needed 
for the file is b = ⎡(r/bfr)⎤ = ⎡(300,000/40)⎤ = 7,500 blocks. A binary search on the data 
file would need approximately ⎡log2 b⎤= ⎡(log2 7,500)⎤ = 13 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointer 
is P = 6 bytes long, and we have constructed a primary index for the file. The size of 
each index entry is Ri = (9 + 6) = 15 bytes, so the blocking factor for the index is  
bfri = ⎣(B/Ri)⎦ = ⎣(4,096/15)⎦ = 273 entries per block. The total number of index 
entries ri is equal to the number of blocks in the data file, which is 7,500. The number 
of index blocks is hence bi = ⎡(ri/bfri)⎤ = ⎡(7,500/273)⎤ = 28 blocks. To perform a 
binary search on the index file would need ⎡(log2 bi)⎤ = ⎡(log2 28)⎤ = 5 block accesses. 
To search for a record using the index, we need one additional block access to the data 
file for a total of 5 + 1 = 6 block accesses—an improvement over binary search on the 
data file, which required 13 disk block accesses. Note that the index with 7,500 entries 
of 15 bytes each is rather small (112,500 or 112.5 Kbytes) and would typically be kept 
in main memory thus requiring negligible time to search with binary search. In that 
case we simply make one block access to retrieve the record.

3The sparse primary index has been called clustered (primary) index in some books and articles.
4Notice that the above formula would not be correct if the data file were ordered on a nonkey field; in that 
case the same index value in the block anchor could be repeated in the last records of the previous block.
5Most DBMS vendors, including Oracle, are using 4K or 4,096 bytes as a standard block/page size.
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A major problem with a primary index—as with any ordered file—is insertion and 
deletion of records. With a primary index, the problem is compounded because if 
we attempt to insert a record in its correct position in the data file, we must not 
only move records to make space for the new record but also change some index 
entries, since moving records will change the anchor records of some blocks. Using 
an unordered overflow file, as discussed in Section 16.7, can reduce this problem. 
Another possibility is to use a linked list of overflow records for each block in the 
data file. This is similar to the method of dealing with overflow records described 
with hashing in Section 16.8.2. Records within each block and its overflow linked 
list can be sorted to improve retrieval time. Record deletion is handled using dele-
tion markers.

17.1.2 Clustering Indexes
If file records are physically ordered on a nonkey field—which does not have a dis-
tinct value for each record—that field is called the clustering field and the data file 
is called a clustered file. We can create a different type of index, called a clustering 
index, to speed up retrieval of all the records that have the same value for the clus-
tering field. This differs from a primary index, which requires that the ordering 
field of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of the 
same type as the clustering field of the data file, and the second field is a disk block 
pointer. There is one entry in the clustering index for each distinct value of the 
clustering field, and it contains the value and a pointer to the first block in the data 
file that has a record with that value for its clustering field. Figure 17.2 shows an 
example. Notice that record insertion and deletion still cause problems because 
the data records are physically ordered. To alleviate the problem of insertion, it is 
common to reserve a whole block (or a cluster of contiguous blocks) for each value 
of the clustering field; all records with that value are placed in the block (or block 
cluster). This makes insertion and deletion relatively straightforward. Figure 17.3 
shows this scheme.

A clustering index is another example of a nondense index because it has an entry 
for every distinct value of the indexing field, which is a nonkey by definition and 
hence has duplicate values rather than a unique value for every record in the file.

Example 2. Suppose that we consider the same ordered file with r = 300,000 
records stored on a disk with block size B = 4,096 bytes. Imagine that it is ordered by 
the attribute Zipcode and there are 1,000 zip codes in the file (with an average 300 
records per zip code, assuming even distribution across zip codes.) The index in this 
case has 1,000 index entries of 11 bytes each (5-byte Zipcode and 6-byte block 
pointer) with a blocking factor bfri = ⎣(B/Ri)⎦ = ⎣(4,096/11)⎦ = 372 index entries per 
block. The number of index blocks is hence bi = ⎡(ri/bfri)⎤ = ⎡(1,000/372)⎤ = 3 blocks. 
To perform a binary search on the index file would need ⎡(log2 bi)⎤ = ⎡(log2 3)⎤ = 2 
block accesses. Again, this index would typically be loaded in main memory (occu-
pies 11,000 or 11 Kbytes) and takes negligible time to search in memory. One block 
access to the data file would lead to the first record with a given zip code.
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Figure 17.2 
A clustering index on the Dept_number 
ordering nonkey field of an EMPLOYEE file.

There is some similarity between Figures 17.1, 17.2, and 17.3 and Figures 16.11  
and 16.12. An index is somewhat similar to dynamic hashing (described in Sec- 
tion 16.8.3) and to the directory structures used for extendible hashing. Both are 
searched to find a pointer to the data block containing the desired record. A main 
difference is that an index search uses the values of the search field itself, whereas a 
hash directory search uses the binary hash value that is calculated by applying the 
hash function to the search field.
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17.1.3 Secondary Indexes
A secondary index provides a secondary means of accessing a data file for which 
some primary access already exists. The data file records could be ordered, unor-
dered, or hashed. The secondary index may be created on a field that is a candidate 
key and has a unique value in every record, or on a nonkey field with duplicate 
values. The index is again an ordered file with two fields. The first field is of the 
same data type as some nonordering field of the data file that is an indexing field. 
The second field is either a block pointer or a record pointer. Many secondary 
indexes (and hence, indexing fields) can be created for the same file—each repre-
sents an additional means of accessing that file based on some specific field.

First we consider a secondary index access structure on a key (unique) field that has a 
distinct value for every record. Such a field is sometimes called a secondary key; in the 
relational model, this would correspond to any UNIQUE key attribute or to the primary 
key attribute of a table. In this case there is one index entry for each record in the data 
file, which contains the value of the field for the record and a pointer either to the block 
in which the record is stored or to the record itself. Hence, such an index is dense.

Again we refer to the two field values of index entry i as <K(i), P(i)>. The entries are 
ordered by value of K(i), so we can perform a binary search. Because the records of 
the data file are not physically ordered by values of the secondary key field, we cannot 
use block anchors. That is why an index entry is created for each record in the data 
file, rather than for each block, as in the case of a primary index. Figure 17.4 illustrates 
a secondary index in which the pointers P(i) in the index entries are block pointers, 
not record pointers. Once the appropriate disk block is transferred to a main memory 
buffer, a search for the desired record within the block can be carried out.

A secondary index usually needs more storage space and longer search time than 
does a primary index, because of its larger number of entries. However, the improve-
ment in search time for an arbitrary record is much greater for a secondary index 
than for a primary index, since we would have to do a linear search on the data file 
if the secondary index did not exist. For a primary index, we could still use a binary 
search on the main file, even if the index did not exist. Example 3 illustrates the 
improvement in number of blocks accessed.

Example 3. Consider the file of Example 1 with r = 300,000 fixed-length records 
of size R = 100 bytes stored on a disk with block size B = 4,096 bytes. The file has 
b = 7,500 blocks, as calculated in Example 1. Suppose we want to search for a record 
with a specific value for the secondary key—a nonordering key field of the file that is 
V = 9 bytes long. Without the secondary index, to do a linear search on the file would 
require b/2 = 7,500/2 = 3,750 block accesses on the average. Suppose that we con-
struct a secondary index on that nonordering key field of the file. As in Example 1, a 
block pointer is P = 6 bytes long, so each index entry is Ri = (9 + 6) = 15 bytes, and the 
blocking factor for the index is bfri = ⎣(B/Ri)⎦ = ⎣(4,096/15)⎦ = 273 index entries per 
block. In a dense secondary index such as this, the total number of index entries ri is 
equal to the number of records in the data file, which is 300,000. The number of blocks 
needed for the index is hence bi = ⎡(ri/bfri)⎤ = ⎡(300,000/273)⎤ = 1,099 blocks.
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A binary search on this secondary index needs ⎡(log2 bi)⎤ = ⎡(log21,099)⎤ = 11 block 
accesses. To search for a record using the index, we need an additional block access 
to the data file for a total of 11 + 1 = 12 block accesses—a vast improvement over the 
3,750 block accesses needed on the average for a linear search, but slightly worse 
than the 6 block accesses required for the primary index. This difference arose 
because the primary index was nondense and hence shorter, with only 28 blocks in 
length as opposed to the 1,099 blocks dense index here.

We can also create a secondary index on a nonkey, nonordering field of a file. In this 
case, numerous records in the data file can have the same value for the indexing 
field. There are several options for implementing such an index:

 ■ Option 1 is to include duplicate index entries with the same K(i) value—one 
for each record. This would be a dense index.

 ■ Option 2 is to have variable-length records for the index entries, with a 
repeating field for the pointer. We keep a list of pointers <P(i, 1), … , P(i, k)> 
in the index entry for K(i)—one pointer to each block that contains a record 
whose indexing field value equals K(i). In either option 1 or option 2, the 
binary search algorithm on the index must be modified appropriately to 
account for a variable number of index entries per index key value.

 ■ Option 3, which is more commonly used, is to keep the index entries them-
selves at a fixed length and have a single entry for each index field value, but 
to create an extra level of indirection to handle the multiple pointers. In this 
nondense scheme, the pointer P(i) in index entry <K(i), P(i)> points to a 
disk block, which contains a set of record pointers; each record pointer in 
that disk block points to one of the data file records with value K(i) for the 
indexing field. If some value K(i) occurs in too many records, so that their 
record pointers cannot fit in a single disk block, a cluster or linked list of 
blocks is used. This technique is illustrated in Figure 17.5. Retrieval via the 
index requires one or more additional block accesses because of the extra 
level, but the algorithms for searching the index and (more importantly) for 
inserting of new records in the data file are straightforward. The binary 
search algorithm is directly applicable to the index file since it is ordered. 
For range retrievals such as retrieving records where V1 ≤ K ≤ V2, block 
pointers may be used in the pool of pointers for each value instead of the 
record pointers. Then a union operation can be used on the pools of block 
pointers corresponding to the entries from V1 to V2 in the index to eliminate 
duplicates and the resulting blocks can be accessed. In addition, retrievals on 
complex selection conditions may be handled by referring to the record 
pointers from multiple non-key secondary indexes, without having to 
retrieve many unnecessary records from the data file (see Exercise 17.24).

Notice that a secondary index provides a logical ordering on the records by the 
indexing field. If we access the records in order of the entries in the secondary 
index, we get them in order of the indexing field. The primary and clustering 
indexes assume that the field used for physical ordering of records in the file is the 
same as the indexing field.
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17.1.4 Summary
To conclude this section, we summarize the discussion of index types in two tables. 
Table 17.1 shows the index field characteristics of each type of ordered single-level 
index discussed—primary, clustering, and secondary. Table 17.2 summarizes the 
properties of each type of index by comparing the number of index entries and 
specifying which indexes are dense and which use block anchors of the data file.
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17.2 Multilevel Indexes
The indexing schemes we have described thus far involve an ordered index file. A 
binary search is applied to the index to locate pointers to a disk block or to a record 
(or records) in the file having a specific index field value. A binary search requires 
approximately (log2 bi) block accesses for an index with bi blocks because each step 
of the algorithm reduces the part of the index file that we continue to search by a 
factor of 2. This is why we take the log function to the base 2. The idea behind a 
multilevel index is to reduce the part of the index that we continue to search by 
bfri, the blocking factor for the index, which is larger than 2. Hence, the search 
space is reduced much faster. The value bfri is called the fan-out of the multilevel 
index, and we will refer to it by the symbol fo. Whereas we divide the record search 
space into two halves at each step during a binary search, we divide it n-ways 
(where n = the fan-out) at each search step using the multilevel index. Searching a 
multilevel index requires approximately (logfo bi) block accesses, which is a sub-
stantially smaller number than for a binary search if the fan-out is larger than 2. In 
most cases, the fan-out is much larger than 2. Given a blocksize of 4,096, which is 
most common in today’s DBMSs, the fan-out depends on how many (key + block 
pointer) entries fit within a block. With a 4-byte block pointer (which would 
accommodate 232 − 1 = 4.2 *109 blocks) and a 9-byte key such as SSN, the fan-out 
comes to 315.

A multilevel index considers the index file, which we will now refer to as the first 
(or base) level of a multilevel index, as an ordered file with a distinct value for each 

Table 17.1 Types of Indexes Based on the Properties of the Indexing Field

Index Field Used for Physical 
Ordering of the File

Index Field Not Used for Physical 
Ordering of the File

Indexing field is key Primary index Secondary index (Key)

Indexing field is nonkey Clustering index Secondary index (NonKey)

Table 17.2 Properties of Index Types

 
Type of Index

Number of (First-Level)  
Index Entries

Dense or Nondense 
(Sparse)

Block Anchoring 
on the Data File

Primary Number of blocks in data file Nondense Yes

Clustering Number of distinct index field 
values

Nondense Yes/noa

Secondary (key) Number of records in data file Dense No

Secondary (nonkey) Number of recordsb or number 
of distinct index field valuesc

Dense or Nondense No

aYes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
cFor options 2 and 3.
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K(i). Therefore, by considering the first-level index file as a sorted data file, we can 
create a primary index for the first level; this index to the first level is called the  
second level of the multilevel index. Because the second level is a primary index, we 
can use block anchors so that the second level has one entry for each block of the 
first level. The blocking factor bfri for the second level—and for all subsequent 
levels—is the same as that for the first-level index because all index entries are the 
same size; each has one field value and one block address. If the first level has r1 
entries, and the blocking factor—which is also the fan-out—for the index is  
bfri = fo, then the first level needs ⎡(r1/fo)⎤ blocks, which is therefore the number of 
entries r2 needed at the second level of the index.

We can repeat this process for the second level. The third level, which is a primary 
index for the second level, has an entry for each second-level block, so the number 
of third-level entries is r3 = ⎡(r2/fo)⎤. Notice that we require a second level only if the 
first level needs more than one block of disk storage, and, similarly, we require a 
third level only if the second level needs more than one block. We can repeat the 
preceding process until all the entries of some index level t fit in a single block. This 
block at the tth level is called the top index level.6 Each level reduces the number of 
entries at the previous level by a factor of fo—the index fan-out—so we can use the 
formula 1 ≤ (r1/((fo)t)) to calculate t. Hence, a multilevel index with r1 first-level 
entries will have approximately t levels, where t = ⎡(logfo(r1))⎤. When searching the 
index, a single disk block is retrieved at each level. Hence, t disk blocks are accessed 
for an index search, where t is the number of index levels.

The multilevel scheme described here can be used on any type of index—whether it 
is primary, clustering, or secondary—as long as the first-level index has distinct val-
ues for K(i) and fixed-length entries. Figure 17.6 shows a multilevel index built over 
a primary index. Example 3 illustrates the improvement in number of blocks 
accessed when a multilevel index is used to search for a record.

Example 4. Suppose that the dense secondary index of Example 3 is converted 
into a multilevel index. We calculated the index blocking factor bfri = 273 index 
entries per block, which is also the fan-out fo for the multilevel index; the number of 
first-level blocks b1 = 1,099 blocks was also calculated. The number of second-level 
blocks will be b2 = ⎡(b1/fo)⎤ = ⎡(1,099/273)⎤ = 5 blocks, and the number of third-
level blocks will be b3 = ⎡(b2/fo)⎤ = ⎡(5/273)⎤ = 1 block. Hence, the third level is the 
top level of the index, and t = 3. To access a record by searching the multilevel index, 
we must access one block at each level plus one block from the data file, so we need 
t + 1 = 3 + 1 = 4 block accesses. Compare this to Example 3, where 12 block accesses 
were needed when a single-level index and binary search were used.

Notice that we could also have a multilevel primary index, which would be non-
dense. Exercise 17.18(c) illustrates this case, where we must access the data block 
from the file before we can determine whether the record being searched for is in 
the file. For a dense index, this can be determined by accessing the first index level 

6The numbering scheme for index levels used here is the reverse of the way levels are commonly defined 
for tree data structures. In tree data structures, t is referred to as level 0 (zero), t − 1 is level 1, and so on.
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A two-level primary index resembling ISAM (indexed sequential access method) organization.
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(without having to access a data block), since there is an index entry for every 
record in the file.

A common file organization used in business data processing is an ordered file with a 
multilevel primary index on its ordering key field. Such an organization is called an 
indexed sequential file and was used in a large number of early IBM systems. IBM’s 
ISAM organization incorporates a two-level index that is closely related to the organi-
zation of the disk in terms of cylinders and tracks (see Section 16.2.1). The first level is 
a cylinder index, which has the key value of an anchor record for each cylinder of a 
disk pack occupied by the file and a pointer to the track index for the cylinder. The 
track index has the key value of an anchor record for each track in the cylinder and a 
pointer to the track. The track can then be searched sequentially for the desired record 
or block. Insertion is handled by some form of overflow file that is merged periodi-
cally with the data file. The index is re-created during file reorganization.

Algorithm 17.1 outlines the search procedure for a record in a data file that uses a 
nondense multilevel primary index with t levels. We refer to entry i at level j of the 
index as <Kj(i), Pj(i)>, and we search for a record whose primary key value is K. We 
assume that any overflow records are ignored. If the record is in the file, there must 
be some entry at level 1 with K1(i) ≤ K < K1(i + 1) and the record will be in the block 
of the data file whose address is P1(i). Exercise 17.23 discusses modifying the search 
algorithm for other types of indexes.

Algorithm 17.1. Searching a Nondense Multilevel Primary Index with t Levels

(*We assume the index entry to be a block anchor that is the first key per block*)
p ← address of top-level block of index;
for j ← t step − 1 to 1 do
 begin
  read the index block (at jth index level) whose address is p;
  search block p for entry i such that Kj (i) ≤ K < Kj(i + 1)
 (* if Kj(i)
  is the last entry in the block, it is sufficient to satisfy Kj(i) ≤ K *);
  p ← Pj(i ) (* picks appropriate pointer at jth index level *)
 end;
 read the data file block whose address is p;
 search block p for record with key = K;

As we have seen, a multilevel index reduces the number of blocks accessed when 
searching for a record, given its indexing field value. We are still faced with the 
problems of dealing with index insertions and deletions, because all index levels are 
physically ordered files. To retain the benefits of using multilevel indexing while 
reducing index insertion and deletion problems, designers adopted a multilevel 
index called a dynamic multilevel index that leaves some space in each of its blocks 
for inserting new entries and uses appropriate insertion/deletion algorithms for 
creating and deleting new index blocks when the data file grows and shrinks. It is 
often implemented by using data structures called B-trees and B+-trees, which we 
describe in the next section.
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17.3  Dynamic Multilevel Indexes Using  
B-Trees and B+-Trees

B-trees and B+-trees are special cases of the well-known search data structure 
known as a tree. We briefly introduce the terminology used in discussing tree data 
structures. A tree is formed of nodes. Each node in the tree, except for a special 
node called the root, has one parent node and zero or more child nodes. The root 
node has no parent. A node that does not have any child nodes is called a leaf node; 
a nonleaf node is called an internal node. The level of a node is always one more 
than the level of its parent, with the level of the root node being zero.7 A subtree of 
a node consists of that node and all its descendant nodes—its child nodes, the child 
nodes of its child nodes, and so on. A precise recursive definition of a subtree is that 
it consists of a node n and the subtrees of all the child nodes of n. Figure 17.7 illus-
trates a tree data structure. In this figure the root node is A, and its child nodes are 
B, C, and D. Nodes E, J, C, G, H, and K are leaf nodes. Since the leaf nodes are at 
different levels of the tree, this tree is called unbalanced.

In Section 17.3.1, we introduce search trees and then discuss B-trees, which can be 
used as dynamic multilevel indexes to guide the search for records in a data file. 
B-tree nodes are kept between 50 and 100 percent full, and pointers to the data 
blocks are stored in both internal nodes and leaf nodes of the B-tree structure. In 
Section 17.3.2 we discuss B+-trees, a variation of B-trees in which pointers to the 
data blocks of a file are stored only in leaf nodes, which can lead to fewer levels and 

7This standard definition of the level of a tree node, which we use throughout Section 17.3, is different 
from the one we gave for multilevel indexes in Section 17.2.
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higher-capacity indexes. In the DBMSs prevalent in the market today, the common 
structure used for indexing is B+-trees.

17.3.1 Search Trees and B-Trees
A search tree is a special type of tree that is used to guide the search for a record, 
given the value of one of the record’s fields. The multilevel indexes discussed in Sec-
tion 17.2 can be thought of as a variation of a search tree; each node in the multi-
level index can have as many as fo pointers and fo key values, where fo is the index 
fan-out. The index field values in each node guide us to the next node, until we 
reach the data file block that contains the required records. By following a pointer, 
we restrict our search at each level to a subtree of the search tree and ignore all 
nodes not in this subtree.

Search Trees. A search tree is slightly different from a multilevel index. A 
search tree of order p is a tree such that each node contains at most p − 1 search 
values and p pointers in the order <P1, K1, P2, K2, … , Pq−1, Kq−1, Pq>, where q ≤ p. 
Each Pi is a pointer to a child node (or a NULL pointer), and each Ki is a search 
value from some ordered set of values. All search values are assumed to be 
unique.8 Figure 17.8 illustrates a node in a search tree. Two constraints must hold 
at all times on the search tree:

  1. Within each node, K1 < K2 < … < Kq−1.

  2. For all values X in the subtree pointed at by Pi, we have Ki−1 < X < Ki for 
1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q (see Figure 17.8).

Whenever we search for a value X, we follow the appropriate pointer Pi according 
to the formulas in condition 2 above. Figure 17.9 illustrates a search tree of order  
p = 3 and integer search values. Notice that some of the pointers Pi in a node may be 
NULL pointers.

We can use a search tree as a mechanism to search for records stored in a disk file. 
The values in the tree can be the values of one of the fields of the file, called the 

8This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist and 
the node structure and the navigation rules for the tree may be modified.
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search field (which is the same as the index field if a multilevel index guides the 
search). Each key value in the tree is associated with a pointer to the record in the 
data file having that value. Alternatively, the pointer could be to the disk block con-
taining that record. The search tree itself can be stored on disk by assigning each 
tree node to a disk block. When a new record is inserted in the file, we must update 
the search tree by inserting an entry in the tree containing the search field value of 
the new record and a pointer to the new record.

Algorithms are necessary for inserting and deleting search values into and from the 
search tree while maintaining the preceding two constraints. In general, these algo-
rithms do not guarantee that a search tree is balanced, meaning that all of its leaf 
nodes are at the same level.9 The tree in Figure 17.7 is not balanced because it has 
leaf nodes at levels 1, 2, and 3. The goals for balancing a search tree are as follows:

 ■ To guarantee that nodes are evenly distributed, so that the depth of the tree 
is minimized for the given set of keys and that the tree does not get skewed 
with some nodes being at very deep levels

 ■ To make the search speed uniform, so that the average time to find any ran-
dom key is roughly the same

Minimizing the number of levels in the tree is one goal, another implicit goal is to 
make sure that the index tree does not need too much restructuring as records are 
inserted into and deleted from the main file. Thus we want the nodes to be as full as 
possible and do not want any nodes to be empty if there are too many deletions. 
Record deletion may leave some nodes in the tree nearly empty, thus wasting stor-
age space and increasing the number of levels. The B-tree addresses both of these 
problems by specifying additional constraints on the search tree.

B-Trees. The B-tree has additional constraints that ensure that the tree is always 
balanced and that the space wasted by deletion, if any, never becomes excessive. 
The algorithms for insertion and deletion, though, become more complex in order 
to maintain these constraints. Nonetheless, most insertions and deletions are sim-
ple processes; they become complicated only under special circumstances—namely, 
whenever we attempt an insertion into a node that is already full or a deletion from 
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Figure 17.9 
A search tree of 
order p = 3.

9The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.
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a node that makes it less than half full. More formally, a B-tree of order p, when 
used as an access structure on a key field to search for records in a data file, can be 
defined as follows:

  1. Each internal node in the B-tree (Figure 17.10(a)) is of the form

<P1, <K1, Pr1>, P2, <K2, Pr2>, … , <Kq–1, Prq–1>, Pq>

where q ≤ p. Each Pi is a tree pointer—a pointer to another node in the 
B-tree. Each Pri is a data pointer10—a pointer to the record whose search 
key field value is equal to Ki (or to the data file block containing that record).

  2. Within each node, K1 < K2 < … < Kq−1.

  3. For all search key field values X in the subtree pointed at by Pi (the ith sub-
tree, see Figure 17.10(a)), we have:

Ki−1 < X < Ki for 1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q

  4. Each node has at most p tree pointers.

  5. Each node, except the root and leaf nodes, has at least ⎡(p/2)⎤ tree pointers. 
The root node has at least two tree pointers unless it is the only node in 
the tree.

  6. A node with q tree pointers, q ≤ p, has q − 1 search key field values (and 
hence has q − 1 data pointers).

  7. All leaf nodes are at the same level. Leaf nodes have the same structure as 
internal nodes except that all of their tree pointers Pi are NULL.

Figure 17.10(b) illustrates a B-tree of order p = 3. Notice that all search values K in 
the B-tree are unique because we assumed that the tree is used as an access structure 
on a key field. If we use a B-tree on a nonkey field, we must change the definition of 
the file pointers Pri to point to a block—or a cluster of blocks—that contain the 
pointers to the file records. This extra level of indirection is similar to option 3, dis-
cussed in Section 17.1.3, for secondary indexes.

A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero). 
Once the root node is full with p − 1 search key values and we attempt to insert 
another entry in the tree, the root node splits into two nodes at level 1. Only the 
middle value is kept in the root node, and the rest of the values are split evenly 
between the other two nodes. When a nonroot node is full and a new entry is 
inserted into it, that node is split into two nodes at the same level, and the middle 
entry is moved to the parent node along with two pointers to the new split nodes. If 
the parent node is full, it is also split. Splitting can propagate all the way to the root 
node, creating a new level if the root is split. We do not discuss algorithms for 
B-trees in detail in this text,11 but we outline search and insertion procedures for 
B+-trees in the next section.

10A data pointer is either a block address or a record address; the latter is essentially a block address 
and a record offset within the block.
11For details on insertion and deletion algorithms for B-trees, consult Ramakrishnan and Gehrke (2003).



If deletion of a value causes a node to be less than half full, it is combined with its 
neighboring nodes, and this can also propagate all the way to the root. Hence, 
deletion can reduce the number of tree levels. It has been shown by analysis and 
simulation that, after numerous random insertions and deletions on a B-tree, the 
nodes are approximately 69% full when the number of values in the tree stabilizes. 
This is also true of B+-trees. If this happens, node splitting and combining will 
occur only rarely, so insertion and deletion become quite efficient. If the number 
of values grows, the tree will expand without a problem—although splitting of 
nodes may occur, so some insertions will take more time. Each B-tree node can 
have at most p tree pointers, p − 1 data pointers, and p − 1 search key field values 
(see Figure 17.10(a)).

In general, a B-tree node may contain additional information needed by the algo-
rithms that manipulate the tree, such as the number of entries q in the node and a 
pointer to the parent node. Next, we illustrate how to calculate the number of blocks 
and levels for a B-tree.

Example 5. Suppose that the search field is a nonordering key field, and we con-
struct a B-tree on this field with p = 23. Assume that each node of the B-tree is 69% 
full. Each node, on the average, will have p * 0.69 = 23 * 0.69 or approximately  
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Figure 17.10 
B-tree structures. (a) A node in a B-tree with q − 1 search values. (b) A B-tree of order p = 3. The values were 
inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 621



622 Chapter 17 Indexing Structures for Files and Physical Database Design

16 pointers and, hence, 15 search key field values. The average fan-out fo = 16. 
We can start at the root and see how many values and pointers can exist, on the 
average, at each subsequent level:

Root: 1 node 15 key entries 16 pointers

Level 1: 16 nodes 240 key entries 256 pointers

Level 2: 256 nodes 3,840 key entries 4,096 pointers

Level 3: 4,096 nodes 61,440 key entries

At each level, we calculated the number of key entries by multiplying the total num-
ber of pointers at the previous level by 15, the average number of entries in each 
node. Hence, for the given block size (512 bytes), record/data pointer size (7 bytes), 
tree/block pointer size (6 bytes), and search key field size (9bytes), a two-level B-tree 
of order 23 with 69% occupancy holds 3,840 + 240 + 15 = 4,095 entries on the aver-
age; a three-level B-tree holds 65,535 entries on the average.

B-trees are sometimes used as primary file organizations. In this case, whole 
records are stored within the B-tree nodes rather than just the <search key, record 
pointer> entries. This works well for files with a relatively small number of records 
and a small record size. Otherwise, the fan-out and the number of levels become too 
great to permit efficient access.

In summary, B-trees provide a multilevel access structure that is a balanced tree 
structure in which each node is at least half full. Each node in a B-tree of order p can 
have at most p − 1 search values.

17.3.2 B+-Trees
Most implementations of a dynamic multilevel index use a variation of the B-tree data 
structure called a B+-tree. In a B-tree, every value of the search field appears once at 
some level in the tree, along with a data pointer. In a B+-tree, data pointers are stored 
only at the leaf nodes of the tree; hence, the structure of leaf nodes differs from the 
structure of internal nodes. The leaf nodes have an entry for every value of the search 
field, along with a data pointer to the record (or to the block that contains this record) 
if the search field is a key field. For a nonkey search field, the pointer points to a block 
containing pointers to the data file records, creating an extra level of indirection.

The leaf nodes of the B+-tree are usually linked to provide ordered access on the 
search field to the records. These leaf nodes are similar to the first (base) level of an 
index. Internal nodes of the B+-tree correspond to the other levels of a multilevel 
index. Some search field values from the leaf nodes are repeated in the internal 
nodes of the B+-tree to guide the search. The structure of the internal nodes of a  
B+-tree of order p (Figure 17.11(a)) is as follows:

  1. Each internal node is of the form

<P1, K1, P2, K2, … , Pq − 1, Kq −1, Pq>

where q ≤ p and each Pi is a tree pointer.



  2. Within each internal node, K1 < K2 < … < Kq−1.

  3. For all search field values X in the subtree pointed at by Pi, we have Ki−1 < X 
≤ Ki for 1 < i < q; X ≤ Ki for i = 1; and Ki−1 < X for i = q (see Figure 17.11(a)).12

  4. Each internal node has at most p tree pointers.

  5. Each internal node, except the root, has at least ⎡(p/2)⎤ tree pointers. The 
root node has at least two tree pointers if it is an internal node.

  6. An internal node with q pointers, q ≤ p, has q − 1 search field values.

The structure of the leaf nodes of a B+-tree of order p (Figure 17.11(b)) is as follows:

  1. Each leaf node is of the form

<<K1, Pr1>, <K2, Pr2>, … , <Kq−1, Prq−1>, Pnext>

where q ≤ p, each Pri is a data pointer, and Pnext points to the next leaf node 
of the B+-tree.

  2. Within each leaf node, K1 ≤ K2 … , Kq−1, q ≤ p.

  3. Each Pri is a data pointer that points to the record whose search field value is 
Ki or to a file block containing the record (or to a block of record pointers that 
point to records whose search field value is Ki if the search field is not a key).

  4. Each leaf node has at least ⎡(p/2)⎤ values.

  5. All leaf nodes are at the same level.

12Our definition follows Knuth (1998). One can define a B+-tree differently by exchanging the < and ≤ 

symbols (Ki−1 ≤ X < Ki; Kq−1 ≤ X), but the principles remain the same.
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Figure 17.11 
The nodes of a B+-tree. (a) Internal node of a B+-tree with q − 1 search values. (b) Leaf node of a B+-tree with q − 1 
search values and q − 1 data pointers.
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The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereas 
the pointers in leaf nodes are data pointers to the data file records or blocks—except 
for the Pnext pointer, which is a tree pointer to the next leaf node. By starting at the 
leftmost leaf node, it is possible to traverse leaf nodes as a linked list, using the Pnext 
pointers. This provides ordered access to the data records on the indexing field. A 
Pprevious pointer can also be included. For a B+-tree on a nonkey field, an extra level 
of indirection is needed similar to the one shown in Figure 17.5, so the Pr pointers 
are block pointers to blocks that contain a set of record pointers to the actual 
records in the data file, as discussed in option 3 of Section 17.1.3.

Because entries in the internal nodes of a B+-tree include search values and tree 
pointers without any data pointers, more entries can be packed into an internal 
node of a B+-tree than for a similar B-tree. Thus, for the same block (node) size, the 
order p will be larger for the B+-tree than for the B-tree, as we illustrate in Example 6. 
This can lead to fewer B+-tree levels, improving search time. Because the structures 
for internal and for leaf nodes of a B+-tree are different, the order p can be different. 
We will use p to denote the order for internal nodes and pleaf to denote the order 
for leaf nodes, which we define as being the maximum number of data pointers in 
a leaf node.

Example 6. To calculate the order p of a B+-tree, suppose that the search key field 
is V = 9 bytes long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes, 
and a block pointer/tree pointer is P = 6 bytes. An internal node of the B+-tree can 
have up to p tree pointers and p − 1 search field values; these must fit into a single 
block. Hence, we have:

(p * P) + ((p − 1) * V) ≤ B

(p * 6) + ((p − 1) * 9) ≤ 512

(15 * p) ≤ 512

We can choose p to be the largest value satisfying the above inequality, which gives 
p = 34. This is larger than the value of 23 for the B-tree (it is left to the reader to 
compute the order of the B-tree assuming same size pointers), resulting in a larger 
fan-out and more entries in each internal node of a B+-tree than in the correspond-
ing B-tree. The leaf nodes of the B+-tree will have the same number of values and 
pointers, except that the pointers are data pointers and a next pointer. Hence, the 
order pleaf for the leaf nodes can be calculated as follows:

(pleaf * (Pr + V)) + P ≤ B

(pleaf * (7 + 9)) + 6 ≤ 512

(16 * pleaf) ≤ 506

It follows that each leaf node can hold up to pleaf = 31 key value/data pointer combi-
nations, assuming that the data pointers are record pointers.

As with the B-tree, we may need additional information—to implement the inser-
tion and deletion algorithms—in each node. This information can include the type 
of node (internal or leaf), the number of current entries q in the node, and pointers 
to the parent and sibling nodes. Hence, before we do the above calculations for p 



and pleaf, we should reduce the block size by the amount of space needed for all such 
information. The next example illustrates how we can calculate the number of 
entries in a B+-tree.

Example 7. Suppose that we construct a B+-tree on the field in Example 6. To  
calculate the approximate number of entries in the B+-tree, we assume that each 
node is 69% full. On the average, each internal node will have 34 * 0.69 or approxi-
mately 23 pointers, and hence 22 values. Each leaf node, on the average, will hold  
0.69 * pleaf = 0.69 * 31 or approximately 21 data record pointers. A B+-tree will have 
the following average number of entries at each level:

Root: 1 node 22 key entries 23 pointers

Level 1: 23 nodes 506 key entries 529 pointers

Level 2: 529 nodes 11,638 key entries 12,167 pointers

Leaf level: 12,167 nodes 255,507 data record pointers

For the block size, pointer size, and search field size as in Example 6, a three-level 
B+-tree holds up to 255,507 record pointers, with the average 69% occupancy of 
nodes. Note that we considered the leaf node differently from the nonleaf nodes 
and computed the data pointers in the leaf node to be 12,167 * 21 based on 69% 
occupancy of the leaf node, which can hold 31 keys with data pointers. Compare 
this to the 65,535 entries for the corresponding B-tree in Example 5. Because a 
B-tree includes a data/record pointer along with each search key at all levels of 
the tree, it tends to accommodate less number of keys for a given number of 
index levels. This is the main reason that B+-trees are preferred to B-trees as 
indexes to database files. Most DBMSs, such as Oracle, are creating all indexes as 
B+-trees.

Search, Insertion, and Deletion with B+-Trees. Algorithm 17.2 outlines the 
procedure using the B+-tree as the access structure to search for a record. Algo-
rithm 17.3 illustrates the procedure for inserting a record in a file with a B+-tree 
access structure. These algorithms assume the existence of a key search field, and 
they must be modified appropriately for the case of a B+-tree on a nonkey field. We 
illustrate insertion and deletion with an example.

Algorithm 17.2. Searching for a Record with Search Key Field Value K, Using 
a B+-Tree

n ← block containing root node of B+-tree;
read block n;
while (n is not a leaf node of the B+-tree) do
 begin
 q ← number of tree pointers in node n;
 if K ≤ n.K1 (*n.Ki refers to the ith search field value in node n*)
  then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
  else if K > n.Kq−1

   then n ← n.Pq
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   else begin
    search node n for an entry i such that n.Ki−1 < K ≤n.Ki;
     n ← n.Pi

     end;
 read block n
 end;
search block n for entry (Ki, Pri) with K = Ki; (* search leaf node *)
if found
 then read data file block with address Pri and retrieve record
 else the record with search field value K is not in the data file;

Algorithm 17.3. Inserting a Record with Search Key Field Value K in a 
B+-Tree of Order p

n ← block containing root node of B+-tree;
read block n; set stack S to empty;
while (n is not a leaf node of the B+-tree) do
 begin
 push address of n on stack S;
  (*stack S holds parent nodes that are needed in case of split*)
 q ← number of tree pointers in node n;
 if K ≤n.K1 (*n.Ki refers to the ith search field value in node n*)
  then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
  else if K ← n.Kq−1

   then n ← n.Pq

   else begin
    search node n for an entry i such that n.Ki−1 < K ≤n.Ki;
    n ← n.Pi

    end;
  read block n
 end;
search block n for entry (Ki,Pri) with K = Ki; (*search leaf node n*)
if found
 then record already in file; cannot insert
 else (*insert entry in B+-tree to point to record*)
  begin
  create entry (K, Pr) where Pr points to the new record;
  if leaf node n is not full
   then insert entry (K, Pr) in correct position in leaf node n
   else begin (*leaf node n is full with pleaf record pointers; is split*)
    copy n to temp (*temp is an oversize leaf node to hold extra entries*);
    insert entry (K, Pr) in temp in correct position;
    (*temp now holds pleaf + 1 entries of the form (Ki, Pri)*)
    new ← a new empty leaf node for the tree; new.Pnext ← n.Pnext ;
    j ← ⎡(pleaf + 1)/2 ⎤ ;
    n ← first j entries in temp (up to entry (Kj, Prj)); n.Pnext ← new;



   new ← remaining entries in temp; K ← Kj ;
   (* now we must move (K, new) and insert in parent internal node;  

however, if parent is full, split may propagate*)
   finished ← false;
   repeat
   if stack S is empty
    then (←no parent node; new root node is created for the tree*)
     begin
     root ← a new empty internal node for the tree;
     root ← <n, K, new>; finished ← true;
     end
    else begin
     n ← pop stack S;
     if internal node n is not full
      then
       begin (*parent node not full; no split*)
       insert (K, new) in correct position in internal node n;
       finished ← true
       end
      else begin (* internal node n is full with p tree pointers;  

overflow condition; node is split*)
      copy n to temp (*temp is an oversize internal node*);
      insert (K, new) in temp in correct position;
      (*temp now has p + 1 tree pointers*)
      new ← a new empty internal node for the tree;
      j ← ⎣((p + 1)/2⎦ ;
      n ← entries up to tree pointer Pj in temp;
      (*n contains <P1, K1, P2, K2, … , Pj−1, Kj−1, Pj >*)
      new ← entries from tree pointer Pj+1 in temp;
      (*new contains < Pj+1, Kj+1, … , Kp−1, Pp, Kp, Pp+1 >*)
      K ← Kj

      (* now we must move (K, new) and insert in  
parentinternal node*)

    end
   end
  until finished
  end;
 end;

Figure 17.12 illustrates insertion of records in a B+-tree of order p = 3 and pleaf = 2. First, 
we observe that the root is the only node in the tree, so it is also a leaf node. As soon as 
more than one level is created, the tree is divided into internal nodes and leaf nodes. 
Notice that every key value must exist at the leaf level, because all data pointers are at the 
leaf level. However, only some values exist in internal nodes to guide the search. Notice 
also that every value appearing in an internal node also appears as the rightmost value in 
the leaf level of the subtree pointed at by the tree pointer to the left of the value.
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Figure 17.12 
An example of insertion in a B+-tree with p = 3 and pleaf = 2.



When a leaf node is full and a new entry is inserted there, the node overflows and 
must be split. The first j = ⎡((pleaf + 1)/2)⎤ entries in the original node are kept there, 
and the remaining entries are moved to a new leaf node. The jth search value is 
replicated in the parent internal node, and an extra pointer to the new node is cre-
ated in the parent. These must be inserted in the parent node in their correct 
sequence. If the parent internal node is full, the new value will cause it to overflow 
also, so it must be split. The entries in the internal node up to Pj—the jth tree pointer 
after inserting the new value and pointer, where j = ⎣((p + 1)/2)⎦—are kept, whereas the 
jth search value is moved to the parent, not replicated. A new internal node will hold the 
entries from Pj+1 to the end of the entries in the node (see Algorithm 17.3). This 
splitting can propagate all the way up to create a new root node and hence a new 
level for the B+-tree.

Figure 17.13 illustrates deletion from a B+-tree. When an entry is deleted, it is 
always removed from the leaf level. If it happens to occur in an internal node, it 
must also be removed from there. In the latter case, the value to its left in the leaf 
node must replace it in the internal node because that value is now the rightmost 
entry in the subtree. Deletion may cause underflow by reducing the number of 
entries in the leaf node to below the minimum required. In this case, we try to find 
a sibling leaf node—a leaf node directly to the left or to the right of the node with 
underflow—and redistribute the entries among the node and its sibling so that 
both are at least half full; otherwise, the node is merged with its siblings and the 
number of leaf nodes is reduced. A common method is to try to redistribute 
entries with the left sibling; if this is not possible, an attempt to redistribute with 
the right sibling is made. If this is also not possible, the three nodes are merged 
into two leaf nodes. In such a case, underflow may propagate to internal nodes 
because one fewer tree pointer and search value are needed. This can propagate 
and reduce the tree levels.

Notice that implementing the insertion and deletion algorithms may require par-
ent and sibling pointers for each node, or the use of a stack as in Algorithm 17.3. 
Each node should also include the number of entries in it and its type (leaf or 
internal). Another alternative is to implement insertion and deletion as recursive 
procedures.13

Variations of B-Trees and B+-Trees. To conclude this section, we briefly men-
tion some variations of B-trees and B+-trees. In some cases, constraint 5 on the 
B-tree (or for the internal nodes of the B+–tree, except the root node), which 
requires each node to be at least half full, can be changed to require each node to be 
at least two-thirds full. In this case the B-tree has been called a B*-tree. In general, 
some systems allow the user to choose a fill factor between 0.5 and 1.0, where the 
latter means that the B-tree (index) nodes are to be completely full. It is also possi-
ble to specify two fill factors for a B+-tree: one for the leaf level and one for the 
internal nodes of the tree. When the index is first constructed, each node is filled up 

13For more details on insertion and deletion algorithms for B+-trees, consult Ramakrishnan and 
Gehrke (2003).
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Figure 17.13 
An example of deletion from a B+-tree.

to approximately the fill factors specified. Some investigators have suggested relax-
ing the requirement that a node be half full, and instead allow a node to become 
completely empty before merging, to simplify the deletion algorithm. Simulation 
studies show that this does not waste too much additional space under randomly 
distributed insertions and deletions.
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17.4 Indexes on Multiple Keys
In our discussion so far, we have assumed that the primary or secondary keys on 
which files were accessed were single attributes (fields). In many retrieval and 
update requests, multiple attributes are involved. If a certain combination of attri-
butes is used frequently, it is advantageous to set up an access structure to provide 
efficient access by a key value that is a combination of those attributes.

For example, consider an EMPLOYEE file containing attributes Dno (department 
number), Age, Street, City, Zip_code, Salary and Skill_code, with the key of Ssn (Social 
Security number). Consider the query: List the employees in department number 4 
whose age is 59. Note that both Dno and Age are nonkey attributes, which means 
that a search value for either of these will point to multiple records. The following 
alternative search strategies may be considered:

  1. Assuming Dno has an index, but Age does not, access the records having 
Dno = 4 using the index, and then select from among them those records 
that satisfy Age = 59.

  2. Alternately, if Age is indexed but Dno is not, access the records having  
Age = 59 using the index, and then select from among them those records that 
satisfy Dno = 4.

  3. If indexes have been created on both Dno and Age, both indexes may be 
used; each gives a set of records or a set of pointers (to blocks or records). An 
intersection of these sets of records or pointers yields those records or point-
ers that satisfy both conditions.

All of these alternatives eventually give the correct result. However, if the set of 
records that meet each condition (Dno = 4 or Age = 59) individually are large, yet 
only a few records satisfy the combined condition, then none of the above is an effi-
cient technique for the given search request. Note also that queries such as “find the 
minimum or maximum age among all employees” can be answered just by using the 
index on Age, without going to the data file. Finding the maximum or minimum age 
within Dno = 4, however, would not be answerable just by processing the index 
alone. Also, listing the departments in which employees with Age = 59 work will also 
not be possible by processing just the indexes. A number of possibilities exist that 
would treat the combination <Dno, Age> or <Age, Dno> as a search key made up of 
multiple attributes. We briefly outline these techniques in the following sections. We 
will refer to keys containing multiple attributes as composite keys.

17.4.1 Ordered Index on Multiple Attributes
All the discussion in this chapter so far still applies if we create an index on a search 
key field that is a combination of <Dno, Age>. The search key is a pair of values  
<4, 59> in the above example. In general, if an index is created on attributes  
<A1, A2, … , An>, the search key values are tuples with n values: <v1, v2, … , vn>.

A lexicographic ordering of these tuple values establishes an order on this compos-
ite search key. For our example, all of the department keys for department number 
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3 precede those for department number 4. Thus <3, n> precedes <4, m> for any 
values of m and n. The ascending key order for keys with Dno = 4 would be <4, 18>, 
<4, 19>, <4, 20>, and so on. Lexicographic ordering works similarly to ordering of 
character strings. An index on a composite key of n attributes works similarly to 
any index discussed in this chapter so far.

17.4.2 Partitioned Hashing
Partitioned hashing is an extension of static external hashing (Section 16.8.2) that 
allows access on multiple keys. It is suitable only for equality comparisons; range 
queries are not supported. In partitioned hashing, for a key consisting of n compo-
nents, the hash function is designed to produce a result with n separate hash 
addresses. The bucket address is a concatenation of these n addresses. It is then pos-
sible to search for the required composite search key by looking up the appropriate 
buckets that match the parts of the address in which we are interested.

For example, consider the composite search key <Dno, Age>. If Dno and Age are 
hashed into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address. 
Suppose that Dno = 4 has a hash address ‘100’ and Age = 59 has hash address ‘10101’. 
Then to search for the combined search value, Dno = 4 and Age = 59, one goes to 
bucket address 100 10101; just to search for all employees with Age = 59, all buckets 
(eight of them) will be searched whose addresses are ‘000 10101’, ‘001 10101’, … 
and so on. An advantage of partitioned hashing is that it can be easily extended to 
any number of attributes. The bucket addresses can be designed so that high-order 
bits in the addresses correspond to more frequently accessed attributes. Addition-
ally, no separate access structure needs to be maintained for the individual attri-
butes. The main drawback of partitioned hashing is that it cannot handle range 
queries on any of the component attributes. Additionally, most hash functions do 
not maintain records in order by the key being hashed. Hence, accessing records in 
lexicographic order by a combination of attributes such as <Dno, Age> used as a key 
would not be straightforward or efficient.

17.4.3 Grid Files
Another alternative is to organize the EMPLOYEE file as a grid file. If we want to 
access a file on two keys, say Dno and Age as in our example, we can construct a grid 
array with one linear scale (or dimension) for each of the search attributes. Fig-
ure 17.14 shows a grid array for the EMPLOYEE file with one linear scale for Dno and 
another for the Age attribute. The scales are made in a way as to achieve a uniform 
distribution of that attribute. Thus, in our example, we show that the linear scale for 
Dno has Dno = 1, 2 combined as one value 0 on the scale, whereas Dno = 5 corre-
sponds to the value 2 on that scale. Similarly, Age is divided into its scale of 0 to 5 by 
grouping ages so as to distribute the employees uniformly by age. The grid array 
shown for this file has a total of 36 cells. Each cell points to some bucket address 
where the records corresponding to that cell are stored. Figure 17.14 also shows the 
assignment of cells to buckets (only partially).
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Thus our request for Dno = 4 and Age = 59 maps into the cell (1, 5) corresponding 
to the grid array. The records for this combination will be found in the correspond-
ing bucket. This method is particularly useful for range queries that would map into 
a set of cells corresponding to a group of values along the linear scales. If a range 
query corresponds to a match on the some of the grid cells, it can be processed by 
accessing exactly the buckets for those grid cells. For example, a query for Dno ≤ 5 
and Age > 40 refers to the data in the top bucket shown in Figure 17.14.

The grid file concept can be applied to any number of search keys. For example, for 
n search keys, the grid array would have n dimensions. The grid array thus allows a 
partitioning of the file along the dimensions of the search key attributes and provides 
an access by combinations of values along those dimensions. Grid files perform well 
in terms of reduction in time for multiple key access. However, they represent a 
space overhead in terms of the grid array structure. Moreover, with dynamic files, a 
frequent reorganization of the file adds to the maintenance cost.14

17.5 Other Types of Indexes

17.5.1 Hash Indexes
It is also possible to create access structures similar to indexes that are based on 
hashing. The hash index is a secondary structure to access the file by using hashing 
on a search key other than the one used for the primary data file organization. The 
index entries are of the type <K, Pr> or <K, P>, where Pr is a pointer to the record 
containing the key, or P is a pointer to the block containing the record for that key. 
The index file with these index entries can be organized as a dynamically expand-
able hash file, using one of the techniques described in Section 16.8.3; searching for 
an entry uses the hash search algorithm on K. Once an entry is found, the pointer Pr 
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Figure 17.14 
Example of a grid array on 
Dno and Age attributes.

14Insertion/deletion algorithms for grid files may be found in Nievergelt et al. (1984).
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(or P) is used to locate the corresponding record in the data file. Figure 17.15 illus-
trates a hash index on the Emp_id field for a file that has been stored as a sequential 
file ordered by Name. The Emp_id is hashed to a bucket number by using a hashing 
function: the sum of the digits of Emp_id modulo 10. For example, to find Emp_id 
51024, the hash function results in bucket number 2; that bucket is accessed first. It 
contains the index entry < 51024, Pr >; the pointer Pr leads us to the actual record 
in the file. In a practical application, there may be thousands of buckets; the bucket 
number, which may be several bits long, would be subjected to the directory 
schemes discussed in the context of dynamic hashing in Section 16.8.3. Other 
search structures can also be used as indexes.

17.5.2 Bitmap Indexes
The bitmap index is another popular data structure that facilitates querying on 
multiple keys. Bitmap indexing is used for relations that contain a large number of 
rows. It creates an index for one or more columns, and each value or value range in 
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Figure 17.15 
Hash-based 
indexing.
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those columns is indexed. Typically, a bitmap index is created for those columns 
that contain a fairly small number of unique values. To build a bitmap index on a 
set of records in a relation, the records must be numbered from 0 to n with an id (a 
record id or a row id) that can be mapped to a physical address made of a block 
number and a record offset within the block.

A bitmap index is built on one particular value of a particular field (the column in 
a relation) and is just an array of bits. Thus, for a given field, there is one separate 
bitmap index (or a vector) maintained corresponding to each unique value in the 
database. Consider a bitmap index for the column C and a value V for that column. 
For a relation with n rows, it contains n bits. The ith bit is set to 1 if the row i has the 
value V for column C; otherwise it is set to a 0. If C contains the valueset <v1, v2, … , 
vm> with m distinct values, then m bitmap indexes would be created for that col-
umn. Figure 17.16 shows the relation EMPLOYEE with columns Emp_id, Lname, Sex, 
Zipcode, and Salary_grade (with just eight rows for illustration) and a bitmap index 
for the Sex and Zipcode columns. As an example, if the bitmap for Sex = F, the bits 
for Row_ids 1, 3, 4, and 7 are set to 1, and the rest of the bits are set to 0, the bitmap 
indexes could have the following query applications:

 ■ For the query C1 = V1, the corresponding bitmap for value V1 returns the 
Row_ids containing the rows that qualify.

 ■ For the query C1= V1 and C2 = V2 (a multikey search request), the two cor-
responding bitmaps are retrieved and intersected (logically AND-ed) to 
yield the set of Row_ids that qualify. In general, k bitvectors can be inter-
sected to deal with k equality conditions. Complex AND-OR conditions can 
also be supported using bitmap indexing.

 � For the query C1 = V1 or C2 = V2 or C3 = V3 (a multikey search request), 
the three corresponding bitmaps for three different attributes are retrieved 
and unioned (logically OR-ed) to yield the set of Row ids that qualify.

EMPLOYEE

Row_id Emp_id Lname Sex Zipcode Salary_grade
0 51024 Bass M 94040 ..
1 23402 Clarke F 30022 ..
2 62104 England M 19046 ..
3 34723 Ferragamo F 30022 ..
4 81165 Gucci F 19046 ..
5 13646 Hanson M 19046 ..
6 12676 Marcus M 30022 ..
7 41301 Zara F 94040 ..

Bitmap index for Sex

        M          F
10100110 01011001

Bitmap index for Zipcode

Zipcode 19046 Zipcode 30022 Zipcode 94040
    00101100     01010010     10000001

Figure 17.16 
Bitmap indexes for 
Sex and Zipcode.
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 ■ To retrieve a count of rows that qualify for the condition C1 = V1, the “1” 
entries in the corresponding bitvector are counted.

 ■ Queries with negation, such as C1 ¬ = V1, can be handled by applying the 
Boolean complement operation on the corresponding bitmap.

Consider the example relation EMPLOYEE in Figure 17.16 with bitmap indexes 
on Sex and Zipcode. To find employees with Sex = F and Zipcode = 30022, we 
intersect the bitmaps “01011001” and “01010010” yielding Row_ids 1 and 3. 
Employees who do not live in Zipcode = 94040 are obtained by complementing 
the bitvector “10000001” and yields Row_ids 1 through 6. In general, if we assume 
uniform distribution of values for a given column, and if one column has 5 distinct 
values and another has 10 distinct values, the join condition on these two can be 
considered to have a selectivity of 1/50 (= 1/5 * 1/10). Hence, only about 2% of the 
records would actually have to be retrieved. If a column has only a few values, like 
the Sex column in Figure 17.16, retrieval of the Sex = M condition on average 
would retrieve 50% of the rows; in such cases, it is better to do a complete scan 
rather than use bitmap indexing.

In general, bitmap indexes are efficient in terms of the storage space that they need. 
If we consider a file of 1 million rows (records) with record size of 100 bytes per 
row, each bitmap index would take up only one bit per row and hence would use 1 
million bits or 125 Kbytes. Suppose this relation is for 1 million residents of a state, 
and they are spread over 200 ZIP Codes; the 200 bitmaps over Zipcodes contribute 
200 bits (or 25 bytes) worth of space per row; hence, the 200 bitmaps occupy only 
25% as much space as the data file. They allow an exact retrieval of all residents who 
live in a given ZIP Code by yielding their Row_ids.

When records are deleted, renumbering rows and shifting bits in bitmaps becomes 
expensive. Another bitmap, called the existence bitmap, can be used to avoid this 
expense. This bitmap has a 0 bit for the rows that have been deleted but are still 
physically present and a 1 bit for rows that actually exist. Whenever a row is inserted 
in the relation, an entry must be made in all the bitmaps of all the columns that have 
a bitmap index; rows typically are appended to the relation or may replace deleted 
rows to minimize the impact on the reorganization of the bitmaps. This process still 
constitutes an indexing overhead.

Large bitvectors are handled by treating them as a series of 32-bit or 64-bit vectors, 
and corresponding AND, OR, and NOT operators are used from the instruction set 
to deal with 32- or 64-bit input vectors in a single instruction. This makes bitvector 
operations computationally very efficient.

Bitmaps for B+-Tree Leaf Nodes. Bitmaps can be used on the leaf nodes of  
B+-tree indexes as well as to point to the set of records that contain each specific value 
of the indexed field in the leaf node. When the B+-tree is built on a nonkey search 
field, the leaf record must contain a list of record pointers alongside each value of 
the indexed attribute. For values that occur very frequently, that is, in a large per-
centage of the relation, a bitmap index may be stored instead of the pointers. As an 
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example, for a relation with n rows, suppose a value occurs in 10% of the file records. 
A bitvector would have n bits, having the “1” bit for those Row_ids that contain that 
search value, which is n/8 or 0.125n bytes in size. If the record pointer takes up 4 
bytes (32 bits), then the n/10 record pointers would take up 4 * n/10 or 0.4n bytes. 
Since 0.4n is more than 3 times larger than 0.125n, it is better to store the bitmap 
index rather than the record pointers. Hence for search values that occur more fre-
quently than a certain ratio (in this case that would be 1/32), it is beneficial to use 
bitmaps as a compressed storage mechanism for representing the record pointers in 
B+-trees that index a nonkey field.

17.5.3 Function-Based Indexing
In this section, we discuss a new type of indexing, called function-based indexing, 
that has been introduced in the Oracle relational DBMS as well as in some other 
commercial products.15

The idea behind function-based indexing is to create an index such that the value 
that results from applying some function on a field or a collection of fields becomes 
the key to the index. The following examples show how to create and use function-
based indexes.

Example 1. The following statement creates a function-based index on the 
EMPLOYEE table based on an uppercase representation of the Lname column, which 
can be entered in many ways but is always queried by its uppercase representation.

CREATE INDEX upper_ix ON Employee (UPPER(Lname));

This statement will create an index based on the function UPPER(Lname), which returns 
the last name in uppercase letters; for example, UPPER('Smith') will return ‘SMITH’.

Function-based indexes ensure that Oracle Database system will use the index 
rather than perform a full table scan, even when a function is used in the search 
predicate of a query. For example, the following query will use the index:

SELECT First_name, Lname
FROM Employee
WHERE UPPER(Lname)= "SMITH".

Without the function-based index, an Oracle Database might perform a full table 
scan, since a B+-tree index is searched only by using the column value directly; the 
use of any function on a column prevents such an index from being used.

Example 2. In this example, the EMPLOYEE table is supposed to contain two 
fields—salary and commission_pct (commission percentage)—and an index is being 
created on the sum of salary and commission based on the commission_pct.

CREATE INDEX income_ix
ON Employee(Salary + (Salary*Commission_pct));

15Rafi Ahmed contributed most of this section.



638 Chapter 17 Indexing Structures for Files and Physical Database Design

The following query uses the income_ix index even though the fields salary and 
commission_pct are occurring in the reverse order in the query when compared to 
the index definition.

SELECT First_name, Lname
FROM Employee
WHERE ((Salary*Commission_pct) + Salary ) > 15000;

Example 3. This is a more advanced example of using function-based indexing 
to define conditional uniqueness. The following statement creates a unique func-
tion-based index on the ORDERS table that prevents a customer from taking 
advantage of a promotion id (“blowout sale”) more than once. It creates a compos-
ite index on the Customer_id and Promotion_id fields together, and it allows only one 
entry in the index for a given Customer_id with the Promotion_id of “2” by declaring 
it as a unique index.

CREATE UNIQUE INDEX promo_ix ON Orders
(CASE WHEN Promotion_id = 2 THEN Customer_id ELSE NULL END,
CASE WHEN Promotion_id = 2 THEN Promotion_id ELSE NULL END);

Note that by using the CASE statement, the objective is to remove from the index any 
rows where Promotion_id is not equal to 2. Oracle Database does not store in the  
B+-tree index any rows where all the keys are NULL. Therefore, in this example, we 
map both Customer_id and Promotion_id to NULL unless Promotion_id is equal to 2. The 
result is that the index constraint is violated only if Promotion_id is equal to 2, for 
two (attempted insertions of) rows with the same Customer_id value.

17.6 Some General Issues Concerning Indexing

17.6.1 Logical versus Physical Indexes
In the earlier discussion, we have assumed that the index entries <K, Pr> (or <K, P>) 
always include a physical pointer Pr (or P) that specifies the physical record address 
on disk as a block number and offset. This is sometimes called a physical index, and 
it has the disadvantage that the pointer must be changed if the record is moved to 
another disk location. For example, suppose that a primary file organization is 
based on linear hashing or extendible hashing; then, each time a bucket is split, 
some records are allocated to new buckets and hence have new physical addresses. 
If there was a secondary index on the file, the pointers to those records would have 
to be found and updated, which is a difficult task.

To remedy this situation, we can use a structure called a logical index, whose index 
entries are of the form <K, Kp>. Each entry has one value K for the secondary index-
ing field matched with the value Kp of the field used for the primary file organiza-
tion. By searching the secondary index on the value of K, a program can locate the 
corresponding value of Kp and use this to access the record through the primary file 
organization, using a primary index if available. Logical indexes thus introduce an 
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additional level of indirection between the access structure and the data. They are 
used when physical record addresses are expected to change frequently. The cost of 
this indirection is the extra search based on the primary file organization.

17.6.2 Index Creation
Many RDBMSs have a similar type of command for creating an index, although it is 
not part of the SQL standard. The general form of this command is:

CREATE [ UNIQUE ] INDEX <index name>
ON <table name> ( <column name> [ <order> ] { , <column name> [ <order> ] } )
[ CLUSTER ] ;

The keywords UNIQUE and CLUSTER are optional. The keyword CLUSTER is used 
when the index to be created should also sort the data file records on the indexing 
attribute. Thus, specifying CLUSTER on a key (unique) attribute would create some 
variation of a primary index, whereas specifying CLUSTER on a nonkey (nonu-
nique) attribute would create some variation of a clustering index. The value for 
<order> can be either ASC (ascending) or DESC (descending), and it specifies 
whether the data file should be ordered in ascending or descending values of the 
indexing attribute. The default is ASC. For example, the following would create a 
clustering (ascending) index on the nonkey attribute Dno of the EMPLOYEE file:

CREATE INDEX DnoIndex
ON EMPLOYEE (Dno)
CLUSTER ;

Index Creation Process: In many systems, an index is not an integral part of the 
data file but can be created and discarded dynamically. That is why it is often called 
an access structure. Whenever we expect to access a file frequently based on some 
search condition involving a particular field, we can request the DBMS to create an 
index on that field as shown above for the DnoIndex. Usually, a secondary index is 
created to avoid physical ordering of the records in the data file on disk.

The main advantage of secondary indexes is that—theoretically, at least—they can 
be created in conjunction with virtually any primary record organization. Hence, a 
secondary index could be used to complement other primary access methods such 
as ordering or hashing, or it could even be used with mixed files. To create a B+-tree 
secondary index on some field of a file, if the file is large and contains millions of 
records, neither the file nor the index would fit in main memory. Insertion of a 
large number of entries into the index is done by a process called bulk loading the 
index. We must go through all records in the file to create the entries at the leaf level 
of the tree. These entries are then sorted and filled according to the specified fill fac-
tor; simultaneously, the other index levels are created. It is more expensive and 
much harder to create primary indexes and clustering indexes dynamically, because 
the records of the data file must be physically sorted on disk in order of the indexing 
field. However, some systems allow users to create these indexes dynamically on 
their files by sorting the file during index creation.
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Indexing of Strings: There are a couple of issues that are of particular concern 
when indexing strings. Strings can be variable length (e.g., VARCHAR data type in 
SQL; see Chapter 6) and strings may be too long limiting the fan-out. If a B+-tree 
index is to be built with a string as a search key, there may be an uneven number of 
keys per index node and the fan-out may vary. Some nodes may be forced to split 
when they become full regardless of the number of keys in them. The technique of 
prefix compression alleviates the situation. Instead of storing the entire string in 
the intermediate nodes, it stores only the prefix of the search key adequate to distin-
guish the keys that are being separated and directed to the subtree. For example, if 
Lastname was a search key and we were looking for “Navathe”, the nonleaf node 
may contain “Nac” for Nachamkin and “Nay” for Nayuddin as the two keys on 
either side of the subtree pointer that we need to follow.

17.6.3 Tuning Indexes
The initial choice of indexes may have to be revised for the following reasons:

 ■ Certain queries may take too long to run for lack of an index.

 ■ Certain indexes may not get utilized at all.

 ■ Certain indexes may undergo too much updating because the index is on an 
attribute that undergoes frequent changes.

Most DBMSs have a command or trace facility, which can be used by the DBA to 
ask the system to show how a query was executed—what operations were per-
formed in what order and what secondary access structures (indexes) were used. By 
analyzing these execution plans (we will discuss this term further in Chapter 18), it 
is possible to diagnose the causes of the above problems. Some indexes may be 
dropped and some new indexes may be created based on the tuning analysis.

The goal of tuning is to dynamically evaluate the requirements, which sometimes 
fluctuate seasonally or during different times of the month or week, and to reorga-
nize the indexes and file organizations to yield the best overall performance. Drop-
ping and building new indexes is an overhead that can be justified in terms of 
performance improvements. Updating of a table is generally suspended while an 
index is dropped or created; this loss of service must be accounted for.

Besides dropping or creating indexes and changing from a nonclustered to a clus-
tered index and vice versa, rebuilding the index may improve performance. Most 
RDBMSs use B+-trees for an index. If there are many deletions on the index key, 
index pages may contain wasted space, which can be claimed during a rebuild oper-
ation. Similarly, too many insertions may cause overflows in a clustered index that 
affect performance. Rebuilding a clustered index amounts to reorganizing the 
entire table ordered on that key.

The available options for indexing and the way they are defined, created, and 
reorganized vary from system to system. As an illustration, consider the sparse 
and dense indexes we discussed in Section 17.1. A sparse index such as a primary 
index will have one index pointer for each page (disk block) in the data file; a 
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dense index such as a unique secondary index will have an index pointer for each 
record. Sybase provides clustering indexes as sparse indexes in the form of  
B+-trees, whereas INGRES provides sparse clustering indexes as ISAM files and 
dense clustering indexes as B+-trees. In some versions of Oracle and DB2, the 
option of setting up a clustering index is limited to a dense index, and the DBA 
has to work with this limitation.

17.6.4  Additional Issues Related to Storage  
of Relations and Indexes

Using an Index for Managing Constraints and Duplicates: It is common to 
use an index to enforce a key constraint on an attribute. While searching the index 
to insert a new record, it is straightforward to check at the same time whether 
another record in the file—and hence in the index tree—has the same key attribute 
value as the new record. If so, the insertion can be rejected.

If an index is created on a nonkey field, duplicates occur; handling of these dupli-
cates is an issue the DBMS product vendors have to deal with and affects data stor-
age as well as index creation and management. Data records for the duplicate key 
may be contained in the same block or may span multiple blocks where many 
duplicates are possible. Some systems add a row id to the record so that records 
with duplicate keys have their own unique identifiers. In such cases, the B+-tree 
index may regard a <key, Row_id> combination as the de facto key for the index, 
turning the index into a unique index with no duplicates. The deletion of a key K 
from such an index would involve deleting all occurrences of that key K—hence the 
deletion algorithm has to account for this.

In actual DBMS products, deletion from B+-tree indexes is also handled in various 
ways to improve performance and response times. Deleted records may be marked 
as deleted and the corresponding index entries may also not be removed until a 
garbage collection process reclaims the space in the data file; the index is rebuilt 
online after garbage collection.

Inverted Files and Other Access Methods: A file that has a secondary index 
on every one of its fields is often called a fully inverted file. Because all indexes are 
secondary, new records are inserted at the end of the file; therefore, the data file 
itself is an unordered (heap) file. The indexes are usually implemented as B+-trees, 
so they are updated dynamically to reflect insertion or deletion of records. Some 
commercial DBMSs, such as Software AG’s Adabas, use this method extensively.

We referred to the popular IBM file organization called ISAM in Section 17.2. 
Another IBM method, the virtual storage access method (VSAM), is somewhat 
similar to the B+–tree access structure and is still being used in many commercial 
systems.

Using Indexing Hints in Queries: DBMSs such as Oracle have a provision for 
allowing hints in queries that are suggested alternatives or indicators to the query 
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processor and optimizer for expediting query execution. One form of hints is called 
indexing hints; these hints suggest the use of an index to improve the execution of a 
query. The hints appear as a special comment (which is preceded by +) and they 
override all optimizer decisions, but they may be ignored by the optimizer if they 
are invalid, irrelevant, or improperly formulated. We do not get into a detailed dis-
cussion of indexing hints, but illustrate with an example query.

For example, to retrieve the SSN, Salary, and department number for employees 
working in department numbers with Dno less than 10:

SELECT /*+ INDEX (EMPLOYEE emp_dno_index ) */ Emp_ssn, Salary, Dno
FROM EMPLOYEE
WHERE Dno < 10;

The above query includes a hint to use a valid index called emp_dno_index (which 
is an index on the EMPLOYEE relation on Dno).

Column-Based Storage of Relations: There has been a recent trend to con-
sider a column-based storage of relations as an alternative to the traditional way of 
storing relations row by row. Commercial relational DBMSs have offered B+-tree 
indexing on primary as well as secondary keys as an efficient mechanism to support 
access to data by various search criteria and the ability to write a row or a set of rows 
to disk at a time to produce write-optimized systems. For data warehouses (to be 
discussed in Chapter 29), which are read-only databases, the column-based storage 
offers particular advantages for read-only queries. Typically, the column-store 
RDBMSs consider storing each column of data individually and afford performance 
advantages in the following areas:

 ■ Vertically partitioning the table column by column, so that a two-column 
table can be constructed for every attribute and thus only the needed col-
umns can be accessed

 ■ Using column-wise indexes (similar to the bitmap indexes discussed in Sec-
tion 17.5.2) and join indexes on multiple tables to answer queries without 
having to access the data tables

 ■ Using materialized views (see Chapter 7) to support queries on multiple 
columns

Column-wise storage of data affords additional freedom in the creation of indexes, 
such as the bitmap indexes discussed earlier. The same column may be present in 
multiple projections of a table and indexes may be created on each projection. To 
store the values in the same column, strategies for data compression, null-value 
suppression, dictionary encoding techniques (where distinct values in the column 
are assigned shorter codes), and run-length encoding techniques have been devised. 
MonetDB/X100, C-Store, and Vertica are examples of such systems Some popular 
systems (like Cassandra, Hbase, and Hypertable) have used column-based storage 
effectively with the concept of wide column-stores. The storage of data in such 
systems will be explained in the context of NOSQL systems that we will discuss 
in Chapter 24.
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17.7  Physical Database Design  
in Relational Databases

In this section, we discuss the physical design factors that affect the performance of 
applications and transactions, and then we comment on the specific guidelines for 
RDBMSs in the context of what we discussed in Chapter 16 and this chapter so far.

17.7.1 Factors That Influence Physical Database Design
Physical design is an activity where the goal is not only to create the appropriate 
structuring of data in storage, but also to do so in a way that guarantees good per-
formance. For a given conceptual schema, there are many physical design alterna-
tives in a given DBMS. It is not possible to make meaningful physical design 
decisions and performance analyses until the database designer knows the mix of 
queries, transactions, and applications that are expected to run on the database. 
This is called the job mix for the particular set of database system applications. The 
database administrators/designers must analyze these applications, their expected 
frequencies of invocation, any timing constraints on their execution speed, the 
expected frequency of update operations, and any unique constraints on attributes. 
We discuss each of these factors next.

A. Analyzing the Database Queries and Transactions. Before undertaking 
the physical database design, we must have a good idea of the intended use of the 
database by defining in a high-level form the queries and transactions that are 
expected to run on the database. For each retrieval query, the following informa-
tion about the query would be needed:

  1. The files (relations) that will be accessed by the query

  2. The attributes on which any selection conditions for the query are specified

  3. Whether the selection condition is an equality, inequality, or a range condition

  4. The attributes on which any join conditions or conditions to link multiple 
tables or objects for the query are specified

  5. The attributes whose values will be retrieved by the query

The attributes listed in items 2 and 4 above are candidates for the definition of 
access structures, such as indexes, hash keys, or sorting of the file.

For each update operation or update transaction, the following information 
would be needed:

  1. The files that will be updated

  2. The type of operation on each file (insert, update, or delete)

  3. The attributes on which selection conditions for a delete or update are specified

  4. The attributes whose values will be changed by an update operation

Again, the attributes listed in item 3 are candidates for access structures on the files, 
because they would be used to locate the records that will be updated or deleted. On 
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the other hand, the attributes listed in item 4 are candidates for avoiding an access 
structure, since modifying them will require updating the access structures.

B. Analyzing the Expected Frequency of Invocation of Queries and 
Transactions. Besides identifying the characteristics of expected retrieval que-
ries and update transactions, we must consider their expected rates of invocation. 
This frequency information, along with the attribute information collected on 
each query and transaction, is used to compile a cumulative list of the expected 
frequency of use for all queries and transactions. This is expressed as the expected 
frequency of using each attribute in each file as a selection attribute or a join attri-
bute, over all the queries and transactions. Generally, for large volumes of pro-
cessing, the informal 80–20 rule can be used: approximately 80% of the processing 
is accounted for by only 20% of the queries and transactions. Therefore, in practi-
cal situations, it is rarely necessary to collect exhaustive statistics and invocation 
rates on all the queries and transactions; it is sufficient to determine the 20% or so 
most important ones.

C. Analyzing the Time Constraints of Queries and Transactions. Some que-
ries and transactions may have stringent performance constraints. For example, a 
transaction may have the constraint that it should terminate within 5 seconds on 
95% of the occasions when it is invoked, and that it should never take more than 20 
seconds. Such timing constraints place further priorities on the attributes that are 
candidates for access paths. The selection attributes used by queries and transac-
tions with time constraints become higher-priority candidates for primary access 
structures for the files, because the primary access structures are generally the most 
efficient for locating records in a file.

D. Analyzing the Expected Frequencies of Update Operations. A minimum 
number of access paths should be specified for a file that is frequently updated, 
because updating the access paths themselves slows down the update operations. For 
example, if a file that has frequent record insertions has 10 indexes on 10 different 
attributes, each of these indexes must be updated whenever a new record is inserted. 
The overhead for updating 10 indexes can slow down the insert operations.

E. Analyzing the Uniqueness Constraints on Attributes. Access paths should 
be specified on all candidate key attributes—or sets of attributes—that are either the 
primary key of a file or unique attributes. The existence of an index (or other access 
path) makes it sufficient to search only the index when checking this uniqueness 
constraint, since all values of the attribute will exist in the leaf nodes of the index. 
For example, when inserting a new record, if a key attribute value of the new record 
already exists in the index, the insertion of the new record should be rejected, since 
it would violate the uniqueness constraint on the attribute.

Once the preceding information is compiled, it is possible to address the physical 
database design decisions, which consist mainly of deciding on the storage struc-
tures and access paths for the database files.
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17.7.2 Physical Database Design Decisions
Most relational systems represent each base relation as a physical database file. The 
access path options include specifying the type of primary file organization for each 
relation and the attributes that are candidates for defining individual or composite 
indexes. At most, one of the indexes on each file may be a primary or a clustering 
index. Any number of additional secondary indexes can be created.

Design Decisions about Indexing. The attributes whose values are required 
in equality or range conditions (selection operation) are those that are keys or 
that participate in join conditions (join operation) requiring access paths, such 
as indexes.

The performance of queries largely depends upon what indexes or hashing schemes 
exist to expedite the processing of selections and joins. On the other hand, during 
insert, delete, or update operations, the existence of indexes adds to the overhead. 
This overhead must be justified in terms of the gain in efficiency by expediting que-
ries and transactions.

The physical design decisions for indexing fall into the following categories:

  1. Whether to index an attribute. The general rules for creating an index on 
an attribute are that the attribute must either be a key (unique), or there 
must be some query that uses that attribute either in a selection condition 
(equality or range of values) or in a join condition. One reason for creating 
multiple indexes is that some operations can be processed by just scanning 
the indexes, without having to access the actual data file.

  2. What attribute or attributes to index on. An index can be constructed on a 
single attribute, or on more than one attribute if it is a composite index. If 
multiple attributes from one relation are involved together in several que-
ries, (for example, (Garment_style_#, Color) in a garment inventory database), 
a multiattribute (composite) index is warranted. The ordering of attributes 
within a multiattribute index must correspond to the queries. For instance, 
the above index assumes that queries would be based on an ordering of col-
ors within a Garment_style_# rather than vice versa.

  3. Whether to set up a clustered index. At most, one index per table can be a 
primary or clustering index, because this implies that the file be physically 
ordered on that attribute. In most RDBMSs, this is specified by the keyword 
CLUSTER. (If the attribute is a key, a primary index is created, whereas a 
clustering index is created if the attribute is not a key.) If a table requires sev-
eral indexes, the decision about which one should be the primary or cluster-
ing index depends upon whether keeping the table ordered on that attribute 
is needed. Range queries benefit a great deal from clustering. If several attri-
butes require range queries, relative benefits must be evaluated before decid-
ing which attribute to cluster on. If a query is to be answered by doing an 
index search only (without retrieving data records), the corresponding index 
should not be clustered, since the main benefit of clustering is achieved 
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when retrieving the records themselves. A clustering index may be set up as 
a multiattribute index if range retrieval by that composite key is useful in 
report creation (for example, an index on Zip_code, Store_id, and Product_id 
may be a clustering index for sales data).

  4. Whether to use a hash index over a tree index. In general, RDBMSs use  
B+-trees for indexing. However, ISAM and hash indexes are also provided in 
some systems. B+-trees support both equality and range queries on the attri-
bute used as the search key. Hash indexes work well with equality condi-
tions, particularly during joins to find a matching record(s), but they do not 
support range queries.

  5. Whether to use dynamic hashing for the file. For files that are very volatile—
that is, those that grow and shrink continuously—one of the dynamic hashing 
schemes discussed in Section 16.9 would be suitable. Currently, such schemes 
are not offered by many commercial RDBMSs.

17.8  Summary
In this chapter, we presented file organizations that involve additional access struc-
tures, called indexes, to improve the efficiency of retrieval of records from a data 
file. These access structures may be used in conjunction with the primary file orga-
nizations discussed in Chapter 16, which are used to organize the file records them-
selves on disk.

Three types of ordered single-level indexes were introduced: primary, clustering, 
and secondary. Each index is specified on a field of the file. Primary and cluster-
ing indexes are constructed on the physical ordering field of a file, whereas sec-
ondary indexes are specified on nonordering fields as additional access structures 
to improve performance of queries and transactions. The field for a primary 
index must also be a key of the file, whereas it is a nonkey field for a clustering 
index. A single-level index is an ordered file and is searched using a binary search. 
We showed how multilevel indexes can be constructed to improve the efficiency 
of searching an index. An example is IBM’s popular indexed sequential access 
method (ISAM), which is a multilevel index based on the cylinder/track configu-
ration on disk.

Next we showed how multilevel indexes can be implemented as B-trees and  
B+-trees, which are dynamic structures that allow an index to expand and shrink 
dynamically. The nodes (blocks) of these index structures are kept between half full 
and completely full by the insertion and deletion algorithms. Nodes eventually sta-
bilize at an average occupancy of 69% full, allowing space for insertions without 
requiring reorganization of the index for the majority of insertions. B+-trees can 
generally hold more entries in their internal nodes than can B-trees, so they may 
have fewer levels or hold more entries than does a corresponding B-tree.

We gave an overview of multiple key access methods, and we showed how an index 
can be constructed based on hash data structures. We introduced the concept of 
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partitioned hashing, which is an extension of external hashing to deal with mul-
tiple keys. We also introduced grid files, which organize data into buckets along 
multiple dimensions, We discussed the hash index in some detail—it is a second-
ary structure to access the file by using hashing on a search key other than that 
used for the primary organization. Bitmap indexing is another important type of 
indexing used for querying by multiple keys and is particularly applicable on fields 
with a small number of unique values. Bitmaps can also be used at the leaf nodes of 
B+ tree indexes as well. We also discussed function-based indexing, which is being 
provided by relational vendors to allow special indexes on a function of one or 
more attributes.

We introduced the concept of a logical index and compared it with the physical 
indexes we described before. They allow an additional level of indirection in index-
ing in order to permit greater freedom for movement of actual record locations on 
disk. We discussed index creation in SQL, the process of bulk loading of index files 
and indexing of strings. We discussed circumstances that point to tuning of indexes. 
Then we reviewed some general topics related to indexing, including managing 
constraints, using inverted indexes, and using indexing hints in queries; we com-
mented on column-based storage of relations, which is becoming a viable alterna-
tive for storing and accessing large databases. Finally, we discussed physical 
database design of relational databases, which involves decisions related to storage 
and accessing of data that we have been discussing in the current and the previous 
chapter. This discussion was divided into factors that influence the design and the 
types of decisions regarding whether to index an attribute, what attributes to 
include in an index, clustered versus nonclustered indexes, hashed indexes, and 
dynamic hashing.

Review Questions
 17.1. Define the following terms: indexing field, primary key field, clustering field, 

secondary key field, block anchor, dense index, and nondense (sparse) index.

 17.2. What are the differences among primary, secondary, and clustering indexes? 
How do these differences affect the ways in which these indexes are imple-
mented? Which of the indexes are dense, and which are not?

 17.3. Why can we have at most one primary or clustering index on a file, but several 
secondary indexes?

 17.4. How does multilevel indexing improve the efficiency of searching an index file?

 17.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.

 17.6. What is the order p of a B+-tree? Describe the structure of both internal and 
leaf nodes of a B+-tree.

 17.7. How does a B-tree differ from a B+-tree? Why is a B+-tree usually preferred 
as an access structure to a data file?
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 17.8. Explain what alternative choices exist for accessing a file based on multiple 
search keys.

 17.9. What is partitioned hashing? How does it work? What are its limitations?

 17.10. What is a grid file? What are its advantages and disadvantages?

 17.11. Show an example of constructing a grid array on two attributes on some file.

 17.12. What is a fully inverted file? What is an indexed sequential file?

 17.13. How can hashing be used to construct an index?

 17.14. What is bitmap indexing? Create a relation with two columns and sixteen 
tuples and show an example of a bitmap index on one or both.

 17.15. What is the concept of function-based indexing? What additional purpose 
does it serve?

 17.16. What is the difference between a logical index and a physical index?

 17.17. What is column-based storage of a relational database?

Exercises
 17.18. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes 

long, and a record pointer is PR = 7 bytes long. A file has r = 30,000 
EMPLOYEE records of fixed length. Each record has the following fields: 
Name (30 bytes),Ssn (9 bytes), Department_code (9 bytes), Address (40 bytes), 
Phone (10 bytes), Birth_date (8 bytes), Sex (1 byte), Job_code (4 bytes), and 
Salary (4 bytes, real number). An additional byte is used as a deletion marker.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assuming 
an unspanned organization.

c. Suppose that the file is ordered by the key field Ssn and we want to con-
struct a primary index on Ssn. Calculate (i) the index blocking factor bfri 
(which is also the index fan-out fo); (ii) the number of first-level index 
entries and the number of first-level index blocks; (iii) the number of lev-
els needed if we make it into a multilevel index; (iv) the total number of 
blocks required by the multilevel index; and (v) the number of block 
accesses needed to search for and retrieve a record from the file—given 
its Ssn value—using the primary index.

d. Suppose that the file is not ordered by the key field Ssn and we want to 
construct a secondary index on Ssn. Repeat the previous exercise (part c) 
for the secondary index and compare with the primary index.

e. Suppose that the file is not ordered by the nonkey field Department_code 
and we want to construct a secondary index on Department_code, using 
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option 3 of Section 17.1.3, with an extra level of indirection that stores 
record pointers. Assume there are 1,000 distinct values of Department_code 
and that the EMPLOYEE records are evenly distributed among these  
values. Calculate (i) the index blocking factor bfri (which is also the index 
fan-out fo); (ii) the number of blocks needed by the level of indirection 
that stores record pointers; (iii) the number of first-level index entries 
and the number of first-level index blocks; (iv) the number of levels 
needed if we make it into a multilevel index; (v) the total number of 
blocks required by the multilevel index and the blocks used in the extra 
level of indirection; and (vi) the approximate number of block accesses 
needed to search for and retrieve all records in the file that have a specific 
Department_code value, using the index.

f. Suppose that the file is ordered by the nonkey field Department_code and we 
want to construct a clustering index on Department_code that uses block 
anchors (every new value of Department_code starts at the beginning of a 
new block). Assume there are 1,000 distinct values of Department_code and 
that the EMPLOYEE records are evenly distributed among these values. Cal-
culate (i) the index blocking factor bfri (which is also the index fan-out fo); 
(ii) the number of first-level index entries and the number of first-level 
index blocks; (iii) the number of levels needed if we make it into a multi-
level index; (iv) the total number of blocks required by the multilevel index; 
and (v) the number of block accesses needed to search for and retrieve all 
records in the file that have a specific Department_code value, using the clus-
tering index (assume that multiple blocks in a cluster are contiguous).

g. Suppose that the file is not ordered by the key field Ssn and we want to 
construct a B+-tree access structure (index) on Ssn. Calculate (i) the orders 
p and pleaf of the B+-tree; (ii) the number of leaf-level blocks needed if 
blocks are approximately 69% full (rounded up for convenience); (iii) the 
number of levels needed if internal nodes are also 69% full (rounded up 
for convenience); (iv) the total number of blocks required by the B+-tree; 
and (v) the number of block accesses needed to search for and retrieve a 
record from the file—given its Ssn value—using the B+-tree.

h. Repeat part g, but for a B-tree rather than for a B+-tree. Compare your 
results for the B-tree and for the B+-tree.

 17.19. A PARTS file with Part# as the key field includes records with the following 
Part# values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20, 
24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. Suppose that the search field values 
are inserted in the given order in a B+-tree of order p = 4 and pleaf = 3; show 
how the tree will expand and what the final tree will look like.

 17.20. Repeat Exercise 17.19, but use a B-tree of order p = 4 instead of a B+-tree.

 17.21. Suppose that the following search field values are deleted, in the given order, 
from the B+-tree of Exercise 17.19; show how the tree will shrink and show 
the final tree. The deleted values are 65, 75, 43, 18, 20, 92, 59, 37.
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 17.22. Repeat Exercise 17.21, but for the B-tree of Exercise 17.20.

 17.23. Algorithm 17.1 outlines the procedure for searching a nondense multilevel 
primary index to retrieve a file record. Adapt the algorithm for each of the 
following cases:

a. A multilevel secondary index on a nonkey nonordering field of a file. 
Assume that option 3 of Section 17.1.3 is used, where an extra level of 
indirection stores pointers to the individual records with the corres-
ponding index field value.

b. A multilevel secondary index on a nonordering key field of a file.

c. A multilevel clustering index on a nonkey ordering field of a file.

 17.24. Suppose that several secondary indexes exist on nonkey fields of a file, 
implemented using option 3 of Section 17.1.3; for example, we could have 
secondary indexes on the fields Department_code, Job_code, and Salary of the 
EMPLOYEE file of Exercise 17.18. Describe an efficient way to search for and 
retrieve records satisfying a complex selection condition on these fields, 
such as (Department_code = 5 AND Job_code = 12 AND Salary = 50,000), using 
the record pointers in the indirection level.

 17.25. Adapt Algorithms 17.2 and 17.3, which outline search and insertion proce-
dures for a B+-tree, to a B-tree.

 17.26. It is possible to modify the B+-tree insertion algorithm to delay the case 
where a new level is produced by checking for a possible redistribution of 
values among the leaf nodes. Figure 17.17 illustrates how this could be done 
for our example in Figure 17.12; rather than splitting the leftmost leaf 
node when 12 is inserted, we do a left redistribution by moving 7 to the leaf 
node to its left (if there is space in this node). Figure 17.17 shows how the 
tree would look when redistribution is considered. It is also possible to consider 
right redistribution. Try to modify the B+-tree insertion algorithm to take 
redistribution into account.

 17.27. Outline an algorithm for deletion from a B+-tree.

 17.28. Repeat Exercise 17.27 for a B-tree.
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Figure 17.17 
B+-tree insertion with left redistribution.
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18
Strategies for Query Processing1

In this chapter, we discuss the techniques used inter-
nally by a DBMS to process high-level queries. A 

query expressed in a high-level query language such as SQL must first be scanned, 
parsed, and validated.2 The scanner identifies the query tokens—such as SQL key-
words, attribute names, and relation names—that appear in the text of the query, 
whereas the parser checks the query syntax to determine whether it is formulated 
according to the syntax rules (rules of grammar) of the query language. The query 
must also be validated by checking that all attribute and relation names are valid 
and semantically meaningful names in the schema of the particular database being 
queried. An internal representation of the query is then created, usually as a tree 
data structure called a query tree. It is also possible to represent the query using a 
graph data structure called a query graph, which is generally a directed acyclic 
graph (DAG). The DBMS must then devise an execution strategy or query plan 
for retrieving the results of the query from the database files. A query has many pos-
sible execution strategies, and the process of choosing a suitable one for processing 
a query is known as query optimization.

We defer a detailed discussion of query optimization to the next chapter. In this 
chapter, we will primarily focus on how queries are processed and what algorithms 
are used to perform individual operations within the query. Figure 18.1 shows the 
different steps of processing a high-level query. The query optimizer module has 
the task of producing a good execution plan, and the code generator generates the 
code to execute that plan. The runtime database processor has the task of running 
(executing) the query code, whether in compiled or interpreted mode, to produce 
the query result. If a runtime error results, an error message is generated by the 
runtime database processor.

chapter 18

1We appreciate Rafi Ahmed’s contributions in updating this chapter.
2We will not discuss the parsing and syntax-checking phase of query processing here; this material  
is discussed in compiler texts.



656 Chapter 18 Strategies for Query Processing

The term optimization is actually a misnomer because in some cases the chosen 
execution plan is not the optimal (or absolute best) strategy—it is just a reasonably 
efficient or the best available strategy for executing the query. Finding the optimal 
strategy is usually too time-consuming—except for the simplest of queries. In addi-
tion, trying to find the optimal query execution strategy requires accurate and 
detailed information about the size of the tables and distributions of things such as 
column values, which may not be always available in the DBMS catalog. Further-
more, additional information such as the size of the expected result must be derived 
based on the predicates in the query. Hence, planning of a good execution strategy 
may be a more accurate description than query optimization.

For lower-level navigational database languages in legacy systems—such as the net-
work DML or the hierarchical DL/1 the programmer must choose the query execu-
tion strategy while writing a database program. If a DBMS provides only a 
navigational language, there is a limited opportunity for extensive query optimiza-
tion by the DBMS; instead, the programmer is given the capability to choose the 
query execution strategy. On the other hand, a high-level query language—such as 
SQL for relational DBMSs (RDBMSs) or OQL (see Chapter 12) for object DBMSs 
(ODBMSs)—is more declarative in nature because it specifies what the intended 
results of the query are rather than identifying the details of how the result should 
be obtained. Query optimization is thus necessary for queries that are specified in a 
high-level query language.

Query in a high-level language

Scanning, parsing, and validating

Immediate form of query

Query optimizer

Execution plan

Query code generator

Code to execute the query

Runtime database processor

Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever
needed (compiled mode)

Result of query

Figure 18.1 
Typical steps when 
processing a high-level 
query.
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We will concentrate on describing query processing and optimization in the context 
of an RDBMS because many of the techniques we describe have also been adapted 
for other types of database management systems, such as ODBMSs.3 A relational 
DBMS must systematically evaluate alternative query execution strategies and 
choose a reasonably efficient or near-optimal strategy. Most DBMSs have a number 
of general database access algorithms that implement relational algebra operations 
such as SELECT or JOIN (see Chapter 8) or combinations of these operations. Only 
execution strategies that can be implemented by the DBMS access algorithms and 
that apply to the particular query, as well as to the particular physical database design, 
can be considered by the query optimization module.

This chapter is organized as follows. Section 18.1 starts with a general discussion of 
how SQL queries are typically translated into relational algebra queries and addi-
tional operations and then optimized. Then we discuss algorithms for implementing 
relational algebra operations in Sections 18.2 through 18.6. In Section 18.7, we dis-
cuss the strategy for execution called pipelining. Section 18.8 briefly reviews the 
strategy for parallel execution of the operators. Section 18.9 summarizes the chapter.

In the next chapter, we will give an overview of query optimization strategies. There 
are two main techniques of query optimization that we will be discussing. The first 
technique is based on heuristic rules for ordering the operations in a query execu-
tion strategy that works well in most cases but is not guaranteed to work well in 
every case. The rules typically reorder the operations in a query tree. The second 
technique involves cost estimation of different execution strategies and choosing 
the execution plan that minimizes estimated cost. The topics covered in this chapter 
require that the reader be familiar with the material presented in several earlier chap-
ters. In particular, the chapters on SQL (Chapters 6 and 7), relational algebra (Chap-
ter 8), and file structures and indexing (Chapters 16 and 17) are a prerequisite to this 
chapter. Also, it is important to note that the topic of query processing and optimiza-
tion is vast, and we can only give an introduction to the basic principles and tech-
niques in this and the next chapter. Several important works are mentioned in the 
Bibliography of this and the next chapter.

18.1  Translating SQL Queries into Relational 
Algebra and Other Operators

In practice, SQL is the query language that is used in most commercial RDBMSs. 
An SQL query is first translated into an equivalent extended relational algebra 
expression—represented as a query tree data structure—that is then optimized. 
Typically, SQL queries are decomposed into query blocks, which form the basic 
units that can be translated into the algebraic operators and optimized. A query 
block contains a single SELECT-FROM-WHERE expression, as well as GROUP BY 

3There are some query processing and optimization issues and techniques that are pertinent only to 
ODBMSs. However, we do not discuss them here because we give only an introduction to query 
processing in this chapter and we do not discuss query optimization until Chapter 19.
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and HAVING clauses if these are part of the block. Hence, nested queries within a 
query are identified as separate query blocks. Because SQL includes aggregate 
operators—such as MAX, MIN, SUM, and COUNT—these operators must also be 
included in the extended algebra, as we discussed in Section 8.4.

Consider the following SQL query on the EMPLOYEE relation in Figure 5.5:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ( SELECT MAX (Salary)
    FROM    EMPLOYEE
    WHERE  Dno=5 );

This query retrieves the names of employees (from any department in the com-
pany) who earn a salary that is greater than the highest salary in department 5. The 
query includes a nested subquery and hence would be decomposed into two blocks. 
The inner block is:

( SELECT MAX (Salary)
  FROM    EMPLOYEE
  WHERE  Dno=5 )

This retrieves the highest salary in department 5. The outer query block is:

SELECT  Lname, Fname
FROM   EMPLOYEE
WHERE Salary > c

where c represents the result returned from the inner block. The inner block could 
be translated into the following extended relational algebra expression:

ℑMAX Salary(σDno=5(EMPLOYEE))

and the outer block into the expression:

πLname,Fname(σSalary>c(EMPLOYEE))

The query optimizer would then choose an execution plan for each query block. 
Notice that in the above example, the inner block needs to be evaluated only once to 
produce the maximum salary of employees in department 5, which is then used—as 
the constant c—by the outer block. We called this a nested subquery block (which is 
uncorrelated to the outer query block) in Section 7.1.2. It is more involved to opti-
mize the more complex correlated nested subqueries (see Section 7.1.3), where a 
tuple variable from the outer query block appears in the WHERE-clause of the inner 
query block. Many techniques are used in advanced DBMSs to unnest and optimize 
correlated nested subqueries.

18.1.1 Additional Operators Semi-Join and Anti-Join
Most RDBMSs currently process SQL queries arising from various types of enterprise 
applications that include ad hoc queries, standard canned queries with parameters, 



 18.1 Translating SQL Queries into Relational Algebra and Other Operators 659

and queries for report generation. Additionally, SQL queries originate from OLAP 
(online analytical processing) applications on data warehouses (we discuss data 
warehousing in detail in Chapter 29). Some of these queries are transformed into 
operations that are not part of the standard relational algebra we discussed in Chap-
ter 8. Two commonly used operations are semi-join and anti-join. Note that both 
these operations are a type of join. Semi-join is generally used for unnesting EXISTS, 
IN, and ANY subqueries.4 Here we represent semi-join by the following non- 
standard syntax: T1.X S = T2.Y, where T1 is the left table and T2 is the right table of 
the semi-join. The semantics of semi-join are as follows: A row of T1 is returned as 
soon as T1.X finds a match with any value of T2.Y without searching for further 
matches. This is in contrast to finding all possi ble matches in inner join.

Consider a slightly modified version of the schema in Figure 5.5 as follows:

EMPLOYEE ( Ssn, Bdate, Address, Sex, Salary, Dno)
DEPARTMENT ( Dnumber, Dname, Dmgrssn, Zipcode)

where a department is located in a specific zip code.

Let us consider the following query:

Q (SJ) : SELECT COUNT(*)
FROM DEPARTMENT D
WHERE D.Dnumber IN ( SELECT E.Dno
            FROM EMPLOYEE E
            WHERE E.Salary > 200000)

Here we have a nested query which is joined by the connector IN.

To remove the nested query:

( SELECT E.Dno
  FROM EMPLOYEE E WHERE E.Salary > 200000)

is called as unnesting. It leads to the following query with an operation called 
semi-join,5 which we show with a non-standard notation “S=” below:

SELECT COUNT(*)
FROM EMPLOYEE E, DEPARTMENT D
WHERE D.Dnumber S= E.Dno and E.Salary > 200000;

The above query is counting the number of departments that have employees who 
make more than $200,000 annually. Here, the operation is to find the department 
whose Dnumber attribute matches the value(s) for the Dno attribute of Employee 
with that high salary.

4In some cases where duplicate rows are not relevant, inner join can also be used to unnest EXISTS  
and ANY subqueries.
5Note that this semi-join operator is not the same as that used in distributed query processing.
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In algebra, alternate notations exist. One common notation is shown in the follow-
ing figure.

Semi-join

Now consider another query:

Q (AJ) : SELECT COUNT(*)
FROM EMPLOYEE
WHERE EMPLOYEE.Dno NOT IN (SELECT DEPARTMENT.Dnumber
  FROM DEPARTMENT
  WHERE Zipcode =30332)

The above query counts the number of employees who do not work in departments 
located in zip code 30332. Here, the operation is to find the employee tuples 
whose Dno attribute does not match the value(s) for the Dnumber attribute in 
DEPARTMENT for the given zip code. We are only interested in producing a 
count of such employees, and performing an inner join of the two tables would, of 
course, produce wrong results. In this case, therefore, the anti-join operator is used 
while unnesting this query.

Anti-join is used for unnesting NOT EXISTS, NOT IN, and ALL subqueries. We 
represent anti-join by the following nonstandard syntax: T1.x A = T2.y, where T1 is 
the left table and T2 is the right table of the anti-join. The semantics of anti-join are 
as follows: A row of T1 is rejected as soon as T1.x finds a match with any value  
of T2.y. A row of T1 is returned, only if T1.x does not match with any value of T2.y.

In the following result of unnesting, we show the aforementioned anti-join with the 
nonstandard symbol “A=” in the following:

SELECT COUNT(*)
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dno A= DEPARTMENT AND Zipcode =30332

In algebra, alternate notations exist. One common notation is shown in the follow-
ing figure.

Anti-join

18.2 Algorithms for External Sorting
Sorting is one of the primary algorithms used in query processing. For example, 
whenever an SQL query specifies an ORDER BY-clause, the query result must be 
sorted. Sorting is also a key component in sort-merge algorithms used for JOIN and 
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other operations (such as UNION and INTERSECTION), and in duplicate elimination 
algorithms for the PROJECT operation (when an SQL query specifies the DISTINCT 
option in the SELECT clause). We will discuss one of these algorithms in this sec-
tion. Note that sorting of a particular file may be avoided if an appropriate index—
such as a primary or clustering index (see Chapter 17)—exists on the desired file 
attribute to allow ordered access to the records of the file.

External sorting refers to sorting algorithms that are suitable for large files of 
records stored on disk that do not fit entirely in main memory, such as most data-
base files.6 The typical external sorting algorithm uses a sort-merge strategy, which 
starts by sorting small subfiles—called runs—of the main file and then merges the 
sorted runs, creating larger sorted subfiles that are merged in turn. The sort-merge 
algorithm, like other database algorithms, requires buffer space in main memory, 
where the actual sorting and merging of the runs is performed. The basic algorithm, 
outlined in Figure 18.2, consists of two phases: the sorting phase and the merging 
phase. The buffer space in main memory is part of the DBMS cache—an area in the 
computer’s main memory that is controlled by the DBMS. The buffer space is 
divided into individual buffers, where each buffer is the same size in bytes as the size 
of one disk block. Thus, one buffer can hold the contents of exactly one disk block.

In the sorting phase, runs (portions or pieces) of the file that can fit in the available 
buffer space are read into main memory, sorted using an internal sorting algorithm, 
and written back to disk as temporary sorted subfiles (or runs). The size of each run 
and the number of initial runs (nR) are dictated by the number of file blocks (b) 
and the available buffer space (nB). For example, if the number of available main 
memory buffers nB = 5 disk blocks and the size of the file b = 1,024 disk blocks, then 
nR= ⎡(b/nB)⎤ or 205 initial runs each of size 5 blocks (except the last run, which will 
have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted 
subfiles of the original file) are stored as temporary subfiles on disk.

In the merging phase, the sorted runs are merged during one or more merge passes. 
Each merge pass can have one or more merge steps. The degree of merging (dM) 
is the number of sorted subfiles that can be merged in each merge step. During each 
merge step, one buffer block is needed to hold one disk block from each of the 
sorted subfiles being merged, and one additional buffer is needed for containing 
one disk block of the merge result, which will produce a larger sorted file that is the 
result of merging several smaller sorted subfiles. Hence, dM is the smaller of (nB − 1) 
and nR, and the number of merge passes is ⎡(logdM(nR))⎤. In our example, 
where nB = 5, dM = 4 (four-way merging), so the 205 initial sorted runs would be 
merged 4 at a time in each step into 52 larger sorted subfiles at the end of the first 
merge pass. These 52 sorted files are then merged 4 at a time into 13 sorted files, 
which are then merged into 4 sorted files, and then finally into 1 fully sorted file, 
which means that four passes are needed.

6Internal sorting algorithms are suitable for sorting data structures, such as tables and lists, that can fit 
entirely in main memory. These algorithms are described in detail in data structures and algorithms texts, 
and include techniques such as quick sort, heap sort, bubble sort, and many others. We do not discuss 
these here. Also, main-memory DBMSs such as HANA employ their own techniques for sorting.
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The performance of the sort-merge algorithm can be measured in terms of the 
number of disk block reads and writes (between the disk and main memory) 
before the sorting of the whole file is completed. The following formula approxi-
mates this cost:

(2 * b) + (2 * b * (logdM nR))

The first term (2 * b) represents the number of block accesses for the sorting phase, 
since each file block is accessed twice: once for reading into a main memory buffer 
and once for writing the sorted records back to disk into one of the sorted subfiles. 
The second term represents the number of block accesses for the merging phase. 
During each merge pass, a number of disk blocks approximately equal to the original 
file blocks b is read and written. Since the number of merge passes is (logdM nR), we 
get the total merge cost of (2 * b * (logdM nR)).

set i ← 1;
 j ← b;  {size of the file in blocks}
 k ← nB; {size of buffer in blocks}
 m ← ⎡( j/k)⎤; {number of subfiles- each fits in buffer}
{Sorting Phase}
while (i ≤m) 
do {
 read next k blocks of the file into the buffer or if there are less than k blocks
  remaining, then read in the remaining blocks;
 sort the records in the buffer and write as a temporary subfile;
 i ← i + 1;
}
{Merging Phase: merge subfiles until only 1 remains}
set i ← 1; 
 p ← ⎡logk–1m⎤ {p is the number of passes for the merging phase}
 j ← m; 
while (i ≤ p) 
do {
 n ← 1; 
 q ← ( j/(k–1)⎤ ;  {number of subfiles to write in this pass}
 while (n ≤ q) 
 do {
  read next k–1 subfiles or remaining subfiles (from previous pass)
   one block at a time;
  merge and write as new subfile one block at a time;
  n ← n + 1;
 }
 j ← q;
 i ← i + 1;
}

Figure 18.2 
Outline of the 
sort-merge  
algorithm for 
external sorting.
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The minimum number of main memory buffers needed is nB = 3, which gives a dM 
of 2 and an nR of ⎡(b/3)⎤. The minimum dM of 2 gives the worst-case performance 
of the algorithm, which is:

(2 * b) + (2 * (b * (log2 nR))).

The following sections discuss the various algorithms for the operations of the rela-
tional algebra (see Chapter 8).

18.3 Algorithms for SELECT Operation

18.3.1 Implemention Options for the SELECT Operation
There are many algorithms for executing a SELECT operation, which is basically a 
search operation to locate the records in a disk file that satisfy a certain condition. 
Some of the search algorithms depend on the file having specific access paths, and 
they may apply only to certain types of selection conditions. We discuss some of the 
algorithms for implementing SELECT in this section. We will use the following oper-
ations, specified on the relational database in Figure 5.5, to illustrate our discussion:

OP1: σSsn = ‘123456789’ (EMPLOYEE)
OP2: σDnumber > 5 (DEPARTMENT) 
OP3: σDno= 5 (EMPLOYEE) 
OP4: σDno= 5 AND Salary > 30000 AND Sex = ‘F’ (EMPLOYEE)
OP5: σEssn = ‘123456789’ AND Pno =10(WORKS_ON) 

OP6: An SQL Query:
 SELECT *
 FROM    EMPLOYEE
 WHERE Dno IN (3,27, 49)

OP7: An SQL Query (from Section 17.5.3)
SELECT First_name, Lname
FROM Employee
WHERE ((Salary*Commission_pct) + Salary ) > 15000; 

Search Methods for Simple Selection. A number of search algorithms are pos-
sible for selecting records from a file. These are also known as file scans, because 
they scan the records of a file to search for and retrieve records that satisfy a selection 
condition.7 If the search algorithm involves the use of an index, the index search is 
called an index scan. The following search methods (S1 through S6) are examples of 
some of the search algorithms that can be used to implement a select operation:

 ■ S1—Linear search (brute force algorithm). Retrieve every record in the file, 
and test whether its attribute values satisfy the selection condition. Since the 

7A selection operation is sometimes called a filter, since it filters out the records in the file that do not 
satisfy the selection condition.
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records are grouped into disk blocks, each disk block is read into a main 
memory buffer, and then a search through the records within the disk block 
is conducted in main memory.

 ■ S2—Binary search. If the selection condition involves an equality compari-
son on a key attribute on which the file is ordered, binary search—which is 
more efficient than linear search—can be used. An example is OP1 if Ssn is 
the ordering attribute for the EMPLOYEE file.8

 ■ S3a—Using a primary index. If the selection condition involves an equality 
comparison on a key attribute with a primary index—for example,  
Ssn = ‘123456789’ in OP1—use the primary index to retrieve the record. 
Note that this condition retrieves a single record (at most).

 ■ S3b—Using a hash key. If the selection condition involves an equality com-
parison on a key attribute with a hash key—for example, Ssn = ‘123456789’ 
in OP1—use the hash key to retrieve the record. Note that this condition 
retrieves a single record (at most).

 ■ S4—Using a primary index to retrieve multiple records. If the comparison 
condition is >, >=, <, or <= on a key field with a primary index—for exam-
ple, Dnumber > 5 in OP2—use the index to find the record satisfying the cor-
responding equality condition (Dnumber = 5); then retrieve all subsequent 
records in the (ordered) file. For the condition Dnumber < 5, retrieve all the 
preceding records.

 ■ S5—Using a clustering index to retrieve multiple records. If the selection 
condition involves an equality comparison on a nonkey attribute with a 
clustering index—for example, Dno = 5 in OP3—use the index to retrieve all 
the records satisfying the condition.

 ■ S6—Using a secondary (B+-tree) index on an equality comparison. This 
search method can be used to retrieve a single record if the indexing field is 
a key (has unique values) or to retrieve multiple records if the indexing field 
is not a key. This can also be used for comparisons involving >, >=, <, or <=. 
Queries involving a range of values (e.g., 3,000 <= Salary <= 4,000) in their 
selection are called range queries. In case of range queries, the B+-tree index 
leaf nodes contain the indexing field value in order—so a sequence of them 
is used corresponding to the requested range of that field and provide record 
pointers to the qualifying records.

 ■ S7a—Using a bitmap index. (See Section 17.5.2.) If the selection condi-
tion involves a set of values for an attribute (e.g., Dnumber in (3,27,49) 
in OP6), the corresponding bitmaps for each value can be OR-ed to give 
the set of record ids that qualify. In this example, that amounts to  
OR-ing three bitmap vectors whose length is the same as the number of 
employees.

8Generally, binary search is not used in database searches because ordered files are not used unless 
they also have a corresponding primary index.
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 ■ S7b—Using a functional index. (See Section 17.5.3.) In OP7, the selection con-
dition involves the expression ((Salary*Commission_pct) + Salary ). 
If there is a functional index defined as (as shown in Section 17.5.3):

CREATE INDEX income_ix
ON EMPLOYEE (Salary + (Salary*Commission_pct)); 

then this index can be used to retrieve employee records that qualify. Note 
that the exact way in which the function is written while creating the index is 
immaterial. 

In the next chapter, we discuss how to develop formulas that estimate the access 
cost of these search methods in terms of the number of block accesses and access 
time. Method S1 (linear search) applies to any file, but all the other methods 
depend on having the appropriate access path on the attribute used in the selection 
condition. Method S2 (binary search) requires the file to be sorted on the search 
attribute. The methods that use an index (S3a, S4, S5, and S6) are generally referred 
to as index searches, and they require the appropriate index to exist on the search 
attribute. Methods S4 and S6 can be used to retrieve records in a certain range in 
range queries. Method S7a (bitmap index search) is suitable for retrievals where 
an attribute must match an enumerated set of values. Method S7b (functional 
index search) is suitable when the match is based on a function of one or more 
attributes on which a functional index exists.

18.3.2 Search Methods for Conjunctive Selection
If a condition of a SELECT operation is a conjunctive condition—that is, if it is 
made up of several simple conditions connected with the AND logical connective 
such as OP4 above—the DBMS can use the following additional methods to 
implement the operation:

 ■ S8—Conjunctive selection using an individual index. If an attribute 
involved in any single simple condition in the conjunctive select condition 
has an access path that permits the use of one of the methods S2 to S6, use 
that condition to retrieve the records and then check whether each retrieved 
record satisfies the remaining simple conditions in the conjunctive select 
condition.

 ■ S9—Conjunctive selection using a composite index. If two or more attri-
butes are involved in equality conditions in the conjunctive select condition 
and a composite index (or hash structure) exists on the combined fields—
for example, if an index has been created on the composite key (Essn, Pno) of 
the WORKS_ON file for OP5—we can use the index directly.

 ■ S10—Conjunctive selection by intersection of record pointers.9 If second-
ary indexes (or other access paths) are available on more than one of the 
fields involved in simple conditions in the conjunctive select condition, and if 

9A record pointer uniquely identifies a record and provides the address of the record on disk; hence, it is 
also called the record identifier or record id.
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the indexes include record pointers (rather than block pointers), then each 
index can be used to retrieve the set of record pointers that satisfy the indi-
vidual condition. The intersection of these sets of record pointers gives the 
record pointers that satisfy the conjunctive select condition, which are then 
used to retrieve those records directly. If only some of the conditions have 
secondary indexes, each retrieved record is further tested to determine 
whether it satisfies the remaining conditions.10 In general, method S10 
assumes that each of the indexes is on a nonkey field of the file, because if one 
of the conditions is an equality condition on a key field, only one record will 
satisfy the whole condition. The bitmap and functional indexes discussed 
above in S7 are applicable for conjunctive selection on multiple attributes as 
well. For conjunctive selection on multiple attributes, the resulting bitmaps 
are AND-ed to produce the list of record ids; the same can be done when one 
or more set of record ids comes from a functional index.

Whenever a single condition specifies the selection—such as OP1, OP2, or OP3—
the DBMS can only check whether or not an access path exists on the attribute 
involved in that condition. If an access path (such as index or hash key or bitmap 
index or sorted file) exists, the method corresponding to that access path is used; 
otherwise, the brute force, linear search approach of method S1 can be used. Query 
optimization for a SELECT operation is needed mostly for conjunctive select condi-
tions whenever more than one of the attributes involved in the conditions have an 
access path. The optimizer should choose the access path that retrieves the fewest 
records in the most efficient way by estimating the different costs (see Section 19.3) 
and choosing the method with the least estimated cost.

18.3.3 Search Methods for Disjunctive Selection
Compared to a conjunctive selection condition, a disjunctive condition (where 
simple conditions are connected by the OR logical connective rather than by AND) 
is much harder to process and optimize. For example, consider OP4′:

OP4′: σDno=5 OR Salary > 30000 OR Sex =‘F’ (EMPLOYEE)

With such a condition, the records satisfying the disjunctive condition are the 
union of the records satisfying the individual conditions. Hence, if any one of the 
conditions does not have an access path, we are compelled to use the brute force, 
linear search approach. Only if an access path exists on every simple condition in 
the disjunction can we optimize the selection by retrieving the records satisfying 
each condition—or their record ids—and then applying the union operation to 
eliminate duplicates.

All the methods discussed in S1 through S7 are applicable for each simple condition 
yielding a possible set of record ids. The query optimizer must choose the appropri-
ate one for executing each SELECT operation in a query. This optimization uses 

10The technique can have many variations—for example, if the indexes are logical indexes that store primary 
key values instead of record pointers.
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formulas that estimate the costs for each available access method, as we will discuss 
in Sections 19.4 and 19.5. The optimizer chooses the access method with the lowest 
estimated cost.

18.3.4 Estimating the Selectivity of a Condition
To minimize the overall cost of query execution in terms of resources used and 
response time, the query optimizer receives valuable input from the system catalog, 
which contains crucial statistical information about the database.

Information in the Database Catalog. A typical RDBMS catalog contains the 
following types of information:

For each relation (table) r with schema R containing rR tuples:

 � The number of rows/records or its cardinality: |r(R) |. We will refer to the 
number of rows simply as rR.

 � The “width” of the relation (i.e., the length of each tuple in the relation) 
this length of tuple is referred to as R.

 � The number of blocks that relation occupies in storage: referred to as bR.

 � The blocking factor bfr, which is the number of tuples per block.

For each attribute A in relation R:

 � The number of distinct values of A in R: NDV (A, R).

 � The max and min values of attribute A in R: max (A, R) and min (A, R).

Note that many other forms of the statistics are possible and may be kept as needed. 
If there is a composite index on attributes <A, B>, then the NDV (R, <A, B>) is of 
significance. An effort is made to keep these statistics as accurate as possible; how-
ever, keeping them accurate up-to-the-minute is considered unnecessary since the 
overhead of doing so in fairly active databases is too high. We will be revisiting 
many of the above parameters again in Section 19.3.2.

When the optimizer is choosing between multiple simple conditions in a conjunc-
tive select condition, it typically considers the selectivity of each condition. The 
selectivity (sl) is defined as the ratio of the number of records (tuples) that satisfy 
the condition to the total number of records (tuples) in the file (relation), and thus 
it is a number between zero and one. Zero selectivity means none of the records in 
the file satisfies the selection condition, and a selectivity of one means that all the 
records in the file satisfy the condition. In general, the selectivity will not be either 
of these two extremes, but will be a fraction that estimates the percentage of file 
records that will be retrieved.

Although exact selectivities of all conditions may not be available, estimates of 
 selectivities are possible from the information kept in the DBMS catalog and are used 
by the optimizer. For example, for an equality condition on a key attribute of relation 
r(R), s = 1/|r(R)|, where |r(R)| is the number of tuples in relation r(R). For an equality 
condition on a nonkey attribute with i distinct values, s can be estimated by 
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(|r(R)|/i)/|r(R)| or 1/i, assuming that the records are evenly or uniformly distributed 
among the distinct values. Under this assumption, |r(R)|/i records will satisfy an 
equality condition on this attribute. For a range query with the selection condition,

A ≥ v, assuming uniform distribution,
sl = 0 if v > max (A, R)
sl = max (A, R) – v / max (A, R) – min (A, R)

In general, the number of records satisfying a selection condition with selectivity sl is 
estimated to be |r(R)| * sl. The smaller this estimate is, the higher the desirability of 
using that condition first to retrieve records. For a nonkey attribute with NDV (A, R) 
distinct values, it is often the case that those values are not uniformly distributed.

If the actual distribution of records among the various distinct values of the attribute 
is kept by the DBMS in the form of a histogram, it is possible to get more accurate 
estimates of the number of records that satisfy a particular condition. We will discuss 
the catalog information and histograms in more detail in Section 19.3.3.

18.4 Implementing the JOIN Operation
The JOIN operation is one of the most time-consuming operations in query pro-
cessing. Many of the join operations encountered in queries are of the EQUIJOIN 
and NATURAL JOIN varieties, so we consider just these two here since we are only 
giving an overview of query processing and optimization. For the remainder of this 
chapter, the term join refers to an EQUIJOIN (or NATURAL JOIN).

There are many possible ways to implement a two-way join, which is a join on two 
files. Joins involving more than two files are called multiway joins. The number of 
possible ways to execute multiway joins grows rapidly because of the combinatorial 
explosion of possible join orderings. In this section, we discuss techniques for 
implementing only two-way joins. To illustrate our discussion, we refer to the rela-
tional schema shown in Figure 5.5 once more—specifically, to the EMPLOYEE, 
DEPARTMENT, and PROJECT relations. The algorithms we discuss next are for a join 
operation of the form:

R  A=B S

where A and B are the join attributes, which should be domain-compatible attri-
butes of R and S, respectively. The methods we discuss can be extended to more 
general forms of join. We illustrate four of the most common techniques for per-
forming such a join, using the following sample operations:

OP6: EMPLOYEE  Dno=Dnumber DEPARTMENT
OP7: DEPARTMENT  Mgr_ssn=Ssn EMPLOYEE

18.4.1 Methods for Implementing Joins
 ■ J1—Nested-loop join (or nested-block join). This is the default (brute force) 

algorithm because it does not require any special access paths on either file in the 
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join. For each record t in R (outer loop), retrieve every record s from S (inner 
loop) and test whether the two records satisfy the join condition t[A] = s[B].11

 ■ J2—Index-based nested-loop join (using an access structure to retrieve 
the matching records). If an index (or hash key) exists for one of the two 
join attributes—say, attribute B of file S—retrieve each record t in R (loop 
over file R), and then use the access structure (such as an index or a hash 
key) to retrieve directly all matching records s from S that satisfy s[B] = t[A].

 ■ J3—Sort-merge join. If the records of R and S are physically sorted (ordered) 
by value of the join attributes A and B, respectively, we can implement the join 
in the most efficient way possible. Both files are scanned concurrently in order 
of the join attributes, matching the records that have the same values for A and 
B. If the files are not sorted, they may be sorted first by using external sorting 
(see Section 18.2). In this method, pairs of file blocks are copied into memory 
buffers in order and the records of each file are scanned only once each for 
matching with the other file—unless both A and B are nonkey attributes, in 
which case the method needs to be modified slightly. A sketch of the sort-
merge join algorithm is given in Figure 18.3(a). We use R(i) to refer to the ith 
record in file R. A variation of the sort-merge join can be used when secondary 
indexes exist on both join attributes. The indexes provide the ability to access 
(scan) the records in order of the join attributes, but the records themselves 
are physically scattered all over the file blocks, so this method may be ineffi-
cient because every record access may involve accessing a different disk block.

 ■ J4—Partition-hash join (or just hash-join). The records of files R and S are 
partitioned into smaller files. The partitioning of each file is done using the 
same hashing function h on the join attribute A of R (for partitioning file R) 
and B of S (for partitioning file S). First, a single pass through the file with 
fewer records (say, R) hashes its records to the various partitions of R; this is 
called the partitioning phase, since the records of R are partitioned into the 
hash buckets. In the simplest case, we assume that the smaller file can fit 
entirely in main memory after it is partitioned, so that the partitioned subfiles 
of R are all kept in main memory. The collection of records with the same 
value of h(A) are placed in the same partition, which is a hash bucket in a hash 
table in main memory. In the second phase, called the probing phase, a single 
pass through the other file (S) then hashes each of its records using the same 
hash function h(B) to probe the appropriate bucket, and that record is com-
bined with all matching records from R in that bucket. This simplified descrip-
tion of partition-hash join assumes that the smaller of the two files fits entirely 
into memory buckets after the first phase. We will discuss the general case of 
partition-hash join below that does not require this assumption. In practice, 
techniques J1 to J4 are implemented by accessing whole disk blocks of a file, 
rather than individual records. Depending on the available number of buffers 
in memory, the number of blocks read in from the file can be adjusted.

11For disk files, it is obvious that the loops will be over disk blocks, so this technique has also been called 
nested-block join.
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(a) sort the tuples in R on attribute A;        (*assume R has n tuples (records)*) 
 sort the tuples in S on attribute B;        (*assume S has m tuples (records)*)
 set i ←1, j ← 1; 
 while (i ≤n) and ( j ≤ m) 
 do { if R(i )[A] > S( j )[B] 
   then set j ← j + 1
  elseif R(i)[A] < S( j)[B] 
      then set i ← i + 1
  else { (* R(i)[A] = S( j )[B], so we output a matched tuple *)
       output the combined tuple <R(i ), S( j)> to T;

       (* output other tuples that match R(i ), if any *)
       set I ← j + 1; 
       while (l ≤ m) and (R(i)[A] = S(l )[B]) 
       do { output the combined tuple <R(i ), S(l )> to T; 
           set l ← l + 1
       }

    (* output other tuples that match S( j), if any *)
    set k ← i + 1; 
    while (k ≤ n) and (R(k)[A] = S(j)[B]) 
    do { output the combined tuple <R(k), S( j)> to T; 
           set k ← k + 1
    }
    set i ←k, j ← l
  }
 }

(b) create a tuple t[<attribute list>] in T ′ for each tuple t in R; 
  (* T ′ contains the projection results before duplicate elimination *)
 if <attribute list> includes a key of R
  then T ← T ′
 else { sort the tuples in T ′;
    set i ← 1, j ← 2; 
    while i ≤ n
    do { output the tuple T ′[i ] to T; 
        while T ′[i] = T ′[ j ] and j ≤ n do j ← j + 1;    (* eliminate duplicates *)
        i ← j; j ← i + 1
    }
 }
 (*T contains the projection result after duplicate elimination*)

Figure 18.3 
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by  
using sort-merge, where R has n tuples and S has m tuples. (a) Implementing the operation  
T ← R  A=BS. (b) Implementing the operation T ← π<attribute list>(R).
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(c) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1; 
 while (i ≤ n) and ( j ≤ m) 
 do { if R(i ) > S( j )
      then { output S( j ) to T;
       set j ← j + 1
      }
   elseif R(i ) < S( j )
      then { output R(i ) to T;
       set i ← i + 1
      }
   else set j ← j + 1        (* R(i)=S( j ), so we skip one of the duplicate tuples *)
 }
 if (i ≤ n) then add tuples R(i ) to R(n) to T; 
 if (j ≤ m) then add tuples S(j ) to S(m) to T; 

(d) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1; 
 while (i ≤ n) and ( j ≤ m) 
 do { if R(i ) > S( j )
      then set j ← j + 1
   elseif R(i ) < S( j )
      then set i ← i + 1
   else { output R( j ) to T;     (* R(i ) = S( j ), so we output the tuple *)
       set i ← i + 1, j ← j + 1
   }
 }

(e) sort the tuples in R and S using the same unique sort attributes;
 set i ← 1, j ← 1; 
 while (i ≤ n) and ( j ≤ m) 
 do { if R(i ) > S( j )
      then set j ← j + 1
   elseif R(i ) < S( j )
      then { output R(i ) to T;    (* R(i ) has no matching S( j ), so output R(i ) *)
           set i ← i + 1
      }
   else set i ← i + 1, j ← j + 1
 }
 if (i ≤ n) then add tuples R(i) to R(n) to T; 

Figure 18.3 (continued)
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by using  
sort-merge, where R has n tuples and S has m tuples. (c) Implementing the operation T ← R ∪ S.  
(d) Implementing the operation T ← R ∩ S. (e) Implementing the operation T ← R – S.
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18.4.2  How Buffer Space and Choice of Outer-Loop  
File Affect Performance of Nested-Loop Join

The buffer space available has an important effect on some of the join algorithms. 
First, let us consider the nested-loop approach (J1). Looking again at the operation 
OP6 above, assume that the number of buffers available in main memory for imple-
menting the join is nB = 7 blocks (buffers). Recall that we assume that each memory 
buffer is the same size as one disk block. For illustration, assume that the DEPARTMENT 
file consists of rD = 50 records stored in bD = 10 disk blocks and that the EMPLOYEE 
file consists of rE = 6,000 records stored in bE = 2,000 disk blocks. It is advantageous 
to read as many blocks as possible at a time into memory from the file whose records 
are used for the outer loop. Note that keeping one block for reading from the inner 
file and one block for writing to the output file, nB − 2 blocks are available to read 
from the outer relation, The algorithm can then read one block at a time for the 
inner-loop file and use its records to probe (that is, search) the outer-loop blocks 
that are currently in main memory for matching records. This reduces the total 
number of block accesses. An extra buffer in main memory is needed to contain 
the resulting records after they are joined, and the contents of this result buffer can 
be appended to the result file—the disk file that will contain the join result—
whenever it is filled. This result buffer block then is reused to hold additional join 
result records.

In the nested-loop join, it makes a difference which file is chosen for the outer loop 
and which for the inner loop. If EMPLOYEE is used for the outer loop, each block of 
EMPLOYEE is read once, and the entire DEPARTMENT file (each of its blocks) is read 
once for each time we read in (nB – 2) blocks of the EMPLOYEE file. We get the fol-
lowing formulas for the number of disk blocks that are read from disk to main 
memory:

Total number of blocks accessed (read) for outer-loop file = bE

Number of times (nB − 2) blocks of outer file are loaded into main mem-
ory = ⎡bE/(nB – 2)⎤
Total number of blocks accessed (read) for inner-loop file = bD * ⎡bE/(nB – 2)⎤

Hence, we get the following total number of block read accesses:

bE + ( ⎡bE/(nB − 2)⎤ * bD) = 2000 + ( ⎡(2000/5)⎤ * 10) = 6000 block accesses

On the other hand, if we use the DEPARTMENT records in the outer loop, by sym-
metry we get the following total number of block accesses:

bD + ( ⎡bD/(nB − 2)⎤ * bE) = 10 + ( ⎡(10/5)⎤ * 2000) = 4010 block accesses

The join algorithm uses a buffer to hold the joined records of the result file. Once 
the buffer is filled, it is written to disk and its contents are appended to the result 
file, and then refilled with join result records.12

12If we reserve two buffers for the result file, double buffering can be used to speed the algorithm (see 
Section 16.3).
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If the result file of the join operation has bRES disk blocks, each block is written once 
to disk, so an additional bRES block accesses (writes) should be added to the preced-
ing formulas in order to estimate the total cost of the join operation. The same 
holds for the formulas developed later for other join algorithms. As this example 
shows, it is advantageous to use the file with fewer blocks as the outer-loop file in the 
nested-loop join.

18.4.3  How the Join Selection Factor Affects  
Join Performance

Another factor that affects the performance of a join, particularly the single-loop 
method J2, is the fraction of records in one file that will be joined with records in 
the other file. We call this the join selection factor13 of a file with respect to an 
equijoin condition with another file. This factor depends on the particular equijoin 
condition between the two files. To illustrate this, consider the operation OP7, 
which joins each DEPARTMENT record with the EMPLOYEE record for the manager 
of that department. Here, each DEPARTMENT record (there are 50 such records in 
our example) will be joined with a single EMPLOYEE record, but many EMPLOYEE 
records (the 5,950 of them that do not manage a department) will not be joined 
with any record from DEPARTMENT.

Suppose that secondary indexes exist on both the attributes Ssn of EMPLOYEE and 
Mgr_ssn of DEPARTMENT, with the number of index levels xSsn = 4 and xMgr_ssn= 2, 
respectively. We have two options for implementing method J2. The first retrieves 
each EMPLOYEE record and then uses the index on Mgr_ssn of DEPARTMENT to find 
a matching DEPARTMENT record. In this case, no matching record will be found for 
employees who do not manage a department. The number of block accesses for this 
case is approximately:

bE + (rE * (xMgr_ssn + 1)) = 2000 + (6000 * 3) = 20,000 block accesses

The second option retrieves each DEPARTMENT record and then uses the index on 
Ssn of EMPLOYEE to find a matching manager EMPLOYEE record. In this case, every 
DEPARTMENT record will have one matching EMPLOYEE record. The number of 
block accesses for this case is approximately:

bD + (rD * (xSsn + 1)) = 10 + (50 * 5) = 260 block accesses

The second option is more efficient because the join selection factor of DEPARTMENT 
with respect to the join condition Ssn = Mgr_ssn is 1 (every record in DEPARTMENT  
will be joined), whereas the join selection factor of EMPLOYEE with respect to the 
same join condition is (50/6,000), or 0.008 (only 0.8% of the records in EMPLOYEE 
will be joined). For method J2, either the smaller file or the file that has a match for 
every record (that is, the file with the high join selection factor) should be used in 
the (single) join loop. It is also possible to create an index specifically for perform-
ing the join operation if one does not already exist.

13This is different from the join selectivity, which we will discuss in Chapter 19.
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The sort-merge join J3 is quite efficient if both files are already sorted by their join 
attribute. Only a single pass is made through each file. Hence, the number of blocks 
accessed is equal to the sum of the numbers of blocks in both files. For this method, 
both OP6 and OP7 would need bE + bD = 2,000 + 10 = 2,010 block accesses. How-
ever, both files are required to be ordered by the join attributes; if one or both are 
not, a sorted copy of each file must be created specifically for performing the join 
operation. If we roughly estimate the cost of sorting an external file by (b log2b) 
block accesses, and if both files need to be sorted, the total cost of a sort-merge join 
can be estimated by (bE + bD + bE log2bE + bD log2bD).14

18.4.4 General Case for Partition-Hash Join
The hash-join method J4 is also efficient. In this case, only a single pass is made 
through each file, whether or not the files are ordered. If the hash table for the 
smaller of the two files can be kept entirely in main memory after hashing (parti-
tioning) on its join attribute, the implementation is straightforward. If, however, 
the partitions of both files must be stored on disk, the method becomes more com-
plex, and a number of variations to improve the efficiency have been proposed. We 
discuss two techniques: the general case of partition-hash join and a variation called 
hybrid hash-join algorithm, which has been shown to be efficient.

In the general case of partition-hash join, each file is first partitioned into M parti-
tions using the same partitioning hash function on the join attributes. Then, each 
pair of corresponding partitions is joined. For example, suppose we are joining 
relations R and S on the join attributes R.A and S.B:

R  A=B S

In the partitioning phase, R is partitioned into the M partitions R1, R2, … , RM, and S 
into the M partitions S1, S2, …, SM. The property of each pair of corresponding parti-
tions Ri, Si with respect to the join operation is that records in Ri only need to be joined 
with records in Si, and vice versa. This property is ensured by using the same hash 
function to partition both files on their join attributes—attribute A for R and attribute 
B for S. The minimum number of in-memory buffers needed for the partitioning 
phase is M + 1. Each of the files R and S is partitioned separately. During partitioning 
of a file, M in-memory buffers are allocated to store the records that hash to each par-
tition, and one additional buffer is needed to hold one block at a time of the input file 
being partitioned. Whenever the in-memory buffer for a partition gets filled, its con-
tents are appended to a disk subfile that stores the partition. The partitioning phase 
has two iterations. After the first iteration, the first file R is partitioned into the subfiles 
R1, R2, … , RM, where all the records that hashed to the same buffer are in the same 
partition. After the second iteration, the second file S is similarly partitioned.

In the second phase, called the joining or probing phase, M iterations are needed. 
During iteration i, two corresponding partitions Ri and Si are joined. The minimum 

14We can use the more accurate formulas from Section 19.5 if we know the number of available buffers 
for sorting.
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number of buffers needed for iteration i is the number of blocks in the smaller of 
the two partitions, say Ri, plus two additional buffers. If we use a nested-loop join 
during iteration i, the records from the smaller of the two partitions Ri are copied 
into memory buffers; then all blocks from the other partition Si are read—one at a 
time—and each record is used to probe (that is, search) partition Ri for matching 
record(s). Any matching records are joined and written into the result file. To 
improve the efficiency of in-memory probing, it is common to use an in-memory 
hash table for storing the records in partition Ri by using a different hash func-
tion from the partitioning hash function.15

We can approximate the cost of this partition hash-join as 3 * (bR + bS) + bRES for our 
example, since each record is read once and written back to disk once during the 
partitioning phase. During the joining (probing) phase, each record is read a second 
time to perform the join. The main difficulty of this algorithm is to ensure that the 
partitioning hash function is uniform—that is, the partition sizes are nearly equal in 
size. If the partitioning function is skewed (nonuniform), then some partitions may 
be too large to fit in the available memory space for the second joining phase.

Notice that if the available in-memory buffer space nB > (bR + 2), where bR is the 
number of blocks for the smaller of the two files being joined, say R, then there is no 
reason to do partitioning since in this case the join can be performed entirely in 
memory using some variation of the nested-loop join based on hashing and probing. 
For illustration, assume we are performing the join operation OP6, repeated below:

OP6: EMPLOYEE  Dno=Dnumber DEPARTMENT

In this example, the smaller file is the DEPARTMENT file; hence, if the number of 
available memory buffers nB > (bD + 2), the whole DEPARTMENT file can be read 
into main memory and organized into a hash table on the join attribute. Each 
EMPLOYEE block is then read into a buffer, and each EMPLOYEE record in the buf-
fer is hashed on its join attribute and is used to probe the corresponding in-memory 
bucket in the DEPARTMENT hash table. If a matching record is found, the records 
are joined, and the result record(s) are written to the result buffer and eventually to 
the result file on disk. The cost in terms of block accesses is hence (bD + bE), plus 
bRES—the cost of writing the result file.

18.4.5 Hybrid Hash-Join
The hybrid hash-join algorithm is a variation of partition hash-join, where the join-
ing phase for one of the partitions is included in the partitioning phase. To illustrate 
this, let us assume that the size of a memory buffer is one disk block; that nB such 
buffers are available; and that the partitioning hash function used is h(K) =  
K mod M, so that M partitions are being created, where M < nB. For illustration, 
assume we are performing the join operation OP6. In the first pass of the partitioning 
phase, when the hybrid hash-join algorithm is partitioning the smaller of the two files 

15If the hash function used for partitioning is used again, all records in a partition will hash to the same 
bucket again.
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(DEPARTMENT in OP6), the algorithm divides the buffer space among the M parti-
tions such that all the blocks of the first partition of DEPARTMENT completely reside 
in main memory. For each of the other partitions, only a single in-memory buffer—
whose size is one disk block—is allocated; the remainder of the partition is written to 
disk as in the regular partition-hash join. Hence, at the end of the first pass of the 
partitioning phase, the first partition of DEPARTMENT resides wholly in main mem-
ory, whereas each of the other partitions of DEPARTMENT resides in a disk subfile.

For the second pass of the partitioning phase, the records of the second file being 
joined—the larger file, EMPLOYEE in OP6—are being partitioned. If a record 
hashes to the first partition, it is joined with the matching record in DEPARTMENT 
and the joined records are written to the result buffer (and eventually to disk). If 
an EMPLOYEE record hashes to a partition other than the first, it is partitioned 
normally and stored to disk. Hence, at the end of the second pass of the partition-
ing phase, all records that hash to the first partition have been joined. At this point, 
there are M − 1 pairs of partitions on disk. Therefore, during the second joining or 
probing phase, M − 1 iterations are needed instead of M. The goal is to join as 
many records during the partitioning phase so as to save the cost of storing those 
records on disk and then rereading them a second time during the joining phase.

18.5  Algorithms for PROJECT  
and Set Operations

A PROJECT operation π<attribute list>(R) from relational algebra implies that after 
projecting R on only the columns in the list of attributes, any duplicates are removed 
by treating the result strictly as a set of tuples. However, the SQL query:

SELECT Salary
FROM EMPLOYEE

produces a list of salaries of all employees. If there are 10,000 employees and only 80 
distinct values for salary, it produces a one column result with 10,000 tuples. This oper-
ation is done by simple linear search by making a complete pass through the table.

Getting the true effect of the relational algebra π<attribute list>(R) operator is straight-
forward to implement if <attribute list> includes a key of relation R, because in this 
case the result of the operation will have the same number of tuples as R, but with 
only the values for the attributes in <attribute list> in each tuple. If <attribute list> 
does not include a key of R, duplicate tuples must be eliminated. This can be done by 
sorting the result of the operation and then eliminating duplicate tuples, which 
appear consecutively after sorting. A sketch of the algorithm is given in Fig-
ure 18.3(b). Hashing can also be used to eliminate duplicates: as each record is 
hashed and inserted into a bucket of the hash file in memory, it is checked against 
those records already in the bucket; if it is a duplicate, it is not inserted in the bucket. 
It is useful to recall here that in SQL queries, the default is not to eliminate dupli-
cates from the query result; duplicates are eliminated from the query result only if 
the keyword DISTINCT is included.
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Set operations—UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN 
PRODUCT—are sometimes expensive to implement, since UNION,  
INTERSECTION, MINUS or SET DIFFERENCE are set operators and must always 
return distinct results.

In particular, the CARTESIAN PRODUCT operation R × S is expensive because its 
result includes a record for each combination of records from R and S. Also, each 
record in the result includes all attributes of R and S. If R has n records and j attri-
butes, and S has m records and k attributes, the result relation for R × S will have 
n * m records and each record will have j + k attributes. Hence, it is important to 
avoid the CARTESIAN PRODUCT operation and to substitute other operations such 
as join during query optimization. The other three set operations—UNION,  
INTERSECTION, and SET DIFFERENCE16—apply only to type-compatible (or 
union-compatible) relations, which have the same number of attributes and the 
same attribute domains. The customary way to implement these operations is to 
use variations of the sort-merge technique: the two relations are sorted on the 
same attributes, and, after sorting, a single scan through each relation is sufficient 
to produce the result. For example, we can implement the UNION operation, R ∪ S, 
by scanning and merging both sorted files concurrently, and whenever the 
same tuple exists in both relations, only one is kept in the merged result. For the 
INTERSECTION operation, R ∩ S, we keep in the merged result only those tuples 
that appear in both sorted relations. Figure 18.3(c) to (e) sketches the implementa-
tion of these operations by sorting and merging. Some of the details are not 
included in these algorithms.

Hashing can also be used to implement UNION, INTERSECTION, and SET  
DIFFERENCE. One table is first scanned and then partitioned into an in-memory 
hash table with buckets, and the records in the other table are then scanned one at a 
time and used to probe the appropriate partition. For example, to implement R ∪ S, 
first hash (partition) the records of R; then, hash (probe) the records of S, but do not 
insert duplicate records in the buckets. To implement R ∩ S, first partition the 
records of R to the hash file. Then, while hashing each record of S, probe to check if 
an identical record from R is found in the bucket, and if so add the record to the 
result file. To implement R – S, first hash the records of R to the hash file buckets. 
While hashing (probing) each record of S, if an identical record is found in the 
bucket, remove that record from the bucket.

18.5.1  Use of Anti-Join for SET DIFFERENCE  
(or EXCEPT or MINUS in SQL)

The MINUS operator in SQL is transformed into an anti-join (which we introduced 
in Section 18.1) as follows. Suppose we want to find out which departments have no 
employees in the schema of Figure 5.5:

Select Dnumber from DEPARTMENT MINUS Select Dno from EMPLOYEE;

16SET DIFFERENCE is called MINUS or EXCEPT in SQL.
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can be converted into the following:

SELECT DISTINCT DEPARTMENT.Dnumber
FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT.Dnumber A = EMPLOYEE.Dno

We used the nonstandard notation for anti-join, “A=”, where DEPARTMENT is on 
the left of anti-join and EMPLOYEE is on the right.

In SQL, there are two variations of these set operations. The operations 
UNION, INTERSECTION, and EXCEPT or MINUS (the SQL keywords for the SET 
DIFFERENCE operation) apply to traditional sets, where no duplicate records 
exist in the result. The operations UNION ALL, INTERSECTION ALL, and EXCEPT 
ALL apply to multisets (or bags). Thus, going back to the database of Figure 5.5, 
consider a query that finds all departments that employees are working on 
where at least one project exists controlled by that department, and this result 
is written as:

SELECT Dno from EMPLOYEE
INTERSECT ALL
SELECT Dum from PROJECT

This would not eliminate any duplicates of Dno from EMPLOYEE while perform-
ing the INTERSECTION. If all 10,000 employees are assigned to departments 
where some project is present in the PROJECT relation, the result would be the list 
of all the 10,000 department numbers including duplicates.. This can be accom-
plished by the semi-join operation we introduced in Section 18.1 as follows:

SELECT DISTINCT EMPLOYEE.Dno
FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.Dno S = DEPARTMENT.Dnumber

If INTERSECTION is used without the ALL, then an additional step of duplicate 
elimination will be required for the selected department numbers.

18.6  Implementing Aggregate Operations  
and Different Types of JOINs

18.6.1 Implementing Aggregate Operations
The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an 
entire table, can be computed by a table scan or by using an appropriate index, if 
available. For example, consider the following SQL query:

SELECT MAX(Salary)
FROM EMPLOYEE;

If an (ascending) B+-tree index on Salary exists for the EMPLOYEE relation, then 
the optimizer can decide on using the Salary index to search for the largest Salary 
value in the index by following the rightmost pointer in each index node from the 
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root to the rightmost leaf. That node would include the largest Salary value as its 
last entry. In most cases, this would be more efficient than a full table scan of 
EMPLOYEE, since no actual records need to be retrieved. The MIN function can be 
handled in a similar manner, except that the leftmost pointer in the index is fol-
lowed from the root to leftmost leaf. That node would include the smallest Salary 
value as its first entry.

The index could also be used for the AVERAGE and SUM aggregate functions, 
but only if it is a dense index—that is, if there is an index entry for every record 
in the main file. In this case, the associated computation would be applied to 
the values in the index. For a nondense index, the actual number of records 
associated with each index value must be used for a correct computation. This 
can be done if the number of records associated with each value in the index is 
stored in each index entry. For the COUNT aggregate function, the number of 
values can be also computed from the index in a similar manner. If a COUNT(*) 
function is applied to a whole relation, the number of records currently in each 
relation are typically stored in the catalog, and so the result can be retrieved 
directly from the catalog.

When a GROUP BY clause is used in a query, the aggregate operator must be applied 
separately to each group of tuples as partitioned by the grouping attribute. Hence, 
the table must first be partitioned into subsets of tuples, where each partition 
(group) has the same value for the grouping attributes. In this case, the computa-
tion is more complex. Consider the following query:

SELECT Dno, AVG(Salary) 
FROM EMPLOYEE
GROUP BY Dno;

The usual technique for such queries is to first use either sorting or hashing on the 
grouping attributes to partition the file into the appropriate groups. Then the algo-
rithm computes the aggregate function for the tuples in each group, which have the 
same grouping attribute(s) value. In the sample query, the set of EMPLOYEE tuples 
for each department number would be grouped together in a partition and the 
average salary computed for each group.

Notice that if a clustering index (see Chapter 17) exists on the grouping attribute(s), 
then the records are already partitioned (grouped) into the appropriate subsets. In 
this case, it is only necessary to apply the computation to each group.

18.6.2 Implementing Different Types of JOINs
In addition to the standard JOIN (also called INNER JOIN in SQL), there are varia-
tions of JOIN that are frequently used. Let us briefly consider three of them below: 
outer joins, semi-joins, and anti-joins.

Outer Joins.  In Section 6.4, we discussed the outer join operation, with its three 
variations: left outer join, right outer join, and full outer join. In Chapter 5, we 
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discussed how these operations can be specified in SQL. The following is an exam-
ple of a left outer join operation in SQL:

SELECT E.Lname, E.Fname, D.Dname
FROM (EMPLOYEE E LEFT OUTER JOIN DEPARTMENT D ON E.Dno = D.Dnumber);

The result of this query is a table of employee names and their associated depart-
ments. The table contains the same results as a regular (inner) join, with the excep-
tion that if an EMPLOYEE tuple (a tuple in the left relation) does not have an 
associated department, the employee’s name will still appear in the resulting table, 
but the department name would be NULL for such tuples in the query result. Outer 
join can be looked upon as a combination of inner join and anti-join.

Outer join can be computed by modifying one of the join algorithms, such as 
nested-loop join or single-loop join. For example, to compute a left outer join, we 
use the left relation as the outer loop or index-based nested loop because every tuple 
in the left relation must appear in the result. If there are matching tuples in the 
other relation, the joined tuples are produced and saved in the result. However, if 
no matching tuple is found, the tuple is still included in the result but is padded 
with NULL value(s). The sort-merge and hash-join algorithms can also be extended 
to compute outer joins.

Theoretically, outer join can also be computed by executing a combination of rela-
tional algebra operators. For example, the left outer join operation shown above is 
equivalent to the following sequence of relational operations:

  1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

TEMP1 ← πLname, Fname, Dname (EMPLOYEE  Dno=Dnumber DEPARTMENT)

  2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2 ← πLname, Fname (EMPLOYEE) − πLname, Fname (TEMP1)

This minus operation can be achieved by performing an anti-join on  
Lname, Fname between EMPLOYEE and TEMP1, as we discussed above in 
Section 18.5.2.

  3. Pad each tuple in TEMP2 with a NULL Dname field.

TEMP2 ← TEMP2 × NULL

  4. Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT OUTER 
JOIN result.

RESULT ← TEMP1 ∪ TEMP2

The cost of the outer join as computed above would be the sum of the costs of the 
associated steps (inner join, projections, set difference, and union). However, note 
that step 3 can be done as the temporary relation is being constructed in step 2; that 
is, we can simply pad each resulting tuple with a NULL. In addition, in step 4, we 
know that the two operands of the union are disjoint (no common tuples), so there 
is no need for duplicate elimination. So the preferred method is to use a combina-
tion of inner join and anti-join rather than the above steps since the algebraic 
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approach of projection followed by set difference causes temporary tables to be 
stored and processed multiple times.

The right outer join can be converted to a left outer join by switching the operands 
and hence needs no separate discussion. Full outer join requires computing the 
result of inner join and then padding to the result extra tuples arising from 
unmatched tuples from both the left and right operand relations. Typically, full 
outer join would be computed by extending sort-merge or hashed join algorithms 
to account for the unmatched tuples.

Implementing Semi-Join and Anti-Join. In Section 18.1, we introduced these types 
of joins as possible operations to which some queries with nested subqueries get 
mapped. The purpose is to be able to perform some variant of join instead of evaluat-
ing the subquery multiple times. Use of inner join would be invalid in these cases, since 
for every tuple of the outer relation, the inner join looks for all possible matches on the 
inner relation. In semi-join, the search stops as soon as the first match is found and the 
tuple from outer relation is selected; in anti-join, search stops as soon as the first match 
is found and the tuple from outer relation is rejected. Both these types of joins can be 
implemented as an extension of the join algorithms we discussed in Section 18.4.

Implementing Non-Equi-Join  Join operation may also be performed when the 
join condition is one of inequality. In Chapter 6, we referred to this operation as 
theta-join.This functionality is based on a condition involving any operators, such 
as <, >, ≥, ≤, ≠, and so on. All of the join methods discussed are again applicable 
here with the exception that hash-based algorithms cannot be used.

18.7 Combining Operations Using Pipelining
A query specified in SQL will typically be translated into a relational algebra expres-
sion that is a sequence of relational operations. If we execute a single operation at a 
time, we must generate temporary files on disk to hold the results of these tempo-
rary operations, creating excessive overhead. Evaluating a query by creating and 
storing each temporary result and then passing it as an argument for the next oper-
ator is called materialized evaluation. Each temporary materialized result is then 
written to disk and adds to the overall cost of query processing.

Generating and storing large temporary files on disk is time-consuming and can be 
unnecessary in many cases, since these files will immediately be used as input to the 
next operation. To reduce the number of temporary files, it is common to generate 
query execution code that corresponds to algorithms for combinations of opera-
tions in a query.

For example, rather than being implemented separately, a JOIN can be combined 
with two SELECT operations on the input files and a final PROJECT operation on 
the resulting file; all this is implemented by one algorithm with two input files and 
a single output file. Rather than creating four temporary files, we apply the algo-
rithm directly and get just one result file.
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In Section 19.1, we discuss how heuristic relational algebra optimization can group 
operations together for execution. Combining several operations into one and 
avoiding the writing of temporary results to disk is called pipelining or stream-
based processing.

It is common to create the query execution code dynamically to implement multi-
ple operations. The generated code for producing the query combines several algo-
rithms that correspond to individual operations. As the result tuples from one 
operation are produced, they are provided as input for subsequent operations. For 
example, if a join operation follows two select operations on base relations, the 
tuples resulting from each select are provided as input for the join algorithm in a 
stream or pipeline as they are produced. The corresponding evaluation is consid-
ered a pipelined evaluation. It has two distinct benefits:

 ■ Avoiding the additional cost and time delay incurred for writing the inter-
mediate results to disk.

 ■ Being able to start generating results as quickly as possible when the root 
operator is combined with some of the operators discussed in the follow-
ing section means that the pipelined evaluation can start generating tuples 
of the result while rest of the pipelined intermediate tables are undergoing 
processing.

18.7.1 Iterators for implementing Physical Operations
Various algorithms for algebraic operations involve reading some input in the form 
of one or more files, processing it, and generating an output file as a relation. If the 
operation is implemented in such a way that it outputs one tuple at a time, then it 
can be regarded as an iterator. For example, we can devise a tuple-based imple-
mentation of the nested-loop join that will generate a tuple at a time as output. 
Iterators work in contrast with the materialization approach wherein entire rela-
tions are produced as temporary results and stored on disk or main memory and 
are read back again by the next algorithm. The query plan that contains the query 
tree may be executed by invoking the iterators in a certain order. Many iterators 
may be active at one time, thereby passing results up the execution tree and avoid-
ing the need for additional storage of temporary results. The iterator interface typi-
cally consists of the following methods:

  1. Open (): This method initializes the operator by allocating buffers for its 
input and output and initializing any data structures needed for the opera-
tor. It is also used to pass arguments such as selection conditions needed to 
perform the operation. It in turn calls Open() to get the arguments it needs.

  2. Get_Next (): This method calls the Get_next() on each of its input argu-
ments and calls the code specific to the operation being performed on 
the inputs. The next output tuple generated is returned and the state of 
the iterator is updated to keep track of the amount of input processed. 
When no more tuples can be returned, it places some special value in the 
output buffer.
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  3. Close(): This method ends the iteration after all tuples that can be generated 
have been generated, or the required/demanded number of tuples have been 
returned. It also calls Close() on the arguments of the iterator.

Each iterator may be regarded as a class for its implementation with the above 
three methods applicable to each instance of that class. If the operator to be imple-
mented allows a tuple to be completely processed when it is received, it may be 
possible to use the pipelining strategy effectively. However, if the input tuples need 
to be examined over multiple passes, then the input has to be received as a materi-
alized relation. This becomes tantamount to the Open () method doing most of the 
work and the benefit of pipelining not being fully achieved. Some physical opera-
tors may not lend themselves to the iterator interface concept and hence may not 
support pipelining.

The iterator concept may also be applied to access methods. Accessing a B+-tree or 
a hash-based index may be regarded as a function that can be implemented as an 
iterator; it produces as output a series of tuples that meet the selection condition 
passed to the Open() method.

18.8 Parallel Algorithms for Query Processing
In Chapter 2, we mentioned several variations of the client/server architectures, 
including two-tier and three-tier architectures. There is another type of architec-
ture, called parallel database architecture, that is prevalent for data-intensive 
applications. We will discuss it in further detail in Chapter 23 in conjunction with 
distributed databases and the big data and NOSQL emerging technologies.

Three main approaches have been proposed for parallel databases. They corre-
spond to three different hardware configurations of processors and secondary stor-
age devices (disks) to support parallelism. In shared-memory architecture, 
multiple processors are attached to an interconnection network and can access a 
common main memory region. Each processor has access to the entire memory 
address space from all machines. The memory access to local memory and local 
cache is faster; memory access to the common memory is slower. This architecture 
suffers from interference because as more processors are added, there is increasing 
contention for the common memory. The second type of architecture is known as 
shared-disk architecture. In this architecture, every processor has its own mem-
ory, which is not accessible from other processors. However, every machine has 
access to all disks through the interconnection network. Every processor may not 
necessarily have a disk of its own. We discussed two forms of enterprise-level sec-
ondary storage systems in Section 16.11. Both storage area networks (SANs) and 
network attached storage (NAS) fall into the shared-disk architecture and lend 
themselves to parallel processing. They have different units of data transfer; SANs 
transfer data in units of blocks or pages to and from disks to processors; NAS 
behaves like a file server that transfers files using some file transfer protocol. In 
these systems, as more processors are added, there is more contention for the lim-
ited network bandwidth.
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The above difficulties have led to shared-nothing architecture becoming the most 
commonly used architecture in parallel database systems. In this architecture, each 
processor accesses its own main memory and disk storage. When a processor A 
requests data located on the disk DB attached to processor B, processor A sends the 
request as a message over a network to processor B, which accesses its own disk DB 

and ships the data over the network in a message to processor A. Parallel databases 
using shared-nothing architecture are relatively inexpensive to build. Today, com-
modity processors are being connected in this fashion on a rack, and several racks 
can be connected by an external network. Each processor has its own memory and 
disk storage.

The shared-nothing architecture affords the possibility of achieving parallelism in 
query processing at three levels, which we will discuss below: individual operator 
parallelism, intraquery parallelism, and interquery parallelism. Studies have shown 
that by allocating more processors and disks, linear speed-up—a linear reduction 
in the time taken for operations—is possible. Linear scale-up, on the other hand, 
refers to being able to give a constant sustained performance by increasing the 
number of processors and disks proportional to the size of data. Both of these are 
implicit goals of parallel processing.

18.8.1 Operator-Level Parallelism
In the operations that can be implemented with parallel algorithms, one of the main 
strategies is to partition data across disks. Horizontal partitioning of a relation 
corresponds to distributing the tuples across disks based on some partitioning 
method. Given n disks, assigning the ith tuple to disk i mod n is called round-robin 
partitioning. Under range partitioning, tuples are equally distributed (as much as 
possible) by dividing the range of values of some attribute. For example, employee 
tuples from the EMPLOYEE relation may be assigned to 10 disks by dividing the 
age range into 10 ranges—say 22–25, 26–28, 29–30, and so on—such that each has 
roughly one-tenth of the total number of employees. Range partitioning is a chal-
lenging operation and requires a good understanding of the distribution of data 
along the attribute involved in the range clause. The ranges used for partitioning 
are represented by the range vector. With hash partitioning, tuple i is assigned to 
the disk h(i), where h is the hashing function. Next, we briefly discuss how parallel 
algorithms are designed for various individual operations.

Sorting. If the data has been range partitioned on an attribute—say, age—into n 
disks on n processors, then to sort the entire relation on age, each partition can be 
sorted separately in parallel and the results can be concatenated. This potentially 
causes close to an n-fold reduction in the overall sorting time. If the relation has 
been partitioned using another scheme, the following approaches are possible:

 ■ Repartition the relation by using range partitioning on the same attribute 
that is the target for sorting; then sort each partition individually followed 
by concatenation, as mentioned above.

 ■ Use a parallel version of the external sort-merge algorithm shown in Figure 18.2.
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Selection. For a selection based on some condition, if the condition is an equality 
condition, <A = v> and the same attribute A has been used for range partitioning, the 
selection can be performed on only that partition to which the value v belongs. In other 
cases, the selection would be performed in parallel on all the processors and the results 
merged. If the selection condition is v1 ≤ A ≤ v2 and attribute A is used for range par-
titioning, then the range of values (v1, v2) must overlap a certain number of partitions. 
The selection operation needs to be performed only in those processors in parallel.

Projection and Duplicate Elimination. Projection without duplicate elimination 
can be achieved by performing the operation in parallel as data is read from each 
partition. Duplicate elimination can be achieved by sorting the tuples and discard-
ing duplicates. For sorting, any of the techniques mentioned above can be used 
based on how the data is partitioned.

Join. The basic idea of parallel join is to split the relations to be joined, say R and S, 
in such a way that the join is divided into multiple n smaller joins, and then perform 
these smaller joins in parallel on n processors and take a union of the result. Next, 
we discuss the various techniques involved to achieve this.

a. Equality-based partitioned join: If both the relations R and S are parti-
tioned into n partitions on n processors such that partition ri and parti-
tion si are both assigned to the same processor Pi, then the join can be 
computed locally provided the join is an equality join or natural join. 
Note that the partitions must be non-overlapping on the join key; in that 
sense, the partitioning is a strict set-theoretic partitioning. Furthermore, 
the attribute used in the join condition must also satisfy these conditions:

 � It is the same as that used for range partitioning, and the ranges used 
for each partition are also the same for both R and S. Or,

 � It is the same as that used to partition into n partitions using hash 
partitioning. The same hash function must be used for R and S. If the 
distributions of values of the joining attribute are different in R and S, 
it is difficult to come up with a range vector that will uniformly distrib-
ute both R and S into equal partitions. Ideally, the size of | ri | + | si | 
should be even for all partitions i. Otherwise, if there is too much data 
skew, then the benefits of parallel processing are not fully achieved. 
The local join at each processor may be performed using any of the 
techniques discussed for join: sort merge, nested loop, and hash join.

b. Inequality join with partitioning and replication: If the join condition 
is an inequality condition, involving <, ≤, >, ≥, ≠, and so on, then it is not 
possible to partition R and S in such a way that the ith partition of R—
namely, ri— joins the jth partition of S—namely, si only. Such a join can 
be parallelized in two ways:

 � Asymmetric case: Partitioning a relation R using one of the partitioning 
schemes; replicating one of the relations (say S) to all the n partitions; 
and performing the join between ri and the entire S at processor Pi. 
This method is preferred when S is much smaller than R.
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 � Symmetric case: Under this general method, which is applicable to any 
type of join, both R and S are partitioned. R is partitioned n ways, and 
S is partitioned m ways. A total of m * n processors are used for the 
parallel join. These partitions are appropriately replicated so that pro-
cessors P0,0 thru Pn-1,m-1 (total of m * n processors) can perform the 
join locally. The processor Pi,j performs the join of ri with si using any 
of the join techniques. The system replicates the partition ri to proces-
sors Pi,0, Pi,1 thru Pi,m-1. Similarly, partition si is replicated to processors 

P0,j, P1,j, P n-1,j. In general, partitioning with replication has a higher 
cost than just partitioning; thus partitioning with replication costs 
more in the case of an equijoin.

c. Parallel partitioned hash join: The partitioned hash join we described as 
algorithm J4 in Section 18.4 can be parallelized. The idea is that when R and S 
are large relations, even if we partition each relation into n partitions equaling 
the number of processors, the local join at each processor can still be costly. 
This join proceeds as follows; assume that s is the smaller of r and s:

  1. Using a hash function h1 on the join attribute, map each tuple of rela-
tions r and s to one of the n processors. Let ri and si be the partitions 
hashed to Pi.. First, read the s tuples at each processor on its local disk 
and map them to the appropriate processor using h1.

  2. Within each processor Pi, the tuples of S received in step 1 are parti-
tioned using a different hash function h2 to, say, k buckets. This step is 
identical to the partitioning phase of the partitioned hash algorithm 
we described as J4 in Section 18.4.

  3. Read the r tuples from each local disk at each processor and map them 
to the appropriate processor using hashing function h1. As they are 
received at each processor, the processor partitions them using the 
same hash function h2 used in step 2 for the k buckets; this process is 
just as in the probing phase of algorithm J4.

  4. The processor Pi executes the partitioned hash algorithm locally on the 
partitions ri and si using the joining phase on the k buckets (as 
described in algorithm J4) and produces a join result.

The results from all processors Pi are independently computed and 
unioned to produce the final result.

Aggregation. Aggregate operations with grouping are achieved by partitioning 
on the grouping attribute and then computing the aggregate function locally at 
each processor using any of the uni-processor algorithms. Either range partitioning 
or hash partitioning can be used.

Set Operations. For union, intersection, and set difference operations, if the 
argument relations R and S are partitioned using the same hash function, they can 
be done in parallel on each processor. If the partitioning is based on unmatched 
criteria, R and S may need to be redistributed using an identical hash function.
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18.8.2 Intraquery Parallelism
We have discussed how each individual operation may be executed by distrib-
uting the data among multiple processors and performing the operation in 
parallel on those processors. A query execution plan can be modeled as a graph 
of operations. To achieve a parallel execution of a query, one approach is to 
use a parallel algorithm for each operation involved in the query, with appro-
priate partitioning of the data input to that operation. Another opportunity to 
parallelize comes from the evaluation of an operator tree where some of the 
operations may be executed in parallel because they do not depend on one 
another. These operations may be executed on separate processors. If the out-
put of one of the operations can be generated tuple-by-tuple and fed into 
another operator, the result is pipelined parallelism. An operator that does 
not produce any output until it has consumed all its inputs is said to block the 
pipelining.

18.8.3 Interquery Parallelism
Interquery parallelism refers to the execution of multiple queries in parallel. In 
shared-nothing or shared-disk architectures, this is difficult to achieve. Activi-
ties of locking, logging, and so on among processors (see the chapters in Part 9 
on Transaction Processing) must be coordinated, and simultaneous conflicting 
updates of the same data by multiple processors must be avoided. There must be 
cache coherency, which guarantees that the processor updating a page has the 
latest version of that page in the buffer. The cache-coherency and concurrency 
control protocols (see Chapter 21) must work in coordination as well.

The main goal behind interquery parallelism is to scale up (i.e., to increase the 
overall rate at which queries or transactions can be processed by increasing the 
number of processors). Because single-processor multiuser systems themselves 
are designed to support concurrency control among transactions with the goal 
of increasing transaction throughput (see Chapter 21), database systems using 
shared memory parallel architecture can achieve this type of parallelism more 
easily without significant changes.

From the above discussion it is clear that we can speed up the query execution by 
performing various operations, such as sorting, selection, projection, join, and 
aggregate operations, individually using their parallel execution. We may achieve 
further speed-up by executing parts of the query tree that are independent in 
parallel on different processors. However, it is difficult to achieve interquery 
parallelism in shared-nothing parallel architectures. One area where the shared-
disk architecture has an edge is that it has a more general applicability, since it, 
unlike the shared-nothing architecture, does not require data to be stored in a 
partitioned manner. Current SAN- and NAS-based systems afford this advan-
tage. A number of parameters—such as available number of processors and 
available buffer space—play a role in determining the overall speed-up. A 
detailed discussion of the effect of these parameters is outside our scope.
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18.9 Summary
In this chapter, we gave an overview of the techniques used by DBMSs in processing 
high-level queries. We first discussed how SQL queries are translated into relational 
algebra. We introduced the operations of semi-join and anti-join, to which certain 
nested queries are mapped to avoid doing the regular inner join. We discussed exter-
nal sorting, which is commonly needed during query processing to order the tuples 
of a relation while dealing with aggregation, duplicate elimination, and so forth. We 
considered various cases of selection and discussed the algorithms employed for 
simple selection based on one attribute and complex selections using conjunctive 
and disjunctive clauses. Many techniques were discussed for the different selection 
types, including linear and binary search, use of B+-tree index, bitmap indexes, clus-
tering index, and functional index. The idea of selectivity of conditions and the typi-
cal information placed in a DBMS catalog was discussed. Then we considered the 
join operation in detail and proposed algorithms called nested-loop join, index-
based nested-loop join, sort-merge join, and hash join.

We gave illustrations of how buffer space, join selection factor, and inner–outer rela-
tion choice affect the performance of the join algorithms. We also discussed the hybrid 
hash algorithm, which avoids some of the cost of writing during the joining phase. We 
discussed algorithms for projection and set operations as well as algorithms for aggre-
gation. Then we discussed the algorithms for different types of joins, including outer 
joins, semi-join, anti-join, and non-equi-join. We also discussed how operations can 
be combined during query processing to create pipelined or stream-based execution 
instead of materialized execution. We introduced how operators may be implemented 
using the iterator concept. We ended the discussion of query processing strategies with 
a quick introduction to the three types of parallel database system architectures. Then 
we briefly summarized how parallelism can be achieved at the individual operations 
level and discussed intraquery and interquery parallelism as well.

Review Questions
 18.1. Discuss the reasons for converting SQL queries into relational algebra que-

ries before optimization is done.

 18.2. Discuss semi-join and anti-join as operations to which nested queries may 
be mapped; provide an example of each.

 18.3. How are large tables that do not fit in memory sorted? Give the overall 
procedure.

 18.4. Discuss the different algorithms for implementing each of the following rela-
tional operators and the circumstances under which each algorithm can be 
used: SELECT, JOIN, PROJECT, UNION, INTERSECT, SET DIFFERENCE,  
CARTESIAN PRODUCT.

 18.4. Give examples of a conjunctive selection and a disjunctive selection query 
and discuss how there may be multiple options for their execution.
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 18.5. Discuss alternative ways of eliminating duplicates when a  
“SELECT Distinct <attribute>” query is evaluated.

 18.6. How are aggregate operations implemented?

 18.7. How are outer join and non–equi-join implemented?

 18.8. What is the iterator concept? What methods are part of an iterator?

 18.9. What are the three types of parallel architectures applicable to database sys-
tems? Which one is most commonly used?

 18.10. What are the parallel implementations of join?

 18.11. What are intraquery and interquery parallelisms? Which one is harder to 
achieve in the shared-nothing architecture? Why?

 18.12. Under what conditions is pipelined parallel execution of a sequence of oper-
ations prevented?

Exercises
 18.13. Consider SQL queries Q1, Q8, Q1B, and Q4 in Chapter 6 and Q27 in 

Chapter 7.

a. Draw at least two query trees that can represent each of these queries. 
Under what circumstances would you use each of your query trees?

b. Draw the initial query tree for each of these queries, and then show how 
the query tree is optimized by the algorithm outlined in Section 18.7.

c. For each query, compare your own query trees of part (a) and the initial 
and final query trees of part (b).

 18.14. A file of 4,096 blocks is to be sorted with an available buffer space of 64 
blocks. How many passes will be needed in the merge phase of the external 
sort-merge algorithm?

 18.15. Can a nondense index be used in the implementation of an aggregate opera-
tor? Why or why not? Illustrate with an example.

 18.16. Extend the sort-merge join algorithm to implement the LEFT OUTER JOIN 
operation.

Selected Bibliography
We will give references to the literature for the query processing and optimization 
area together at the end of Chapter19. Thus the Chapter19 references apply to this 
chapter and the next chapter. It is difficult to separate the literature that addresses 
just query processing strategies and algorithms from the literature that discusses 
the optimization area.
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19
Query Optimization

In this chapter,1 we will assume that the reader is 
already familiar with the strategies for query process-

ing in relational DBMSs that we discussed in the previous chapter. The goal of 
query optimization is to select the best possible strategy for query evaluation. As we 
said before, the term optimization is a misnomer because the chosen execution plan 
may not always be the most optimal plan possible. The primary goal is to arrive at 
the most efficient and cost-effective plan using the available information about the 
schema and the content of relations involved, and to do so in a reasonable amount 
of time. Thus a proper way to describe query optimization would be that it is an 
activity conducted by a query optimizer in a DBMS to select the best available strat-
egy for executing the query.

This chapter is organized as follows. In Section 19.1 we describe the notation for 
mapping of the queries from SQL into query trees and graphs. Most RDBMSs use 
an internal representation of the query as a tree. We present heuristics to transform 
the query into a more efficient equivalent form followed by a general procedure for 
applying those heuristics. In Section 19.2, we discuss the conversion of queries into 
execution plans. We discuss nested subquery optimization. We also present exam-
ples of query transformation in two cases: merging of views in Group By queries 
and transformation of Star Schema queries that arise in data warehouses. We also 
briefly discuss materialized views. Section 19.3 is devoted to a discussion of selectiv-
ity and result-size estimation and presents a cost-based approach to optimization. 
We revisit the information in the system catalog that we presented in Section 18.3.4 
earlier and present histograms. Cost models for selection and join operation are 
presented in Sections 19.4 and 19.5. We discuss the join ordering problem, which is 
a critical one, in some detail in Section 19.5.3. Section 19.6 presents an example of 
cost-based optimization. Section 19.7 discusses some additional issues related to 

chapter 19

1The substantial contribution of Rafi Ahmed to this chapter is appreciated.
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query optimization. Section 19.8 is devoted to a discussion of query optimization in 
data warehouses. Section 19.9 gives an overview of query optimization in Oracle. 
Section 19.10 briefly discusses semantic query optimization. We end the chapter 
with a summary in Section 19.11.

19.1  Query Trees and Heuristics  
for Query Optimization

In this section, we discuss optimization techniques that apply heuristic rules to modify 
the internal representation of a query—which is usually in the form of a query tree or a 
query graph data structure—to improve its expected performance. The scanner and 
parser of an SQL query first generate a data structure that corresponds to an initial 
query representation, which is then optimized according to heuristic rules. This leads 
to an optimized query representation, which corresponds to the query execution strat-
egy. Following that, a query execution plan is generated to execute groups of opera-
tions based on the access paths available on the files involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before 
applying the JOIN or other binary operations, because the size of the file resulting 
from a binary operation—such as JOIN—is usually a multiplicative function of the 
sizes of the input files. The SELECT and PROJECT operations reduce the size of a file 
and hence should be applied before a join or other binary operation.

In Section 19.1.1, we reiterate the query tree and query graph notations that we 
introduced earlier in the context of relational algebra and calculus in Sections 8.3.5 
and 8.6.5, respectively. These can be used as the basis for the data structures that are 
used for internal representation of queries. A query tree is used to represent a rela-
tional algebra or extended relational algebra expression, whereas a query graph is 
used to represent a relational calculus expression. Then, in Section 19.1.2, we show 
how heuristic optimization rules are applied to convert an initial query tree into an 
equivalent query tree, which represents a different relational algebra expression 
that is more efficient to execute but gives the same result as the original tree. We 
also discuss the equivalence of various relational algebra expressions. Finally, Sec-
tion 19.1.3 discusses the generation of query execution plans.

19.1.1 Notation for Query Trees and Query Graphs
A query tree is a tree data structure that corresponds to an extended relational alge-
bra expression. It represents the input relations of the query as leaf nodes of the tree, 
and it represents the relational algebra operations as internal nodes. An execution of 
the query tree consists of executing an internal node operation whenever its operands 
are available and then replacing that internal node by the relation that results from 
executing the operation. The order of execution of operations starts at the leaf nodes, 
which represents the input database relations for the query, and ends at the root node, 
which represents the final operation of the query. The execution terminates when the 
root node operation is executed and produces the result relation for the query.
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Figure 19.1(a) shows a query tree (the same as shown in Figure 6.9) for query Q2 
in Chapters 6 to 8: For every project located in ‘Stafford’, retrieve the project 
number, the controlling department number, and the department manager’s last 
name, address, and birthdate. This query is specified on the COMPANY rela-
tional schema in Figure 5.5 and corresponds to the following relational algebra 
expression:

πPnumber, Dnum, Lname, Address, Bdate (((σPlocation=‘Stafford’(PROJECT))

 Dnum=Dnumber(DEPARTMENT))  Mgr_ssn=Ssn(EMPLOYEE))

(b)

(a)

E

DP

P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdateπ

P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation=‘Stafford’
σ

(c)

EDP

[P.Pnumber, P.Dnum] [E.Lname, E.Address, E.Bdate]

P.Dnum=D.Dnumber

P.Plocation=‘Stafford’

D.Mgr_ssn=E.Ssn

‘Stafford’

X

X

(1)

(2)

(3)

P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdateπ

D.Mgr_ssn=E.Ssn

P.Dnum=D.Dnumber

σP.Plocation= ‘Stafford’

E

D

P

EMPLOYEE

DEPARTMENT

PROJECT

Figure 19.1 
Two query trees for the query Q2. (a) Query tree corresponding to the relational algebra  
expression for Q2. (b) Initial (canonical) query tree for SQL query Q2. (c) Query graph for Q2.
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This corresponds to the following SQL query:

Q2: SELECT P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate
 FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
 WHERE P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND
  P.Plocation= ‘Stafford’;

In Figure 19.1(a), the leaf nodes P, D, and E represent the three relations PROJECT, 
DEPARTMENT, and EMPLOYEE, respectively, and the internal tree nodes represent 
the relational algebra operations of the expression. When this query tree is executed, 
the node marked (1) in Figure 19.1(a) must begin execution before node (2) because 
some resulting tuples of operation (1) must be available before we can begin execut-
ing operation (2). Similarly, node (2) must begin executing and producing results 
before node (3) can start execution, and so on.

As we can see, the query tree represents a specific order of operations for executing 
a query. A more neutral data structure for representation of a query is the query 
graph notation. Figure 19.1(c) (the same as shown in Figure 6.13) shows the query 
graph for query Q2. Relations in the query are represented by relation nodes, which 
are displayed as single circles. Constant values, typically from the query selection 
conditions, are represented by constant nodes, which are displayed as double cir-
cles or ovals. Selection and join conditions are represented by the graph edges, as 
shown in Figure 19.1(c). Finally, the attributes to be retrieved from each relation are 
displayed in square brackets above each relation.

The query graph representation does not indicate an order on which operations to 
perform first. There is only a single graph corresponding to each query.2 Although 
some optimization techniques were based on query graphs such as those originally 
in the INGRES DBMS, it is now generally accepted that query trees are preferable 
because, in practice, the query optimizer needs to show the order of operations for 
query execution, which is not possible in query graphs.

19.1.2 Heuristic Optimization of Query Trees
In general, many different relational algebra expressions—and hence many differ-
ent query trees—can be semantically equivalent; that is, they can represent the 
same query and produce the same results.3

The query parser will typically generate a standard initial query tree to correspond 
to an SQL query, without doing any optimization. For example, for a SELECT-
PROJECT-JOIN query, such as Q2, the initial tree is shown in Figure 19.1(b). The 
CARTESIAN PRODUCT of the relations specified in the FROM clause is first applied; 
then the selection and join conditions of the WHERE clause are applied, followed by 

2Hence, a query graph corresponds to a relational calculus expression as shown in Section 8.6.5.

3The same query may also be stated in various ways in a high-level query language such as SQL (see 
Chapters 7 and 8).



 19.1 Query Trees and Heuristics for Query Optimization  695

the projection on the SELECT clause attributes. Such a canonical query tree repre-
sents a relational algebra expression that is very inefficient if executed directly, 
because of the CARTESIAN PRODUCT (×) operations. For example, if the PROJECT, 
DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150 bytes 
and contained 100, 20, and 5,000 tuples, respectively, the result of the CARTESIAN 
PRODUCT would contain 10 million tuples of record size 300 bytes each. However, 
this canonical query tree in Figure 19.1(b) is in a simple standard form that can be 
easily created from the SQL query. It will never be executed. The heuristic query 
optimizer will transform this initial query tree into an equivalent final query tree 
that is efficient to execute.

The optimizer must include rules for equivalence among extended relational algebra 
expressions that can be applied to transform the initial tree into the final, optimized 
query tree. First we discuss informally how a query tree is transformed by using 
heuristics, and then we discuss general transformation rules and show how they can 
be used in an algebraic heuristic optimizer.

Example of Transforming a Query. Consider the following query Q on the 
database in Figure 5.5: Find the last names of employees born after 1957 who work on 
a project named ‘Aquarius’. This query can be specified in SQL as follows:

Q: SELECT E.Lname
 FROM EMPLOYEE E, WORKS_ON W, PROJECT P
 WHERE  P.Pname=‘Aquarius’ AND P.Pnumber=W.Pno AND E.Essn=W.Ssn
  AND E.Bdate > ‘1957-12-31’;

The initial query tree for Q is shown in Figure 19.2(a). Executing this tree directly 
first creates a very large file containing the CARTESIAN PRODUCT of the entire 
EMPLOYEE, WORKS_ON, and PROJECT files. That is why the initial query tree is 
never executed, but is transformed into another equivalent tree that is efficient to 
execute. This particular query needs only one record from the PROJECT relation—
for the ‘Aquarius’ project—and only the EMPLOYEE records for those whose date of 
birth is after ‘1957-12-31’. Figure 19.2(b) shows an improved query tree that first 
applies the SELECT operations to reduce the number of tuples that appear in the 
CARTESIAN PRODUCT.

A further improvement is achieved by switching the positions of the EMPLOYEE 
and PROJECT relations in the tree, as shown in Figure 19.2(c). This uses the 
information that Pnumber is a key attribute of the PROJECT relation, and hence 
the SELECT operation on the PROJECT relation will retrieve a single record 
only. We can further improve the query tree by replacing any CARTESIAN 
PRODUCT operation that is followed by a join condition as a selection with a 
JOIN operation, as shown in Figure 19.2(d). Another improvement is to keep 
only the attributes needed by subsequent operations in the intermediate rela-
tions, by including PROJECT (π) operations as early as possible in the query 
tree, as shown in Figure 19.2(e). This reduces the attributes (columns) of the 
intermediate relations, whereas the SELECT operations reduce the number of 
tuples (records).
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(a) Lname

Pname=‘Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>‘1957-12-31’

PROJECT

WORKS_ONEMPLOYEE

(b) Lname

Pnumber=Pno

Bdate>‘1957-12-31’

Pname=‘Aquarius’Essn=Ssn
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π
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σ

σσ

σ
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(c)

σ Essn=Ssn

π Lname

σ Pnumber=Pno σ Bdate>‘1957-12-31’ 

σ
Pname=‘Aquarius’

EMPLOYEE

WORKS_ON

PROJECT

X

X

Figure 19.2 
Steps in converting a query tree during heuristic optimization. (a) Initial (canonical) query tree for SQL query Q. 
(b) Moving SELECT operations down the query tree. (c) Applying the more restrictive SELECT operation first.
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(e) π Lname

σBdate>‘1957-12-31’ 

σPname=‘Aquarius’

π Pnumber π Essn,Pno

π Essn πSsn, Lname 

EMPLOYEE

WORKS_ON

PROJECT

(d) π Lname

σ Bdate>‘1957-12-31’ 

σPname=‘Aquarius’ EMPLOYEEWORKS_ON

PROJECT

Essn=Ssn

Pnumber=Pno

Pnumber=Pno

Essn=Ssn

Figure 19.2 (continued)
Steps in converting a query tree during heuristic optimization. (d) Replacing CARTESIAN PRODUCT and SELECT 
with JOIN operations.  (e) Moving PROJECT operations down the query tree.

As the preceding example demonstrates, a query tree can be transformed step by 
step into an equivalent query tree that is more efficient to execute. However, we 
must make sure that the transformation steps always lead to an equivalent query 
tree. To do this, the query optimizer must know which transformation rules pre-
serve this equivalence. We discuss some of these transformation rules next.

General Transformation Rules for Relational Algebra Operations. There 
are many rules for transforming relational algebra operations into equivalent ones. 
For query optimization purposes, we are interested in the meaning of the opera-
tions and the resulting relations. Hence, if two relations have the same set of attri-
butes in a different order but the two relations represent the same information, we 
consider the relations to be equivalent. In Section 5.1.2 we gave an alternative defi-
nition of relation that makes the order of attributes unimportant; we will use this 
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definition here. We will state some transformation rules that are useful in query 
optimization, without proving them:

  1. Cascade of σ. A conjunctive selection condition can be broken up into a 
cascade (that is, a sequence) of individual σ operations:

σc1 AND c2 AND … AND cn
(R) ≡ σc1

 (σc2
 (…(σcn

(R))…))

  2. Commutativity of σ. The σ operation is commutative:

σc1
 (σc2

(R)) ≡ σc2
 (σc1

(R))

  3. Cascade of π. In a cascade (sequence) of π operations, all but the last one 
can be ignored:

πList1
 (πList2

 (…(πListn
(R))…)) ≡ πList1

(R)

  4. Commuting σ with π. If the selection condition c involves only those attri-
butes A1, … , An in the projection list, the two operations can be commuted:

πA1, A2, … , An
 (σc (R)) ≡ σc (πA1, A2, … , An

 (R))

  5. Commutativity of  (and ×). The join operation is commutative, as is the × 
operation:

R c S ≡ S c R

R × S ≡ S × R

Notice that although the order of attributes may not be the same in the rela-
tions resulting from the two joins (or two Cartesian products), the meaning 
is the same because the order of attributes is not important in the alternative 
definition of relation.

  6. Commuting σ with  (or ×). If all the attributes in the selection condition c 
involve only the attributes of one of the relations being joined—say, R—the 
two operations can be commuted as follows:

σc (R  S) ≡ (σc (R))  S

Alternatively, if the selection condition c can be written as (c1 AND c2), where 
condition c1 involves only the attributes of R and condition c2 involves only 
the attributes of S, the operations commute as follows:

σc (R  S) ≡ (σc1
 (R))  (σc2

 (S))

The same rules apply if the  is replaced by a × operation.

  7. Commuting π with  (or ×). Suppose that the projection list is L = {A1, … , 
An, B1, … , Bm} , where A1, … , An are attributes of R and B1, … , Bm are 
attributes of S. If the join condition c involves only attributes in L, the two 
operations can be commuted as follows:

πL (R c S) ≡ (πA1, … , An
 (R)) c (πB1, … , Bm

 (S))

If the join condition c contains additional attributes not in L, these must be added 
to the projection list, and a final π operation is needed. For example, if attributes 
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An+1, … , An+k of R and Bm+1, … , Bm+p of S are involved in the join condition c 
but are not in the projection list L, the operations commute as follows:

πL (R c S) ≡ πL ((πA1, … , An, An+1, … , An+k
(R)) c (πB1, … , Bm, Bm+1, … , Bm+p (S)))

For ×, there is no condition c, so the first transformation rule always applies 
by replacing c with ×.

  8. Commutativity of set operations. The set operations ∪ and ∩ are commu-
tative, but − is not.

  9. Associativity of , ×, ∪, and ∩. These four operations are individually asso-
ciative; that is, if both occurrences of θ stand for the same operation that is 
any one of these four operations (throughout the expression), we have:

(R θ S) θ T ≡ R θ (S θ T)

 10. Commuting σ with set operations. The σ operation commutes with ∪, ∩, 
and −. If θ stands for any one of these three operations (throughout the 
expression), we have:

σc (R θ S) ≡ (σc (R)) θ (σc (S))

 11. The π operation commutes with ∪.

πL (R ∪ S) ≡ (πL (R)) ∪ (πL (S))

 12. Converting a (σ, ×) sequence into . If the condition c of a σ that follows a × 
corresponds to a join condition, convert the (σ, ×) sequence into a  as follows:

(σc (R × S)) ≡ (R c S)

 13. Pushing σ in conjunction with set difference.

σc (R − S) = σc (R) – σc ( S)

However, σ may be applied to only one relation:

σc (R – S) = σc (R) – S

 14. Pushing σ to only one argument in ∩.

If in the condition σc all attributes are from relation R, then:

σc (R ∩ S) = σc (R) ∩ S

 15. Some trivial transformations.

If S is empty, then R ∪ S = R

If the condition c in σc is true for the entire R, then σc (R) = R.

There are other possible transformations. For example, a selection or join condition 
c can be converted into an equivalent condition by using the following standard 
rules from Boolean algebra (De Morgan’s laws):

NOT (c1 AND c2) ≡ (NOT c1) OR (NOT c2)

NOT (c1 OR c2) ≡ (NOT c1) AND (NOT c2)
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Additional transformations discussed in Chapters 4, 5, and 6 are not repeated here. 
We discuss next how transformations can be used in heuristic optimization.

Outline of a Heuristic Algebraic Optimization Algorithm. We can now out-
line the steps of an algorithm that utilizes some of the above rules to transform an 
initial query tree into a final tree that is more efficient to execute (in most cases). 
The algorithm will lead to transformations similar to those discussed in our exam-
ple in Figure 19.2. The steps of the algorithm are as follows:

  1. Using Rule 1, break up any SELECT operations with conjunctive conditions 
into a cascade of SELECT operations. This permits a greater degree of free-
dom in moving SELECT operations down different branches of the tree.

  2. Using Rules 2, 4, 6, and 10, 13, 14 concerning the commutativity of SELECT 
with other operations, move each SELECT operation as far down the query 
tree as is permitted by the attributes involved in the select condition. If the 
condition involves attributes from only one table, which means that it repre-
sents a selection condition, the operation is moved all the way to the leaf 
node that represents this table. If the condition involves attributes from two 
tables, which means that it represents a join condition, the condition is 
moved to a location down the tree after the two tables are combined.

  3. Using Rules 5 and 9 concerning commutativity and associativity of binary oper-
ations, rearrange the leaf nodes of the tree using the following criteria. First, 
position the leaf node relations with the most restrictive SELECT operations so 
they are executed first in the query tree representation. The definition of most 
restrictive SELECT can mean either the ones that produce a relation with the 
fewest tuples or with the smallest absolute size.4 Another possibility is to define 
the most restrictive SELECT as the one with the smallest selectivity; this is more 
practical because estimates of selectivities are often available in the DBMS  
catalog. Second, make sure that the ordering of leaf nodes does not cause  
CARTESIAN PRODUCT operations; for example, if the two relations with the 
most restrictive SELECT do not have a direct join condition between them, it 
may be desirable to change the order of leaf nodes to avoid Cartesian products.5

  4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subse-
quent SELECT operation in the tree into a JOIN operation, if the condition 
represents a join condition.

  5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the com-
muting of PROJECT with other operations, break down and move lists of pro-
jection attributes down the tree as far as possible by creating new PROJECT 
operations as needed. Only those attributes needed in the query result and in 
subsequent operations in the query tree should be kept after each PROJECT 
operation.

4Either definition can be used, since these rules are heuristic.

5Note that a CARTESIAN PRODUCT is acceptable in some cases—for example, if each relation has only 
a single tuple because each had a previous select condition on a key field.
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  6. Identify subtrees that represent groups of operations that can be executed by 
a single algorithm.

In our example, Figure 19.2(b) shows the tree in Figure 19.2(a) after applying steps 1 
and 2 of the algorithm; Figure 19.2(c) shows the tree after step 3; Figure 19.2(d) 
after step 4; and Figure 19.2(e) after step 5. In step 6, we may group together the 
operations in the subtree whose root is the operation πEssn into a single algorithm. 
We may also group the remaining operations into another subtree, where the tuples 
resulting from the first algorithm replace the subtree whose root is the operation 
πEssn, because the first grouping means that this subtree is executed first.

Summary of Heuristics for Algebraic Optimization. The main heuristic is to 
apply first the operations that reduce the size of intermediate results. This includes 
performing as early as possible SELECT operations to reduce the number of tuples 
and PROJECT operations to reduce the number of attributes—by moving SELECT 
and PROJECT operations as far down the tree as possible. Additionally, the SELECT 
and JOIN operations that are most restrictive—that is, result in relations with the 
fewest tuples or with the smallest absolute size—should be executed before other 
similar operations. The latter rule is accomplished through reordering the leaf 
nodes of the tree among themselves while avoiding Cartesian products, and adjust-
ing the rest of the tree appropriately.

19.2 Choice of Query Execution Plans

19.2.1 Alternatives for Query Evaluation
An execution plan for a relational algebra expression represented as a query tree 
includes information about the access methods available for each relation as well as 
the algorithms to be used in computing the relational operators represented in the 
tree. As a simple example, consider query Q1 from Chapter 7, whose corresponding 
relational algebra expression is

πFname, Lname, Address(σDname=‘Research’(DEPARTMENT)  Dnumber=Dno EMPLOYEE)

The query tree is shown in Figure 19.3. To convert this into an execution plan, the 
optimizer might choose an index search for the SELECT operation on DEPARTMENT 
(assuming one exists), an index-based nested-loop join algorithm that loops over 
the records in the result of the SELECT operation on DEPARTMENT for the join 
operation (assuming an index exists on the Dno attribute of EMPLOYEE), and a scan 
of the JOIN result for input to the PROJECT operator. Additionally, the approach 
taken for executing the query may specify a materialized or a pipelined evaluation, 
although in general a pipelined evaluation is preferred whenever feasible.

With materialized evaluation, the result of an operation is stored as a temporary 
relation (that is, the result is physically materialized). For instance, the JOIN opera-
tion can be computed and the entire result stored as a temporary relation, which is 
then read as input by the algorithm that computes the PROJECT operation, which 
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would produce the query result table. On the other hand, with pipelined evaluation, 
as the resulting tuples of an operation are produced, they are forwarded directly 
to the next operation in the query sequence. We discussed pipelining as a strategy 
for query processing in Section 18.7. For example, as the selected tuples from 
DEPARTMENT are produced by the SELECT operation, they are placed in a buffer; 
the JOIN operation algorithm then consumes the tuples from the buffer, and those 
tuples that result from the JOIN operation are pipelined to the projection operation 
algorithm. The advantage of pipelining is the cost savings in not having to write  
the intermediate results to disk and not having to read them back for the next  
operation.

We discussed in Section 19.1 the possibility of converting query trees into equiva-
lent trees so that the evaluation of the query is more efficient in terms of its execu-
tion time and overall resources consumed. There are more elaborate transformations 
of queries that are possible to optimize, or rather to “improve.” Transformations 
can be applied either in a heuristic-based or cost-based manner.

As we discussed in Sections 7.1.2 and 7.1.3, nested subqueries may occur in the 
WHERE clause as well as in the FROM clause of SQL queries. In the WHERE 
clause, if an inner block makes a reference to the relation used in the outer block, it 
is called a correlated nested query. When a query is used within the FROM clause to 
define a resulting or derived relation, which participates as a relation in the outer 
query, it is equivalent to a view. Both these types of nested subqueries are handled 
by the optimizer, which transforms them and rewrites the entire query. In the next 
two subsections, we consider these two variations of query transformation and 
rewriting with examples. We will call them nested subquery optimization and sub-
query (view) merging transformation. In Section 19.8, we revisit this topic in the 
context of data warehouses and illustrate star transformation optimizations.

19.2.2 Nested Subquery Optimization
We discussed nested queries in Section 7.1.2. Consider the query:

SELECT E1.Fname, E1.Lname
FROM EMLOYEE E1
WHERE E1.Salary = ( SELECT MAX (Salary)
     FROM EMPLOYEE E2)

π  Fname, Lname, Address

σ Dname=‘Research’

DEPARTMENT

EMPLOYEE

Dnumber=Dno

Figure 19.3 
A query tree for query Q1.
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In the above nested query, there is a query block inside an outer query block. 
Evaluation of this query involves executing the nested query first, which yields a 
single value of the maximum salary M in the EMPLOYEE relation; then the 
outer block is simply executed with the selection condition Salary = M. The max-
imum salary could be obtained just from the highest value in the index on salary 
(if one exists) or from the catalog if it is up-to-date. The outer query is evaluated 
based on the same index. If no index exists, then linear search would be needed 
for both.

We discussed correlated nested SQL queries in Section 7.1.3. In a correlated sub-
query, the inner query contains a reference to the outer query via one or more vari-
ables. The subquery acts as a function that returns a set of values for each value of 
this variable or combination of variables.

Suppose in the database of Figure 5.5, we modify the DEPARTMENT relation as:

DEPARTMENT (Dnumber, Dname, Mgr_ssn, Mgr_start_date, Zipcode)

Consider the query:

SELECT Fname, Lname, Salary
FROM EMPLOYEE E
WHERE EXISTS ( SELECT *
             FROM DEPARTMENT D
             WHERE D.Dnumber = E.Dno AND D.Zipcode=30332);

In the above, the nested subquery takes the E.Dno, the department where the 
employee works, as a parameter and returns a true or false value as a function 
depending on whether the department is located in zip code 30332. The naïve strat-
egy for evaluating the query is to evaluate the inner nested subquery for every tuple 
of the outer relation, which is inefficient. Wherever possible, SQL optimizer tries to 
convert queries with nested subqueries into a join operation. The join can then be 
evaluated with one of the options we considered in Section 18.4. The above query 
would be converted to

SELECT Fname, Lname, Salary
FROM EMPLOYEE E, DEPARTMENT D
WHERE WHERE D.Dnumber = E.Dno AND D.Zipcode=30332

The process of removing the nested query and converting the outer and inner 
query into one block is called unnesting. Here inner join is used, since  
D.Dnumber is unique and the join is an equi-join; this guarantees that a tuple 
from relation Employee will match with at most one tuple from relation  
Department. We showed in Chapter 7 that the query Q16, which has a subquery 
connected with the IN connector, was also unnested into a single block query 
involving a join. In general, queries involving a nested subquery connected by 
IN or ANY connector in SQL can always be converted into a single block query. 
Other techniques used include creation of temporary result tables from sub-
queries and using them in joins.
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We repeat the example query shown in Section 18.1. (Note that the IN operator is 
equivalent to the =ANY operator.):

Q (SJ) :
SELECT COUNT(*)
FROM DEPARTMENT D
WHERE D.Dnumber IN ( SELECT E.Dno
             FROM EMPLOYEE E
             WHERE E.Salary > 200000)

In this case again, there are two options for the optimizer:

  1. Evaluate the nested subquery for each outer tuple; it is inefficient to do so.

  2. Unnest the subquery using semi-join, which is much more efficient than 
option 1. In Section 18.1, we used this alternative to introduce and define the 
semi-join operator. Note that for unnesting this subquery, which refers to 
expressing it as a single block, inner join cannot be used, since in inner join 
a tuple of DEPARTMENT may match more than one tuple of EMPLOYEE 
and thus produce wrong results. It is easy to see that a nested subquery acts 
as a filter and thus it cannot, unlike inner join, produce more rows than 
there are in the DEPARTMENT table. Semi-join simulates this behavior.

The process we described as unnesting is sometimes called decorrelation. We 
showed another example in Section 18.1 using the connector “NOT IN”, which was 
converted into a single block query using the operation anti-join. Optimization of 
complex nested subqueries is difficult and requires techniques that can be quite 
involved. We illustrate two such techniques in Section 19.2.3 below. Unnesting is a 
powerful optimization technique and is used widely by SQL optimizers.

19.2.3 Subquery (View) Merging Transformation
There are instances where a subquery appears in the FROM clause of a query and 
amounts to including a derived relation, which is similar to a predefined view that 
is involved in the query. This FROM clause subquery is often referred to as an inline 
view. Sometimes, an actual view defined earlier as a separate query is used as one of 
the argument relations in a new query. In such cases, the transformation of the 
query can be referred to as a view-merging or subquery merging transformation. 
The techniques of view merging discussed here apply equally to both inline and 
predefined views,

Consider the following three relations:

EMP (Ssn, Fn, Ln, Dno)
DEPT (Dno, Dname, Dmgrname, Bldg_id)
BLDG (Bldg_id, No_storeys, Addr, Phone)

The meaning of the relations is self-explanatory; the last one represents build-
ings where departments are located; the phone refers to a phone number for the 
building lobby.
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The following query uses an inline view in the FROM clause; it retrieves for employ-
ees named “John” the last name, address and phone number of building where they 
work:

SELECT E.Ln, V.Addr, V.Phone
FROM EMP E, ( SELECT D.Dno, D.Dname, B.Addr, B.Phone
          FROM DEPT D, BLDG B
          WHERE D.Bldg_id = B.Bldg_id ) V
WHERE V.Dno = E.Dno AND E.Fn = “John”;

The above query joins the EMP table with a view called V that provides the address 
and phone of the building where the employee works. In turn, the view joins the 
two tables DEPT and BLDG. This query may be executed by first temporarily 
materializing the view and then joining it with the EMP table. The optimizer is 
then constrained to consider the join order E, V or V, E; and for computing the 
view, the join orders possible are D, B and B, D. Thus the total number of join 
order candidates is limited to 4. Also, index-based join on E, V is precluded since 
there is no index on V on the join column Dno. The view-merging operation 
merges the tables in the view with the tables from the outer query block and pro-
duces the following query:

SELECT E.Ln, B.Addr, B.Phone
FROM EMP E, DEPT D, BLDG B
WHERE D.Bldg_id = B.Bldg_id AND D.Dno = E.Dno AND E.Fn = “John”;

With the merged query block above, three tables appear in the FROM clause, thus 
affording eight possible join orders and indexes on Dno in DEPT, and Bldg_id in 
BLDG can be used for index-based nested loop joins that were previously excluded. 
We leave it to the reader to develop execution plans with and without merging to 
see the comparison.

In general, views containing select-project-join operations are considered simple 
views and they can always be subjected to this type of view-merging. Typically, view 
merging enables additional options to be considered and results in an execution 
plan that is better than one without view merging. Sometimes other optimizations 
are enabled, such as dropping a table in the outer query if it is used within the view. 
View-merging may be invalid under certain conditions where the view is more 
complex and involves DISTINCT, OUTER JOIN, AGGREGATION, GROUP BY 
set operations, and so forth. We next consider a possible situation of GROUP-BY 
view-merging.

GROUP-BY View-Merging: When the view has additional constructs besides 
select-project-join as we mentioned above, merging of the view as shown above 
may or may not be desirable. Delaying the Group By operation after performing 
joins may afford the advantage of reducing the data subjected to grouping in case 
the joins have low join selectivity. Alternately, performing early Group By may be 
advantageous by reducing the amount of data subjected to subsequent joins. The 
optimizer would typically consider execution plans with and without merging and 
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compare their cost to determine the viability of doing the merging. We illustrate 
with an example.

Consider the following relations:

SALES (Custid, Productid, Date, Qty_sold)
CUST (Custid, Custname, Country, Cemail)
PRODUCT (Productid, Pname, Qty_onhand)

The query: List customers from France who have bought more than 50 units 
of a product “Ring_234” may be set up as follows:

A view is created to count total quantity of any item bought for the  
<Custid, Productid> pairs:
CREATE VIEW CP_BOUGHT_VIEW AS
SELECT SUM (S.Qty_sold) as Bought, S.Custid, S.Productid
FROM SALES S
GROUP BY S.Custid, S.Productid;

Then the query using this view becomes:

QG: SELECT C.Custid, C.Custname, C.Cemail
FROM CUST C, PRODUCT P, CP_BOUGHT_VIEW V1
WHERE P.Productid = V1.Productid AND C.Custid = V1.Custid AND V1.
Bought >50
AND Pname = “Ring_234” AND C.Country = “France”;

The view V1 may be evaluated first and its results temporarily materialized, then 
the query QG may be evaluated using the materialized view as one of the tables in 
the join. By using the merging transformation, this query becomes:

QT: SELECT C.Custid, C.Custname, C.Cemail
FROM CUST C, PRODUCT P, SALES S
WHERE P.Productid = S.Productid AND C.Custid = S.Custid AND
          Pname = “Ring_234” AND C.Country = “France”
GROUP BY, P.Productid, P.rowid, C.rowid, C.Custid, C.Custname, C.Cemail
HAVING SUM (S.Qty_sold) > 50;

After merging, the resulting query QT is much more efficient and cheaper to exe-
cute. The reasoning is as follows. Before merging, the view V1 does grouping on the 
entire SALES table and materializes the result, and it is expensive to do so. In the 
transformed query, the grouping is applied to the join of the three tables; in this 
operation, a single product tuple is involved from the PRODUCT table, thus filter-
ing the data from SALES considerably. The join in QT after transformation may 
be slightly more expensive in that the whole SALES relation is involved rather than 
the aggregated view table CP_BOUGHT_VIEW in QG. Note, however, that the 
GROUP-BY operation in V1 produces a table whose cardinality is not considerably 
smaller than the cardinality of SALES, because the grouping is on <Custid, Productid>, 
which may not have high repetition in SALES. Also note the use of P.rowid and  
C.rowid, which refer to the unique row identifiers that are added to maintain equiv-
alence with the original query. We reiterate that the decision to merge GROUP-BY 
views must be made by the optimizer based on estimated costs.
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19.2.4 Materialized Views
We discussed the concept of views in Section 7.3 and also introduced the concept 
of materialization of views. A view is defined in the database as a query, and a 
materialized view stores the results of that query. Using materialized views to 
avoid some of the computation involved in a query is another query optimiza-
tion technique. A materialized view may be stored temporarily to allow more 
queries to be processed against it or permanently, as is common in data ware-
houses (see Chapter 29). A materialized view constitutes derived data because its 
content can be computed as a result of processing the defining query of the 
materialized view. The main idea behind materialization is that it is much 
cheaper to read it when needed and query against it than to recompute it from 
scratch. The savings can be significant when the view involves costly operations 
like join, aggregation, and so forth.

Consider, for example, view V2 in Section 7.3, which defines the view as a relation 
by joining the DEPARTMENT and EMPLOYEE relations. For every department, it 
computes the total number of employees and the total salary paid to employees in 
that department. If this information is frequently required in reports or queries, 
this view may be permanently stored. The materialized view may contain data 
related only to a fragment or sub-expression of the user query. Therefore, an 
involved algorithm is needed to replace only the relevant fragments of the query 
with one or more materialized views and compute the rest of the query in a conven-
tional way. We also mentioned in Section 7.3 three update (also known as refresh) 
strategies for updating the view:

 ■ Immediate update, which updates the view as soon as any of the relations 
participating in the view are updated

 ■ Lazy update, which recomputes the view only upon demand

 ■ Periodic update (or deferred update), which updates the view later, possibly 
with some regular frequency

When immediate update is in force, it constitutes a large amount of overhead to keep 
the view updated when any of the underlying base relations have a change in the form 
of insert, delete, and modify. For example, deleting an employee from the database, or 
changing the salary of an employee, or hiring a new employee affects the tuple corre-
sponding to that department in the view and hence would require the view V2 in 
Section 7.3 to be immediately updated. These updates are handled sometimes manu-
ally by programs that update all views defined on top of a base relation whenever the 
base relation is updated. But there is obviously no guarantee that all views may be 
accounted for. Triggers (see Section 7.2) that are activated upon an update to the base 
relation may be used to take action and make appropriate changes to the materialized 
views. The straightforward and naive approach is to recompute the entire view for 
every update to any base table and is prohibitively costly. Hence incremental view 
maintenance is done in most RDBMSs today. We discuss that next.

Incremental View Maintenance. The basic idea behind incremental view mainte-
nance is that instead of creating the view from scratch, it can be updated incrementally 
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by accounting for only the changes that occurred since the last time it was  
created/updated. The trick is in figuring out exactly what is the net change to the 
materialized view based on a set of inserted or deleted tuples in the base relation. 
We describe below the general approaches to incremental view maintenance for 
views involving join, selection, projection, and a few types of aggregation. To deal 
with modification, we can consider these approaches as a combination of delete of 
the old tuple followed by an insert of the new tuple. Assume a view V defined over 
relations R and S. The respective instances are v, r, and s.

Join: If a view contains inner join of relations r and s, vold = r  s, and there is a new 
set of tuples inserted: ri, in r, then the new value of the view contains (r ∪ ri)  s. The 
incremental change to the view can be computed as vnew = r  s ∪ ri  s. Similarly, 
deleting a set of tuples rd from r results in the new view as vnew = r  s − rd  s. We 
will have similar expressions symmetrically when s undergoes addition or deletion.

Selection: If a view is defined as V = σC R with condition C for selection, when a 
set of tuples ri are inserted into r, the view can be modified as vnew = vold ∪ σC ri. On 
the other hand, upon deletion of tuples rd from r, we get vnew = vold − σC rd.

Projection: Compared to the above strategy, projection requires additional work. 
Consider the view defined as V = πSex, SalaryR, where R is the EMPLOYEE relation, 
and suppose the following <Sex, Salary> pairs exist for Salary of 50,000 in r in three 
distinct tuples: t5 contains <M, 50000>, t17 contains <M, 50000> and t23 contains 
<F, 50000>. The view v therefore contains <M, 50000> and <F, 50000> as two tuples 
derived from the three tuples of r. If tuple t5 were to be deleted from r, it would have 
no effect on the view. However, if t23 were to be deleted from r, the tuple <F, 50000> 
would have to be removed from the view. Similarly, if another new tuple t77 con-
taining <M, 50000> were to be inserted in the relation r, it also would have no effect 
on the view. Thus, view maintenance of projection views requires a count to be 
maintained in addition to the actual columns in the view. In the above example, the 
original count values are 2 for <M, 50000> and 1 for <F, 50000>. Each time an 
insert to the base relation results in contributing to the view, the count is incre-
mented; if a deleted tuple from the base relation has been represented in the view, 
its count is decremented. When the count of a tuple in the view reaches zero, the 
tuple is actually dropped from the view. When a new inserted tuple contributes to 
the view, its count is set to 1. Note that the above discussion assumes that SELECT 
DISTINCT is being used in defining the view to correspond to the project (π) opera-
tion. If the multiset version of projection is used with no DISTINCT, the counts would 
still be used. There is an option to display the view tuple as many times as its count 
in case the view must be displayed as a multiset.

Intersection: If the view is defined as V= R ∩ S, when a new tuple ri is inserted, it 
is compared against the s relation to see if it is present there. If present, it is inserted 
in v, else not. If tuple rd is deleted, it is matched against the view v and, if present 
there, it is removed from the view.
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Aggregation (Group By): For aggregation, let us consider that GROUP BY  
is used on column G in relation R and the view contains (SELECT G, aggregate-
function (A)). The view is a result of some aggregation function applied to attribute A, 
which corresponds to (see Section 8.4.2):

GℑAggregate-function(A)

We consider a few aggregate-functions below:

 ■ Count: For keeping the count of tuples for each group, if a new tuple is 
inserted in r, and if it has a value for G = g1, and if g1 is present in the view, 
then its count is incremented by 1. If there is no tuple with the value g1 in the 
view, then a new tuple is inserted in the view: <g1, 1>. When the tuple being 
deleted has the value G = g1, its count is decremented by 1. If the count of g1 
reaches zero after deletion in the view, that tuple is removed from the view.

 ■ Sum: Suppose the view contains (G, sum(A)). There is a count maintained 
for each group in the view. If a tuple is inserted in the relation r and has (g1, 
x1) under the columns R.G and R.A, and if the view does not have an entry 
for g1, a new tuple <g1, x1> is inserted in the view and its count is set to 1. If 
there is already an entry for g1 as <g1, s1> in the old view, it is modified as 
<g1, s1 + x1> and its count is incremented by 1. For the deletion from base 
relation of a tuple with R.G, R.A being <g1, x1>, if the count of the corre-
sponding group g1 is 1, the tuple for group g1 would be removed from the 
view. If it is present and has count higher than 1, the count would be decre-
mented by 1 and the sum s1 would be decremented to s1– x1.

 ■ Average: The aggregate function cannot be maintained by itself without main-
taining the sum and the count functions and then computing the average as sum 
divided by count. So both the sum and count functions need to be maintained 
and incrementally updated as discussed above to compute the new average.

 ■ Max and Min: We can just consider Max. Min would be symmetrically han-
dled. Again for each group, the (g, max(a), count) combination is main-
tained, where max(a) represents the maximum value of R.A in the base 
relation. If the inserted tuple has R.A value lower than the current max(a) 
value, or if it has a value equal to max(a) in the view, only the count for the 
group is incremented. If it has a value greater than max(a), the max value in 
the view is set to the new value and the count is incremented. Upon deletion 
of a tuple, if its R.A value is less than the max(a), only the count is decre-
mented. If the R.A value matches the max(a), the count is decremented by 1; 
so the tuple that represented the max value of A has been deleted. Therefore, 
a new max must be computed for A for the group that requires substantial 
amount of work. If the count becomes 0, that group is removed from the 
view because the deleted tuple was the last tuple in the group.

We discussed incremental materialization as an optimization technique for main-
taining views. However, we can also look upon materialized views as a way to 
reduce the effort in certain queries. For example, if a query has a component, say, 
R  S or πLR that is available as a view, then the query may be modified to use the 



710 Chapter 19 Query Optimization

view and avoid doing unnecessary computation. Sometimes an opposite situation 
happens. A view V is used in the query Q, and that view has been materialized as v; 
let us say the view includes R  S; however, no access structures like indexes are 
available on v. Suppose that indexes are available on certain attributes, say, A of the 
component relation R and that the query Q involves a selection condition on A. In 
such cases, the query against the view can benefit by using the index on a compo-
nent relation, and the view is replaced by its defining query; the relation represent-
ing the materialized view is not used at all.

19.3  Use of Selectivities  
in Cost-Based Optimization

A query optimizer does not depend solely on heuristic rules or query transforma-
tions; it also estimates and compares the costs of executing a query using different 
execution strategies and algorithms, and it then chooses the strategy with the lowest 
cost estimate. For this approach to work, accurate cost estimates are required so that 
different strategies can be compared fairly and realistically. In addition, the opti-
mizer must limit the number of execution strategies to be considered; otherwise, 
too much time will be spent making cost estimates for the many possible execution 
strategies. Hence, this approach is more suitable for compiled queries, rather than 
ad-hoc queries where the optimization is done at compile time and the resulting 
execution strategy code is stored and executed directly at runtime. For interpreted 
queries, where the entire process shown in Figure 18.1 occurs at runtime, a full-
scale optimization may slow down the response time. A more elaborate optimiza-
tion is indicated for compiled queries, whereas a partial, less time-consuming 
optimization works best for interpreted queries.

This approach is generally referred to as cost-based query optimization.6 It uses 
traditional optimization techniques that search the solution space to a problem for a 
solution that minimizes an objective (cost) function. The cost functions used in 
query optimization are estimates and not exact cost functions, so the optimization 
may select a query execution strategy that is not the optimal (absolute best) one. In 
Section 19.3.1, we discuss the components of query execution cost. In Sec- 
tion 19.3.2, we discuss the type of information needed in cost functions. This infor-
mation is kept in the DBMS catalog. In Section 19.3.3, we describe histograms that 
are used to keep details on the value distributions of important attributes.

The decision-making process during query optimization is nontrivial and has mul-
tiple challenges. We can abstract the overall cost-based query optimization 
approach in the following way:

 ■ For a given subexpression in the query, there may be multiple equivalence 
rules that apply. The process of applying equivalences is a cascaded one; it 

6This approach was first used in the optimizer for the SYSTEM R in an experimental DBMS developed at 
IBM (Selinger et al., 1979).
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does not have any limit and there is no definitive convergence. It is difficult 
to conduct this in a space-efficient manner.

 ■ It is necessary to resort to some quantitative measure for evaluation of alter-
natives. By using the space and time requirements and reducing them to 
some common metric called cost, it is possible to devise some methodology 
for optimization.

 ■ Appropriate search strategies can be designed by keeping the cheapest alter-
natives and pruning the costlier alternatives.

 ■ The scope of query optimization is generally a query block. Various table 
and index access paths, join permutations (orders), join methods, group-by 
methods, and so on provide the alternatives from which the query optimizer 
must chose.

 ■ In a global query optimization, the scope of optimization is multiple query 
blocks.7

19.3.1 Cost Components for Query Execution
The cost of executing a query includes the following components:

  1. Access cost to secondary storage. This is the cost of transferring (reading 
and writing) data blocks between secondary disk storage and main mem-
ory buffers. This is also known as disk I/O (input/output) cost. The cost of 
searching for records in a disk file depends on the type of access struc-
tures on that file, such as ordering, hashing, and primary or secondary 
indexes. In addition, factors such as whether the file blocks are allocated 
contiguously on the same disk cylinder or scattered on the disk affect the 
access cost.

  2. Disk storage cost. This is the cost of storing on disk any intermediate files 
that are generated by an execution strategy for the query.

  3. Computation cost. This is the cost of performing in-memory operations on 
the records within the data buffers during query execution. Such operations 
include searching for and sorting records, merging records for a join or a 
sort operation, and performing computations on field values. This is also 
known as CPU (central processing unit) cost.

  4. Memory usage cost. This is the cost pertaining to the number of main 
memory buffers needed during query execution.

  5. Communication cost. This is the cost of shipping the query and its results 
from the database site to the site or terminal where the query originated. 
In distributed databases (see Chapter 23), it would also include the cost of 
transferring tables and results among various computers during query 
evaluation.

7We do not discuss global optimization in this sense in the present chapter. Details may be found in 
Ahmed et al. (2006).
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For large databases, the main emphasis is often on minimizing the access cost to 
secondary storage. Simple cost functions ignore other factors and compare dif-
ferent query execution strategies in terms of the number of block transfers 
between disk and main memory buffers. For smaller databases, where most of 
the data in the files involved in the query can be completely stored in memory, 
the emphasis is on minimizing computation cost. In distributed databases, 
where many sites are involved (see Chapter 23), communication cost must be 
minimized. It is difficult to include all the cost components in a (weighted) cost 
function because of the difficulty of assigning suitable weights to the cost com-
ponents. This is why some cost functions consider a single factor only—disk 
access. In the next section, we discuss some of the information that is needed for 
formulating cost functions.

19.3.2 Catalog Information Used in Cost Functions
To estimate the costs of various execution strategies, we must keep track of any 
information that is needed for the cost functions. This information may be stored 
in the DBMS catalog, where it is accessed by the query optimizer. First, we must 
know the size of each file. For a file whose records are all of the same type, the  
number of records (tuples) (r), the (average) record size (R), and the number of 
file blocks (b) (or close estimates of them) are needed. The blocking factor (bfr) for 
the file may also be needed. These were mentioned in Section 18.3.4, and we utilized 
them while illustrating the various implementation algorithms for relational opera-
tions. We must also keep track of the primary file organization for each file. The 
primary file organization records may be unordered, ordered by an attribute with or 
without a primary or clustering index, or hashed (static hashing or one of the 
dynamic hashing methods) on a key attribute. Information is also kept on all pri-
mary, secondary, or clustering indexes and their indexing attributes. The number 
of levels (x) of each multilevel index (primary, secondary, or clustering) is needed 
for cost functions that estimate the number of block accesses that occur during 
query execution. In some cost functions the number of first-level index blocks 
(bI1) is needed.

Another important parameter is the number of distinct values NDV (A, R) of an 
attribute in relation R and the attribute selectivity (sl), which is the fraction of 
records satisfying an equality condition on the attribute. This allows estimation of 
the selection cardinality (s = sl*r) of an attribute, which is the average number of 
records that will satisfy an equality selection condition on that attribute.

Information such as the number of index levels is easy to maintain because it does 
not change very often. However, other information may change frequently; for 
example, the number of records r in a file changes every time a record is inserted or 
deleted. The query optimizer will need reasonably close but not necessarily com-
pletely up-to-the-minute values of these parameters for use in estimating the cost of 
various execution strategies. To help with estimating the size of the results of que-
ries, it is important to have as good an estimate of the distribution of values as pos-
sible. To that end, most systems store a histogram.
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19.3.3 Histograms
Histograms are tables or data structures maintained by the DBMS to record infor-
mation about the distribution of data. It is customary for most RDBMSs to store 
histograms for most of the important attributes. Without a histogram, the best 
assumption is that values of an attribute are uniformly distributed over its range 
from high to low. Histograms divide the attribute over important ranges (called 
buckets) and store the total number of records that belong to that bucket in that 
relation. Sometimes they may also store the number of distinct values in each 
bucket as well. An implicit assumption is made sometimes that among the distinct 
values within a bucket there is a uniform distribution. All these assumptions are 
oversimplifications that rarely hold. So keeping a histogram with a finer granularity 
(i.e., larger number of buckets) is always useful. A couple of variations of histo-
grams are common: in equi-width histograms, the range of values is divided into 
equal subranges. In equi-height histograms, the buckets are so formed that each 
one contains roughly the same number of records. Equi-height histograms are con-
sidered better since they keep fewer numbers of more frequently occurring values 
in one bucket and more numbers of less frequently occurring ones in a different 
bucket. So the uniform distribution assumption within a bucket seems to hold bet-
ter. We show an example of a histogram for salary information in a company in 
Figure 19.4. This histogram divides the salary range into five buckets that may cor-
respond to the important sub-ranges over which the queries may be likely because 
they belong to certain types of employees. It is neither an equi-width nor an equi-
height histogram.
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Figure 19.4 
Histogram of salary in the relation EMPLOYEE.
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19.4 Cost Functions for SELECT Operation
We now provide cost functions for the selection algorithms S1 to S8 discussed in 
Section 18.3.1 in terms of number of block transfers between memory and disk. 
Algorithm S9 involves an intersection of record pointers after they have been 
retrieved by some other means, such as algorithm S6, and so the cost function will 
be based on the cost for S6. These cost functions are estimates that ignore computa-
tion time, storage cost, and other factors. To reiterate, the following notation is 
used in the formulas hereafter:

CSi: Cost for method Si in block accesses
rX: Number of records (tuples) in a relation X
bX: Number of blocks occupied by relation X (also referred to as b)
bfrX: Blocking factor (i.e., number of records per block) in relation X
slA: Selectivity of an attribute A for a given condition
sA: Selection cardinality of the attribute being selected (= slA * r)
xA: Number of levels of the index for attribute A
bI1A: Number of first-level blocks of the index on attribute A
NDV (A, X): Number of distinct values of attribute A in relation X

Note: In using the above notation in formulas, we have omitted the relation name 
or attribute name when it is obvious.

 ■ S1—Linear search (brute force) approach. We search all the file blocks to 
retrieve all records satisfying the selection condition; hence, CS1a = b. For an 
equality condition on a key attribute, only half the file blocks are searched on 
the average before finding the record, so a rough estimate for CS1b = (b/2) if 
the record is found; if no record is found that satisfies the condition, CS1b = b.

 ■ S2—Binary search. This search accesses approximately CS2 =  
log2b + ⎡(s/bfr)⎤ − 1 file blocks. This reduces to log2b if the equality condition 
is on a unique (key) attribute, because s = 1 in this case.

 ■ S3a—Using a primary index to retrieve a single record. For a primary 
index, retrieve one disk block at each index level, plus one disk block from 
the data file. Hence, the cost is one more disk block than the number of 
index levels: CS3a = x + 1.

 ■ S3b—Using a hash key to retrieve a single record. For hashing, only one 
disk block needs to be accessed in most cases. The cost function is approxi-
mately CS3b = 1 for static hashing or linear hashing, and it is 2 disk block 
accesses for extendible hashing (see Section 16.8).

 ■ S4—Using an ordering index to retrieve multiple records. If the compari-
son condition is >, >=, <, or <= on a key field with an ordering index, roughly 
half the file records will satisfy the condition. This gives a cost function of 
CS4 = x + (b/2). This is a very rough estimate, and although it may be correct 
on the average, it may be inaccurate in individual cases. A more accurate 
estimate is possible if the distribution of records is stored in a histogram.

 ■ S5—Using a clustering index to retrieve multiple records. One disk block 
is accessed at each index level, which gives the address of the first file disk 
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block in the cluster. Given an equality condition on the indexing attribute, s 
records will satisfy the condition, where s is the selection cardinality of the 
indexing attribute. This means that ⎡(s/bfr)⎤ file blocks will be in the cluster 
of file blocks that hold all the selected records, giving CS5 = x + ⎡(s/bfr)⎤.

 ■ S6—Using a secondary (B+-tree) index. For a secondary index on a key 
(unique) attribute, with an equality (i.e., <attribute = value>) selection condi-
tion, the cost is x + 1 disk block accesses. For a secondary index on a nonkey 
(nonunique) attribute, s records will satisfy an equality condition, where s is 
the selection cardinality of the indexing attribute. However, because the 
index is nonclustering, each of the records may reside on a different disk 
block, so the (worst case) cost estimate is CS6a = x + 1 + s. The additional 1 is 
to account for the disk block that contains the record pointers after the index 
is searched (see Figure 17.5). For range queries, if the comparison condition 
is >, >=, <, or <= and half the file records are assumed to satisfy the condition, 
then (very roughly) half the first-level index blocks are accessed, plus half the 
file records via the index. The cost estimate for this case, approximately, is 
CS6b = x + (bI1/2) + (r/2). The r/2 factor can be refined if better selectivity 
estimates are available through a histogram. The latter method CS6b can be 
very costly. For a range condition such as v1 < A < v2, the selection cardinal-
ity s must be computed from the histogram or as a default, under the uniform 
distribution assumption; then the cost would be computed based on whether 
or not A is a key or nonkey with a B+-tree index on A. (We leave this as an 
exercise for the reader to compute under the different conditions.)

 ■ S7—Conjunctive selection. We can use either S1 or one of the methods S2 
to S6 discussed above. In the latter case, we use one condition to retrieve the 
records and then check in the main memory buffers whether each retrieved 
record satisfies the remaining conditions in the conjunction. If multiple 
indexes exist, the search of each index can produce a set of record pointers 
(record ids) in the main memory buffers. The intersection of the sets of 
record pointers (referred to in S9) can be computed in main memory, and 
then the resulting records are retrieved based on their record ids.

 ■ S8—Conjunctive selection using a composite index. Same as S3a, S5, or 
S6a, depending on the type of index.

 ■ S9—Selection using a bitmap index. (See Section 17.5.2.) Depending on the 
nature of selection, if we can reduce the selection to a set of equality condi-
tions, each equating the attribute with a value (e.g., A = {7, 13, 17, 55}), then 
a bit vector for each value is accessed which is r bits or r/8 bytes long. A 
number of bit vectors may fit in one block. Then, if s records qualify, s blocks 
are accessed for the data records.

 ■ S10—Selection using a functional index. (See Section 17.5.3.) This works 
similar to S6 except that the index is based on a function of multiple attributes; 
if that function is appearing in the SELECT clause, the corresponding index 
may be utilized.
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Cost-Based Optimization Approach. In a query optimizer, it is common to 
enumerate the various possible strategies for executing a query and to estimate the 
costs for different strategies. An optimization technique, such as dynamic program-
ming, may be used to find the optimal (least) cost estimate efficiently without hav-
ing to consider all possible execution strategies. Dynamic programming is an 
optimization technique8 in which subproblems are solved only once. This tech-
nique is applicable when a problem may be broken down into subproblems that 
themselves have subproblems. We will visit the dynamic programming approach 
when we discuss join ordering in Section 19.5.5. We do not discuss optimization 
algorithms here; rather, we use a simple example to illustrate how cost estimates 
may be used.

19.4.1  Example of Optimization of Selection Based  
on Cost Formulas:

Suppose that the EMPLOYEE file in Figure 5.5 has rE = 10,000 records stored in  
bE = 2,000 disk blocks with blocking factor bfrE = 5 records/block and the following 
access paths:

  1. A clustering index on Salary, with levels xSalary = 3 and average selection cardi-
nality sSalary = 20. (This corresponds to a selectivity of slSalary = 20/10000 = 0.002.)

  2. A secondary index on the key attribute Ssn, with xSsn = 4 (sSsn = 1, slSsn = 0.0001).

  3. A secondary index on the nonkey attribute Dno, with xDno = 2 and first-level 
index blocks bI1Dno = 4. There are NDV (Dno, EMPLOYEE) = 125 distinct val-
ues for Dno, so the selectivity of Dno is slDno = (1/ NDV (Dno, EMPLOYEE)) = 
0.008, and the selection cardinality is sDno = (rE * slDno) = (rE/NDV (Dno, 
EMPLOYEE)) = 80.

  4. A secondary index on Sex, with xSex = 1. There are NDV (Sex, EMPLOYEE) = 
2 values for the Sex attribute, so the average selection cardinality is sSex = 
(rE/NDV (Sex, EMPLOYEE)) = 5000. (Note that in this case, a histogram  
giving the percentage of male and female employees may be useful, unless 
the percentages are approximately equal.)

We illustrate the use of cost functions with the following examples:

OP1: σSsn=‘123456789’ (EMPLOYEE)
OP2: σDno>5(EMPLOYEE)
OP3: σDno=5(EMPLOYEE)
OP4: σDno=5 AND SALARY>30000 AND Sex=‘F’ (EMPLOYEE)

The cost of the brute force (linear search or file scan) option S1 will be estimated as 
CS1a = bE = 2000 (for a selection on a nonkey attribute) or CS1b = (bE/2) = 1,000 

8For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-
sult an algorithm textbook such as Corman et al. (2003).
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(average cost for a selection on a key attribute). For OP1 we can use either method 
S1 or method S6a; the cost estimate for S6a is CS6a = xSsn + 1 = 4 + 1 = 5, and it is 
chosen over method S1, whose average cost is CS1b = 1,000. For OP2 we can use 
either method S1 (with estimated cost CS1a = 2,000) or method S6b (with estimated 
cost CS6b = xDno + (bI1Dno/2) + (rE /2) = 2 + (4/2) + (10,000/2) = 5,004), so we choose 
the linear search approach for OP2. For OP3 we can use either method S1 (with 
estimated cost CS1a = 2,000) or method S6a (with estimated cost CS6a = xDno + sDno = 
2 + 80 = 82), so we choose method S6a.

Finally, consider OP4, which has a conjunctive selection condition. We need to esti-
mate the cost of using any one of the three components of the selection condition to 
retrieve the records, plus the linear search approach. The latter gives cost estimate 
CS1a = 2000. Using the condition (Dno = 5) first gives the cost estimate CS6a = 82. 
Using the condition (Salary > 30000) first gives a cost estimate CS4 = xSalary + (bE/2) = 
3 + (2000/2) = 1003. Using the condition (Sex = ‘F’) first gives a cost estimate CS6a = 
xSex + sSex = 1 + 5000 = 5001. The optimizer would then choose method S6a on the 
secondary index on Dno because it has the lowest cost estimate. The condition  
(Dno = 5) is used to retrieve the records, and the remaining part of the conjunctive 
condition (Salary > 30,000 AND Sex = ‘F’) is checked for each selected record after it 
is retrieved into memory. Only the records that satisfy these additional conditions 
are included in the result of the operation. Consider the Dno = 5 condition in OP3 
above; Dno has 125 values and hence a B+-tree index would be appropriate. Instead, 
if we had an attribute Zipcode in EMPLOYEE and if the condition were Zipcode = 
30332 and we had only five zip codes, bitmap indexing could be used to know what 
records qualify. Assuming uniform distribution, sZipcode = 2,000. This would result 
in a cost of 2,000 for bitmap indexing.

19.5 Cost Functions for the JOIN Operation
To develop reasonably accurate cost functions for JOIN operations, we must have an 
estimate for the size (number of tuples) of the file that results after the JOIN opera-
tion. This is usually kept as a ratio of the size (number of tuples) of the resulting join 
file to the size of the CARTESIAN PRODUCT file, if both are applied to the same input 
files, and it is called the join selectivity (js). If we denote the number of tuples of a 
relation R by |R|, we have:

 js = |(R c S)| / |(R × S)| = |(R c S)| / (|R| * |S|)

If there is no join condition c, then js = 1 and the join is the same as the CARTESIAN 
PRODUCT. If no tuples from the relations satisfy the join condition, then js = 0. In 
general, 0 ≤ js ≤ 1. For a join where the condition c is an equality comparison  
R.A = S.B, we get the following two special cases:

  1. If A is a key of R, then |(R c S)| ≤ |S|, so js ≤ (1/|R|). This is because each 
record in file S will be joined with at most one record in file R, since A is a 
key of R. A special case of this condition is when attribute B is a foreign key 
of S that references the primary key A of R. In addition, if the foreign key B 
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has the NOT NULL constraint, then js = (1/|R|), and the result file of the join 
will contain |S| records.

  2. If B is a key of S, then |(R c S)| ≤ |R|, so js ≤ (1/|S|).

Hence a simple formula to use for join selectivity is:

js = 1/ max (NDV (A, R), NDV (B,S) )

Having an estimate of the join selectivity for commonly occurring join conditions 
enables the query optimizer to estimate the size of the resulting file after the join 
operation, which we call join cardinality (jc).

jc = |(Rc S)| = js * |R| * |S|.

We can now give some sample approximate cost functions for estimating the cost of 
some of the join algorithms given in Section 18.4. The join operations are of the form:

R  A=B S

where A and B are domain-compatible attributes of R and S, respectively. Assume 
that R has bR blocks and that S has bS blocks:

 ■ J1—Nested-loop join. Suppose that we use R for the outer loop; then we get 
the following cost function to estimate the number of block accesses for this 
method, assuming three memory buffers. We assume that the blocking factor 
for the resulting file is bfrRS and that the join selectivity is known:

CJ1 = bR + (bR * bS) + ((js * |R| * |S|)/bfrRS)

The last part of the formula is the cost of writing the resulting file to disk. This 
cost formula can be modified to take into account different numbers of 
memory buffers, as presented in Section 19.4. If nB main memory buffer 
blocks are available to perform the join, the cost formula becomes:

CJ1 = bR + ( ⎡bR/(nB – 2)⎤ * bS) + ((js * |R| * |S|)/bfrRS)

 ■ J2—Index-based nested-loop join (using an access structure to retrieve 
the matching record(s)). If an index exists for the join attribute B of S with 
index levels xB, we can retrieve each record s in R and then use the index to 
retrieve all the matching records t from S that satisfy t[B] = s[A]. The cost 
depends on the type of index. For a secondary index where sB is the selection 
cardinality for the join attribute B of S,9 we get:

CJ2a = bR + (|R| * (xB + 1 + sB)) + (( js * |R| * |S|)/bfrRS)

For a clustering index where sB is the selection cardinality of B, we get

CJ2b = bR + (|R| * (xB + (sB/bfrB))) + (( js * |R| * |S|)/bfrRS)

9Selection cardinality was defined as the average number of records that satisfy an equality condition on 
an attribute, which is the average number of records that have the same value for the attribute and 
hence will be joined to a single record in the other file.
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For a primary index, we get

CJ2c = bR + (|R| * (xB + 1)) + ((js * |R| * |S|)/bfrRS)

If a hash key exists for one of the two join attributes—say, B of S—we get

CJ2d = bR + (|R| * h) + ((js * |R| * |S|)/bfrRS)

where h ≥ 1 is the average number of block accesses to retrieve a record, 
given its hash key value. Usually, h is estimated to be 1 for static and linear 
hashing and 2 for extendible hashing. This is an optimistic estimate, and typ-
ically h ranges from 1.2 to 1.5 in practical situations.

 ■ J3—Sort-merge join. If the files are already sorted on the join attributes, the 
cost function for this method is

CJ3a = bR + bS + ((js * |R| * |S|)/bfrRS)

If we must sort the files, the cost of sorting must be added. We can use the 
formulas from Section 18.2 to estimate the sorting cost.

 ■ J4—Partition–hash join (or just hash join). The records of files R and S are 
partitioned into smaller files. The partitioning of each file is done using the 
same hashing function h on the join attribute A of R (for partitioning file R) 
and B of S (for partitioning file S). As we showed in Section 18.4, the cost of 
this join can be approximated to:

CJ4 = 3 * (bR + bS) + ((js * |R| * |S|)/bfrRS)

19.5.1  Join Selectivity and Cardinality  
for Semi-Join and Anti-Join

We consider these two important operations, which are used when unnesting cer-
tain queries. In Section 18.1 we showed examples of subqueries that are transformed 
into these operations. The goal of these operations is to avoid the unnecessary effort 
of doing exhaustive pairwise matching of two tables based on the join condition. 
Let us consider the join selectivity and cardinality of these two types of joins.

Semi-Join 

SELECT COUNT(*)
FROM T1
WHERE T1.X IN (SELECT T2.Y
 FROM T2);

Unnesting of the query above leads to semi-join. (In the following query, the nota-
tion “S=” for semi-join is nonstandard.)

SELECT COUNT(*)
FROM T1, T2
WHERE T1.X S= T2.Y;
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The join selectivity of the semi-join above is given by:

js = MIN(1,NDV(Y, T2)/NDV(X, T1))

The join cardinality of the semi-join is given by:

jc = |T1|* js

Anti-Join Consider the following query:

SELECT COUNT (*)
FROM T1
WHERE T1.X NOT IN (SELECT T2.Y
FROM T2);

Unnesting of the query above leads to anti-join.10 (In the following query, the notation 
“A=” for anti-join is nonstandard.)

SELECT COUNT(*)
FROM T1, T2
WHERE T1.X A= T2.Y;

The join selectivity of the anti-join above is given by:

js = 1 – MIN(1,NDV(T2.y)/NDV(T1.x))

The join cardinality of the anti-join is given by:

jc = |T1|*js

19.5.2 Example of Join Optimization Based on Cost Formulas
Suppose that we have the EMPLOYEE file described in the example in the previ-
ous section, and assume that the DEPARTMENT file in Figure 5.5 consists of  
rD = 125 records stored in bD = 13 disk blocks. Consider the following two join 
 operations:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT
OP7: DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

Suppose that we have a primary index on Dnumber of DEPARTMENT with xDnumber= 1 
level and a secondary index on Mgr_ssn of DEPARTMENT with selection cardinality 
sMgr_ssn= 1 and levels xMgr_ssn= 2. Assume that the join selectivity for OP6 is  
jsOP6 = (1/|DEPARTMENT|) = 1/12511 because Dnumber is a key of DEPARTMENT. 
Also assume that the blocking factor for the resulting join file is bfrED= 4 records  

10Note that in order for anti-join to be used in the NOT IN subquery, both the join attributes, T1.X and 
T2.Y, must have non-null values. For a detailed discussion, consult Bellamkonda et al. (2009).

11Note that this coincides with our other formula: = 1/ max (NDV (Dno, EMPLOYEEE), NDV (Dnumber, 
DEPARTMENT) = 1/max (125,125) = 1/125.
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per block. We can estimate the worst-case costs for the JOIN operation OP6 using 
the applicable methods J1 and J2 as follows:

  1. Using method J1 with EMPLOYEE as outer loop:

CJ1 = bE + (bE * bD) + (( jsOP6 * rE* rD)/bfrED)

  = 2,000 + (2,000 * 13) + (((1/125) * 10,000 * 125)/4) = 30,500

  2. Using method J1 with DEPARTMENT as outer loop:

CJ1 = bD + (bE * bD) + (( jsOP6* rE* rD)/bfrED)

  = 13 + (13 * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513

  3. Using method J2 with EMPLOYEE as outer loop:

CJ2c = bE + (rE * (xDnumber+ 1)) + (( jsOP6 * rE * rD)/bfrED

  = 2,000 + (10,000 * 2) + (((1/125) * 10,000 * 125/4) = 24,500

  4. Using method J2 with DEPARTMENT as outer loop:

CJ2a = bD + (rD * (xDno + sDno)) + (( jsOP6 * rE * rD)/bfrED)

  = 13 + (125 * (2 + 80)) + (((1/125) * 10,000 * 125/4) = 12,763

  5. Using method J4 gives:

CJ4 = 3* ( bD + bE ) + (( jsOP6 * rE * rD)/bfrED)

  = 3* (13+2,000) + 2,500 = 8,539

Case 5 has the lowest cost estimate and will be chosen. Notice that in case 2 above, 
if 15 memory buffer blocks (or more) were available for executing the join instead 
of just 3, 13 of them could be used to hold the entire DEPARTMENT relation (outer 
loop relation) in memory, one could be used as buffer for the result, and one would 
be used to hold one block at a time of the EMPLOYEE file (inner loop file), and the 
cost for case 2 could be drastically reduced to just bE + bD + (( jsOP6 * rE * rD)/bfrED) 
or 4,513, as discussed in Section 18.4. If some other number of main memory buf-
fers was available, say nB = 10, then the cost for case 2 would be calculated as fol-
lows, which would also give better performance than case 4:

CJ1 = bD + (⎡bD/(nB – 2)⎤ * bE) + ((js * |R| * |S|)/bfrRS)

  = 13 + ( ⎡13/8⎤ * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513

  = 13 + (2 * 2,000) + 2,500 = 6,513

As an exercise, the reader should perform a similar analysis for OP7.

19.5.3 Multirelation Queries and JOIN Ordering Choices
The algebraic transformation rules in Section 19.1.2 include a commutative rule 
and an associative rule for the join operation. With these rules, many equivalent 
join expressions can be produced. As a result, the number of alternative query trees 
grows very rapidly as the number of joins in a query increases. A query block that 
joins n relations will often have n − 1 join operations, and hence can have a large 
number of different join orders. In general, for a query block that has n relations, 
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there are n! join orders; Cartesian products are included in this total number. Esti-
mating the cost of every possible join tree for a query with a large number of joins 
will require a substantial amount of time by the query optimizer. Hence, some 
pruning of the possible query trees is needed. Query optimizers typically limit the 
structure of a (join) query tree to that of left-deep (or right-deep) trees. A left-deep 
join tree is a binary tree in which the right child of each non–leaf node is always a 
base relation. The optimizer would choose the particular left-deep join tree with the 
lowest estimated cost. Two examples of left-deep trees are shown in Figure 19.5(a). 
(Note that the trees in Figure 19.2 are also left-deep trees.) A right-deep join tree is 
a binary tree where the left child of every leaf node is a base relation (Figure 19.5(b)).

A bushy join tree is a binary tree where the left or right child of an internal node 
may be an internal node. Figure 19.5(b) shows a right-deep join tree whereas Fig-
ure 19.5(c) shows a bushy one using four base relations. Most query optimizers con-
sider left-deep join trees as the preferred join tree and then choose one among the 
n! possible join orderings, where n is the number of relations. We discuss the join 
ordering issue in more detail in Sections 19.5.4 and 19.5.5. The left-deep tree has 
exactly one shape, and the join orders for N tables in a left-deep tree are given by N!. 
In contrast, the shapes of a bushy tree are given by the following recurrence relation 
(i.e., recursive function), with S(n) defined as follows: S(1) = 1.

S(n) = 
n-1

Σ
i =1

 S(i) * S(n − i)

The above recursive equation for S(n) can be explained as follows. It states that, for 
i between 1 and N – 1 as the number of leaves in the left subtree, those leaves may 
be rearranged in S(i) ways. Similarly, the remaining N – i leaves in the right subtree 
can be rearranged in S(N – i) ways. The number of permutations of the bushy trees 
is given by:

P(n) = n! * S(n) = (2n – 2)!/(n – 1)!

Table 19.1 shows the number of possible left-deep (or right-deep) join trees and 
bushy join trees for joins of up to seven relations.

It is clear from Table 19.1 that the possible space of alternatives becomes rapidly 
unmanageable if all possible bushy tree alternatives were to be considered. In certain 

Table19.1  Number of Permutations of Left-Deep and Bushy Join Trees of n Relations

 
No. of Relations N

No. of Left-Deep 
Trees N!

No. of Bushy  
Shapes S(N)

No. of Bushy Trees 
(2N − 2)!/( N − 1)!

2     2   1       2

3     6   2      12

4    24   5     120

5   120  14   1,680

6   720  42  30,240

7 5,040 132 665,280
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cases like complex versions of snowflake schemas (see Section 29.3), approaches to 
considering bushy tree alternatives have been proposed.12

With left-deep trees, the right child is considered to be the inner relation when exe-
cuting a nested-loop join, or the probing relation when executing an index-based 
nested-loop join. One advantage of left-deep (or right-deep) trees is that they are 
amenable to pipelining, as discussed in Section 18.7. For instance, consider the first 
left-deep tree in Figure 19.5(a) and assume that the join algorithm is the index-based 
nested-loop method; in this case, a disk page of tuples of the outer relation is used to 
probe the inner relation for matching tuples. As resulting tuples (records) are pro-
duced from the join of R1 and R2, they can be used to probe R3 to locate their match-
ing records for joining. Likewise, as resulting tuples are produced from this join, 
they could be used to probe R4. Another advantage of left-deep (or right-deep) trees 
is that having a base relation as one of the inputs of each join allows the optimizer to 
utilize any access paths on that relation that may be useful in executing the join.

If materialization is used instead of pipelining (see Sections 18.7 and 19.2), the join 
results could be materialized and stored as temporary relations. The key idea from 

12As a representative case for bushy trees, refer to Ahmed et al. (2014).
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R2

R2R1 R4R3

R1

Figure 19.5 
(a) Two left-deep join query trees.  
(b) A right-deep join query tree.  
(c) A bushy query tree.
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the optimizer’s standpoint with respect to join ordering is to find an ordering that 
will reduce the size of the temporary results, since the temporary results (pipelined 
or materialized) are used by subsequent operators and hence affect the execution 
cost of those operators.

19.5.4 Physical Optimization
For a given logical query plan based on the heuristics we have been discussing so 
far, each operation needs a further decision in terms of executing the operation by a 
specific algorithm at the physical level. This is referred to as physical optimization. 
If this optimization is based on the relative cost of each possible implementation, 
we call it cost-based physical optimization. The two sets of approaches to this deci-
sion making may be broadly classified as top-down and bottom-up approaches. In 
the top-down approach, we consider the options for implementing each operation 
working our way down the tree and choosing the best alternative at each stage. In 
the bottom-up approach, we consider the operations working up the tree, evaluat-
ing options for physical execution, and choosing the best at each stage. Theoreti-
cally, both approaches amount to evaluation of the entire space of possible 
implementation solutions to minimize the cost of evaluation; however, the bottom-
up strategy lends itself naturally to pipelining and hence is used in commercial 
RDBMSs. Among the most important physical decisions is the ordering of join 
operations, which we will briefly discuss in Section 19.5.5. There are certain heuris-
tics applied at the physical optimization stage that make elaborate cost computa-
tions unnecessary. These heuristics include:

 ■ For selections, use index scans wherever possible.

 ■ If the selection condition is conjunctive, use the selection that results in the 
smallest cardinality first.

 ■ If the relations are already sorted on the attributes being matched in a join, 
then prefer sort-merge join to other join methods.

 ■ For union and intersection of more than two relations, use the associative 
rule; consider the relations in the ascending order of their estimated car-
dinalities.

 ■ If one of the arguments in a join has an index on the join attribute, use that 
as the inner relation.

 ■ If the left relation is small and the right relation is large and it has index on 
the joining column, then try index-based nested-loop join.

 ■ Consider only those join orders where there are no Cartesian products or 
where all joins appear before Cartesian products.

The following are only some of the types of physical level heuristics used by the 
optimizer. If the number of relations is small (typically less than 6) and, there-
fore, possible implementations options are limited, then most optimizers would 
elect to apply a cost-based optimization approach directly rather than to explore 
heuristics.
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19.5.5 Dynamic Programming Approach to Join Ordering
We saw in Section 19.5.3 that there are many possible ways to order n relations in 
an n-way join. Even for n = 5, which is not uncommon in practical applications, the 
possible permutations are 120 with left-deep trees and 1,680 with bushy trees. Since 
bushy trees expand the solution space tremendously, left-deep trees are generally 
preferred (over both bushy and right-deep trees). They have multiple advantages: 
First, they work well with the common algorithms for join, including nested-loop, 
index-based nested-loop, and other one-pass algorithms. Second, they can generate 
fully pipelined plans (i.e., plans where all joins can be evaluated using pipelining). 
Note that inner tables must always be materialized because in the join implementa-
tion algorithms, the entire inner table is needed to perform the matching on the 
join attribute. This is not possible with right-deep trees.

The common approach to evaluate possible permutations of joining relations is a greedy 
heuristic approach called dynamic programming. Dynamic programming is an opti-
mization technique13 where subproblems are solved only once, and it is applicable when 
a problem may be broken down into subproblems that themselves have subproblems. A 
typical dynamic programming algorithm has the following characteristics14:

  1. The structure of an optimal solution is developed.

  2. The value of the optimal solution is recursively defined.

  3. The optimal solution is computed and its value developed in a bottom-up 
fashion.

Note that the solution developed by this procedure is an optimal solution and not the 
absolute optimal solution. To consider how dynamic programming may be applied to 
the join order selection, consider the problem of ordering a 5-way join of relations r1, 
r2, r3, r4, r5. This problem has 120 (=5!) possible left-deep tree solutions. Ideally, the 
cost of each of them can be estimated and compared and the best one selected. Dynamic 
programming takes an approach that breaks down this problem to make it more man-
ageable. We know that for three relations, there are only six possible left-deep tree 
solutions. Note that if all possible bushy tree join solutions were to be evaluated, there 
would be 12 of them. We can therefore consider the join to be broken down as:

r1  r2  r3  r4  r5 = (r1  r2  r3)  r4  r5

The 6 (= 3!) possible options of (r1  r2  r3) may then be combined with the 6 pos-
sible options of taking the result of the first join, say, temp1, and then considering 
the next join:

(temp1  r4  r5)

If we were to consider the 6 options for evaluating temp1 and, for each of them, 
consider the 6 options of evaluating the second join (temp1  r4  r5), the possible 

13For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-
sult an algorithm textbook such as Corman et al. (2003).

14Based on Chapter 16 in Corman et al. (2003).
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solution space has 6 * 6 = 36 alternatives. This is where dynamic programming can 
be used to do a sort of greedy optimization. It takes the “optimal” plan for evaluating 
temp1 and does not revisit that plan. So the solution space now reduces to only 6 
options to be considered for the second join. Thus the total number of options con-
sidered becomes 6 + 6 instead of 120 (=5!) in the nonheuristic exhaustive approach.

The order in which the result of the join is generated is also important for finding 
the best overall order of joins since for using sort-merge join with the next relation, 
it plays an important role. The ordering beneficial for the next join is considered an 
interesting join order. This approach was first proposed in System R at IBM 
Research.15 Besides the join attributes of the later join, System R also included 
grouping attributes of a later GROUP BY or a sort order at the root of the tree 
among interesting sort orders. For example, in the case we discussed above, the 
interesting join orders for the temp1 relation will include those that match the join 
attribute(s) required to join with either r4 or with r5. The dynamic programming 
algorithm can be extended to consider best join orders for each interesting sort 
order. The number of subsets of n relations is 2n (for n = 5 it is 32; n = 10 gives 
1,024, which is still manageable), and the number of interesting join orders is small. 
The complexity of the extended dynamic programming algorithm to determine the 
optimal left-deep join tree permutation has been shown to be O(3n).

19.6  Example to Illustrate Cost-Based  
Query Optimization

We will consider query Q2 and its query tree shown in Figure 19.1(a) to illustrate 
cost-based query optimization:

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

  Plocation=‘Stafford’;

Suppose we have the information about the relations shown in Figure 19.6. The 
LOW_VALUE and HIGH_VALUE statistics have been normalized for clarity. The tree 
in Figure 19.1(a) is assumed to represent the result of the algebraic heuristic optimi-
zation process and the start of cost-based optimization (in this example, we assume 
that the heuristic optimizer does not push the projection operations down the tree).

The first cost-based optimization to consider is join ordering. As previously men-
tioned, we assume the optimizer considers only left-deep trees, so the potential join 
orders—without CARTESIAN PRODUCT—are:

  1. PROJECT  DEPARTMENT  EMPLOYEE

  2. DEPARTMENT  PROJECT  EMPLOYEE

15See the classic reference in this area by Selinger et al. (1979).
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  3. DEPARTMENT  EMPLOYEE  PROJECT

  4. EMPLOYEE  DEPARTMENT  PROJECT

Assume that the selection operation has already been applied to the PROJECT rela-
tion. If we assume a materialized approach, then a new temporary relation is cre-
ated after each join operation. To examine the cost of join order (1), the first join is 
between PROJECT and DEPARTMENT. Both the join method and the access methods 
for the input relations must be determined. Since DEPARTMENT has no index 
according to Figure 19.6, the only available access method is a table scan (that is, a 
linear search). The PROJECT relation will have the selection operation performed 
before the join, so two options exist—table scan (linear search) or use of the  
PROJ_PLOC index—so the optimizer must compare the estimated costs of these 
two options. The statistical information on the PROJ_PLOC index (see Figure 19.6) 
shows the number of index levels x = 2 (root plus leaf levels). The index is nonunique 

(a) Table_name
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PROJECT
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DEPARTMENT
EMPLOYEE

EMPLOYEE
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(c) Index_name

*Blevel is the number of levels without the leaf level.
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Figure 19.6 
Sample statistical information for relations in Q2. (a) Column information.  
(b) Table information. (c) Index information.
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(because Plocation is not a key of PROJECT), so the optimizer assumes a uniform 
data distribution and estimates the number of record pointers for each Plocation 
value to be 10. This is computed from the tables in Figure 19.6 by multiplying 
Selectivity * Num_rows, where Selectivity is estimated by 1/Num_distinct. So the cost of 
using the index and accessing the records is estimated to be 12 block accesses (2 for 
the index and 10 for the data blocks). The cost of a table scan is estimated to be 100 
block accesses, so the index access is more efficient as expected.

In the materialized approach, a temporary file TEMP1 of size 1 block is created to 
hold the result of the selection operation. The file size is calculated by determin-
ing the blocking factor using the formula Num_rows/Blocks, which gives 2,000/100 
or 20 rows per block. Hence, the 10 records selected from the PROJECT relation 
will fit into a single block. Now we can compute the estimated cost of the first 
join. We will consider only the nested-loop join method, where the outer relation 
is the temporary file, TEMP1, and the inner relation is DEPARTMENT. Since the 
entire TEMP1 file fits in the available buffer space, we need to read each of the 
DEPARTMENT table’s five blocks only once, so the join cost is six block accesses 
plus the cost of writing the temporary result file, TEMP2. The optimizer would 
have to determine the size of TEMP2. Since the join attribute Dnumber is the key 
for DEPARTMENT, any Dnum value from TEMP1 will join with at most one record 
from DEPARTMENT, so the number of rows in TEMP2 will be equal to the number 
of rows in TEMP1, which is 10. The optimizer would determine the record size for 
TEMP2 and the number of blocks needed to store these 10 rows. For brevity, 
assume that the blocking factor for TEMP2 is five rows per block, so a total of two 
blocks are needed to store TEMP2.

Finally, the cost of the last join must be estimated. We can use a single-loop join on 
TEMP2 since in this case the index EMP_SSN (see Figure 19.6) can be used to probe 
and locate matching records from EMPLOYEE. Hence, the join method would 
involve reading in each block of TEMP2 and looking up each of the five Mgr_ssn 
values using the EMP_SSN index. Each index lookup would require a root access, a 
leaf access, and a data block access (x + 1, where the number of levels x is 2). So, 10 
lookups require 30 block accesses. Adding the two block accesses for TEMP2 gives a 
total of 32 block accesses for this join.

For the final projection, assume pipelining is used to produce the final result, which 
does not require additional block accesses, so the total cost for join order (1) is esti-
mated as the sum of the previous costs. The optimizer would then estimate costs in 
a similar manner for the other three join orders and choose the one with the lowest 
estimate. We leave this as an exercise for the reader.

19.7  Additional Issues Related  
to Query Optimization

In this section, we will discuss a few issues of interest that we have not been able to 
discuss earlier.
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19.7.1 Displaying the System’s Query Execution Plan
Most commercial RDBMSs have a provision to display the execution plan produced 
by the query optimizer so that DBA-level personnel can view such execution plans 
and try to understand the descision made by the optimizer.16 The common syntax 
is some variation of EXPLAIN <query>.

 ■ Oracle uses

 EXPLAIN PLAN FOR
 <SQL Query>

The query may involve INSERT, DELETE, and UPDATE statements; the output 
goes into a table called PLAN_TABLE. An appropriate SQL query is written to read 
the PLAN_TABLE. Alternately, Oracle provides two scripts UTLXPLS.SQL and 
UTLXPLP.SQL to display the plan table output for serial and parallel execution, 
respectively.

 ■ IBM DB2 uses

 EXPLAIN PLAN SELECTION [additional options] FOR <SQL-query>

There is no plan table. The PLAN SELECTION is a command to indicate that the 
explain tables should be loaded with the explanations during the plan selection 
phase. The same statement is also used to explain XQUERY statements.

 ■ SQL SERVER uses

 SET SHOWPLAN_TEXT ON or SET SHOWPLAN_XML ON or SET 
SHOWPLAN_ALL ON

The above statements are used before issuing the TRANSACT-SQL, so the plan 
output is presented as text or XML or in a verbose form of text corresponding to the 
above three options.

 ■ PostgreSQL uses

 EXPLAIN [set of options] <query>.where the options include ANALYZE, 
VERBOSE, COSTS, BUFFERS, TIMING, etc.

19.7.2 Size Estimation of Other Operations
In Sections 19.4 and 19.5, we discussed the SELECTION and JOIN operations and 
size estimation of the query result when the query involves those operations. Here 
we consider the size estimation of some other operations.

Projection: For projection of the form πList (R) expressed as SELECT <attribute-
list> FROM R, since SQL treats it as a multiset, the estimated number of tuples in 
the result is |R|. If the DISTINCT option is used, then size of πA (R) is NDV (A, R).

16We have just illustrated this facility without describing the syntactic details of each system.
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Set Operations: If the arguments for an intersection, union, or set difference are 
made of selections on the same relation, they can be rewritten as conjunction, dis-
junction, or negation, respectively. For example, σc1 (R) ∩ σc2 (R) can be rewritten 
as σc1 AND c2 (R); and σc1 (R) ∪ σc2 (R) can be rewritten as σc1 OR c2 (R). The size 
estimation can be made based on the selectivity of conditions c1 and c2. Otherwise, 
the estimated upper bound on the size of r ∩ s is the minimum of the sizes of r and s; 
the estimated upper bound on the size of r ∪ s is the sum of their sizes.

Aggregation: The size of GℑAggregate-function(A) R is NDV (G, R) since there is one 
group for each unique value of G.

Outer Join : the size of R LEFT OUTER JOIN S would be |R  S| plus |R anti-join S|. 
Similarly, the size of R FULL OUTER JOIN S would be |r  s| plus |r anti-join s| plus 
|s anti-join r|. We discussed anti-join selectivity estimation in Section 19.5.1.

19.7.3 Plan Caching
In Chapter 2, we referred to parametric users who run the same queries or transac-
tions repeatedly, but each time with a different set of parameters. For example, a 
bank teller uses an account number and some function code to check the balance in 
that account. To run such queries or transactions repeatedly, the query optimizer 
computes the best plan when the query is submitted for the first time and caches the 
plan for future use. This storing of the plan and reusing it is referred to as plan 
caching. When the query is resubmitted with different constants as parameters, the 
same plan is reused with the new parameters. It is conceivable that the plan may 
need to be modified under certain situations; for example, if the query involves 
report generation over a range of dates or range of accounts, then, depending on 
the amount of data involved, different strategies may apply. Under a variation 
called parametric query optimization, a query is optimized without a certain set of 
values for its parameters and the optimizer outputs a number of plans for different 
possible value sets, all of which are cached. As a query is submitted, the parameters 
are compared to the ones used for the various plans and the cheapest among the 
applicable plans is used.

19.7.4 Top-k Results Optimization
When the output of a query is expected to be large, sometimes the user is satisfied 
with only the top-k results based on some sort order. Some RDBMSs have a limit K 
clause to limit the result to that size. Similarly, hints may be specified to inform the 
optimizer to limit the generation of the result. Trying to generate the entire result 
and then presenting only the top-k results by sorting is a naive and inefficient strat-
egy. Among the suggested strategies, one uses generation of results in a sorted order 
so that it can be stopped after K tuples. Other strategies, such as introducing addi-
tional selection conditions based on the estimated highest value, have been pro-
posed. Details are beyond our scope here. The reader may consult the bibliographic 
notes for details.
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19.8  An Example of Query Optimization  
in Data Warehouses

In this section, we introduce another example of query transformation and rewrit-
ing as a technique for query optimization. In Section 19.2, we saw examples of 
query transformation and rewriting. Those examples dealt with nested subqueries 
and used heuristics rather than cost-based optimization. The subquery (view) 
merging example we showed can be considered a heuristic transformation; but the 
group-by view merging uses cost-based optimization as well. In this section, we 
consider a transformation of star-schema queries in data warehouses based on cost 
considerations. These queries are commonly used in data warehouse applications 
that follow the star schema. (See Section 29.3 for a discussion of star schemas.)

We will refer to this procedure as star-transformation optimization. The star 
schema contains a collection of tables; it gets its name because of the schema’s 
resemblance to a star-like shape whose center contains one or more fact tables 
(relations) that reference multiple dimension tables (relations). The fact table con-
tains information about the relationships (e.g., sales) among the various dimension 
tables (e.g., customer, part, supplier, channel, year, etc.) and measure columns (e.g., 
amount_sold, etc.). Consider the representative query called QSTAR given below. 
Assume that D1, D2, D3 are aliases for the dimension tables DIM1, DIM2, DIM3, 
whose primary keys are, respectively, D1.Pk, D2.Pk, and D3.Pk. These dimensions 
have corresponding foreign key attributes in the fact table FACT with alias F—
namely, F.Fk1, F.Fk2, F.Fk3—on which joins can be defined. The query creates a 
grouping on attributes D1.X, D2.Y and produces a sum of the so-called “measure” 
attribute (see Section 29.3) F.M from the fact table F. There are conditions on attri-
butes A, B, C in DIM1, DIM2, DIM3, respectively:

Query QSTAR:
SELECT D1.X, D2.Y, SUM (F.M)
FROM FACT F, DIM1 D1, DIM2 D2, DIM3 D3
WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and F.Fk3 = D3.Pk and
          D1.A > 5 and D2.B < 77 and D3.C = 11
GROUP BY D1.X, D2.Y

The fact table is generally very large in comparison with the dimension tables. 
QSTAR is a typical star query, and its fact table tends to be generally very large and 
joined with several tables of small dimension tables. The query may also contain 
single-table filter predicates on other columns of the dimension tables, which are 
generally restrictive. The combination of these filters helps to significantly reduce 
the data set processed from the fact table (such as D1.A > 5 in the above query). 
This type of query generally does grouping on columns coming from dimension 
tables and aggregation on measure columns coming from the fact table.

The goal of star-transformation optimization is to access only this reduced set of 
data from the fact table and avoid using a full table scan on it. Two types of star-
transformation optimizations are possible: (A) classic star transformation, and  
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(B) bitmap index star transformation. Both these optimizations are performed on 
the basis of comparative costs of the original and the transformed queries.

 A. Classic Star Transformation
  In this optimization, a Cartesian product of the dimension tables is per-

formed first after applying the filters (such as D1.A > 5 ) to each dimension 
table. Note that generally there are no join predicates between dimension 
tables. The result of this Cartesian product is then joined with the fact table 
using B-tree indexes (if any) on the joining keys of the fact table.

 B. Bitmap Index Star Transformation

  The requirement with this optimization is that there must be bitmap17 

indexes on the fact-table joining keys referenced in the query. For example, 
in QSTAR, there must be bitmap indexes (see Section 17.5.2) on FACT.Fk1, 
FACT.Fk2, and FACT.Fk3 attributes; each bit in the bitmap corresponds to 
a row in the fact table. The bit is set if the key value of the attribute appears 
in a row of the fact table. The given query QSTAR is transformed into 
Q2STAR as shown below.

Q2STAR:

SELECT D1.X, D2.Y, SUM (F.M)
FROM FACT F, DIM1 D1, DIM2 D2
WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and D1.A > 5 and D2.B < 77 and
 F.Fk1 IN (SELECT D1.Pk
  FROM DIM1 D1
  WHERE D1.A > 5) AND
 F.Fk2 IN (SELECT D2.Pk
  FROM DIM2 D2
  WHERE D2.B < 77) AND
 F.Fk3 IN (SELECT D3.pk
  FROM DIM3 D3
  WHERE D3.C = 11)
GROUP BY D1.X, D2.Y;

  The bitmap star transformation adds subquery predicates corresponding to 
the dimension tables. Note that the subqueries introduced in Q2STAR may 
be looked upon as a set membership operation; for example, F.Fk1 IN (5, 9, 
12, 13, 29 …).

When driven by bitmap AND and OR operations of the key values supplied by the 
dimension subqueries, only the relevant rows from the fact table need to be 
retrieved. If the filter predicates on the dimension tables and the intersection of the 
fact table joining each dimension table filtered out a significant subset of the fact 
table rows, then this optimization would prove to be much more efficient than a 
brute force full-table scan of the fact table.

17In some cases, the B-tree index keys can be converted into bitmaps, but we will not discuss this  
technique here.
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The following operations are performed in Q2STAR in order to access and join the 
FACT table.

  1. By iterating over the key values coming from a dimension subquery, the 
bitmaps are retrieved for a given key value from a bitmap index on the 
FACT table.

  2. For a subquery, the bitmaps retrieved for various key values are merged 
(OR-ed).

  3. The merged bitmaps for each dimension subqueries are AND-ed; that is, a 
conjunction of the joins is performed.

  4. From the final bitmap, the corresponding tuple-ids for the FACT table are 
generated.

  5. The FACT table rows are directly retrieved using the tuple-ids.

Joining Back: The subquery bitmap trees filter the fact table based on the filter 
predicates on the dimension tables; therefore, it may still be necessary to join the 
dimension tables back to the relevant rows in the fact table using the original join 
predicates. The join back of a dimension table can be avoided if the column(s) 
selected from the subquery are unique and the columns of the dimension table are 
not referenced in the SELECT and GROUP-BY clauses. Note that in Q2STAR, the 
table DIM3 is not joined back to the FACT table, since it is not referenced in the 
SELECT and GROUP-BY clauses, and DIM3.Pk is unique.

19.9 Overview of Query Optimization in Oracle18

This section provides a broad overview of various features in Oracle query process-
ing, including query optimization, execution, and analytics.19

19.9.1 Physical Optimizer
The Oracle physical optimizer is cost based and was introduced in Oracle 7.1. The 
scope of the physical optimizer is a single query block. The physical optimizer 
examines alternative table and index access paths, operator algorithms, join order-
ings, join methods, parallel execution distribution methods, and so on. It chooses 
the execution plan with the lowest estimated cost. The estimated query cost is a 
relative number proportional to the expected elapsed time needed to execute the 
query with the given execution plan.

The physical optimizer calculates this cost based on object statistics (such as table 
cardinalities, number of distinct values in a column, column high and low values, 
data distribution of column values), the estimated usage of resources (such as I/O 
and CPU time), and memory needed. Its estimated cost is an internal metric that 

18This section is contributed by Rafi Ahmed of Oracle Corporation.

19Support for analytics was introduced in Oracle 10.2.
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roughly corresponds to the run time and the required resources. The goal of cost-
based optimization in Oracle is to find the best trade-off between the lowest run 
time and the least resource utilization.

19.9.2 Global Query Optimizer
In traditional RDBMSs, query optimization consists of two distinct logical and 
physical optimization phases. In contrast, Oracle has a global query optimizer, 
where logical transformation and physical optimization phases have been inte-
grated to generate an optimal execution plan for the entire query tree. The architec-
ture of the Oracle query processing is illustrated in Figure 19.7.

Oracle performs a multitude of query transformations, which change and trans-
form the user queries into equivalent but potentially more optimal forms. Transfor-
mations can be either heuristic-based or cost-based. The cost-based query 
transformation (CBQT) framework20 introduced in Oracle 10g provides efficient 
mechanisms for exploring the state space generated by applying one or more trans-
formations. During cost-based transformation, an SQL statement, which may com-
prise multiple query blocks, is copied and transformed and its cost is computed 
using the physical optimizer. This process is repeated multiple times, each time 
applying a new set of possibly interdependent transformations; and, at the end, one 
or more transformations are selected and applied to the original SQL statement, if 
those transformations result in an optimal execution plan. To deal with the combi-
natorial explosion, the CBQT framework provides efficient strategies for searching 
the state space of various transformations.

The availability of the general framework for cost-based transformation has made it 
possible for other innovative transformations to be added to the vast repertoire of 

20As presented in Ahmed et al. (2006).
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Oracle’s query transformation techniques. Major among these transformations are 
group-by and distinct subquery merging (in the FROM clause of the query), sub-
query unnesting, predicate move-around, common subexpression elimination, join 
predicate push down, OR expansion, subquery coalescing, join factorization,  
subquery removal through window function, star transformation, group-by placement, 
and bushy join trees.21

The cost-based transformation framework of Oracle 10g is a good example of the 
sophisticated approach taken to optimize SQL queries.

19.9.3 Adaptive Optimization
Oracle’s physical optimizer is adaptive and uses a feedback loop from the execu-
tion level to improve on its previous decisions. The optimizer selects the most 
optimal execution plan for a given SQL statement using the cost model, which 
relies on object statistics (e.g., number of rows, distribution of column values, 
etc.) and system statistics (e.g., I/O bandwidth of the storage subsystem). The 
optimality of the final execution plan depends primarily on the accuracy of the 
statistics fed into the cost model as well as on the sophistication of the cost model 
itself. In Oracle, the feedback loop shown in Figure 19.7 establishes a bridge 
between the execution engine and the physical optimizer. The bridge brings 
valuable statistical information to enable the physical optimizer to assess the 
impact of its decisions and make better decisions for the current and future exe-
cutions. For example, based on the estimated value of table cardinality, the opti-
mizer may choose the index-based nested-loop join method. However, during 
the execution phase, the actual table cardinality may be detected to diverge sig-
nificantly from the estimated value. This information may trigger the physical 
optimizer to revise its decision and dynamically change the index access join 
method to the hash join method.

19.9.4 Array Processing
One of the critical deficiencies of SQL implementations is its lack of support for 
N-dimensional array-based computation. Oracle has made extensions for analyt-
ics and OLAP features; these extensions have been integrated into the Oracle 
RDBMS engine.22 We will illustrate the need for OLAP queries when we discuss 
data warehousing in Chapter 29. These SQL extensions involving array-based 
computations for complex modeling and optimizations include access structures 
and execution strategies for processing these computations efficiently. The com-
putation clause (details are beyond our scope here) allows the Oracle RDBMS to 
treat a table as a multidimensional array and specify a set of formulas over it. The 
formulas replace multiple joins and UNION operations that must be performed 
for equivalent computation with current ANSI SQL (where ANSI stands for 

21More details can be found in Ahmed et al. (2006, 2014).
22See Witkowski et al. (2003) for more details.
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American National Standards Institute). The computation clause not only allows 
for ease of application development but also offers the Oracle RDBMS an opportu-
nity to perform better optimization.

19.9.5 Hints
An interesting addition to the Oracle query optimizer is the capability for an applica-
tion developer to specify hints (also called query annotations or directives in other 
systems) to the optimizer. Hints are embedded in the text of an SQL statement. Hints 
are commonly used to address the infrequent cases where the optimizer chooses a 
suboptimal plan. The idea is that an application developer occasionally might need 
to override the optimizer decisions based on cost or cardinality mis-estimations. For 
example, consider the EMPLOYEE table shown in Figure 5.6. The Sex column of that 
table has only two distinct values. If there are 10,000 employees, then the optimizer, 
in the absence of a histogram on the Sex column, would estimate that half are male 
and half are female, assuming a uniform data distribution. If a secondary index 
exists, it would more than likely not be used. However, if the application developer 
knows that there are only 100 male employees, a hint could be specified in an SQL 
query whose WHERE-clause condition is Sex = ‘M’ so that the associated index would 
be used in processing the query. Various types of hints can be specified for different 
operations; these hints include but are not limited to the following:

 ■ The access path for a given table

 ■ The join order for a query block

 ■ A particular join method for a join between tables

 ■ The enabling or disabling of a transformation

19.9.6 Outlines
In Oracle RDBMSs, outlines are used to preserve execution plans of SQL state-
ments or queries. Outlines are implemented and expressed as a collection of 
hints, because hints are easily portable and comprehensible. Oracle provides an 
extensive set of hints that are powerful enough to specify any execution plan, no 
matter how complex. When an outline is used during the optimization of an SQL 
statement, these hints are applied at appropriate stages by the optimizer (and 
other components). Every SQL statement processed by the Oracle optimizer 
automatically generates an outline that can be displayed with the execution plan. 
Outlines are used for purposes such as plan stability, what-if analysis, and perfor-
mance experiments.

19.9.7 SQL Plan Management
Execution plans for SQL statements have a significant impact on the overall perfor-
mance of a database system. New optimizer statistics, configuration parameter 
changes, software updates, introduction of new query optimization and processing 
techniques, and hardware resource utilizations are among a multitude of factors 
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that may cause the Oracle query optimizer to generate a new execution plan for the 
same SQL queries or statements. Although most of the changes in the execution 
plans are beneficial or benign, a few execution plans may turn out to be suboptimal, 
which can have a negative impact on system performance.

In Oracle 11g, a novel feature called SQL plan management (SPM) was introduced23 

for managing execution plans for a set of queries or workloads. SPM provides stable 
and optimal performance for a set of SQL statements by preventing new subopti-
mal plans from being executed while allowing other new plans to be executed if 
they are verifiably better than the previous plans. SPM encapsulates an elaborate 
mechanism for managing the execution plans of a set of SQL statements, for which 
the user has enabled SPM. SPM maintains the previous execution plans in the form 
of stored outlines associated with texts of SQL statements and compares the perfor-
mances of the old and new execution plans for a given SQL statement before per-
mitting them to be used by the user. SPM can be configured to work automatically, 
or it can be manually controlled for one or more SQL statements.

19.10 Semantic Query Optimization
A different approach to query optimization, called semantic query optimization, 
has been suggested. This technique, which may be used in combination with the 
techniques discussed previously, uses constraints specified on the database schema—
such as unique attributes and other more complex constraints—to modify one query 
into another query that is more efficient to execute. We will not discuss this approach 
in detail but we will illustrate it with a simple example. Consider the SQL query:

SELECT E.Lname, M.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS M
WHERE E.Super_ssn=M.Ssn AND E.Salary > M.Salary

This query retrieves the names of employees who earn more than their supervisors. 
Suppose that we had a constraint on the database schema that stated that no 
employee can earn more than his or her direct supervisor. If the semantic query 
optimizer checks for the existence of this constraint, it does not need to execute the 
query because it knows that the result of the query will be empty. This may save 
considerable time if the constraint checking can be done efficiently. However, 
searching through many constraints to find those that are applicable to a given 
query and that may semantically optimize it can also be time-consuming.

Consider another example:

SELECT Lname, Salary
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dno = DEPARTMENT.Dnumber and  
EMPLOYEE.Salary>100000

23See Ziauddin et al. (2008).
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In this example, the attributes retrieved are only from one relation: EMPLOYEE; the 
selection condition is also on that one relation. However, there is a referential integ-
rity constraint that Employee.Dno is a foreign key that refers to the primary key 
Department.Dnumber. Therefore, this query can be transformed by removing the 
DEPARTMENT relation from the query and thus avoiding the inner join as follows:

SELECT Lname, Salary
FROM EMPLOYEE
WHERE EMPLOYEE.Dno IS NOT NULL and EMPLOYEE.Salary>100000

This type of transformation is based on the primary-key/foreign-key relationship 
semantics, which are a constraint between the two relations.

With the inclusion of active rules and additional metadata in database systems (see 
Chapter 26), semantic query optimization techniques are being gradually incorpo-
rated into DBMSs.

19.11 Summary
 In the previous chapter, we presented the strategies for query processing used by 
relational DBMSs. We considered algorithms for various standard relational opera-
tors, including selection, projection, and join. We also discussed other types of 
joins, including outer join, semi-join, and anti-join, and we discussed aggregation 
as well as external sorting. In this chapter, our goal was to focus on query optimiza-
tion techniques used by relational DBMSs. In Section 19.1 we introduced the nota-
tion for query trees and graphs and described heuristic approaches to query 
optimization; these approaches use heuristic rules and algebraic techniques to 
improve the efficiency of query execution. We showed how a query tree that repre-
sents a relational algebra expression can be heuristically optimized by reorganizing 
the tree nodes and transforming the tree into another equivalent query tree that is 
more efficient to execute. We also gave equivalence-preserving transformation 
rules and a systematic procedure for applying them to a query tree. In Section 19.2 
we described alternative query evaluation plans, including pipelining and material-
ized evaluation. Then we introduced the notion of query transformation of SQL 
queries; this transformation optimizes nested subqueries. We also illustrated with 
examples of merging subqueries occurring in the FROM clause, which act as 
derived relations or views. We also discussed the technique of materializing views.

We discussed in some detail the cost-based approach to query optimization in 
Section 19.3. We discussed information maintained in catalogs that the query 
optimizer consults. We also discussed histograms to maintain distribution of 
important attributes. We showed how cost functions are developed for some 
database access algorithms for selection and join in Sections 19.4 and 19.5, respec-
tively. We illustrated with an example in Section 19.6 how these cost functions 
are used to estimate the costs of different execution strategies. A number of addi-
tional issues such as display of query plans, size estimation of results, plan cach-
ing and top-k results optimization were discussed in Section 19.7. Section 19.8 
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was devoted to a discussion of how typical queries in data warehouses are opti-
mized. We gave an example of cost-based query transformation in data ware-
house queries on the so-called star schema. In Section 19.9 we presented a detailed 
overview of the Oracle query optimizer, which uses a number of additional tech-
niques, details of which were beyond our scope. Finally, in Section 19.10 we men-
tioned the technique of semantic query optimization, which uses the semantics or 
integrity constraints to simplify the query or completely avoid accessing the data 
or the actual execution of the query.

Review Questions
 19.1. What is a query execution plan?

 19.2. What is meant by the term heuristic optimization? Discuss the main heuris-
tics that are applied during query optimization.

 19.3. How does a query tree represent a relational algebra expression? What is 
meant by an execution of a query tree? Discuss the rules for transformation 
of query trees, and identify when each rule should be applied during optimi-
zation.

 19.4. How many different join orders are there for a query that joins 10 relations? 
How many left-deep trees are possible?

 19.5. What is meant by cost-based query optimization?

 19.6. What is the optimization approach based on dynamic programming? How 
is it used during query optimization?

 19.7. What are the problems associated with keeping views materialized?

 19.8. What is the difference between pipelining and materialization?

 19.9. Discuss the cost components for a cost function that is used to estimate 
query execution cost. Which cost components are used most often as the 
basis for cost functions?

 19.10. Discuss the different types of parameters that are used in cost functions. 
Where is this information kept?

 19.11. What are semi-join and anti-join? What are the join selectivity and join car-
dinality parameters associated with them? Provide appropriate formulas.

 19.12. List the cost functions for the SELECT and JOIN methods discussed in 
Sections19.4 and 19.5.

 19.13. What are the special features of query optimization in Oracle that we did not 
discuss in the chapter?

 19.14. What is meant by semantic query optimization? How does it differ from 
other query optimization techniques?
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Exercises
 19.15. Develop cost functions for the PROJECT, UNION, INTERSECTION, SET 

 DIFFERENCE, and CARTESIAN PRODUCT algorithms discussed in Section 19.4.

 19.16. Develop cost functions for an algorithm that consists of two SELECTs, a 
JOIN, and a final PROJECT, in terms of the cost functions for the individual 
operations.

 19.17. Develop a pseudo-language-style algorithm for describing the dynamic 
 programming procedure for join-order selection.

 19.18. Calculate the cost functions for different options of executing the JOIN 
 operation OP7 discussed in Section 19.4.

 19.19. Develop formulas for the hybrid hash-join algorithm for calculating the size 
of the buffer for the first bucket. Develop more accurate cost estimation 
 formulas for the algorithm.

 19.20. Estimate the cost of operations OP6 and OP7 using the formulas developed 
in Exercise 19.19.

 19.21. Compare the cost of two different query plans for the following query:

 σSalary< 40000(EMPLOYEE  Dno=DnumberDEPARTMENT)

Use the database statistics shown in Figure 19.6.

Selected Bibliography
This bibliography provides literature references for the topics of query processing 
and optimization. We discussed query processing algorithms and strategies in the 
previous chapter, but it is difficult to separate the literature that addresses optimiza-
tion from the literature that addresses query processing strategies and algorithms. 
Hence, the bibliography is consolidated.

A detailed algorithm for relational algebra optimization is given by Smith and 
Chang (1975). The Ph.D. thesis of Kooi (1980) provides a foundation for query 
processing techniques. A survey paper by Jarke and Koch (1984) gives a taxonomy 
of query optimization and includes a bibliography of work in this area. A survey by 
Graefe (1993) discusses query execution in database systems and includes an exten-
sive bibliography.

Whang (1985) discusses query optimization in OBE (Office-By-Example), which is 
a system based on the language QBE. Cost-based optimization was introduced in 
the SYSTEM R experimental DBMS and is discussed in Astrahan et al. (1976). 
Selinger et al. (1979) is a classic paper that discussed cost-based optimization of 
multiway joins in SYSTEM R. Join algorithms are discussed in Gotlieb (1975), Blas-
gen and Eswaran (1976), and Whang et al. (1982). Hashing algorithms for imple-
menting joins are described and analyzed in DeWitt et al. (1984), Bratbergsengen 
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(1984), Shapiro (1986), Kitsuregawa et al. (1989), and Blakeley and Martin (1990), 
among others. Blakely et al. (1986) discuss maintenance of materialized views. 
Chaudhari et al. (1995) discuss optimization of queries with materialized views. 
Approaches to finding a good join order are presented in Ioannidis and Kang 
(1990) and in Swami and Gupta (1989). A discussion of the implications of left-
deep and bushy join trees is presented in Ioannidis and Kang (1991). Kim (1982) 
discusses transformations of nested SQL queries into canonical representations. 
Optimization of aggregate functions is discussed in Klug (1982) and Muralikrishna 
(1992). Query optimization with Group By is presented in Chaudhari and Shim 
(1994). Yan and Larson (1995) discuss eager and lazy aggregation. Salzberg et al. 
(1990) describe a fast external sorting algorithm. Estimating the size of temporary 
relations is crucial for query optimization. Sampling-based estimation schemes are 
presented in Haas et al. (1995), Haas and Swami (1995), and Lipton et al. (1990). 
Having the database system store and use more detailed statistics in the form of 
histograms is the topic of Muralikrishna and DeWitt (1988) and Poosala et al. 
(1996). Galindo-Legaria and Joshi (2001) discuss nested subquery and aggregation 
optimization.

O’Neil and Graefe (1995) discuss multi-table joins using bitmap indexes. Kim et al. 
(1985) discuss advanced topics in query optimization. Semantic query optimization 
is discussed in King (1981) and Malley and Zdonick (1986). Work on semantic 
query optimization is reported in Chakravarthy et al. (1990), Shenoy and Ozsoyo-
glu (1989), and Siegel et al. (1992). Volcano, a query optimizer based on query 
equivalence rules, was developed by Graefe and Mckenna (1993). Volcano and the 
follow-on Cascades approach by Graefe (1995) are the basis for Microsoft’s SQL 
Server query optimization. Carey and Kossman (1998) and Bruno et al. (2002) pres-
ent approaches to query optimization for top-k results. Galindo Legaria et al. (2004) 
discuss processing and optimizing database updates.

Ahmed et al. (2006) discuss cost-based query transformation in Oracle and give a 
good overview of the global query optimization architecture in Oracle 10g. Ziaud-
din et al. (2008) discuss the idea of making the optimizer change the execution plan 
for a query. They discuss Oracle’s SQL plan management (SPM) feature, which 
lends stability to performance. Bellamkonda et al. (2009) provide additional tech-
niques for query optimization. Ahmed et al. (2014) consider the advantages of 
bushy trees over alternatives for execution. Witkowski et al. (2003) discuss support 
for N-dimensional array-based computation for analytics that has been integrated 
into the Oracle RDBMS engine.
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20
Introduction to Transaction 

Processing Concepts  
and Theory

The concept of transaction provides a mechanism 
for describing logical units of database processing. 

Transaction processing systems are systems with large databases and hundreds of 
concurrent users executing database transactions. Examples of such systems 
include airline reservations, banking, credit card processing, online retail purchas-
ing, stock markets, supermarket checkouts, and many other applications. These 
systems require high availability and fast response time for hundreds of concur-
rent users. In this chapter, we present the concepts that are needed in transaction 
processing systems. We define the concept of a transaction, which is used to repre-
sent a logical unit of database processing that must be completed in its entirety to 
ensure correctness. A transaction is typically implemented by a computer program 
that includes database commands such as retrievals, insertions, deletions, and 
updates. We introduced some of the basic techniques for database programming 
in Chapters 10 and 11.

In this chapter, we focus on the basic concepts and theory that are needed to ensure 
the correct executions of transactions. We discuss the concurrency control prob-
lem, which occurs when multiple transactions submitted by various users interfere 
with one another in a way that produces incorrect results. We also discuss the prob-
lems that can occur when transactions fail, and how the database system can recover 
from various types of failures.

This chapter is organized as follows. Section 20.1 informally discusses why concur-
rency control and recovery are necessary in a database system. Section 20.2 defines 
the term transaction and discusses additional concepts related to transaction 

chapter 20
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processing in database systems. Section 20.3 presents the important properties of 
atomicity, consistency preservation, isolation, and durability or permanency—
called the ACID properties—that are considered desirable in transaction process-
ing systems. Section 20.4 introduces the concept of schedules (or histories) of 
executing transactions and characterizes the recoverability of schedules. Sec-
tion 20.5 discusses the notion of serializability of concurrent transaction execution, 
which can be used to define correct execution sequences (or schedules) of concur-
rent transactions. In Section 20.6, we present some of the commands that support 
the transaction concept in SQL, and we introduce the concepts of isolation levels. 
Section 20.7 summarizes the chapter.

The two following chapters continue with more details on the actual methods and 
techniques used to support transaction processing. Chapter 21 gives an overview 
of the basic concurrency control protocols and Chapter 22 introduces recovery 
techniques.

20.1 Introduction to Transaction Processing
In this section, we discuss the concepts of concurrent execution of transactions and 
recovery from transaction failures. Section 20.1.1 compares single-user and multi-
user database systems and demonstrates how concurrent execution of transactions 
can take place in multiuser systems. Section 20.1.2 defines the concept of transac-
tion and presents a simple model of transaction execution based on read and write 
database operations. This model is used as the basis for defining and formalizing 
concurrency control and recovery concepts. Section 20.1.3 uses informal examples 
to show why concurrency control techniques are needed in multiuser systems. 
Finally, Section 20.1.4 discusses why techniques are needed to handle recovery 
from system and transaction failures by discussing the different ways in which 
transactions can fail while executing.

20.1.1 Single-User versus Multiuser Systems
One criterion for classifying a database system is according to the number of users 
who can use the system concurrently. A DBMS is single-user if at most one user at 
a time can use the system, and it is multiuser if many users can use the system—
and hence access the database—concurrently. Single-user DBMSs are mostly 
restricted to personal computer systems; most other DBMSs are multiuser. For 
example, an airline reservations system is used by hundreds of users and travel 
agents concurrently. Database systems used in banks, insurance agencies, stock 
exchanges, supermarkets, and many other applications are multiuser systems. In 
these systems, hundreds or thousands of users are typically operating on the data-
base by submitting transactions concurrently to the system.

Multiple users can access databases—and use computer systems—simultaneously 
because of the concept of multiprogramming, which allows the operating system of 
the computer to execute multiple programs—or processes—at the same time. A single 
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central processing unit (CPU) can only execute at most one process at a time. How-
ever, multiprogramming operating systems execute some commands from one pro-
cess, then suspend that process and execute some commands from the next process, 
and so on. A process is resumed at the point where it was suspended whenever it gets 
its turn to use the CPU again. Hence, concurrent execution of processes is actually 
interleaved, as illustrated in Figure 20.1, which shows two processes, A and B, execut-
ing concurrently in an interleaved fashion. Interleaving keeps the CPU busy when a 
process requires an input or output (I/O) operation, such as reading a block from disk. 
The CPU is switched to execute another process rather than remaining idle during I/O 
time. Interleaving also prevents a long process from delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel processing 
of multiple processes is possible, as illustrated by processes C and D in Figure 20.1. 
Most of the theory concerning concurrency control in databases is developed in terms 
of interleaved concurrency, so for the remainder of this chapter we assume this model. 
In a multiuser DBMS, the stored data items are the primary resources that may be 
accessed concurrently by interactive users or application programs, which are con-
stantly retrieving information from and modifying the database.

20.1.2  Transactions, Database Items, Read  
and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database pro-
cessing. A transaction includes one or more database access operations—these can 
include insertion, deletion, modification (update), or retrieval operations. The 
database operations that form a transaction can either be embedded within an 
application program or they can be specified interactively via a high-level query 
language such as SQL. One way of specifying the transaction boundaries is by 
specifying explicit begin transaction and end transaction statements in an appli-
cation program; in this case, all database access operations between the two are 
considered as forming one transaction. A single application program may contain 
more than one transaction if it contains several transaction boundaries. If the 
database operations in a transaction do not update the database but only retrieve 

A A

B B
C
D

CPU1

CPU2

t1 t2 t3 t4
Time

Figure 20.1 
Interleaved 
 processing versus 
parallel processing 
of concurrent 
 transactions.



748 Chapter 20 Introduction to Transaction Processing Concepts and Theory

data, the transaction is called a read-only transaction; otherwise it is known as a 
read-write transaction.

The database model that is used to present transaction processing concepts is sim-
ple when compared to the data models that we discussed earlier in the book, such as 
the relational model or the object model. A database is basically represented as a 
collection of named data items. The size of a data item is called its granularity. A 
data item can be a database record, but it can also be a larger unit such as a whole 
disk block, or even a smaller unit such as an individual field (attribute) value of 
some record in the database. The transaction processing concepts we discuss are 
independent of the data item granularity (size) and apply to data items in general. 
Each data item has a unique name, but this name is not typically used by the pro-
grammer; rather, it is just a means to uniquely identify each data item. For example, 
if the data item granularity is one disk block, then the disk block address can be 
used as the data item name. If the item granularity is a single record, then the record 
id can be the item name. Using this simplified database model, the basic database 
access operations that a transaction can include are as follows:

 ■ read_item(X). Reads a database item named X into a program variable. To 
simplify our notation, we assume that the program variable is also named X.

 ■ write_item(X). Writes the value of program variable X into the database 
item named X.

As we discussed in Chapter 16, the basic unit of data transfer from disk to main 
memory is one disk page (disk block). Executing a read_item(X) command includes 
the following steps:

  1. Find the address of the disk block that contains item X.

  2. Copy that disk block into a buffer in main memory (if that disk block is not 
already in some main memory buffer). The size of the buffer is the same as 
the disk block size.

  3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

  1. Find the address of the disk block that contains item X.

  2. Copy that disk block into a buffer in main memory (if that disk block is not 
already in some main memory buffer).

  3. Copy item X from the program variable named X into its correct location in 
the buffer.

  4. Store the updated disk block from the buffer back to disk (either immedi-
ately or at some later point in time).

It is step 4 that actually updates the database on disk. Sometimes the buffer is not 
immediately stored to disk, in case additional changes are to be made to the buffer. 
Usually, the decision about when to store a modified disk block whose contents are in 
a main memory buffer is handled by the recovery manager of the DBMS in cooperation 
with the underlying operating system. The DBMS will maintain in the database cache 
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a number of data buffers in main memory. Each buffer typically holds the contents 
of one database disk block, which contains some of the database items being pro-
cessed. When these buffers are all occupied, and additional database disk blocks 
must be copied into memory, some buffer replacement policy is used to choose 
which of the current occupied buffers is to be replaced. Some commonly used buffer 
replacement policies are LRU (least recently used). If the chosen buffer has been 
modified, it must be written back to disk before it is reused.1 There are also buffer 
replacement policies that are specific to DBMS characteristics. We briefly discuss a 
few of these in Section 20.2.4.

A transaction includes read_item and write_item operations to access and update the 
database. Figure 20.2 shows examples of two very simple transactions. The read-set 
of a transaction is the set of all items that the transaction reads, and the write-set is 
the set of all items that the transaction writes. For example, the read-set of T1 in 
Figure 20.2 is {X, Y} and its write-set is also {X, Y}.

Concurrency control and recovery mechanisms are mainly concerned with the 
database commands in a transaction. Transactions submitted by the various users 
may execute concurrently and may access and update the same database items. If 
this concurrent execution is uncontrolled, it may lead to problems, such as an 
inconsistent database. In the next section, we informally introduce some of the 
problems that may occur.

20.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncontrolled 
manner. We illustrate some of these problems by referring to a much simplified air-
line reservations database in which a record is stored for each airline flight. Each 
record includes the number of reserved seats on that flight as a named (uniquely iden-
tifiable) data item, among other information. Figure 20.2(a) shows a transaction T1 
that transfers N reservations from one flight whose number of reserved seats is stored 
in the database item named X to another flight whose number of reserved seats is 
stored in the database item named Y. Figure 20.2(b) shows a simpler transaction T2 
that just reserves M seats on the first flight (X) referenced in transaction T1.2 To sim-
plify our example, we do not show additional portions of the transactions, such as 
checking whether a flight has enough seats available before reserving additional seats.

When a database access program is written, it has the flight number, the flight date, 
and the number of seats to be booked as parameters; hence, the same program can 
be used to execute many different transactions, each with a different flight number, 
date, and number of seats to be booked. For concurrency control purposes, a trans-
action is a particular execution of a program on a specific date, flight, and number 

1We will not discuss general-purpose buffer replacement policies here because they are typically discussed 
in operating systems texts.
2A similar, more commonly used example assumes a bank database, with one transaction doing a transfer 
of funds from account X to account Y and the other transaction doing a deposit to account X.
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of seats. In Figures 20.2(a) and (b), the transactions T1 and T2 are specific executions 
of the programs that refer to the specific flights whose numbers of seats are stored 
in data items X and Y in the database. Next we discuss the types of problems we 
may encounter with these two simple transactions if they run concurrently.

The Lost Update Problem. This problem occurs when two transactions that access 
the same database items have their operations interleaved in a way that makes the value 
of some database items incorrect. Suppose that transactions T1 and T2 are submitted at 
approximately the same time, and suppose that their operations are interleaved as 
shown in Figure 20.3(a); then the final value of item X is incorrect because T2 reads the 
value of X before T1 changes it in the database, and hence the updated value resulting 
from T1 is lost. For example, if X = 80 at the start (originally there were 80 reservations 
on the flight), N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X 
to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result 
should be X = 79. However, in the interleaving of operations shown in Figure 20.3(a), it 
is X = 84 because the update in T1 that removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when one 
transaction updates a database item and then the transaction fails for some reason (see 
Section 20.1.4). Meanwhile, the updated item is accessed (read) by another transaction 
before it is changed back (or rolled back) to its original value. Figure 20.3(b) shows an 
example where T1 updates item X and then fails before completion, so the system must 
roll back X to its original value. Before it can do so, however, transaction T2 reads the 
temporary value of X, which will not be recorded permanently in the database because 
of the failure of T1. The value of item X that is read by T2 is called dirty data because it 
has been created by a transaction that has not completed and committed yet; hence, 
this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate 
summary function on a number of database items while other transactions are 
updating some of these items, the aggregate function may calculate some values 
before they are updated and others after they are updated. For example, suppose 
that a transaction T3 is calculating the total number of reservations on all the flights; 
meanwhile, transaction T1 is executing. If the interleaving of operations shown in 
Figure 20.3(c) occurs, the result of T3 will be off by an amount N because T3 reads 
the value of X after N seats have been subtracted from it but reads the value of Y 
before those N seats have been added to it.

(a)

read_item(X );
X := X – N;
write_item(X );
read_item(Y );
Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X + M;
write_item(X );

T1 T2

Figure 20.2 
Two sample 
 transactions. 
(a) Transaction T1. 
(b) Transaction T2.
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(a)

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;

write_item(X );

Time

Item X has an incorrect value because
its update by T1 is lost (overwritten).

Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X – N;
write_item(X );

read_item(X );
X := X + M;
write_item(X );

Time

Transaction T1 fails and must change
the value of X back to its old value;
meanwhile T2 has read the temporary
incorrect value of X.

read_item(Y );

T1

T1

(c)

read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

read_item(X );
sum := sum + X;
read_item(Y );
sum := sum + Y;

T3 reads X after N is subtracted and reads
Y before N is added; a wrong summary
is the result (off by N ).

T3

T2

sum := 0;
read_item(A);
sum := sum + A;

T1 T2

Figure 20.3 
Some problems that occur when concurrent execution is uncontrolled. (a) The lost update 
problem. (b) The temporary update problem. (c) The incorrect summary problem.
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The Unrepeatable Read Problem. Another problem that may occur is called 
unrepeatable read, where a transaction T reads the same item twice and the item is 
changed by another transaction T′ between the two reads. Hence, T receives differ-
ent values for its two reads of the same item. This may occur, for example, if during 
an airline reservation transaction, a customer inquires about seat availability on 
several flights. When the customer decides on a particular flight, the transaction 
then reads the number of seats on that flight a second time before completing the 
reservation, and it may end up reading a different value for the item.

20.1.4 Why Recovery Is Needed
Whenever a transaction is submitted to a DBMS for execution, the system is 
responsible for making sure that either all the operations in the transaction are 
completed successfully and their effect is recorded permanently in the database, 
or that the transaction does not have any effect on the database or any other 
transactions. In the first case, the transaction is said to be committed, whereas 
in the second case, the transaction is aborted. The DBMS must not permit some 
operations of a transaction T to be applied to the database while other opera-
tions of T are not, because the whole transaction is a logical unit of database 
processing. If a transaction fails after executing some of its operations but before 
executing all of them, the operations already executed must be undone and have 
no lasting effect.

Types of Failures. Failures are generally classified as transaction, system, and 
media failures. There are several possible reasons for a transaction to fail in the 
middle of execution:

  1. A computer failure (system crash). A hardware, software, or network error 
occurs in the computer system during transaction execution. Hardware 
crashes are usually media failures—for example, main memory failure.

  2. A transaction or system error. Some operation in the transaction may 
cause it to fail, such as integer overflow or division by zero. Transaction fail-
ure may also occur because of erroneous parameter values or because of a 
logical programming error.3 Additionally, the user may interrupt the trans-
action during its execution.

  3. Local errors or exception conditions detected by the transaction. During 
transaction execution, certain conditions may occur that necessitate cancel-
lation of the transaction. For example, data for the transaction may not be 
found. An exception condition,4 such as insufficient account balance in a 
banking database, may cause a transaction, such as a fund withdrawal, to be 
canceled. This exception could be programmed in the transaction itself, and 
in such a case would not be considered as a transaction failure.

3In general, a transaction should be thoroughly tested to ensure that it does not have any bugs (logical 
programming errors).
4Exception conditions, if programmed correctly, do not constitute transaction failures.
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  4. Concurrency control enforcement. The concurrency control method (see 
Chapter 21)may abort a transaction because it violates serializability (see 
Section 20.5), or it may abort one or more transactions to resolve a state of 
deadlock among several transactions (see Section 21.1.3). Transactions 
aborted because of serializability violations or deadlocks are typically 
restarted automatically at a later time.

  5. Disk failure. Some disk blocks may lose their data because of a read or write 
malfunction or because of a disk read/write head crash. This may happen 
during a read or a write operation of the transaction.

  6. Physical problems and catastrophes. This refers to an endless list of problems 
that includes power or air-conditioning failure, fire, theft, sabotage, overwrit-
ing disks or tapes by mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. When-
ever a failure of type 1 through 4 occurs, the system must keep sufficient informa-
tion to quickly recover from the failure. Disk failure or other catastrophic failures of 
type 5 or 6 do not happen frequently; if they do occur, recovery is a major task. We 
discuss recovery from failure in Chapter 22.

The concept of transaction is fundamental to many techniques for concurrency 
control and recovery from failures.

20.2 Transaction and System Concepts
In this section, we discuss additional concepts relevant to transaction processing. 
Section 20.2.1 describes the various states a transaction can be in and discusses 
other operations needed in transaction processing. Section 20.2.2 discusses the 
 system log, which keeps information about transactions and data items that will 
be needed for recovery. Section 20.2.3 describes the concept of commit points of 
transactions and why they are important in transaction processing. Finally, 
 Sec tion 20.2.4 briefly discusses DBMS buffer replacement policies.

20.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that should either be completed in its entirety 
or not done at all. For recovery purposes, the system needs to keep track of when each 
transaction starts, terminates, and commits, or aborts (see Section 20.2.3). Therefore, 
the recovery manager of the DBMS needs to keep track of the following operations:

 ■ BEGIN_TRANSACTION. This marks the beginning of transaction execution.

 ■ READ or WRITE. These specify read or write operations on the database 
items that are executed as part of a transaction.

 ■ END_TRANSACTION. This specifies that READ and WRITE transaction opera-
tions have ended and marks the end of transaction execution. However, at 
this point it may be necessary to check whether the changes introduced by 
the transaction can be permanently applied to the database (committed) or 
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whether the transaction has to be aborted because it violates serializability 
(see Section 20.5) or for some other reason.

 ■ COMMIT_TRANSACTION. This signals a successful end of the transaction so that 
any changes (updates) executed by the transaction can be safely committed to 
the database and will not be undone.

 ■ ROLLBACK (or ABORT). This signals that the transaction has ended unsuc-
cessfully, so that any changes or effects that the transaction may have applied 
to the database must be undone.

Figure 20.4 shows a state transition diagram that illustrates how a transaction 
moves through its execution states. A transaction goes into an active state immedi-
ately after it starts execution, where it can execute its READ and WRITE operations. 
When the transaction ends, it moves to the partially committed state. At this 
point, some types of concurrency control protocols may do additional checks to see 
if the transaction can be committed or not. Also, some recovery protocols need to 
ensure that a system failure will not result in an inability to record the changes of 
the transaction permanently (usually by recording changes in the system log, 
 discussed in the next section).5 If these checks are successful, the transaction is said 
to have reached its commit point and enters the committed state. Commit points 
are discussed in more detail in Section 20.2.3. When a transaction is committed, it 
has concluded its execution successfully and all its changes must be recorded 
perma nently in the database, even if a system failure occurs.

However, a transaction can go to the failed state if one of the checks fails or if the trans-
action is aborted during its active state. The transaction may then have to be rolled back 
to undo the effect of its WRITE operations on the database. The terminated state corre-
sponds to the transaction leaving the system. The transaction information that is main-
tained in system tables while the transaction has been running is removed when the 
transaction terminates. Failed or aborted transactions may be restarted later—either 
automatically or after being resubmitted by the user—as brand new transactions.

5Optimistic concurrency control (see Section 21.4) also requires that certain checks are made at this 
point to ensure that the transaction did not interfere with other executing transactions.

Active

Begin 
transaction

End 
transaction Commit

AbortAbort

Read, Write

Partially committed

Failed Terminated

Committed

Figure 20.4 
State transition diagram illustrating the states for transaction execution.
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20.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains 
a log6 to keep track of all transaction operations that affect the values of database 
items, as well as other transaction information that may be needed to permit 
recovery from failures. The log is a sequential, append-only file that is kept on 
disk, so it is not affected by any type of failure except for disk or catastrophic 
failure. Typically, one (or more) main memory buffers, called the log buffers, 
hold the last part of the log file, so that log entries are first added to the log main 
memory buffer. When the log buffer is filled, or when certain other conditions 
occur, the log buffer is appended to the end of the log file on disk. In addition, the 
log file from disk is periodically backed up to archival storage (tape) to guard 
against catastrophic failures. The following are the types of entries—called log 
records—that are written to the log file and the corresponding action for each 
log record. In these entries, T refers to a unique transaction-id that is generated 
automatically by the system for each transaction and that is used to identify each 
transaction:

  1. [start_transaction, T]. Indicates that transaction T has started execution.

  2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has 
changed the value of database item X from old_value to new_value.

  3. [read_item, T, X]. Indicates that transaction T has read the value of database 
item X.

  4. [commit, T]. Indicates that transaction T has completed successfully, and affirms 
that its effect can be committed (recorded permanently) to the database.

  5. [abort, T]. Indicates that transaction T has been aborted.

Protocols for recovery that avoid cascading rollbacks (see Section 20.4.2)—which 
include nearly all practical protocols—do not require that READ operations are 
written to the system log. However, if the log is also used for other purposes—such 
as auditing (keeping track of all database operations)—then such entries can be 
included. Additionally, some recovery protocols require simpler WRITE entries 
that only include one of new_value or old_value instead of including both (see Sec-
tion 20.4.2).

Notice that we are assuming that all permanent changes to the database occur 
within transactions, so the notion of recovery from a transaction failure amounts 
to either undoing or redoing transaction operations individually from the log. If 
the system crashes, we can recover to a consistent database state by examining the 
log and using one of the techniques described in Chapter 22. Because the log con-
tains a record of every WRITE operation that changes the value of some database 
item, it is possible to undo the effect of these WRITE operations of a transaction T 
by tracing backward through the log and resetting all items changed by a WRITE 
operation of T to their old_values. Redo of an operation may also be necessary if a 
transaction has its updates recorded in the log but a failure occurs before the sys-

6The log has sometimes been called the DBMS journal.
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tem can be sure that all these new_values have been written to the actual database 
on disk from the main memory buffers.7

20.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the 
database have been executed successfully and the effect of all the transaction opera-
tions on the database have been recorded in the log. Beyond the commit point, the 
transaction is said to be committed, and its effect must be permanently recorded in 
the database. The transaction then writes a commit record [commit, T] into the log. 
If a system failure occurs, we can search back in the log for all transactions T that 
have written a [start_transaction, T] record into the log but have not written their 
[commit, T] record yet; these transactions may have to be rolled back to undo their 
effect on the database during the recovery process. Transactions that have written 
their commit record in the log must also have recorded all their WRITE operations 
in the log, so their effect on the database can be redone from the log records.

Notice that the log file must be kept on disk. As discussed in Chapter 16, updating 
a disk file involves copying the appropriate block of the file from disk to a buffer in 
main memory, updating the buffer in main memory, and copying the buffer to 
disk. As we mentioned earlier, it is common to keep one or more blocks of the log 
file in main memory buffers, called the log buffer, until they are filled with log 
entries and then to write them back to disk only once, rather than writing to disk 
every time a log entry is added. This saves the overhead of multiple disk writes of 
the same log file buffer. At the time of a system crash, only the log entries that have 
been written back to disk are considered in the recovery process if the contents of 
main memory are lost. Hence, before a transaction reaches its commit point, any 
portion of the log that has not been written to the disk yet must now be written to 
the disk. This process is called force-writing the log buffer to disk before commit-
ting a transaction.

20.2.4 DBMS-Specific Buffer Replacement Policies
The DBMS cache will hold the disk pages that contain information currently being 
processed in main memory buffers. If all the buffers in the DBMS cache are occu-
pied and new disk pages are required to be loaded into main memory from disk, a 
page replacement policy is needed to select the particular buffers to be replaced. 
Some page replacement policies that have been developed specifically for database 
systems are briefly discussed next.

Domain Separation (DS) Method. In a DBMS, various types of disk pages 
exist: index pages, data file pages, log file pages, and so on. In this method, the 
DBMS cache is divided into separate domains (sets of buffers). Each domain han-
dles one type of disk pages, and page replacements within each domain are han-

7Undo and redo are discussed more fully in Chapter 22.
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dled via the basic LRU (least recently used) page replacement. Although this 
achieves better performance on average that basic LRU, it is a static algorithm, and 
so does not adapt to dynamically changing loads because the number of available 
buffers for each domain is predetermined. Several variations of the DS page 
replacement policy have been proposed, which add dynamic load-balancing fea-
tures. For example, the GRU (Group LRU) gives each domain a priority level and 
selects pages from the lowest-priority level domain first for replacement, whereas 
another method dynamically changes the number of buffers in each domain based 
on current workload.

Hot Set Method. This page replacement algorithm is useful in queries that have 
to scan a set of pages repeatedly, such as when a join operation is performed using 
the nested-loop method (see Chapter 18). If the inner loop file is loaded completely 
into main memory buffers without replacement (the hot set), the join will be per-
formed efficiently because each page in the outer loop file will have to scan all the 
records in the inner loop file to find join matches. The hot set method determines 
for each database processing algorithm the set of disk pages that will be accessed 
repeatedly, and it does not replace them until their processing is completed.

The DBMIN Method. This page replacement policy uses a model known as QLSM 
(query locality set model), which predetermines the pattern of page references for 
each algorithm for a particular type of database operation. We discussed various 
algorithms for relational operations such as SELECT and JOIN in Chapter 18. 
Depending on the type of access method, the file characteristics, and the algorithm 
used, the QLSM will estimate the number of main memory buffers needed for each 
file involved in the operation. The DBMIN page replacement policy will calculate a 
locality set using QLSM for each file instance involved in the query (some queries 
may reference the same file twice, so there would be a locality set for each file 
instance needed in the query). DBMIN then allocates the appropriate number of 
buffers to each file instance involved in the query based on the locality set for that 
file instance. The concept of locality set is analogous to the concept of working set, 
which is used in page replacement policies for processes by the operating system 
but there are multiple locality sets, one for each file instance in the query.

20.3 Desirable Properties of Transactions
Transactions should possess several properties, often called the ACID properties; 
they should be enforced by the concurrency control and recovery methods of the 
DBMS. The following are the ACID properties:

 ■ Atomicity. A transaction is an atomic unit of processing; it should either be 
performed in its entirety or not performed at all.

 ■ Consistency preservation. A transaction should be consistency preserving, 
meaning that if it is completely executed from beginning to end without 
interference from other transactions, it should take the database from one 
consistent state to another.
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 ■ Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are execut-
ing concurrently. That is, the execution of a transaction should not be 
interfered with by any other transactions executing concurrently.

 ■ Durability or permanency. The changes applied to the database by a com-
mitted transaction must persist in the database. These changes must not be 
lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is 
the responsibility of the transaction recovery subsystem of a DBMS to ensure atomi-
city. If a transaction fails to complete for some reason, such as a system crash in the 
midst of transaction execution, the recovery technique must undo any effects of the 
transaction on the database. On the other hand, write operations of a committed 
transaction must be eventually written to disk.

The preservation of consistency is generally considered to be the responsibility of 
the programmers who write the database programs and of the DBMS module 
that enforces integrity constraints. Recall that a database state is a collection of 
all the stored data items (values) in the database at a given point in time. A 
 consistent state of the database satisfies the constraints specified in the schema 
as well as any other constraints on the database that should hold. A database 
program should be written in a way that guarantees that, if the database is in a 
consistent state before executing the transaction, it will be in a consistent state 
after the complete execution of the transaction, assuming that no interference 
with other transactions occurs.

The isolation property is enforced by the concurrency control subsystem of the 
DBMS.8 If every transaction does not make its updates (write operations) visible to 
other transactions until it is committed, one form of isolation is enforced that 
solves the temporary update problem and eliminates cascading rollbacks (see 
Chapter 22) but does not eliminate all other problems.

The durability property is the responsibility of the recovery subsystem of the DBMS. 
In the next section, we introduce how recovery protocols enforce durability and 
atomicity and then discuss this in more detail in Chapter 22.

Levels of Isolation. There have been attempts to define the level of isolation of a 
transaction. A transaction is said to have level 0 (zero) isolation if it does not over-
write the dirty reads of higher-level transactions. Level 1 (one) isolation has no lost 
updates, and level 2 isolation has no lost updates and no dirty reads. Finally, level 3 
isolation (also called true isolation) has, in addition to level 2 properties, repeatable 
reads.9 Another type of isolation is called snapshot isolation, and several practical 
concurrency control methods are based on this. We shall discuss snapshot isolation 
in Section 20.6, and again in Chapter 21, Section 21.4.

8We will discuss concurrency control protocols in Chapter 21.
9The SQL syntax for isolation level discussed in Section 20.6 is closely related to these levels.
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20.4  Characterizing Schedules Based  
on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the 
order of execution of operations from all the various transactions is known as a 
schedule (or history). In this section, first we define the concept of schedules, and 
then we characterize the types of schedules that facilitate recovery when failures 
occur. In Section 20.5, we characterize schedules in terms of the interference of 
participating transactions; this discussion leads to the concepts of serializability and 
serializable schedules.

20.4.1 Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, … , Tn is an ordering of the 
operations of the transactions. Operations from different transactions can be 
interleaved in the schedule S. However, for each transaction Ti that participates 
in the schedule S, the operations of Ti in S must appear in the same order in 
which they occur in Ti. The order of operations in S is considered to be a total 
ordering, meaning that for any two operations in the schedule, one must occur 
before the other. It is possible theoretically to deal with schedules whose opera-
tions form partial orders, but we will assume for now total ordering of the opera-
tions in a schedule.

For the purpose of recovery and concurrency control, we are mainly interested in 
the read_item and write_item operations of the transactions, as well as the commit and 
abort operations. A shorthand notation for describing a schedule uses the symbols 
b, r, w, e, c, and a for the operations begin_transaction, read_item, write_item,  
end_transaction, commit, and abort, respectively, and appends as a subscript the 
transaction id (transaction number) to each operation in the schedule. In this 
notation, the database item X that is read or written follows the r and w operations 
in parentheses. In some schedules, we will only show the read and write operations, 
whereas in other schedules we will show additional operations, such as commit or 
abort. The schedule in Figure 20.3(a), which we shall call Sa, can be written as  follows 
in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

Similarly, the schedule for Figure 20.3(b), which we call Sb, can be written as fol-
lows, if we assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Conflicting Operations in a Schedule. Two operations in a schedule are said to 
conflict if they satisfy all three of the following conditions: (1) they belong to differ-
ent transactions; (2) they access the same item X; and (3) at least one of the opera-
tions is a write_item(X). For example, in schedule Sa, the operations r1(X) and w2(X) 
conflict, as do the operations r2(X) and w1(X), and the operations w1(X) and w2(X). 
However, the operations r1(X) and r2(X) do not conflict, since they are both read 
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operations; the operations w2(X) and w1(Y) do not conflict because they operate on 
distinct data items X and Y; and the operations r1(X) and w1(X) do not conflict 
because they belong to the same transaction.

Intuitively, two operations are conflicting if changing their order can result in a dif-
ferent outcome. For example, if we change the order of the two operations r1(X); 
w2(X) to w2(X); r1(X), then the value of X that is read by transaction T1 changes, 
because in the second ordering the value of X is read by r1(X) after it is changed by 
w2(X), whereas in the first ordering the value is read before it is changed. This is 
called a read-write conflict. The other type is called a write-write conflict and is 
illustrated by the case where we change the order of two operations such as w1(X); 
w2(X) to w2(X); w1(X). For a write-write conflict, the last value of X will differ 
because in one case it is written by T2 and in the other case by T1. Notice that two 
read operations are not conflicting because changing their order makes no differ-
ence in outcome.

The rest of this section covers some theoretical definitions concerning schedules. A 
schedule S of n transactions T1, T2, … , Tn is said to be a complete schedule if the 
following conditions hold:

  1. The operations in S are exactly those operations in T1, T2, … , Tn, including 
a commit or abort operation as the last operation for each transaction in 
the schedule.

  2. For any pair of operations from the same transaction Ti, their relative order 
of appearance in S is the same as their order of appearance in Ti.

  3. For any two conflicting operations, one of the two must occur before the 
other in the schedule.10

The preceding condition (3) allows for two nonconflicting operations to occur in 
the schedule without defining which occurs first, thus leading to the definition of 
a schedule as a partial order of the operations in the n transactions.11 However, a 
total order must be specified in the schedule for any pair of conflicting operations 
(condition 3) and for any pair of operations from the same transaction (condi-
tion 2). Condition 1 simply states that all operations in the transactions must 
appear in the complete schedule. Since every transaction has either committed 
or aborted, a complete schedule will not contain any active transactions at the end 
of the schedule.

In general, it is difficult to encounter complete schedules in a transaction process-
ing system because new transactions are continually being submitted to the system. 
Hence, it is useful to define the concept of the committed projection C(S) of a 
schedule S, which includes only the operations in S that belong to committed trans-
actions—that is, transactions Ti whose commit operation ci is in S.

10Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.
11In practice, most schedules have a total order of operations. If parallel processing is employed, it is 
theoretically possible to have schedules with partially ordered nonconflicting operations.
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20.4.2 Characterizing Schedules Based on Recoverability
For some schedules it is easy to recover from transaction and system failures, 
whereas for other schedules the recovery process can be quite involved. In some 
cases, it is even not possible to recover correctly after a failure. Hence, it is impor-
tant to characterize the types of schedules for which recovery is possible, as well as 
those for which recovery is relatively simple. These characterizations do not actually 
provide the recovery algorithm; they only attempt to theoretically characterize the 
different types of schedules.

First, we would like to ensure that, once a transaction T is committed, it should 
never be necessary to roll back T. This ensures that the durability property of 
transactions is not violated (see Section 20.3). The schedules that theoretically 
meet this criterion are called recoverable schedules. A schedule where a committed 
transaction may have to be rolled back during recovery is called nonrecoverable 
and hence should not be permitted by the DBMS. The condition for a recoverable 
schedule is as follows: A schedule S is recoverable if no transaction T in S commits 
until all transactions T′ that have written some item X that T reads have commit-
ted. A transaction T reads from transaction T′ in a schedule S if some item X is 
first written by T′ and later read by T. In addition, T′ should not have been aborted 
before T reads item X, and there should be no transactions that write X after T′ 
writes it and before T reads it (unless those transactions, if any, have aborted 
before T reads X).

Some recoverable schedules may require a complex recovery process, as we shall 
see, but if sufficient information is kept (in the log), a recovery algorithm can be 
devised for any recoverable schedule. The (partial) schedules Sa and Sb from the 
preceding section are both recoverable, since they satisfy the above definition. Con-
sider the schedule Sa′ given below, which is the same as schedule Sa except that two 
commit operations have been added to Sa:

Sa′: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa′ is recoverable, even though it suffers from the lost update problem; this problem 
is handled by serializability theory (see Section 20.5). However, consider the two 
(partial) schedules Sc and Sd that follow:

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;
Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;
Se: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before T1 
commits. The problem occurs if T1 aborts after the c2 operation in Sc; then the value 
of X that T2 read is no longer valid and T2 must be aborted after it is committed, 
leading to a schedule that is not recoverable. For the schedule to be recoverable, the 
c2 operation in Sc must be postponed until after T1 commits, as shown in Sd. If T1 
aborts instead of committing, then T2 should also abort as shown in Se, because the 
value of X it read is no longer valid. In Se, aborting T2 is acceptable since it has not 
committed yet, which is not the case for the nonrecoverable schedule Sc.
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In a recoverable schedule, no committed transaction ever needs to be rolled back, 
and so the definition of a committed transaction as durable is not violated. How-
ever, it is possible for a phenomenon known as cascading rollback (or cascading 
abort) to occur in some recoverable schedules, where an uncommitted transaction 
has to be rolled back because it read an item from a transaction that failed. This is 
illustrated in schedule Se, where transaction T2 has to be rolled back because it read 
item X from T1, and T1 then aborted.

Because cascading rollback can be time-consuming—since numerous transactions 
can be rolled back (see Chapter 22)—it is important to characterize the schedules 
where this phenomenon is guaranteed not to occur. A schedule is said to be 
cascadeless, or to avoid cascading rollback, if every transaction in the schedule 
reads only items that were written by committed transactions. In this case, all items 
read will not be discarded because the transactions that wrote them have commit-
ted, so no cascading rollback will occur. To satisfy this criterion, the r2(X) com-
mand in schedules Sd and Se must be postponed until after T1 has committed (or 
aborted), thus delaying T2 but ensuring no cascading rollback if T1 aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in 
which transactions can neither read nor write an item X until the last transaction 
that wrote X has committed (or aborted). Strict schedules simplify the recovery 
process. In a strict schedule, the process of undoing a write_item(X) operation of an 
aborted transaction is simply to restore the before image (old_value or BFIM) of 
data item X. This simple procedure always works correctly for strict schedules, but 
it may not work for recoverable or cascadeless schedules. For example, consider 
schedule Sf :

Sf : w1(X, 5); w2(X, 8); a1;

Suppose that the value of X was originally 9, which is the before image stored in the 
system log along with the w1(X, 5) operation. If T1 aborts, as in Sf, the recovery pro-
cedure that restores the before image of an aborted write operation will restore the 
value of X to 9, even though it has already been changed to 8 by transaction T2, thus 
leading to potentially incorrect results. Although schedule Sf is cascadeless, it is not 
a strict schedule, since it permits T2 to write item X even though the transaction T1 
that last wrote X had not yet committed (or aborted). A strict schedule does not 
have this problem.

It is important to note that any strict schedule is also cascadeless, and any cascade-
less schedule is also recoverable. Suppose we have i transactions T1, T2, … , Ti, and 
their number of operations are n1, n2, … , ni, respectively. If we make a set of all 
possible schedules of these transactions, we can divide the schedules into two dis-
joint subsets: recoverable and nonrecoverable. The cascadeless schedules will be a 
subset of the recoverable schedules, and the strict schedules will be a subset of the 
cascadeless schedules. Thus, all strict schedules are cascadeless, and all cascadeless 
schedules are recoverable.

Most recovery protocols allow only strict schedules, so that the recovery process 
itself is not complicated (see Chapter 22).
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20.5  Characterizing Schedules Based  
on Serializability

In the previous section, we characterized schedules based on their recoverability 
properties. Now we characterize the types of schedules that are always considered 
to be correct when concurrent transactions are executing. Such schedules are known 
as serializable schedules. Suppose that two users—for example, two airline reserva-
tions agents—submit to the DBMS transactions T1 and T2 in Figure 20.2 at approx-
imately the same time. If no interleaving of operations is permitted, there are only 
two possible outcomes:

  1. Execute all the operations of transaction T1 (in sequence) followed by all the 
operations of transaction T2 (in sequence).

  2. Execute all the operations of transaction T2 (in sequence) followed by all the 
operations of transaction T1 (in sequence).

These two schedules—called serial schedules—are shown in Figures 20.5(a) and (b), 
respectively. If interleaving of operations is allowed, there will be many possible 
orders in which the system can execute the individual operations of the trans-
actions. Two possible schedules are shown in Figure 20.5(c). The concept of 
 serializability of schedules is used to identify which schedules are correct when 
transaction executions have interleaving of their operations in the schedules. This 
section defines serializability and discusses how it may be used in practice.

20.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figures 20.5(a) and (b) are called serial because the operations 
of each transaction are executed consecutively, without any interleaved operations 
from the other transaction. In a serial schedule, entire transactions are performed 
in serial order: T1 and then T2 in Figure 20.5(a), and T2 and then T1 in Figure 20.5(b). 
Schedules C and D in Figure 20.5(c) are called nonserial because each sequence 
interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the sched-
ule, all the operations of T are executed consecutively in the schedule; otherwise, the 
schedule is called nonserial. Therefore, in a serial schedule, only one transaction at a 
time is active—the commit (or abort) of the active transaction initiates execution of 
the next transaction. No interleaving occurs in a serial schedule. One reasonable 
assumption we can make, if we consider the transactions to be independent, is that 
every serial schedule is considered correct. We can assume this because every transac-
tion is assumed to be correct if executed on its own (according to the consistency 
preservation property of Section 20.3). Hence, it does not matter which transaction is 
executed first. As long as every transaction is executed from beginning to end in 
isolation from the operations of other transactions, we get a correct end result.

The problem with serial schedules is that they limit concurrency by prohibiting 
interleaving of operations. In a serial schedule, if a transaction waits for an I/O 
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operation to complete, we cannot switch the CPU processor to another transaction, 
thus wasting valuable CPU processing time. Additionally, if some transaction T is 
long, the other transactions must wait for T to complete all its operations before 
starting. Hence, serial schedules are unacceptable in practice. However, if we can 
determine which other schedules are equivalent to a serial schedule, we can allow 
these schedules to occur.

To illustrate our discussion, consider the schedules in Figure 20.5, and assume that 
the initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2. 
After executing transactions T1 and T2, we would expect the database values to be 
X = 89 and Y = 93, according to the meaning of the transactions. Sure enough, exe-
cuting either of the serial schedules A or B gives the correct results. Now consider 

(a)

Schedule A Schedule B

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;
write_item(X );

Time
Y := Y + N;
write_item(Y );

 (b)

read_item(X );
X := X + M;
write_item(X );

Time read_item(X );
X := X – N;

write_item(X );
read_item(Y );

Y := Y + N;
write_item(Y );

(c) T1 T2

Schedule C Schedule D

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;

write_item(X );

Time

Y := Y + N;
write_item(Y );

read_item(X );
X := X + M;
write_item(X );

read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

T1 T2

T1 T2 T1 T2

Time

Figure 20.5 
Examples of serial and nonserial schedules involving transactions T1 and T2. (a) Serial schedule A: T1 followed by 
T2. (b) Serial schedule B: T2 followed by T1. (c) Two nonserial schedules C and D with interleaving of operations.
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the nonserial schedules C and D. Schedule C (which is the same as Figure 20.3(a)) 
gives the results X = 92 and Y = 93, in which the X value is erroneous, whereas 
schedule D gives the correct results.

Schedule C gives an erroneous result because of the lost update problem discussed 
in Section 20.1.3; transaction T2 reads the value of X before it is changed by transac-
tion T1, so only the effect of T2 on X is reflected in the database. The effect of T1 on 
X is lost, overwritten by T2, leading to the incorrect result for item X. However, 
some nonserial schedules give the correct expected result, such as schedule D. We 
would like to determine which of the nonserial schedules always give a correct 
result and which may give erroneous results. The concept used to characterize 
schedules in this manner is that of serializability of a schedule.

The definition of serializable schedule is as follows: A schedule S of n transactions 
is serializable if it is equivalent to some serial schedule of the same n transactions. 
We will define the concept of equivalence of schedules shortly. Notice that there 
are n! possible serial schedules of n transactions and many more possible non-
serial schedules. We can form two disjoint groups of the nonserial schedules—
those that are equivalent to one (or more) of the serial schedules and hence are 
serializable, and those that are not equivalent to any serial schedule and hence are 
not serializable.

Saying that a nonserial schedule S is serializable is equivalent to saying that it is cor-
rect, because it is equivalent to a serial schedule, which is considered correct. The 
remaining question is: When are two schedules considered equivalent?

There are several ways to define schedule equivalence. The simplest but least sat-
isfactory definition involves comparing the effects of the schedules on the data-
base. Two schedules are called result equivalent if they produce the same final 
state of the database. However, two different schedules may accidentally produce 
the same final state. For example, in Figure 20.6, schedules S1 and S2 will produce 
the same final database state if they execute on a database with an initial value of 
X = 100; however, for other initial values of X, the schedules are not result equiva-
lent. Additionally, these schedules execute different transactions, so they defi-
nitely should not be considered equivalent. Hence, result equivalence alone 
cannot be used to define equivalence of schedules. The safest and most general 
approach to defining schedule equivalence is to focus only on the read_item and 
write_item operations of the transactions, and not make any assumptions about 
the other internal operations included in the transactions. For two schedules to 
be equivalent, the operations applied to each data item affected by the schedules 
should be applied to that item in both schedules in the same order. Two defini-
tions of equivalence of schedules are generally used: conflict equivalence and view 
equivalence. We discuss conflict equivalence next, which is the more commonly 
used definition.

Conflict Equivalence of Two Schedules. Two schedules are said to be conflict 
equivalent if the relative order of any two conflicting operations is the same in both 
schedules. Recall from Section 20.4.1 that two operations in a schedule are said to 
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conflict if they belong to different transactions, access the same database item, and 
either both are write_item operations or one is a write_item and the other a read_item. 
If two conflicting operations are applied in different orders in two schedules, the 
effect can be different on the database or on the transactions in the schedule, and 
hence the schedules are not conflict equivalent. For example, as we discussed in 
Section 20.4.1, if a read and write operation occur in the order r1(X), w2(X) in 
schedule S1, and in the reverse order w2(X), r1(X) in schedule S2, the value read by 
r1(X) can be different in the two schedules. Similarly, if two write operations occur 
in the order w1(X), w2(X) in S1, and in the reverse order w2(X), w1(X) in S2, the next 
r(X) operation in the two schedules will read potentially different values; or if these 
are the last operations writing item X in the schedules, the final value of item X in 
the database will be different.

Serializable Schedules. Using the notion of conflict equivalence, we define a 
schedule S to be serializable12 if it is (conflict) equivalent to some serial schedule S′. 
In such a case, we can reorder the nonconflicting operations in S until we form the 
equivalent serial schedule S′. According to this definition, schedule D in Fig-
ure 20.5(c) is equivalent to the serial schedule A in Figure 20.5(a). In both schedules, 
the read_item(X) of T2 reads the value of X written by T1, whereas the other read_item 
operations read the database values from the initial database state. Additionally, T1 
is the last transaction to write Y, and T2 is the last transaction to write X in both 
schedules. Because A is a serial schedule and schedule D is equivalent to A, D is a 
serializable schedule. Notice that the operations r1(Y) and w1(Y) of schedule D do 
not conflict with the operations r2(X) and w2(X), since they access different data 
items. Therefore, we can move r1(Y), w1(Y) before r2(X), w2(X), leading to the 
equivalent serial schedule T1, T2.

Schedule C in Figure 20.5(c) is not equivalent to either of the two possible serial 
schedules A and B, and hence is not serializable. Trying to reorder the operations of 
schedule C to find an equivalent serial schedule fails because r2(X) and w1(X) con-
flict, which means that we cannot move r2(X) down to get the equivalent serial 
schedule T1, T2. Similarly, because w1(X) and w2(X) conflict, we cannot move w1(X) 
down to get the equivalent serial schedule T2, T1.

Another, more complex definition of equivalence—called view equivalence, which 
leads to the concept of view serializability—is discussed in Section 20.5.4.

S1

read_item(X );
X := X + 10;
write_item(X );

S2

read_item(X );
X := X * 1.1;
write_item (X );

Figure 20.6 
Two schedules that are result 
equivalent for the initial value 
of X = 100 but are not result 
equivalent in general.

12We will use serializable to mean conflict serializable. Another definition of serializable used in 
 practice (see Section 20.6) is to have repeatable reads, no dirty reads, and no phantom records 
(see Section 22.7.1 for a discussion on phantoms).
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20.5.2 Testing for Serializability of a Schedule
There is a simple algorithm for determining whether a particular schedule is (con-
flict) serializable or not. Most concurrency control methods do not actually test for 
serializability. Rather protocols, or rules, are developed that guarantee that any 
schedule that follows these rules will be serializable. Some methods guarantee seri-
alizability in most cases, but do not guarantee it absolutely, in order to reduce the 
overhead of concurrency control. We discuss the algorithm for testing conflict seri-
alizability of schedules here to gain a better understanding of these concurrency 
control protocols, which are discussed in Chapter 21.

Algorithm 20.1 can be used to test a schedule for conflict serializability. The algo-
rithm looks at only the read_item and write_item operations in a schedule to con-
struct a precedence graph (or serialization graph), which is a directed graph  
G = (N, E) that consists of a set of nodes N = {T1, T2, … , Tn } and a set of directed 
edges E = {e1, e2, … , em }. There is one node in the graph for each transaction Ti in 
the schedule. Each edge ei in the graph is of the form (Tj → Tk ), 1 ≤ j ≤ n, 1 ≤ k ≤ n, 
where Tj is the starting node of ei and Tk is the ending node of ei. Such an edge 
from node Tj to node Tk is created by the algorithm if a pair of conflicting operations 
exist in Tj and Tk and the conflicting operation in Tj appears in the schedule before 
the conflicting operation in Tk.

Algorithm 20.1. Testing Conflict Serializability of a Schedule S

  1. For each transaction Ti participating in schedule S, create a node labeled 
Ti in the precedence graph.

  2. For each case in S where Tj executes a read_item(X) after Ti executes a 
write_item(X), create an edge (Ti → Tj) in the precedence graph.

  3. For each case in S where Tj executes a write_item(X) after Ti executes a 
read_item(X), create an edge (Ti → Tj) in the precedence graph.

  4. For each case in S where Tj executes a write_item(X) after Ti executes a 
write_item(X), create an edge (Ti → Tj) in the precedence graph.

  5. The schedule S is serializable if and only if the precedence graph has no 
cycles.

The precedence graph is constructed as described in Algorithm 20.1. If there is a 
cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no 
cycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((Tj → Tk), 
(Tk → Tp), … , (Ti → Tj)) with the property that the starting node of each edge—
except the first edge—is the same as the ending node of the previous edge, and the 
starting node of the first edge is the same as the ending node of the last edge (the 
sequence starts and ends at the same node).

In the precedence graph, an edge from Ti to Tj means that transaction Ti must come 
before transaction Tj in any serial schedule that is equivalent to S, because two con-
flicting operations appear in the schedule in that order. If there is no cycle in the pre-
cedence graph, we can create an equivalent serial schedule S′ that is equivalent to S, 
by ordering the transactions that participate in S as follows: Whenever an edge exists 
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in the precedence graph from Ti to Tj, Ti must appear before Tj in the equivalent serial 
schedule S′.13 Notice that the edges (Ti → Tj) in a precedence graph can optionally be 
labeled by the name(s) of the data item(s) that led to creating the edge. Figure 20.7 
shows such labels on the edges. When checking for a cycle, the labels are not relevant.

In general, several serial schedules can be equivalent to S if the precedence graph for 
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that 
we cannot create any equivalent serial schedule, so S is not serializable. The prece-
dence graphs created for schedules A to D, respectively, in Figure 20.5 appear in 
Figures 20.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable. 
The graph for schedule D has no cycle, so it is serializable, and the equivalent serial 
schedule is T1 followed by T2. The graphs for schedules A and B have no cycles, as 
expected, because the schedules are serial and hence serializable.

Another example, in which three transactions participate, is shown in Figure 20.8. 
Figure 20.8(a) shows the read_item and write_item operations in each transaction. 
Two schedules E and F for these transactions are shown in Figures 20.8(b) and (c), 
respectively, and the precedence graphs for schedules E and F are shown in Fig-
ures 20.8(d) and (e). Schedule E is not serializable because the corresponding prece-
dence graph has cycles. Schedule F is serializable, and the serial schedule equivalent 
to F is shown in Figure 20.8(e). Although only one equivalent serial schedule exists 
for F, in general there may be more than one equivalent serial schedule for a serial-
izable schedule. Figure 20.8(f) shows a precedence graph representing a schedule 

13This process of ordering the nodes of an acrylic graph is known as topological sorting.

T1(a)

(c)

(b)

(d)

T2

T1

X

X

X

X

T2

T1 T2

T1 T2

X

Figure 20.7 
Constructing the precedence graphs for schedules A to D from Figure 20.5 to test  
for conflict serializability. (a) Precedence graph for serial schedule A. (b) Precedence  
graph for serial schedule B. (c) Precedence graph for schedule C (not serializable).  
(d) Precedence graph for schedule D (serializable, equivalent to schedule A).
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Transaction T1

read_item(X );

write_item(X );

read_item(Y );

write_item(Y );

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

Transaction T3

read_item(Y );

read_item(Z );

write_item(Y );

write_item(Z );

read_item(Y );
read_item(Z );

write_item(Y);
write_item(Z );

Transaction T2

read_item(Z );

read_item(Y );

write_item(Y );

read_item(X );

write_item(X );

read_item(Z );
read_item(Y );
write_item(Y );

read_item(X );

write_item(X );

(b)

(a)

Schedule E

Time

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

read_item(Y );
read_item(Z );

write_item(Y );
write_item(Z );

read_item(Z );

read_item(Y );
write_item(Y );
read_item(X );
write_item(X );

(c)

Schedule F

Time

Transaction T1 Transaction T2 Transaction T3

Transaction T1 Transaction T2 Transaction T3

Figure 20.8 
Another example of serializability testing. (a) The read and write operations of three  
transactions T1, T2, and T3. (b) Schedule E. (c) Schedule F.
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that has two equivalent serial schedules. To find an equivalent serial schedule, start 
with a node that does not have any incoming edges, and then make sure that the 
node order for every edge is not violated.

20.5.3 How Serializability Is Used for Concurrency Control
As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S 
is (conflict) equivalent to a serial schedule—is tantamount to saying that S is cor-
rect. Being serializable is distinct from being serial, however. A serial schedule rep-
resents inefficient processing because no interleaving of operations from different 
transactions is permitted. This can lead to low CPU utilization while a transaction 
waits for disk I/O, or for a long transaction to delay other transactions, thus slowing 
down transaction processing considerably. A serializable schedule gives the benefits 
of concurrent execution without giving up any correctness. In practice, it is difficult 
to test for the serializability of a schedule. The interleaving of operations from con-
current transactions—which are usually executed as processes by the operating 
system—is typically determined by the operating system scheduler, which allocates 

(d)

X

Y

Y Y, Z

T1

Equivalent serial schedules

None

Reason

Cycle X(T1        T2),Y(T2        T1)
Cycle X(T1        T2),YZ (T2       T3),Y(T3        T1)

(e) X,Y

Y Y, Z

Equivalent serial schedules

(f) Equivalent serial schedules

T2

T3

T1 T2

T3

T1 T2

T3

T2T3 T1

T2T3 T1

T1T3 T2

Figure 20.8 (continued) 
Another example of serializability testing. (d) Precedence graph for schedule E. (e) Precedence graph for  
schedule F. (f) Precedence graph with two equivalent serial schedules.



 20.5 Characterizing Schedules Based on Serializability  771

resources to all processes. Factors such as system load, time of transaction submis-
sion, and priorities of processes contribute to the ordering of operations in a sched-
ule. Hence, it is difficult to determine how the operations of a schedule will be 
interleaved beforehand to ensure serializability. 

If transactions are executed at will and then the resulting schedule is tested for seri-
alizability, we must cancel the effect of the schedule if it turns out not to be serializ-
able. This is a serious problem that makes this approach impractical. The approach 
taken in most commercial DBMSs is to design protocols (sets of rules) that—if 
followed by every individual transaction or if enforced by a DBMS concurrency 
control subsystem—will ensure serializability of all schedules in which the transac-
tions participate. Some protocols may allow nonserializable schedules in rare cases 
to reduce the overhead of the concurrency control method (see Section 20.6).

Another problem is that transactions are submitted continuously to the system, so 
it is difficult to determine when a schedule begins and when it ends. Serializability 
theory can be adapted to deal with this problem by considering only the committed 
projection of a schedule S. Recall from Section 20.4.1 that the committed projection 
C(S) of a schedule S includes only the operations in S that belong to committed 
transactions. We can theoretically define a schedule S to be serializable if its com-
mitted projection C(S) is equivalent to some serial schedule, since only committed 
transactions are guaranteed by the DBMS.

In Chapter 21, we discuss a number of different concurrency control protocols 
that guarantee serializability. The most common technique, called two-phase 
locking, is based on locking data items to prevent concurrent transactions from 
interfering with one another, and enforcing an additional condition that guaran-
tees serializability. This is used in some commercial DBMSs. We will also discuss 
a protocol based on the concept of snapshot isolation that ensures serializability 
in most but not all cases; this is used in some commercial DBMSs because it has 
less overhead than the two-phase locking protocol. Other protocols have been 
proposed14; these include timestamp ordering, where each transaction is assigned 
a unique timestamp and the protocol ensures that any conflicting operations are 
executed in the order of the transaction timestamps; multiversion protocols, 
which are based on maintaining multiple versions of data items; and optimistic 
(also called certification or validation) protocols, which check for possible serial-
izability violations after the transactions terminate but before they are permitted 
to commit.

20.5.4 View Equivalence and View Serializability
In Section 20.5.1, we defined the concepts of conflict equivalence of schedules and 
conflict serializability. Another less restrictive definition of equivalence of sched-
ules is called view equivalence. This leads to another definition of serializability 

14These other protocols have not been incorporated much into commercial systems; most relational 
DBMSs use some variation of two-phase locking or snapshot isolation.
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called view serializability. Two schedules S and S′ are said to be view equivalent if 
the following three conditions hold:

  1. The same set of transactions participates in S and S′, and S and S′ include the 
same operations of those transactions.

  2. For any operation ri(X) of Ti in S, if the value of X read by the operation has 
been written by an operation wj(X) of Tj (or if it is the original value of X 
before the schedule started), the same condition must hold for the value of X 
read by operation ri(X) of Ti in S′.

  3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then 
wk(Y) of Tk must also be the last operation to write item Y in S′.

The idea behind view equivalence is that, as long as each read operation of a trans-
action reads the result of the same write operation in both schedules, the write 
operations of each transaction must produce the same results. The read operations 
are hence said to see the same view in both schedules. Condition 3 ensures that the 
final write operation on each data item is the same in both schedules, so the data-
base state should be the same at the end of both schedules. A schedule S is said to be 
view serializable if it is view equivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a 
condition known as the constrained write assumption (or no blind writes) holds 
on all transactions in the schedule. This condition states that any write operation 
wi(X) in Ti is preceded by a ri(X) in Ti and that the value written by wi(X) in Ti 
depends only on the value of X read by ri(X). This assumes that computation of 
the new value of X is a function f(X) based on the old value of X read from the 
database. A blind write is a write operation in a transaction T on an item X that is 
not dependent on the old value of X, so it is not preceded by a read of X in the 
transaction T.

The definition of view serializability is less restrictive than that of conflict serializ-
ability under the unconstrained write assumption, where the value written by an 
operation wi(X) in Ti can be independent of its old value. This is possible when 
blind writes are allowed, and it is illustrated by the following schedule Sg of three 
transactions T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sg the operations w2(X) and w3(X) are blind writes, since T2 and T3 do not read 
the value of X. The schedule Sg is view serializable, since it is view equivalent to the 
serial schedule T1, T2, T3. However, Sg is not conflict serializable, since it is not con-
flict equivalent to any serial schedule (as an exercise, the reader should construct 
the serializability graph for Sg and check for cycles). It has been shown that any 
conflict-serializable schedule is also view serializable but not vice versa, as illus-
trated by the preceding example. There is an algorithm to test whether a schedule S 
is view serializable or not. However, the problem of testing for view serializability 
has been shown to be NP-hard, meaning that finding an efficient polynomial time 
algorithm for this problem is highly unlikely.
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20.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a 
condition for ensuring the correctness of concurrent executions. Some applica-
tions can produce schedules that are correct by satisfying conditions less strin-
gent than either conflict serializability or view serializability. An example is the 
type of transactions known as debit-credit transactions—for example, those 
that apply deposits and withdrawals to a data item whose value is the current 
balance of a bank account. The semantics of debit-credit operations is that they 
update the value of a data item X by either subtracting from or adding to the 
value of the data item. Because addition and subtraction operations are com-
mutative—that is, they can be applied in any order—it is possible to produce 
correct schedules that are not serializable. For example, consider the following 
transactions, each of which may be used to transfer an amount of money 
between two bank accounts:

T1: r1(X); X :{equal} X − 10; w1(X); r1(Y); Y :{equal} Y + 10; w1(Y);
T2: r2(Y); Y :{equal} Y − 20; w2(Y); r2(X); X :{equal} X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

With the additional knowledge, or semantics, that the operations between each 
ri(I) and wi(I) are commutative, we know that the order of executing the 
sequences consisting of (read, update, write) is not important as long as each 
(read, update, write) sequence by a particular transaction Ti on a particular item 
I is not interrupted by conflicting operations. Hence, the schedule Sh is consid-
ered to be correct even though it is not serializable. Researchers have been work-
ing on extending concurrency control theory to deal with cases where 
serializability is considered to be too restrictive as a condition for correctness of 
schedules. Also, in certain domains of applications, such as computer-aided 
design (CAD) of complex systems like aircraft, design transactions last over a 
long time period. In such applications, more relaxed schemes of concurrency 
control have been proposed to maintain consistency of the database, such as 
eventual consistency. We shall discuss eventual consistency in the context of dis-
tributed databases in Chapter 23.

20.6 Transaction Support in SQL
In this section, we give a brief introduction to transaction support in SQL. There 
are many more details, and the newer standards have more commands for trans-
action processing. The basic definition of an SQL transaction is similar to our 
already defined concept of a transaction. That is, it is a logical unit of work and is 
guaranteed to be atomic. A single SQL statement is always considered to be 
atomic—either it completes execution without an error or it fails and leaves the 
database unchanged.
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With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is 
done implicitly when particular SQL statements are encountered. However, every 
transaction must have an explicit end statement, which is either a COMMIT or a 
ROLLBACK. Every transaction has certain characteristics attributed to it. These 
characteristics are specified by a SET TRANSACTION statement in SQL. The charac-
teristics are the access mode, the diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is 
READ WRITE, unless the isolation level of READ UNCOMMITTED is specified (see 
below), in which case READ ONLY is assumed. A mode of READ WRITE allows select, 
update, insert, delete, and create commands to be executed. A mode of READ ONLY, 
as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, 
which indicates the number of conditions that can be held simultaneously in the 
diagnostic area. These conditions supply feedback information (errors or excep-
tions) to the user or program on the n most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>, 
where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED, 
REPEATABLE READ, or SERIALIZABLE.15 The default isolation level is SERIALIZABLE, 
although some systems use READ COMMITTED as their default. The use of the term 
SERIALIZABLE here is based on not allowing violations that cause dirty read, unre-
peatable read, and phantoms,16 and it is thus not identical to the way serializability 
was defined earlier in Section 20.5. If a transaction executes at a lower isolation level 
than SERIALIZABLE, then one or more of the following three violations may occur:

  1. Dirty read. A transaction T1 may read the update of a transaction T2, which 
has not yet committed. If T2 fails and is aborted, then T1 would have read a 
value that does not exist and is incorrect.

  2. Nonrepeatable read. A transaction T1 may read a given value from a table. 
If another transaction T2 later updates that value and T1 reads that value 
again, T1 will see a different value.

  3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps 
based on some condition specified in the SQL WHERE-clause. Now suppose 
that a transaction T2 inserts a new row r that also satisfies the WHERE-clause 
condition used in T1, into the table used by T1. The record r is called a 
 phantom record because it was not there when T1 starts but is there when 
T1 ends. T1 may or may not see the phantom, a row that previously did not 
exist. If the equivalent serial order is T1 followed by T2, then the record r 
should not be seen; but if it is T2 followed by T1,then the phantom record 
should be in the result given to T1. If the system cannot ensure the correct 
behavior, then it does not deal with the phantom record problem.

15These are similar to the isolation levels discussed briefly at the end of Section 20.3.
16The dirty read and unrepeatable read problems were discussed in Section 20.1.3. Phantoms are dis-
cussed in Section 22.7.1.
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Table 20.1 summarizes the possible violations for the different isolation levels. An 
entry of Yes indicates that a violation is possible and an entry of No indicates that it 
is not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is the 
most restrictive in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
 READ WRITE
 DIAGNOSTIC SIZE 5
 ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)
 VALUES ('Robert', 'Smith', '991004321', 2, 35000);
EXEC SQL UPDATE EMPLOYEE
 SET Salary = Salary * 1.1 WHERE Dno = 2;
EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table 
and then updating the salary of all employees who work in department 2. If an error 
occurs on any of the SQL statements, the entire transaction is rolled back. This 
implies that any updated salary (by this transaction) would be restored to its previ-
ous value and that the newly inserted row would be removed.

As we have seen, SQL provides a number of transaction-oriented features. The 
DBA or database programmers can take advantage of these options to try improv-
ing transaction performance by relaxing serializability if that is acceptable for 
their applications.

Snapshot Isolation. Another isolation level, known as snapshot isolation, is 
used in some commercial DBMSs, and some concurrency control protocols exist 
that are based on this concept. The basic definition of snapshot isolation is that a 
transaction sees the data items that it reads based on the committed values of the 
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since 

Table 20.1 Possible Violations Based on Isolation Levels as Defined in SQL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No
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the database transaction, or in some cases the database statement, will only see the 
records that were committed in the database at the time the transaction starts. Any 
insertions, deletions, or updates that occur after the transaction starts will not be 
seen by the transaction. We will discuss a concurrency control protocol based on 
this concept in Chapter 21.

20.7 Summary
In this chapter, we discussed DBMS concepts for transaction processing. We intro-
duced the concept of a database transaction and the operations relevant to transac-
tion processing in Section 20.1. We compared single-user systems to multiuser 
systems and then presented examples of how uncontrolled execution of concurrent 
transactions in a multiuser system can lead to incorrect results and database values 
in Section 20.1.1. We also discussed the various types of failures that may occur 
during transaction execution in Section 20.1.4.

Next, in Section 20.2, we introduced the typical states that a transaction passes 
through during execution, and discussed several concepts that are used in recovery 
and concurrency control methods. The system log (Section 20.2.2) keeps track of 
database accesses, and the system uses this information to recover from failures. A 
transaction can succeed and reach its commit point, or it can fail and has to be 
rolled back. A committed transaction (Section 20.2.3) has its changes permanently 
recorded in the database. In Section 20.3, we presented an overview of the desirable 
properties of transactions—atomicity, consistency preservation, isolation, and 
durability—which are often referred to as the ACID properties.

Then we defined a schedule (or history) as an execution sequence of the opera-
tions of several transactions with interleaving in Section 20.4.1. We character-
ized schedules in terms of their recoverability in Section 20.4.2. Recoverable 
schedules ensure that, once a transaction commits, it never needs to be undone. 
Cascadeless schedules add an additional condition to ensure that no aborted 
transaction requires the cascading abort of other transactions. Strict schedules 
provide an even stronger condition that allows a simple recovery scheme con-
sisting of restoring the old values of items that have been changed by an aborted 
transaction.

Then in Section 20.5 we defined the equivalence of schedules and saw that a serial-
izable schedule is equivalent to some serial schedule. We defined the concepts of 
conflict equivalence and view equivalence. A serializable schedule is considered 
correct. We presented an algorithm for testing the (conflict) serializability of a 
schedule in Section 20.5.2. We discussed why testing for serializability is impracti-
cal in a real system, although it can be used to define and verify concurrency con-
trol protocols in Section 20.5.3, and we briefly mentioned less restrictive definitions 
of schedule equivalence in Sections 20.5.4 and 20.5.5. Finally, in Section 20.6, we 
gave a brief overview of how transaction concepts are used in practice within SQL, 
and we introduced the concept of snapshot isolation, which is used in several com-
mercial DBMSs.
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Review Questions
 20.1. What is meant by the concurrent execution of database transactions in a 

multiuser system? Discuss why concurrency control is needed, and give 
informal examples.

 20.2. Discuss the different types of failures. What is meant by catastrophic failure?

 20.3. Discuss the actions taken by the read_item and write_item operations on a 
database.

 20.4. Draw a state diagram and discuss the typical states that a transaction goes 
through during execution.

 20.5. What is the system log used for? What are the typical kinds of records in a 
system log? What are transaction commit points, and why are they 
important?

 20.6. Discuss the atomicity, durability, isolation, and consistency preservation 
properties of a database transaction.

 20.7. What is a schedule (history)? Define the concepts of recoverable, cascade-
less, and strict schedules, and compare them in terms of their recoverability.

 20.8. Discuss the different measures of transaction equivalence. What is the dif-
ference between conflict equivalence and view equivalence?

 20.9. What is a serial schedule? What is a serializable schedule? Why is a serial 
schedule considered correct? Why is a serializable schedule considered 
correct?

 20.10. What is the difference between the constrained write and the unconstrained 
write assumptions? Which is more realistic?

 20.11. Discuss how serializability is used to enforce concurrency control in a data-
base system. Why is serializability sometimes considered too restrictive as a 
measure of correctness for schedules?

 20.12. Describe the four levels of isolation in SQL. Also discuss the concept of 
snapshot isolation and its effect on the phantom record problem.

 20.13. Define the violations caused by each of the following: dirty read, nonrepeat-
able read, and phantoms.

Exercises
 20.14. Change transaction T2 in Figure 20.2(b) to read

read_item(X);
X := X + M;
if X > 90 then exit
else write_item(X);
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  Discuss the final result of the different schedules in Figures 20.3(a) and (b), 
where M = 2 and N = 2, with respect to the following questions: Does adding 
the above condition change the final outcome? Does the outcome obey the 
implied consistency rule (that the capacity of X is 90)?

 20.15. Repeat Exercise 20.14, adding a check in T1 so that Y does not exceed 90.

 20.16. Add the operation commit at the end of each of the transactions T1 and T2 
in Figure 20.2, and then list all possible schedules for the modified transac-
tions. Determine which of the schedules are recoverable, which are cascade-
less, and which are strict.

 20.17. List all possible schedules for transactions T1 and T2 in Figure 20.2, and 
determine which are conflict serializable (correct) and which are not.

 20.18. How many serial schedules exist for the three transactions in Figure 20.8(a)? 
What are they? What is the total number of possible schedules?

 20.19. Write a program to create all possible schedules for the three transactions 
in Figure 20.8(a), and to determine which of those schedules are conflict 
serializable and which are not. For each conflict-serializable schedule, 
your program should print the schedule and list all equivalent serial 
schedules.

 20.20. Why is an explicit transaction end statement needed in SQL but not an 
explicit begin statement?

 20.21. Describe situations where each of the different isolation levels would be use-
ful for transaction processing.

 20.22. Which of the following schedules is (conflict) serializable? For each serializ-
able schedule, determine the equivalent serial schedules.

a. r1(X); r3(X); w1(X); r2(X); w3(X);

b. r1(X); r3(X); w3(X); w1(X); r2(X);

c. r3(X); r2(X); w3(X); r1(X); w1(X);

d. r3(X); r2(X); r1(X); w3(X); w1(X);

 20.23. Consider the three transactions T1, T2, and T3, and the schedules S1 and S2 
given below. Draw the serializability (precedence) graphs for S1 and S2, and 
state whether each schedule is serializable or not. If a schedule is serializable, 
write down the equivalent serial schedule(s).

T1: r1 (X); r1 (Z); w1 (X);
T2: r2 (Z); r2 (Y); w2 (Z); w2 (Y);
T3: r3 (X); r3 (Y); w3 (Y);
S1: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z); 

w2 (Y);
S2: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); w2 (Z); w3 (Y); 

w2 (Y);
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 20.24. Consider schedules S3, S4, and S5 below. Determine whether each schedule is 
strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictest 
recoverability condition that each schedule satisfies.)

S3: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); c1; w3 (Y); c3; r2 (Y);  
w2 (Z); w2 (Y); c2;

S4: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z);  
w2 (Y); c1; c2; c3;

S5: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); c1; w2 (Z); w3 (Y); 
w2 (Y); c3; c2;
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21
Concurrency Control  

Techniques

In this chapter, we discuss a number of concurrency 
control techniques that are used to ensure the nonin-

terference or isolation property of concurrently executing transactions. Most of 
these techniques ensure serializability of schedules—which we defined in Sec-
tion 21.5—using concurrency control protocols (sets of rules) that guarantee serializ-
ability. One important set of protocols—known as two-phase locking protocols— 
employs the technique of locking data items to prevent multiple transactions from 
accessing the items concurrently; a number of locking protocols are described in 
Sections 21.1 and 21.3.2. Locking protocols are used in some commercial DBMSs, 
but they are considered to have high overhead. Another set of concurrency control 
protocols uses timestamps. A timestamp is a unique identifier for each transaction, 
generated by the system. Timestamp values are generated in the same order as the 
transaction start times. Concurrency control protocols that use timestamp ordering 
to ensure serializability are introduced in Section 21.2. In Section 21.3, we discuss 
multiversion concurrency control protocols that use multiple versions of a data 
item. One multiversion protocol extends timestamp order to multiversion time-
stamp ordering (Section 21.3.1), and another extends timestamp order to two-
phase locking (Section 21.3.2). In Section 21.4, we present a protocol based on the 
concept of validation or certification of a transaction after it executes its opera-
tions; these are sometimes called optimistic protocols, and they also assume that 
multiple versions of a data item can exist. In Section 21.4, we discuss a protocol that 
is based on the concept of snapshot isolation, which can utilize techniques similar 
to those proposed in validation-based and multiversion methods; these protocols 
are used in a number of commercial DBMSs and in certain cases are considered to 
have lower overhead than locking-based protocols.

chapter 21
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Another factor that affects concurrency control is the granularity of the data 
items—that is, what portion of the database a data item represents. An item can be 
as small as a single attribute (field) value or as large as a disk block, or even a whole 
file or the entire database. We discuss granularity of items and a multiple granular-
ity concurrency control protocol, which is an extension of two-phase locking, in 
Section 21.5. In Section 21.6, we describe concurrency control issues that arise 
when indexes are used to process transactions, and in Section 21.7 we discuss some 
additional concurrency control concepts. Section 21.8 summarizes the chapter.

It is sufficient to read Sections 21.1, 21.5, 21.6, and 21.7, and possibly 21.3.2, if your 
main interest is an introduction to the concurrency control techniques that are 
based on locking.

21.1  Two-Phase Locking Techniques  
for Concurrency Control

Some of the main techniques used to control concurrent execution of transactions 
are based on the concept of locking data items. A lock is a variable associated with 
a data item that describes the status of the item with respect to possible operations 
that can be applied to it. Generally, there is one lock for each data item in the data-
base. Locks are used as a means of synchronizing the access by concurrent transac-
tions to the database items. In Section 21.1.1, we discuss the nature and types of 
locks. Then, in Section 21.1.2, we present protocols that use locking to guarantee 
serializability of transaction schedules. Finally, in Section 21.1.3, we describe two 
problems associated with the use of locks—deadlock and starvation—and show 
how these problems are handled in concurrency control protocols.

21.1.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking con-
cepts gradually, first we discuss binary locks, which are simple but are also too 
restrictive for database concurrency control purposes and so are not used much. 
Then we discuss shared/exclusive locks—also known as read/write locks—which 
provide more general locking capabilities and are used in database locking schemes. 
In Section 21.3.2, we describe an additional type of lock called a certify lock, and we 
show how it can be used to improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocked 
(or 1 and 0, for simplicity). A distinct lock is associated with each database item X. 
If the value of the lock on X is 1, item X cannot be accessed by a database operation 
that requests the item. If the value of the lock on X is 0, the item can be accessed 
when requested, and the lock value is changed to 1. We refer to the current value 
(or state) of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item, are used with binary locking. A trans-
action requests access to an item X by first issuing a lock_item(X) operation. If 
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LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the 
transaction locks the item) and the transaction is allowed to access item X. When 
the transaction is through using the item, it issues an unlock_item(X) operation, 
which sets LOCK(X) back to 0 (unlocks the item) so that X may be accessed by 
other transactions. Hence, a binary lock enforces mutual exclusion on the data 
item. A description of the lock_item(X) and unlock_item(X) operations is shown in 
Figure 21.1.

Notice that the lock_item and unlock_item operations must be implemented as indi-
visible units (known as critical sections in operating systems); that is, no interleav-
ing should be allowed once a lock or unlock operation is started until the operation 
terminates or the transaction waits. In Figure 21.1, the wait command within the 
lock_item(X) operation is usually implemented by putting the transaction in a wait-
ing queue for item X until X is unlocked and the transaction can be granted access 
to it. Other transactions that also want to access X are placed in the same queue. 
Hence, the wait command is considered to be outside the lock_item operation.

It is simple to implement a binary lock; all that is needed is a binary-valued variable, 
LOCK, associated with each data item X in the database. In its simplest form, each 
lock can be a record with three fields: <Data_item_name, LOCK, Locking_transaction> 
plus a queue for transactions that are waiting to access the item. The system needs 
to maintain only these records for the items that are currently locked in a lock table, 
which could be organized as a hash file on the item name. Items not in the lock 
table are considered to be unlocked. The DBMS has a lock manager subsystem to 
keep track of and control access to locks.

If the simple binary locking scheme described here is used, every transaction must 
obey the following rules:

  1. A transaction T must issue the operation lock_item(X) before any  
read_item(X) or write_item(X) operations are performed in T.

  2. A transaction T must issue the operation unlock_item(X) after all read_item(X) 
and write_item(X) operations are completed in T.

lock_item(X):
B: if LOCK(X) = 0 (*item is unlocked*)
  then LOCK(X ) ←1 (*lock the item*)
 else
  begin
  wait (until LOCK(X ) = 0
   and the lock manager wakes up the transaction);
  go to B
  end;
unlock_item(X):
 LOCK(X ) ← 0; (* unlock the item *)
 if any transactions are waiting
  then wakeup one of the waiting transactions;

Figure 21.1 
Lock and unlock operations 
for binary locks.
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  3. A transaction T will not issue a lock_item(X) operation if it already holds the 
lock on item X.1

  4. A transaction T will not issue an unlock_item(X) operation unless it already 
holds the lock on item X.

These rules can be enforced by the lock manager module of the DBMS. Between the 
lock_item(X) and unlock_item(X) operations in transaction T, T is said to hold the 
lock on item X. At most one transaction can hold the lock on a particular item. 
Thus no two transactions can access the same item concurrently.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking 
scheme is too restrictive for database items because at most one transaction can 
hold a lock on a given item. We should allow several transactions to access the 
same item X if they all access X for reading purposes only. This is because read 
operations on the same item by different transactions are not conflicting (see Sec-
tion 21.4.1). However, if a transaction is to write an item X, it must have exclusive 
access to X. For this purpose, a different type of lock, called a multiple-mode 
lock, is used. In this scheme—called shared/exclusive or read/write locks—there 
are three locking operations: read_lock(X), write_lock(X), and unlock(X). A lock 
associated with an item X, LOCK(X), now has three possible states: read-locked, 
write-locked, or unlocked. A read-locked item is also called share-locked because 
other transactions are allowed to read the item, whereas a write-locked item is 
called exclusive-locked because a single transaction exclusively holds the lock on 
the item.

One method for implementing the preceding operations on a read/write lock is 
to keep track of the number of transactions that hold a shared (read) lock on an 
item in the lock table, as well as a list of transaction ids that hold a shared lock. 
Each record in the lock table will have four fields: <Data_item_name, LOCK,  
No_of_reads, Locking_transaction(s)>. The system needs to maintain lock records 
only for locked items in the lock table. The value (state) of LOCK is either read-
locked or write-locked, suitably coded (if we assume no records are kept in 
the  lock table for unlocked items). If LOCK(X) = write-locked, the value of 
 locking_transaction(s) is a single transaction that holds the exclusive (write) lock 
on X. If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one 
or more transactions that hold the shared (read) lock on X. The three operations 
read_lock(X), write_lock(X), and unlock(X) are described in Figure 21.2.2 As before, 
each of the three locking operations should be considered indivisible; no inter-
leaving should be allowed once one of the operations is started until either the 
operation terminates by granting the lock or the transaction is placed in a wait-
ing queue for the item.

1This rule may be removed if we modify the lock_item (X) operation in Figure 21.1 so that if the item is 
currently locked by the requesting transaction, the lock is granted.
2These algorithms do not allow upgrading or downgrading of locks, as described later in this section. The 
reader can extend the algorithms to allow these additional operations.
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When we use the shared/exclusive locking scheme, the system must enforce the 
following rules:

  1. A transaction T must issue the operation read_lock(X) or write_lock(X) before 
any read_item(X) operation is performed in T.

  2. A transaction T must issue the operation write_lock(X) before any write_item(X) 
operation is performed in T.

  3. A transaction T must issue the operation unlock(X) after all read_item(X) and 
write_item(X) operations are completed in T.3

read_lock(X):
B: if LOCK(X) = “unlocked”
  then begin LOCK(X) ← “read-locked”;
   no_of_reads(X) ← 1
   end
 else if LOCK(X) = “read-locked”
  then no_of_reads(X) ← no_of_reads(X) + 1
 else begin
   wait (until LOCK(X) = “unlocked”
    and the lock manager wakes up the transaction);
   go to B
   end;
write_lock(X):
B: if LOCK(X) = “unlocked”
  then LOCK(X) ← “write-locked”
 else begin
   wait (until LOCK(X) = “unlocked”
    and the lock manager wakes up the transaction);
   go to B
   end;
unlock (X):
 if LOCK(X) = “write-locked”
  then begin LOCK(X) ← “unlocked”;
    wakeup one of the waiting transactions, if any
    end
 else it LOCK(X) = “read-locked”
  then begin
    no_of_reads(X) ← no_of_reads(X) −1;
    if no_of_reads(X) = 0
     then begin LOCK(X) = “unlocked”;
       wakeup one of the waiting transactions, if any
       end
    end;

Figure 21.2 
Locking and unlocking 
operations for two-
mode (read/write, or 
shared/exclusive) 
locks.

3This rule may be relaxed to allow a transaction to unlock an item, then lock it again later. However, two-
phase locking does not allow this.
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  4. A transaction T will not issue a read_lock(X) operation if it already holds a 
read (shared) lock or a write (exclusive) lock on item X. This rule may be 
relaxed for downgrading of locks, as we discuss shortly.

  5. A transaction T will not issue a write_lock(X) operation if it already holds a 
read (shared) lock or write (exclusive) lock on item X. This rule may also be 
relaxed for upgrading of locks, as we discuss shortly.

  6. A transaction T will not issue an unlock(X) operation unless it already holds 
a read (shared) lock or a write (exclusive) lock on item X.

Conversion (Upgrading, Downgrading) of Locks. It is desirable to relax con-
ditions 4 and 5 in the preceding list in order to allow lock conversion; that is, a 
transaction that already holds a lock on item X is allowed under certain conditions 
to convert the lock from one locked state to another. For example, it is possible for 
a transaction T to issue a read_lock(X) and then later to upgrade the lock by issuing 
a write_lock(X) operation. If T is the only transaction holding a read lock on X at the 
time it issues the write_lock(X) operation, the lock can be upgraded; otherwise, the 
transaction must wait. It is also possible for a transaction T to issue a write_lock(X) 
and then later to downgrade the lock by issuing a read_lock(X) operation. When 
upgrading and downgrading of locks is used, the lock table must include transac-
tion identifiers in the record structure for each lock (in the locking_transaction(s) 
field) to store the information on which transactions hold locks on the item. The 
descriptions of the read_lock(X) and write_lock(X) operations in Figure 21.2 must be 
changed appropriately to allow for lock upgrading and downgrading. We leave this 
as an exercise for the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not 
guarantee serializability of schedules on its own. Figure 21.3 shows an example 
where the preceding locking rules are followed but a nonserializable schedule may 
result. This is because in Figure 21.3(a) the items Y in T1 and X in T2 were unlocked 
too early. This allows a schedule such as the one shown in Figure 21.3(c) to occur, 
which is not a serializable schedule and hence gives incorrect results. To guarantee 
serializability, we must follow an additional protocol concerning the positioning of 
locking and unlocking operations in every transaction. The best-known protocol, 
two-phase locking, is described in the next section.

21.1.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking opera-
tions (read_lock, write_lock) precede the first unlock operation in the transaction.4 

Such a transaction can be divided into two phases: an expanding or growing 
(first) phase, during which new locks on items can be acquired but none can be 
released; and a shrinking (second) phase, during which existing locks can be 
released but no new locks can be acquired. If lock conversion is allowed, then 
upgrading of locks (from read-locked to write-locked) must be done during the 

4This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter 23).
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expanding phase, and downgrading of locks (from write-locked to read-locked) 
must be done in the shrinking phase.

Transactions T1 and T2 in Figure 21.3(a) do not follow the two-phase locking pro-
tocol because the write_lock(X) operation follows the unlock(Y) operation in T1, and 
similarly the write_lock(Y) operation follows the unlock(X) operation in T2. If we 
enforce two-phase locking, the transactions can be rewritten as T1′ and T2′, as 
shown in Figure 21.4. Now, the schedule shown in Figure 21.3(c) is not permitted 
for T1′ and T2′ (with their modified order of locking and unlocking operations) 
under the rules of locking described in Section 21.1.1 because T1′ will issue its  
write_lock(X) before it unlocks item Y; consequently, when T2′ issues its read_lock(X), 
it is forced to wait until T1′ releases the lock by issuing an unlock (X) in the schedule. 
However, this can lead to deadlock (see Section 21.1.3).

(a) T1
Initial values: X=20, Y=30

Result serial schedule T1

followed by T2: X=50, Y=80

Result of serial schedule T2

followed by T1: X=70, Y=50

read_lock(Y );
read_item(Y );
unlock(Y );
write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

(b)

(c)

Time

read_lock(Y );
read_item(Y );
unlock(Y );

Result of schedule S:
X=50, Y=50
(nonserializable)

T2

T1 T2

Figure 21.3 
Transactions that do not obey two-phase locking. 
(a) Two transactions T1 and T2. (b) Results of 
possible serial schedules of T1 and T2. (c) A  
nonserializable schedule S that uses locks.
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It can be proved that, if every transaction in a schedule follows the two-phase lock-
ing protocol, the schedule is guaranteed to be serializable, obviating the need to test 
for serializability of schedules. The locking protocol, by enforcing two-phase lock-
ing rules, also enforces serializability.

Two-phase locking may limit the amount of concurrency that can occur in a sched-
ule because a transaction T may not be able to release an item X after it is through 
using it if T must lock an additional item Y later; or, conversely, T must lock the 
additional item Y before it needs it so that it can release X. Hence, X must remain 
locked by T until all items that the transaction needs to read or write have been 
locked; only then can X be released by T. Meanwhile, another transaction seeking to 
access X may be forced to wait, even though T is done with X; conversely, if Y is 
locked earlier than it is needed, another transaction seeking to access Y is forced to 
wait even though T is not using Y yet. This is the price for guaranteeing serializabil-
ity of all schedules without having to check the schedules themselves.

Although the two-phase locking protocol guarantees serializability (that is, every 
schedule that is permitted is serializable), it does not permit all possible serializable 
schedules (that is, some serializable schedules will be prohibited by the protocol).

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a 
number of variations of two-phase locking (2PL). The technique just described is 
known as basic 2PL. A variation known as conservative 2PL (or static 2PL) 
requires a transaction to lock all the items it accesses before the transaction begins 
execution, by predeclaring its read-set and write-set. Recall from Section 21.1.2 that 
the read-set of a transaction is the set of all items that the transaction reads, and the 
write-set is the set of all items that it writes. If any of the predeclared items needed 
cannot be locked, the transaction does not lock any item; instead, it waits until all 
the items are available for locking. Conservative 2PL is a deadlock-free protocol, as 
we will see in Section 21.1.3 when we discuss the deadlock problem. However, it is 
difficult to use in practice because of the need to predeclare the read-set and write-
set, which is not possible in some situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict 
schedules (see Section 21.4). In this variation, a transaction T does not release any 

read_lock(Y );
read_item(Y );
write_lock(X );
unlock(Y )
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
write_lock(Y );
unlock(X )
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

T1� T2�

Figure 21.4 
Transactions T1′ and T2′, which are the 
same as T1 and T2 in Figure 21.3 but 
follow the two-phase locking protocol. 
Note that they can produce a deadlock.
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of its exclusive (write) locks until after it commits or aborts. Hence, no other trans-
action can read or write an item that is written by T unless T has committed, lead-
ing to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A more 
restrictive variation of strict 2PL is rigorous 2PL, which also guarantees strict 
schedules. In this variation, a transaction T does not release any of its locks (exclu-
sive or shared) until after it commits or aborts, and so it is easier to implement 
than strict 2PL.

Notice the difference between strict and rigorous 2PL: the former holds write-locks 
until it commits, whereas the latter holds all locks (read and write). Also, the differ-
ence between conservative and rigorous 2PL is that the former must lock all its 
items before it starts, so once the transaction starts it is in its shrinking phase; the 
latter does not unlock any of its items until after it terminates (by committing or 
aborting), so the transaction is in its expanding phase until it ends.

Usually the concurrency control subsystem itself is responsible for generating 
the read_lock and write_lock requests. For example, suppose the system is to enforce 
the strict 2PL protocol. Then, whenever transaction T issues a read_item(X), the 
 system calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is 
write_locked by some other transaction T′, the system places T in the waiting queue 
for item X; otherwise, it grants the read_lock(X) request and permits the read_item(X) 
operation of T to execute. On the other hand, if transaction T issues a write_item(X), 
the system calls the write_lock(X) operation on behalf of T. If the state of LOCK(X) is 
write_locked or read_locked by some other transaction T′, the system places T in 
the waiting queue for item X; if the state of LOCK(X) is read_locked and T itself is 
the only transaction holding the read lock on X, the system upgrades the lock to 
write_locked and permits the write_item(X) operation by T. Finally, if the state of 
LOCK(X) is unlocked, the system grants the write_lock(X) request and permits the 
write_item(X) operation to execute. After each action, the system must update its 
lock table appropriately.

Locking is generally considered to have a high overhead, because every read or 
write operation is preceded by a system locking request. The use of locks can also 
cause two additional problems: deadlock and starvation. We discuss these problems 
and their solutions in the next section.

21.1.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is 
waiting for some item that is locked by some other transaction T′ in the set. Hence, 
each transaction in the set is in a waiting queue, waiting for one of the other trans-
actions in the set to release the lock on an item. But because the other transaction is 
also waiting, it will never release the lock. A simple example is shown in Fig-
ure 21.5(a), where the two transactions T1′ and T2′ are deadlocked in a partial 
schedule; T1′ is in the waiting queue for X, which is locked by T2′, whereas T2′ is in 
the waiting queue for Y, which is locked by T1′. Meanwhile, neither T1′ nor T2′ nor 
any other transaction can access items X and Y.
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Deadlock Prevention Protocols. One way to prevent deadlock is to use a deadlock 
prevention protocol.5 One deadlock prevention protocol, which is used in conserva-
tive two-phase locking, requires that every transaction lock all the items it needs in 
advance (which is generally not a practical assumption)—if any of the items cannot be 
obtained, none of the items are locked. Rather, the transaction waits and then tries 
again to lock all the items it needs. Obviously, this solution further limits concurrency. 
A second protocol, which also limits concurrency, involves ordering all the items in the 
database and making sure that a transaction that needs several items will lock them 
according to that order. This requires that the programmer (or the system) is aware of 
the chosen order of the items, which is also not practical in the database context.

A number of other deadlock prevention schemes have been proposed that make a 
decision about what to do with a transaction involved in a possible deadlock situation: 
Should it be blocked and made to wait or should it be aborted, or should the transac-
tion preempt and abort another transaction? Some of these techniques use the concept 
of transaction timestamp TS(T′), which is a unique identifier assigned to each trans-
action. The timestamps are typically based on the order in which transactions are 
started; hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2). 
Notice that the older transaction (which starts first) has the smaller timestamp value. 
Two schemes that prevent deadlock are called wait-die and wound-wait. Suppose that 
transaction Ti tries to lock an item X but is not able to because X is locked by some 
other transaction Tj with a conflicting lock. The rules followed by these schemes are:

 ■ Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; 
otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the 
same timestamp.

 ■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds 
Tj) and restart it later with the same timestamp; otherwise (Ti younger than 
Tj) Ti is allowed to wait.

(a) T1� (b)

read_lock(Y );
read_item(Y );

Time

write_lock(X );

read_lock(X );
read_item(X );

write_lock(Y );

T2�

   T2�T1�

X

Y

Figure 21.5 
Illustrating the deadlock problem. (a) A partial schedule of T1′ and T2′ that is  
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

5These protocols are not generally used in practice, either because of unrealistic assumptions or 
because of their possible overhead. Deadlock detection and timeouts (covered in the following sections) 
are more practical.
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In wait-die, an older transaction is allowed to wait for a younger transaction, whereas 
a younger transaction requesting an item held by an older transaction is aborted and 
restarted. The wound-wait approach does the opposite: A younger transaction is 
allowed to wait for an older one, whereas an older transaction requesting an item held 
by a younger transaction preempts the younger transaction by aborting it. Both 
schemes end up aborting the younger of the two transactions (the transaction that 
started later) that may be involved in a deadlock, assuming that this will waste less 
processing. It can be shown that these two techniques are deadlock-free, since in wait-
die, transactions only wait for younger transactions so no cycle is created. Similarly, in 
wound-wait, transactions only wait for older transactions so no cycle is created. How-
ever, both techniques may cause some transactions to be aborted and restarted need-
lessly, even though those transactions may never actually cause a deadlock.

Another group of protocols that prevent deadlock do not require timestamps. 
These include the no waiting (NW) and cautious waiting (CW) algorithms. In the 
no waiting algorithm, if a transaction is unable to obtain a lock, it is immediately 
aborted and then restarted after a certain time delay without checking whether a 
deadlock will actually occur or not. In this case, no transaction ever waits, so no 
deadlock will occur. However, this scheme can cause transactions to abort and 
restart needlessly. The cautious waiting algorithm was proposed to try to reduce 
the number of needless aborts/restarts. Suppose that transaction Ti tries to lock an 
item X but is not able to do so because X is locked by some other transaction Tj with 
a conflicting lock. The cautious waiting rule is as follows:

 ■ Cautious waiting. If Tj is not blocked (not waiting for some other locked 
item), then Ti is blocked and allowed to wait; otherwise abort Ti.

It can be shown that cautious waiting is deadlock-free, because no transaction will 
ever wait for another blocked transaction. By considering the time b(T) at which 
each blocked transaction T was blocked, if the two transactions Ti and Tj above both 
become blocked and Ti is waiting for Tj, then b(Ti) < b(Tj), since Ti can only wait for 
Tj at a time when Tj is not blocked itself. Hence, the blocking times form a total 
ordering on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection. An alternative approach to dealing with deadlock is 
 deadlock detection, where the system checks if a state of deadlock actually exists. 
This solution is attractive if we know there will be little interference among the 
transactions—that is, if different transactions will rarely access the same items at 
the same time. This can happen if the transactions are short and each transaction 
locks only a few items, or if the transaction load is light. On the other hand, if trans-
actions are long and each transaction uses many items, or if the transaction load is 
heavy, it may be advantageous to use a deadlock prevention scheme.

A simple way to detect a state of deadlock is for the system to construct and main-
tain a wait-for graph. One node is created in the wait-for graph for each transac-
tion that is currently executing. Whenever a transaction Ti is waiting to lock an 
item X that is currently locked by a transaction Tj, a directed edge (Ti → Tj) is cre-
ated in the wait-for graph. When Tj releases the lock(s) on the items that Ti was 
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waiting for, the directed edge is dropped from the wait-for graph. We have a state of 
deadlock if and only if the wait-for graph has a cycle. One problem with this 
approach is the matter of determining when the system should check for a dead-
lock. One possibility is to check for a cycle every time an edge is added to the wait-
for graph, but this may cause excessive overhead. Criteria such as the number of 
currently executing transactions or the period of time several transactions have 
been waiting to lock items may be used instead to check for a cycle. Figure 21.5(b) 
shows the wait-for graph for the (partial) schedule shown in Figure 21.5(a).

If the system is in a state of deadlock, some of the transactions causing the deadlock 
must be aborted. Choosing which transactions to abort is known as victim 
 selection. The algorithm for victim selection should generally avoid selecting trans-
actions that have been running for a long time and that have performed many 
updates, and it should try instead to select transactions that have not made many 
changes (younger transactions).

Timeouts. Another simple scheme to deal with deadlock is the use of timeouts. 
This method is practical because of its low overhead and simplicity. In this method, 
if a transaction waits for a period longer than a system-defined timeout period, the 
system assumes that the transaction may be deadlocked and aborts it—regardless of 
whether a deadlock actually exists.

Starvation. Another problem that may occur when we use locking is starvation, 
which occurs when a transaction cannot proceed for an indefinite period of time 
while other transactions in the system continue normally. This may occur if the 
waiting scheme for locked items is unfair in that it gives priority to some transac-
tions over others. One solution for starvation is to have a fair waiting scheme, such 
as using a first-come-first-served queue; transactions are enabled to lock an item 
in the order in which they originally requested the lock. Another scheme allows 
some transactions to have priority over others but increases the priority of a trans-
action the longer it waits, until it eventually gets the highest priority and proceeds. 
Starvation can also occur because of victim selection if the algorithm selects the 
same transaction as victim repeatedly, thus causing it to abort and never finish exe-
cution. The algorithm can use higher priorities for transactions that have been 
aborted multiple times to avoid this problem. The wait-die and wound-wait 
schemes discussed previously avoid starvation, because they restart a transaction 
that has been aborted with its same original timestamp, so the possibility that the 
same transaction is aborted repeatedly is slim.

21.2  Concurrency Control Based  
on Timestamp Ordering

The use of locking, combined with the 2PL protocol, guarantees serializability of 
schedules. The serializable schedules produced by 2PL have their equivalent serial 
schedules based on the order in which executing transactions lock the items they 
acquire. If a transaction needs an item that is already locked, it may be forced to 
wait until the item is released. Some transactions may be aborted and restarted 
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because of the deadlock problem. A different approach to concurrency control 
involves using transaction timestamps to order transaction execution for an equiv-
alent serial schedule. In Section 21.2.1, we discuss timestamps; and in Section 21.2.2, 
we discuss how serializability is enforced by ordering conflicting operations in dif-
ferent transactions based on the transaction timestamps.

21.2.1 Timestamps
Recall that a timestamp is a unique identifier created by the DBMS to identify a 
transaction. Typically, timestamp values are assigned in the order in which the 
transactions are submitted to the system, so a timestamp can be thought of as the 
transaction start time. We will refer to the timestamp of transaction T as TS(T). 
Concurrency control techniques based on timestamp ordering do not use locks; 
hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that 
is incremented each time its value is assigned to a transaction. The transaction time-
stamps are numbered 1, 2, 3, … in this scheme. A computer counter has a finite 
maximum value, so the system must periodically reset the counter to zero when no 
transactions are executing for some short period of time. Another way to implement 
timestamps is to use the current date/time value of the system clock and ensure that 
no two timestamp values are generated during the same tick of the clock.

21.2.2  The Timestamp Ordering Algorithm  
for Concurrency Control

The idea for this scheme is to enforce the equivalent serial order on the transac-
tions based on their timestamps. A schedule in which the transactions participate 
is then serializable, and the only equivalent serial schedule permitted has the trans-
actions in order of their timestamp values. This is called timestamp ordering 
(TO). Notice how this differs from 2PL, where a schedule is serializable by being 
equivalent to some serial schedule allowed by the locking protocols. In timestamp 
ordering, however, the schedule is equivalent to the particular serial order corre-
sponding to the order of the transaction timestamps. The algorithm allows inter-
leaving of transaction operations, but it must ensure that for each pair of conflicting 
operations in the schedule, the order in which the item is accessed must follow the 
timestamp order. To do this, the algorithm associates with each database item X 
two timestamp (TS) values:

  1. read_TS(X). The read timestamp of item X is the largest timestamp 
among all the timestamps of transactions that have successfully read item 
X—that is, read_TS(X) = TS(T), where T is the youngest transaction that 
has read X successfully.

  2. write_TS(X). The write timestamp of item X is the largest of all the time-
stamps of transactions that have successfully written item X—that is, 
write_TS(X) = TS(T), where T is the youngest transaction that has written 
X successfully. Based on the algorithm, T will also be the last transaction 
to write item X, as we shall see.
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Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a 
read_item(X) or a write_item(X) operation, the basic TO algorithm compares the 
timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp order 
of transaction execution is not violated. If this order is violated, then transaction T 
is aborted and resubmitted to the system as a new transaction with a new time-
stamp. If T is aborted and rolled back, any transaction T1 that may have used a value 
written by T must also be rolled back. Similarly, any transaction T2 that may have 
used a value written by T1 must also be rolled back, and so on. This effect is known 
as cascading rollback and is one of the problems associated with basic TO, since 
the schedules produced are not guaranteed to be recoverable. An additional proto-
col must be enforced to ensure that the schedules are recoverable, cascadeless, or 
strict. We first describe the basic TO algorithm here. The concurrency control algo-
rithm must check whether conflicting operations violate the timestamp ordering in 
the following two cases:

  1. Whenever a transaction T issues a write_item(X) operation, the following 
check is performed:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T 
and reject the operation. This should be done because some younger trans-
action with a timestamp greater than TS(T)—and hence after T in the 
timestamp ordering—has already read or written the value of item X 
before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X) 
operation of T and set write_TS(X) to TS(T).

  2. Whenever a transaction T issues a read_item(X) operation, the following 
check is performed:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. 
This should be done because some younger transaction with timestamp 
greater than TS(T)—and hence after T in the timestamp ordering—has 
already written the value of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and 
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Whenever the basic TO algorithm detects two conflicting operations that occur in 
the incorrect order, it rejects the later of the two operations by aborting the transac-
tion that issued it. The schedules produced by basic TO are hence guaranteed to be 
conflict serializable. As mentioned earlier, deadlock does not occur with timestamp 
ordering. However, cyclic restart (and hence starvation) may occur if a transaction 
is continually aborted and restarted.

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO ensures 
that the schedules are both strict (for easy recoverability) and (conflict) serializable. 
In this variation, a transaction T issues a read_item(X) or write_item(X) such that  
TS(T) > write_TS(X) has its read or write operation delayed until the transaction T′ 
that wrote the value of X (hence TS(T′) = write_TS(X)) has committed or aborted. 
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To implement this algorithm, it is necessary to simulate the locking of an item X that 
has been written by transaction T′ until T′ is either committed or aborted. This 
 algorithm does not cause deadlock, since T waits for T′ only if TS(T) > TS(T′).

Thomas’s Write Rule. A modification of the basic TO algorithm, known as 
Thomas’s write rule, does not enforce conflict serializability, but it rejects fewer 
write operations by modifying the checks for the write_item(X) operation as follows:

  1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

  2. If write_TS(X) > TS(T), then do not execute the write operation but continue 
processing. This is because some transaction with timestamp greater than 
TS(T)—and hence after T in the timestamp ordering—has already written 
the value of X. Thus, we must ignore the write_item(X) operation of T because 
it is already outdated and obsolete. Notice that any conflict arising from this 
situation would be detected by case (1).

  3. If neither the condition in part (1) nor the condition in part (2) occurs, then 
execute the write_item(X) operation of T and set write_TS(X) to TS(T).

21.3  Multiversion Concurrency  
Control Techniques

These protocols for concurrency control keep copies of the old values of a data item 
when the item is updated (written); they are known as multiversion concurrency 
control because several versions (values) of an item are kept by the system. When a 
transaction requests to read an item, the appropriate version is chosen to maintain 
the serializability of the currently executing schedule. One reason for keeping mul-
tiple versions is that some read operations that would be rejected in other tech-
niques can still be accepted by reading an older version of the item to maintain 
serializability. When a transaction writes an item, it writes a new version and the old 
version(s) of the item is retained. Some multiversion concurrency control algo-
rithms use the concept of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to 
maintain multiple versions of the database items. In some cases, older versions can 
be kept in a temporary store. It is also possible that older versions may have to be 
maintained anyway—for example, for recovery purposes. Some database applica-
tions may require older versions to be kept to maintain a history of the changes of 
data item values. The extreme case is a temporal database (see Section 26.2), which 
keeps track of all changes and the times at which they occurred. In such cases, there 
is no additional storage penalty for multiversion techniques, since older versions 
are already maintained.

Several multiversion concurrency control schemes have been proposed. We dis-
cuss two schemes here, one based on timestamp ordering and the other based on 
2PL. In addition, the validation concurrency control method (see Section 21.4) 
also maintains multiple versions, and the snapshot isolation technique used in 
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several commercial systems (see Section 21.4) can be implemented by keeping 
older versions of items in a temporary store.

21.3.1 Multiversion Technique Based on Timestamp Ordering
In this method, several versions X1, X2, … , Xk of each data item X are maintained. 
For each version, the value of version Xi and the following two timestamps associated 
with version Xi are kept:

  1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps 
of transactions that have successfully read version Xi.

  2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transac-
tion that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new ver-
sion Xk+1 of item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to 
TS(T). Correspondingly, when a transaction T is allowed to read the value of version 
Xi, the value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability, the following rules are used:

  1. If transaction T issues a write_item(X) operation, and version i of X has the 
highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T), 
and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise, 
create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

  2. If transaction T issues a read_item(X) operation, find the version i of X that 
has the highest write_TS(Xi) of all versions of X that is also less than or equal 
to TS(T); then return the value of Xi to transaction T, and set the value of 
read_TS(Xi) to the larger of TS(T) and the current read_TS(Xi).

As we can see in case 2, a read_item(X) is always successful, since it finds the appro-
priate version Xi to read based on the write_TS of the various existing versions of X. 
In case 1, however, transaction T may be aborted and rolled back. This happens if T 
attempts to write a version of X that should have been read by another transaction 
T′ whose timestamp is read_TS(Xi); however, T′ has already read version Xi, which 
was written by the transaction with timestamp equal to write_TS(Xi). If this conflict 
occurs, T is rolled back; otherwise, a new version of X, written by transaction T, is 
created. Notice that if T is rolled back, cascading rollback may occur. Hence, to 
ensure recoverability, a transaction T should not be allowed to commit until after 
all the transactions that have written some version that T has read have committed.

21.3.2 Multiversion Two-Phase Locking Using Certify Locks
In this multiple-mode locking scheme, there are three locking modes for an item—
read, write, and certify—instead of just the two modes (read, write) discussed previ-
ously. Hence, the state of LOCK(X) for an item X can be one of read-locked, 
write-locked, certify-locked, or unlocked. In the standard locking scheme, with 
only read and write locks (see Section 21.1.1), a write lock is an exclusive lock. We 
can describe the relationship between read and write locks in the standard scheme 
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by means of the lock compatibility table shown in Figure 21.6(a). An entry of Yes 
means that if a transaction T holds the type of lock specified in the column header 
on item X and if transaction T′ requests the type of lock specified in the row header 
on the same item X, then T′ can obtain the lock because the locking modes are com-
patible. On the other hand, an entry of No in the table indicates that the locks are 
not compatible, so T′ must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item, 
no other transactions can access that item. The idea behind multiversion 2PL is to 
allow other transactions T′ to read an item X while a single transaction T holds a 
write lock on X. This is accomplished by allowing two versions for each item X; one 
version, the committed version, must always have been written by some commit-
ted transaction. The second local version X′ can be created when a transaction T 
acquires a write lock on X. Other transactions can continue to read the committed 
version of X while T holds the write lock. Transaction T can write the value of X′ as 
needed, without affecting the value of the committed version X. However, once T is 
ready to commit, it must obtain a certify lock on all items that it currently holds 
write locks on before it can commit; this is another form of lock upgrading. The 
certify lock is not compatible with read locks, so the transaction may have to delay 
its commit until all its write-locked items are released by any reading transactions 
in order to obtain the certify locks. Once the certify locks—which are exclusive 
locks—are acquired, the committed version X of the data item is set to the value of 
version X′, version X′ is discarded, and the certify locks are then released. The lock 
compatibility table for this scheme is shown in Figure 21.6(b).

In this multiversion 2PL scheme, reads can proceed concurrently with a single write 
operation—an arrangement not permitted under the standard 2PL schemes. The 
cost is that a transaction may have to delay its commit until it obtains exclusive 
certify locks on all the items it has updated. It can be shown that this scheme avoids 
cascading aborts, since transactions are only allowed to read the version X that was 
written by a committed transaction. However, deadlocks may occur, and these 
must be handled by variations of the techniques discussed in Section 21.1.3.

(b) Read Write

Read

Write

Certify

Yes No No

No No No

Yes Yes No

Certify

(a) Read Write

Read

Write No No

Yes No

Figure 21.6 
Lock compatibility tables.  
(a) Lock compatibility table for  
read/write locking scheme.  
(b) Lock compatibility table for 
read/write/certify locking  
scheme.
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21.4  Validation (Optimistic) Techniques and 
Snapshot Isolation Concurrency Control

In all the concurrency control techniques we have discussed so far, a certain degree 
of checking is done before a database operation can be executed. For example, in 
locking, a check is done to determine whether the item being accessed is locked. In 
timestamp ordering, the transaction timestamp is checked against the read and 
write timestamps of the item. Such checking represents overhead during transac-
tion execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or 
 certification techniques, no checking is done while the transaction is executing. 
Several concurrency control methods are based on the validation technique. We 
will describe only one scheme in Section 21.4.1. Then, in Section 21.4.2, we discuss 
concurrency control techniques that are based on the concept of snapshot  isolation. 
The implementations of these concurrency control methods can utilize a combina-
tion of the concepts from validation-based techniques and versioning techniques, 
as well as utilizing timestamps. Some of these methods may suffer from anomalies 
that can violate serializability, but because they generally have lower overhead than 
2PL, they have been implemented in several relational DBMSs.

21.4.1 Validation-Based (Optimistic) Concurrency Control
In this scheme, updates in the transaction are not applied directly to the database 
items on disk until the transaction reaches its end and is validated. During transac-
tion execution, all updates are applied to local copies of the data items that are 
kept for the transaction.6 At the end of transaction execution, a validation phase 
checks whether any of the transaction’s updates violate serializability. Certain 
information needed by the validation phase must be kept by the system. If serializ-
ability is not violated, the transaction is committed and the database is updated 
from the local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this concurrency control protocol:

  1. Read phase. A transaction can read values of committed data items from the 
database. However, updates are applied only to local copies (versions) of the 
data items kept in the transaction workspace.

  2. Validation phase. Checking is performed to ensure that serializability will 
not be violated if the transaction updates are applied to the database.

  3. Write phase. If the validation phase is successful, the transaction updates 
are applied to the database; otherwise, the updates are discarded and the 
transaction is restarted.

The idea behind optimistic concurrency control is to do all the checks at once; hence, 
transaction execution proceeds with a minimum of overhead until the validation 

6Note that this can be considered as keeping multiple versions of items!
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phase is reached. If there is little interference among transactions, most will be vali-
dated successfully. However, if there is much interference, many transactions that 
execute to completion will have their results discarded and must be restarted later; 
under such circumstances, optimistic techniques do not work well. The techniques 
are called optimistic because they assume that little interference will occur and hence 
most transaction will be validated successfully, so that there is no need to do check-
ing during transaction execution. This assumption is generally true in many transac-
tion processing workloads.

The optimistic protocol we describe uses transaction timestamps and also requires 
that the write_sets and read_sets of the transactions be kept by the system. Addition-
ally, start and end times for the three phases need to be kept for each transaction. 
Recall that the write_set of a transaction is the set of items it writes, and the read_set 
is the set of items it reads. In the validation phase for transaction Ti, the protocol 
checks that Ti does not interfere with any recently committed transactions or with 
any other concurrent transactions that have started their validation phase. The vali-
dation phase for Ti checks that, for each such transaction Tj that is either recently 
committed or is in its validation phase, one of the following conditions holds:

  1. Transaction Tj completes its write phase before Ti starts its read phase.

  2. Ti starts its write phase after Tj completes its write phase, and the read_set of 
Ti has no items in common with the write_set of Tj.

  3. Both the read_set and write_set of Ti have no items in common with the 
write_set of Tj, and Tj completes its read phase before Ti completes its 
read phase.

When validating transaction Ti against each one of the transactions Tj, the first 
 condition is checked first since (1) is the simplest condition to check. Only if 
condi tion 1 is false is condition 2 checked, and only if (2) is false is condition 3—the 
most complex to evaluate—checked. If any one of these three conditions holds with 
each transaction Tj, there is no interference and Ti is validated successfully. If none 
of these three conditions holds for any one Tj, the validation of transaction Ti fails 
(because Ti and Tj may violate serializability) and so Ti is aborted and restarted later 
because interference with Tj may have occurred.

21.4.2 Concurrency Control Based on Snapshot Isolation
As we discussed in Section 20.6, the basic definition of snapshot isolation is that a 
transaction sees the data items that it reads based on the committed values of the 
items in the database snapshot (or database state) when the transaction starts. Snap-
shot isolation will ensure that the phantom record problem does not occur, since 
the database transaction, or, in some cases, the database statement, will only see the 
records that were committed in the database at the time the transaction started. 
Any insertions, deletions, or updates that occur after the transaction starts will not 
be seen by the transaction. In addition, snapshot isolation does not allow the prob-
lems of dirty read and nonrepeatable read to occur. However, certain anomalies 
that violate serializability can occur when snapshot isolation is used as the basis for 
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concurrency control. Although these anomalies are rare, they are very difficult to 
detect and may result in an inconsistent or corrupted database. The interested 
reader can refer to the end-of-chapter bibliography for papers that discuss in detail 
the rare types of anomalies that can occur.

In this scheme, read operations do not require read locks to be applied to the items, 
thus reducing the overhead associated with two-phase locking. However, write 
operations do require write locks. Thus, for transactions that have many reads, the 
performance is much better than 2PL. When writes do occur, the system will have 
to keep track of older versions of the updated items in a temporary version store 
(sometimes known as tempstore), with the timestamps of when the version was 
created. This is necessary so that a transaction that started before the item was writ-
ten can still read the value (version) of the item that was in the database snapshot 
when the transaction started.

To keep track of versions, items that have been updated will have pointers to a list 
of recent versions of the item in the tempstore, so that the correct item can be read 
for each transaction. The tempstore items will be removed when no longer needed, 
so a method to decide when to remove unneeded versions will be needed.

Variations of this method have been used in several commercial and open source 
DBMSs, including Oracle and PostGRES. If the users require guaranteed serializ-
ability, then the problems with anomalies that violate serializability will have to be 
solved by the programmers/software engineers by analyzing the set of transactions 
to determine which types of anomalies can occur, and adding checks that do not 
permit these anomalies. This can place a burden on the software developers when 
compared to the DBMS enforcing serializability in all cases.

Variations of snapshot isolation (SI) techniques, known as serializable snapshot 
isolation (SSI), have been proposed and implemented in some of the DBMSs that 
use SI as their primary concurrency control method. For example, recent versions of 
the PostGRES DBMS allow the user to choose between basic SI and SSI. The tradeoff 
is ensuring full serializability with SSI versus living with possible rare anomalies but 
having better performance with basic SI. The interested reader is referred to the end-
of-chapter bibliography for more complete discussions of these topics.

21.5  Granularity of Data Items and  
Multiple Granularity Locking

All concurrency control techniques assume that the database is formed of a number 
of named data items. A database item could be chosen to be one of the following:

 ■ A database record

 ■ A field value of a database record

 ■ A disk block

 ■ A whole file

 ■ The whole database
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The particular choice of data item type can affect the performance of concurrency 
control and recovery. In Section 21.5.1, we discuss some of the tradeoffs with regard 
to choosing the granularity level used for locking; and in Section 21.5.2, we discuss 
a multiple granularity locking scheme, where the granularity level (size of the data 
item) may be changed dynamically.

21.5.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity 
refers to small item sizes, whereas coarse granularity refers to large item sizes. Sev-
eral tradeoffs must be considered in choosing the data item size. We will discuss 
data item size in the context of locking, although similar arguments can be made for 
other concurrency control techniques.

First, notice that the larger the data item size is, the lower the degree of concurrency 
permitted. For example, if the data item size is a disk block, a transaction T that 
needs to lock a single record B must lock the whole disk block X that contains B 
because a lock is associated with the whole data item (block). Now, if another trans-
action S wants to lock a different record C that happens to reside in the same disk 
block X in a conflicting lock mode, it is forced to wait. If the data item size was a 
single record instead of a disk block, transaction S would be able to proceed, because 
it would be locking a different data item (record).

On the other hand, the smaller the data item size is, the more the number of items 
in the database. Because every item is associated with a lock, the system will have a 
larger number of active locks to be handled by the lock manager. More lock and 
unlock operations will be performed, causing a higher overhead. In addition, more 
storage space will be required for the lock table. For timestamps, storage is required 
for the read_TS and write_TS for each data item, and there will be similar overhead 
for handling a large number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item 
size? The answer is that it depends on the types of transactions involved. If a typical 
transaction accesses a small number of records, it is advantageous to have the data 
item granularity be one record. On the other hand, if a transaction typically accesses 
many records in the same file, it may be better to have block or file granularity so 
that the transaction will consider all those records as one (or a few) data items.

21.5.2 Multiple Granularity Level Locking
Since the best granularity size depends on the given transaction, it seems appropri-
ate that a database system should support multiple levels of granularity, where the 
granularity level can be adjusted dynamically for various mixes of transactions. Fig-
ure 21.7 shows a simple granularity hierarchy with a database containing two files, 
each file containing several disk pages, and each page containing several records. 
This can be used to illustrate a multiple granularity level 2PL protocol, with 
shared/exclusive locking modes, where a lock can be requested at any level. How-
ever, additional types of locks will be needed to support such a protocol efficiently.
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Consider the following scenario, which refers to the example in Figure 21.7. Sup-
pose transaction T1 wants to update all the records in file f1, and T1 requests and is 
granted an exclusive lock for f1. Then all of f1’s pages (p11 through p1n)—and the 
records contained on those pages—are locked in exclusive mode. This is beneficial 
for T1 because setting a single file-level lock is more efficient than setting n page-
level locks or having to lock each record individually. Now suppose another trans-
action T2 only wants to read record r1nj from page p1n of file f1; then T2 would 
request a shared record-level lock on r1nj. However, the database system (that is, the 
transaction manager or, more specifically, the lock manager) must verify the com-
patibility of the requested lock with already held locks. One way to verify this is to 
traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a conflicting lock 
is held on any of those items, then the lock request for r1nj is denied and T2 is 
blocked and must wait. This traversal would be fairly efficient.

However, what if transaction T2’s request came before transaction T1’s request? In 
this case, the shared record lock is granted to T2 for r1nj, but when T1’s file-level lock 
is requested, it can be time-consuming for the lock manager to check all nodes 
(pages and records) that are descendants of node f1 for a lock conflict. This would 
be very inefficient and would defeat the purpose of having multiple granularity 
level locks.

To make multiple granularity level locking practical, additional types of locks, 
called intention locks, are needed. The idea behind intention locks is for a transac-
tion to indicate, along the path from the root to the desired node, what type of lock 
(shared or exclusive) it will require from one of the node’s descendants. There are 
three types of intention locks:

  1. Intention-shared (IS) indicates that one or more shared locks will be 
requested on some descendant node(s).

  2. Intention-exclusive (IX) indicates that one or more exclusive locks will be 
requested on some descendant node(s).

db

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk
. . . . . . . . .

. . .

. . . . . . . . . . . .

. . .

. . .

p11 p12

f1

p1n p21 p22 p2m

f2

Figure 21.7 
A granularity hierarchy for illustrating multiple granularity level locking.
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  3. Shared-intention-exclusive (SIX) indicates that the current node is locked in 
shared mode but that one or more exclusive locks will be requested on some 
descendant node(s).

The compatibility table of the three intention locks, and the actual shared and 
exclusive locks, is shown in Figure 21.8. In addition to the three types of intention 
locks, an appropriate locking protocol must be used. The multiple granularity 
locking (MGL) protocol consists of the following rules:

  1. The lock compatibility (based on Figure 21.8) must be adhered to.

  2. The root of the tree must be locked first, in any mode.

  3. A node N can be locked by a transaction T in S or IS mode only if the parent 
node N is already locked by transaction T in either IS or IX mode.

  4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the 
parent of node N is already locked by transaction T in either IX or SIX mode.

  5. A transaction T can lock a node only if it has not unlocked any node (to 
enforce the 2PL protocol).

  6. A transaction T can unlock a node, N, only if none of the children of node N 
are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state 
the conditions when a transaction may lock a given node in any of the lock modes. 
Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable sched-
ules. Basically, the locking starts from the root and goes down the tree until the 
node that needs to be locked is encountered, whereas unlocking starts from the 
locked node and goes up the tree until the root itself is unlocked. To illustrate the 
MGL protocol with the database hierarchy in Figure 21.7, consider the following 
three transactions:

  1. T1 wants to update record r111 and record r211.

  2. T2 wants to update all records on page p12.

  3. T3 wants to read record r11j and the entire f2 file.

IS

IX

S

SIX

X

IS

Yes

Yes

Yes

Yes

No

IX

Yes

No

Yes

No

No

S

No

Yes

Yes

No

No

SIX

No

No

Yes

No

No

X

No

No

No

No

No
Figure 21.8 
Lock compatibility matrix for 
multiple granularity locking.
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Figure 21.9 shows a possible serializable schedule for these three transactions. 
Only the lock and unlock operations are shown. The notation <lock_type>(<item>) 
is used to display the locking operations in the schedule.

The multiple granularity level protocol is especially suited when processing a 
mix of transactions that include (1) short transactions that access only a few 
items (records or fields) and (2) long transactions that access entire files. In 
this environment, less transaction blocking and less locking overhead are 
incurred by such a protocol when compared to a single-level granularity lock-
ing approach.

IX(db)
IX(f1)

T1

IX(p11)
X(r111)

IX(f2)
IX(p21)
X(p211)

unlock(r211)
unlock(p21)
unlock(f2)

unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)

T3

IS(db)
IS(f1)
IS(p11)

S(r11j)

S(f2)

unlock(r11j)
unlock(p11)
unlock(f1)
unlock(f2)
unlock(db)

IX(db)

T2

IX(f1)
X(p12)

unlock(p12)
unlock(f1)
unlock(db)

Figure 21.9 
Lock operations to 
illustrate a serializable 
schedule.
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21.6  Using Locks for Concurrency  
Control in Indexes

Two-phase locking can also be applied to B-tree and B+-tree indexes (see Chap-
ter 19), where the nodes of an index correspond to disk pages. However, holding 
locks on index pages until the shrinking phase of 2PL could cause an undue 
amount of transaction blocking because searching an index always starts at the 
root. For example, if a transaction wants to insert a record (write operation), the 
root would be locked in exclusive mode, so all other conflicting lock requests for 
the index must wait until the transaction enters its shrinking phase. This blocks all 
other transactions from accessing the index, so in practice other approaches to 
locking an index must be used.

The tree structure of the index can be taken advantage of when developing a con-
currency control scheme. For example, when an index search (read operation) is 
being executed, a path in the tree is traversed from the root to a leaf. Once a lower-
level node in the path has been accessed, the higher-level nodes in that path will not 
be used again. So once a read lock on a child node is obtained, the lock on the par-
ent node can be released. When an insertion is being applied to a leaf node (that is, 
when a key and a pointer are inserted), then a specific leaf node must be locked in 
exclusive mode. However, if that node is not full, the insertion will not cause 
changes to higher-level index nodes, which implies that they need not be locked 
exclusively.

A conservative approach for insertions would be to lock the root node in exclusive 
mode and then to access the appropriate child node of the root. If the child node is 
not full, then the lock on the root node can be released. This approach can be 
applied all the way down the tree to the leaf, which is typically three or four levels 
from the root. Although exclusive locks are held, they are soon released. An alterna-
tive, more optimistic approach would be to request and hold shared locks on the 
nodes leading to the leaf node, with an exclusive lock on the leaf. If the insertion 
causes the leaf to split, insertion will propagate to one or more higher-level nodes. 
Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the B+-tree, called the 
B-link tree. In a B-link tree, sibling nodes on the same level are linked at every level. 
This allows shared locks to be used when requesting a page and requires that the 
lock be released before accessing the child node. For an insert operation, the shared 
lock on a node would be upgraded to exclusive mode. If a split occurs, the parent 
node must be relocked in exclusive mode. One complication is for search opera-
tions executed concurrently with the update. Suppose that a concurrent update 
operation follows the same path as the search and inserts a new entry into the leaf 
node. Additionally, suppose that the insert causes that leaf node to split. When the 
insert is done, the search process resumes, following the pointer to the desired leaf, 
only to find that the key it is looking for is not present because the split has moved 
that key into a new leaf node, which would be the right sibling of the original leaf 
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node. However, the search process can still succeed if it follows the pointer (link) in 
the original leaf node to its right sibling, where the desired key has been moved.

Handling the deletion case, where two or more nodes from the index tree merge, is 
also part of the B-link tree concurrency protocol. In this case, locks on the nodes to 
be merged are held as well as a lock on the parent of the two nodes to be merged.

21.7 Other Concurrency Control Issues
In this section, we discuss some other issues relevant to concurrency control. In 
Section 21.7.1, we discuss problems associated with insertion and deletion of 
records and we revisit the phantom problem, which may occur when records are 
inserted. This problem was described as a potential problem requiring a concur-
rency control measure in Section 20.6. In Section 21.7.2, we discuss problems that 
may occur when a transaction outputs some data to a monitor before it commits, 
and then the transaction is later aborted.

21.7.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed 
until after the item is created and the insert operation is completed. In a locking 
environment, a lock for the item can be created and set to exclusive (write) mode; 
the lock can be released at the same time as other write locks would be released, 
based on the concurrency control protocol being used. For a timestamp-based pro-
tocol, the read and write timestamps of the new item are set to the timestamp of the 
creating transaction.

Next, consider a deletion operation that is applied on an existing data item. For 
locking protocols, again an exclusive (write) lock must be obtained before the trans-
action can delete the item. For timestamp ordering, the protocol must ensure that no 
later transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is 
being inserted by some transaction T satisfies a condition that a set of records 
accessed by another transaction T′ must satisfy. For example, suppose that transac-
tion T is inserting a new EMPLOYEE record whose Dno = 5, whereas transaction T′ 
is accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary 
values to calculate the personnel budget for department 5). If the equivalent serial 
order is T followed by T′, then T′ must read the new EMPLOYEE record and include 
its Salary in the sum calculation. For the equivalent serial order T′ followed by T, the 
new salary should not be included. Notice that although the transactions logically 
conflict, in the latter case there is really no record (data item) in common between 
the two transactions, since T′ may have locked all the records with Dno = 5 before T 
inserted the new record. This is because the record that causes the conflict is a 
phantom record that has suddenly appeared in the database on being inserted. If 
other operations in the two transactions conflict, the conflict due to the phantom 
record may not be recognized by the concurrency control protocol.
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One solution to the phantom record problem is to use index locking, as discussed 
in Section 21.6. Recall from Chapter 19 that an index includes entries that have an 
attribute value plus a set of pointers to all records in the file with that value. For 
example, an index on Dno of EMPLOYEE would include an entry for each distinct 
Dno value plus a set of pointers to all EMPLOYEE records with that value. If the index 
entry is locked before the record itself can be accessed, then the conflict on the 
phantom record can be detected, because transaction T′ would request a read lock 
on the index entry for Dno = 5, and T would request a write lock on the same entry 
before it could place the locks on the actual records. Since the index locks conflict, 
the phantom conflict would be detected.

A more general technique, called predicate locking, would lock access to all records 
that satisfy an arbitrary predicate (condition) in a similar manner; however, predi-
cate locks have proved to be difficult to implement efficiently. If the concurrency 
control method is based on snapshot isolation (see Section 21.4.2), then the trans-
action that reads the items will access the database snapshot at the time the transac-
tion starts; any records inserted after that will not be retrieved by the transaction.

21.7.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output 
to an interactive device, such as a monitor screen, before they are committed. The 
problem is that a user can input a value of a data item to a transaction T that is 
based on some value written to the screen by transaction T′, which may not have 
committed. This dependency between T and T′ cannot be modeled by the system 
concurrency control method, since it is only based on the user interacting with the 
two transactions.

An approach to dealing with this problem is to postpone output of transactions to 
the screen until they have committed.

21.7.3 Latches
Locks held for a short duration are typically called latches. Latches do not follow 
the usual concurrency control protocol such as two-phase locking. For example, a 
latch can be used to guarantee the physical integrity of a disk page when that page is 
being written from the buffer to disk. A latch would be acquired for the page, the 
page written to disk, and then the latch released.

21.8 Summary
In this chapter, we discussed DBMS techniques for concurrency control. We 
started in Section 21.1 by discussing lock-based protocols, which are commonly 
used in practice. In Section 21.1.2 we described the two-phase locking (2PL) pro-
tocol and a number of its variations: basic 2PL, strict 2PL, conservative 2PL, and 
rigorous 2PL. The strict and rigorous variations are more common because of 



808 Chapter 21 Concurrency Control Techniques

their better recoverability properties. We introduced the concepts of shared (read) 
and exclusive (write) locks (Section 21.1.1) and showed how locking can guarantee 
serializability when used in conjunction with the two-phase locking rule. We also 
presented various techniques for dealing with the deadlock problem in Sec-
tion 21.1.3, which can occur with locking. In practice, it is common to use time-
outs and deadlock detection (wait-for graphs). Deadlock prevention protocols, 
such as no waiting and cautious waiting, can also be used.

We then presented other concurrency control protocols. These include the time-
stamp ordering protocol (Section 21.2), which ensures serializability based on the 
order of transaction timestamps. Timestamps are unique, system-generated trans-
action identifiers. We discussed Thomas’s write rule, which improves performance 
but does not guarantee serializability. The strict timestamp ordering protocol was 
also presented. We discussed two multiversion protocols (Section 21.3), which 
assume that older versions of data items can be kept in the database. One tech-
nique, called multiversion two-phase locking (which has been used in practice), 
assumes that two versions can exist for an item and attempts to increase concur-
rency by making write and read locks compatible (at the cost of introducing an 
additional certify lock mode). We also presented a multiversion protocol based on 
timestamp ordering. In Section 21.4.1, we presented an example of an optimistic 
protocol, which is also known as a certification or validation protocol.

We then discussed concurrency control methods that are based on the concept of 
snapshot isolation in Section 21.4.2; these are used in several DBMSs because of 
their lower overhead. The basic snapshot isolation method can allow nonserializ-
able schedules in rare cases because of certain anomalies that are difficult to detect; 
these anomalies may cause a corrupted database. A variation known as serializable 
snapshot isolation has been recently developed and ensures serializable schedules.

Then in Section 21.5 we turned our attention to the important practical issue of 
data item granularity. We described a multigranularity locking protocol that 
allows the change of granularity (item size) based on the current transaction 
mix, with the goal of improving the performance of concurrency control. An 
important practical issue was then presented in Section 21.6, which is to develop 
locking protocols for indexes so that indexes do not become a hindrance to con-
current access. Finally, in Section 21.7, we introduced the phantom problem and 
problems with interactive transactions, and we briefly described the concept of 
latches and how this concept differs from locks.

Review Questions
 21.1. What is the two-phase locking protocol? How does it guarantee serializability?

 21.2. What are some variations of the two-phase locking protocol? Why is strict 
or rigorous two-phase locking often preferred?

 21.3. Discuss the problems of deadlock and starvation, and the different 
approaches to dealing with these problems.
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 21.4. Compare binary locks to exclusive/shared locks. Why is the latter type of 
locks preferable?

 21.5. Describe the wait-die and wound-wait protocols for deadlock prevention.

 21.6. Describe the cautious waiting, no waiting, and timeout protocols for dead-
lock prevention.

 21.7. What is a timestamp? How does the system generate timestamps?

 21.8. Discuss the timestamp ordering protocol for concurrency control. How 
does strict timestamp ordering differ from basic timestamp ordering?

 21.9. Discuss two multiversion techniques for concurrency control. What is a cer-
tify lock? What are the advantages and disadvantages of using certify locks?

 21.10. How do optimistic concurrency control techniques differ from other con-
currency control techniques? Why are they also called validation or certifi-
cation techniques? Discuss the typical phases of an optimistic concurrency 
control method.

 21.11. What is snapshot isolation? What are the advantages and disadvantages of 
concurrency control methods that are based on snapshot isolation?

 21.12. How does the granularity of data items affect the performance of concurrency 
control? What factors affect selection of granularity size for data items?

 21.13. What type of lock is needed for insert and delete operations?

 21.14. What is multiple granularity locking? Under what circumstances is it used?

 21.15. What are intention locks?

 21.16. When are latches used?

 21.17. What is a phantom record? Discuss the problem that a phantom record can 
cause for concurrency control.

 21.18. How does index locking resolve the phantom problem?

 21.19. What is a predicate lock?

Exercises
 21.20. Prove that the basic two-phase locking protocol guarantees conflict serializ-

ability of schedules. (Hint: Show that if a serializability graph for a schedule 
has a cycle, then at least one of the transactions participating in the schedule 
does not obey the two-phase locking protocol.)

 21.21. Modify the data structures for multiple-mode locks and the algorithms for 
read_lock(X), write_lock(X), and unlock(X) so that upgrading and downgrad-
ing of locks are possible. (Hint: The lock needs to check the transaction id(s) 
that hold the lock, if any.)
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 21.22. Prove that strict two-phase locking guarantees strict schedules.

 21.23. Prove that the wait-die and wound-wait protocols avoid deadlock and 
starvation.

 21.24. Prove that cautious waiting avoids deadlock.

 21.25. Apply the timestamp ordering algorithm to the schedules in Figures 21.8(b) 
and (c), and determine whether the algorithm will allow the execution of the 
schedules.

 21.26. Repeat Exercise 21.25, but use the multiversion timestamp ordering method.

 21.27. Why is two-phase locking not used as a concurrency control method for 
indexes such as B+-trees?

 21.28. The compatibility matrix in Figure 21.8 shows that IS and IX locks are com-
patible. Explain why this is valid.

 21.29. The MGL protocol states that a transaction T can unlock a node N, only if 
none of the children of node N are still locked by transaction T. Show that 
without this condition, the MGL protocol would be incorrect.
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22
Database Recovery Techniques

In this chapter, we discuss some of the techniques that 
can be used for database recovery in case of system 

failure. In Section 20.1.4 we discussed the different causes of failure, such as system 
crashes and transaction errors. In Section 20.2, we introduced some of the concepts 
that are used by recovery processes, such as the system log and commit points.

This chapter presents additional concepts that are relevant to recovery protocols 
and provides an overview of the various database recovery algorithms. We start 
in Section 22.1 with an outline of a typical recovery procedure and a categoriza-
tion of recovery algorithms, and then we discuss several recovery concepts, 
including write-ahead logging, in-place versus shadow updates, and the process 
of rolling back (undoing) the effect of an incomplete or failed transaction. In Sec-
tion 22.2, we present recovery techniques based on deferred update, also known 
as the NO-UNDO/REDO technique, where the data on disk is not updated until 
after a transaction commits. In Section 22.3, we discuss recovery techniques based 
on immediate update, where data can be updated on disk during transaction exe-
cution; these include the UNDO/REDO and UNDO/NO-REDO algorithms. In Sec-
tion 22.4, we discuss the technique known as shadowing or shadow paging, which 
can be categorized as a NO-UNDO/NO-REDO algorithm. An example of a practical 
DBMS recovery scheme, called ARIES, is presented in Section 22.5. Recovery in 
multidatabases is briefly discussed in Section 22.6. Finally, techniques for recov-
ery from catastrophic failure are discussed in Section 22.7. Section 22.8 summa-
rizes the chapter.

Our emphasis is on conceptually describing several different approaches to recov-
ery. For descriptions of recovery features in specific systems, the reader should con-
sult the bibliographic notes at the end of the chapter and the online and printed 
user manuals for those systems. Recovery techniques are often intertwined with the 
concurrency control mechanisms. Certain recovery techniques are best used with 

chapter 22
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specific concurrency control methods. We will discuss recovery concepts indepen-
dently of concurrency control mechanisms.

22.1 Recovery Concepts

22.1.1  Recovery Outline and Categorization  
of Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to 
the most recent consistent state before the time of failure. To do this, the system 
must keep information about the changes that were applied to data items by the 
various transactions. This information is typically kept in the system log, as we 
discussed in Section 21.2.2. A typical strategy for recovery may be summarized 
informally as follows:

  1. If there is extensive damage to a wide portion of the database due to cata-
strophic failure, such as a disk crash, the recovery method restores a past 
copy of the database that was backed up to archival storage (typically tape or 
other large capacity offline storage media) and reconstructs a more current 
state by reapplying or redoing the operations of committed transactions 
from the backed-up log, up to the time of failure.

  2. When the database on disk is not physically damaged, and a noncatastrophic 
failure of types 1 through 4 in Section 21.1.4 has occurred, the recovery 
strategy is to identify any changes that may cause an inconsistency in the 
database. For example, a transaction that has updated some database items 
on disk but has not been committed needs to have its changes reversed by 
undoing its write operations. It may also be necessary to redo some opera-
tions in order to restore a consistent state of the database; for example, if a 
transaction has committed but some of its write operations have not yet 
been written to disk. For noncatastrophic failure, the recovery protocol does 
not need a complete archival copy of the database. Rather, the entries kept in 
the online system log on disk are analyzed to determine the appropriate 
actions for recovery.

Conceptually, we can distinguish two main policies for recovery from non-
catastrophic transaction failures: deferred update and immediate update. The 
deferred update techniques do not physically update the database on disk until after 
a transaction commits; then the updates are recorded in the database. Before reach-
ing commit, all transaction updates are recorded in the local transaction workspace 
or in the main memory buffers that the DBMS maintains (the DBMS main memory 
cache; see Section 20.2.4). Before commit, the updates are recorded persistently in 
the log file on disk, and then after commit, the updates are written to the database 
from the main memory buffers. If a transaction fails before reaching its commit 
point, it will not have changed the database on disk in any way, so UNDO is not 
needed. It may be necessary to REDO the effect of the operations of a committed 
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transaction from the log, because their effect may not yet have been recorded in the 
database on disk. Hence, deferred update is also known as the NO-UNDO/REDO 
algorithm. We discuss this technique in Section 22.2.

In the immediate update techniques, the database may be updated by some opera-
tions of a transaction before the transaction reaches its commit point. However, 
these operations must also be recorded in the log on disk by force-writing before 
they are applied to the database on disk, making recovery still possible. If a trans-
action fails after recording some changes in the database on disk but before reach-
ing its commit point, the effect of its operations on the database must be undone; 
that is, the transaction must be rolled back. In the general case of immediate 
update, both undo and redo may be required during recovery. This technique, 
known as the UNDO/REDO algorithm, requires both operations during recovery 
and is used most often in practice. A variation of the algorithm where all updates 
are required to be recorded in the database on disk before a transaction commits 
requires undo only, so it is known as the UNDO/NO-REDO algorithm. We discuss 
these two techniques in Section 22.3.

The UNDO and REDO operations are required to be idempotent—that is, executing 
an operation multiple times is equivalent to executing it just once. In fact, the whole 
recovery process should be idempotent because if the system were to fail during the 
recovery process, the next recovery attempt might UNDO and REDO certain  
write_item operations that had already been executed during the first recovery pro-
cess. The result of recovery from a system crash during recovery should be the same 
as the result of recovering when there is no crash during recovery!

22.1.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system func-
tions—in particular, the buffering of database disk pages in the DBMS main 
memory cache. Typically, multiple disk pages that include the data items to be 
updated are cached into main memory buffers and then updated in memory 
before being written back to disk. The caching of disk pages is traditionally an 
operating system function, but because of its importance to the efficiency of 
recovery procedures, it is handled by the DBMS by calling low-level operating 
systems routines (see Section 20.2.4).

In general, it is convenient to consider recovery in terms of the database disk pages 
(blocks). Typically a collection of in-memory buffers, called the DBMS cache, is 
kept under the control of the DBMS for the purpose of holding these buffers. A 
directory for the cache is used to keep track of which database items are in the buf-
fers.1 This can be a table of <Disk_page_address, Buffer_location, … > entries. When 
the DBMS requests action on some item, first it checks the cache directory to deter-
mine whether the disk page containing the item is in the DBMS cache. If it is not, 

1This is somewhat similar to the concept of page tables used by the operating system.
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the item must be located on disk, and the appropriate disk pages are copied into the 
cache. It may be necessary to replace (or flush) some of the cache buffers to make 
space available for the new item (see Section 20.2.4).

The entries in the DBMS cache directory hold additional information relevant to 
buffer management. Associated with each buffer in the cache is a dirty bit, which 
can be included in the directory entry to indicate whether or not the buffer has been 
modified. When a page is first read from the database disk into a cache buffer, a new 
entry is inserted in the cache directory with the new disk page address, and the dirty 
bit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corre-
sponding directory entry is set to 1 (one). Additional information, such as the trans-
action id(s) of the transaction(s) that modified the buffer, are also kept in the 
directory. When the buffer contents are replaced (flushed) from the cache, the con-
tents must first be written back to the corresponding disk page only if its dirty bit is 1.

Another bit, called the pin-unpin bit, is also needed—a page in the cache is pinned 
(bit value 1 (one)) if it cannot be written back to disk as yet. For example, the recov-
ery protocol may restrict certain buffer pages from being written back to the disk 
until the transactions that changed this buffer have committed.

Two main strategies can be employed when flushing a modified buffer back to disk. 
The first strategy, known as in-place updating, writes the buffer to the same origi-
nal disk location, thus overwriting the old value of any changed data items on disk.2 

Hence, a single copy of each database disk block is maintained. The second strategy, 
known as shadowing, writes an updated buffer at a different disk location, so mul-
tiple versions of data items can be maintained, but this approach is not typically 
used in practice.

In general, the old value of the data item before updating is called the before image 
(BFIM), and the new value after updating is called the after image (AFIM). If shad-
owing is used, both the BFIM and the AFIM can be kept on disk; hence, it is not 
strictly necessary to maintain a log for recovering. We briefly discuss recovery 
based on shadowing in Section 22.4.

22.1.3  Write-Ahead Logging, Steal/No-Steal,  
and Force/No-Force

When in-place updating is used, it is necessary to use a log for recovery (see Sec-
tion 21.2.2). In this case, the recovery mechanism must ensure that the BFIM of the 
data item is recorded in the appropriate log entry and that the log entry is flushed to 
disk before the BFIM is overwritten with the AFIM in the database on disk. This 
process is generally known as write-ahead logging and is necessary so we can 
UNDO the operation if this is required during recovery. Before we can describe a 
protocol for write-ahead logging, we need to distinguish between two types of log 
entry information included for a write command: the information needed for UNDO 

2In-place updating is used in most systems in practice.
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and the information needed for REDO. A REDO-type log entry includes the new 
value (AFIM) of the item written by the operation since this is needed to redo the 
effect of the operation from the log (by setting the item value in the database on 
disk to its AFIM). The UNDO-type log entries include the old value (BFIM) of the 
item since this is needed to undo the effect of the operation from the log (by setting 
the item value in the database back to its BFIM). In an UNDO/REDO algorithm, both 
BFIM and AFIM are recorded into a single log entry. Additionally, when cascading 
rollback (see Section 22.1.5) is possible, read_item entries in the log are considered to 
be UNDO-type entries.

As mentioned, the DBMS cache holds the cached database disk blocks in main 
memory buffers. The DBMS cache includes not only data file blocks, but also index 
file blocks and log file blocks from the disk. When a log record is written, it is stored 
in the current log buffer in the DBMS cache. The log is simply a sequential (append-
only) disk file, and the DBMS cache may contain several log blocks in main mem-
ory buffers (typically, the last n log blocks of the log file). When an update to a data 
block—stored in the DBMS cache—is made, an associated log record is written to 
the last log buffer in the DBMS cache. With the write-ahead logging approach, the 
log buffers (blocks) that contain the associated log records for a particular data 
block update must first be written to disk before the data block itself can be written 
back to disk from its main memory buffer.

Standard DBMS recovery terminology includes the terms steal/no-steal and  
force/no-force, which specify the rules that govern when a page from the database 
cache can be written to disk:

  1. If a cache buffer page updated by a transaction cannot be written to disk before 
the transaction commits, the recovery method is called a no-steal approach. 
The pin-unpin bit will be set to 1 (pin) to indicate that a cache buffer cannot be 
written back to disk. On the other hand, if the recovery protocol allows writing 
an updated buffer before the transaction commits, it is called steal. Steal is 
used when the DBMS cache (buffer) manager needs a buffer frame for another 
transaction and the buffer manager replaces an existing page that had been 
updated but whose transaction has not committed. The no-steal rule means 
that UNDO will never be needed during recovery, since a committed transac-
tion will not have any of its updates on disk before it commits.

  2. If all pages updated by a transaction are immediately written to disk before 
the transaction commits, the recovery approach is called a force approach. 
Otherwise, it is called no-force. The force rule means that REDO will never 
be needed during recovery, since any committed transaction will have all its 
updates on disk before it is committed.

The deferred update (NO-UNDO) recovery scheme discussed in Section 22.2 follows 
a no-steal approach. However, typical database systems employ a steal/no-force 
(UNDO/REDO) strategy. The advantage of steal is that it avoids the need for a very 
large buffer space to store all updated pages in memory. The advantage of no-force 
is that an updated page of a committed transaction may still be in the buffer when 
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another transaction needs to update it, thus eliminating the I/O cost to write that 
page multiple times to disk and possibly having to read it again from disk. This may 
provide a substantial saving in the number of disk I/O operations when a specific 
page is updated heavily by multiple transactions.

To permit recovery when in-place updating is used, the appropriate entries required 
for recovery must be permanently recorded in the log on disk before changes are 
applied to the database. For example, consider the following write-ahead logging 
(WAL) protocol for a recovery algorithm that requires both UNDO and REDO:

  1. The before image of an item cannot be overwritten by its after image in the 
database on disk until all UNDO-type log entries for the updating transaction—
up to this point—have been force-written to disk.

  2. The commit operation of a transaction cannot be completed until all the 
REDO-type and UNDO-type log records for that transaction have been force-
written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to 
maintain a number of lists related to the transactions being processed in the system. 
These include a list for active transactions that have started but not committed as 
yet, and they may also include lists of all committed and aborted transactions 
since the last checkpoint (see the next section). Maintaining these lists makes the 
recovery process more efficient.

22.1.4  Checkpoints in the System Log  
and Fuzzy Checkpointing

Another type of entry in the log is called a checkpoint.3 A [checkpoint, list of active 
transactions] record is written into the log periodically at that point when the system 
writes out to the database on disk all DBMS buffers that have been modified. As a 
consequence of this, all transactions that have their [commit, T ] entries in the log 
before a [checkpoint] entry do not need to have their WRITE operations redone in 
case of a system crash, since all their updates will be recorded in the database on 
disk during checkpointing. As part of checkpointing, the list of transaction ids for 
active transactions at the time of the checkpoint is included in the checkpoint 
record, so that these transactions can be easily identified during recovery.

The recovery manager of a DBMS must decide at what intervals to take a check-
point. The interval may be measured in time—say, every m minutes—or in the 
number t of committed transactions since the last checkpoint, where the values of 
m or t are system parameters. Taking a checkpoint consists of the following actions:

  1. Suspend execution of transactions temporarily.

  2. Force-write all main memory buffers that have been modified to disk.

3The term checkpoint has been used to describe more restrictive situations in some systems, such as 
DB2. It has also been used in the literature to describe entirely different concepts.
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  3. Write a [checkpoint] record to the log, and force-write the log to disk.

  4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include addi-
tional information, such as a list of active transaction ids, and the locations 
(addresses) of the first and most recent (last) records in the log for each active 
transaction. This can facilitate undoing transaction operations in the event that a 
transaction must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction 
processing because of step 1, which is not acceptable in practice. To overcome this, 
it is common to use a technique called fuzzy checkpointing. In this technique, the 
system can resume transaction processing after a [begin_checkpoint] record is writ-
ten to the log without having to wait for step 2 to finish. When step 2 is completed, 
an [end_checkpoint, … ] record is written in the log with the relevant information 
collected during checkpointing. However, until step 2 is completed, the previous 
checkpoint record should remain valid. To accomplish this, the system maintains a 
file on disk that contains a pointer to the valid checkpoint, which continues to point 
to the previous checkpoint record in the log. Once step 2 is concluded, that pointer 
is changed to point to the new checkpoint in the log.

22.1.5 Transaction Rollback and Cascading Rollback
If a transaction fails for whatever reason after updating the database, but before the 
transaction commits, it may be necessary to roll back the transaction. If any data 
item values have been changed by the transaction and written to the database on 
disk, they must be restored to their previous values (BFIMs). The undo-type log 
entries are used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the 
value of some data item X written by T must also be rolled back. Similarly, once S is 
rolled back, any transaction R that has read the value of some data item Y written by 
S must also be rolled back; and so on. This phenomenon is called cascading 
 rollback, and it can occur when the recovery protocol ensures recoverable schedules 
but does not ensure strict or cascadeless schedules (see Section 20.4.2). Understand-
ably, cascading rollback can be complex and time-consuming. That is why almost all 
recovery mechanisms are designed so that cascading rollback is never required.

Figure 22.1 shows an example where cascading rollback is required. The read and 
write operations of three individual transactions are shown in Figure 22.1(a). Fig-
ure 22.1(b) shows the system log at the point of a system crash for a particular execution 
schedule of these transactions. The values of data items A, B, C, and D, which are used 
by the transactions, are shown to the right of the system log entries. We assume that the 
original item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20. At the 
point of system failure, transaction T3 has not reached its conclusion and must be rolled 
back. The WRITE operations of T3, marked by a single * in Figure 22.1(b), are the T3 
operations that are undone during transaction rollback. Figure 22.1(c) graphically 
shows the operations of the different transactions along the time axis.
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Illustrating cascading rollback 
(a process that never occurs 
in strict or cascadeless  
schedules). (a) The read and 
write operations of three 
transactions. (b) System log at 
point of crash. (c) Operations 
before the crash.
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We must now check for cascading rollback. From Figure 22.1(c), we see that trans-
action T2 reads the value of item B that was written by transaction T3; this can also 
be determined by examining the log. Because T3 is rolled back, T2 must now be 
rolled back, too. The WRITE operations of T2, marked by ** in the log, are the ones 
that are undone. Note that only write_item operations need to be undone during 
transaction rollback; read_item operations are recorded in the log only to determine 
whether cascading rollback of additional transactions is necessary.

In practice, cascading rollback of transactions is never required because practical 
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no 
need to record any read_item operations in the log because these are needed only for 
determining cascading rollback.

22.1.6 Transaction Actions That Do Not Affect the Database
In general, a transaction will have actions that do not affect the database, such as 
generating and printing messages or reports from information retrieved from the 
database. If a transaction fails before completion, we may not want the user to get 
these reports, since the transaction has failed to complete. If such erroneous reports 
are produced, part of the recovery process would have to inform the user that these 
reports are wrong, since the user may take an action that is based on these reports 
and that affects the database. Hence, such reports should be generated only after the 
transaction reaches its commit point. A common method of dealing with such 
actions is to issue the commands that generate the reports but keep them as batch 
jobs, which are executed only after the transaction reaches its commit point. If the 
transaction fails, the batch jobs are canceled.

22.2  NO-UNDO/REDO Recovery Based  
on Deferred Update

The idea behind deferred update is to defer or postpone any actual updates to the 
database on disk until the transaction completes its execution successfully and 
reaches its commit point.4

During transaction execution, the updates are recorded only in the log and in the 
cache buffers. After the transaction reaches its commit point and the log is force-
written to disk, the updates are recorded in the database. If a transaction fails before 
reaching its commit point, there is no need to undo any operations because the 
transaction has not affected the database on disk in any way. Therefore, only REDO-
type log entries are needed in the log, which include the new value (AFIM) of the 
item written by a write operation. The UNDO-type log entries are not needed since 
no undoing of operations will be required during recovery. Although this may sim-
plify the recovery process, it cannot be used in practice unless transactions are short 
and each transaction changes few items. For other types of transactions, there is the 
potential for running out of buffer space because transaction changes must be held 

4Hence deferred update can generally be characterized as a no-steal approach.
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in the cache buffers until the commit point, so many cache buffers will be pinned 
and cannot be replaced.

We can state a typical deferred update protocol as follows:

  1. A transaction cannot change the database on disk until it reaches its commit 
point; hence all buffers that have been changed by the transaction must be 
pinned until the transaction commits (this corresponds to a no-steal policy).

  2. A transaction does not reach its commit point until all its REDO-type log 
entries are recorded in the log and the log buffer is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL) 
protocol. Because the database is never updated on disk until after the transaction 
commits, there is never a need to UNDO any operations. REDO is needed in case the 
system fails after a transaction commits but before all its changes are recorded in 
the database on disk. In this case, the transaction operations are redone from the 
log entries during recovery.

For multiuser systems with concurrency control, the concurrency control and 
recovery processes are interrelated. Consider a system in which concurrency con-
trol uses strict two-phase locking, so the locks on written items remain in effect 
until the transaction reaches its commit point. After that, the locks can be released. 
This ensures strict and serializable schedules. Assuming that [checkpoint] entries are 
included in the log, a possible recovery algorithm for this case, which we call RDU_M 
(Recovery using Deferred Update in a Multiuser environment), is given next.

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of trans-
actions maintained by the system: the committed transactions T since the last 
checkpoint (commit list), and the active transactions T′ (active list). REDO all 
the WRITE operations of the committed transactions from the log, in the order 
in which they were written into the log. The transactions that are active and did 
not commit are effectively canceled and must be resubmitted.

The REDO procedure is defined as follows:

Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP con-
sists of examining its log entry [write_item, T, X, new_value] and setting the value 
of item X in the database to new_value, which is the after image (AFIM).

Figure 22.2 illustrates a timeline for a possible schedule of executing transactions. 
When the checkpoint was taken at time t1, transaction T1 had committed, whereas 
transactions T3 and T4 had not. Before the system crash at time t2, T3 and T2 were 
committed but not T4 and T5. According to the RDU_M method, there is no need to 
redo the write_item operations of transaction T1—or any transactions committed 
before the last checkpoint time t1. The write_item operations of T2 and T3 must be 
redone, however, because both transactions reached their commit points after the 
last checkpoint. Recall that the log is force-written before committing a transaction. 
Transactions T4 and T5 are ignored: They are effectively canceled or rolled back 
because none of their write_item operations were recorded in the database on disk 
under the deferred update protocol (no-steal policy).
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We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that, 
if a data item X has been updated—as indicated in the log entries—more than once 
by committed transactions since the last checkpoint, it is only necessary to REDO 
the last update of X from the log during recovery because the other updates would 
be overwritten by this last REDO. In this case, we start from the end of the log; then, 
whenever an item is redone, it is added to a list of redone items. Before REDO is 
applied to an item, the list is checked; if the item appears on the list, it is not redone 
again, since its latest value has already been recovered.

If a transaction is aborted for any reason (say, by the deadlock detection method), it 
is simply resubmitted, since it has not changed the database on disk. A drawback of 
the method described here is that it limits the concurrent execution of transactions 
because all write-locked items remain locked until the transaction reaches its commit 
point. Additionally, it may require excessive buffer space to hold all updated items 
until the transactions commit. The method’s main benefit is that transaction opera-
tions never need to be undone, for two reasons:

  1. A transaction does not record any changes in the database on disk until after 
it reaches its commit point—that is, until it completes its execution success-
fully. Hence, a transaction is never rolled back because of failure during 
transaction execution.

  2. A transaction will never read the value of an item that is written by an 
uncommitted transaction, because items remain locked until a transaction 
reaches its commit point. Hence, no cascading rollback will occur.

Figure 22.3 shows an example of recovery for a multiuser system that utilizes the 
recovery and concurrency control method just described.

22.3  Recovery Techniques Based  
on Immediate Update

In these techniques, when a transaction issues an update command, the database on 
disk can be updated immediately, without any need to wait for the transaction to 
reach its commit point. Notice that it is not a requirement that every update be 
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Figure 22.2 
An example of a 
recovery timeline to 
illustrate the effect of 
checkpointing.
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applied immediately to disk; it is just possible that some updates are applied to disk 
before the transaction commits.

Provisions must be made for undoing the effect of update operations that have been 
applied to the database by a failed transaction. This is accomplished by rolling back 
the transaction and undoing the effect of the transaction’s write_item operations. 
Therefore, the UNDO-type log entries, which include the old value (BFIM) of the 
item, must be stored in the log. Because UNDO can be needed during recovery, these 
methods follow a steal strategy for deciding when updated main memory buffers 
can be written back to disk (see Section 22.1.3).

Theoretically, we can distinguish two main categories of immediate update algorithms.

  1. If the recovery technique ensures that all updates of a transaction are 
recorded in the database on disk before the transaction commits, there is 
never a need to REDO any operations of committed transactions. This is 
called the UNDO/NO-REDO recovery algorithm. In this method, all updates 
by a transaction must be recorded on disk before the transaction commits, so 
that REDO is never needed. Hence, this method must utilize the steal/force 
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strategy for deciding when updated main memory buffers are written back 
to disk (see Section 22.1.3).

  2. If the transaction is allowed to commit before all its changes are written to 
the database, we have the most general case, known as the UNDO/REDO 
recovery algorithm. In this case, the steal/no-force strategy is applied (see 
Section 22.1.3). This is also the most complex technique, but the most com-
monly used in practice. We will outline an UNDO/REDO recovery algorithm 
and leave it as an exercise for the reader to develop the UNDO/NO-REDO 
variation. In Section 22.5, we describe a more practical approach known as 
the ARIES recovery technique.

When concurrent execution is permitted, the recovery process again depends on 
the protocols used for concurrency control. The procedure RIU_M (Recovery using 
Immediate Updates for a Multiuser environment) outlines a recovery algorithm for 
concurrent transactions with immediate update (UNDO/REDO recovery). Assume 
that the log includes checkpoints and that the concurrency control protocol 
produces strict schedules—as, for example, the strict two-phase locking protocol 
does. Recall that a strict schedule does not allow a transaction to read or write an 
item unless the transaction that wrote the item has committed. However, deadlocks 
can occur in strict two-phase locking, thus requiring abort and UNDO of transac-
tions. For a strict schedule, UNDO of an operation requires changing the item back 
to its old value (BFIM).

Procedure RIU_M (UNDO/REDO with checkpoints).

  1. Use two lists of transactions maintained by the system: the committed 
transactions since the last checkpoint and the active transactions.

  2. Undo all the write_item operations of the active (uncommitted) transac-
tions, using the UNDO procedure. The operations should be undone in 
the reverse of the order in which they were written into the log.

  3. Redo all the write_item operations of the committed transactions from 
the log, in the order in which they were written into the log, using the 
REDO procedure defined earlier.

The UNDO procedure is defined as follows:

Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consists 
of examining its log entry [write_item, T, X, old_value, new_value] and setting the 
value of item X in the database to old_value, which is the before image (BFIM). 
Undoing a number of write_item operations from one or more transactions from 
the log must proceed in the reverse order from the order in which the operations 
were written in the log.

As we discussed for the NO-UNDO/REDO procedure, step 3 is more efficiently done 
by starting from the end of the log and redoing only the last update of each item X. 
Whenever an item is redone, it is added to a list of redone items and is not redone 
again. A similar procedure can be devised to improve the efficiency of step 2 so 
that an item can be undone at most once during recovery. In this case, the earliest 
UNDO is applied first by scanning the log in the forward direction (starting from 
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the beginning of the log). Whenever an item is undone, it is added to a list of 
undone items and is not undone again.

22.4 Shadow Paging
This recovery scheme does not require the use of a log in a single-user environ-
ment. In a multiuser environment, a log may be needed for the concurrency control 
method. Shadow paging considers the database to be made up of a number of fixed-
size disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n 
entries5 is constructed, where the ith entry points to the ith database page on disk. 
The directory is kept in main memory if it is not too large, and all references—reads 
or writes—to database pages on disk go through it. When a transaction begins exe-
cuting, the current directory—whose entries point to the most recent or current 
database pages on disk—is copied into a shadow directory. The shadow directory 
is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a 
write_item operation is performed, a new copy of the modified database page is cre-
ated, but the old copy of that page is not overwritten. Instead, the new page is writ-
ten elsewhere—on some previously unused disk block. The current directory entry 
is modified to point to the new disk block, whereas the shadow directory is not 
modified and continues to point to the old unmodified disk block. Figure 22.4 illus-
trates the concepts of shadow and current directories. For pages updated by the 
transaction, two versions are kept. The old version is referenced by the shadow 
directory and the new version by the current directory.

5The directory is similar to the page table maintained by the operating system for each process.

Current directory
(after updating 
pages 2, 5)

Database disk 
blocks (pages)

Shadow directory
(not updated)

Page 5 (old)

Page 1

Page 4

Page 2 (old)

Page 3

Page 6

Page 2 (new)

Page 5 (new)

1

2

3

4

5

6

1

2

3

4

5

6

Figure 22.4 
An example of shadow paging.
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To recover from a failure during transaction execution, it is sufficient to free the 
modified database pages and to discard the current directory. The state of the data-
base before transaction execution is available through the shadow directory, and 
that state is recovered by reinstating the shadow directory. The database thus is 
returned to its state prior to the transaction that was executing when the crash 
occurred, and any modified pages are discarded. Committing a transaction corre-
sponds to discarding the previous shadow directory. Since recovery involves nei-
ther undoing nor redoing data items, this technique can be categorized as a 
NO-UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must 
be incorporated into the shadow paging technique. One disadvantage of shadow pag-
ing is that the updated database pages change location on disk. This makes it difficult 
to keep related database pages close together on disk without complex storage man-
agement strategies. Furthermore, if the directory is large, the overhead of writing 
shadow directories to disk as transactions commit is significant. A further complica-
tion is how to handle garbage collection when a transaction commits. The old pages 
referenced by the shadow directory that have been updated must be released and 
added to a list of free pages for future use. These pages are no longer needed after the 
transaction commits. Another issue is that the operation to migrate between current 
and shadow directories must be implemented as an atomic operation.

22.5 The ARIES Recovery Algorithm
We now describe the ARIES algorithm as an example of a recovery algorithm used 
in database systems. It is used in many relational database-related products of IBM. 
ARIES uses a steal/no-force approach for writing, and it is based on three concepts: 
write-ahead logging, repeating history during redo, and logging changes during 
undo. We discussed write-ahead logging in Section 22.1.3. The second concept, 
repeating history, means that ARIES will retrace all actions of the database system 
prior to the crash to reconstruct the database state when the crash occurred. Trans-
actions that were uncommitted at the time of the crash (active transactions) are 
undone. The third concept, logging during undo, will prevent ARIES from repeat-
ing the completed undo operations if a failure occurs during recovery, which causes 
a restart of the recovery process.

The ARIES recovery procedure consists of three main steps: analysis, REDO, and 
UNDO. The analysis step identifies the dirty (updated) pages in the buffer6 and the 
set of transactions active at the time of the crash. The appropriate point in the log 
where the REDO operation should start is also determined. The REDO phase actu-
ally reapplies updates from the log to the database. Generally, the REDO operation 
is applied only to committed transactions. However, this is not the case in ARIES. 

6The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored in 
the log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to identify this information 
(as discussed later in this section).
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Certain information in the ARIES log will provide the start point for REDO, from 
which REDO operations are applied until the end of the log is reached. Additionally, 
information stored by ARIES and in the data pages will allow ARIES to determine 
whether the operation to be redone has actually been applied to the database and 
therefore does not need to be reapplied. Thus, only the necessary REDO operations 
are applied during recovery. Finally, during the UNDO phase, the log is scanned 
backward and the operations of transactions that were active at the time of the crash 
are undone in reverse order. The information needed for ARIES to accomplish its 
recovery procedure includes the log, the Transaction Table, and the Dirty Page 
Table. Additionally, checkpointing is used. These tables are maintained by the 
transaction manager and written to the log during checkpointing.

In ARIES, every log record has an associated log sequence number (LSN) that is 
monotonically increasing and indicates the address of the log record on disk. Each 
LSN corresponds to a specific change (action) of some transaction. Also, each data 
page will store the LSN of the latest log record corresponding to a change for that 
page. A log record is written for any of the following actions: updating a page 
(write), committing a transaction (commit), aborting a transaction (abort), undo-
ing an update (undo), and ending a transaction (end). The need for including the 
first three actions in the log has been discussed, but the last two need some explana-
tion. When an update is undone, a compensation log record is written in the log so 
that the undo does not have to be repeated. When a transaction ends, whether by 
committing or aborting, an end log record is written.

Common fields in all log records include the previous LSN for that transaction, the 
transaction ID, and the type of log record. The previous LSN is important because 
it links the log records (in reverse order) for each transaction. For an update (write) 
action, additional fields in the log record include the page ID for the page that con-
tains the item, the length of the updated item, its offset from the beginning of the 
page, the before image of the item, and its after image.

In addition to the log, two tables are needed for efficient recovery: the Transaction 
Table and the Dirty Page Table, which are maintained by the transaction manager. 
When a crash occurs, these tables are rebuilt in the analysis phase of recovery. The 
Transaction Table contains an entry for each active transaction, with information 
such as the transaction ID, transaction status, and the LSN of the most recent log 
record for the transaction. The Dirty Page Table contains an entry for each dirty 
page in the DBMS cache, which includes the page ID and the LSN corresponding to 
the earliest update to that page.

Checkpointing in ARIES consists of the following: writing a begin_checkpoint 
record to the log, writing an end_checkpoint record to the log, and writing the LSN 
of the begin_checkpoint record to a special file. This special file is accessed during 
recovery to locate the last checkpoint information. With the end_checkpoint record, 
the contents of both the Transaction Table and Dirty Page Table are appended to 
the end of the log. To reduce the cost, fuzzy checkpointing is used so that the 
DBMS can continue to execute transactions during checkpointing (see Sec-
tion 22.1.4). Additionally, the contents of the DBMS cache do not have to be flushed 
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to disk during checkpoint, since the Transaction Table and Dirty Page Table—
which are appended to the log on disk—contain the information needed for 
 recovery. Note that if a crash occurs during checkpointing, the special file will refer 
to the previous checkpoint, which would be used for recovery.

After a crash, the ARIES recovery manager takes over. Information from the 
last checkpoint is first accessed through the special file. The analysis phase 
starts at the begin_checkpoint record and proceeds to the end of the log. When the 
end_checkpoint record is encountered, the Transaction Table and Dirty Page Table 
are accessed (recall that these tables were written in the log during checkpointing). 
During analysis, the log records being analyzed may cause modifications to these 
two tables. For instance, if an end log record was encountered for a transaction T in 
the Transaction Table, then the entry for T is deleted from that table. If some other 
type of log record is encountered for a transaction T′, then an entry for T′ is inserted 
into the Transaction Table, if not already present, and the last LSN field is modified. 
If the log record corresponds to a change for page P, then an entry would be made 
for page P (if not present in the table) and the associated LSN field would be 
 modified. When the analysis phase is complete, the necessary information for 
REDO and UNDO has been compiled in the tables.

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES 
starts redoing at a point in the log where it knows (for sure) that previous changes 
to dirty pages have already been applied to the database on disk. It can determine 
this by finding the smallest LSN, M, of all the dirty pages in the Dirty Page Table, 
which indicates the log position where ARIES needs to start the REDO phase. Any 
changes corresponding to an LSN < M, for redoable transactions, must have already 
been propagated to disk or already been overwritten in the buffer; otherwise, those 
dirty pages with that LSN would be in the buffer (and the Dirty Page Table). So, 
REDO starts at the log record with LSN = M and scans forward to the end of the log.

For each change recorded in the log, the REDO algorithm would verify whether or 
not the change has to be reapplied. For example, if a change recorded in the log 
pertains to page P that is not in the Dirty Page Table, then this change is already on 
disk and does not need to be reapplied. Or, if a change recorded in the log (with 
LSN = N, say) pertains to page P and the Dirty Page Table contains an entry for P 
with LSN greater than N, then the change is already present. If neither of these two 
conditions holds, page P is read from disk and the LSN stored on that page, LSN(P), 
is compared with N. If N < LSN(P), then the change has been applied and the page 
does not need to be rewritten to disk.

Once the REDO phase is finished, the database is in the exact state that it was in 
when the crash occurred. The set of active transactions—called the undo_set—has 
been identified in the Transaction Table during the analysis phase. Now, the UNDO 
phase proceeds by scanning backward from the end of the log and undoing the 
appropriate actions. A compensating log record is written for each action that is 
undone. The UNDO reads backward in the log until every action of the set of trans-
actions in the undo_set has been undone. When this is completed, the recovery pro-
cess is finished and normal processing can begin again.



830 Chapter 22 Database Recovery Techniques

Consider the recovery example shown in Figure 22.5. There are three transactions: 
T1, T2, and T3. T1 updates page C, T2 updates pages B and C, and T3 updates page A. 
Figure 22.5(a) shows the partial contents of the log, and Figure 22.5(b) shows the 
contents of the Transaction Table and Dirty Page Table. Now, suppose that a crash 
occurs at this point. Since a checkpoint has occurred, the address of the associated 
begin_checkpoint record is retrieved, which is location 4. The analysis phase starts 
from location 4 until it reaches the end. The end_checkpoint record contains the 
Transaction Table and Dirty Page Table in Figure 22.5(b), and the analysis phase 
will further reconstruct these tables. When the analysis phase encounters log record 6, 
a new entry for transaction T3 is made in the Transaction Table and a new entry for 
page A is made in the Dirty Page Table. After log record 8 is analyzed, the status of 
transaction T2 is changed to committed in the Transaction Table. Figure 22.5(c) 
shows the two tables after the analysis phase.

TRANSACTION TABLE

Last_lsn Status(b)

(c)

(a) Lsn

1

Last_lsn Tran_id Type Page_id Other_information

Transaction_id
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. . .

Figure 22.5 
An example of recovery in ARIES. (a) The log at point of crash. (b) The Transaction and Dirty Page Tables at time of 
checkpoint. (c) The Transaction and Dirty Page Tables after the analysis phase.
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For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO 
will start at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7} 
corresponding to the updates for pages C, B, A, and C, respectively, are not less 
than the LSNs of those pages (as shown in the Dirty Page Table). So those data 
pages will be read again and the updates reapplied from the log (assuming the actual 
LSNs stored on those data pages are less than the corresponding log entry). At this 
point, the REDO phase is finished and the UNDO phase starts. From the Transaction 
Table (Figure 22.5(c)), UNDO is applied only to the active transaction T3. The UNDO 
phase starts at log entry 6 (the last update for T3) and proceeds backward in the log. 
The backward chain of updates for transaction T3 (only log record 6 in this exam-
ple) is followed and undone.

22.6 Recovery in Multidatabase Systems
So far, we have implicitly assumed that a transaction accesses a single database. In 
some cases, a single transaction, called a multidatabase transaction, may require 
access to multiple databases. These databases may even be stored on different types of 
DBMSs; for example, some DBMSs may be relational, whereas others are object-
oriented, hierarchical, or network DBMSs. In such a case, each DBMS involved in the 
multidatabase transaction may have its own recovery technique and transaction man-
ager separate from those of the other DBMSs. This situation is somewhat similar to the 
case of a distributed database management system (see Chapter 23), where parts of the 
database reside at different sites that are connected by a communication network.

To maintain the atomicity of a multidatabase transaction, it is necessary to have a 
two-level recovery mechanism. A global recovery manager, or coordinator, is 
needed to maintain information needed for recovery, in addition to the local recov-
ery managers and the information they maintain (log, tables). The coordinator usu-
ally follows a protocol called the two-phase commit protocol, whose two phases 
can be stated as follows:

 ■ Phase 1. When all participating databases signal the coordinator that the 
part of the multidatabase transaction involving each has concluded, the 
coordinator sends a message prepare for commit to each participant to get 
ready for committing the transaction. Each participating database receiving 
that message will force-write all log records and needed information for 
local recovery to disk and then send a ready to commit or OK signal to the 
coordinator. If the force-writing to disk fails or the local transaction cannot 
commit for some reason, the participating database sends a cannot commit 
or not OK signal to the coordinator. If the coordinator does not receive a 
reply from the database within a certain time out interval, it assumes a not 
OK response.

 ■ Phase 2. If all participating databases reply OK, and the coordinator’s vote is 
also OK, the transaction is successful, and the coordinator sends a commit 
signal for the transaction to the participating databases. Because all the local 
effects of the transaction and information needed for local recovery have 
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been recorded in the logs of the participating databases, local recovery from 
failure is now possible. Each participating database completes transaction 
commit by writing a [commit] entry for the transaction in the log and perma-
nently updating the database if needed. Conversely, if one or more of the 
participating databases or the coordinator have a not OK response, the 
transaction has failed, and the coordinator sends a message to roll back or 
UNDO the local effect of the transaction to each participating database. This 
is done by undoing the local transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating data-
bases commit the effect of the transaction or none of them do. In case any of the 
participants—or the coordinator—fails, it is always possible to recover to a state 
where either the transaction is committed or it is rolled back. A failure during or 
before phase 1 usually requires the transaction to be rolled back, whereas a failure 
during phase 2 means that a successful transaction can recover and commit.

22.7  Database Backup and Recovery  
from Catastrophic Failures

So far, all the techniques we have discussed apply to noncatastrophic failures. A key 
assumption has been that the system log is maintained on the disk and is not lost as 
a result of the failure. Similarly, the shadow directory must be stored on disk to 
allow recovery when shadow paging is used. The recovery techniques we have dis-
cussed use the entries in the system log or the shadow directory to recover from 
failure by bringing the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more catastrophic 
failures such as disk crashes. The main technique used to handle such crashes is a 
database backup, in which the whole database and the log are periodically copied 
onto a cheap storage medium such as magnetic tapes or other large capacity offline 
storage devices. In case of a catastrophic system failure, the latest backup copy can be 
reloaded from the tape to the disk, and the system can be restarted.

Data from critical applications such as banking, insurance, stock market, and other 
databases is periodically backed up in its entirety and moved to physically separate 
safe locations. Subterranean storage vaults have been used to protect such data 
from flood, storm, earthquake, or fire damage. Events like the 9/11 terrorist attack 
in New York (in 2001) and the Katrina hurricane disaster in New Orleans (in 2005) 
have created a greater awareness of disaster recovery of critical databases.

To avoid losing all the effects of transactions that have been executed since the last 
backup, it is customary to back up the system log at more frequent intervals than full 
database backup by periodically copying it to magnetic tape. The system log is usu-
ally substantially smaller than the database itself and hence can be backed up more 
frequently. Therefore, users do not lose all transactions they have performed since 
the last database backup. All committed transactions recorded in the portion of the 
system log that has been backed up to tape can have their effect on the database 
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redone. A new log is started after each database backup. Hence, to recover from disk 
failure, the database is first recreated on disk from its latest backup copy on tape. Fol-
lowing that, the effects of all the committed transactions whose operations have been 
recorded in the backed-up copies of the system log are reconstructed.

22.8 Summary
In this chapter, we discussed the techniques for recovery from transaction failures. 
The main goal of recovery is to ensure the atomicity property of a transaction. If a 
transaction fails before completing its execution, the recovery mechanism has to 
make sure that the transaction has no lasting effects on the database. First in Sec-
tion 22.1 we gave an informal outline for a recovery process, and then we discussed 
system concepts for recovery. These included a discussion of caching, in-place 
updating versus shadowing, before and after images of a data item, UNDO versus 
REDO recovery operations, steal/no-steal and force/no-force policies, system check-
pointing, and the write-ahead logging protocol.

Next we discussed two different approaches to recovery: deferred update (Sec-
tion  22.2) and immediate update (Section 22.3). Deferred update techniques 
 postpone any actual updating of the database on disk until a transaction reaches its 
commit point. The transaction force-writes the log to disk before recording the 
updates in the database. This approach, when used with certain concurrency 
 control methods, is designed never to require transaction rollback, and recovery 
simply consists of redoing the operations of transactions committed after the last 
checkpoint from the log. The disadvantage is that too much buffer space may be 
needed, since updates are kept in the buffers and are not applied to disk until a 
trans action commits. Deferred update can lead to a recovery algorithm known as 
NO-UNDO/REDO. Immediate update techniques may apply changes to the database 
on disk before the transaction reaches a successful conclusion. Any changes applied 
to the database must first be recorded in the log and force-written to disk so that 
these operations can be undone if necessary. We also gave an overview of a recovery 
algorithm for immediate update known as UNDO/REDO. Another algorithm, 
known as UNDO/NO-REDO, can also be developed for immediate update if all trans-
action actions are recorded in the database before commit.

We discussed the shadow paging technique for recovery in Section 22.4, which 
keeps track of old database pages by using a shadow directory. This technique, 
which is classified as NO-UNDO/NO-REDO, does not require a log in single-user sys-
tems but still needs the log for multiuser systems. We also presented ARIES in Sec-
tion 22.5, which is a specific recovery scheme used in many of IBM’s relational 
database products. Then in Section 22.6 we discussed the two-phase commit proto-
col, which is used for recovery from failures involving multidatabase transactions. 
Finally, we discussed recovery from catastrophic failures in Section 22.7, which is 
typically done by backing up the database and the log to tape. The log can be backed 
up more frequently than the database, and the backup log can be used to redo oper-
ations starting from the last database backup.
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Review Questions
 22.1. Discuss the different types of transaction failures. What is meant by cata-

strophic failure?

 22.2. Discuss the actions taken by the read_item and write_item operations on a 
database.

 22.3. What is the system log used for? What are the typical kinds of entries in a 
system log? What are checkpoints, and why are they important? What are 
transaction commit points, and why are they important?

 22.4. How are buffering and caching techniques used by the recovery subsystem?

 22.5. What are the before image (BFIM) and after image (AFIM) of a data item? 
What is the difference between in-place updating and shadowing, with 
respect to their handling of BFIM and AFIM?

 22.6. What are UNDO-type and REDO-type log entries?

 22.7. Describe the write-ahead logging protocol.

 22.8. Identify three typical lists of transactions that are maintained by the recov-
ery subsystem.

 22.9. What is meant by transaction rollback? What is meant by cascading rollback? 
Why do practical recovery methods use protocols that do not permit cascad-
ing rollback? Which recovery techniques do not require any rollback?

 22.10. Discuss the UNDO and REDO operations and the recovery techniques that 
use each.

 22.11. Discuss the deferred update technique of recovery. What are the advantages and 
disadvantages of this technique? Why is it called the NO-UNDO/REDO method?

 22.12. How can recovery handle transaction operations that do not affect the data-
base, such as the printing of reports by a transaction?

 22.13. Discuss the immediate update recovery technique in both single-user and 
multiuser environments. What are the advantages and disadvantages of 
immediate update?

 22.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO 
algorithms for recovery with immediate update? Develop the outline for an 
UNDO/NO-REDO algorithm.

 22.15. Describe the shadow paging recovery technique. Under what circumstances 
does it not require a log?

 22.16. Describe the three phases of the ARIES recovery method.

 22.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What 
information do the Dirty Page Table and Transaction Table contain? 
Describe how fuzzy checkpointing is used in ARIES.
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 22.18. What do the terms steal/no-steal and force/no-force mean with regard to buf-
fer management for transaction processing?

 22.19. Describe the two-phase commit protocol for multidatabase transactions.

 22.20. Discuss how disaster recovery from catastrophic failures is handled.

Exercises
 22.21. Suppose that the system crashes before the [read_item, T3, A] entry is written to 

the log in Figure 22.1(b). Will that make any difference in the recovery process?

 22.22. Suppose that the system crashes before the [write_item, T2, D, 25, 26] entry is 
written to the log in Figure 22.1(b). Will that make any difference in the 
recovery process?

 22.23. Figure 22.6 shows the log corresponding to a particular schedule at the point 
of a system crash for four transactions T1, T2, T3, and T4. Suppose that we 
use the immediate update protocol with checkpointing. Describe the recov-
ery process from the system crash. Specify which transactions are rolled 
back, which operations in the log are redone and which (if any) are undone, 
and whether any cascading rollback takes place.

[checkpoint]

[start_transaction, T1]

[start_transaction, T2]

[start_transaction, T3]

[read_item, T1, A]

[read_item, T1, D]

[read_item, T4, D]

[read_item, T2, D]

[read_item, T2, B]

[write_item, T1, D, 20, 25]

[write_item, T2, B, 12, 18]

[read_item, T4, A]

[write_item, T4, D, 25, 15]

[write_item, T3, C, 30, 40]

[write_item, T2, D, 15, 25]

[write_item, T4, A, 30, 20]

[commit, T1]

[commit, T4]

[start_transaction, T4]

System crash

Figure 22.6
A sample schedule and its 
corresponding log.
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 22.24. Suppose that we use the deferred update protocol for the example in Fig-
ure 22.6. Show how the log would be different in the case of deferred update 
by removing the unnecessary log entries; then describe the recovery process, 
using your modified log. Assume that only REDO operations are applied, 
and specify which operations in the log are redone and which are ignored.

 22.25. How does checkpointing in ARIES differ from checkpointing as described 
in Section 22.1.4?

 22.26. How are log sequence numbers used by ARIES to reduce the amount of 
REDO work needed for recovery? Illustrate with an example using the infor-
mation shown in Figure 22.5. You can make your own assumptions as to 
when a page is written to disk.

 22.27. What implications would a no-steal/force buffer management policy have 
on checkpointing and recovery?

Choose the correct answer for each of the following multiple-choice questions:

 22.28. Incremental logging with deferred updates implies that the recovery system 
must

a. store the old value of the updated item in the log

b. store the new value of the updated item in the log

c. store both the old and new value of the updated item in the log

d. store only the Begin Transaction and Commit Transaction records in the log

 22.29. The write-ahead logging (WAL) protocol simply means that

a. writing of a data item should be done ahead of any logging operation

b. the log record for an operation should be written before the actual data is 
written

c. all log records should be written before a new transaction begins execution

d. the log never needs to be written to disk

 22.30. In case of transaction failure under a deferred update incremental logging 
scheme, which of the following will be needed?

a. an undo operation

b. a redo operation

c. an undo and redo operation

d. none of the above

 22.31. For incremental logging with immediate updates, a log record for a transac-
tion would contain

a. a transaction name, a data item name, and the old and new value of the item

b. a transaction name, a data item name, and the old value of the item

c. a transaction name, a data item name, and the new value of the item

d. a transaction name and a data item name



 Exercises 837

 22.32. For correct behavior during recovery, undo and redo operations must be

a. commutative

b. associative

c. idempotent

d. distributive

 22.33. When a failure occurs, the log is consulted and each operation is either 
undone or redone. This is a problem because

a. searching the entire log is time consuming

b. many redos are unnecessary

c. both (a) and (b)

d. none of the above

 22.34. Using a log-based recovery scheme might improve performance as well as 
provide a recovery mechanism by

a. writing the log records to disk when each transaction commits

b. writing the appropriate log records to disk during the transaction’s 
execution

c. waiting to write the log records until multiple transactions commit and 
writing them as a batch

d. never writing the log records to disk

 22.35. There is a possibility of a cascading rollback when

a. a transaction writes items that have been written only by a committed 
transaction

b. a transaction writes an item that is previously written by an uncommitted 
transaction

c. a transaction reads an item that is previously written by an uncommitted 
transaction

d. both (b) and (c)

 22.36. To cope with media (disk) failures, it is necessary

a. for the DBMS to only execute transactions in a single user environment

b. to keep a redundant copy of the database

c. to never abort a transaction

d. all of the above

 22.37. If the shadowing approach is used for flushing a data item back to disk, 
then

a. the item is written to disk only after the transaction commits

b. the item is written to a different location on disk

c. the item is written to disk before the transaction commits

d. the item is written to the same disk location from which it was read
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23
Distributed Database Concepts

In this chapter, we turn our attention to distributed 
databases (DDBs), distributed database management 

systems (DDBMSs), and how the client-server architecture is used as a platform for 
database application development. Distributed databases bring the advantages of 
distributed computing to the database domain. A distributed computing system 
consists of a number of processing sites or nodes that are interconnected by a com-
puter network and that cooperate in performing certain assigned tasks. As a general 
goal, distributed computing systems partition a big, unmanageable problem into 
smaller pieces and solve it efficiently in a coordinated manner. Thus, more comput-
ing power is harnessed to solve a complex task, and the autonomous processing 
nodes can be managed independently while they cooperate to provide the needed 
functionalities to solve the problem. DDB technology resulted from a merger of two 
technologies: database technology and distributed systems technology.

Several distributed database prototype systems were developed in the 1980s and 
1990s to address the issues of data distribution, data replication, distributed query 
and transaction processing, distributed database metadata management, and other 
topics. More recently, many new technologies have emerged that combine distrib-
uted and database technologies. These technologies and systems are being devel-
oped for dealing with the storage, analysis, and mining of the vast amounts of data 
that are being produced and collected, and they are referred to generally as big data 
technologies. The origins of big data technologies come from distributed systems 
and database systems, as well as data mining and machine learning algorithms that 
can process these vast amounts of data to extract needed knowledge.

In this chapter, we discuss the concepts that are central to data distribution and the 
management of distributed data. Then in the following two chapters, we give an 
overview of some of the new technologies that have emerged to manage and process 
big data. Chapter 24 discusses the new class of database systems known as NOSQL 

chapter 23
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systems, which focus on providing distributed solutions to manage the vast amounts 
of data that are needed in applications such as social media, healthcare, and security, 
to name a few. Chapter 25 introduces the concepts and systems being used for pro-
cessing and analysis of big data, such as map-reduce and other distributed process-
ing technologies. We also discuss cloud computing concepts in Chapter 25.

Section 23.1 introduces distributed database management and related concepts. 
Issues of distributed database design, involving fragmenting and sharding of data 
and distributing it over multiple sites, as well as data replication, are discussed in 
Section 23.2. Section 23.3 gives an overview of concurrency control and recovery in 
distributed databases. Sections 23.4 and  23.5 introduce distributed transaction pro-
cessing and distributed query processing techniques, respectively. Sections 23.6 and  
23.7 introduce different types of distributed database systems and their architec-
tures, including federated and multidatabase systems. The problems of heterogene-
ity and the needs of autonomy in federated database systems are also highlighted. 
Section 23.8 discusses catalog management schemes in distributed databases. Sec-
tion 23.9 summarizes the chapter.

For a short introduction to the topic of distributed databases, Sections 23.1 through  
23.5 may be covered and the other sections may be omitted.

23.1 Distributed Database Concepts
We can define a distributed database (DDB) as a collection of multiple logically 
interrelated databases distributed over a computer network, and a distributed 
database management system (DDBMS) as a software system that manages a dis-
tributed database while making the distribution transparent to the user.

23.1.1 What Constitutes a DDB
For a database to be called distributed, the following minimum conditions should 
be satisfied:

 ■ Connection of database nodes over a computer network. There are mul-
tiple computers, called sites or nodes. These sites must be connected by an 
underlying network to transmit data and commands among sites.

 ■ Logical interrelation of the connected databases. It is essential that the 
information in the various database nodes be logically related.

 ■ Possible absence of homogeneity among connected nodes. It is not neces-
sary that all nodes be identical in terms of data, hardware, and software.

The sites may all be located in physical proximity—say, within the same building or a 
group of adjacent buildings—and connected via a local area network, or they may be 
geographically distributed over large distances and connected via a long-haul or wide 
area network. Local area networks typically use wireless hubs or cables, whereas 
long-haul networks use telephone lines, cables, wireless communication infrastruc-
tures, or satellites. It is common to have a combination of various types of networks.
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Networks may have different topologies that define the direct communication 
paths among sites. The type and topology of the network used may have a signifi-
cant impact on the performance and hence on the strategies for distributed query 
processing and distributed database design. For high-level architectural issues, 
however, it does not matter what type of network is used; what matters is that each 
site be able to communicate, directly or indirectly, with every other site. For the 
remainder of this chapter, we assume that some type of network exists among 
nodes, regardless of any particular topology. We will not address any network- 
specific issues, although it is important to understand that for an efficient operation 
of a distributed database system (DDBS), network design and performance issues 
are critical and are an integral part of the overall solution. The details of the under-
lying network are invisible to the end user.

23.1.2 Transparency
The concept of transparency extends the general idea of hiding implementation 
details from end users. A highly transparent system offers a lot of flexibility to the 
end user/application developer since it requires little or no awareness of underly-
ing details on their part. In the case of a traditional centralized database, transpar-
ency simply pertains to logical and physical data independence for application 
developers. However, in a DDB scenario, the data and software are distributed 
over multiple nodes connected by a computer network, so additional types of 
transparencies are introduced.

Consider the company database in Figure 5.5 that we have been discussing through-
out the book. The EMPLOYEE, PROJECT, and WORKS_ON tables may be fragmented 
horizontally (that is, into sets of rows, as we will discuss in Section 23.2) and stored 
with possible replication, as shown in Figure 23.1. The following types of transpar-
encies are possible:

 ■ Data organization transparency (also known as distribution or network 
transparency). This refers to freedom for the user from the operational 
details of the network and the placement of the data in the distributed sys-
tem. It may be divided into location transparency and naming transparency. 
Location transparency refers to the fact that the command used to perform 
a task is independent of the location of the data and the location of the node 
where the command was issued. Naming transparency implies that once a 
name is associated with an object, the named objects can be accessed unam-
biguously without additional specification as to where the data is located.

 ■ Replication transparency. As we show in Figure 23.1, copies of the same 
data objects may be stored at multiple sites for better availability, perfor-
mance, and reliability. Replication transparency makes the user unaware of 
the existence of these copies.

 ■ Fragmentation transparency. Two types of fragmentation are possible. 
Horizontal fragmentation distributes a relation (table) into subrelations 
that are subsets of the tuples (rows) in the original relation; this is also known 



844 Chapter 23 Distributed Database Concepts

as sharding in the newer big data and cloud computing systems. Vertical 
fragmentation distributes a relation into subrelations where each subrelation 
is defined by a subset of the columns of the original relation. Fragmentation 
transparency makes the user unaware of the existence of fragments.

 ■ Other transparencies include design transparency and execution 
 transparency—which refer, respectively, to freedom from knowing how the 
distributed database is designed and where a transaction executes.

23.1.3 Availability and Reliability
Reliability and availability are two of the most common potential advantages cited 
for distributed databases. Reliability is broadly defined as the probability that a 
system is running (not down) at a certain time point, whereas availability is the 
probability that the system is continuously available during a time interval. We can 
directly relate reliability and availability of the database to the faults, errors, and 
failures associated with it. A failure can be described as a deviation of a system’s 
behavior from that which is specified in order to ensure correct execution of opera-
tions. Errors constitute that subset of system states that causes the failure. Fault is 
the cause of an error.

To construct a system that is reliable, we can adopt several approaches. One com-
mon approach stresses fault tolerance; it recognizes that faults will occur, and it 
designs mechanisms that can detect and remove faults before they can result in a 
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system failure. Another more stringent approach attempts to ensure that the final 
system does not contain any faults. This is done through an exhaustive design pro-
cess followed by extensive quality control and testing. A reliable DDBMS tolerates 
failures of underlying components, and it processes user requests as long as data-
base consistency is not violated. A DDBMS recovery manager has to deal with fail-
ures arising from transactions, hardware, and communication networks. Hardware 
failures can either be those that result in loss of main memory contents or loss of 
secondary storage contents. Network failures occur due to errors associated with 
messages and line failures. Message errors can include their loss, corruption, or 
out-of-order arrival at destination.

The previous definitions are used in computer systems in general, where there is a 
technical distinction between reliability and availability. In most discussions related 
to DDB, the term availability is used generally as an umbrella term to cover both 
concepts.

23.1.4 Scalability and Partition Tolerance
Scalability determines the extent to which the system can expand its capacity while 
continuing to operate without interruption. There are two types of scalability:

  1. Horizontal scalability: This refers to expanding the number of nodes in the 
distributed system. As nodes are added to the system, it should be possible 
to distribute some of the data and processing loads from existing nodes to 
the new nodes.

  2. Vertical scalability: This refers to expanding the capacity of the individual 
nodes in the system, such as expanding the storage capacity or the process-
ing power of a node.

As the system expands its number of nodes, it is possible that the network, which 
connects the nodes, may have faults that cause the nodes to be partitioned into 
groups of nodes. The nodes within each partition are still connected by a subnet-
work, but communication among the partitions is lost. The concept of partition 
tolerance states that the system should have the capacity to continue operating 
while the network is partitioned.

23.1.5 Autonomy
Autonomy determines the extent to which individual nodes or DBs in a connected 
DDB can operate independently. A high degree of autonomy is desirable for 
increased flexibility and customized maintenance of an individual node. Autonomy 
can be applied to design, communication, and execution. Design autonomy refers 
to independence of data model usage and transaction management techniques 
among nodes. Communication autonomy determines the extent to which each 
node can decide on sharing of information with other nodes. Execution autonomy 
refers to independence of users to act as they please.
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23.1.6 Advantages of Distributed Databases
Some important advantages of DDB are listed below.

  1. Improved ease and flexibility of application development. Developing 
and maintaining applications at geographically distributed sites of an 
organization is facilitated due to transparency of data distribution and 
control.

  2. Increased availability. This is achieved by the isolation of faults to their 
site of origin without affecting the other database nodes connected to the 
network. When the data and DDBMS software are distributed over many 
sites, one site may fail while other sites continue to operate. Only the data 
and software that exist at the failed site cannot be accessed. Further 
improvement is achieved by judiciously replicating data and software at 
more than one site. In a centralized system, failure at a single site makes 
the whole system unavailable to all users. In a distributed database, some 
of the data may be unreachable, but users may still be able to access other 
parts of the database. If the data in the failed site has been replicated at 
another site prior to the failure, then the user will not be affected at all. The 
ability of the system to survive network partitioning also contributes to 
high availability.

  3. Improved performance. A distributed DBMS fragments the database 
by keeping the data closer to where it is needed most. Data localization 
reduces the contention for CPU and I/O services and simultaneously 
reduces access delays involved in wide area networks. When a large 
database is distributed over multiple sites, smaller databases exist at 
each site. As a result, local queries and transactions accessing data at a 
single site have better performance because of the smaller local data-
bases. In addition, each site has a smaller number of transactions exe-
cuting than if all transactions are submitted to a single centralized 
database. Moreover, interquery and intraquery parallelism can be 
achieved by executing multiple queries at different sites, or by breaking 
up a query into a number of subqueries that execute in parallel. This 
contributes to improved performance.

  4. Easier expansion via scalability. In a distributed environment, expansion 
of the system in terms of adding more data, increasing database sizes, or 
adding more nodes is much easier than in centralized (non-distributed) 
systems.

The transparencies we discussed in Section 23.1.2 lead to a compromise between 
ease of use and the overhead cost of providing transparency. Total transparency 
provides the global user with a view of the entire DDBS as if it is a single centralized 
system. Transparency is provided as a complement to autonomy, which gives the 
users tighter control over local databases. Transparency features may be imple-
mented as a part of the user language, which may translate the required services 
into appropriate operations.
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23.2  Data Fragmentation, Replication,  
and Allocation Techniques for Distributed 
Database Design

In this section, we discuss techniques that are used to break up the database into 
logical units, called fragments, which may be assigned for storage at the various 
nodes. We also discuss the use of data replication, which permits certain data to be 
stored in more than one site to increase availability and reliability; and the process 
of allocating fragments—or replicas of fragments—for storage at the various nodes. 
These techniques are used during the process of distributed database design. The 
information concerning data fragmentation, allocation, and replication is stored in 
a global directory that is accessed by the DDBS applications as needed.

23.2.1 Data Fragmentation and Sharding
In a DDB, decisions must be made regarding which site should be used to store 
which portions of the database. For now, we will assume that there is no replication; 
that is, each relation—or portion of a relation—is stored at one site only. We dis-
cuss replication and its effects later in this section. We also use the terminology of 
relational databases, but similar concepts apply to other data models. We assume 
that we are starting with a relational database schema and must decide on how to 
distribute the relations over the various sites. To illustrate our discussion, we use 
the relational database schema shown in Figure 5.5.

Before we decide on how to distribute the data, we must determine the logical units of 
the database that are to be distributed. The simplest logical units are the relations 
themselves; that is, each whole relation is to be stored at a particular site. In our exam-
ple, we must decide on a site to store each of the relations EMPLOYEE, DEPARTMENT, 
PROJECT, WORKS_ON, and DEPENDENT in Figure 5.5. In many cases, however, a 
relation can be divided into smaller logical units for distribution. For example, 
consider the company database shown in Figure 5.6, and assume there are three 
computer sites—one for each department in the company.1 

We may want to store the database information relating to each department at the 
computer site for that department. A technique called horizontal fragmentation or 
sharding can be used to partition each relation by department.

Horizontal Fragmentation (Sharding). A horizontal fragment or shard of a 
relation is a subset of the tuples in that relation. The tuples that belong to the horizontal 
fragment can be specified by a condition on one or more attributes of the relation, or 
by some other mechanism. Often, only a single attribute is involved in the condition. 
For example, we may define three horizontal fragments on the EMPLOYEE relation in 
Figure 5.6 with the following conditions: (Dno = 5), (Dno = 4), and (Dno = 1)—each 

1Of course, in an actual situation, there will be many more tuples in the relation than those shown in 
Figure 5.6.
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fragment contains the EMPLOYEE tuples working for a particular department. Sim-
ilarly, we may define three horizontal fragments for the PROJECT relation, with the 
conditions (Dnum = 5), (Dnum = 4), and (Dnum = 1)—each fragment contains the 
PROJECT tuples controlled by a particular department. Horizontal fragmentation 
divides a relation horizontally by grouping rows to create subsets of tuples, where 
each subset has a certain logical meaning. These fragments can then be assigned to 
different sites (nodes) in the distributed system. Derived horizontal  fragmentation 
applies the partitioning of a primary relation (DEPARTMENT in our example) to 
other secondary relations (EMPLOYEE and PROJECT in our example), which are 
related to the primary via a foreign key. Thus, related data between the primary and 
the secondary relations gets fragmented in the same way.

Vertical Fragmentation. Each site may not need all the attributes of a relation, 
which would indicate the need for a different type of fragmentation. Vertical 
 fragmentation divides a relation “vertically” by columns. A vertical fragment of a 
relation keeps only certain attributes of the relation. For example, we may want to 
fragment the EMPLOYEE relation into two vertical fragments. The first fragment 
includes personal information—Name, Bdate, Address, and Sex—and the second 
includes work-related information—Ssn, Salary, Super_ssn, and Dno. This vertical 
fragmentation is not quite proper, because if the two fragments are stored sepa-
rately, we cannot put the original employee tuples back together since there is no 
common attribute between the two fragments. It is necessary to include the primary 
key or some unique key attribute in every vertical fragment so that the full relation 
can be reconstructed from the fragments. Hence, we must add the Ssn attribute to 
the personal information fragment.

Notice that each horizontal fragment on a relation R can be specified in the rela-
tional algebra by a σCi

(R) (select) operation. A set of horizontal fragments whose 
conditions C1, C2, … , Cn include all the tuples in R—that is, every tuple in R satis-
fies (C1 OR C2 OR … OR Cn)—is called a complete horizontal fragmentation of R. 
In many cases a complete horizontal fragmentation is also disjoint; that is, no tuple 
in R satisfies (Ci AND Cj) for any i ≠ j. Our two earlier examples of horizontal frag-
mentation for the EMPLOYEE and PROJECT relations were both complete and dis-
joint. To reconstruct the relation R from a complete horizontal fragmentation, we 
need to apply the UNION operation to the fragments.

A vertical fragment on a relation R can be specified by a πLi
(R) operation in the 

relational algebra. A set of vertical fragments whose projection lists L1, L2, … , Ln 
include all the attributes in R but share only the primary key attribute of R is called 
a complete vertical fragmentation of R. In this case the projection lists satisfy the 
following two conditions:

 ■ L1 ∪ L2 ∪ … ∪ Ln = ATTRS(R)

 ■ Li ∩ Lj = PK(R) for any i ≠ j, where ATTRS(R) is the set of attributes of R and 
PK(R) is the primary key of R

To reconstruct the relation R from a complete vertical fragmentation, we apply 
the OUTER UNION operation to the vertical fragments (assuming no horizontal 
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fragmentation is used). Notice that we could also apply a FULL OUTER JOIN opera-
tion and get the same result for a complete vertical fragmentation, even when 
some horizontal fragmentation may also have been applied. The two vertical frag-
ments of the EMPLOYEE relation with projection lists L1 = {Ssn, Name, Bdate, 
Address, Sex} and L2 = {Ssn, Salary, Super_ssn, Dno} constitute a complete vertical 
fragmentation of EMPLOYEE.

Two horizontal fragments that are neither complete nor disjoint are those defined on 
the EMPLOYEE relation in Figure 5.5 by the conditions (Salary > 50000) and (Dno = 4); 
they may not include all EMPLOYEE tuples, and they may include common tuples. 
Two vertical fragments that are not complete are those defined by the attribute lists 
L1 = {Name, Address} and L2 = {Ssn, Name, Salary}; these lists violate both conditions 
of a complete vertical fragmentation.

Mixed (Hybrid) Fragmentation. We can intermix the two types of fragmenta-
tion, yielding a mixed fragmentation. For example, we may combine the horizon-
tal and vertical fragmentations of the EMPLOYEE relation given earlier into a mixed 
fragmentation that includes six fragments. In this case, the original relation can be 
reconstructed by applying UNION and OUTER UNION (or OUTER JOIN) operations 
in the appropriate order. In general, a fragment of a relation R can be specified by a 
SELECT-PROJECT combination of operations πL(σC(R)). If C = TRUE (that is, all 
tuples are selected) and L ≠ ATTRS(R), we get a vertical fragment, and if C ≠ TRUE and 
L = ATTRS(R), we get a horizontal fragment. Finally, if C ≠ TRUE and L ≠ ATTRS(R), 
we get a mixed fragment. Notice that a relation can itself be considered a fragment 
with C = TRUE and L = ATTRS(R). In the following discussion, the term fragment is 
used to refer to a relation or to any of the preceding types of fragments.

A fragmentation schema of a database is a definition of a set of fragments that includes 
all attributes and tuples in the database and satisfies the condition that the whole data-
base can be reconstructed from the fragments by applying some sequence of OUTER 
UNION (or OUTER JOIN) and UNION operations. It is also sometimes useful—although 
not necessary—to have all the fragments be disjoint except for the repetition of pri-
mary keys among vertical (or mixed) fragments. In the latter case, all replication 
and distribution of fragments is clearly specified at a subsequent stage, separately 
from fragmentation.

An allocation schema describes the allocation of fragments to nodes (sites) of the 
DDBS; hence, it is a mapping that specifies for each fragment the site(s) at which it 
is stored. If a fragment is stored at more than one site, it is said to be replicated. We 
discuss data replication and allocation next.

23.2.2 Data Replication and Allocation
Replication is useful in improving the availability of data. The most extreme case is 
replication of the whole database at every site in the distributed system, thus creat-
ing a fully replicated distributed database. This can improve availability remark-
ably because the system can continue to operate as long as at least one site is up. It 
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also improves performance of retrieval (read performance) for global queries 
because the results of such queries can be obtained locally from any one site; hence, 
a retrieval query can be processed at the local site where it is submitted, if that site 
includes a server module. The disadvantage of full replication is that it can slow 
down update operations (write performance) drastically, since a single logical 
update must be performed on every copy of the database to keep the copies consis-
tent. This is especially true if many copies of the database exist. Full replication 
makes the concurrency control and recovery techniques more expensive than they 
would be if there was no replication, as we will see in Section 23.3.

The other extreme from full replication involves having no replication—that is, 
each fragment is stored at exactly one site. In this case, all fragments must be dis-
joint, except for the repetition of primary keys among vertical (or mixed) frag-
ments. This is also called nonredundant allocation.

Between these two extremes, we have a wide spectrum of partial replication of 
the data—that is, some fragments of the database may be replicated whereas oth-
ers may not. The number of copies of each fragment can range from one up to 
the total number of sites in the distributed system. A special case of partial repli-
cation is occurring heavily in applications where mobile workers—such as sales 
forces, financial planners, and claims adjustors—carry partially replicated data-
bases with them on laptops and PDAs and synchronize them periodically with 
the server database. A description of the replication of fragments is sometimes 
called a replication schema.

Each fragment—or each copy of a fragment—must be assigned to a particular site in 
the distributed system. This process is called data distribution (or data  allocation). 
The choice of sites and the degree of replication depend on the performance and 
availability goals of the system and on the types and frequencies of transactions 
submitted at each site. For example, if high availability is required, transactions can 
be submitted at any site, and most transactions are retrieval only, a fully replicated 
database is a good choice. However, if certain transactions that access particular 
parts of the database are mostly submitted at a particular site, the corresponding set 
of fragments can be allocated at that site only. Data that is accessed at multiple sites 
can be replicated at those sites. If many updates are performed, it may be useful to 
limit replication. Finding an optimal or even a good solution to distributed data 
allocation is a complex optimization problem.

23.2.3 Example of Fragmentation, Allocation, and Replication
We now consider an example of fragmenting and distributing the company data-
base in Figures 5.5 and  5.6. Suppose that the company has three computer sites—
one for each current department. Sites 2 and 3 are for departments 5 and 4, 
respectively. At each of these sites, we expect frequent access to the EMPLOYEE and 
PROJECT information for the employees who work in that department and the 
projects controlled by that department. Further, we assume that these sites mainly 
access the Name, Ssn, Salary, and Super_ssn attributes of EMPLOYEE. Site 1 is used 
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by company headquarters and accesses all employee and project information regu-
larly, in addition to keeping track of DEPENDENT information for insurance purposes.

According to these requirements, the whole database in Figure 5.6 can be stored at 
site 1. To determine the fragments to be replicated at sites 2 and 3, first we can 
horizontally fragment DEPARTMENT by its key Dnumber. Then we apply derived 
fragmentation to the EMPLOYEE, PROJECT, and DEPT_LOCATIONS relations based 
on their foreign keys for department number—called Dno, Dnum, and Dnumber, 
respectively, in Figure 5.5. We can vertically fragment the resulting EMPLOYEE 
fragments to include only the attributes {Name, Ssn, Salary, Super_ssn, Dno}. 
 Figure 23.2 shows the mixed fragments EMPD_5 and EMPD_4, which include the 
EMPLOYEE tuples satisfying the conditions Dno = 5 and Dno = 4, respectively. The 
horizontal fragments of PROJECT, DEPARTMENT, and DEPT_LOCATIONS are 
 similarly fragmented by department number. All these fragments—stored at sites 
2 and 3—are replicated because they are also stored at headquarters—site 1.

We must now fragment the WORKS_ON relation and decide which fragments of 
WORKS_ON to store at sites 2 and 3. We are confronted with the problem that no 
attribute of WORKS_ON directly indicates the department to which each tuple 
belongs. In fact, each tuple in WORKS_ON relates an employee e to a project P. We 
could fragment WORKS_ON based on the department D in which e works or based 
on the department D′ that controls P. Fragmentation becomes easy if we have a 
constraint stating that D = D′ for all WORKS_ON tuples—that is, if employees can 
work only on projects controlled by the department they work for. However, there 
is no such constraint in our database in Figure 5.6. For example, the WORKS_ON 
tuple <333445555, 10, 10.0> relates an employee who works for department 5 with 
a project controlled by department 4. In this case, we could fragment WORKS_ON 
based on the department in which the employee works (which is expressed by the 
condition C) and then fragment further based on the department that controls the 
projects that employee is working on, as shown in Figure 23.3.

In Figure 23.3, the union of fragments G1, G2, and G3 gives all WORKS_ON tuples 
for employees who work for department 5. Similarly, the union of fragments G4, G5, 
and G6 gives all WORKS_ON tuples for employees who work for department 4. On 
the other hand, the union of fragments G1, G4, and G7 gives all WORKS_ON tuples 
for projects controlled by department 5. The condition for each of the fragments G1 
through G9 is shown in Figure 23.3. The relations that represent M:N relationships, 
such as WORKS_ON, often have several possible logical fragmentations. In our distri-
bution in Figure 23.2, we choose to include all fragments that can be joined to either an 
EMPLOYEE tuple or a PROJECT tuple at sites 2 and 3. Hence, we place the union of 
fragments G1, G2, G3, G4, and G7 at site 2 and the union of fragments G4, G5, G6, G2, 
and G8 at site 3. Notice that fragments G2 and G4 are replicated at both sites. This allo-
cation strategy permits the join between the local EMPLOYEE or PROJECT fragments at 
site 2 or site 3 and the local WORKS_ON fragment to be performed completely locally. 
This clearly demonstrates how complex the problem of database fragmentation and 
allocation is for large databases. The Selected Bibliography at the end of this chapter 
discusses some of the work done in this area.
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(a)

(b)

Fname

John B Smith 123456789 30000 333445555 5

Franklin T Wong 333445555 40000 888665555 5

K Narayan 666884444 38000 333445555 5

A English 453453453 25000 333445555 5

Ramesh

Joyce

EMPD_5

Minit Lname Ssn Salary Super_ssn Dno

Data at site 2

Data at site 3

Fname

Alicia J Zelaya 999887777 25000 987654321 4

Jennifer S Wallace 987654321 43000 888665555 4

V Jabbar 987987987 25000 987654321 4Ahmad

EMPD_4

Minit Lname Ssn Salary Super_ssn Dno

Dname

Research 5 333445555 1988-05-22

DEP_5

Dnumber Mgr_ssn Mgr_start_date Dnumber

5 Bellaire

5 Sugarland

5 Houston

DEP_5_LOCS

Location

Dname

Administration 4 987654321 1995-01-01

DEP_4

Dnumber Mgr_ssn Mgr_start_date

Essn

123456789 1

123456789 2

666884444

453453453

453453453

333445555

333445555

333445555

333445555

1

2

2

3

10

20

3

32.5

7.5

20.0

20.0

10.0

10.0

10.0

10.0

40.0

WORKS_ON_5

Pno Hours Pname

Product X 1

Product Y 2

Product Z 3

Bellaire

Sugarland

Houston

PROJS_5

Pnumber Plocation

5

5

5

Dnum

Essn

333445555 10

999887777 30

999887777

987987987

987987987

987654321

987654321

10

30

30

20

10

10.0

30.0

35.0

5.0

20.0

15.0

10.0

WORKS_ON_4

Pno Hours Pname

Computerization 10

New_benefits 30

Stafford

Stafford

PROJS_4

Pnumber Plocation

4

4

Dnum

Dnumber

4 Stafford

DEP_4_LOCS

Location

Figure 23.2 
Allocation of fragments to 
sites. (a) Relation fragments 
at site 2 corresponding to 
department 5. (b) Relation 
fragments at site 3 
 corresponding to  
department 4.
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Essn

123456789 1 32.5

123456789 2 7.5

3 40.0

1 20.0

2 20.0

2 10.0

3 10.0

666884444

453453453

453453453

333445555

333445555

G1

1C   = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 5

Pno Hours Essn

333445555 10 10.0

G2

C2 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

333445555 20 10.0

G3

C3 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G4

(b)

(c)

(a)

C4 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 4

Pno Hours Essn

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 5.0

987654321 30 20.0

G5

C5 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

987654321 20 15.0

G6

C6 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G7 

C7 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 1

Pno Hours Essn

G8

C8 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

888665555 20 Null

G9

C9 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Figure 23.3 
Complete and disjoint fragments of the WORKS_ON relation. (a) Fragments of WORKS_ON for employees  
working in department 5 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHERE Dno = 5)]). (b) Fragments of 
WORKS_ON for employees working in department 4 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHERE  
Dno = 4)]). (c) Fragments of WORKS_ON for employees working in department 1 (C = [Essn in (SELECT Ssn 
FROM EMPLOYEE WHERE Dno = 1)]).
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23.3  Overview of Concurrency Control  
and Recovery in Distributed Databases

For concurrency control and recovery purposes, numerous problems arise in a dis-
tributed DBMS environment that are not encountered in a centralized DBMS envi-
ronment. These include the following:

 ■ Dealing with multiple copies of the data items. The concurrency control 
method is responsible for maintaining consistency among these copies. The 
recovery method is responsible for making a copy consistent with other cop-
ies if the site on which the copy is stored fails and recovers later.

 ■ Failure of individual sites. The DDBMS should continue to operate with its 
running sites, if possible, when one or more individual sites fail. When a site 
recovers, its local database must be brought up-to-date with the rest of the 
sites before it rejoins the system.

 ■ Failure of communication links. The system must be able to deal with the 
failure of one or more of the communication links that connect the sites. An 
extreme case of this problem is that network partitioning may occur. This 
breaks up the sites into two or more partitions, where the sites within each 
partition can communicate only with one another and not with sites in other 
partitions.

 ■ Distributed commit. Problems can arise with committing a transaction 
that is accessing databases stored on multiple sites if some sites fail during 
the commit process. The two-phase commit protocol (see Section 21.6) is 
often used to deal with this problem.

 ■ Distributed deadlock. Deadlock may occur among several sites, so 
techniques for dealing with deadlocks must be extended to take this 
into account.

Distributed concurrency control and recovery techniques must deal with these 
and other problems. In the following subsections, we review some of the tech-
niques that have been suggested to deal with recovery and concurrency control 
in DDBMSs.

23.3.1  Distributed Concurrency Control Based  
on a Distinguished Copy of a Data Item

To deal with replicated data items in a distributed database, a number of concur-
rency control methods have been proposed that extend the concurrency control 
techniques that are used in centralized databases. We discuss these techniques in 
the context of extending centralized locking. Similar extensions apply to other con-
currency control techniques. The idea is to designate a particular copy of each data 
item as a distinguished copy. The locks for this data item are associated with the 
distinguished copy, and all locking and unlocking requests are sent to the site that 
contains that copy.



 23.3 Overview of Concurrency Control and Recovery in Distributed Databases  855

A number of different methods are based on this idea, but they differ in their 
method of choosing the distinguished copies. In the primary site technique, all 
distinguished copies are kept at the same site. A modification of this approach is 
the primary site with a backup site. Another approach is the primary copy 
method, where the distinguished copies of the various data items can be stored in 
different sites. A site that includes a distinguished copy of a data item basically acts 
as the coordinator site for concurrency control on that item. We discuss these 
techniques next.

Primary Site Technique. In this method, a single primary site is designated to be 
the coordinator site for all database items. Hence, all locks are kept at that site, and 
all requests for locking or unlocking are sent there. This method is thus an exten-
sion of the centralized locking approach. For example, if all transactions follow the 
two-phase locking protocol, serializability is guaranteed. The advantage of this 
approach is that it is a simple extension of the centralized approach and thus is not 
overly complex. However, it has certain inherent disadvantages. One is that all 
locking requests are sent to a single site, possibly overloading that site and causing 
a system bottleneck. A second disadvantage is that failure of the primary site para-
lyzes the system, since all locking information is kept at that site. This can limit 
system reliability and availability.

Although all locks are accessed at the primary site, the items themselves can be accessed 
at any site at which they reside. For example, once a transaction obtains a Read_lock on 
a data item from the primary site, it can access any copy of that data item. However, 
once a transaction obtains a Write_lock and updates a data item, the DDBMS is respon-
sible for updating all copies of the data item before releasing the lock.

Primary Site with Backup Site. This approach addresses the second disadvan-
tage of the primary site method by designating a second site to be a backup site. All 
locking information is maintained at both the primary and the backup sites. In case 
of primary site failure, the backup site takes over as the primary site, and a new 
backup site is chosen. This simplifies the process of recovery from failure of the 
primary site, since the backup site takes over and processing can resume after a new 
backup site is chosen and the lock status information is copied to that site. It slows 
down the process of acquiring locks, however, because all lock requests and grant-
ing of locks must be recorded at both the primary and the backup sites before a 
response is sent to the requesting transaction. The problem of the primary and 
backup sites becoming overloaded with requests and slowing down the system 
remains undiminished.

Primary Copy Technique. This method attempts to distribute the load of lock 
coordination among various sites by having the distinguished copies of different 
data items stored at different sites. Failure of one site affects any transactions that 
are accessing locks on items whose primary copies reside at that site, but other 
transactions are not affected. This method can also use backup sites to enhance reli-
ability and availability.
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Choosing a New Coordinator Site in Case of Failure. Whenever a coordina-
tor site fails in any of the preceding techniques, the sites that are still running must 
choose a new coordinator. In the case of the primary site approach with no backup 
site, all executing transactions must be aborted and restarted in a tedious recovery 
process. Part of the recovery process involves choosing a new primary site and cre-
ating a lock manager process and a record of all lock information at that site. For 
methods that use backup sites, transaction processing is suspended while the 
backup site is designated as the new primary site and a new backup site is chosen 
and is sent copies of all the locking information from the new primary site.

If a backup site X is about to become the new primary site, X can choose the new 
backup site from among the system’s running sites. However, if no backup site 
existed, or if both the primary and the backup sites are down, a process called 
election can be used to choose the new coordinator site. In this process, any site Y 
that attempts to communicate with the coordinator site repeatedly and fails to do so 
can assume that the coordinator is down and can start the election process by send-
ing a message to all running sites proposing that Y become the new coordinator. As 
soon as Y receives a majority of yes votes, Y can declare that it is the new coordina-
tor. The election algorithm itself is complex, but this is the main idea behind the 
election method. The algorithm also resolves any attempt by two or more sites to 
become coordinator at the same time. The references in the Selected Bibliography 
at the end of this chapter discuss the process in detail.

23.3.2 Distributed Concurrency Control Based on Voting
The concurrency control methods for replicated items discussed earlier all use the 
idea of a distinguished copy that maintains the locks for that item. In the voting 
method, there is no distinguished copy; rather, a lock request is sent to all sites that 
includes a copy of the data item. Each copy maintains its own lock and can grant or 
deny the request for it. If a transaction that requests a lock is granted that lock by a 
majority of the copies, it holds the lock and informs all copies that it has been 
granted the lock. If a transaction does not receive a majority of votes granting it a 
lock within a certain time-out period, it cancels its request and informs all sites of 
the cancellation.

The voting method is considered a truly distributed concurrency control method, 
since the responsibility for a decision resides with all the sites involved. Simulation 
studies have shown that voting has higher message traffic among sites than do the 
distinguished copy methods. If the algorithm takes into account possible site fail-
ures during the voting process, it becomes extremely complex.

23.3.3 Distributed Recovery
The recovery process in distributed databases is quite involved. We give only a very 
brief idea of some of the issues here. In some cases it is difficult even to determine 
whether a site is down without exchanging numerous messages with other sites. For 
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example, suppose that site X sends a message to site Y and expects a response from 
Y but does not receive it. There are several possible explanations:

 ■ The message was not delivered to Y because of communication failure.

 ■ Site Y is down and could not respond.

 ■ Site Y is running and sent a response, but the response was not delivered.

Without additional information or the sending of additional messages, it is difficult 
to determine what actually happened.

Another problem with distributed recovery is distributed commit. When a transac-
tion is updating data at several sites, it cannot commit until it is sure that the effect 
of the transaction on every site cannot be lost. This means that every site must first 
have recorded the local effects of the transactions permanently in the local site log 
on disk. The two-phase commit protocol is often used to ensure the correctness of 
distributed commit (see Section 21.6).

23.4  Overview of Transaction Management  
in Distributed Databases

The global and local transaction management software modules, along with the 
concurrency control and recovery manager of a DDBMS, collectively guarantee the 
ACID properties of transactions (see Chapter 20).

An additional component called the global transaction manager is introduced for 
supporting distributed transactions. The site where the transaction originated can 
temporarily assume the role of global transaction manager and coordinate the exe-
cution of database operations with transaction managers across multiple sites. 
Transaction managers export their functionality as an interface to the application 
programs. The operations exported by this interface are similar to those covered in 
Section 20.2.1, namely BEGIN_TRANSACTION, READ or WRITE, END_TRANSACTION, 
COMMIT_TRANSACTION, and ROLLBACK (or ABORT). The manager stores book-
keeping information related to each transaction, such as a unique identifier, origi-
nating site, name, and so on. For READ operations, it returns a local copy if valid and 
available. For WRITE operations, it ensures that updates are visible across all sites 
containing copies (replicas) of the data item. For ABORT operations, the manager 
ensures that no effects of the transaction are reflected in any site of the distributed 
database. For COMMIT operations, it ensures that the effects of a write are persistently 
recorded on all databases containing copies of the data item. Atomic termination 
(COMMIT/ ABORT) of distributed transactions is commonly implemented using the 
two-phase commit protocol (see Section 22.6).

The transaction manager passes to the concurrency controller module the database 
operations and associated information. The controller is responsible for acquisition 
and release of associated locks. If the transaction requires access to a locked 
resource, it is blocked until the lock is acquired. Once the lock is acquired, the oper-
ation is sent to the runtime processor, which handles the actual execution of the 
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database operation. Once the operation is completed, locks are released and the 
transaction manager is updated with the result of the operation.

23.4.1 Two-Phase Commit Protocol
In Section 22.6, we described the two-phase commit protocol (2PC), which requires 
a global recovery manager, or coordinator, to maintain information needed for 
recovery, in addition to the local recovery managers and the information they 
maintain (log, tables). The two-phase commit protocol has certain drawbacks that 
led to the development of the three-phase commit protocol, which we discuss next.

23.4.2 Three-Phase Commit Protocol
The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordi-
nator blocks all participating sites, causing them to wait until the coordinator 
recovers. This can cause performance degradation, especially if participants are 
holding locks to shared resources. Other types of problems may also occur that 
make the outcome of the transaction nondeterministic.

These problems are solved by the three-phase commit (3PC) protocol, which essen-
tially divides the second commit phase into two subphases called prepare-to-commit 
and commit. The prepare-to-commit phase is used to communicate the result of 
the vote phase to all participants. If all participants vote yes, then the coordinator 
instructs them to move into the prepare-to-commit state. The commit subphase is 
identical to its two-phase counterpart. Now, if the coordinator crashes during this 
subphase, another participant can see the transaction through to completion. It can 
simply ask a crashed participant if it received a prepare-to-commit message. If it 
did not, then it safely assumes to abort. Thus the state of the protocol can be recov-
ered irrespective of which participant crashes. Also, by limiting the time required 
for a transaction to commit or abort to a maximum time-out period, the protocol 
ensures that a transaction attempting to commit via 3PC releases locks on time-out.

The main idea is to limit the wait time for participants who have prepared to com-
mit and are waiting for a global commit or abort from the coordinator. When a 
participant receives a precommit message, it knows that the rest of the participants 
have voted to commit. If a precommit message has not been received, then the par-
ticipant will abort and release all locks.

23.4.3 Operating System Support for Transaction Management
The following are the main benefits of operating system (OS)-supported transaction 
management:

 ■ Typically, DBMSs use their own semaphores2 to guarantee mutually exclu-
sive access to shared resources. Since these semaphores are implemented in 

2Semaphores are data structures used for synchronized and exclusive access to shared resources for 
preventing race conditions in a parallel computing system.
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user space at the level of the DBMS application software, the OS has no 
knowledge about them. Hence if the OS deactivates a DBMS process hold-
ing a lock, other DBMS processes wanting this locked resource get blocked. 
Such a situation can cause serious performance degradation. OS-level 
knowledge of semaphores can help eliminate such situations.

 ■ Specialized hardware support for locking can be exploited to reduce associ-
ated costs. This can be of great importance, since locking is one of the most 
common DBMS operations.

 ■ Providing a set of common transaction support operations though the kernel 
allows application developers to focus on adding new features to their prod-
ucts as opposed to reimplementing the common functionality for each appli-
cation. For example, if different DDBMSs are to coexist on the same machine 
and they chose the two-phase commit protocol, then it is more beneficial to 
have this protocol implemented as part of the kernel so that the DDBMS 
developers can focus more on adding new features to their products.

23.5  Query Processing and Optimization in  
Distributed Databases

Now we give an overview of how a DDBMS processes and optimizes a query. First 
we discuss the steps involved in query processing and then elaborate on the commu-
nication costs of processing a distributed query. Then we discuss a special operation, 
called a semijoin, which is used to optimize some types of queries in a DDBMS. A 
detailed discussion about optimization algorithms is beyond the scope of this text. 
We attempt to illustrate optimization principles using suitable examples.3

23.5.1 Distributed Query Processing
A distributed database query is processed in stages as follows:

  1. Query Mapping. The input query on distributed data is specified formally 
using a query language. It is then translated into an algebraic query on global 
relations. This translation is done by referring to the global conceptual 
schema and does not take into account the actual distribution and replica-
tion of data. Hence, this translation is largely identical to the one performed 
in a centralized DBMS. It is first normalized, analyzed for semantic errors, 
simplified, and finally restructured into an algebraic query.

  2. Localization. In a distributed database, fragmentation results in relations 
being stored in separate sites, with some fragments possibly being repli-
cated. This stage maps the distributed query on the global schema to sepa-
rate queries on individual fragments using data distribution and replication 
information.

3For a detailed discussion of optimization algorithms, see Ozsu and Valduriez (1999).
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  3. Global Query Optimization. Optimization consists of selecting a strategy 
from a list of candidates that is closest to optimal. A list of candidate queries 
can be obtained by permuting the ordering of operations within a fragment 
query generated by the previous stage. Time is the preferred unit for mea-
suring cost. The total cost is a weighted combination of costs such as CPU 
cost, I/O costs, and communication costs. Since DDBs are connected by a 
network, often the communication costs over the network are the most sig-
nificant. This is especially true when the sites are connected through a wide 
area network (WAN).

  4. Local Query Optimization. This stage is common to all sites in the DDB. 
The techniques are similar to those used in centralized systems.

The first three stages discussed above are performed at a central control site, 
whereas the last stage is performed locally.

23.5.2 Data Transfer Costs of Distributed Query Processing
We discussed the issues involved in processing and optimizing a query in a central-
ized DBMS in Chapter 19. In a distributed system, several additional factors further 
complicate query processing. The first is the cost of transferring data over the net-
work. This data includes intermediate files that are transferred to other sites for 
further processing, as well as the final result files that may have to be transferred to 
the site where the query result is needed. Although these costs may not be very high 
if the sites are connected via a high-performance local area network, they become 
significant in other types of networks. Hence, DDBMS query optimization algo-
rithms consider the goal of reducing the amount of data transfer as an optimization 
criterion in choosing a distributed query execution strategy.

We illustrate this with two simple sample queries. Suppose that the EMPLOYEE and 
DEPARTMENT relations in Figure 3.5 are distributed at two sites as shown in Fig-
ure 23.4. We will assume in this example that neither relation is fragmented. Accord-
ing to Figure 23.4, the size of the EMPLOYEE relation is 100 * 10,000 = 106 bytes, and 
the size of the DEPARTMENT relation is 35 * 100 = 3,500 bytes. Consider the query Q: 
For each employee, retrieve the employee name and the name of the department for 
which the employee works. This can be stated as follows in the relational algebra:

Q: πFname,Lname,Dname(EMPLOYEE  Dno=Dnumber DEPARTMENT)

The result of this query will include 10,000 records, assuming that every employee 
is related to a department. Suppose that each record in the query result is 40 bytes 
long. The query is submitted at a distinct site 3, which is called the result site 
because the query result is needed there. Neither the EMPLOYEE nor the 
 DEPARTMENT relations reside at site 3. There are three simple strategies for execut-
ing this distributed query:

  1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result 
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 = 
1,003,500 bytes must be transferred.
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  2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send 
the result to site 3. The size of the query result is 40 * 10,000 = 400,000 bytes, 
so 400,000 + 1,000,000 = 1,400,000 bytes must be transferred.

  3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and 
send the result to site 3. In this case, 400,000 + 3,500 = 403,500 bytes must be 
transferred.

If minimizing the amount of data transfer is our optimization criterion, we should 
choose strategy 3. Now consider another query Q′: For each department, retrieve the 
department name and the name of the department manager. This can be stated as 
follows in the relational algebra:

Q′: πFname,Lname,Dname(DEPARTMENT  Mgr_ssn=Ssn EMPLOYEE)

Again, suppose that the query is submitted at site 3. The same three strategies for 
executing query Q apply to Q′, except that the result of Q′ includes only 100 records, 
assuming that each department has a manager:

  1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result 
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 = 
1,003,500 bytes must be transferred.

  2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send 
the result to site 3. The size of the query result is 40 * 100 = 4,000 bytes, so 
4,000 + 1,000,000 = 1,004,000 bytes must be transferred.

  3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and 
send the result to site 3. In this case, 4,000 + 3,500 = 7,500 bytes must be 
transferred.

Again, we would choose strategy 3—this time by an overwhelming margin over 
strategies 1 and 2. The preceding three strategies are the most obvious ones for the 

Fname

EMPLOYEE

Site 1:

10,000 records
each record is 100 bytes long 
Ssn field is 9 bytes long 
Dno field is 4 bytes long

Site 2:

Minit Lname Ssn Salary Super_ssn DnoBdate Address Sex

Dname

DEPARTMENT

Dnumber Mgr_ssn Mgr_start_date

Fname field is 15 bytes long
Lname field is 15 bytes long

100 records
each record is 35 bytes long 
Dnumber field is 4 bytes long 
Mgr_ssn field is 9 bytes long

Dname field is 10 bytes long

Figure 23.4 
Example to illustrate 
volume of data  
transferred.
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case where the result site (site 3) is different from all the sites that contain files 
involved in the query (sites 1 and 2). However, suppose that the result site is site 2; 
then we have two simple strategies:

  1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the 
result to the user at site 2. Here, the same number of bytes—1,000,000—
must be transferred for both Q and Q′.

  2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, and 
send the result back to site 2. In this case 400,000 + 3,500 = 403,500 bytes 
must be transferred for Q and 4,000 + 3,500 = 7,500 bytes for Q′.

A more complex strategy, which sometimes works better than these simple strate-
gies, uses an operation called semijoin. We introduce this operation and discuss 
distributed execution using semijoins next.

23.5.3 Distributed Query Processing Using Semijoin
The idea behind distributed query processing using the semijoin operation is to 
reduce the number of tuples in a relation before transferring it to another site. 
Intuitively, the idea is to send the joining column of one relation R to the site where 
the other relation S is located; this column is then joined with S. Following that, 
the join attributes, along with the attributes required in the result, are projected 
out and shipped back to the original site and joined with R. Hence, only the join-
ing column of R is transferred in one direction, and a subset of S with no extrane-
ous tuples or attributes is transferred in the other direction. If only a small fraction 
of the tuples in S participate in the join, this can be an efficient solution to mini-
mizing data transfer.

To illustrate this, consider the following strategy for executing Q or Q′:

  1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site 1. 
For Q, we transfer F = πDnumber(DEPARTMENT), whose size is 4 * 100 = 400 
bytes, whereas for Q′, we transfer F′ = πMgr_ssn(DEPARTMENT), whose size is 
9 * 100 = 900 bytes.

  2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer 
the required attributes from the resulting file to site 2. For Q, we transfer 
R = πDno, Fname, Lname(F  Dnumber=Dno EMPLOYEE), whose size is 34 * 10,000 = 
340,000 bytes, whereas for Q′, we transfer R′ = πMgr_ssn, Fname, Lname 
(F′  Mgr_ssn=Ssn EMPLOYEE), whose size is 39 * 100 = 3,900 bytes.

  3. Execute the query by joining the transferred file R or R′ with DEPARTMENT, 
and present the result to the user at site 2.

Using this strategy, we transfer 340,400 bytes for Q and 4,800 bytes for Q′. We lim-
ited the EMPLOYEE attributes and tuples transmitted to site 2 in step 2 to only those 
that will actually be joined with a DEPARTMENT tuple in step 3. For query Q, this 
turned out to include all EMPLOYEE tuples, so little improvement was achieved. 
However, for Q′ only 100 out of the 10,000 EMPLOYEE tuples were needed.
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The semijoin operation was devised to formalize this strategy. A semijoin operation 
R A=B S, where A and B are domain-compatible attributes of R and S, respectively, 
produces the same result as the relational algebra expression πR(R A=B S). In a dis-
tributed environment where R and S reside at different sites, the semijoin is typically 
implemented by first transferring F = πB(S) to the site where R resides and then join-
ing F with R, thus leading to the strategy discussed here.

Notice that the semijoin operation is not commutative; that is,

R  S ≠S  R

23.5.4 Query and Update Decomposition
In a DDBMS with no distribution transparency, the user phrases a query directly in 
terms of specific fragments. For example, consider another query Q: Retrieve the 
names and hours per week for each employee who works on some project controlled 
by department 5, which is specified on the distributed database where the relations 
at sites 2 and 3 are shown in Figure 23.2, and those at site 1 are shown in Fig-
ure 5.6, as in our earlier example. A user who submits such a query must specify 
whether it references the PROJS_5 and WORKS_ON_5 relations at site 2 (Fig-
ure 23.2) or the PROJECT and WORKS_ON relations at site 1 (Figure 5.6). The user 
must also maintain consistency of replicated data items when updating a DDBMS 
with no replication transparency.

On the other hand, a DDBMS that supports full distribution, fragmentation, and 
replication transparency allows the user to specify a query or update request on 
the schema in Figure 5.5 just as though the DBMS were centralized. For updates, 
the DDBMS is responsible for maintaining consistency among replicated items 
by  using one of the distributed concurrency control algorithms discussed in 
 Section  23.3. For queries, a query decomposition module must break up or 
 decompose a query into subqueries that can be executed at the individual sites. 
Additionally, a strategy for combining the results of the subqueries to form the 
query result must be generated. Whenever the DDBMS determines that an item 
referenced in the query is replicated, it must choose or materialize a particular 
replica during query execution.

To determine which replicas include the data items referenced in a query, the 
DDBMS refers to the fragmentation, replication, and distribution information 
stored in the DDBMS catalog. For vertical fragmentation, the attribute list for 
each fragment is kept in the catalog. For horizontal fragmentation, a condition, 
sometimes called a guard, is kept for each fragment. This is basically a selection 
condition that specifies which tuples exist in the fragment; it is called a guard 
because only tuples that satisfy this condition are permitted to be stored in the 
fragment. For mixed fragments, both the attribute list and the guard condition 
are kept in the catalog.

In our earlier example, the guard conditions for fragments at site 1 (Figure 5.6) are 
TRUE (all tuples), and the attribute lists are * (all attributes). For the fragments 
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shown in Figure 23.2, we have the guard conditions and attribute lists shown in 
Figure 23.5. When the DDBMS decomposes an update request, it can determine 
which fragments must be updated by examining their guard conditions. For exam-
ple, a user request to insert a new EMPLOYEE tuple <‘Alex’, ‘B’, ‘Coleman’, 
‘345671239’, ‘22-APR-64’, ‘3306 Sandstone, Houston, TX’, M, 33000, ‘987654321’, 
4> would be decomposed by the DDBMS into two insert requests: the first inserts 
the preceding tuple in the EMPLOYEE fragment at site 1, and the second inserts the 
projected tuple <‘Alex’, ‘B’, ‘Coleman’, ‘345671239’, 33000, ‘987654321’, 4> in the 
EMPD4 fragment at site 3.

For query decomposition, the DDBMS can determine which fragments may contain 
the required tuples by comparing the query condition with the guard conditions. For 

Figure 23.5 
Guard conditions and 
attributes lists for  
fragments.  
(a) Site 2 fragments.  
(b) Site 3 fragments.

(a) EMPD5
  attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno
 guard condition: Dno = 5
 DEP5
  attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
 guard condition: Dnumber = 5
 DEP5_LOCS
  attribute list: * (all attributes Dnumber, Location)
 guard condition: Dnumber = 5
 PROJS5
  attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
 guard condition: Dnum = 5
 WORKS_ON5
  attribute list: * (all attributes Essn, Pno,Hours)
 guard condition: Essn IN (πSsn (EMPD5)) OR Pno IN (πPnumber (PROJS5))

(b) EMPD4
  attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno
 guard condition: Dno = 4
 DEP4
  attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
 guard condition: Dnumber = 4
 DEP4_LOCS
  attribute list: * (all attributes Dnumber, Location)
 guard condition: Dnumber = 4
 PROJS4
  attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
 guard condition: Dnum = 4
 WORKS_ON4
  attribute list: * (all attributes Essn, Pno, Hours)
 guard condition: Essn IN (πSsn (EMPD4))
  OR Pno IN (πPnumber (PROJS4))
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example, consider the query Q: Retrieve the names and hours per week for each 
employee who works on some project controlled by department 5. This can be speci-
fied in SQL on the schema in Figure 5.5 as follows:

Q: SELECT Fname, Lname, Hours
 FROM EMPLOYEE, PROJECT, WORKS_ON
 WHERE Dnum=5 AND Pnumber=Pno AND Essn=Ssn;

Suppose that the query is submitted at site 2, which is where the query result will be 
needed. The DDBMS can determine from the guard condition on PROJS5 and 
WORKS_ON5 that all tuples satisfying the conditions (Dnum = 5 AND Pnumber = Pno) 
reside at site 2. Hence, it may decompose the query into the following relational alge-
bra subqueries:

T1 ← πEssn(PROJS5 Pnumber=PnoWORKS_ON5)

T2 ← πEssn, Fname, Lname(T1 Essn=SsnEMPLOYEE)

RESULT ← πFname, Lname, Hours(T2* WORKS_ON5)

This decomposition can be used to execute the query by using a semijoin strategy. 
The DDBMS knows from the guard conditions that PROJS5 contains exactly those 
tuples satisfying (Dnum = 5) and that WORKS_ON5 contains all tuples to be joined 
with PROJS5; hence, subquery T1 can be executed at site 2, and the projected column 
Essn can be sent to site 1. Subquery T2 can then be executed at site 1, and the result 
can be sent back to site 2, where the final query result is calculated and displayed to 
the user. An alternative strategy would be to send the query Q itself to site 1, which 
includes all the database tuples, where it would be executed locally and from which 
the result would be sent back to site 2. The query optimizer would estimate the costs 
of both strategies and would choose the one with the lower cost estimate.

23.6 Types of Distributed Database Systems
The term distributed database management system can describe various systems 
that differ from one another in many respects. The main thing that all such systems 
have in common is the fact that data and software are distributed over multiple sites 
connected by some form of communication network. In this section, we discuss a 
number of types of DDBMSs and the criteria and factors that make some of these 
systems different.

The first factor we consider is the degree of homogeneity of the DDBMS software. If 
all servers (or individual local DBMSs) use identical software and all users (clients) use 
identical software, the DDBMS is called homogeneous; otherwise, it is called hetero-
geneous. Another factor related to the degree of homogeneity is the degree of local 
autonomy. If there is no provision for the local site to function as a standalone DBMS, 
then the system has no local autonomy. On the other hand, if direct access by local 
transactions to a server is permitted, the system has some degree of local autonomy.

Figure 23.6 shows classification of DDBMS alternatives along orthogonal axes of 
distribution, autonomy, and heterogeneity. For a centralized database, there is 
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complete autonomy but a total lack of distribution and heterogeneity (point A in 
the figure). We see that the degree of local autonomy provides further ground for 
classification into federated and multidatabase systems. At one extreme of the 
autonomy spectrum, we have a DDBMS that looks like a centralized DBMS to the 
user, with zero autonomy (point B). A single conceptual schema exists, and all 
access to the system is obtained through a site that is part of the DDBMS—which 
means that no local autonomy exists. Along the autonomy axis we encounter two 
types of DDBMSs called federated database system (point C) and multidatabase 
system (point D). In such systems, each server is an independent and autonomous 
centralized DBMS that has its own local users, local transactions, and DBA, and 
hence has a very high degree of local autonomy. The term federated database 
 system (FDBS) is used when there is some global view or schema of the federation 
of databases that is shared by the applications (point C). On the other hand, a 
 multidatabase system has full local autonomy in that it does not have a global 
schema but interactively constructs one as needed by the application (point D). 
Both systems are hybrids between distributed and centralized systems, and the 
distinction we made between them is not strictly followed. We will refer to them as 
FDBSs in a generic sense. Point D in the diagram may also stand for a system with 
full local autonomy and full heterogeneity—this could be a peer-to-peer database 
system. In a heterogeneous FDBS, one server may be a relational DBMS, another a 
network DBMS (such as Computer Associates’ IDMS or HP’S IMAGE/3000), and 

B

Distribution

Heterogeneity

Legend:

A: Traditional centralized database 
 systems

B: Pure distributed database systems

C:  Federated database systems

D: Multidatabase or peer-to-peer 
 database systems

C D

A
Autonomy

Figure 23.6 
Classification  
of distributed 
databases.
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a third an object DBMS (such as Object Design’s ObjectStore) or hierarchical 
DBMS (such as IBM’s IMS); in such a case, it is necessary to have a canonical system 
 language and to include language translators to translate subqueries from the 
canonical language to the language of each server.

We briefly discuss the issues affecting the design of FDBSs next.

23.6.1 Federated Database Management Systems Issues
The type of heterogeneity present in FDBSs may arise from several sources. We 
discuss these sources first and then point out how the different types of autonomies 
contribute to a semantic heterogeneity that must be resolved in a heterogeneous 
FDBS.

 ■ Differences in data models. Databases in an organization come from a vari-
ety of data models, including the so-called legacy models (hierarchical and 
network), the relational data model, the object data model, and even files. 
The modeling capabilities of the models vary. Hence, to deal with them uni-
formly via a single global schema or to process them in a single language is 
challenging. Even if two databases are both from the RDBMS environment, 
the same information may be represented as an attribute name, as a relation 
name, or as a value in different databases. This calls for an intelligent query-
processing mechanism that can relate information based on metadata.

 ■ Differences in constraints. Constraint facilities for specification and imple-
mentation vary from system to system. There are comparable features that 
must be reconciled in the construction of a global schema. For example, the 
relationships from ER models are represented as referential integrity con-
straints in the relational model. Triggers may have to be used to implement 
certain constraints in the relational model. The global schema must also deal 
with potential conflicts among constraints.

 ■ Differences in query languages. Even with the same data model, the lan-
guages and their versions vary. For example, SQL has multiple versions like 
SQL-89, SQL-92, SQL-99, and SQL:2008, and each system has its own set of 
data types, comparison operators, string manipulation features, and so on.

Semantic Heterogeneity. Semantic heterogeneity occurs when there are differ-
ences in the meaning, interpretation, and intended use of the same or related data. 
Semantic heterogeneity among component database systems (DBSs) creates the 
biggest hurdle in designing global schemas of heterogeneous databases. The design 
autonomy of component DBSs refers to their freedom of choosing the following 
design parameters; the design parameters in turn affect the eventual complexity of 
the FDBS:

 ■ The universe of discourse from which the data is drawn. For example, for 
two customer accounts, databases in the federation may be from the United 
States and Japan and have entirely different sets of attributes about customer 
accounts required by the accounting practices. Currency rate fluctuations 
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would also present a problem. Hence, relations in these two databases that 
have identical names—CUSTOMER or ACCOUNT—may have some common 
and some entirely distinct information.

 ■ Representation and naming. The representation and naming of data ele-
ments and the structure of the data model may be prespecified for each local 
database.

 ■ The understanding, meaning, and subjective interpretation of data. This 
is a chief contributor to semantic heterogeneity.

 ■ Transaction and policy constraints. These deal with serializability criteria, 
compensating transactions, and other transaction policies.

 ■ Derivation of summaries. Aggregation, summarization, and other data-
processing features and operations supported by the system.

The above problems related to semantic heterogeneity are being faced by all major 
multinational and governmental organizations in all application areas. In today’s 
commercial environment, most enterprises are resorting to heterogeneous FDBSs, 
having heavily invested in the development of individual database systems using 
diverse data models on different platforms over the last 20 to 30 years. Enterprises 
are using various forms of software—typically called the middleware; or Web-
based packages called application servers (for example, WebLogic or WebSphere); 
and even generic systems, called enterprise resource planning (ERP) systems (for 
example, SAP, J. D. Edwards ERP)—to manage the transport of queries and trans-
actions from the global application to individual databases (with possible additional 
processing for business rules) and the data from the heterogeneous database servers 
to the global application. Detailed discussion of these types of software systems is 
outside the scope of this text.

Just as providing the ultimate transparency is the goal of any distributed database 
architecture, local component databases strive to preserve autonomy. 
 Communication autonomy of a component DBS refers to its ability to decide 
whether to communicate with another component DBS. Execution autonomy 
refers to the ability of a component DBS to execute local operations without inter-
ference from external operations by other component DBSs and its ability to decide 
the order in which to execute them. The association autonomy of a component 
DBS implies that it has the ability to decide whether and how much to share its 
functionality (operations it supports) and resources (data it manages) with other 
component DBSs. The major challenge of designing FDBSs is to let component 
DBSs interoperate while still providing the above types of autonomies to them.

23.7 Distributed Database Architectures
In this section, we first briefly point out the distinction between parallel and distrib-
uted database architectures. Although both are prevalent in industry today, there are 
various manifestations of the distributed architectures that are continuously evolv-
ing among large enterprises. The parallel architecture is more common in high-per-
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formance computing, where there is a need for multiprocessor architectures to cope 
with the volume of data undergoing transaction processing and  warehousing 
 applications. We then introduce a generic architecture of a distributed database. 
This is followed by discussions on the architecture of three-tier client/server and 
federated database systems.

23.7.1 Parallel versus Distributed Architectures
There are two main types of multiprocessor system architectures that are com-
monplace:

 ■ Shared memory (tightly coupled) architecture. Multiple processors share 
secondary (disk) storage and also share primary memory.

 ■ Shared disk (loosely coupled) architecture. Multiple processors share sec-
ondary (disk) storage but each has their own primary memory.

These architectures enable processors to communicate without the overhead of 
exchanging messages over a network.4 Database management systems developed 
using the above types of architectures are termed parallel database management 
systems rather than DDBMSs, since they utilize parallel processor technology. 
Another type of multiprocessor architecture is called shared-nothing architecture. 
In this architecture, every processor has its own primary and secondary (disk) 
memory, no common memory exists, and the processors communicate over a high-
speed interconnection network (bus or switch). Although the shared-nothing 
architecture resembles a distributed database computing environment, major dif-
ferences exist in the mode of operation. In shared-nothing multiprocessor systems, 
there is symmetry and homogeneity of nodes; this is not true of the distributed 
database environment, where heterogeneity of hardware and operating system at 
each node is very common. Shared-nothing architecture is also considered as an 
environment for parallel databases. Figure 23.7(a) illustrates a parallel database 
(shared nothing), whereas Figure 23.7(b) illustrates a centralized database with dis-
tributed access and Figure 23.7(c) shows a pure distributed database. We will not 
expand on parallel architectures and related data management issues here.

23.7.2 General Architecture of Pure Distributed Databases
In this section, we discuss both the logical and component architectural models of a 
DDB. In Figure 23.8, which describes the generic schema architecture of a DDB, the 
enterprise is presented with a consistent, unified view showing the logical structure 
of underlying data across all nodes. This view is represented by the global concep-
tual schema (GCS), which provides network transparency (see Section 23.1.2). To 
accommodate potential heterogeneity in the DDB, each node is shown as having its 
own local internal schema (LIS) based on physical organization details at that 

4If both primary and secondary memories are shared, the architecture is also known as shared- every-

thing architecture.
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 particular site. The logical organization of data at each site is specified by the local 
conceptual schema (LCS). The GCS, LCS, and their underlying mappings provide 
the fragmentation and replication transparency discussed in Section 23.1.2. Fig-
ure 23.8 shows the component architecture of a DDB. It is an extension of its cen-
tralized counterpart (Figure 2.3) in Chapter 2. For the sake of simplicity, common 
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Figure 23.7 
Some different database system architectures. (a) Shared-nothing architecture. (b) A networked architecture with a 
centralized database at one of the sites. (c) A truly distributed database architecture.
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elements are not shown here. The global query compiler references the global 
 conceptual schema from the global system catalog to verify and impose defined 
constraints. The global query optimizer references both global and local conceptual 
schemas and generates optimized local queries from global queries. It evaluates all 
candidate strategies using a cost function that estimates cost based on response 
time (CPU, I/O, and network latencies) and estimated sizes of intermediate results. 
The latter is particularly important in queries involving joins. Having computed the 
cost for each candidate, the optimizer selects the candidate with the minimum cost 
for execution. Each local DBMS would have its local query optimizer, transaction 
manager, and execution engines as well as the local system catalog, which houses the 
local schemas. The global transaction manager is responsible for coordinating the 
execution across multiple sites in conjunction with the local transaction manager at 
those sites.

23.7.3 Federated Database Schema Architecture
Typical five-level schema architecture to support global applications in the FDBS 
environment is shown in Figure 23.9. In this architecture, the local schema is the 
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conceptual schema (full database definition) of a component database, and the 
component schema is derived by translating the local schema into a canonical data 
model or common data model (CDM) for the FDBS. Schema translation from the 
local schema to the component schema is accompanied by generating mappings to 
transform commands on a component schema into commands on the correspond-
ing local schema. The export schema represents the subset of a component schema 
that is available to the FDBS. The federated schema is the global schema or view, 
which is the result of integrating all the shareable export schemas. The external 
schemas define the schema for a user group or an application, as in the three-level 
schema architecture.

All the problems related to query processing, transaction processing, and directory 
and metadata management and recovery apply to FDBSs with additional consider-
ations. It is not within our scope to discuss them in detail here.

23.7.4 An Overview of Three-Tier Client/Server Architecture
As we pointed out in the chapter introduction, full-scale DDBMSs have not been 
developed to support all the types of functionalities that we have discussed so far. 
Instead, distributed database applications are being developed in the context of the 
client/server architectures. We introduced the two-tier client/server architecture in 

External 
schema

Federated 
schema

. . .

. . .

. . .

. . .

. . .

Component 
schema

Local 
schema

Component 
DBS

External 
schema

External 
schema

Federated 
schema

Export 
schema

Component 
schema

Local 
schema

Component 
DBS

Export 
schema

Export 
schema

Figure 23.9 
The five-level schema architecture  
in a federated database system  
(FDBS).

Source: Adapted from Sheth and  
Larson, “Federated Database Systems 
for Managing Distributed,  
Heterogeneous, and Autonomous  
Databases.” ACM Computing Surveys 
(Vol. 22: No. 3, September 1990).



 23.7 Distributed Database Architectures 873

Section 2.5. It is now more common to use a three-tier architecture rather than a 
two-tier architecture, particularly in Web applications. This architecture is illus-
trated in Figure 23.10.

In the three-tier client/server architecture, the following three layers exist:

  1. Presentation layer (client). This provides the user interface and interacts 
with the user. The programs at this layer present Web interfaces or forms to 
the client in order to interface with the application. Web browsers are often 
utilized, and the languages and specifications used include HTML, XHTML, 
CSS, Flash, MathML, Scalable Vector Graphics (SVG), Java, JavaScript, 
Adobe Flex, and others. This layer handles user input, output, and naviga-
tion by accepting user commands and displaying the needed information, 
usually in the form of static or dynamic Web pages. The latter are employed 
when the interaction involves database access. When a Web interface is 
used, this layer typically communicates with the application layer via the 
HTTP protocol.

  2. Application layer (business logic). This layer programs the application 
logic. For example, queries can be formulated based on user input from the 
client, or query results can be formatted and sent to the client for presenta-
tion. Additional application functionality can be handled at this layer, such 
as security checks, identity verification, and other functions. The application 
layer can interact with one or more databases or data sources as needed by 
connecting to the database using ODBC, JDBC, SQL/CLI, or other database 
access techniques.

Client
User interface or presentation tier

(Web browser, HTML, JavaScript, Visual Basic, . . .)

HTTP Protocol

Application server
Application (business) logic tier

(Application program, JAVA, C/C++, C#, . . .)

Database server
Query and transaction processing tier

(Database access, SQL, PSM, XML, . . .)

ODBC, JDBC, SQL/CLI, SQLJ

Figure 23.10 
The three-tier client/server 
architecture.
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  3. Database server. This layer handles query and update requests from the 
application layer, processes the requests, and sends the results. Usually SQL 
is used to access the database if it is relational or object-relational, and stored 
database procedures may also be invoked. Query results (and queries) may 
be formatted into XML (see Chapter 13) when transmitted between the 
application server and the database server.

Exactly how to divide the DBMS functionality among the client, application server, 
and database server may vary. The common approach is to include the functional-
ity of a centralized DBMS at the database server level. A number of relational DBMS 
products have taken this approach, in which an SQL server is provided. The appli-
cation server must then formulate the appropriate SQL queries and connect to the 
database server when needed. The client provides the processing for user interface 
interactions. Since SQL is a relational standard, various SQL servers, possibly pro-
vided by different vendors, can accept SQL commands through standards such as 
ODBC, JDBC, and SQL/CLI (see Chapter 10).

In this architecture, the application server may also refer to a data dictionary 
that includes information on the distribution of data among the various SQL 
servers, as well as modules for decomposing a global query into a number of 
local queries that can be executed at the various sites. Interaction between an 
application server and database server might proceed as follows during the pro-
cessing of an SQL query:

  1. The application server formulates a user query based on input from the cli-
ent layer and decomposes it into a number of independent site queries. Each 
site query is sent to the appropriate database server site.

  2. Each database server processes the local query and sends the results to the 
application server site. Increasingly, XML is being touted as the standard for 
data exchange (see Chapter 13), so the database server may format the query 
result into XML before sending it to the application server.

  3. The application server combines the results of the subqueries to produce the 
result of the originally required query, formats it into HTML or some other 
form accepted by the client, and sends it to the client site for display.

The application server is responsible for generating a distributed execution plan for 
a multisite query or transaction and for supervising distributed execution by send-
ing commands to servers. These commands include local queries and transactions 
to be executed, as well as commands to transmit data to other clients or servers. 
Another function controlled by the application server (or coordinator) is that of 
ensuring consistency of replicated copies of a data item by employing distributed 
(or global) concurrency control techniques. The application server must also ensure 
the atomicity of global transactions by performing global recovery when certain 
sites fail.

If the DDBMS has the capability to hide the details of data distribution from the 
application server, then it enables the application server to execute global queries 
and transactions as though the database were centralized, without having to specify 
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the sites at which the data referenced in the query or transaction resides. This 
 property is called distribution transparency. Some DDBMSs do not provide distri-
bution transparency, instead requiring that applications are aware of the details of 
data distribution.

23.8 Distributed Catalog Management
Efficient catalog management in distributed databases is critical to ensure satisfac-
tory performance related to site autonomy, view management, and data distribu-
tion and replication. Catalogs are databases themselves containing metadata about 
the distributed database system.

Three popular management schemes for distributed catalogs are centralized cata-
logs, fully replicated catalogs, and partitioned catalogs. The choice of the scheme 
depends on the database itself as well as the access patterns of the applications to 
the underlying data.

Centralized Catalogs. In this scheme, the entire catalog is stored in one single 
site. Due to its central nature, it is easy to implement. On the other hand, the 
advantages of reliability, availability, autonomy, and distribution of processing 
load are adversely impacted. For read operations from noncentral sites, the 
requested catalog data is locked at the central site and is then sent to the 
requesting site. On completion of the read operation, an acknowledgment is 
sent to the central site, which in turn unlocks this data. All update operations 
must be processed through the central site. This can quickly become a perfor-
mance bottleneck for write-intensive applications.

Fully Replicated Catalogs. In this scheme, identical copies of the complete 
catalog are present at each site. This scheme facilitates faster reads by allowing 
them to be answered locally. However, all updates must be broadcast to all 
sites. Updates are treated as transactions, and a centralized two-phase commit 
scheme is employed to ensure catalog consistency. As with the centralized 
scheme, write-intensive applications may cause increased network traffic due 
to the broadcast associated with the writes.

Partially Replicated Catalogs. The centralized and fully replicated schemes 
restrict site autonomy since they must ensure a consistent global view of the 
catalog. Under the partially replicated scheme, each site maintains complete 
catalog information on data stored locally at that site. Each site is also permit-
ted to cache entries retrieved from remote sites. However, there are no guaran-
tees that these cached copies will be the most recent and updated. The system 
tracks catalog entries for sites where the object was created and for sites that 
contain copies of this object. Any changes to copies are propagated immedi-
ately to the original (birth) site. Retrieving updated copies to replace stale data 
may be delayed until an access to this data occurs. In general, fragments of rela-
tions across sites should be uniquely accessible. Also, to ensure data distribu-
tion transparency, users should be allowed to create synonyms for remote 
objects and use these synonyms for subsequent referrals.



876 Chapter 23 Distributed Database Concepts

23.9 Summary
In this chapter, we provided an introduction to distributed databases. This is a very 
broad topic, and we discussed only some of the basic techniques used with distrib-
uted databases. First in Section 23.1 we discussed the reasons for distribution and 
DDB concepts in Section 23.1.1. Then we defined the concept of distribution trans-
parency and the related concepts of fragmentation transparency and replication 
transparency in Section 23.1.2. We discussed the concepts of distributed availability 
and reliability in Section 23.1.3, and gave an overview of scalability and partition 
tolerance issues in Section 23.1.4. We discussed autonomy of nodes in a distributed 
system in Section 23.1.5 and the potential advantages of distributed databases over 
centralized system in Section 23.1.6.

In Section 23.2, we discussed the design issues related to data fragmentation, 
replication, and distribution. We distinguished between horizontal fragmenta-
tion (sharding) and vertical fragmentation of relations in Section 23.2.1. We 
then discussed in Section 23.2.2 the use of data replication to improve system 
reliability and availability. In Section 23.3, we briefly discussed the concur-
rency control and recovery techniques used in DDBMSs, and then reviewed 
some of the additional problems that must be dealt with in a distributed envi-
ronment that do not appear in a centralized environment. Then in Section 23.4 
we discussed transaction management, including different commit protocols 
(2-phase commit, 3-phase commit) and operating system support for transac-
tion management.

We then illustrated some of the techniques used in distributed query processing in 
Section 23.5, and discussed the cost of communication among sites, which is con-
sidered a major factor in distributed query optimization. We compared the differ-
ent techniques for executing joins, and we then presented the semijoin technique 
for joining relations that reside on different sites in Section 23.5.3.

Following that, in Section 23.6, we categorized DDBMSs by using criteria such as 
the degree of homogeneity of software modules and the degree of local autonomy. 
In Section 23.7 we distinguished between parallel and distributed system architec-
tures and then introduced the generic architecture of distributed databases from 
both a component as well as a schematic architectural perspective. In Section 23.7.3 
we discussed in some detail issues of federated database management, and we 
focused on the needs of supporting various types of autonomies and dealing with 
semantic heterogeneity. We also reviewed the client/server architecture concepts 
and related them to distributed databases in Section 23.7.4. We reviewed catalog 
management in distributed databases and summarized their relative advantages 
and disadvantages in Section 23.8.

Chapters 24 and 25 will describe recent advances in distributed databases and dis-
tributed computing related to big data. Chapter 24 describes the so-called NOSQL 
systems, which are highly scalable, distributed database systems that handle large 
volumes of data. Chapter 25 discusses cloud computing and distributed computing 
technologies that are needed to process big data.
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Review Questions
 23.1. What are the main reasons for and potential advantages of distributed 

 databases?

 23.2. What additional functions does a DDBMS have over a centralized DBMS?

 23.3. Discuss what is meant by the following terms: degree of homogeneity of a 
DDBMS, degree of local autonomy of a DDBMS, federated DBMS, distribu-
tion transparency, fragmentation transparency, replication transparency, 
multidatabase system.

 23.4. Discuss the architecture of a DDBMS. Within the context of a centralized 
DBMS, briefly explain new components introduced by the distribution of 
data.

 23.5. What are the main software modules of a DDBMS? Discuss the main 
functions of each of these modules in the context of the client/server 
architecture.

 23.6. Compare the two-tier and three-tier client/server architectures.

 23.7. What is a fragment of a relation? What are the main types of fragments? 
Why is fragmentation a useful concept in distributed database design?

 23.8. Why is data replication useful in DDBMSs? What typical units of data are 
replicated?

 23.9. What is meant by data allocation in distributed database design? What typi-
cal units of data are distributed over sites?

 23.10. How is a horizontal partitioning of a relation specified? How can a relation 
be put back together from a complete horizontal partitioning?

 23.11. How is a vertical partitioning of a relation specified? How can a relation be 
put back together from a complete vertical partitioning?

 23.12. Discuss the naming problem in distributed databases.

 23.13. What are the different stages of processing a query in a DDBMS?

 23.14. Discuss the different techniques for executing an equijoin of two files located 
at different sites. What main factors affect the cost of data transfer?

 23.15. Discuss the semijoin method for executing an equijoin of two files located at 
different sites. Under what conditions is an equijoin strategy efficient?

 23.16. Discuss the factors that affect query decomposition. How are guard condi-
tions and attribute lists of fragments used during the query decomposition 
process?

 23.17. How is the decomposition of an update request different from the decompo-
sition of a query? How are guard conditions and attribute lists of fragments 
used during the decomposition of an update request?
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 23.18. List the support offered by operating systems to a DDBMS and also the ben-
efits of these supports.

 23.19. Discuss the factors that do not appear in centralized systems but that affect 
concurrency control and recovery in distributed systems.

 23.20. Discuss the two-phase commit protocol used for transaction management 
in a DDBMS. List its limitations and explain how they are overcome using 
the three-phase commit protocol.

 23.21. Compare the primary site method with the primary copy method for dis-
tributed concurrency control. How does the use of backup sites affect each?

 23.22. When are voting and elections used in distributed databases?

 23.23.  Discuss catalog management in distributed databases.

 23.24. What are the main challenges facing a traditional DDBMS in the context of 
today’s Internet applications? How does cloud computing attempt to address 
them?

 23.25. Discuss briefly the support offered by Oracle for homogeneous, heteroge-
neous, and client/server-based distributed database architectures.

 23.26. Discuss briefly online directories, their management, and their role in dis-
tributed databases.

Exercises
 23.27. Consider the data distribution of the COMPANY database, where the frag-

ments at sites 2 and 3 are as shown in Figure 23.3 and the fragments at site 1 
are as shown in Figure 3.6. For each of the following queries, show at least 
two strategies of decomposing and executing the query. Under what condi-
tions would each of your strategies work well?

a. For each employee in department 5, retrieve the employee name and the 
names of the employee's dependents.

b. Print the names of all employees who work in department 5 but who 
work on some project not controlled by department 5.

 23.28. Consider the following relations:

BOOKS(Book#, Primary_author, Topic, Total_stock, $price)
BOOKSTORE(Store#, City, State, Zip, Inventory_value)
STOCK(Store#, Book#, Qty)

  Total_stock is the total number of books in stock, and Inventory_value is the 
total inventory value for the store in dollars.

a. Give an example of two simple predicates that would be meaningful for 
the BOOKSTORE relation for horizontal partitioning.
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b. How would a derived horizontal partitioning of STOCK be defined based 
on the partitioning of BOOKSTORE?

c. Show predicates by which BOOKS may be horizontally partitioned by 
topic.

d. Show how the STOCK may be further partitioned from the partitions in 
(b) by adding the predicates in (c).

 23.29. Consider a distributed database for a bookstore chain called National Books 
with three sites called EAST, MIDDLE, and WEST. The relation schemas are 
given in Exercise 23.28. Consider that BOOKS are fragmented by $price 
amounts into:

B1: BOOK1: $price up to $20

B2: BOOK2: $price from $20.01 to $50

B3: BOOK3: $price from $50.01 to $100

B4: BOOK4: $price $100.01 and above

  Similarly, BOOK_STORES are divided by zip codes into:

S1: EAST: Zip up to 35000

S2: MIDDLE: Zip 35001 to 70000

S3: WEST: Zip 70001 to 99999

  Assume that STOCK is a derived fragment based on BOOKSTORE only.

a. Consider the query:

SELECT Book#, Total_stock
FROM Books
WHERE $price > 15 AND $price < 55;

  Assume that fragments of BOOKSTORE are nonreplicated and assigned 
based on region. Assume further that BOOKS are allocated as:

EAST: B1, B4

MIDDLE: B1, B2

WEST: B1, B2, B3, B4

  Assuming the query was submitted in EAST, what remote subqueries does it 
generate? (Write in SQL.)

b. If the price of Book# = 1234 is updated from $45 to $55 at site MIDDLE, 
what updates does that generate? Write in English and then in SQL.

c. Give a sample query issued at WEST that will generate a subquery for 
 MIDDLE.

d. Write a query involving selection and projection on the above rela-
tions and show two possible query trees that denote different ways of 
execution.

 23.70. Consider that you have been asked to propose a database architecture in a 
large organization (General Motors, for example) to consolidate all data 
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including legacy databases (from hierarchical and network models; no spe-
cific knowledge of these models is needed) as well as relational databases, 
which are geographically distributed so that global applications can be sup-
ported. Assume that alternative 1 is to keep all databases as they are, whereas 
alternative 2 is to first convert them to relational and then support the appli-
cations over a distributed integrated database.

a. Draw two schematic diagrams for the above alternatives showing the 
linkages among appropriate schemas. For alternative 1, choose the 
approach of providing export schemas for each database and construct-
ing unified schemas for each application.

b. List the steps that you would have to go through under each alternative 
from the present situation until global applications are viable.

c. Compare these alternatives from the issues of:
  i. design time considerations
ii. runtime considerations
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24
NOSQL Databases  

and Big Data Storage Systems

We now turn our attention to the class of sys-
tems developed to manage large amounts of 

data in organizations such as Google, Amazon, Facebook, and Twitter and in 
applications such as social media, Web links, user profiles, marketing and sales, 
posts and tweets, road maps and spatial data, and e-mail. The term NOSQL is 
generally interpreted as Not Only SQL—rather than NO to SQL—and is meant 
to convey that many applications need systems other than traditional relational 
SQL systems to augment their data management needs. Most NOSQL systems 
are distributed databases or distributed storage systems, with a focus on semis-
tructured data storage, high performance, availability, data replication, and scal-
ability as opposed to an emphasis on immediate data consistency, powerful 
query languages, and structured data storage.

We start in Section 24.1 with an introduction to NOSQL systems, their character-
istics, and how they differ from SQL systems. We also describe four general cate-
gories of NOSQL systems—document-based, key-value stores, column-based, 
and graph-based. Section 24.2 discusses how NOSQL systems approach the issue 
of consistency among multiple replicas (copies) by using the paradigm known as 
eventual consistency. We discuss the CAP theorem, which can be used to under-
stand the emphasis of NOSQL systems on availability. In Sections 24.3 through  
24.6, we present an overview of each category of NOSQL systems—starting with 
document-based systems, followed by key-value stores, then column-based, and 
finally graph-based. Some systems may not fall neatly into a single category, but 
rather use techniques that span two or more categories of NOSQL systems. 
Finally, Section 24.7 is the chapter summary.

chapter 24
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24.1 Introduction to NOSQL Systems

24.1.1 Emergence of NOSQL Systems
Many companies and organizations are faced with applications that store vast 
amounts of data. Consider a free e-mail application, such as Google Mail or Yahoo 
Mail or other similar service—this application can have millions of users, and each 
user can have thousands of e-mail messages. There is a need for a storage system 
that can manage all these e-mails; a structured relational SQL system may not be 
appropriate because (1) SQL systems offer too many services (powerful query lan-
guage, concurrency control, etc.), which this application may not need; and (2) a 
structured data model such the traditional relational model may be too restrictive. 
Although newer relational systems do have more complex object-relational model-
ing options (see Chapter 12), they still require schemas, which are not required by 
many of the NOSQL systems.

As another example, consider an application such as Facebook, with millions of 
users who submit posts, many with images and videos; then these posts must be 
displayed on pages of other users using the social media relationships among the 
users. User profiles, user relationships, and posts must all be stored in a huge collec-
tion of data stores, and the appropriate posts must be made available to the sets of 
users that have signed up to see these posts. Some of the data for this type of appli-
cation is not suitable for a traditional relational system and typically needs multiple 
types of databases and data storage systems.

Some of the organizations that were faced with these data management and storage 
applications decided to develop their own systems:

 ■ Google developed a proprietary NOSQL system known as BigTable, which is 
used in many of Google’s applications that require vast amounts of data stor-
age, such as Gmail, Google Maps, and Web site indexing. Apache Hbase is an 
open source NOSQL system based on similar concepts. Google’s innovation 
led to the category of NOSQL systems known as column-based or wide 
column stores; they are also sometimes referred to as column family stores.

 ■ Amazon developed a NOSQL system called DynamoDB that is available 
through Amazon’s cloud services. This innovation led to the category known 
as key-value data stores or sometimes key-tuple or key-object data stores.

 ■ Facebook developed a NOSQL system called Cassandra, which is now open 
source and known as Apache Cassandra. This NOSQL system uses concepts 
from both key-value stores and column-based systems.

 ■ Other software companies started developing their own solutions and making 
them available to users who need these capabilities—for example, MongoDB 
and CouchDB, which are classified as document-based NOSQL systems or 
document stores.

 ■ Another category of NOSQL systems is the graph-based NOSQL systems, 
or graph databases; these include Neo4J and GraphBase, among others.
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 ■ Some NOSQL systems, such as OrientDB, combine concepts from many of 
the categories discussed above.

 ■ In addition to the newer types of NOSQL systems listed above, it is also pos-
sible to classify database systems based on the object model (see Chapter 12) 
or on the native XML model (see Chapter 13) as NOSQL systems, although 
they may not have the high-performance and replication characteristics of 
the other types of NOSQL systems.

These are just a few examples of NOSQL systems that have been developed. There 
are many systems, and listing all of them is beyond the scope of our presentation.

24.1.2 Characteristics of NOSQL Systems
We now discuss the characteristics of many NOSQL systems, and how these sys-
tems differ from traditional SQL systems. We divide the characteristics into two 
categories—those related to distributed databases and distributed systems, and 
those related to data models and query languages.

NOSQL characteristics related to distributed databases and distributed 
systems. NOSQL systems emphasize high availability, so replicating the data is 
inherent in many of these systems. Scalability is another important characteristic, 
because many of the applications that use NOSQL systems tend to have data that 
keeps growing in volume. High performance is another required characteristic, 
whereas serializable consistency may not be as important for some of the NOSQL 
applications. We discuss some of these characteristics next.

  1. Scalability: As we discussed in Section 23.1.4, there are two kinds of scal-
ability in distributed systems: horizontal and vertical. In NOSQL systems, 
horizontal scalability is generally used, where the distributed system is 
expanded by adding more nodes for data storage and processing as the vol-
ume of data grows. Vertical scalability, on the other hand, refers to expand-
ing the storage and computing power of existing nodes. In NOSQL systems, 
horizontal scalability is employed while the system is operational, so tech-
niques for distributing the existing data among new nodes without inter-
rupting system operation are necessary. We will discuss some of these 
techniques in Sections 24.3 through  24.6 when we discuss specific systems.

  2. Availability, Replication and Eventual Consistency: Many applications 
that use NOSQL systems require continuous system availability. To accom-
plish this, data is replicated over two or more nodes in a transparent man-
ner, so that if one node fails, the data is still available on other nodes. 
Replication improves data availability and can also improve read perfor-
mance, because read requests can often be serviced from any of the repli-
cated data nodes. However, write performance becomes more cumbersome 
because an update must be applied to every copy of the replicated data items; 
this can slow down write performance if serializable consistency is required 
(see Section 23.3). Many NOSQL applications do not require serializable 
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consistency, so more relaxed forms of consistency known as eventual 
consistency are used. We discuss this in more detail in Section 24.2.

  3. Replication Models: Two major replication models are used in NOSQL sys-
tems: master-slave and master-master replication. Master-slave replication 
requires one copy to be the master copy; all write operations must be applied 
to the master copy and then propagated to the slave copies, usually using 
eventual consistency (the slave copies will eventually be the same as the mas-
ter copy). For read, the master-slave paradigm can be configured in various 
ways. One configuration requires all reads to also be at the master copy, so 
this would be similar to the primary site or primary copy methods of distrib-
uted concurrency control (see Section 23.3.1), with similar advantages and 
disadvantages. Another configuration would allow reads at the slave copies 
but would not guarantee that the values are the latest writes, since writes to 
the slave nodes can be done after they are applied to the master copy. The 
master-master replication allows reads and writes at any of the replicas but 
may not guarantee that reads at nodes that store different copies see the 
same values. Different users may write the same data item concurrently at 
different nodes of the system, so the values of the item will be temporarily 
inconsistent. A reconciliation method to resolve conflicting write operations 
of the same data item at different nodes must be implemented as part of the 
master-master replication scheme.

  4. Sharding of Files: In many NOSQL applications, files (or collections of data 
objects) can have many millions of records (or documents or objects), and 
these records can be accessed concurrently by thousands of users. So it is not 
practical to store the whole file in one node. Sharding (also known as 
 horizontal partitioning ; see Section 23.2) of the file records is often 
employed in NOSQL systems. This serves to distribute the load of accessing 
the file records to multiple nodes. The combination of sharding the file 
records and replicating the shards works in tandem to improve load 
 balancing as well as data availability. We will discuss some of the sharding 
techniques in Sections 24.3 through  24.6 when we discuss specific systems.

  5. High-Performance Data Access: In many NOSQL applications, it is neces-
sary to find individual records or objects (data items) from among the mil-
lions of data records or objects in a file. To achieve this, most systems use 
one of two techniques: hashing or range partitioning on object keys. The 
majority of accesses to an object will be by providing the key value rather 
than by using complex query conditions. The object key is similar to the 
concept of object id (see Section 12.1). In hashing, a hash function h(K) is 
applied to the key K, and the location of the object with key K is determined 
by the value of h(K). In range partitioning, the location is determined via a 
range of key values; for example, location i would hold the objects whose key 
values K are in the range Kimin ≤ K ≤ Kimax. In applications that require 
range queries, where multiple objects within a range of key values are 
retrieved, range partitioned is preferred. Other indexes can also be used to 
locate objects based on attribute conditions different from the key K. We 
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will discuss some of the hashing, partitioning, and indexing techniques in 
Sections 24.3 through  24.6 when we discuss specific systems.

NOSQL characteristics related to data models and query languages.  
NOSQL systems emphasize performance and flexibility over modeling power and 
complex querying. We discuss some of these characteristics next.

  1. Not Requiring a Schema: The flexibility of not requiring a schema is 
achieved in many NOSQL systems by allowing semi-structured, self-
describing data (see Section 13.1). The users can specify a partial schema in 
some systems to improve storage efficiency, but it is not required to have a 
schema in most of the NOSQL systems. As there may not be a schema to 
specify constraints, any constraints on the data would have to be pro-
grammed in the application programs that access the data items. There are 
various languages for describing semistructured data, such as JSON (JavaScript 
Object Notation) and XML (Extensible Markup Language; see Chapter 13). 
JSON is used in several NOSQL systems, but other methods for describing 
semi-structured data can also be used. We will discuss JSON in Section 24.3 
when we present document-based NOSQL systems.

  2. Less Powerful Query Languages: Many applications that use NOSQL sys-
tems may not require a powerful query language such as SQL, because 
search (read) queries in these systems often locate single objects in a single 
file based on their object keys. NOSQL systems typically provide a set of 
functions and operations as a programming API (application programming 
interface), so reading and writing the data objects is accomplished by calling 
the appropriate operations by the programmer. In many cases, the opera-
tions are called CRUD operations, for Create, Read, Update, and Delete. In 
other cases, they are known as SCRUD because of an added Search (or Find) 
operation. Some NOSQL systems also provide a high-level query language, 
but it may not have the full power of SQL; only a subset of SQL querying 
capabilities would be provided. In particular, many NOSQL systems do not 
provide join operations as part of the query language itself; the joins need to 
be implemented in the application programs.

  3. Versioning: Some NOSQL systems provide storage of multiple versions of 
the data items, with the timestamps of when the data version was created. 
We will discuss this aspect in Section 24.5 when we present column-based 
NOSQL systems.

In the next section, we give an overview of the various categories of NOSQL 
systems.

24.1.3 Categories of NOSQL Systems
NOSQL systems have been characterized into four major categories, with some 
additional categories that encompass other types of systems. The most common 
categorization lists the following four major categories:
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  1. Document-based NOSQL systems: These systems store data in the form of 
documents using well-known formats, such as JSON (JavaScript Object 
Notation). Documents are accessible via their document id, but can also be 
accessed rapidly using other indexes.

  2. NOSQL key-value stores: These systems have a simple data model based 
on fast access by the key to the value associated with the key; the value can 
be a record or an object or a document or even have a more complex data 
structure.

  3. Column-based or wide column NOSQL systems: These systems partition a 
table by column into column families (a form of vertical partitioning; see 
Section 23.2), where each column family is stored in its own files. They also 
allow versioning of data values.

  4. Graph-based NOSQL systems: Data is represented as graphs, and related 
nodes can be found by traversing the edges using path expressions.

Additional categories can be added as follows to include some systems that are not 
easily categorized into the above four categories, as well as some other types of sys-
tems that have been available even before the term NOSQL became widely used.

  5. Hybrid NOSQL systems: These systems have characteristics from two or 
more of the above four categories.

  6. Object databases: These systems were discussed in Chapter 12.

  7. XML databases: We discussed XML in Chapter 13.

Even keyword-based search engines store large amounts of data with fast search 
access, so the stored data can be considered as large NOSQL big data stores.

The rest of this chapter is organized as follows. In each of Sections 24.3 through  
24.6, we will discuss one of the four main categories of NOSQL systems, and elabo-
rate further on which characteristics each category focuses on. Before that, in Sec-
tion 24.2, we discuss in more detail the concept of eventual consistency, and we 
discuss the associated CAP theorem.

24.2 The CAP Theorem
When we discussed concurrency control in distributed databases in Section 23.3, 
we assumed that the distributed database system (DDBS) is required to enforce the 
ACID properties (atomicity, consistency, isolation, durability) of transactions that 
are running concurrently (see Section 20.3). In a system with data replication, con-
currency control becomes more complex because there can be multiple copies of 
each data item. So if an update is applied to one copy of an item, it must be applied 
to all other copies in a consistent manner. The possibility exists that one copy of an 
item X is updated by a transaction T1 whereas another copy is updated by a transac-
tion T2, so two inconsistent copies of the same item exist at two different nodes in 
the distributed system. If two other transactions T3 and T4 want to read X, each may 
read a different copy of item X.
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We saw in Section 23.3 that there are distributed concurrency control methods that 
do not allow this inconsistency among copies of the same data item, thus enforcing 
serializability and hence the isolation property in the presence of replication. How-
ever, these techniques often come with high overhead, which would defeat the pur-
pose of creating multiple copies to improve performance and availability in 
distributed database systems such as NOSQL. In the field of distributed systems, 
there are various levels of consistency among replicated data items, from weak con-
sistency to strong consistency. Enforcing serializability is considered the strongest 
form of consistency, but it has high overhead so it can reduce performance of read 
and write operations and hence adversely affect system performance.

The CAP theorem, which was originally introduced as the CAP principle, can be 
used to explain some of the competing requirements in a distributed system with 
replication. The three letters in CAP refer to three desirable properties of distributed 
systems with replicated data: consistency (among replicated copies), availability (of 
the system for read and write operations) and partition tolerance (in the face of the 
nodes in the system being partitioned by a network fault). Availability means that 
each read or write request for a data item will either be processed successfully or will 
receive a message that the operation cannot be completed. Partition tolerance means 
that the system can continue operating if the network connecting the nodes has a 
fault that results in two or more partitions, where the nodes in each partition can 
only communicate among each other. Consistency means that the nodes will have 
the same copies of a replicated data item visible for various transactions.

It is important to note here that the use of the word consistency in CAP and its use 
in ACID do not refer to the same identical concept. In CAP, the term consistency 
refers to the consistency of the values in different copies of the same data item in a 
replicated distributed system. In ACID, it refers to the fact that a transaction will 
not violate the integrity constraints specified on the database schema. However, if 
we consider that the consistency of replicated copies is a specified constraint, then 
the two uses of the term consistency would be related.

The CAP theorem states that it is not possible to guarantee all three of the desirable 
properties—consistency, availability, and partition tolerance—at the same time in a 
distributed system with data replication. If this is the case, then the distributed sys-
tem designer would have to choose two properties out of the three to guarantee. It 
is generally assumed that in many traditional (SQL) applications, guaranteeing 
consistency through the ACID properties is important. On the other hand, in a 
NOSQL distributed data store, a weaker consistency level is often acceptable, and 
guaranteeing the other two properties (availability, partition tolerance) is impor-
tant. Hence, weaker consistency levels are often used in NOSQL system instead of 
guaranteeing serializability. In particular, a form of consistency known as eventual 
consistency is often adopted in NOSQL systems. In Sections 24.3 through  24.6, we 
will discuss some of the consistency models used in specific NOSQL systems.

The next four sections of this chapter discuss the characteristics of the four main cat-
egories of NOSQL systems. We discuss document-based NOSQL systems in Sec-
tion 24.3, and we use MongoDB as a representative system. In Section 24.4, we discuss 
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NOSQL systems known as key-value stores. In Section 24.5, we give an overview of 
column-based NOSQL systems, with a discussion of Hbase as a representative sys-
tem. Finally, we introduce graph-based NOSQL systems in Section 24.6.

24.3  Document-Based NOSQL Systems  
and MongoDB

Document-based or document-oriented NOSQL systems typically store data as 
collections of similar documents. These types of systems are also sometimes known 
as document stores. The individual documents somewhat resemble complex objects 
(see Section 12.3) or XML documents (see Chapter 13), but a major difference 
between document-based systems versus object and object-relational systems and 
XML is that there is no requirement to specify a schema—rather, the documents are 
specified as self-describing data (see Section 13.1). Although the documents in a 
collection should be similar, they can have different data elements (attributes), and 
new documents can have new data elements that do not exist in any of the current 
documents in the collection. The system basically extracts the data element names 
from the self-describing documents in the collection, and the user can request that 
the system create indexes on some of the data elements. Documents can be speci-
fied in various formats, such as XML (see Chapter 13). A popular language to spec-
ify documents in NOSQL systems is JSON (JavaScript Object Notation).

There are many document-based NOSQL systems, including MongoDB and 
CouchDB, among many others. We will give an overview of MongoDB in this sec-
tion. It is important to note that different systems can use different models, lan-
guages, and implementation methods, but giving a complete survey of all 
document-based NOSQL systems is beyond the scope of our presentation.

24.3.1 MongoDB Data Model
MongoDB documents are stored in BSON (Binary JSON) format, which is a varia-
tion of JSON with some additional data types and is more efficient for storage than 
JSON. Individual documents are stored in a collection. We will use a simple exam-
ple based on our COMPANY database that we used throughout this book. The 
operation createCollection is used to create each collection. For example, the fol-
lowing command can be used to create a collection called project to hold PROJECT 
objects from the COMPANY database (see Figures 5.5 and 5.6):

db.createCollection(“project”, { capped : true, size : 1310720, max : 500 } )

The first parameter “project” is the name of the collection, which is followed by an 
optional document that specifies collection options. In our example, the collection 
is capped; this means it has upper limits on its storage space (size) and number of 
documents (max). The capping parameters help the system choose the storage 
options for each collection. There are other collection options, but we will not dis-
cuss them here.
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For our example, we will create another document collection called worker to 
hold information about the EMPLOYEEs who work on each project; for 
example:

db.createCollection(“worker”, { capped : true, size : 5242880, max : 2000 } ) )

Each document in a collection has a unique ObjectId field, called _id, which is 
automatically indexed in the collection unless the user explicitly requests no index 
for the _id field. The value of ObjectId can be specified by the user, or it can be 
system-generated if the user does not specify an _id field for a particular document. 
System-generated ObjectIds have a specific format, which combines the timestamp 
when the object is created (4 bytes, in an internal MongoDB format), the node id 
(3 bytes), the process id (2 bytes), and a counter (3 bytes) into a 16-byte Id value. 
User-generated ObjectsIds can have any value specified by the user as long as it 
uniquely identifies the document and so these Ids are similar to primary keys in 
relational systems.

A collection does not have a schema. The structure of the data fields in documents 
is chosen based on how documents will be accessed and used, and the user can 
choose a normalized design (similar to normalized relational tuples) or a denor-
malized design (similar to XML documents or complex objects). Interdocument 
references can be specified by storing in one document the ObjectId or ObjectIds of 
other related documents. Figure 24.1(a) shows a simplified MongoDB document 
showing some of the data from Figure 5.6 from the COMPANY database example 
that is used throughout the book. In our example, the _id values are user-defined, 
and the documents whose _id starts with P (for project) will be stored in the “project” 
collection, whereas those whose _id starts with W (for worker) will be stored in the 
“worker” collection.

In Figure 24.1(a), the workers information is embedded in the project document; so 
there is no need for the “worker” collection. This is known as the denormalized pat-
tern, which is similar to creating a complex object (see Chapter 12) or an XML 
document (see Chapter 13). A list of values that is enclosed in square brackets [ … ] 
within a document represents a field whose value is an array.

Another option is to use the design in Figure 24.1(b), where worker references are 
embedded in the project document, but the worker documents themselves are 
stored in a separate “worker” collection. A third option in Figure 24.1(c) would 
use a normalized design, similar to First Normal Form relations (see Sec-
tion 14.3.4). The choice of which design option to use depends on how the data 
will be accessed.

It is important to note that the simple design in Figure 24.1(c) is not the general nor-
malized design for a many-to-many relationship, such as the one between employees 
and projects; rather, we would need three collections for “project”, “employee”, and 
“works_on”, as we discussed in detail in Section 9.1. Many of the design tradeoffs 
that were discussed in Chapters 9 and 14 (for first normal form relations and for ER-
to-relational mapping options), and Chapters 12 and 13 (for complex objects and 
XML) are applicable for choosing the appropriate design for document structures 
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(a) project document with an array of embedded workers:
 {
  _id:    “P1”,
  Pname:   “ProductX”,
  Plocation:  “Bellaire”,
  Workers: [ 
     { Ename: “John Smith”,
         Hours: 32.5
     },
     { Ename: “Joyce English”,
         Hours: 20.0
     }
    ]
 );

(b) project document with an embedded array of worker ids:

 {
  _id:    “P1”,
  Pname:   “ProductX”,
  Plocation:  “Bellaire”,
  WorkerIds:  [ “W1”, “W2” ]
 }
  { _id:   “W1”,
  Ename:   “John Smith”,
  Hours:   32.5
 }
  { _id:   “W2”,
  Ename:   “Joyce English”,
  Hours:   20.0
 }

(c)  normalized project and worker documents (not a fully normalized design  
for M:N relationships):

 {
  _id:    “P1”,
  Pname:   “ProductX”,
  Plocation:  “Bellaire”
 }
 { _id:    “W1”,
  Ename:   “John Smith”,
  ProjectId:  “P1”,
  Hours:   32.5
 }

Figure 24.1 
Example of simple 
documents in  
MongoDB.  
(a) Denormalized  
document design  
with embedded  
subdocuments.  
(b) Embedded array of 
document references. 
(c) Normalized  
documents.
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and document collections, so we will not repeat the discussions here. In the design 
in Figure 24.1(c), an EMPLOYEE who works on several projects would be repre-
sented by multiple worker documents with different _id values; each document 
would represent the employee as worker for a particular project. This is similar to 
the design decisions for XML schema design (see Section 13.6). However, it is again 
important to note that the typical document-based system does not have a schema, 
so the design rules would have to be followed whenever individual documents are 
inserted into a collection.

24.3.2 MongoDB CRUD Operations
MongoDb has several CRUD operations, where CRUD stands for (create, read, 
update, delete). Documents can be created and inserted into their collections using 
the insert operation, whose format is:

db.<collection_name>.insert(<document(s)>)

The parameters of the insert operation can include either a single document or an 
array of documents, as shown in Figure 24.1(d). The delete operation is called 
remove, and the format is:

db.<collection_name>.remove(<condition>)

The documents to be removed from the collection are specified by a Boolean con-
dition on some of the fields in the collection documents. There is also an update 
operation, which has a condition to select certain documents, and a $set clause to 
specify the update. It is also possible to use the update operation to replace an 
existing document with another one but keep the same ObjectId.

For read queries, the main command is called find, and the format is:

db.<collection_name>.find(<condition>)

General Boolean conditions can be specified as <condition>, and the documents in 
the collection that return true are selected for the query result. For a full discussion 
of the MongoDb CRUD operations, see the MongoDB online documentation in the 
chapter references.

 { _id:    “W2”,
  Ename:   “Joyce English”,
  ProjectId:  “P1”,
  Hours:   20.0
 }

(d) inserting the documents in (c) into their collections “project” and “worker”:
 db.project.insert( { _id: “P1”, Pname: “ProductX”, Plocation: “Bellaire” } )
 db.worker.insert( [ { _id: “W1”, Ename: “John Smith”, ProjectId: “P1”, Hours: 32.5 },
      { _id: “W2”, Ename: “Joyce English”, ProjectId: “P1”,  

 Hours: 20.0 } ] )

Figure 24.1 
(continued)
Example of simple  
documents in
MongoDB. (d) Inserting 
the documents in 
 Figure 24.1(c) into 
their collections.
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24.3.3 MongoDB Distributed Systems Characteristics
Most MongoDB updates are atomic if they refer to a single document, but MongoDB 
also provides a pattern for specifying transactions on multiple documents. Since 
MongoDB is a distributed system, the two-phase commit method is used to ensure 
atomicity and consistency of multidocument transactions. We discussed the atomi-
city and consistency properties of transactions in Section 20.3, and the two-phase 
commit protocol in Section 22.6.

Replication in MongoDB. The concept of replica set is used in MongoDB to create 
multiple copies of the same data set on different nodes in the distributed system, and 
it uses a variation of the master-slave approach for replication. For example, suppose 
that we want to replicate a particular document collection C. A replica set will have 
one primary copy of the collection C stored in one node N1, and at least one 
 secondary copy (replica) of C stored at another node N2. Additional copies can be 
stored in nodes N3, N4, etc., as needed, but the cost of storage and update (write) 
increases with the number of replicas. The total number of participants in a replica set 
must be at least three, so if only one secondary copy is needed, a participant in the 
 replica set known as an arbiter must run on the third node N3. The arbiter does not 
hold a replica of the collection but participates in elections to choose a new primary if 
the node storing the current primary copy fails. If the total number of members in a rep-
lica set is n (one primary plus i secondaries, for a total of n = i + 1), then n must be an odd 
number; if it is not, an arbiter is added to ensure the election process works correctly if 
the primary fails. We discussed elections in distributed systems in Section 23.3.1.

In MongoDB replication, all write operations must be applied to the primary copy 
and then propagated to the secondaries. For read operations, the user can choose 
the particular read preference for their application. The default read preference 
processes all reads at the primary copy, so all read and write operations are per-
formed at the primary node. In this case, secondary copies are mainly to make sure 
that the system continues operation if the primary fails, and MongoDB can ensure 
that every read request gets the latest document value. To increase read perfor-
mance, it is possible to set the read preference so that read requests can be processed 
at any replica (primary or secondary); however, a read at a secondary is not guaran-
teed to get the latest version of a document because there can be a delay in propa-
gating writes from the primary to the secondaries.

Sharding in MongoDB. When a collection holds a very large number of docu-
ments or requires a large storage space, storing all the documents in one node can 
lead to performance problems, particularly if there are many user operations 
accessing the documents concurrently using various CRUD operations. Sharding 
of the documents in the collection—also known as horizontal partitioning—
divides the documents into disjoint partitions known as shards. This allows the 
system to add more nodes as needed by a process known as horizontal scaling of 
the distributed system (see Section 23.1.4), and to store the shards of the collection 
on different nodes to achieve load balancing. Each node will process only those 
operations pertaining to the documents in the shard stored at that node. Also, each 
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shard will contain fewer documents than if the entire collection were stored at one 
node, thus further improving performance.

There are two ways to partition a collection into shards in MongoDB—range 
 partitioning and hash partitioning. Both require that the user specify a particular 
document field to be used as the basis for partitioning the documents into shards. 
The partitioning field—known as the shard key in MongoDB—must have two 
characteristics: it must exist in every document in the collection, and it must have an 
index. The ObjectId can be used, but any other field possessing these two character-
istics can also be used as the basis for sharding. The values of the shard key are 
divided into chunks either through range partitioning or hash partitioning, and the 
documents are partitioned based on the chunks of shard key values.

Range partitioning creates the chunks by specifying a range of key values; for example, 
if the shard key values ranged from one to ten million, it is possible to create ten 
ranges—1 to 1,000,000; 1,000,001 to 2,000,000; … ; 9,000,001 to 10,000,000—and 
each chunk would contain the key values in one range. Hash partitioning applies a 
hash function h(K) to each shard key K, and the partitioning of keys into chunks is 
based on the hash values (we discussed hashing and its advantages and disadvantages 
in Section 16.8). In general, if range queries are commonly applied to a collection (for 
example, retrieving all documents whose shard key value is between 200 and 400), 
then range partitioning is preferred because each range query will typically be submit-
ted to a single node that contains all the required documents in one shard. If most 
searches retrieve one document at a time, hash partitioning may be preferable because 
it randomizes the distribution of shard key values into chunks.

When sharding is used, MongoDB queries are submitted to a module called the query 
router, which keeps track of which nodes contain which shards based on the particu-
lar partitioning method used on the shard keys. The query (CRUD operation) will be 
routed to the nodes that contain the shards that hold the documents that the query is 
requesting. If the system cannot determine which shards hold the required docu-
ments, the query will be submitted to all the nodes that hold shards of the collection. 
Sharding and replication are used together; sharding focuses on improving perfor-
mance via load balancing and horizontal scalability, whereas replication focuses on 
ensuring system availability when certain nodes fail in the distributed system.

There are many additional details about the distributed system architecture and com-
ponents of MongoDB, but a full discussion is outside the scope of our presentation. 
MongoDB also provides many other services in areas such as system administration, 
indexing, security, and data aggregation, but we will not discuss these features here. 
Full documentation of MongoDB is available online (see the bibliographic notes).

24.4 NOSQL Key-Value Stores
Key-value stores focus on high performance, availability, and scalability by storing 
data in a distributed storage system. The data model used in key-value stores is rela-
tively simple, and in many of these systems, there is no query language but rather a 
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set of operations that can be used by the application programmers. The key is a 
unique identifier associated with a data item and is used to locate this data item 
rapidly. The value is the data item itself, and it can have very different formats for 
different key-value storage systems. In some cases, the value is just a string of bytes 
or an array of bytes, and the application using the key-value store has to interpret 
the structure of the data value. In other cases, some standard formatted data is 
allowed; for example, structured data rows (tuples) similar to relational data, or 
semistructured data using JSON or some other self-describing data format. Differ-
ent key-value stores can thus store unstructured, semistructured, or structured data 
items (see Section 13.1). The main characteristic of key-value stores is the fact that 
every value (data item) must be associated with a unique key, and that retrieving the 
value by supplying the key must be very fast.

There are many systems that fall under the key-value store label, so rather than pro-
vide a lot of details on one particular system, we will give a brief introductory over-
view for some of these systems and their characteristics.

24.4.1 DynamoDB Overview
The DynamoDB system is an Amazon product and is available as part of Amazon’s 
AWS/SDK platforms (Amazon Web Services/Software Development Kit). It can be 
used as part of Amazon’s cloud computing services, for the data storage component.

DynamoDB data model. The basic data model in DynamoDB uses the concepts 
of tables, items, and attributes. A table in DynamoDB does not have a schema; it 
holds a collection of self-describing items. Each item will consist of a number of 
(attribute, value) pairs, and attribute values can be single-valued or multivalued. So 
basically, a table will hold a collection of items, and each item is a self-describing 
record (or object). DynamoDB also allows the user to specify the items in JSON for-
mat, and the system will convert them to the internal storage format of DynamoDB.

When a table is created, it is required to specify a table name and a primary key; 
the primary key will be used to rapidly locate the items in the table. Thus, the pri-
mary key is the key and the item is the value for the DynamoDB key-value store. 
The primary key attribute must exist in every item in the table. The primary key can 
be one of the following two types:

 ■ A single attribute. The DynamoDB system will use this attribute to build a 
hash index on the items in the table. This is called a hash type primary key. 
The items are not ordered in storage on the value of the hash attribute.

 ■ A pair of attributes. This is called a hash and range type primary key. The 
primary key will be a pair of attributes (A, B): attribute A will be used for hash-
ing, and because there will be multiple items with the same value of A, the B 
values will be used for ordering the records with the same A value. A table 
with this type of key can have additional secondary indexes defined on its 
attributes. For example, if we want to store multiple versions of some type of 
items in a table, we could use ItemID as hash and Date or Timestamp (when 
the version was created) as range in a hash and range type primary key.
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DynamoDB Distributed Characteristics. Because DynamoDB is proprietary, in 
the next subsection we will discuss the mechanisms used for replication, sharding, 
and other distributed system concepts in an open source key-value system called 
Voldemort. Voldemort is based on many of the techniques proposed for DynamoDB.

24.4.2 Voldemort Key-Value Distributed Data Store
Voldemort is an open source system available through Apache 2.0 open source licens-
ing rules. It is based on Amazon’s DynamoDB. The focus is on high performance and 
horizontal scalability, as well as on providing replication for high availability and 
sharding for improving latency (response time) of read and write requests. All three 
of those features—replication, sharding, and horizontal scalability—are realized 
through a technique to distribute the key-value pairs among the nodes of a distrib-
uted cluster; this distribution is known as consistent hashing. Voldemort has been 
used by LinkedIn for data storage. Some of the features of Voldemort are as follows:

 ■ Simple basic operations. A collection of (key, value) pairs is kept in a 
Voldemort store. In our discussion, we will assume the store is called s. The 
basic interface for data storage and retrieval is very simple and includes 
three operations: get, put, and delete. The operation s.put(k, v) inserts an 
item as a key-value pair with key k and value v. The operation s.delete(k) 
deletes the item whose key is k from the store, and the operation v = s.get(k) 
retrieves the value v associated with key k. The application can use these 
basic operations to build its own requirements. At the basic storage level, 
both keys and values are arrays of bytes (strings).

 ■ High-level formatted data values. The values v in the (k, v) items can be 
specified in JSON (JavaScript Object Notation), and the system will convert 
between JSON and the internal storage format. Other data object formats can 
also be specified if the application provides the conversion (also known as 
serialization) between the user format and the storage format as a Serializer 
class. The Serializer class must be provided by the user and will include oper-
ations to convert the user format into a string of bytes for storage as a value, 
and to convert back a string (array of bytes) retrieved via s.get(k) into the user 
format. Voldemort has some built-in serializers for formats other than JSON.

 ■ Consistent hashing for distributing (key, value) pairs. A variation of the 
data distribution algorithm known as consistent hashing is used in Volde-
mort for data distribution among the nodes in the distributed cluster of 
nodes. A hash function h(k) is applied to the key k of each (k, v) pair, and 
h(k) determines where the item will be stored. The method assumes that 
h(k) is an integer value, usually in the range 0 to Hmax = 2n−1, where n is 
chosen based on the desired range for the hash values. This method is best 
visualized by considering the range of all possible integer hash values 0 to 
Hmax to be evenly distributed on a circle (or ring). The nodes in the distrib-
uted system are then also located on the same ring; usually each node will 
have several locations on the ring (see Figure 24.2). The positioning of the 
points on the ring that represent the nodes is done in a psuedorandom manner. 
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An item (k, v) will be stored on the node whose position in the ring follows 
the position of h(k) on the ring in a clockwise direction. In Figure 24.2(a), we 
assume there are three nodes in the distributed cluster labeled A, B, and C, 
where node C has a bigger capacity than nodes A and B. In a typical system, 
there will be many more nodes. On the circle, two instances each of A and B 
are placed, and three instances of C (because of its higher capacity), in a 
pseudorandom manner to cover the circle. Figure 24.2(a) indicates which 
(k, v) items are placed in which nodes based on the h(k) values.
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Example of consistent 
hashing. (a) Ring 
 having three nodes A, 
B, and C, with C having 
greater capacity. The 
h(K) values that map to 
the circle points in 
range 1 have their (k, v) 
items stored in node A, 
range 2 in node B, 
range 3 in node C. 
(b) Adding a node D to 
the ring. Items in 
range 4 are moved to 
the node D from node 
B (range 2 is reduced) 
and node C (range 3 is 
reduced).
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 ■ The h(k) values that fall in the parts of the circle marked as range 1 in Fig-
ure 24.2(a) will have their (k, v) items stored in node A because that is the node 
whose label follows h(k) on the ring in a clockwise direction; those in range 2 
are stored in node B; and those in range 3 are stored in node C. This scheme 
allows horizontal scalability because when a new node is added to the distrib-
uted system, it can be added in one or more locations on the ring depending 
on the node capacity. Only a limited percentage of the (k, v) items will be reas-
signed to the new node from the existing nodes based on the consistent hash-
ing placement algorithm. Also, those items assigned to the new node may not 
all come from only one of the existing nodes because the new node can have 
multiple locations on the ring. For example, if a node D is added and it has two 
placements on the ring as shown in Figure 24.2(b), then some of the items 
from nodes B and C would be moved to node D. The items whose keys hash to 
range 4 on the circle (see Figure 24.2(b)) would be migrated to node D. This 
scheme also allows replication by placing the number of specified replicas of 
an item on successive nodes on the ring in a clockwise direction. The sharding 
is built into the method, and different items in the store (file) are located on 
different nodes in the distributed cluster, which means the items are horizon-
tally partitioned (sharded) among the nodes in the distributed system. When 
a node fails, its load of data items can be distributed to the other existing nodes 
whose labels follow the labels of the failed node in the ring. And nodes with 
higher capacity can have more locations on the ring, as illustrated by node C 
in Figure 24.2(a), and thus store more items than smaller-capacity nodes.

 ■ Consistency and versioning. Voldemort uses a method similar to the one 
developed for DynamoDB for consistency in the presence of replicas. Basi-
cally, concurrent write operations are allowed by different processes so there 
could exist two or more different values associated with the same key at dif-
ferent nodes when items are replicated. Consistency is achieved when the 
item is read by using a technique known as versioning and read repair. Con-
current writes are allowed, but each write is associated with a vector clock 
value. When a read occurs, it is possible that different versions of the same 
value (associated with the same key) are read from different nodes. If the 
system can reconcile to a single final value, it will pass that value to the read; 
otherwise, more than one version can be passed back to the application, 
which will reconcile the various versions into one version based on the 
application semantics and give this reconciled value back to the nodes.

24.4.3 Examples of Other Key-Value Stores
In this section, we briefly review three other key-value stores. It is important to note 
that there are many systems that can be classified in this category, and we can only 
mention a few of these systems.

Oracle key-value store. Oracle has one of the well-known SQL relational data-
base systems, and Oracle also offers a system based on the key-value store concept; 
this system is called the Oracle NoSQL Database.
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Redis key-value cache and store.  Redis differs from the other systems dis-
cussed here because it caches its data in main memory to further improve perfor-
mance. It offers master-slave replication and high availability, and it also offers 
persistence by backing up the cache to disk.

Apache Cassandra.  Cassandra is a NOSQL system that is not easily categorized 
into one category; it is sometimes listed in the column-based NOSQL category (see 
Section 24.5) or in the key-value category. If offers features from several NOSQL 
categories and is used by Facebook as well as many other customers.

24.5  Column-Based or Wide Column  
NOSQL Systems

Another category of NOSQL systems is known as column-based or wide column 
systems. The Google distributed storage system for big data, known as BigTable, is 
a well-known example of this class of NOSQL systems, and it is used in many 
Google applications that require large amounts of data storage, such as Gmail. Big-
Table uses the Google File System (GFS) for data storage and distribution. An 
open source system known as Apache Hbase is somewhat similar to Google Big-
Table, but it typically uses HDFS (Hadoop Distributed File System) for data stor-
age. HDFS is used in many cloud computing applications, as we shall discuss in 
Chapter 25. Hbase can also use Amazon’s Simple Storage System (known as S3) 
for data storage. Another well-known example of column-based NOSQL systems is 
Cassandra, which we discussed briefly in Section 24.4.3 because it can also be char-
acterized as a key-value store. We will focus on Hbase in this section as an example 
of this category of NOSQL systems.

BigTable (and Hbase) is sometimes described as a sparse multidimensional distrib-
uted persistent sorted map, where the word map means a collection of (key, value) 
pairs (the key is mapped to the value). One of the main differences that distinguish 
column-based systems from key-value stores (see Section 24.4) is the nature of the 
key. In column-based systems such as Hbase, the key is multidimensional and so 
has several components: typically, a combination of table name, row key, column, 
and timestamp. As we shall see, the column is typically composed of two compo-
nents: column family and column qualifier. We discuss these concepts in more 
detail next as they are realized in Apache Hbase.

24.5.1 Hbase Data Model and Versioning
Hbase data model. The data model in Hbase organizes data using the concepts 
of namespaces, tables, column families, column qualifiers, columns, rows, and data 
cells. A column is identified by a combination of (column family:column qualifier). 
Data is stored in a self-describing form by associating columns with data values, 
where data values are strings. Hbase also stores multiple versions of a data item, 
with a timestamp associated with each version, so versions and timestamps are also 
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part of the Hbase data model (this is similar to the concept of attribute versioning in 
temporal databases, which we shall discuss in Section 26.2). As with other NOSQL 
systems, unique keys are associated with stored data items for fast access, but the 
keys identify cells in the storage system. Because the focus is on high performance 
when storing huge amounts of data, the data model includes some storage-related 
concepts. We discuss the Hbase data modeling concepts and define the terminol-
ogy next. It is important to note that the use of the words table, row, and column is 
not identical to their use in relational databases, but the uses are related.

 ■ Tables and Rows. Data in Hbase is stored in tables, and each table has a 
table name. Data in a table is stored as self-describing rows. Each row has a 
unique row key, and row keys are strings that must have the property that 
they can be lexicographically ordered, so characters that do not have a lexi-
cographic order in the character set cannot be used as part of a row key.

 ■ Column Families, Column Qualifiers, and Columns. A table is associated 
with one or more column families. Each column family will have a name, 
and the column families associated with a table must be specified when the 
table is created and cannot be changed later. Figure 24.3(a) shows how a table 
may be created; the table name is followed by the names of the column fami-
lies associated with the table. When the data is loaded into a table, each col-
umn family can be associated with many column qualifiers, but the column 
qualifiers are not specified as part of creating a table. So the column qualifiers 
make the model a self-describing data model because the qualifiers can be 
dynamically specified as new rows are created and inserted into the table. A 
column is specified by a combination of ColumnFamily:ColumnQualifier. 
Basically, column families are a way of grouping together related columns 
(attributes in relational terminology) for storage purposes, except that the 
column qualifier names are not specified during table creation. Rather, they 
are specified when the data is created and stored in rows, so the data is self-
describing since any column qualifier name can be used in a new row of data 
(see Figure 24.3(b)). However, it is important that the application program-
mers know which column qualifiers belong to each column family, even 
though they have the flexibility to create new column qualifiers on the fly 
when new data rows are created. The concept of column family is somewhat 
similar to vertical partitioning (see Section 23.2), because columns (attri-
butes) that are accessed together because they belong to the same column 
family are stored in the same files. Each column family of a table is stored in 
its own files using the HDFS file system.

 ■ Versions and Timestamps. Hbase can keep several versions of a data item, 
along with the timestamp associated with each version. The timestamp is a 
long integer number that represents the system time when the version was 
created, so newer versions have larger timestamp values. Hbase uses mid-
night ‘January 1, 1970 UTC’ as timestamp value zero, and uses a long integer 
that measures the number of milliseconds since that time as the system 
timestamp value (this is similar to the value returned by the Java utility  
java.util.Date.getTime() and is also used in MongoDB). It is also possible for 
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the user to define the timestamp value explicitly in a Date format rather than 
using the system-generated timestamp.

 ■ Cells. A cell holds a basic data item in Hbase. The key (address) of a cell is 
specified by a combination of (table, rowid, columnfamily, columnqualifier, 
timestamp). If timestamp is left out, the latest version of the item is retrieved 
unless a default number of versions is specified, say the latest three versions. 
The default number of versions to be retrieved, as well as the default number 
of versions that the system needs to keep, are parameters that can be speci-
fied during table creation.

 ■ Namespaces. A namespace is a collection of tables. A namespace basically 
specifies a collection of one or more tables that are typically used together by 
user applications, and it corresponds to a database that contains a collection 
of tables in relational terminology.

(a) creating a table:
 create ‘EMPLOYEE’, ‘Name’, ‘Address’, ‘Details’
(b) inserting some row data in the EMPLOYEE table:
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Fname’, ‘John’
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Lname’, ‘Smith’
 put ‘EMPLOYEE’, ‘row1’, ‘Name:Nickname’, ‘Johnny’
 put ‘EMPLOYEE’, ‘row1’, ‘Details:Job’, ‘Engineer’
 put ‘EMPLOYEE’, ‘row1’, ‘Details:Review’, ‘Good’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:Fname’, ‘Alicia’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:Lname’, ‘Zelaya’
 put ‘EMPLOYEE’, ‘row2’, ‘Name:MName’, ‘Jennifer’
 put ‘EMPLOYEE’, ‘row2’, ‘Details:Job’, ‘DBA’
 put ‘EMPLOYEE’, ‘row2’, ‘Details:Supervisor’, ‘James Borg’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Fname’, ‘James’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Minit’, ‘E’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Lname’, ‘Borg’
 put ‘EMPLOYEE’, ‘row3’, ‘Name:Suffix’, ‘Jr.’
 put ‘EMPLOYEE’, ‘row3’, ‘Details:Job’, ‘CEO’
 put ‘EMPLOYEE’, ‘row3’, ‘Details:Salary’, ‘1,000,000’

(c) Some Hbase basic CRUD operations:
 Creating a table: create <tablename>, <column family>, <column family>, …
 Inserting Data: put <tablename>, <rowid>, <column family>:<column qualifier>, <value>
 Reading Data (all data in a table): scan <tablename>
 Retrieve Data (one item): get <tablename>,<rowid>

Figure 24.3 
Examples in Hbase. (a) Creating a table called EMPLOYEE with three column families: Name, Address, and Details. 
(b) Inserting some in the EMPLOYEE table; different rows can have different self-describing column qualifiers 
(Fname, Lname, Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor, Salary  
for column family Details). (c) Some CRUD operations of Hbase.
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24.5.2 Hbase CRUD Operations
Hbase has low-level CRUD (create, read, update, delete) operations, as in many of 
the NOSQL systems. The formats of some of the basic CRUD operations in Hbase 
are shown in Figure 24.3(c).

Hbase only provides low-level CRUD operations. It is the responsibility of the 
application programs to implement more complex operations, such as joins 
between rows in different tables. The create operation creates a new table and spec-
ifies one or more column families associated with that table, but it does not specify 
the column qualifiers, as we discussed earlier. The put operation is used for insert-
ing new data or new versions of existing data items. The get operation is for retriev-
ing the data associated with a single row in a table, and the scan operation retrieves 
all the rows.

24.5.3 Hbase Storage and Distributed System Concepts
Each Hbase table is divided into a number of regions, where each region will hold a 
range of the row keys in the table; this is why the row keys must be lexicographically 
ordered. Each region will have a number of stores, where each column family is 
assigned to one store within the region. Regions are assigned to region servers 
(storage nodes) for storage. A master server (master node) is responsible for moni-
toring the region servers and for splitting a table into regions and assigning regions 
to region servers.

Hbase uses the Apache Zookeeper open source system for services related to man-
aging the naming, distribution, and synchronization of the Hbase data on the dis-
tributed Hbase server nodes, as well as for coordination and replication services. 
Hbase also uses Apache HDFS (Hadoop Distributed File System) for distributed 
file services. So Hbase is built on top of both HDFS and Zookeeper. Zookeeper can 
itself have several replicas on several nodes for availability, and it keeps the data it 
needs in main memory to speed access to the master servers and region servers.

We will not cover the many additional details about the distributed system architecture 
and components of Hbase; a full discussion is outside the scope of our presentation. Full 
documentation of Hbase is available online (see the bibliographic notes).

24.6 NOSQL Graph Databases and Neo4j
Another category of NOSQL systems is known as graph databases or graph-
oriented NOSQL systems. The data is represented as a graph, which is a collection 
of vertices (nodes) and edges. Both nodes and edges can be labeled to indicate the 
types of entities and relationships they represent, and it is generally possible to 
store data associated with both individual nodes and individual edges. Many sys-
tems can be categorized as graph databases. We will focus our discussion on one 
particular system, Neo4j, which is used in many applications. Neo4j is an open 
source system, and it is implemented in Java. We will discuss the Neo4j data model 
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in Section 24.6.1, and give an introduction to the Neo4j querying capabilities in 
Section 24.6.2. Section 24.6.3 gives an overview of the distributed systems and 
some other characteristics of Neo4j.

24.6.1 Neo4j Data Model
The data model in Neo4j organizes data using the concepts of nodes and relation-
ships. Both nodes and relationships can have properties, which store the data items 
associated with nodes and relationships. Nodes can have labels; the nodes that have 
the same label are grouped into a collection that identifies a subset of the nodes in 
the database graph for querying purposes. A node can have zero, one, or several 
labels. Relationships are directed; each relationship has a start node and end node as 
well as a relationship type, which serves a similar role to a node label by identifying 
similar relationships that have the same relationship type. Properties can be speci-
fied via a map pattern, which is made of one or more “name : value” pairs enclosed 
in curly brackets; for example {Lname : ‘Smith’, Fname : ‘John’, Minit : ‘B’}.

In conventional graph theory, nodes and relationships are generally called vertices 
and edges. The Neo4j graph data model somewhat resembles how data is repre-
sented in the ER and EER models (see Chapters 3 and  4) , but with some notable 
differences. Comparing the Neo4j graph model with ER/EER concepts, nodes cor-
respond to entities, node labels correspond to entity types and subclasses, relation-
ships correspond to relationship instances, relationship types correspond to 
relationship types, and properties correspond to attributes. One notable difference 
is that a relationship is directed in Neo4j, but is not in ER/EER. Another is that a 
node may have no label in Neo4j, which is not allowed in ER/EER because every 
entity must belong to an entity type. A third crucial difference is that the graph 
model of Neo4j is used as a basis for an actual high-performance distributed data-
base system whereas the ER/EER model is mainly used for database design.

Figure 24.4(a) shows how a few nodes can be created in Neo4j. There are various 
ways in which nodes and relationships can be created; for example, by calling appro-
priate Neo4j operations from various Neo4j APIs. We will just show the high-level 
syntax for creating nodes and relationships; to do so, we will use the Neo4j CREATE 
command, which is part of the high-level declarative query language Cypher. Neo4j 
has many options and variations for creating nodes and relationships using various 
scripting interfaces, but a full discussion is outside the scope of our presentation.

 ■ Labels and properties. When a node is created, the node label can be speci-
fied. It is also possible to create nodes without any labels. In Figure 24.4(a), the 
node labels are EMPLOYEE, DEPARTMENT, PROJECT, and LOCATION, 
and the created nodes correspond to some of the data from the COMPANY 
database in Figure 5.6 with a few modifications; for example, we use EmpId 
instead of SSN, and we only include a small subset of the data for illustration 
purposes. Properties are enclosed in curly brackets { … }. It is possible that 
some nodes have multiple labels; for example the same node can be labeled as 
PERSON and EMPLOYEE and MANAGER by listing all the labels separated 
by the colon symbol as follows: PERSON:EMPLOYEE:MANAGER. Having 
multiple labels is similar to an entity belonging to an entity type (PERSON) 
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plus some subclasses of PERSON (namely EMPLOYEE and MANAGER) in 
the EER model (see Chapter 4) but can also be used for other purposes.

 ■ Relationships and relationship types. Figure 24.4(b) shows a few example 
relationships in Neo4j based on the COMPANY database in Figure 5.6. 
The → specifies the direction of the relationship, but the relationship can be 
traversed in either direction. The relationship types (labels) in Figure 24.4(b) 
are WorksFor, Manager, LocatedIn, and WorksOn; only relationships with 
the relationship type WorksOn have properties (Hours) in Figure 24.4(b).

 ■ Paths. A path specifies a traversal of part of the graph. It is typically used as 
part of a query to specify a pattern, where the query will retrieve from the 
graph data that matches the pattern. A path is typically specified by a start 
node, followed by one or more relationships, leading to one or more end 
nodes that satisfy the pattern. It is somewhat similar to the concepts of path 
expressions that we discussed in Chapters 12 and  13 in the context of query 
languages for object databases (OQL) and XML (XPath and XQuery).

 ■ Optional Schema. A schema is optional in Neo4j. Graphs can be created 
and used without a schema, but in Neo4j version 2.0, a few schema-related 
functions were added. The main features related to schema creation involve 
creating indexes and constraints based on the labels and properties. For 
example, it is possible to create the equivalent of a key constraint on a prop-
erty of a label, so all nodes in the collection of nodes associated with the label 
must have unique values for that property.

 ■ Indexing and node identifiers. When a node is created, the Neo4j system 
creates an internal unique system-defined identifier for each node. To 
retrieve individual nodes using other properties of the nodes efficiently, the 
user can create indexes for the collection of nodes that have a particular 
label. Typically, one or more of the properties of the nodes in that collection 
can be indexed. For example, Empid can be used to index nodes with the 
EMPLOYEE label, Dno to index the nodes with the DEPARTMENT label, 
and Pno to index the nodes with the PROJECT label.

24.6.2 The Cypher Query Language of Neo4j
Neo4j has a high-level query language, Cypher. There are declarative commands for 
creating nodes and relationships (see Figures 24.4(a) and (b)), as well as for finding 
nodes and relationships based on specifying patterns. Deletion and modification of 
data is also possible in Cypher. We introduced the CREATE command in the previous 
section, so we will now give a brief overview of some of the other features of Cypher.

A Cypher query is made up of clauses. When a query has several clauses, the result 
from one clause can be the input to the next clause in the query. We will give a fla-
vor of the language by discussing some of the clauses using examples. Our presenta-
tion is not meant to be a detailed presentation on Cypher, just an introduction to 
some of the languages features. Figure 24.4(c) summarizes some of the main clauses 
that can be part of a Cyber query. The Cyber language can specify complex queries 
and updates on a graph database. We will give a few of examples to illustrate simple 
Cyber queries in Figure 24.4(d).



906 Chapter 24 NOSQL Databases and Big Data Storage Systems

(a) creating some nodes for the COMPANY data (from Figure 5.6):
 CREATE (e1: EMPLOYEE, {Empid: ‘1’, Lname: ‘Smith’, Fname: ‘John’, Minit: ‘B’})
 CREATE (e2: EMPLOYEE, {Empid: ‘2’, Lname: ‘Wong’, Fname: ‘Franklin’})
 CREATE (e3: EMPLOYEE, {Empid: ‘3’, Lname: ‘Zelaya’, Fname: ‘Alicia’})
 CREATE (e4: EMPLOYEE, {Empid: ‘4’, Lname: ‘Wallace’, Fname: ‘Jennifer’, Minit: ‘S’})
 …
 CREATE (d1: DEPARTMENT, {Dno: ‘5’, Dname: ‘Research’})
 CREATE (d2: DEPARTMENT, {Dno: ‘4’, Dname: ‘Administration’})
 …
 CREATE (p1: PROJECT, {Pno: ‘1’, Pname: ‘ProductX’})
 CREATE (p2: PROJECT, {Pno: ‘2’, Pname: ‘ProductY’})
 CREATE (p3: PROJECT, {Pno: ‘10’, Pname: ‘Computerization’})
 CREATE (p4: PROJECT, {Pno: ‘20’, Pname: ‘Reorganization’})
 …
 CREATE (loc1: LOCATION, {Lname: ‘Houston’})
 CREATE (loc2: LOCATION, {Lname: ‘Stafford’})
 CREATE (loc3: LOCATION, {Lname: ‘Bellaire’})
 CREATE (loc4: LOCATION, {Lname: ‘Sugarland’})
 …

(b) creating some relationships for the COMPANY data (from Figure 5.6):
 CREATE (e1) – [ : WorksFor ] –> (d1)
 CREATE (e3) – [ : WorksFor ] –> (d2)
 …
 CREATE (d1) – [ : Manager ] –> (e2)
 CREATE (d2) – [ : Manager ] –> (e4)
 …
 CREATE (d1) – [ : LocatedIn ] –> (loc1)
 CREATE (d1) – [ : LocatedIn ] –> (loc3)
 CREATE (d1) – [ : LocatedIn ] –> (loc4)
 CREATE (d2) – [ : LocatedIn ] –> (loc2)
 …
 CREATE (e1) – [ : WorksOn, {Hours: ‘32.5’} ] –> (p1)
 CREATE (e1) – [ : WorksOn, {Hours: ‘7.5’} ] –> (p2)
 CREATE (e2) – [ : WorksOn, {Hours: ‘10.0’} ] –> (p1)
 CREATE (e2) – [ : WorksOn, {Hours: 10.0} ] –> (p2)
 CREATE (e2) – [ : WorksOn, {Hours: ‘10.0’} ] –> (p3)
 CREATE (e2) – [ : WorksOn, {Hours: 10.0} ] –> (p4)
 …

Figure 24.4 
Examples in Neo4j using the Cypher language. (a) Creating some nodes. (b) Creating some relationships.
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(c) Basic simplified syntax of some common Cypher clauses:
 Finding nodes and relationships that match a pattern: MATCH <pattern>
 Specifying aggregates and other query variables: WITH <specifications>
 Specifying conditions on the data to be retrieved: WHERE <condition>
 Specifying the data to be returned: RETURN <data>
 Ordering the data to be returned: ORDER BY <data>
 Limiting the number of returned data items: LIMIT <max number>
 Creating nodes: CREATE <node, optional labels and properties>
 Creating relationships: CREATE <relationship, relationship type and optional properties>
 Deletion: DELETE <nodes or relationships>
 Specifying property values and labels: SET <property values and labels>
 Removing property values and labels: REMOVE <property values and labels>

(d) Examples of simple Cypher queries:
1. MATCH (d : DEPARTMENT {Dno: ‘5’}) – [ : LocatedIn ] → (loc)
 RETURN d.Dname , loc.Lname
2. MATCH (e: EMPLOYEE {Empid: ‘2’}) – [ w: WorksOn ] → (p)
 RETURN e.Ename , w.Hours, p.Pname
3. MATCH (e ) – [ w: WorksOn ] → (p: PROJECT {Pno: 2})
 RETURN p.Pname, e.Ename , w.Hours
4. MATCH (e) – [ w: WorksOn ] → (p)
 RETURN e.Ename , w.Hours, p.Pname
 ORDER BY e.Ename
5. MATCH (e) – [ w: WorksOn ] → (p)
 RETURN e.Ename , w.Hours, p.Pname
 ORDER BY e.Ename
 LIMIT 10
6. MATCH (e) – [ w: WorksOn ] → (p)
 WITH e, COUNT(p) AS numOfprojs
 WHERE numOfprojs > 2
 RETURN e.Ename , numOfprojs
 ORDER BY numOfprojs
7. MATCH (e) – [ w: WorksOn ] → (p)
 RETURN e , w, p
 ORDER BY e.Ename
 LIMIT 10
8. MATCH (e: EMPLOYEE {Empid: ‘2’})
 SET e.Job = ‘Engineer’

Figure 24.4 (continued)
Examples in Neo4j using the Cypher language. (c) Basic syntax of Cypher queries. (d) Examples of Cypher queries.

Query 1 in Figure 24.4(d) shows how to use the MATCH and RETURN clauses in a 
query, and the query retrieves the locations for department number 5. Match speci-
fies the pattern and the query variables (d and loc) and RETURN specifies the query 
result to be retrieved by refering to the query variables. Query 2 has three variables 
(e, w, and p), and returns the projects and hours per week that the employee with 
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Empid = 2 works on. Query 3, on the other hand, returns the employees and hours 
per week who work on the project with Pno = 2. Query 4 illustrates the ORDER BY 
clause and returns all employees and the projects they work on, sorted by Ename. It 
is also possible to limit the number of returned results by using the LIMIT clause as 
in query 5, which only returns the first 10 answers.

Query 6 illustrates the use of WITH and aggregation, although the WITH clause can 
be used to separate clauses in a query even if there is no aggregation. Query 6 also illus-
trates the WHERE clause to specify additional conditions, and the query returns the 
employees who work on more than two projects, as well as the number of projects each 
employee works on. It is also common to return the nodes and relationships them-
selves in the query result, rather than the property values of the nodes as in the previ-
ous queries. Query 7 is similar to query 5 but returns the nodes and relationships only, 
and so the query result can be displayed as a graph using Neo4j’s visualization tool. It is 
also possible to add or remove labels and properties from nodes. Query 8 shows how to 
add more properties to a node by adding a Job property to an employee node.

The above gives a brief flavor for the Cypher query language of Neo4j. The full lan-
guage manual is available online (see the bibliographic notes).

24.6.3  Neo4j Interfaces and Distributed System Characteristics
Neo4j has other interfaces that can be used to create, retrieve, and update nodes and 
relationships in a graph database. It also has two main versions: the enterprise edi-
tion, which comes with additional capabilities, and the community edition. We dis-
cuss some of the additional features of Neo4j in this subsection.

 ■ Enterprise edition vs. community edition. Both editions support the Neo4j 
graph data model and storage system, as well as the Cypher graph query 
language, and several other interfaces, including a high-performance native 
API, language drivers for several popular programming languages, such as 
Java, Python, PHP, and the REST (Representational State Transfer) API. In 
addition, both editions support ACID properties. The enterprise edition 
supports additional features for enhancing performance, such as caching 
and clustering of data and locking.

 ■ Graph visualization interface. Neo4j has a graph visualization interface, so 
that a subset of the nodes and edges in a database graph can be displayed as a 
graph. This tool can be used to visualize query results in a graph representation.

 ■ Master-slave replication. Neo4j can be configured on a cluster of distrib-
uted system nodes (computers), where one node is designated the master 
node. The data and indexes are fully replicated on each node in the cluster. 
Various ways of synchronizing the data between master and slave nodes can 
be configured in the distributed cluster.

 ■ Caching. A main memory cache can be configured to store the graph data 
for improved performance.

 ■ Logical logs. Logs can be maintained to recover from failures.
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A full discussion of all the features and interfaces of Neo4j is outside the scope of 
our presentation. Full documentation of Neo4j is available online (see the biblio-
graphic notes).

24.7 Summary
In this chapter, we discussed the class of database systems known as NOSQL sys-
tems, which focus on efficient storage and retrieval of large amounts of “big data.” 
Applications that use these types of systems include social media, Web links, user 
profiles, marketing and sales, posts and tweets, road maps and spatial data, and 
e-mail. The term NOSQL is generally interpreted as Not Only SQL—rather than 
NO to SQL—and is meant to convey that many applications need systems other 
than traditional relational SQL systems to augment their data management needs. 
These systems are distributed databases or distributed storage systems, with a focus 
on semistructured data storage, high performance, availability, data replication, 
and scalability rather than an emphasis on immediate data consistency, powerful 
query languages, and structured data storage.

In Section 24.1, we started with an introduction to NOSQL systems, their charac-
teristics, and how they differ from SQL systems. Four general categories of NOSQL 
systems are document-based, key-value stores, column-based, and graph-based. 
In Section 24.2, we discussed how NOSQL systems approach the issue of consis-
tency among multiple replicas (copies) by using the paradigm known as eventual 
consistency. We discussed the CAP theorem, which can be used to understand the 
emphasis of NOSQL systems on availability. In Sections 24.3 through  24.6, we 
presented an overview of each of the four main categories of NOSQL systems—
starting with document-based systems in Section 24.3, followed by key-value 
stores in Section 24.4, then column-based systems in Section 24.5, and finally 
graph-based systems in Section 24.6. We also noted that some NOSQL systems 
may not fall neatly into a single category but rather use techniques that span two 
or more categories.

Review Questions
 24.1. For which types of applications were NOSQL systems developed?

 24.2. What are the main categories of NOSQL systems? List a few of the NOSQL 
systems in each category.

 24.3. What are the main characteristics of NOSQL systems in the areas related to 
data models and query languages?

 24.4. What are the main characteristics of NOSQL systems in the areas related to 
distributed systems and distributed databases?

 24.5. What is the CAP theorem? Which of the three properties (consistency, 
availability, partition tolerance) are most important in NOSQL systems?
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 24.6. What are the similarities and differences between using consistency in CAP 
versus using consistency in ACID?

 24.7. What are the data modeling concepts used in MongoDB? What are the main 
CRUD operations of MongoDB?

 24.8. Discuss how replication and sharding are done in MongoDB.

 24.9. Discuss the data modeling concepts in DynamoDB.

 24.10. Describe the consistent hashing schema for data distribution, replication, 
and sharding. How are consistency and versioning handled in Voldemort?

 24.11. What are the data modeling concepts used in column-based NOSQL sys-
tems and Hbase?

 24.12. What are the main CRUD operations in Hbase?

 24.13. Discuss the storage and distributed system methods used in Hbase.

 24.14. What are the data modeling concepts used in the graph-oriented NOSQL 
system Neo4j?

 24.15. What is the query language for Neo4j?

 24.16. Discuss the interfaces and distributed systems characteristics of Neo4j.

Selected Bibliography
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is Chang et al. (2006), and the original paper that described the Amazon Dynamo 
key-value store system is DeCandia et al. (2007). There are numerous papers that 
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Parker et al. (2013). Other papers compare NOSQL systems to other NOSQL sys-
tems; for example Cattell (2010), Hecht and Jablonski (2011), and Abramova and 
Bernardino (2013).

The documentation, user manuals, and tutorials for many NOSQL systems can be 
found on the Web. Here are a few examples:

MongoDB tutorials: docs.mongodb.org/manual/tutorial/

MongoDB manual: docs.mongodb.org/manual/

Voldemort documentation: docs.project-voldemort.com/voldemort/

Cassandra Web site: cassandra.apache.org

Hbase Web site: hbase.apache.org

Neo4j documentation: neo4j.com/docs/

In addition, numerous Web sites categorize NOSQL systems into additional sub-
categories based on purpose; nosql-database.org is one example of such a site.
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25
Big Data Technologies Based  
on MapReduce and Hadoop1

The amount of data worldwide has been growing 
ever since the advent of the World Wide Web 

around 1994. The early search engines—namely, AltaVista (which was acquired by 
Yahoo in 2003 and which later became the Yahoo! search engine) and Lycos (which 
was also a search engine and a Web portal—were established soon after the Web 
came along. They were later overshadowed by the likes of Google and Bing. Then 
came an array of social networks such as Facebook, launched in 2004, and Twitter, 
founded in 2006. LinkedIn, a professional network launched in 2003, boasts over 
250 million users worldwide. Facebook has over 1.3 billion users worldwide today; 
of these, about 800 million are active on Facebook daily. Twitter had an estimated 
980 million users in early 2014 and it was reported to have reached the rate of 1 bil-
lion tweets per day in October 2012. These statistics are updated continually and 
are easily available on the Web.

One major implication of the establishment and exponential growth of the Web, 
which brought computing to laypeople worldwide, is that ordinary people started 
creating all types of transactions and content that generate new data. These users 
and consumers of multimedia data require systems to deliver user-specific data 
instantaneously from mammoth stores of data at the same time that they create huge 
amounts of data themselves. The result is an explosive growth in the amount of data 
generated and communicated over networks worldwide; in addition, businesses and 
governmental institutions electronically record every transaction of each customer, 
vendor, and supplier and thus have been accumulating data in so-called data ware-
houses (to be discussed in Chapter 29). Added to this mountain of data is the data 

chapter 25

1We acknowledge the significant contribution of Harish Butani, member of the Hive Program Management 
Committee, and Balaji Palanisamy, University of Pittsburgh, to this chapter.
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generated by sensors embedded in devices such as smartphones, energy smart 
meters, automobiles, and all kinds of gadgets and machinery that sense, create, and 
communicate data in the internet of things. And, of course, we must consider the 
data generated daily from satellite imagery and communication networks.

This phenomenal growth of data generation means that the amount of data in a single 
repository can be numbered in petabytes (10**15 bytes, which approximates to 2**50 
bytes) or terabytes (e.g., 1,000 terabytes). The term big data has entered our common 
parlance and refers to such massive amounts of data. The McKinsey report2 defines 
the term big data as datasets whose size exceeds the typical reach of a DBMS to capture, 
store, manage, and analyze that data. The meaning and implications of this data 
onslaught are reflected in some of the facts mentioned in the McKinsey report:

 ■ A $600 disk can store all of the world’s music today.

 ■ Every month, 30 billion of items of content are stored on Facebook.

 ■ More data is stored in 15 of the 17 sectors of the U.S. economy than is stored 
in the Library of Congress, which, as of 2011, stored 235 terabytes of data.

 ■ There is currently a need for over 140,000 deep-data-analysis positions and 
over 1.5 million data-savvy managers in the United States. Deep data analy-
sis involves more knowledge discovery type analyses.

Big data is everywhere, so every sector of the economy stands to benefit by harness-
ing it appropriately with technologies that will help data users and managers make 
better decisions based on historical evidence. According to the Mckinsey report,

If the U.S. healthcare [system] could use the big data creatively and effectively to 
drive efficiency and quality, we estimate that the potential value from data in the 
sector could be more than $300 billion in value every year.

Big data has created countless opportunities to give consumers information in a 
timely manner—information that will prove useful in making decisions, discover-
ing needs and improving performance, customizing products and services, giving 
decision makers more effective algorithmic tools, and creating value by innovations 
in terms of new products, services, and business models. IBM has corroborated this 
statement in a recent book,3 which outlines why IBM has embarked on a worldwide 
mission of enterprise-wide big data analytics. The IBM book describes various types 
of analytics applications:

 ■ Descriptive and predictive analytics: Descriptive analytics relates to report-
ing what has happened, analyzing the data that contributed to it to figure 
out why it happened, and monitoring new data to find out what is happen-
ing now. Predictive analytics uses statistical and data mining techniques (see 
Chapter 28) to make predictions about what will happen in the future.

2The introduction is largely based on the McKinsey (2012) report on big data from the McKinsey Global 
Institute.
3See IBM (2014): Analytics Across the Enterprise: How IBM Realizes Business Value from Big Data and 

Analytics.
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 ■ Prescriptive analytics: Refers to analytics that recommends actions.

 ■ Social media analytics: Refers to doing a sentiment analysis to assess public 
opinion on topics or events. It also allows users to discover the behavior pat-
terns and tastes of individuals, which can help industry target goods and 
services in a customized way.

 ■ Entity analytics: This is a somewhat new area that groups data about enti-
ties of interest and learns more about them.

 ■ Cognitive computing: Refers to an area of developing computing systems 
that will interact with people to give them better insight and advice.

In another book, Bill Franks of Teradata4 voices a similar theme; he states that tap-
ping big data for better analytics is essential for a competitive advantage in any 
industry today, and he shows how to develop a “big data advanced analytics ecosys-
tem” in any organization to uncover new opportunities in business.

As we can see from all these industry-based publications by experts, big data is 
entering a new frontier in which big data will be harnessed to provide analytics-
oriented applications that will lead to increased productivity, higher quality, and 
growth in all businesses. This chapter discusses the technology that has been created 
over the last decade to harness big data. We focus on those technologies that can be 
attributed to the MapReduce/Hadoop ecosystem, which covers most of the ground 
of open source projects for big data applications. We will not be able to get into the 
applications of the big data technology for analytics. That is a vast area by itself. 
Some of the basic data mining concepts are mentioned in Chapter 28; however, 
today’s analytics offerings go way beyond the basic concepts we have outlined there.

In Section 25.1, we introduce the essential features of big data. In Section 25.2, we 
will give the historical background behind the MapReduce/Hadoop technology 
and comment on the various releases of Hadoop. Section 25.3 discusses the 
underlying file system called Hadoop Distributed File System for Hadoop. We 
discuss its architecture, the I/O operations it supports, and its scalability. Sec-
tion 25.4 provides further details on MapReduce (MR), including its runtime 
environment and high-level interfaces called Pig and Hive. We also show the 
power of MapReduce in terms of the relational join implemented in various ways. 
Section 25.5 is devoted to the later development called Hadoop v2 or MRv2 or 
YARN, which separates resource management from job management. Its rationale 
is explained first, and then its architecture and other frameworks being developed 
on YARN are explained. In Section 25.6 we discuss some general issues related to 
the MapReduce/Hadoop technology. First we discuss this technology vis-à-vis 
the parallel DBMS technology. Then we discuss it in the context of cloud comput-
ing, and we mention the data locality issues for improving performance. YARN 
as a data service platform is discussed next, followed by the challenges for big data 
technology in general. We end this chapter in Section 25.7 by mentioning some 
ongoing projects and summarizing the chapter.

4See Franks (2013) : Taming The Big Data Tidal Wave.
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25.1 What Is Big Data?
Big data is becoming a popular and even a fashionable term. People use this term 
whenever a large amount of data is involved with some analysis; they think that 
using this term will make the analysis look like an advanced application. However, 
the term big data legitimately refers to datasets whose size is beyond the ability of 
typical database software tools to capture, store, manage, and analyze. In today’s 
environment, the size of datasets that may be considered as big data ranges from 
terabytes (10**12 bytes), or petabytes (10**15 bytes), to exabytes (10**18 bytes). 
The notion of what is Big data will depend on the industry, how data is used, how 
much historical data is involved and many other characteristics. The Gartner 
Group, a popular enterprise-level organization that industry looks up to for learn-
ing about trends, characterized big data in 2011 by the three V’s: volume, velocity, 
and variety. Other characteristics, such as veracity and value, have been added to 
the definition by other researchers. Let us briefly see what these stand for.

Volume. The volume of data obviously refers to the size of data managed by the 
system. Data that is somewhat automatically generated tends to be voluminous. 
Examples include sensor data, such as the data in manufacturing or processing 
plants generated by sensors; data from scanning equipment, such as smart card and 
credit card readers; and data from measurement devices, such as smart meters or 
environmental recording devices.

The industrial internet of things (IIOT or IOT) is expected to bring about a revo-
lution that will improve the operational efficiency of enterprises and open up new 
frontiers for harnessing intelligent technologies. The IOT will cause billions of 
devices to be connected to the Internet because these devices generate data continu-
ously. For example, in gene sequencing, next generation sequencing (NGS) tech-
nology means that the volume of gene sequence data will be increased exponentially.

Many additional applications are being developed and are slowly becoming a real-
ity. These applications include using remote sensing to detect underground sources 
of energy, environmental monitoring, traffic monitoring and regulation by auto-
matic sensors mounted on vehicles and roads, remote monitoring of patients using 
special scanners and equipment, and tighter control and replenishment of invento-
ries using radio-frequency identification (RFID) and other technologies. All these 
developments will have associated with them a large volume of data. Social net-
works such as Twitter and Facebook have hundreds of millions of subscribers 
worldwide who generate new data with every message they send or post they make. 
Twitter hit a half billion tweets daily in October 2012.5 The amount of data required 
to store one second of high-definition video may equal 2,000 pages of text data. 
Thus, the multimedia data being uploaded on YouTube and similar video hosting 
platforms is significantly more voluminous than simple numeric or text data. In 
2010, enterprises stored over 13 exabytes (10**18 bytes) of data, which amounts to 
over 50,000 times the amount of data stored by the Library of Congress.6

5See Terdiman (2012): http://www.cnet.com/news/report-twitter-hits-half-a-billion-tweets-a-day/
6From Jagadish et al. (2014).
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Velocity. The definition of big data goes beyond the dimension of volume; it 
includes the types and frequency of data that are disruptive to traditional database 
management tools. The Mckinsey report on big data7 described velocity as the 
speed at which data is created, accumulated, ingested, and processed. High velocity 
is attributed to data when we consider the typical speed of transactions on stock 
exchanges; this speed reaches billions of transactions per day on certain days. If we 
must process these transactions to detect potential fraud or we must process bil-
lions of call records on cell phones daily to detect malicious activity, we face the 
velocity dimension. Real-time data and streaming data are accumulated by the likes 
of Twitter and Facebook at a very high velocity. Velocity is helpful in detecting 
trends among people that are tweeting a million tweets every three minutes. Pro-
cessing of streaming data for analysis also involves the velocity dimension.

Variety. Sources of data in traditional applications were mainly transactions 
involving financial, insurance, travel, healthcare, retail industries, and governmen-
tal and judicial processing. The types of sources have expanded dramatically and 
include Internet data (e.g., clickstream and social media), research data (e.g., sur-
veys and industry reports), location data (e.g., mobile device data and geospatial 
data), images (e.g., surveillance, satellites and medical scanning), e-mails, supply 
chain data (e.g., EDI—electronic data interchange, vendor catalogs), signal data 
(e.g., sensors and RFID devices), and videos (YouTube enters hundreds of minutes 
of video every minute). Big data includes structured, semistructured, and unstruc-
tured data (see discussion in Chapter 26) in different proportions based on context.

Structured data feature a formally structured data model, such as the relational 
model, in which data are in the form of tables containing rows and columns, and a 
hierarchical database in IMS, which features record types as segments and fields 
within a record.

Unstructured data have no identifiable formal structure. We discussed systems like 
MongoDB (in Chapter 24), which stores unstructured document-oriented data, 
and Neo4j, which stores data in the form of a graph. Other forms of unstructured 
data include e-mails and blogs, PDF files, audio, video, images, clickstreams, and 
Web contents. The advent of the World Wide Web in 1993–1994 led to tremen-
dous growth in unstructured data. Some forms of unstructured data may fit into a 
format that allows well-defined tags that separate semantic elements; this format 
may include the capability to enforce hierarchies within the data. XML is hierarchi-
cal in its descriptive mechanism, and various forms of XML have come about in 
many domains; for example, biology (bioML—biopolymer markup language), GIS 
(gML—geography markup language), and brewing (BeerXML—language for 
exchange of brewing data), to name a few. Unstructured data constitutes the major 
challenge in today’s big data systems.

Veracity. The veracity dimension of big data is a more recent addition than the 
advent of the Internet. Veracity has two built-in features: the credibility of the 
source, and the suitability of data for its target audience. It is closely related to trust; 

7See Mckinsey (2013).
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listing veracity as one of the dimensions of big data amounts to saying that data 
coming into the so-called big data applications have a variety of trustworthiness, 
and therefore before we accept the data for analytical or other applications, it must 
go through some degree of quality testing and credibility analysis. Many sources of 
data generate data that is uncertain, incomplete, and inaccurate, therefore making 
its veracity questionable.

We now turn our attention to the technologies that are considered the pillars of big 
data technologies. It is anticipated that by 2016, more than half of the data in the 
world may be processed by Hadoop-related technologies. It is therefore important 
for us to trace the MapReduce/Hadoop revolution and understand how this tech-
nology is positioned today. The historical development starts with the program-
ming paradigm called MapReduce programming.

25.2 Introduction to MapReduce and Hadoop
In this section, we will introduce the technology for big data analytics and data pro-
cessing known as Hadoop, an open source implementation of the MapReduce pro-
gramming model. The two core components of Hadoop are the MapReduce 
programming paradigm and HDFS, the Hadoop Distributed File System. We will 
briefly explain the background behind Hadoop and then MapReduce. Then we will 
make some brief remarks about the Hadoop ecosystem and the Hadoop releases.

25.2.1 Historical Background
Hadoop has originated from the quest for an open source search engine. The first 
attempt was made by the then Internet archive director Doug Cutting and Univer-
sity of Washington graduate student Mike Carafella. Cutting and Carafella devel-
oped a system called Nutch that could crawl and index hundreds of millions of Web 
pages. It is an open source Apache project.8 After Google released the Google File 
System9 paper in October 2003 and the MapReduce programming paradigm 
paper10 in December 2004, Cutting and Carafella realized that a number of things 
they were doing could be improved based on the ideas in these two papers. They 
built an underlying file system and a processing framework that came to be known 
as Hadoop (which used Java as opposed to the C++ used in MapReduce) and ported 
Nutch on top of it. In 2006, Cutting joined Yahoo, where there was an effort under 
way to build open source technologies using ideas from the Google File System and 
the MapReduce programming paradigm. Yahoo wanted to enhance its search pro-
cessing and build an open source infrastructure based on the Google File System 
and MapReduce. Yahoo spun off the storage engine and the processing parts 
of Nutch as Hadoop (named after the stuffed elephant toy of Cutting’s son). The 

8For documentation on Nutch, see http:nutch.apache.org
9Ghemawat, Gbioff, and Leung (2003).
10Dean and Ghemawat (2004).
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initial requirements for Hadoop were to run batch processing using cases with a 
high degree of scalability. However, the circa 2006 Hadoop could only run on a 
handful of nodes. Later, Yahoo set up a research forum for the company’s data sci-
entists; doing so improved the search relevance and ad revenue of the search engine 
and at the same time helped to mature the Hadoop technology. In 2011, Yahoo 
spun off Hortonworks as a Hadoop-centered software company. By then, Yahoo’s 
infrastructure contained hundreds of petabytes of storage and 42,000 nodes in the 
cluster. In the years since Hadoop became an open source Apache project, thou-
sands of developers worldwide have contributed to it. A joint effort by Google, 
IBM, and NSF used a 2,000-node Hadoop cluster at a Seattle data center and helped 
further universities’ research on Hadoop. Hadoop has seen tremendous growth 
since the 2008 launch of Cloudera as the first commercial Hadoop company and 
the subsequent mushrooming of a large number of startups. IDC, a software indus-
try market analysis firm, predicts that the Hadoop market will surpass $800 million 
in 2016; IDC predicts that the big data market will hit $23 billion in 2016. For more 
details about the history of Hadoop, consult a four-part article by Harris.11

An integral part of Hadoop is the MapReduce programming framework. Before we 
go any further, let us try to understand what the MapReduce programming paradigm 
is all about. We defer a detailed discussion of the HDFS file system to Section 25.3.

25.2.2 MapReduce
The MapReduce programming model and runtime environment was first described 
by Jeffrey Dean and Sanjay Ghemawat (Dean & Ghemawat (2004)) based on their 
work at Google. Users write their programs in a functional style of map and reduce 
tasks, which are automatically parallelized and executed on large clusters of com-
modity hardware. The programming paradigm has existed as far back as the lan-
guage LISP, which was designed by John McCarthy in late 1950s. However, the 
reincarnation of this way of doing parallel programming and the way this paradigm 
was implemented at Google gave rise to a new wave of thinking that contributed to 
the subsequent developments of technologies such as Hadoop. The runtime system 
handles many of the messy engineering aspects of parallelization, fault tolerance, 
data distribution, load balancing, and management of task communication. As long 
as users adhere to the contracts laid out by the MapReduce system, they can just 
focus on the logical aspects of this program; this allows programmers without dis-
tributed systems experience to perform analysis on very large datasets.

The motivation behind the MapReduce system was the years spent by the authors 
and others at Google implementing hundreds of special-purpose computations on 
large datasets (e.g., computing inverted indexes from Web content collected via 
Web crawling; building Web graphs; and extracting statistics from Web logs, such 
as frequency distribution of search requests by topic, by region, by type of user, 
etc.). Conceptually, these tasks are not difficult to express; however, given the scale 

11Derreck Harris : ‘The history of Hadoop: from 4 nodes to the future of data,” at https://gigaom.com/ 
2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
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of data in billions of Web pages and with the data spread over thousands of 
machines, the execution task was nontrivial. Issues of program control and data 
management, data distribution, parallelization of computation, and handling of 
failures became critically important.

The MapReduce programming model and runtime environment was designed to 
cope with the above complexity. The abstraction is inspired by the map and reduce 
primitives present in LISP and many other functional languages. An underlying 
model of data is assumed; this model treats an object of interest in the form of a 
unique key that has associated content or value. This is the key-value pair. Surpris-
ingly, many computations can be expressed as applying a map operation to each 
logical “record” that produces a set of intermediate key-value pairs and then apply-
ing a reduce operation to all the values that shared the same key (the purpose of 
sharing is to combine the derived data). This model allows the infrastructure to 
parallelize large computations easily and to use re-execution as the primary mecha-
nism for fault tolerance. The idea of providing a restricted programming model so 
that the runtime can parallelize computations automatically is not new.  MapReduce 
is the enhancement of those existing ideas. As it is understood today, MapReduce is 
a fault-tolerant implementation and a runtime environment that scales to thousands 
of processors. The programmer is spared the worry of handling failures. In sub-
sequent sections, we will abbreviate MapReduce as MR.

The MapReduce Programming Model In the following description, we use the 
formalism and description as it was originally described by Dean and Ghemawat 
(2010).12 The map and reduce functions have the following general form:

map[K1,V1] which is (key, value) : List[K2,V2] and
reduce(K2, List[V2]) : List[K3,V3]

Map is a generic function that takes a key of type K1 and a value of type V1 and 
returns a list of key-value pairs of type K2 and V2. Reduce is a generic function that 
takes a key of type K2 and a list of values of type V2 and returns pairs of type 
(K3,V3). In general, the types K1, K2, K3, etc., are different, with the only require-
ment that the output types from the Map function must match the input type of the 
Reduce function.

The basic execution workflow of MapReduce is shown in Figure 25.1.

Assume that we have a document and we want to make a list of words in it with 
their corresponding frequencies. This ubiquitous word count example quoted 
directly from Dean and Ghemawat (2004) above goes as follows in pseudocode:

Map (String key, String value):
for each word w in value Emitintermediate (w, “1”);

Here key is the document name, and value is the text content of the document.

12Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in 
OSDI (2004).
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Then the above lists of (word, 1) pairs are added up to output total counts of all 
words found in the document as follows:

Reduce (String key, Iterator values) : // here the key is a word and values are 
lists of its counts //
 Int result =0;
 For each v in values :
  result += Parseint (v);
 Emit (key, Asstring (result));

The above example in MapReduce programming appears as:

map[LongWritable,Text](key, value) : List[Text, LongWritable] = {
 String[] words = split(value)
 for(word : words) {
  context.out(Text(word), LongWritable(1))
 }
}
reduce[Text, Iterable[LongWritable]](key, values) : List[Text, LongWritable] = {
 LongWritable c = 0
 for( v : values) {
  c += v
 }
 context.out(key,c)
 }

The data types used in the above example are LongWritable and Text. Each 
MapReduce job must register a Map and Reduce function. The Map function 
receives each key-value pair and on each call can output 0 or more key-value pairs. 
The signature of the Map function specifies the data types of its input and output 
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key-value pairs. The Reduce function receives a key and an iterator of values asso-
ciated with that key. It can output one or more key-value pairs on each invocation. 
Again, the signature of the Reduce function indicates the data types of its inputs 
and outputs. The output type of the Map must match the input type of the Reduce 
function. In the wordcount example, the map function receives each line as a 
value, splits it into words, and emits (via the function context.out) a row for each 
word with frequency 1. Each invocation of the Reduce function receives for a given 
word the list of frequencies computed on the Map side. It adds these and emits 
each word and its frequency as output. The functions interact with a context. The 
context is used to interact with the framework. It is used by clients to send config-
uration information to tasks; and tasks can use it to get access to HDFS and read 
data directly from HDFS, to output key-value pairs, and to send status (e.g., task 
counters) back to the client.

The MapReduce way of implementing some other functions based on Dean and 
Ghemawat (2004) is as follows:

Distributed Grep

Grep looks for a given pattern in a file. The Map function emits a line if it 
matches a supplied pattern. The Reduce function is an identity function that 
copies the supplied intermediate data to the output. This is an example of a 
Map only task; there is no need to incur the cost of a Shuffle. We will provide 
more information when we explain the MapReduce runtime.

Reverse Web-Link Graph

The purpose here is to output (target URL, source URL) pairs for each link to a 
target page found in a page named source. The Reduce function concatenates 
the list of all source URLs associated with a given target URL and emits the pair 
<target, list(source)>.

Inverted Index

The purpose is to build an inverted index based on all words present in a docu-
ment repository. The Map function parses each document and emits a sequence 
of (word, document_id) pairs. The Reduce function takes all pairs for a given 
word, sorts them by document_id and emits a (word, list (document_id)) pair. 
The set of all these pairs forms an inverted index.

These illustrative applications give a sense of the MapReduce programming model’s 
broad applicability and the ease of expressing the application’s logic using the Map 
and Reduce phases.

A Job in MapReduce comprises the code for the Map and Reduce (usually pack-
aged as a jar) phases, a set of artifacts needed to run the tasks (such as files, other 
jars, and archives) and, most importantly, a set of properties specified in a configu-
ration. There are hundreds of properties that can be specified, but the core ones are 
as follows:

 ■ the Map task

 ■ the Reduce task
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 ■ the Input that the Job is to run on: typically specified as an HDFS path(s)

 ■ the Format(Structure) of the Input

 ■ the Output path

 ■ the Output Structure

 ■ the Reduce-side parallelism

A Job is submitted to the JobTracker, which then schedules and manages the exe-
cution of the Job. It provides a set of interfaces to monitor running Jobs. See the 
Hadoop Wiki13 for further details about the workings of the JobTracker.

25.2.3 Hadoop Releases
Since the advent of Hadoop as a new distributed framework to run MapReduce 
programs, various releases have been produced:

The 1.x releases of Hadoop are a continuation of the original 0.20 code base. 
Subreleases with this line have added Security, additional HDFS and MapReduce 
improvements to support HBase, a better MR programming model, as well as 
other improvements.

The 2.x releases include the following major features:

 � YARN (Yet Another Resource Navigator) is a general resource manager 
extracted out of the JobTracker from MR version1.

 � A new MR runtime that runs on top of YARN.

 � Improved HDFS that supports federation and increased availability.

At the time of this writing, Hadoop 2.0 has been around for about a year. The 
adoption is rapidly picking up; but a significant percentage of Hadoop deployments 
still run on Hadoop v1.

25.3 Hadoop Distributed File System (HDFS)
As we said earlier, in addition to MapReduce, the other core component of Hadoop 
is the underlying file system HDFS. In this section, we will first explain the architec-
ture of HDFS, then describe the file input/output operations supported in HDFS, 
and finally comment on the scalability of HDFS.

25.3.1 HDFS Preliminaries
The Hadoop Distributed File System (HDFS) is the file system component of 
Hadoop and is designed to run on a cluster of commodity hardware. HDFS is pat-
terned after the UNIX file system; however, it relaxes a few POSIX (portable oper-
ating system interface) requirements to enable streaming access to file system data. 
HDFS provides high-throughput access to large datasets. HDFS stores file system 

13Hadoop Wiki is at http://hadoop.apache.org/
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metadata and application data separately. Whereas the metadata is stored on a 
dedicated server, called the NameNode, the application data is stored on other 
servers, called DataNodes. All servers are fully connected and communicate with 
each other using TCP-based protocols. To make data durable, the file content is 
replicated on multiple DataNodes, as in the Google File System. This not only 
increases reliability, but it also multiplies the bandwidth for data transfer and 
enables colocation of computation with data. It was designed with the following 
assumptions and goals:

Hardware failure: Using commodity hardware, failure of hardware is the 
norm rather than an exception. Therefore, with thousands of nodes, automatic 
detection and recovery from failures becomes a must.

Batch processing: HDFS has been primarily designed for batch rather than 
interactive use. High throughput is emphasized over low latency of data access. 
Full scans of files are typical.

Large datasets: HDFS was designed to support huge files in the hundreds of 
gigabytes to terabytes range.

Simple coherency model: HDFS applications need a one writer and many 
reader access models for files. File content cannot be updated, but only 
appended. This model alleviates coherency issues among copies of data.

25.3.2 Architecture of HDFS
HDFS has a master-slave architecture. The master server, called the NameNode, 
manages the file system storage area or namespace; Clients access the namespace 
through the Namenode. The slaves called DataNodes run on a cluster of commod-
ity machines, usually one per machine. They manage the storage attached to the 
node that they run on. The namespace itself comprises Files and Directories. The 
Namenodes maintain inodes (index nodes) about File and Directories with attri-
butes like ownership, permissions, creation and access times, and disk space quotas. 
Using inodes, the mapping of File blocks to DataNodes is determined. DataNodes 
are responsible for serving read and write requests from clients. DataNodes per-
form block creation, deletion, and replication operations as instructed by the 
NameNode. A cluster can have thousands of DataNodes and tens of thousands of 
HDFS clients simultaneously connected.

To read a file, a client first connects to the NameNode and obtains the locations of 
the data blocks in the file it wants to access; it then connects directly with the 
DataNodes that house the blocks and reads the data.

The architecture of HDFS has the following highlights:

  1. HDFS allows a decoupling of metadata from data operations. Metadata 
operations are fast whereas data transfers are much slower. If the location 
of metadata and transfer of data are not decoupled, speed suffers in a dis-
tributed environment because data transfer dominates and slows the 
response.
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  2. Replication is used to provide reliability and high availability. Each block is 
replicated (default is three copies) to a number of nodes in the cluster. The 
highly contentious files like MapReduce job libraries would have a higher 
number of replicas to reduce network traffic.

  3. The network traffic is kept to a minimum. For reads, clients are directed to 
the closest DataNode. As far as possible, a local file system read is attempted 
and involves no network traffic; the next choice is a copy on a node on the 
same rack before going to another rack. For writes, to reduce network band-
width utilization, the first copy is written to the same node as the client. For 
other copies, travel across racks is minimized.

NameNode. The NameNode maintains an image of the file system comprising 
i-nodes and corresponding block locations. Changes to the file system are main-
tained in a Write-ahead commit log (see the discussion of Write-ahead logs in 
Chapter 22) called the Journal. Checkpoints are taken for purposes of recovery; 
they represent a persistent record of the image without the dynamic information 
related to the block placement. Block placement information is obtained from 
the DataNodes periodically as described below. During Restart, the image is 
restored to the last checkpoint and the journal entries are applied to that image. 
A new checkpoint and empty journal are created so that the NameNode can start 
accepting new client requests. The startup time of a NameNode is proportional 
to the Journal file’s size. Merging the checkpoint with the Journal periodically 
reduces restart time.

Note that with the above architecture, it is catastrophic to have any corruption of 
the Checkpoint or the Journal. To guard against corruption, both are written to 
multiple directories on different volumes.

Secondary NameNodes. These are additional NameNodes that can be created 
to perform either the checkpointing role or a backup role. A Checkpoint node peri-
odically combines existing checkpoint and journal files. In backup mode, it acts like 
another storage location for the Journal for the primary NameNode. The backup 
NameNode remains up-to-date with the file system and can take over on failure. In 
Hadoop V1, this takeover must be done manually.

DataNodes: Blocks are stored on a DataNode in the node’s native file system. The 
NameNode directs clients to the DataNodes that contain a copy of the block they 
want to read. Each block has its representation in two files in the native file system: 
a file containing the data and a second file containing the metadata, which includes 
the checksums for the block data and the block’s generation stamp. DataNodes and 
NameNodes do not communicate directly but via a so-called heartbeat mechanism, 
which refers to a periodic reporting of the state by the DataNode to the NameNode; 
the report is called a Block Report. The report contains the block id, the generation 
stamp, and the length for each block. The block locations are not part of the 
namespace image. They must be obtained from the block reports, and they change 
as blocks are moved around. The MapReduce Job Tracker, along with the 
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NameNode, uses the latest block report information for scheduling purposes. In 
response to a heartbeat from the DataNode, the NameNode sends one of the following 
types of commands to the DataNode:

 ■ Replicate a block to another node.

 ■ Remove a block replica.

 ■ Reregister the node or shut down the node.

 ■ Send an immediate block report.

25.3.3 File I/O Operations and Replica Management in HDFS
HDFS provides a single-writer, multiple-reader model. Files cannot be updated, but 
only appended. A file consists of blocks. Data is written in 64-KB packets in a write 
pipeline, which is set up to minimize network utilization, as we described above. 
Data written to the last block becomes available only after an explicit hflush opera-
tion. Simultaneous reading by clients is possible while data is being written. A 
checksum is generated and stored for each block and is verified by the client to 
detect corruption of data. Upon detection of a corrupt block, the Namenode is noti-
fied; it initiates a process to replicate the block and instructs the Datanode to remove 
the corrupt block. During the read operation, an attempt is made to fetch a replica 
from as close a node as possible by ordering the nodes in ascending order of dis-
tance from the client. A read fails when the Datanode is unavailable, when the 
checksum test fails, or when the replica is no longer on the Datanode. HDFS has 
been optimized for batch processing similar to MapReduce.

Block Placement. Nodes of a Hadoop cluster are typically spread across many 
racks. They are normally organized such that nodes on a rack share a switch, and 
rack switches are connected to a high-speed switch at the upper level. For example, 
the rack level may have a 1-Gb switch, whereas at the top level there may be a 10-Gb 
switch. HDFS estimates the network bandwidth between Datanodes based on their 
distance. Datanodes on the same physical node have a distance of 0, on the same 
rack are distance 2 away, and on different racks are distance 4 away. The default 
HDFS block placement policy balances between minimizing the write cost and 
maximizing data reliability and availability as well as aggregate read bandwidth. 
Network bandwidth consumed is estimated based on distance among DataNodes. 
Thus, for DataNodes on the same physical node, the distance is 0, whereas on the 
same rack it is 2 and on a different rack it is 4. The ultimate goal of block placement 
is to minimize the write cost while maximizing data availability and reliability as 
well as available bandwidth for reading. Replicas are managed so that there is at 
least one on the original node of the client that created it, and others are distributed 
among other racks. Tasks are preferred to be run on nodes where the data resides; 
three replicas gives the scheduler enough leeway to place tasks where the data is.

Replica Management. Based on the block reports from the DataNodes, the 
NameNode tracks the number of replicas and the location of each block. A replica-
tion priority queue contains blocks that need to be replicated. A background thread 
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monitors this queue and instructs a DataNode to create replicas and distribute 
them across racks. NameNode prefers to have as many different racks as possible to 
host replicas of a block. Overreplicated blocks cause some replicas to be removed 
based on space utilization of the DataNodes.

25.3.4 HDFS Scalability
Since we are discussing big data technologies in this chapter, it is apropos to discuss 
some limits of scalability in HDFS. Hadoop program management committee 
member Shvachko commented that the Yahoo HDFS cluster had achieved the fol-
lowing levels as opposed to the intended targets (Shvachko, 2010). The numbers in 
parentheses are the targets he listed. Capacity: 14 petabytes (vs. 10 petabytes); num-
ber of nodes: 4,000 (vs. 10,000); clients:15,000 (vs. 100,000); and files: 60 million 
(vs. 100 million). Thus, Yahoo had come very close to its intended targets in 2010, 
with a smaller cluster of 4,000 nodes and fewer clients; but Yahoo had actually 
exceeded the target with respect to total amount of data handled.

Some of the observations made by Shvachko (2010) are worth mentioning. They 
are based on the HDFS configuration used at Yahoo in 2010. We present the actual 
and estimated numbers below to give the reader a sense of what is involved in these 
gigantic data processing environments.

 ■ The blocksize used was 128K, and an average file contained 1.5 blocks. 
NameNode used about 200 bytes per block and an additional 200 bytes for 
an i-node. 100 million files referencing 200 million blocks would require 
RAM capacity exceeding 60 GB.

 ■ For 100 million files with size of 200 million blocks and a replication factor 
of 3, the disk space required is 60 PB. Thus a rule of thumb was proposed 
that 1 GB of RAM in NameNode roughly corresponds to 1 PB of data stor-
age based on the assumption of 128K blocksize and 1.5 blocks per file.

 ■ In order to hold 60 PB of data on a 10,000-node cluster, each node needs a 
capacity of 6 TB. This can be achieved by having eight 0.75-TB drives.

 ■ The internal workload for the NameNode is block reports. About 3 reports 
per second containing block information on 60K blocks per report were 
received by the NameNode.

 ■ The external load on the NameNode consisted of external connections and 
tasks from MapReduce jobs. This resulted in tens of thousands of simultane-
ous connections.

 ■ The Client Read consisted of performing a block lookup to get block loca-
tions from the NameNode, followed by accessing the nearest replica of the 
block. A typical client (the Map job from an MR task) would read data from 
1,000 files with an average reading of half a file each, amounting to 96 MB of 
data. This was estimated to take 1.45 seconds. At that rate, 100,000 clients 
would send 68,750 block-location requests per second to the NameNode. 
This was considered to be well within the capacity of the NameNode, which 
was rated at handling 126K requests per second.
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 ■ The write workload: Given a write throughtput of 40 MB/sec, an average cli-
ent writes 96 MB in 2.4 sec. That creates over 41K “create block” requests 
from 100,000 nodes at the NameNode. This was considered far above the 
NameNode capacity.

The above analysis assumed that there was only one task per node. In reality, there 
could be multiple tasks per node as in the real system at Yahoo, which ran 4  MapReduce 
(MR)tasks per node. The net result was a bottleneck at the NameNode. Issues such 
as these have been handled in Hadoop v2, which we discuss in the next section.

25.3.5 The Hadoop Ecosystem
Hadoop is best known for the MapReduce programming model, its runtime infrastruc-
ture, and the Hadoop Distributed File System (HDFS). However, the Hadoop ecosys-
tem has a set of related projects that provide additional functionality on top of these core 
projects. Many of them are top-level open source Apache projects and have a very large 
contributing user community of their own. We list a few important ones here:

Pig and Hive: These provide a higher level interface for working with the 
Hadoop framework.

 � Pig provides a dataflow language. A script written in PigScript translates 
into a directed acyclic graph (DAG) of MapReduce jobs.

 � Hive provides an SQL interface on top of MapReduce. Hive’s SQL support 
includes most of the SQL-92 features and many of the advanced analytics 
features from later SQL standards. Hive also defines the SerDe (Serializa-
tion/ Deserialization) abstraction, which defines a way of modeling the 
record structure on datasets in HDFS beyond just key-value pairs. We will 
discuss both of these in detail in Section 25.4.4.

Oozie: This is a service for scheduling and running workflows of Jobs; indi-
vidual steps can be MR jobs, Hive queries, Pig scripts, and so on.

Sqoop: This is a library and a runtime environment for efficiently moving data 
between relational databases and HDFS.

HBase: This is a column-oriented key-value store that uses HDFS as its under-
lying store. (See Chapter 24 for a more detailed discussion of HBase.) It sup-
ports both batch processing using MR and key-based lookups. With proper 
design of the key-value scheme, a variety of applications are implemented using 
HBase. They include time series analysis, data warehousing, generation of 
cubes and multi-dimensional lookups, and data streaming.

25.4 MapReduce: Additional Details
We introduced the MapReduce paradigm in Section 25.2.2. We now elaborate further 
on it in terms of the MapReduce runtime. We discuss how the relational operation of 
join can be handled using MapReduce. We examine the high-level interfaces of Pig 
and Hive. Finally, we discuss the advantages of the combined MapReduce/Hadoop.
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25.4.1 MapReduce Runtime
The purpose of this section is to give a broad overview of the MapReduce runtime 
environment. For a detailed description, the reader is encouraged to consult White 
(2012). MapReduce is a master-slave system that usually runs on the same cluster as 
HDFS. Typically, medium to large Hadoop clusters consist of a two- or three-level 
architecture built with rack-mounted servers.

JobTracker. The master process is called the JobTracker. It is responsible for man-
aging the life cycle of Jobs and scheduling Tasks on the cluster. It is responsible for:

 ■ Job submission, initializing a Job, providing Job status and state to both cli-
ents and TaskTrackers (the slaves), and Job completion.

 ■ Scheduling Map and Reduce tasks on the cluster. It does this using a plug-
gable Scheduler.

TaskTracker. The slave process is called a TaskTracker. There is one running on 
all Worker nodes of the cluster. The Map-Reduce tasks run on Worker nodes. 
TaskTracker daemons running on these nodes register with the JobTracker on 
startup. They run tasks that the JobTracker assigns to them. Tasks are run in a sepa-
rate process on the node; the life cycle of the process is managed by the TaskTracker. 
The TaskTracker creates the task process, monitors its execution, sends periodic 
status heartbeats to the JobTracker, and under failure conditions can kill the pro-
cess at the request of the JobTracker. The TaskTracker provides services to the 
Tasks, the most important of which is the Shuffle, which we describe in a sub-
section below.

A. Overall flow of a MapReduce Job

A MapReduce job goes through the processes of Job Submission, Job Initializa-
tion, Task Assignment, Task Execution, and finally Job Completion. The Job 
Tracker and Task Tracker we described above are both involved in these. We 
briefly review them below.

Job submission A client submits a Job to the JobTracker. The Job package con-
tains the executables (as a jar), any other components (files, jars archives) 
needed to execute the Job, and the InputSplits for the Job.

Job initialization The JobTracker accepts the Job and places it on a Job Queue. 
Based on the input splits, it creates map tasks for each split. A number of reduce 
tasks are created based on the Job configuration.

Task assignment The JobTracker’s scheduler assigns Task to the TaskTracker 
from one of the running Jobs. In Hadoop v1, TaskTrackers have a fixed number of 
slots for map tasks and for reduce tasks. The Scheduler takes the location informa-
tion of the input files into account when scheduling tasks on cluster nodes.

Task execution Once a task has been scheduled on a slot, the TaskTracker 
manages the execution of the task: making all Task artifacts available to the 
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Task process, launching the Task JVM, monitoring the process and coordinat-
ing with the JobTracker to perform management operations like cleanup on 
Task exit, and killing Tasks on failure conditions. The TaskTracker also pro-
vides the Shuffle Service to Tasks; we describe this when we discuss the Shuffle 
Procedure below.

Job completion Once the last Task in a Job is completed, the JobTracker runs 
the Job cleanup task (which is used to clean up intermediate files in both HDFS 
and the local file systems of TaskTrackers).

B. Fault Tolerance in MapReduce

There are three kinds of failures: failure of the Task, failure of the TaskTracker, 
and failure of the JobTracker.

Task failure This can occur if the Task code throws a Runtime exception, or if 
the Java Virtual Machine crashes unexpectedly. Another issue is when the Task-
Tracker does not receive any updates from the Task process for a while (the time 
period is configurable). In all these cases the TaskTracker notifies the JobTracker 
that the Task has failed. When the JobTracker is notified of the failure, it will 
reschedule execution of the task.

TaskTracker failure A TaskTracker process may crash or become disconnected 
from the JobTracker. Once the JobTracker marks a TaskTracker as failed, any 
map tasks completed by the TaskTracker are put back on the queue to be 
rescheduled. Similarly, any map task or reduce task in progress on a failed Task-
Tracker is also rescheduled.

JobTracker failure In Hadoop v1, JobTracker failure is not a recoverable failure. 
The JobTracker is a Single Point of Failure. The JobTracker has to be manually 
restarted. On restart all the running jobs have to be resubmitted. This is one of 
the drawbacks of Hadoop v1 that have been addressed by the next generation of 
Hadoop MapReduce called YARN.

Semantics in the presence of failure When the user-supplied map and reduce 
operators are deterministic functions of their input values, the MapReduce sys-
tem produces the same output as would have been produced by a nonfaulting 
sequential execution of the entire program. Each task writes its output to a pri-
vate task directory. If the JobTracker receives multiple completions for the same 
Task, it ignores all but the first one. When a Job is completed, Task outputs are 
moved to the Job output directory.

C. The Shuffle Procedure

A key feature of the MapReduce (MR) programming model is that the reducers 
get all the rows for a given key together. This is delivered by what is called the 
MR shuffle. The shuffle is divided into the Map, Copy, and Reduce phases.

Map phase: When rows are processed in Map tasks, they are initially held in an 
in-memory buffer, the size of which is configurable (the default is 100 MB). A 
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background thread partitions the buffered rows based on the number of Reduc-
ers in the job and the Partitioner. The Partitioner is a pluggable interface that is 
asked to choose a Reducer for a given Key value and the number of reducers in 
the Job. The partitioned rows are sorted on their key values. They can further be 
sorted on a provided Comparator so that rows with the same key have a stable 
sort order. This is used for Joins to ensure that for rows with the same key value, 
rows from the same table are bunched together. Another interface that can be 
plugged in is the Combiner interface. This is used to reduce the number of rows 
output per key from a mapper and is done by applying a reduce operation on 
each Mapper for all rows with the same key. During the Map phase, several 
iterations of partitioning, sorting, and combining may happen. The end result is 
a single local file per reducer that is sorted on the Key.

Copy phase: The Reducers pull their files from all the Mappers as they become 
available. These are provided by the JobTracker in Heartbeat responses. Each 
Mapper has a set of listener threads that service Reducer requests for these files.

Reduce phase: The Reducer reads all its files from the Mappers. All files are 
merged before streaming them to the Reduce function. There may be multiple 
stages of merging, depending on how the Mapper files become available. The 
Reducer will avoid unnecessary merges; for example, the last N files will be 
merged as the rows are being streamed to the Reduce function.

D. Job Scheduling

The JobTracker in MR 1.0 is responsible for scheduling work on cluster nodes. 
Clients’ submitted jobs are added to the Job Queue of the JobTracker. The initial 
versions of Hadoop used a FIFO scheduler that scheduled jobs sequentially as 
they were submitted. At any given time, the cluster would run the tasks of a 
single Job. This caused undue delays for short jobs like ad-hoc hive queries if 
they had to wait for long-running machine learning–type jobs. The wait times 
would exceed runtimes, and the throughput on the cluster would suffer. Addi-
tionally, the cluster also would remain underutilized. We briefly describe two 
other types of schedulers, called the Fair Scheduler and Capacity Scheduler, that 
alleviate this situation.

Fair Scheduler: The goal of Fair Scheduler is to provide fast response time to 
small jobs in a Hadoop shared cluster. For this scheduler, jobs are grouped into 
Pools. The capacity of the cluster is evenly shared among the Pools. At any given 
time the resources of the cluster are evenly divided among the Pools, thereby 
utilizing the capacity of the cluster evenly. A typical way to set up Pools is to 
assign each user a Pool and assign certain Pools a minimum number of slots.

Capacity Scheduler: The Capacity Scheduler is geared to meet the needs of 
large Enterprise customers. It is designed to allow multiple tenants to share 
resources of a large Hadoop cluster by allocating resources in a timely manner 
under a given set of capacity constraints. In large enterprises, individual depart-
ments are apprehensive of using one centralized Hadoop cluster for concerns 
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that they may not be able to meet the service-level agreements (SLAs) of their 
applications. The Capacity Scheduler is designed to give each tenant guarantees 
about cluster capacity using the following provisions:

 � There is support for multiple queues, with hard and soft limits in terms of 
fraction of resources.

 � Access control lists (ACLs) are used that determine who can submit, view, 
and modify the Jobs in a queue.

 � Excess capacity is evenly distributed among active Queues.

 � Tenants have usage limits; such limits prevent tenants from monopoliz-
ing the cluster.

25.4.2 Example: Achieving Joins in MapReduce
To understand the power and utility of the MapReduce programming model, it is 
instructive to consider the most important operation of relational algebra, called 
Join, which we introduced in Chapter 6. We discussed its use via SQL queries 
(Chapters 7 and 8) and its optimization (Chapters 18 and 19). Let us consider the 
problem of joining two relations R(A, B) with S(B, C) with the join condition  
R.A = S.B. Assume both tables reside on HDFS. Here we list the many strategies 
that have been devised to do equi-joins in the MapReduce environment.

Sort-Merge Join. The broadest strategy for performing a join is to utilize the Shuffle 
to partition and sort the data and have the reducers merge and generate the output. 
We can set up an MR job that reads blocks from both tables in the Map phase. We 
set up a Partitioner to hash partition rows from R and S on the value of the B  column. 
The key output from the Map phase includes a table tag. So the key has the form 
(tag, (key)). In MR, we can configure a custom Sort for the Job’s shuffle; the custom 
Sort sorts the rows that have the same key. In this case, we Sort rows with the same 
B value based on the tag. We give the smaller table a tag of 0 and the larger table a tag 
of 1. So a reducer will see all rows with the same B value in the order: smaller table rows 
first, then larger table rows. The Reducer can buffer smaller table rows; once it starts to 
receive large table rows, it can do an in-memory cross-product with the buffered small 
table rows to generate the join output. The cost of this strategy is dominated by the 
shuffle cost, which will write and read each row multiple times.

Map-Side Hash Join. For the case when one of R or S is a small table that can be 
loaded in the memory of each task, we can have the Map phase operate only on the 
large table splits. Each Map task can read the entire small table and create an in-
memory hash map based on B as the hash key. Then it can perform a hash join. This 
is similar to Hash Joins in databases. The cost of this task is roughly the cost of read-
ing the large table.

Partition Join. Assume that both R and S are stored in such a way that they are 
partitioned on the join keys. Then all rows in each Split belong to a certain identifi-
able range of the domain of the join field, which is B in our example. Assume both 
R and S are stored as p files. Suppose file (i) contains rows such that (Value B )mod 
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p = i. Then we only need to join the ith file of \(R\) R with the corresponding ith file 
of S. One way to do this is to perform a variation of the Map-Side join we discussed 
above: have the Mapper handling the ith partition of the larger table read the ith 
partition from the smaller table. This strategy can be expanded to work even when 
the two tables do not have the same number of partitions. It is sufficient for one to 
be a multiple of the other. For example, if table A is divided into two partitions and 
table B is divided into four partitions, then partition 1 from table A needs to join 
with partitions 1 and 3 of B, and partition 2 of A needs to join with partitions 2 and 4 
of B. The opportunity to perform Bucketed Join (see below) is also common: for 
example, assume R and S are outputs of previous sort-merge joins. The output of 
the sort-merge join is partitioned in the joining expressions. Further joining this 
dataset allows us to avoid a shuffle.

Bucket Joins. This is a combination of Map-Side and Partition Joins. In this case 
only one relation, say the right side relation, is Partitioned. We can then run Map-
pers on the left side relation and perform a Map Join against each Partition from 
the right side.

N-Way Map-Side Joins. A join on R(A, B, C, D), S(B, E), and T(C, F) can be 
achieved in one MR job provided the rows for a key for all small tables can be buffered 
in memory. The join is typical in Data Warehouses (see Chapter 29), where R is a fact 
table and S and T are dimension tables whose keys are B and C, respectively. Typi-
cally, in a Data Warehouse query filters are specified on Dimensional Attributes. 
Hence each Map task has enough memory to hold the hash map of several small 
Dimensional tables. As Fact table rows are being read into the Map task, they can be 
hash joined with all the dimensional tables that the Map task has read into memory.

Simple N-Way Joins. A join on R(A, B), S(B, C), and T(B, D) can be achieved in 
one MR job provided the rows for a key for all small tables can be buffered in mem-
ory. Suppose R is a large table and S and T are relatively smaller tables. Then it is 
typically the case that for any given key value B, the number of rows in S or T will fit 
in a Task’s memory. Then, by giving the large table the largest tag, it is easy to gen-
eralize the Sort-Merge join to an N-way join where the joining expressions are the 
same. In a Reducer for a key value of B, the reducer will first receive the S rows, then 
the T rows, and finally the R rows. Since the assumption is that there aren’t a large 
number of S and T rows, the reducer can cache them. As it receives R rows, it can do 
a cross product with the cached S and T rows and output the result of join.

In addition to the above strategies for performing joins using the MapReduce para-
digm, algorithms have been proposed for other types joins (e.g., the general multi-
way natural join with special cases of chain-join or star-join in data warehouses have 
been shown to be handled as a single MR job).14 Similarly, algorithms have been 
proposed to deal with skew in the join attributes (e.g., in a sales fact table, certain 
days may have a disproportionate number of transactions). For joins on attributes 
with skew, a modified algorithm would let the Partitioner assign unique values to the 

14See Afrati and Ullman (2010).
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data having a large number of entries and let them be handled by Reduce tasks, 
whereas the rest of the values may undergo hash partitioning as usual.

This discussion should provide the reader with a good sense of the many possibili-
ties of implementing Join strategies on top of MapReduce. There are other factors 
affecting performance, such as row versus columnar storage and pushing predicates 
down to storage handlers. These are beyond our scope of discussion here. Inter-
ested readers will find ongoing research publications in this area that are similar to 
Afrati and Ullman (2010).

The purpose of this section is to highlight two major developments that have 
impacted the big data community by providing high-level interfaces on top of the 
core technology of Hadoop and MapReduce. We will give a brief overview of the 
language Pig Latin and the system Hive.

Apache Pig. Pig15 was a system that was designed at Yahoo Research to bridge the 
gap between declarative-style interfaces such as SQL, which we studied in the con-
text of the relational model, and the more rigid low-level procedural-style program-
ming style required by MapReduce that we described in Section 25.2.2. Whereas it 
is possible to express very complex analysis in MR, the user must express programs 
as a one-input, two-stage (map and reduce) process. Furthermore, MR provides no 
methods for describing a complex data flow that applies a sequence of transforma-
tions on the input. There is no standard way to do common data transformation 
operations like Projections, Filtering, Grouping, and Joining. We saw all these 
operations being expressed declaratively in SQL in Chapters 7 and 8. However, 
there is a community of users and programmers that thinks more procedurally. So 
the developers of Pig invented the language Pig Latin to fill in the “sweet spot” 
between SQL and MR. We show an example of a simple Group By query expressed 
in Pig Latin in Olston et al. (2008):

There is a table of urls: (url,category.pagerank).

We wish to find, for categories having a large number of URLs, the average page-
rank of the high-pagerank URLs in that category. This requires a grouping of URLs 
by category. The SQL query that expresses this requirement may look like:

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10**6

The same query in Pig Latin is written as:

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)> 10**6;
output =  FOREACH big_groups GENERATE 

category, AVG(good_urls.pagerank);

15See Olston et al. (2008).
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As shown by this example, a Pigscript written using the scripting language Pig Latin 
is a sequence of data transformation steps. On each step, a basic transformation like 
Filter, Group By, or Projection is expressed. The script resembles a query plan for 
the SQL query similar to the plans we discussed in Chapter 19. The language sup-
ports operating on nested data structures like JSON (Java Script Object Notation) 
and XML. It has an extensive and extendible function library, and also an ability to 
bind schema to data very late or not at all.

Pig was designed to solve problems such as ad hoc analyses of Web logs and click-
streams. The logs and clickstreams typically require custom processing at row level 
as well as at an aggregate level. Pig accommodates user-defined functions (UDFs) 
extensively. It also supports a nested data model with the following four types:

Atoms: Simple atomic values such as a number or a string

Tuples: A sequence of fields, each of which can be of any permissible type

Bag: A collection of tuples with possible duplicates

Map: A collection of data items where each item has a key that allows direct 
access to it

Olston et al. (2008) demonstrates interesting applications on logs using Pig. An 
example is analysis of activity logs for a search engine over any time period (day, 
week, month, etc.) to calculate frequency of search terms by a user’s geographic loca-
tion. Here the functions needed include mapping IP addresses to geo-locations and 
using n-gram extraction. Another application involves co-grouping search queries 
of one period with those of another period in the past based on search terms.

Pig was architected so that it could run on different execution environments. In 
implementing Pig, Pig Latin was compiled into physical plans that were translated 
into a series of MR jobs and run in Hadoop. Pig has been a useful tool for enhanc-
ing programmers’ productivity in the Hadoop environment.

25.4.3 Apache Hive
Hive was developed at Facebook16 with a similar intent—to provide a higher level 
interface to Hadoop using SQL-like queries and to support the processing of aggre-
gate analytical queries that are typical in data warehouses (see Chapter 29). Hive 
remains a primary interface for accessing data in Hadoop at Facebook; it has been 
adopted widely in the open source community and is undergoing continuous 
improvements. Hive went beyond Pig Latin in that it provided not only a high-level 
language interface to Hadoop, but a layer that makes Hadoop look like a DBMS 
with DDL, metadata repository, JDBC/ODBC access, and an SQL compiler. The 
architecture and components of Hive are shown in Figure 25.2.

Figure 25.2 shows Apache Thrift as interface in Hive. Apache Thrift defines an 
Interface Definition Language (IDL) and Communication Protocol used to develop 

16See Thusoo et al. (2010).
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remote services. It comes with a runtime and code generation engine that can be 
used to develop remote services in many languages, including Java, C++, Python, 
and Ruby. Apache Thrift supports JSON-based and binary protocols; it supports 
http, socket, and file transports.

The Hive query language HiveQL includes a subset of SQL that includes all types of 
joins, Group By operations, as well as useful functions related to primitive and com-
plex data types. We comment below on some of the highlights of the Hive system.

Interfacing with HDFS: 

 ■ Tables in Hive are linked to directories in HDFS. Users can define parti-
tions within tables. For example, a Web log table can be partitioned by day 
and within day by the hour. Each partition level introduces a level of direc-
tories in HDFS. A table may also be stored as bucketed on a set of columns. 
This means that the stored data is physically partitioned by the column(s). 
For example, within an hour directory, the data may be bucketed by  Userid; 
this means that each hour’s data is stored in a set of files, each file rep-
resents a bucket of Users, and the bucket is based on the hashing of the 
Userid column. Users can specify how many buckets the data should be 
divided into.

 ■ The SerDe (Serialization/Deserialization) plugin architecture lets users 
specify how data in native file formats is exposed as rows to Hive SQL oper-
ators. Hive comes with a rich set of SerDe functions and supported File 
formats (e.g., CSV, JSON, SequenceFile); columnar formats (e.g., RCFile, 
ORCFile, Parquet); and support for Avro—another data serialization sys-
tem. The different StorageHandlers expand on the SerDe mechanism to 
allow pluggable behavior for how data is read/written and the ability to 
push predicates down to the Storage Handler for early evaluation. For 
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example, the JDBC StorageHandler allows a Hive user to define a table that 
is in fact stored in some relational DBMS and accessed using the JDBC pro-
tocol (see Chapter 10) during query execution.

Support of SQL and Optimizations in Hive: Hive incorporated the concepts of 
Logical and Physical Optimizations similar to those used in optimization of SQL que-
ries, which we discussed in Chapters 18 and 19. Early on, there was support for logical 
optimizations such as pruning unneeded columns and pushing selection predicates 
down into the query tree. Physical optimizations of converting sort-merge joins to 
Map-side joins based on user hints and data file sizes have also been incorporated. 
Hive started with support for a subset of SQL-92 that included SELECT, JOIN, 
GROUP BY, and filters based on conditions in the WHERE clause. Hive users can 
express complex SQL commands in Hive. Early in its development, Hive was able to 
run the 22 TPCH benchmark queries (Transaction Processing Performance Council 
benchmark for decision support), although with considerable manual rewriting.

Significant strides have been made in language support and in optimizer and run-
time techniques. Here is a sampling of those improvements:

 ■ Hive SQL has added many analytic features of SQL, such as subquery predicates, 
Common Table expressions (this is the WITH clause in SQL that allows users to 
name common subquery blocks and reference them multiple times in the query; 
these expressions can be considered query-level views), aggregates over a certain 
window within the data, Rollups (which refer to higher aggregation levels), and 
Grouping sets (this capability allows you to express multiple levels of aggrega-
tion in one Group By level). Consider, for example, Group By Grouping Sets 
((year, month), (dayofweek)); this expresses aggregates both at the (Year, 
Month) level and also by DayOfWeek. A full set of SQL data types, including 
varchars, numeric types, and dates, is now supported. Hive also supports the 
common Change Data Capture ETL flow via Insert and Update statements. In a 
Data Warehouse, the process of delivering slowly changing Dimensions (e.g., 
customers in a Retail Data Warehouse) requires a complex dataflow of identi-
fying new and updated records in that Dimension. This is called the Change 
Data Capture (CDC) process. By adding Insert and Update statements in Hive, 
it is possible to model and execute CDC processes in Hive SQL.

 ■ Hive now has a greatly expanded set of DDLs for expressing grants and priv-
ileges in terms of discretionary access control (see Section 30.2).

 ■ Several standard database optimizations have been incorporated, including 
Partition pruning, Join reordering, Index rewrite, and Reducing the number 
of MR jobs. Very large tables, like Fact tables in Data Warehouses, are typi-
cally partitioned. Time is probably the most common attribute used for parti-
tioning. With HDFS being used as the storage layer, users tend to retain data 
for long time periods. But a typical Warehouse will only include the most cur-
rent time periods (e.g., the last quarter or current year). The time periods are 
specified as filters in the Query. Partition Pruning is the technique of extracting 
relevant predicates from the Query filters and translating them to a list of 
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Table partitions that need to be read. Obviously, this has a huge impact on 
performance and cluster utilization: Instead of scanning all partitions retained 
for the last N years, only the partitions from the last few weeks/months are 
scanned. Work in progress includes collecting column- and table-level statis-
tics and generating plans based on a cost model that uses these statistics (simi-
lar to what we considered for RDBMSs in Chapter 19).

 ■ Hive now supports Tez as a runtime environment that has significant advan-
tages over MR, including that there is no need to write to disk between jobs; 
and there is no restriction on one-input, two-stage processes. There is also 
active work to support Hive on Spark, a new technology that we briefly 
mention in Section 25.6.

25.4.4 Advantages of the Hadoop/MapReduce Technology
Hadoop version 1 was optimized for batch processing on very large datasets. Vari-
ous factors contribute to its success:

  1. The disk seek rate is a limiting factor when we deal with petabyte-level work-
loads. Seek is limited by the disk mechanical structure, whereas the transfer 
speed is an electronic feature and increasing steadily. (See Section 16.2 for a 
discussion of disk drives.) The MapReduce model of scanning datasets in 
parallel alleviates this situation. For instance, scanning a 100-TB dataset 
sequentially using 1 machine at a rate of 50 Mbps will take about 24 days to 
complete. On the other hand, scanning the same data using 1,000 machines 
in parallel will just take 35 minutes. Hadoop recommends very large block 
sizes, 64 MB or higher. So when scanning datasets, the percentage of time 
spent on disk seeks is negligible. Unlimited disk seek rates combined with 
processing large datasets in chunks and in parallel is what drives the scal-
ability and speed of the MapReduce model.

  2. The MapReduce model allows handling of semistructured data and key-
value datasets more easily compared to traditional RDBMSs, which require 
a predefined schema. Files such as very large logfiles present a particular 
problem in RDBMSs because they need to be parsed in multiple ways before 
they can be analyzed.

  3. The MapReduce model has linear scalability in that resources can be added 
to improve job latency and throughput in a linear fashion. The failure model 
is simple, and individual failed jobs can be rerun without a major impact on 
the whole job.

25.5 Hadoop v2 alias YARN
In previous sections, we discussed Hadoop development in detail. Our discussion 
included the core concepts of the MapReduce paradigm for programming and the 
HDFS underlying storage infrastructure. We also discussed high-level interfaces 
like Pig and Hive that are making it possible to do SQL-like, high level data process-
ing on top of the Hadoop framework. Now we turn our attention to subsequent 
developments, which are broadly called Hadoop v2 or MRv2 or YARN (Yet Another 
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Resource Negotiator). First, we point out the shortcomings of the Hadoop v1 plat-
form and the rationale behind YARN.

25.5.1 Rationale behind YARN
Despite the success of Hadoop v1, user experience with Hadoop v1 in enterprise 
applications highlighted some shortcomings and suggested that an upgrade of 
Hadoop v1 might be necessary:

 ■ As cluster sizes and the number of users grew, the JobTracker became a bot-
tleneck. It was always known to be the Single Point of Failure.

 ■ With a static allocation of resources to map and reduce functions, utilization 
of the cluster of nodes was less than desirable

 ■ HDFS was regarded as a single storage system for data in the enterprise. 
Users wanted to run different types of applications that would not easily fit 
into the MR model. Users tended to get around this limitation by running 
Map-only Jobs, but this only compounded scheduling and utilization issues.

 ■ On large clusters, it became problematic to keep up with new open source 
versions of Hadoop, which were released every few months.

The above reasons explain the rationale for developing version 2 of Hadoop. Some 
of the points mentioned in the previous list warrant a more detailed discussion, 
which we provide next.

Multitenancy: Multitenancy refers to accommodating multiple tenants/users con-
currently so that they can share resources. As the cluster sizes grew and the number 
of users increased, several communities of users shared the Hadoop cluster. At 
Yahoo, the original solution to this problem was Hadoop on Demand, which was 
based on the Torque resource manager and Maui scheduler. Users could set up a 
separate cluster for each Job or set of Jobs. This had several advantages:

 ■ Each cluster could run its own version of Hadoop.

 ■ JobTracker failures were isolated to a single cluster.

 ■ Each user/organization could make independent decisions on the size and 
configuration of its cluster depending on expected workloads.

But Yahoo abandoned Hadoop on Demand for the following reasons:

 ■ Resource allocation was not based on data locality. So most reads and writes 
from HDFS were remote accesses, which negated one of the key benefits of 
the MR model of mostly local data accesses.

 ■ The allocation of a cluster was static. This meant large parts of a cluster were 
mostly idle:

 � Within an MR job, the reduce slots were not usable during the Map phase 
and the map slots were not usable during the Reduce phase. When using 
higher level languages like Pig and Hive, each script or query spawned 
multiple Jobs. Since cluster allocation was static, the maximum nodes 
needed in any Job had to be acquired upfront.
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 � Even with the use of Fair or Capacity scheduling (see our discussion in 
Section 25.4.2), dividing the cluster into fixed map and reduce slots meant 
the cluster was underutilized.

 ■ The latency involved in acquiring a cluster was high—a cluster would be 
granted only when enough nodes were available. Users started extending the 
lifetime of clusters and holding the clusters longer than they needed. This 
affected cluster utilization negatively.

JobTracker Scalability. As the cluster sizes increased beyond 4,000 nodes, issues 
with memory management and locking made it difficult to enhance JobTracker to 
handle the workload. Multiple options were considered, such as holding data about 
Jobs in memory, limiting the number of tasks per Job, limiting the number of Jobs 
submitted per user, and limiting the number of concurrently running jobs. None of 
these seemed to fully satisfy all users; JobTracker often ran out of memory.

A related issue concerned completed Jobs. Completed jobs were held in JobTracker 
and took up memory. Many schemes attempted to reduce the number and memory 
footprint of completed Jobs. Eventually, a viable solution was to offload this func-
tion to a separate Job History daemon.

As the number of TaskTrackers grew, the latencies for heartbeats (signals from 
TaskTracker to JobTracker) were almost 200 ms. This meant that heartbeat intervals 
for TaskTrackers could be 40 seconds or more when there were more than 200 task 
trackers in the cluster. Efforts were made to fix this but were eventually abandoned.

JobTracker: Single Point of Failure. The recovery model of Hadoop v1 was 
very weak. A failure of JobTracker would bring down the entire cluster. In this 
event, the state of running Jobs was lost, and all jobs would have to be resubmitted 
and JobTracker restarted. Efforts to make the information about completed jobs 
persist did not succeed. A related issue was to deploy new versions of the software. 
This required scheduling a cluster downtime, which resulted in backlogs of jobs 
and a subsequent strain on JobTracker upon restart.

Misuse of the MapReduce Programming Model. MR runtime was not a great 
fit for iterative processing; this was particularly true for machine learning algo-
rithms in analytical workloads. Each iteration is treated as an MR job. Graph algo-
rithms are better expressed using a bulk synchronous parallel (BSP) model, which 
uses message passing as opposed to the Map and Reduce primitives. Users got 
around these impediments by inefficient alternatives such as implementing 
machine learning algorithms as long-running Map-only jobs. These types of jobs 
initially read data from HDFS and executed the first pass in parallel; but then 
exchanged data with each other outside the control of the framework. Also, the 
fault tolerance was lost. The JobTracker was not aware of how these jobs operated; 
this lack of awareness led to poor utilization and instability in the cluster.

Resource Model Issues. In Hadoop v1, a node is divided into a fixed number of 
Map and Reduce slots. This led to cluster underutilization because idle slots could 
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not be used. Jobs other than MR could not run easily on the nodes because the node 
capacity remained unpredictable.

The aforementioned issues illustrate why Hadoop v1 needed upgrading. 
Although attempts were made to fix in Hadoop v1 many of the issues listed 
above, it became clear that a redesign was needed. The goals of the new design 
were set as follows:

 ■ To carry forward the scalibility and locality awareness of Hadoop v1.

 ■ To have multitenancy and high cluster utilization.

 ■ To have no single point of failure and to be highly available.

 ■ To support more than just MapReduce jobs. The cluster resources should 
not be modeled as static map and reduce slots.

 ■ To be backward compatible, so existing jobs should run as they are and pos-
sibly without any recompilation.

The outcome of these was YARN or Hadoop v2, which we discuss in the next section.

25.5.2 YARN Architecture
Overview. Having provided the motivation behind upgrading Hadoop v1, we 
now discuss the detailed architecture of the next generation of Hadoop, which is 
popularly known as MRv2, MapReduce 2.0, Hadoop v2, or YARN.17 The central 
idea of YARN is the separation of cluster Resource Management from Jobs man-
agement. Additionally, YARN introduces the notion of an ApplicationMaster, 
which is now responsible for managing work (task data flows, task lifecycles, 
task failover, etc.). MapReduce is now available as a service/application provided 
by the MapReduce ApplicationMaster. The implications of these two decisions 
are far-reaching and are central to the notion of a data service operating system. 
Figure 25.3 shows a high-level schematic diagram of Hadoop v1 and Hadoop v2 
side by side.

The ResourceManager and the per worker node NodeManager together form the 
platform on which any Application can be hosted on YARN. The Resource Manager 
manages the cluster, doling out Resources based on a pluggable scheduling policy 
(such as a fairness policy or optimizing cluster utilization policy). It is also respon-
sible for the lifecycle of nodes in the cluster in that it will track when nodes go 
down, when nodes become unreachable, or when new nodes join. Node failures are 
reported to the ApplicationMasters that had containers on the failed node. New 
nodes become available for use by ApplicationMasters.

ApplicationMasters send ResourceRequests to the ResourceManager which then 
responds with cluster Container leases. A Container is a lease by the Resource-
Manager to the ApplicationManager to use certain amount of resources on a node 

17See the Apache website: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html for up-to-date documentation on YARN.
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of the cluster. The ApplicationMaster presents a Container Launch Context to the 
NodeManager for the node that this lease references. The Launch Context, in 
addition to containing the lease, also specifies how to run the process for the task 
and how to get any resources like jars, libs for the process, environment variables, 
and security tokens. A node has a certain processing power in terms of number of 
cores, memory, network bandwidth, etc. Currently, YARN only considers mem-
ory. Based on its processing power, a node can be divided into an interchangeable 
set of containers. Once an ApplicationMaster receives a container lease, it is free to 
schedule work on it as it pleases. ApplicationMasters, based on their workload, can 
continuously change their Resource requirements. The ResourceManager bases its 
scheduling decisions purely on these requests, on the state of the cluster, and on 
the cluster’s scheduling policy. It is not aware of the actual tasks being carried out 
on the nodes. The responsibility of managing and analyzing the actual work is left 
to ApplicationMasters.

The NodeManager is responsible for managing Containers on their nodes. Con-
tainers are responsible for reporting on the node health. They also handle the pro-
cedure for nodes joining the cluster. Containers provide the Container Launch 
service to ApplicationMasters. Other services available include a Local cache, which 
could be User level, Application level, or Container level. Containers also can be 
configured to provide other services to Tasks running on them. For example, for 
MR tasks, the shuffle is now provided as a Node-level service.

The ApplicationMaster is now responsible for running jobs on the cluster. Based on 
their job(s) the clusters negotiate for Resources with the ResourceManager. The 
ApplicationMaster itself runs on the cluster; at startup time a client submits an 
Application to the ResourceManager, which then allocates a container for the 
ApplicationMaster and launches it in that container. In the case of MR, the 
 ApplicationMaster takes over most of the tasks of the JobTracker: it launches Map 
and Reduce tasks, makes decisions on their placement, manages failover of tasks, 
maintains counters similar to Job state counters, and provides a monitoring inter-
face for running Jobs. The management and interface for completed jobs has been 
moved to a separate Job History Server.
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The following advantages accrue from the separation of Resource Management 
from Application Management in the YARN architecture:

 ■ A rich diversity of Data Services is available to utilize the cluster. Each of 
these can expose its own programming model.

 ■ Application Masters are free to negotiate resources in patterns that are opti-
mized for their work: for example, machine learning Apps may hold Con-
tainers for long durations.

 ■ The Resource and Container model allows nodes to be utilized in a dynamic 
manner, which increases the overall utilization of the cluster.

 ■ The ResourceManager does only one thing—manage resources; hence it is 
highly scalable to tens of thousands of nodes.

 ■ With ApplicationMasters managing Jobs, it is possible to have multiple ver-
sions of an Application running on the cluster. There is no need for a global 
cluster update, which would require that all Jobs be stopped.

Failure of an ApplicationMaster affects only Jobs managed by it. The Resource-
Manager provides some degree of management of ApplicationMasters. Let us 
briefly consider each of the components of the YARN environment.

Resource Manager (RM). The Resource Manager is only concerned with allo-
cating resources to Applications, and not with optimizing the processing within 
Applications. The policy of resource allocation is pluggable. Application Masters 
are supposed to request resources that would optimize their workload.

The Resource Manager exposes the following interfaces:

  1. An API for clients to start ApplicationMasters

  2. A protocol for ApplicationMasters to negotiate for cluster resources

  3. A protocol for NodeManagers to report on node resources and be managed 
by the Resource Manager

The scheduler in the ResourceManager matches the Resource Requirements sub-
mitted by Applications against the global state of the cluster resources. The alloca-
tion is based on the policies of the pluggable Scheduler (such as capacity or fairness). 
Resources are requested by ApplicationMasters as Resource Requests. A Resource 
Request specifies:

 ■ The number of containers needed

 ■ The physical resources (CPU, memory) needed per container

 ■ The locality preferences (physical node, rack) of the containers

 ■ The priority of the request for the Application

The scheduler satisfies these requests based on the state of the cluster as reported by 
the NodeManager heartbeats. The locality and priority guides the scheduler toward 
alternatives: for example, if a requested node is busy, the next best alternative is 
another node on the same rack.
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The scheduler also has the ability to request resources back from an Application if 
needed and can even take back the resources forcibly. Applications, in returning a 
container, can migrate the work to another container, or checkpoint the state and 
restore it on another container. It is important to point out what the Resource man-
ager is not responsible for: handling the execution of tasks within an application, 
providing any status information about applications, providing history of finished 
jobs, and providing any recovery for failed tasks.

ApplicationMaster (AM). The ApplicationMaster is responsible for coordinating 
the execution of an Application on the cluster. An Application can be a set of pro-
cesses like an MR Job, or it can be a long-running service like a Hadoop on demand 
(HOD) cluster serving multiple MR jobs. This is left to the Application Writer.

The ApplicationMaster will periodically notify the ResourceManager of its current 
Resource Requirements through a heartbeat mechanism. Resources are handed to 
the ApplicationMaster as Container leases. Resources used by an Application are 
dynamic: they are based on the progress of the application and the state of the clus-
ter. Consider an example: the MR ApplicationMaster running an MR job will ask 
for a container on each of the m nodes where an InputSplit resides. If it gets a con-
tainer on one of the nodes, the ApplicationMaster will either remove the request for 
containers on the rest of the m-1 nodes or at least reduce their priority. On the 
other hand, if the map task fails, it is AM that tracks this failure and requests con-
tainers on other nodes that have a replica of the same InputSplit.

NodeManager. A NodeManager runs on every worker node of the cluster. It 
 manages Containers and provides pluggable services for Containers. Based on a 
detailed Container Launch Context specification, a NodeManager can launch a pro-
cess on its node with the environment and local directories set up. It also monitors to 
make sure the resource utilization does not exceed specifications. It also periodically 
reports on the state of the Containers and the node health. A NodeManager provides 
local services to all Containers running on it. The Log Aggregation service is used to 
upload each task’s standard output and standard error (stdout and stderr) to HDFS. 
A NodeManager may be configured to run a set of pluggable auxillary services. For 
example, the MR Shuffle is provided as a NodeManager service. A Container run-
ning a Map task produces the Map output and writes to local disk.The output is 
made available to Reducers of the Job via the Shuffle service running on the Node.

Fault tolerance and availability. The RM remains the single point of failure in 
YARN. On restart, the RM can recover its state from a persistent store. It kills all 
containers in the cluster and restarts each ApplicationMaster. There is currently a 
push to provide an active/passive mode for RMs. The failure of an Application-
Master is not a catastrophic event; it only affects one Application. It is responsible 
for recovering the state of its Application. For example, the MR ApplicationMaster 
will recover its completed task and rerun any running tasks.

Failure of a Container because of issues with the Node or because of Application 
code is tracked by the framework and reported to the ApplicationMaster. It is the 
responsibility of the ApplicationMaster to recover from the failure.
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25.5.3 Other Frameworks on YARN
The YARN architecture described above has made it possible for other application 
frameworks to be developed as well as other programming models to be supported 
that can provide additional services on the shared Hadoop cluster. Here we list 
some of the Frameworks that have become available in YARN at the time this text 
was written.

Apache Tez. Tez is an extensible framework being developed at Hortonworks for 
building high-performance applications in YARN; these applications will handle 
large datasets up to petabytes. Tez allows users to express their workflow as a 
directed acyclic graph (DAG) of tasks. Jobs are modeled as DAGs, where Vertices 
are tasks or operations and Edges represent interoperation dependencies or flows 
of data. Tez supports the standard dataflow patterns like pipeline, scatter-gather, 
and broadcast. Users can specify the concurrency in a DAG, as well as the failover 
characteristics, such as whether to store task output in persistent storage or to 
recompute it. The DAG can be changed at runtime based on job and cluster state. 
The DAG model is a more natural fit (than executing as one or more MapReduce 
jobs) for Pig scripts and SQL physical plans. Both Hive and Pig now provide a mode 
in which they run on Tez. Both have benefitted in terms of simpler plans and sig-
nificant performance improvements. An often cited performance optimization is 
the Map-Reduce-Reduce pattern; an SQL query that has a Join followed by a Group-
By normally is translated to two MR jobs: one for the Join and one for the Group-
By. In the first MR stage, the output of the join will be written to HDFS and read 
back in the Map phase of the second MR for the Group-By Job. In Tez, this extra 
write and read to/from HDFS can be avoided by having the Join Vertex of the DAG 
stream resulting rows to the Group-By Vertex.

Apache Giraph. Apache Giraph is the open source implementation of Google’s 
Pregel system,18 which was a large-scale graph processing system used to calculate 
Page-Rank. (See Section 27.7.3 for a definition of Page-Rank.) Pregel was based on 
the bulk synchronous processing (BSP) model of computation.19 Giraph added sev-
eral features to Pregel, including sharded aggregators (sharding, as defined in 
Chapter 24, refers to a form of partitioning) and edge-oriented input. The Hadoop 
v1 version of Giraph ran as MR jobs, which was not a very good fit. It did this by 
running long-running Map-only Jobs. On YARN, the Giraph implementation 
exposes an iterative processing model. Giraph is currently used at Facebook to ana-
lyze the social network users’ graph, which has users as nodes and their connections 
as edges; the current number of users is approximately 1.3 billion.

Hoya: HBase on YARN. The Hortonworks Hoya (HBase on YARN) project pro-
vides for elastic HBase clusters running on YARN with the goal of more flexibility 
and improved utilization of the cluster. We discussed HBase in Section 24.5 as a 

18Pregel is described in Malewicz et al. (2010).
19BSP is a model for designing parallel algorithms and was originally proposed by Valiant (1990).
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distributed, open source, nonrelational database that manages tables with billions of 
rows and millions of columns. HBase is patterned after BigTable from Google20 but is 
implemented using Hadoop and HDFS. Hoya is being developed to address the need 
for creating on-demand clusters of HBase, with possibly different versions of HBase 
running on the same cluster. Each of the HBase instances can be individually config-
ured. The Hoya ApplicationMaster launches the HBase Master locally. The Hoya AM 
also asks the YARN RM for a set of containers to launch HBase RegionServers on the 
cluster. HBase RegionServers are the worker processes of Hbase; each ColumnFamily 
(which is like a set of Columns in a relational table) is distributed across a set of 
RegionServers. This can be used to start one or more HBase instances on the cluster, 
on demand. The clusters are elastic and can grow or shrink based on demand.

The above three examples of the applications developed on YARN should give 
the reader a sense of the possibilities that have been opened up by the decoupling 
of  Resource Management from Application Management in the overall  
Hadoop/MapReduce architecture by YARN.

25.6 General Discussion
So far, we have discussed the big data technology development that has occurred 
roughly in the 2004–2014 time frame, and we have emphasized Hadoop v1 and 
YARN (also referred to as Hadoop v2 or MRv2). In this section, we must first state 
the following disclaimer: there are a number of ongoing projects under Apache open 
source banner as well as in companies devoted to developing products in this area 
(e.g., Hortonworks, Cloudera, MapR) as well as many private startup companies. 
Similarly, the Amplab at University of California and other academic institutions are 
contributing heavily to developing technology that we have not been able to cover in 
detail. There is also a series of issues associated with the cloud concept, with running 
MapReduce in the cloud environment, and with data warehousing in the cloud that 
we have not discussed. Given this background, we now cover a few general topics 
that are worth mentioning in the context of the elaborate descriptions we presented 
so far in this chapter. We present issues related to the tussle between the traditional 
approach to high performance applications in parallel RDBMS implementations vis-
à-vis Hadoop- and YARN-based technologies. Then we present a few points related 
to how big data and cloud technologies will be complementary in nature. We outline 
issues related to the locality of data and the optimization issues inherent in the stor-
age clouds and the compute clouds. We also discuss YARN as a data services plat-
form and the ongoing movement to harness big data for analytics. Finally, we present 
some current challenges facing the entire big data movement.

25.6.1 Hadoop/MapReduce vs. Parallel RDBMS
A team of data experts, including Abadi, DeWitt, Madden, and Stonebracker, have 
done a methodological study comparing a couple of parallel database systems with 

20BigTable is described in Chang et al. (2006).
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the open source version of Hadoop/MR (see, for example, Pavlo et al. (2009)). 
These experts measure the performance of these two approaches on the same 
benchmark using a 100-node cluster. They admit that the parallel database took 
longer to load and tune compared to MR, but the performance of parallel DBMSs 
was “strikingly better.” We list the areas the experts compared in the study and 
attempt to show the progress made in both DBMSs and Hadoop since then.

Performance. In their paper, Pavlo et al. concluded that parallel DBMSs were 
three to six times faster than MR. The paper lists many reasons why the DBMSs 
gave better performance. Among the reasons given are the following: (i) indexing 
with B+-trees, which expedites selection and filtering; (ii) novel storage orientation 
(e.g., column-based storage has certain advantages); (iii) techniques that allow 
operations on compressed data directly; and (iv) parallel query optimization tech-
niques common in parallel DBMSs.

Since the time of Pavlo et al.’s comparison, which involved Hadoop version 0.19, 
huge strides have been made in the MR runtime, the storage formats, and the plan-
ning capabilities for job scheduling and for optimizing complex data flows in the 
Hadoop ecosystem. ORC and Parquet file formats are sophisticated Columnar file 
formats that have the same aggressive compression techniques, the ability to push 
predicates to the storage layer, and the ability to answer aggregate queries without 
scanning data. We will briefly talk about the improvements in HDFS and MR; 
Apache Hive has made huge strides in both the runtime and Cost-based optimiza-
tions of complex SQLs. In their move to transform Hadoop from batch into real-
time and interactive query mode, Hortonworks (2014) reports orders-of-magnitude 
gains in performance of queries on a TPC-DS (decision support )–style bench-
mark. Cloudera’s Impala product, as reported in Cloudera (2014), uses Parquet 
(the open source columnar data format) and is claimed to perform comparably to 
traditional RDBMSs.

Upfront Cost advantage. Hadoop has maintained its cost advantage. With few 
exceptions, Hadoop continues to be primarily an open source platform. YARN, 
Hive, and Spark are all developed as Apache projects and are available as freely 
downloadable packages.

Handling Unstructured/Semistructured data. MR reads data by applying the 
schema definition to it; doing so allows it to handle semistructured datasets like 
CSVS, JSON, and XML documents. The loading process is relatively inexpensive 
for the Hadoop/MR systems. However, the support for unstructured data is defi-
nitely on the rise in RDBMSs. PostgreSQL now supports key-value stores and json; 
most RDBMSs have a support for XML. On the other hand, one of the reasons for 
the performance gains on the Hadoop side has been the use of specialized data for-
mats like ORC (Optimized Row Columnar) and Parquet (another open source 
columnar format). The latter may not remain a strongly differentiating feature 
among RDBMSs and Hadoop-based systems for too long because RDBMSs may 
also incorporate special data formats.
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Higher level language support. SQL was a distinguishing feature that was in 
favor for RDBMSs for writing complex analytical queries. However, Hive has 
incorporated a large number of SQL features in HiveQL, including grouping and 
aggregation as well as nested subqueries and multiple functions that are useful in 
data warehouses, as we discussed previously. Hive 0.13 is able to execute about 50 
queries from the TPC-DS benchmark without any manual rewriting. New machine 
learning–oriented function libraries are emerging (e.g., the function library at 
madlib.net supports traditional RDBMSs like PostgreSql as well as the Pivotal dis-
tribution of Hadoop database (PHD)). Pivotal’s HAWQ claims to be the latest and 
most powerful parallel SQL engine combining the advantages of SQL and Hadoop. 
Furthermore, the YARN plugin architecture that we discussed simplifies the pro-
cess of extending the fabric with new components and new functions. Pig and 
Hive have extendibility with UDFs (user-defined functions). Several data services 
are now available on YARN, such as Revolution R and Apache Mahout for machine 
learning and Giraph for graph processing. Many traditional DBMSs now run on 
the YARN platform; for example, the Vortex analytic platform from Actian21 and 
BigSQL 3.0 from IBM.22

Fault tolerance. Fault tolerance remains a decided advantage of MR-based sys-
tems. The panel of authors in Pavlo et al. (2009) also acknowledged that “MR does 
a superior job of minimizing the amount of work lost when a hardware failure 
occurs.” As pointed out by these authors, this capability comes at the cost of mate-
rializing intermediate files between Map and Reduce phases. But as Hadoop begins 
to handle very complex data flows (such as in Apache Tez) and as the need for 
latencies decreases, users can trade off performance for fault tolerance. For exam-
ple, in Apache Spark one can configure an intermediate Resilient Distributed 
Dataset (RDD)23 to be either materialized on disk or in memory, or even to be 
recomputed from its input.

As we can see from this discussion, even though MR started with a goal of sup-
porting batch-oriented workloads, it could not keep up with traditional parallel 
RDBMSs in terms of interactive query workloads, as exemplified by Pavlo et al. 
(2009). However, the two camps have moved much closer to each other in capa-
bilities. Market forces, such as the need for venture capital for new startups, require 
an SQL engine for new applications that largely deal with very large semistruc-
tured datasets; and the research community’s interest and involvement have 
brought about substantial improvements in Hadoop’s capability to handle tradi-
tional analytical workloads. But there is still significant catching up to be done in 
all the areas pointed out in Pavlo et al. (2009): runtime, planning and optimiza-
tion, and analytic feature-sets.

21See http://www.actian.com/about-us/blog/sql-hadoop-real-deal/ for a current description.
22See Presentation at http://www.slideshare.net/Hadoop_Summit/w-325p230-azubirigrayatv4 for a 
current description.
23See Zaharia et al. (2012).



 25.6 General Discussion 947

25.6.2 Big Data in Cloud Computing
The cloud computing movement and the big data movement have been proceeding 
concurrently for more than a decade. It is not possible to address the details of 
cloud computing issues in the present context. However, we state some compelling 
reasons why big data technology is in some sense dependent on cloud technology 
not only for its further expansion, but for its continued existence.

 ■ The cloud model affords a high degree of flexibility in terms of management 
of resources: “scaling out,” which refers to adding more nodes or resources; 
“scaling up,” which refers to adding more resources to a node in the system; 
or even downgrading are easily handled almost instantaneously.

 ■ The resources are interchangeable; this fact, coupled with the design of dis-
tributed software, creates a good ecosystem where failure can be absorbed 
easily and where virtual computing instances can be left unperturbed. For 
the cost of a few hundred dollars, it is possible to perform data mining oper-
ations that involve complete scans of terabyte databases, and to crawl huge 
Web sites that contain millions of pages.

 ■ It is not uncommon for big data projects to exhibit unpredictable or peak 
computing power and storage needs. These projects are faced with the chal-
lenge of providing for this peak demand on an as-needed and not necessar-
ily continuous basis. At the same time, business stakeholders expect swift, 
inexpensive, and dependable products and project outcomes. To meet with 
these conflicting requirements, cloud services offer an ideal solution.

 ■ A common situation in which cloud services and big data go hand-in-hand 
is as follows: Data is transferred to or collected in a cloud data storage sys-
tem, like Amazon’s S3, for the purpose of collecting log files or exporting 
text-formatted data. Alternatively, database adapters can be utilized to 
access data from databases in the cloud. Data processing frameworks like 
Pig, Hive, and MapReduce, which we described above in Section 25.4, are 
used to analyze raw data (which may have originated in the cloud).

 ■ Big data projects and startup companies benefit a great deal from using a 
cloud storage service. They can trade capital expenditure for operational 
expenditure; this is an excellent trade because it requires no capital outlay or 
risk. Cloud storage provides reliable and scalable storage solutions of a qual-
ity otherwise unachievable.

 ■ Cloud services and resources are globally distributed. They ensure high avail-
ability and durability unattainable by most but the largest organizations.

The Netflix Case for Marrying Cloud and Big Data.24 Netflix is a large orga-
nization characterized by a very profitable business model and an extremely inex-
pensive and reliable service for consumers. Netflix provides video streaming 
services to millions of customers today thanks to a highly efficient information 

24Based on http://techblog.netflix.com/2013/01/hadoop-platform-as-service-in-cloud.html
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system and data warehouse. Netflix uses Amazon S3 rather than HDFS as the data 
processing and analysis platform for several reasons. Netflix presently uses Ama-
zon’s Elastic MapReduce (EMR) distribution of Hadoop. Netflix cites the main 
reason for its choice as the following: S3 is designed for 99.999999999% durability 
and 99.99% availability of objects over a given year, and S3 can sustain concurrent 
loss of data in two facilities. S3 provides bucket versioning, which allows Netflix to 
recover inadvertently deleted data. The elasticity of S3 has allowed Netflix a practi-
cally unlimited storage capacity; this capacity has enabled Netflix to grow its storage 
from a few hundred terabytes to petabytes without any difficulty or prior planning. 
Using S3 as the data warehouse enables Netflix to run multiple Hadoop clusters that 
are fault-tolerant and can sustain excess load. Netflix executives claim that they have 
no concerns about data redistribution or loss during expansion or shrinking of the 
warehouse. Although Netflix’s production and query clusters are long-running clus-
ters in the cloud, they can be essentially treated as completely transient. If a cluster 
goes down, Netflix can simply substitute with another identically sized cluster, pos-
sibly in a different geographic zone, in a few minutes and not sustain any data loss.

25.6.3  Data Locality Issues and Resource Optimization  
for Big Data Applications in a Cloud

The increasing interest in cloud computing combined with the demands of big data 
technology means that data centers must be increasingly cost-effective and con-
sumer-driven. Also, many cloud infrastructures are not intrinsically designed to 
handle the scale of data required for present-day data analytics. Cloud service pro-
viders are faced with daunting challenges in terms of resource management and 
capacity planning to provide for big data technology applications.

The network load of many big data applications, including Hadoop/MapReduce, is of 
special concern in a data center because large amounts of data can be generated dur-
ing job execution. For instance, in a MapReduce job, each reduce task needs to read 
the output of all map tasks, and a sudden explosion of network traffic can signifi-
cantly deteriorate cloud performance. Also, when data is located in one infrastructure 
(say, in a storage cloud like Amazon S3) and processed in a compute cloud (such as 
Amazon EC2), job performance suffers significant delays due to data loading.

Research projects have proposed25 a self-configurable, locality-based data and vir-
tual machine management framework based on the storage-compute model. This 
framework enables MapReduce jobs to access most of their data either locally or 
from close-by nodes, including all input, output, and intermediate data generated 
during map and reduce phases of the jobs. Such frameworks categorize jobs using a 
data-size sensitive classifier into four classes based on a data size–based footprint. 
Then they provision virtual MapReduce clusters in a locality-aware manner, which 
enables efficient pairing and allocation of MapReduce virtual machines (VMs) to 
reduce the network distance between storage and compute nodes for both map and 
reduce processing.

25See Palanisamy et al. (2011).
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Recently, caching techniques have been shown to improve the performance of 
MapReduce jobs for various workloads.26 The PACMan framework provides sup-
port for in-memory caching, and the MixApart system provides support for disk-
based caching when the data is stored in an enterprise storage server within the 
same site. Caching techniques allow flexibility in that data is stored in a separate 
storage infrastructure that allows prefetching and caching of the most essential 
data. Recent work27 has addressed the big data caching problem in the context of 
privacy-conscious scenarios, wherein data stored in encrypted form in a public 
cloud must be processed in a separate, secure enterprise site.

In addition to the data locality problem, one of the most challenging goals for cloud 
providers is to optimally provision virtual clusters for jobs while minimizing the 
overall consumption cost of the cloud data center.

An important focus of cloud resource optimization is to optimize globally across all 
jobs in the cloud as opposed to per-job resource optimizations. A good example of 
a globally optimized cloud- managed system is the recent Google BigQuery sys-
tem,28 which allows Google to run SQL-like queries against very large datasets with 
potentially billions of rows using an Excel-like interface. In the BigQuery service, 
customers only submit the queries to be processed on the large datasets, and the 
cloud system intelligently manages the resources for the SQL-like queries. Simi-
larly, the Cura resource optimization model29 proposed for MapReduce in a cloud 
achieves global resource optimization by minimizing the overall resource utiliza-
tion in the cloud as opposed to per-job or per-customer resource optimization.

25.6.4 YARN as a Data Service Platform
The separation of resource management from application management has taken 
Hadoop to another level as a platform. Hadoop v1 was all about MapReduce. In 
Hadoop v2, MapReduce is one of the many application frameworks that can run on 
the cluster. As we discussed in Section 25.5, this has opened the door for many services 
(with their own programming models) to be provided on YARN. There is no need to 
translate all data processing techniques and algorithms into a set of MapReduce jobs. 
MapReduce is presently being used only for batch-oriented processing such as the 
ETL (extract, transform, load) process in data warehouses (see Chapter 29). The 
emerging trend is to see Hadoop as a data lake, where a significant portion of enter-
prise data resides and where processing happens. Traditionally, HDFS has been 
where an enterprise’s historical data resides because HDFS can handle the scale of 
such data. Most new sources of data, which in today’s search and social networking 
applications come from Web and machine logs, clickstream data, message data (as 
in Twitter) and sensor data, also is being stored largely in HDFS.

26See the PACMAN framework by Ananthanarayanan et al. (2012) and the MixApart system by 
 Mihailescu et al. (2013).
27See Palanisamy et al. (2014a).
28For the Google BigQuery system, see https://developers.google.com/bigquery/
29Palanisamy et al. (2014b).
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The Hadoop v1 model was the federation model: although HDFS was the storage 
layer for the enterprise, processing was a mixture of MapReduce and other engines. 
One alternative was to extract data from HDFS store to engines running outside 
the cluster in their own silos; such data was moved to graph engines, machine 
learning analytical applications, and so forth. The same machines as those used for 
the Hadoop cluster were being used for entirely different applications, such as 
stream processing outside of Hadoop. This scenario was far from ideal since phys-
ical resources had to be divvied up in a static manner and it was difficult to migrate 
and upgrade to new versions when multiple frameworks ran on the same machines. 
With YARN, the above issues are addressed. Traditional services are taking advan-
tage of the YARN ResourceManager and are providing their service on the same 
Hadoop cluster where the data resides.

Whereas support for SQL in Hadoop was promised by multiple vendors, the actual 
support has been less than completely desirable. Some vendors required the HDFS 
data to be moved out to another database to run SQL; some required wrappers to 
read the HDFS data before an SQL query ran on it. A new trend among RDBMSs 
and traditional database systems considers a YARN cluster as a viable platform. 
One example is Actian’s analytics platform, which provides SQL in Hadoop30 and 
which is claimed to be a complete and robust implementation of SQL using the 
Actian Vectorwise columnar database (which runs as a YARN application). IBM’s 
Big SQL 3.031 is a project that makes an existing IBM shared-nothing DBMS run 
on a YARN cluster.

Apache Storm is a distributed scalable streaming engine that allows users to pro-
cess real-time data feeds. It is widely used by Twitter. Storm on YARN (http://
hortonworks.com/labs/storm/) and SAS on YARN (http://hortonworks.com/
partner/sas/) are applications that treat Storm (a distributed stream processing 
application) and SAS (statistical analysis software) as applications on the YARN 
platform. As we discussed previously, Giraph and HBase Hoya are ongoing efforts 
that are rapidly adopting YARN. A wide range of application systems uses the 
Hadoop cluster for storage; examples include services like streaming, machine 
learning/statistics, graph processing, OLAP, and key-value stores. These services 
go well beyond MapReduce. The goal/promise of YARN is for these services to 
coexist on the same cluster and take advantage of the locality of data in HDFS 
while YARN orchestrates their use of cluster resources.

25.6.5 Challenges Faced by Big Data Technologies
In a recent article,32 several database experts voiced their concerns about the 
impending challenges faced by big data technologies when such technologies 

30Current documentation is available at http://www.actian.com/about-us/blog/sql-hadoop-real-deal/
31Current information is available at: http://www.slideshare.net/Hadoop_
Summit/w-325p230-azubirigrayatv4
32See Jagadish et al. (2014).
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are used primarily for analytics applications. These concerns include the 
 following:

 ■ Heterogeneity of information: Heterogeneity in terms of data types, data 
formats, data representation, and semantics is unavoidable when it comes to 
sources of data. One of the phases in the big data life cycle involves integra-
tion of this data. The cost of doing a clean job of integration to bring all data 
into a single structure is prohibitive for most applications, such as health-
care, energy, transportation, urban planning, and environmental modeling. 
Most machine learning algorithms expect data to be fed into them in a uni-
form structure. The data provenance (which refers to the information about 
the origin and ownership of data) is typically not maintained in most analyt-
ics applications. Proper interpretation of data analysis results requires large 
amounts of metadata.

 ■ Privacy and confidentiality: Regulations and laws regarding protection of 
confidential information are not always available and hence not applied 
strictly during big data analysis. Enforcement of HIPAA regulations in the 
healthcare environment is one of few instances where privacy and confiden-
tiality are strictly enforced. Location-based applications (such as on smart 
phones and other GPS-equipped devices), logs of user transactions, and 
clickstreams that capture user behavior all reveal confidential information. 
User movement and buying patterns can be tracked to reveal personal iden-
tity. Because it is now possible to harness and analyze billions of users’ records 
via the technologies described in this chapter, there is widespread concern 
about personal information being compromised (e.g., data about individuals 
could be leaked from social data networks that are in some way linked to 
other data networks). Data about customers, cardholders, and employees is 
held by organizations and thus is subject to breaches of confidentiality. Jag-
adish et al. (2014) voiced a need for stricter control over digital rights man-
agement of data similar to the control exercised in the music industry.

 ■ Need for visualization and better human interfaces: Huge volumes of data 
are crunched by big data systems, and the results of analyses must be inter-
preted and understood by humans. Human preferences must be accounted 
for and data must be presented in a properly digestible form. Humans are 
experts at detecting patterns and have great intuition about data they are 
familiar with. Machines cannot match humans in this regard. It should be 
possible to bring together multiple human experts to share and interpret 
results of analysis and thereby increase understanding of those results. Mul-
tiple modes of visual exploration must be possible to make the best use of 
data and to properly interpret results that are out of range and thus are clas-
sified as outlier values.

 ■ Inconsistent and incomplete information: This has been a perennial prob-
lem in data collection and management. Future big data systems will allow 
multiple sources to be handled by multiple coexisting applications, so prob-
lems due to missing data, erroneous data, and uncertain data will be com-
pounded. The large volume and built-in redundancy of data in fault-tolerant 



952 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

systems may compensate to some extent for the missing values, conflicting 
values, hidden relationships, and the like. There is an inherent uncertainty 
about data collected from regular users using normal devices when such 
data comes in multiple forms (e.g., images, rates of speed, direction of 
travel). There is still a lot to be learned about how to use crowdsourcing data 
to generate effective decision making.

The aforementioned issues are not new to information systems. However, the large 
volume and wide variety of information inherent in big data systems compounds 
these issues.

25.6.6 Moving Forward
YARN makes it feasible for enterprises to run and manage many services on one 
cluster. But building data solutions on Hadoop is still a daunting challenge. A solu-
tion may involve assembling ETL (extract, transform, load) processing, machine 
learning, graph processing, and/or report creation. Although these different func-
tional engines all run on the same cluster, their programming models and metadata 
are not unified. Analytics application developers must try to integrate all these ser-
vices into a coherent solution.

On current hardware, each node contains a significant amount of main memory 
and flash memory storage. The cluster thus becomes a vast resource of main mem-
ory and flash storage. Significant innovation has demonstrated the performance 
gains of in-memory data engines; for example, SAP HANA is an in-memory, 
columnar scale-out RDBMS that is gaining a wide following.33

The Spark platform from Databricks (https://databricks.com/), which is an off-
shoot of the Berkeley Data Analytics Stack from AMPLabs at Berkeley,34addresses 
both of the advances mentioned above—namely, the ability to house diverse 
applica tions in one cluster and the ability to use vast amounts of main memory 
for faster response. Matei Zaharia developed the Resilient Distributed Datasets 
(RDD) concept35 as a part of his Ph.D. work at the University of California–Berkeley 
that gave rise to the Spark system. The concept is generic enough to be used across 
all Spark’s engines: Spark core (data flow), Spark-SQL, GraphX, (graph process-
ing), MLLib (machine learning), and Spark-Streaming (stream processing). For 
example, it is possible to write a script in Spark that expresses a data flow that 
reads data from HDFS, reshapes the data using a Spark-SQL query, passes that 
information to an MLLib function for machine learning–type analysis, and then 
stores the result back in HDFS.36

34See https://amplab.cs.berkeley.edu/software/ for projects at Amplab from the University of California– 
Berkeley.
35The RDD concept was first proposed in Zaharia et al. (2012).
36See an example of the use of Spark at https://databricks.com/blog/2014/03/26/spark-sql- 
manipulating-structured-data-using-spark-2.html

33See http://www.saphana.com/welcome for a variety of documentation on SAP’s HANA system.
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RDDs are built on the capabilities of Scala language collections37 that are able to 
re-create themselves from their input. RDDs can be configured based on how their 
data is distributed and how their data is represented: it can be always re-created 
from input, and it can be cached on disk or in memory. In-memory representa-
tions vary from serialized Java objects to highly optimized columnar formats that 
have all the advantages of columnar databases (e.g., speed, footprint, operating in 
serialized form).

The capabilities of a unified programming model and in-memory datasets will 
likely be incorporated into the Hadoop ecosystem. Spark is already available as a 
service in YARN (http://spark.apache.org/docs/1.0.0/running-on-yarn.html). 
Detailed discussion of Spark and related technologies in the Berkeley Data Analysis 
Stack is beyond our scope here. Agneeswaran (2014) discusses the potential of 
Spark and related products; interested readers should consult that source.

25.7 Summary
In this chapter, we discussed big data technologies. Reports from IBM, Mckinsey, 
and Tearadata scientist Bill Franks all predict a vibrant future for this technology, 
which will be at the center of future data analytics and machine learning applications 
and which is predicted to save businesses billions of dollars in the coming years.

We began our discussion by focusing on developments at Google with the Google 
file system and MapReduce (MR), a programming paradigm for distributed pro-
cessing that is scalable to huge quantities of data reaching into the petabytes. After 
giving a historical development of the technology and mentioning the Hadoop eco-
system, which spans a large number of currently active Apache projects, we dis-
cussed the Hadoop distributed file system (HDFS) by outlining its architecture and 
its handling of file operations; we also touched on the scalability studies done on 
HDFS. We then gave details of the MapReduce runtime environment. We provided 
examples of how the MapReduce paradigm can be applied to a variety of contexts; 
we gave a detailed example of its application to optimizing various relational join 
algorithms. We then presented briefly the developments of Pig and Hive, the sys-
tems that provide an SQL-like interface with Pig Latin and HiveQL on top of the 
low-level MapReduce programming. We also mentioned the advantages of the 
joint Hadoop/MapReduce technology.

Hadoop/MapReduce is undergoing further development and is being repositioned 
as version 2, known as MRv2 or YARN; version 2 separates resource management 
from task/job management. We discussed the rationale behind YARN, its architec-
ture, and other ongoing frameworks based on YARN, including Apache Tez, a 
workflow modeling environment; Apache Giraph, a large-scale graph processing 
system based on Pregel of Google; and Hoya, a Hortonworks rendering of HBase 
elastic clusters on YARN.

37See http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html for more information 
on Scala Collections.
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Finally, we presented a general discussion of some issues related to MapReduce/Hadoop 
technology. We briefly commented on the study done for this architecture vis-à-vis 
parallel DBMSs. There are circumstances where one is superior over the other, and 
claims about the superiority of parallel DBMSs for batch jobs are becoming less rele-
vant due to architectural advancements in the form of YARN-related developments. 
We discussed the relationship between big data and cloud technologies and the work 
being done to address data locality issues in cloud storage for big data analytics. We 
stated that YARN is being considered as a generic data services platform, and we 
listed the challenges for this technology as outlined in a paper authored by a group of 
database experts. We concluded with a summary of ongoing projects in the field of 
big data.

Review Questions
 25.1. What is data analytics and what is its role in science and industry?

 25.2. How will the big data movement support data analytics?

 25.3. What are the important points made in the McKinsey Global Institute report 
of 2012?

 25.4. How do you define big data?

 25.5. What are the various types of analytics mentioned in the IBM (2014) book?

 25.6. What are the four major characteristics of big data? Provide examples drawn 
from current practice of each characteristic.

 25.7. What is meant by veracity of data?

 25.8. Give the chronological history of the development of MapReduce/Hadoop 
technology.

 25.9. Describe the execution workflow of the MapReduce programming envi-
ronment.

 25.10. Give some examples of MapReduce applications.

 25.11. What are the core properties of a job in MapReduce?

 25.12. What is the function of JobTracker?

 25.13. What are the different releases of Hadoop?

 25.14. Describe the architecture of Hadoop in your own words.

 25.15. What is the function of the NameNode and secondary NameNode in HDFS?

 25.16. What does the Journal in HDFS refer to? What data is kept in it?

 25.17. Describe the heartbeat mechanism in HDFS.

 25.18. How are copies of data (replicas) managed in HDFS?
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 25.19. Shvachko (2012) reported on HDFS performance. What did he find? Can 
you list some of his results?

 25.20. What other projects are included in the open source Hadoop ecosystem?

 25.21. Describe the workings of the JobTracker and TaskTracker in MapReduce.

 25.22. Describe the overall flow of the job in MapReduce.

 25.23. What are the different ways in which MapReduce provides fault tolerance?

 25.24. What is the Shuffle procedure in MapReduce?

 25.25. Describe how the various job schedulers for MapReduce work.

 25.26. What are the different types of joins that can be optimized using 
MapReduce?

 25.27. Describe the MapReduce join procedures for Sort-Merge join, Partition 
Join, N-way Map-side join, and Simple N-way join.

 25.28. What is Apache Pig, and what is Pig Latin? Give an example of a query in 
Pig Latin.

 25.29. What are the main features of Apache Hive? What is its high-level query 
language?

 25.30. What is the SERDE architecture in Hive?

 25.31. List some of the optimizations in Hive and its support of SQL.

 25.32. Name some advantages of the MapReduce/Hadoop technology.

 25.33. Give the rationale in moving from Hadoop v1 to Hadoop v2 (YARN).

 25.34. Give an overview of the YARN architecture.

 25.35. How does Resource Manager work in YARN?

 25.36. What are Apache Tez, Apache Giraph, and Hoya?

 25.37. Compare parallel relational DBMSs and the MapReduce/Hadoop systems.

 25.38. In what way are big data and cloud technology complementary to one 
another?

 25.39. What are the data locality issues related to big data applications in cloud 
storage?

 25.40. What services can YARN offer beyond MapReduce?

 25.41. What are some of the challenges faced by big data technologies today?

 25.42. Discuss the concept of RDDs (resilient distributed datasets).

 25.43. Find out more about ongoing projects such as Spark, Mesos, Shark, and 
BlinkDB as they relate to the Berkeley Data Analysis Stack.
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Selected Bibliography
The technologies for big data discussed in this chapter have mostly sprung up in the 
last ten years or so. The origin of this wave is traced back to the seminal papers from 
Google, including the Google file system (Ghemawat, Gobioff, & Leung, 2003) and 
the MapReduce programming paradigm (Dean & Ghemawat, 2004). The Nutch 
system with follow-on work at Yahoo is a precursor of the Hadoop technology and 
continues as an Apache open source project (nutch.apache.org). The BigTable sys-
tem from Google (Fay Chang et al., 2006) describes a distributed scalable storage 
system for managing structured data in the petabytes range over thousands of com-
modity servers.

It is not possible to name a specific single publication as “the” Hadoop paper. Many 
studies related to MapReduce and Hadoop have been published in the past decade. 
We will list only a few landmark developments here. Schvachko (2012) outlines the 
limitations of the HDFS file system. Afrati and Ullman (2010) is a good example of 
using MapReduce programming in various contexts and applications; they demon-
strate how to optimize relational join operations in MapReduce. Olston et al. (2008) 
describe the Pig system and introduce Pig Latin as a high-level programming lan-
guage. Thusoo et al. (2010) describe Hive as a petabyte- scale data warehouse on top 
of Hadoop. A system for large-scale graph processing called Pregel at Google is 
described in Malewicz et al. (2010). It uses the bulk synchronous parallel (BSP) 
model of parallel computation originally proposed by Valiant (1990). In Pavlo et al. 
(2009), a number of database technology experts compared two parallel RDBMSs 
with Hadoop/MapReduce and showed how the parallel DBMS can actually per-
form better under certain conditions. The results of this study must not be consid-
ered definitive because of the significant performance improvements achieved in 
Hadoop v2 (YARN). The approach of resilient distributed datasets (RDDs) for in-
memory cluster computing is at the heart of the Berkeley’s Spark system, developed 
by Zaharia et al. (2013). A recent paper by Jagadish et al. (2014) gives the collective 
opinion of a number of database experts about the challenges faced by the current 
big data technologies.

The definitive resource for Hadoop application developers is the book Hadoop: The 
Definitive Guide, by Tom White (2012), which is in its third edition. A book by 
YARN project founder Arun Murthy with Vavilapalli (2014) describes how YARN 
increases scalability and cluster utilization, enables new programming models and 
services, and extends applicability beyond batch applications and Java. Agneeswaran 
(2014) has written about going beyond Hadoop, and he describes the Berkeley Data 
Analysis Stack (BDAS) for real-time analytics and machine learning; the Stack 
includes Spark, Mesos, and Shark. He also describes Storm, a complex event-pro-
cessing engine from Twitter widely used in industry today for real-time computing 
and analytics.

The Hadoop wiki is at Hadoop.apache.org. There are many open source, big data 
projects under Apache, such as Hive, Pig, Oozie, Sqoop, Storm, and HBase. Up-to-
date information about these projects can be found in the documentation at the 
projects’ Apache Web sites and wikis. The companies Cloudera, MapR, and Hor-
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tonworks include on their Web sites documentation about their own distributions 
of MapReduce/Hadoop-related technologies. The Berkeley Amplab (https://
amplab.cs.berkeley.edu/) provides documentation about the Berkeley Data Analy-
sis Stack (BDAS), including ongoing projects such as GraphX, MLbase, and 
BlinkDB.

There are some good references that outline the promise of big data technology and 
large scale data management. Bill Franks (2012) talks about how to leverage big 
data technologies for advanced analytics and provides insights that will help practi-
tioners make better decisions. Schmarzo (2013) discusses how the big data analytics 
can empower businesses. Dietrich et al. (2014) describe how IBM has applied the 
power of big data analytics across the enterprise in applications worldwide. A book 
published by McKinsey Global Institute (2012) gives a strategic angle on big data 
technologies by focusing on productivity, competitiveness, and growth.

There has been a parallel development in the cloud technologies that we have not 
been able to discuss in detail in this chapter. We refer the reader to recent books on 
cloud computing. Erl et al. (2013) discusses models, architectures, and business 
practices and desccribes how this technology has matured in practice. Kavis (2014) 
presents the various service models, including software as a service (SaaS), platform 
as a service (PaaS), and infrastructure as a service (IaaS). Bahga and Madisetti 
(2013) offer a practical, hands-on introduction to cloud computing. They describe 
how to develop cloud applications on various cloud platforms, such as Amazon 
Web Service (AWS), Google Cloud, and Microsoft’s Windows Azure.
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26
Enhanced Data Models: 
Introduction to Active,  

Temporal, Spatial, Multimedia, 
and Deductive Databases

As the use of database systems has grown, users 
have demanded additional functionality from 

these software packages; increased functionality would make it easier to implement 
more advanced and complex user applications. Object-oriented databases and 
object-relational systems do provide features that allow users to extend their sys-
tems by specifying additional abstract data types for each application. However, it is 
useful to identify certain common features for some of these advanced applications 
and to create models that can represent them. Additionally, specialized storage 
structures and indexing methods can be implemented to improve the performance 
of these common features. Then the features can be implemented as abstract data 
types or class libraries and purchased separately from the basic DBMS software 
package. The term data blade has been used in Informix and cartridge in Oracle to 
refer to such optional submodules that can be included in a DBMS package. Users 
can utilize these features directly if they are suitable for their applications, without 
having to reinvent, reimplement, and reprogram such common features.

This chapter introduces database concepts for some of the common features that 
are needed by advanced applications and are being used widely. We will cover 
active rules that are used in active database applications, temporal concepts that 
are used in temporal database applications, and, briefly, some of the issues involv-
ing spatial databases and multimedia databases. We will also discuss deductive 
databases. It is important to note that each of these topics is very broad, and we give 

chapter 26
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only a brief introduction to each. In fact, each of these areas can serve as the sole 
topic of a complete book.

In Section 26.1, we introduce the topic of active databases, which provide addi-
tional functionality for specifying active rules. These rules can be automatically 
triggered by events that occur, such as database updates or certain times being 
reached, and can initiate certain actions that have been specified in the rule declara-
tion to occur if certain conditions are met. Many commercial packages include 
some of the functionality provided by active databases in the form of triggers. 
Triggers are now part of the SQL-99 and later standards.

In Section 26.2, we introduce the concepts of temporal databases, which permit 
the database system to store a history of changes and allow users to query both cur-
rent and past states of the database. Some temporal database models also allow 
users to store future expected information, such as planned schedules. It is impor-
tant to note that many database applications are temporal, but they are often imple-
mented without having much temporal support from the DBMS package—that is, 
the temporal concepts are implemented in the application programs that access the 
database. The ability to create and query temporal data has been added to the SQL 
standard in SQL:2011 and is available in the DB2 system, but we do not discuss it 
here. The interested reader is referred to the end-of-chapter bibliography.

Section 26.3 gives a brief overview of spatial database concepts. We discuss types of 
spatial data, different kinds of spatial analyses, operations on spatial data, types of 
spatial queries, spatial data indexing, spatial data mining, and applications of spatial 
databases. Most commercial and open source relational systems provide spatial 
support in their data types and query languages as well as providing indexing and 
efficient query processing for common spatial operations.

Section 26.4 is devoted to multimedia database concepts. Multimedia databases 
provide features that allow users to store and query different types of multimedia 
information, which includes images (such as pictures and drawings), video clips 
(such as movies, newsreels, and home videos), audio clips (such as songs, phone 
messages, and speeches), and documents (such as books and articles). We discuss 
automatic analysis of images, object recognition in images, and semantic tagging 
of images.

In Section 26.5, we discuss deductive databases,1 an area that is at the intersection of 
databases, logic, and artificial intelligence or knowledge bases. A deductive 
 database system includes capabilities to define (deductive) rules, which can deduce 
or infer additional information from the facts that are stored in a database. Because 
part of the theoretical foundation for some deductive database systems is mathe-
matical logic, such rules are often referred to as logic databases. Other types of 
systems, referred to as expert database systems or knowledge-based systems, also 
incorporate reasoning and inferencing capabilities; such systems use techniques 

1Section 26.5 is a summary of Deductive Databases. The full chapter from the third edition, which provides 
a more comprehensive introduction, is available on the book’s Web site.
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that were developed in the field of artificial intelligence, including semantic net-
works, frames, production systems, or rules for capturing domain-specific knowl-
edge. Section 26.6 summarizes the chapter.

Readers may choose to peruse the particular topics they are interested in, as the sec-
tions in this chapter are practically independent of one another.

26.1 Active Database Concepts and Triggers
Rules that specify actions that are automatically triggered by certain events have 
been considered important enhancements to database systems for quite some time. 
In fact, the concept of triggers—a technique for specifying certain types of active 
rules—has existed in early versions of the SQL specification for relational databases, 
and triggers are now part of the SQL-99 and later standards. Commercial relational 
DBMSs—such as Oracle, DB2, and Microsoft SQLServer—have various versions of 
triggers available. However, much research into what a general model for active 
databases should look like has been done since the early models of triggers were 
proposed. In Section 26.1.1, we will present the general concepts that have been 
proposed for specifying rules for active databases. We will use the syntax of the 
Oracle commercial relational DBMS to illustrate these concepts with specific exam-
ples, since Oracle triggers are close to the way rules are specified in the SQL stan-
dard. Section 26.1.2 will discuss some general design and implementation issues for 
active databases. We give examples of how active databases are implemented in the 
STARBURST experimental DBMS in Section 26.1.3, since STARBURST provides 
for many of the concepts of generalized active databases within its framework. Sec-
tion 26.1.4 discusses possible applications of active databases. Finally, Section 26.1.5 
describes how triggers are declared in the SQL-99 standard.

26.1.1  Generalized Model for Active Databases  
and Oracle Triggers

The model that has been used to specify active database rules is referred to as 
the event-condition-action (ECA) model. A rule in the ECA model has three 
components:

  1. The event(s) that triggers the rule: These events are usually database 
update operations that are explicitly applied to the database. However, in 
the general model, they could also be temporal events2 or other kinds of 
external events.

  2. The condition that determines whether the rule action should be executed: 
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event 

2An example would be a temporal event specified as a periodic time, such as: Trigger this rule every day 
at 5:30 a.m.
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occurs. If a condition is specified, it is first evaluated, and only if it evaluates 
to true will the rule action be executed.

  3. The action to be taken: The action is usually a sequence of SQL statements, 
but it could also be a database transaction or an external program that will 
be automatically executed.

Let us consider some examples to illustrate these concepts. The examples are 
based on a much simplified variation of the COMPANY database application 
from Figure 5.5 and are shown in Figure 26.1, with each employee having a 
name (Name), Social Security number (Ssn), salary (Salary), department to 
which she is currently assigned (Dno, a foreign key to DEPARTMENT), and a 
direct supervisor (Supervisor_ssn, a (recursive) foreign key to EMPLOYEE). For 
this example, we assume that NULL is allowed for Dno, indicating that an 
employee may be temporarily unassigned to any department. Each department 
has a name (Dname), number (Dno), the total salary of all employees assigned to 
the department (Total_sal), and a manager (Manager_ssn, which is a foreign key 
to EMPLOYEE).

Notice that the Total_sal attribute is really a derived attribute whose value should be 
the sum of the salaries of all employees who are assigned to the particular depart-
ment. Maintaining the correct value of such a derived attribute can be done via an 
active rule. First we have to determine the events that may cause a change in the 
value of Total_sal, which are as follows:

  1. Inserting (one or more) new employee tuples

  2. Changing the salary of (one or more) existing employees

  3. Changing the assignment of existing employees from one department to 
another

  4. Deleting (one or more) employee tuples

In the case of event 1, we only need to recompute Total_sal if the new employee is 
immediately assigned to a department—that is, if the value of the Dno attribute for 
the new employee tuple is not NULL (assuming NULL is allowed for Dno). Hence, this 
would be the condition to be checked. A similar condition could be checked for 
event 2 (and 4) to determine whether the employee whose salary is changed (or 
who is being deleted) is currently assigned to a department. For event 3, we will 
always execute an action to maintain the value of Total_sal correctly, so no condition 
is needed (the action is always executed).

Name Ssn Salary Dno Supervisor_ssn

EMPLOYEE

Dname Dno Total_sal Manager_ssn

DEPARTMENT
Figure 26.1 
A simplified COMPANY 
database used for active 
rule examples.
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The action for events 1, 2, and 4 is to automatically update the value of Total_sal for 
the employee’s department to reflect the newly inserted, updated, or deleted 
employee’s salary. In the case of event 3, a twofold action is needed: one to update 
the Total_sal of the employee’s old department and the other to update the Total_sal 
of the employee’s new department.

The four active rules (or triggers) R1, R2, R3, and R4—corresponding to the above 
situation—can be specified in the notation of the Oracle DBMS as shown in Fig-
ure 26.2(a). Let us consider rule R1 to illustrate the syntax of creating triggers in 
Oracle. The CREATE TRIGGER statement specifies a trigger (or active rule) name—
Total_sal1 for R1. The AFTER clause specifies that the rule will be triggered after the 
events that trigger the rule occur. The triggering events—an insert of a new 
employee in this example—are specified following the AFTER keyword.3

The ON clause specifies the relation on which the rule is specified—EMPLOYEE for 
R1. The optional keywords FOR EACH ROW specify that the rule will be triggered 
once for each row that is affected by the triggering event.4

The optional WHEN clause is used to specify any conditions that need to be checked 
after the rule is triggered, but before the action is executed. Finally, the action(s) to 
be taken is (are) specified as a PL/SQL block, which typically contains one or more 
SQL statements or calls to execute external procedures.

The four triggers (active rules) R1, R2, R3, and R4 illustrate a number of features of 
active rules. First, the basic events that can be specified for triggering the rules are the 
standard SQL update commands: INSERT, DELETE, and UPDATE. They are specified by 
the keywords INSERT, DELETE, and UPDATE in Oracle notation. In the case of UPDATE, 
one may specify the attributes to be updated—for example, by writing UPDATE OF 
Salary, Dno. Second, the rule designer needs to have a way to refer to the tuples that have 
been inserted, deleted, or modified by the triggering event. The keywords NEW and OLD 
are used in Oracle notation; NEW is used to refer to a newly inserted or newly updated 
tuple, whereas OLD is used to refer to a deleted tuple or to a tuple before it was updated.

Thus, rule R1 is triggered after an INSERT operation is applied to the EMPLOYEE 
relation. In R1, the condition (NEW.Dno IS NOT NULL) is checked, and if it evaluates 
to true, meaning that the newly inserted employee tuple is related to a department, 
then the action is executed. The action updates the DEPARTMENT tuple(s) related to 
the newly inserted employee by adding their salary (NEW.Salary) to the Total_sal 
attribute of their related department.

Rule R2 is similar to R1, but it is triggered by an UPDATE operation that updates the 
SALARY of an employee rather than by an INSERT. Rule R3 is triggered by an update 
to the Dno attribute of EMPLOYEE, which signifies changing an employee’s assign-
ment from one department to another. There is no condition to check in R3, so the 

3As we will see, it is also possible to specify BEFORE instead of AFTER, which indicates that the rule is 
triggered before the triggering event is executed.

4Again, we will see that an alternative is to trigger the rule only once even if multiple rows (tuples) are 
affected by the triggering event.
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(a) R1: CREATE TRIGGER Total_sal1
  AFTER INSERT ON EMPLOYEE
  FOR EACH ROW
  WHEN ( NEW.Dno IS NOT NULL )
   UPDATE DEPARTMENT
   SET Total_sal = Total_sal + NEW.Salary
   WHERE Dno = NEW.Dno;

 R2: CREATE TRIGGER Total_sal2
  AFTER UPDATE OF Salary ON EMPLOYEE
  FOR EACH ROW
  WHEN ( NEW.Dno IS NOT NULL )
   UPDATE DEPARTMENT
   SET Total_sal = Total_sal + NEW.Salary – OLD.Salary
   WHERE Dno = NEW.Dno;

 R3: CREATE TRIGGER Total_sal3
  AFTER UPDATE OF Dno ON EMPLOYEE
  FOR EACH ROW
   BEGIN
   UPDATE DEPARTMENT
   SET Total_sal = Total_sal + NEW.Salary
   WHERE Dno = NEW.Dno;
   UPDATE DEPARTMENT
   SET Total_sal = Total_sal – OLD.Salary
   WHERE Dno = OLD.Dno;
   END;

 R4: CREATE TRIGGER Total_sal4
  AFTER DELETE ON EMPLOYEE
  FOR EACH ROW
  WHEN ( OLD.Dno IS NOT NULL)
   UPDATE DEPARTMENT
   SET Total_sal = Total_sal – OLD.Salary
   WHERE Dno = OLD.Dno;

(b) R5: CREATE TRIGGER Inform_supervisor1
  BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn
   ON EMPLOYEE
  FOR EACH ROW
  WHEN ( NEW.Salary > ( SELECT Salary FROM EMPLOYEE
            WHERE Ssn = NEW.Supervisor_ssn ) )
     inform_supervisor(NEW.Supervisor_ssn, NEW.Ssn );

Figure 26.2 
Specifying active rules 
as triggers in Oracle 
notation. (a) Triggers 
for automatically 
 maintaining the 
 consistency of Total_sal 
of DEPARTMENT. 
(b) Trigger for 
 comparing an 
 employee’s salary with 
that of his or her 
supervisor.
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action is executed whenever the triggering event occurs. The action updates both 
the old department and new department of the reassigned employees by adding 
their salary to Total_sal of their new department and subtracting their salary from 
Total_sal of their old department. Note that this should work even if the value of Dno 
is NULL, because in this case no department will be selected for the rule action.5

It is important to note the effect of the optional FOR EACH ROW clause, which sig-
nifies that the rule is triggered separately for each tuple. This is known as a row-
level trigger. If this clause was left out, the trigger would be known as a 
statement-level trigger and would be triggered once for each triggering statement. 
To see the difference, consider the following update operation, which gives a 10% 
raise to all employees assigned to department 5. This operation would be an event 
that triggers rule R2:

UPDATE EMPLOYEE
SET Salary = 1.1 * Salary
WHERE Dno = 5;

Because the above statement could update multiple records, a rule using row-level 
semantics, such as R2 in Figure 26.2, would be triggered once for each row, whereas 
a rule using statement-level semantics is triggered only once. The Oracle system 
allows the user to choose which of the above options is to be used for each rule. 
Including the optional FOR EACH ROW clause creates a row-level trigger, and leav-
ing it out creates a statement-level trigger. Note that the keywords NEW and OLD 
can only be used with row-level triggers.

As a second example, suppose we want to check whenever an employee’s salary is 
greater than the salary of his or her direct supervisor. Several events can trigger this 
rule: inserting a new employee, changing an employee’s salary, or changing an 
employee’s supervisor. Suppose that the action to take would be to call an external 
procedure inform_supervisor,6 which will notify the supervisor. The rule could then 
be written as in R5 (see Figure 26.2(b)).

Figure 26.3 shows the syntax for specifying some of the main options available in 
Oracle triggers. We will describe the syntax for triggers in the SQL-99 standard in 
Section 26.1.5.

26.1.2  Design and Implementation Issues  
for Active Databases

The previous section gave an overview of some of the main concepts for speci-
fying active rules. In this section, we discuss some additional issues concerning 
how rules are designed and implemented. The first issue concerns activation, 

5R1, R2, and R4 can also be written without a condition. However, it may be more efficient to execute 
them with the condition since the action is not invoked unless it is required.
6Assuming that an appropriate external procedure has been declared. This is a feature that is available 
in SQL-99 and later standards.
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<trigger> ::= CREATE TRIGGER <trigger name>
 ( AFTER I BEFORE ) <triggering events> ON <table name>
 [ FOR EACH ROW ]
 [ WHEN <condition> ]
 <trigger actions> ;
<triggering events> ::= <trigger event> {OR <trigger event> }
<trigger event> ::=  INSERT I DELETE I UPDATE [ OF <column name> { , <column name> } ]
<trigger action> ::= <PL/SQL block>

Figure 26.3 
A syntax summary for specifying triggers in the Oracle system (main options only).

deactivation, and grouping of rules. In addition to creating rules, an active 
database system should allow users to activate, deactivate, and drop rules by 
referring to their rule names. A deactivated rule will not be triggered by the 
triggering event. This feature allows users to selectively deactivate rules for cer-
tain periods of time when they are not needed. The activate command will 
make the rule active again. The drop command deletes the rule from the sys-
tem. Another option is to group rules into named rule sets, so the whole set of 
rules can be activated, deactivated, or dropped. It is also useful to have a com-
mand that can trigger a rule or rule set via an explicit PROCESS RULES com-
mand issued by the user.

The second issue concerns whether the triggered action should be executed before, 
after, instead of, or concurrently with the triggering event. A before trigger exe-
cutes the trigger before executing the event that caused the trigger. It can be used 
in applications such as checking for constraint violations. An after trigger exe-
cutes the trigger after executing the event, and it can be used in applications such 
as maintaining derived data and monitoring for specific events and conditions. An 
instead of trigger executes the trigger instead of executing the event, and it can be 
used in applications such as executing corresponding updates on base relations in 
response to an event that is an update of a view.

A related issue is whether the action being executed should be considered as a 
separate transaction or whether it should be part of the same transaction that 
triggered the rule. We will try to categorize the various options. It is important 
to note that not all options may be available for a particular active database sys-
tem. In fact, most commercial systems are limited to one or two of the options 
that we will now discuss.

Let us assume that the triggering event occurs as part of a transaction execution. 
We should first consider the various options for how the triggering event is related 
to the evaluation of the rule’s condition. The rule condition evaluation is also 
known as rule consideration, since the action is to be executed only after consid-
ering whether the condition evaluates to true or false. There are three main possi-
bilities for rule consideration:
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  1. Immediate consideration. The condition is evaluated as part of the same 
transaction as the triggering event and is evaluated immediately. This case 
can be further categorized into three options:

 � Evaluate the condition before executing the triggering event.

 � Evaluate the condition after executing the triggering event.

 � Evaluate the condition instead of executing the triggering event.

  2. Deferred consideration. The condition is evaluated at the end of the trans-
action that included the triggering event. In this case, there could be many 
triggered rules waiting to have their conditions evaluated.

  3. Detached consideration. The condition is evaluated as a separate transac-
tion, spawned from the triggering transaction.

The next set of options concerns the relationship between evaluating the rule 
condition and executing the rule action. Here, again, three options are possible: 
immediate, deferred, or detached execution. Most active systems use the first 
option. That is, as soon as the condition is evaluated, if it returns true, the action 
is immediately executed.

The Oracle system (see Section 26.1.1) uses the immediate consideration model, but 
it allows the user to specify for each rule whether the before or after option is to be 
used with immediate condition evaluation. It also uses the immediate execution 
model. The STARBURST system (see Section 26.1.3) uses the deferred consider-
ation option, meaning that all rules triggered by a transaction wait until the trigger-
ing transaction reaches its end and issues its COMMIT WORK command before the 
rule conditions are evaluated.7

Another issue concerning active database rules is the distinction between row-level 
rules and statement-level rules. Because SQL update statements (which act as trig-
gering events) can specify a set of tuples, one must distinguish between whether the 
rule should be considered once for the whole statement or whether it should be 
considered separately for each row (that is, tuple) affected by the statement. The 
SQL-99 standard (see Section 26.1.5) and the Oracle system (see Section 26.1.1) 
allow the user to choose which of the options is to be used for each rule, whereas 
STARBURST uses statement-level semantics only. We will give examples of how 
statement-level triggers can be specified in Section 26.1.3.

One of the difficulties that may have limited the widespread use of active rules, in 
spite of their potential to simplify database and software development, is that there 
are no easy-to-use techniques for designing, writing, and verifying rules. For exam-
ple, it is difficult to verify that a set of rules is consistent, meaning that two or more 
rules in the set do not contradict one another. It is also difficult to guarantee 
 termination of a set of rules under all circumstances. To illustrate the termination 
problem briefly, consider the rules in Figure 26.4. Here, rule R1 is triggered by an 
INSERT event on TABLE1 and its action includes an update event on Attribute1 of 

7STARBURST also allows the user to start rule consideration explicitly via a PROCESS RULES command.
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TABLE2. However, rule R2’s triggering event is an UPDATE event on Attribute1 of 
TABLE2, and its action includes an INSERT event on TABLE1. In this example, it is 
easy to see that these two rules can trigger one another indefinitely, leading to non-
termination. However, if dozens of rules are written, it is very difficult to determine 
whether termination is guaranteed or not.

If active rules are to reach their potential, it is necessary to develop tools for the 
design, debugging, and monitoring of active rules that can help users design and 
debug their rules.

26.1.3  Examples of Statement-Level Active Rules  
in STARBURST

We now give some examples to illustrate how rules can be specified in the STARBURST 
experimental DBMS. This will allow us to demonstrate how statement-level rules can 
be written, since these are the only types of rules allowed in STARBURST.

The three active rules R1S, R2S, and R3S in Figure 26.5 correspond to the first three 
rules in Figure 26.2, but they use STARBURST notation and statement-level seman-
tics. We can explain the rule structure using rule R1S. The CREATE RULE statement 
specifies a rule name—Total_sal1 for R1S. The ON clause specifies the relation on 
which the rule is specified—EMPLOYEE for R1S. The WHEN clause is used to specify 
the events that trigger the rule.8 The optional IF clause is used to specify any 
 conditions that need to be checked. Finally, the THEN clause is used to specify the 
actions to be taken, which are typically one or more SQL statements.

In STARBURST, the basic events that can be specified for triggering the rules are 
the standard SQL update commands: INSERT, DELETE, and UPDATE. These are 
specified by the keywords INSERTED, DELETED, and UPDATED in STARBURST 
notation. Second, the rule designer needs to have a way to refer to the tuples that 
have been modified. The keywords INSERTED, DELETED, NEW-UPDATED, and 
OLD-UPDATED are used in STARBURST notation to refer to four transition tables 
(relations) that include the newly inserted tuples, the deleted tuples, the updated 

R1: CREATE TRIGGER T1
 AFTER INSERT ON TABLE1
 FOR EACH ROW
  UPDATE TABLE2
  SET Attribute1 = … ;

R2: CREATE TRIGGER T2
 AFTER UPDATE OF Attribute1 ON TABLE2
 FOR EACH ROW
  INSERT INTO TABLE1 VALUES ( … );

Figure 26.4 
An example to illustrate 
the termination problem 
for active rules.

8Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule condition 
in SQL and Oracle triggers.
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R1S: CREATE RULE Total_sal1 ON EMPLOYEE
 WHEN INSERTED
 IF EXISTS ( SELECT * FROM INSERTED WHERE Dno IS NOT NULL)
 THEN UPDATE  DEPARTMENT AS D
  SET  D.Total_sal = D.Total_sal +
   ( SELECT SUM (I.Salary) FROM INSERTED AS I WHERE D.Dno = I.Dno )
  WHERE D.Dno IN ( SELECT Dno FROM INSERTED );

R2S: CREATE RULE Total_sal2 ON EMPLOYEE
 WHEN UPDATED ( Salary )
 IF EXISTS ( SELECT * FROM NEW-UPDATED WHERE Dno IS NOT NULL)
  OR EXISTS ( SELECT * FROM OLD-UPDATED WHERE Dno IS NOT NULL)
 THEN UPDATE  DEPARTMENT AS D
  SET  D.Total_sal = D.Total_sal +
   ( SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
    WHERE D.Dno = N.Dno ) –
   ( SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
    WHERE D.Dno = O.Dno )
  WHERE  D.Dno IN ( SELECT Dno FROM NEW-UPDATED ) OR
    D.Dno IN ( SELECT Dno FROM OLD-UPDATED);

R3S: CREATE RULE Total_sal3 ON EMPLOYEE
 WHEN UPDATED ( Dno )
 THEN UPDATE  DEPARTMENT AS D
  SET  D.Total_sal = D.Total_sal +
   ( SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
    WHERE D.Dno = N.Dno )
  WHERE  D.Dno IN ( SELECT Dno FROM NEW-UPDATED );
  UPDATE  DEPARTMENT AS D
  SET  D.Total_sal = Total_sal –
   ( SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
    WHERE D.Dno = O.Dno )
  WHERE  D.Dno IN ( SELECT Dno FROM OLD-UPDATED );

Figure 26.5 
Active rules using statement-level semantics in STARBURST notation.

tuples before they were updated, and the updated tuples after they were updated, 
respectively. Obviously, depending on the triggering events, only some of these 
transition tables may be available. The rule writer can refer to these tables when 
writing the condition and action parts of the rule. Transition tables contain tuples 
of the same type as those in the relation specified in the ON clause of the rule—for 
R1S, R2S, and R3S, this is the EMPLOYEE relation.

In statement-level semantics, the rule designer can only refer to the transition tables 
as a whole and the rule is triggered only once, so the rules must be written differ-
ently than for row-level semantics. Because multiple employee tuples may be 
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inserted in a single insert statement, we have to check if at least one of the newly 
inserted employee tuples is related to a department. In R1S, the condition

EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL )

is checked, and if it evaluates to true, then the action is executed. The action updates in 
a single statement the DEPARTMENT tuple(s) related to the newly inserted employee(s) 
by adding their salaries to the Total_sal attribute of each related department. Because 
more than one newly inserted employee may belong to the same department, we use 
the SUM aggregate function to ensure that all their salaries are added.

Rule R2S is similar to R1S, but is triggered by an UPDATE operation that updates 
the salary of one or more employees rather than by an INSERT. Rule R3S is triggered 
by an update to the Dno attribute of EMPLOYEE, which signifies changing one or 
more employees’ assignment from one department to another. There is no condi-
tion in R3S, so the action is executed whenever the triggering event occurs.9 The 
action updates both the old department(s) and new department(s) of the reassigned 
employees by adding their salary to Total_sal of each new department and subtract-
ing their salary from Total_sal of each old department.

In our example, it is more complex to write the statement-level rules than the row-
level rules, as can be illustrated by comparing Figures 26.2 and 26.5. However, this 
is not a general rule, and other types of active rules may be easier to specify when 
using statement-level notation than when using row-level notation.

The execution model for active rules in STARBURST uses deferred consideration. 
That is, all the rules that are triggered within a transaction are placed in a set—
called the conflict set—which is not considered for evaluation of conditions and 
execution until the transaction ends (by issuing its COMMIT WORK command). 
STARBURST also allows the user to explicitly start rule consideration in the middle 
of a transaction via an explicit PROCESS RULES command. Because multiple rules 
must be evaluated, it is necessary to specify an order among the rules. The syntax 
for rule declaration in STARBURST allows the specification of ordering among the 
rules to instruct the system about the order in which a set of rules should be consid-
ered.10 Additionally, the transition tables—INSERTED, DELETED, NEW-UPDATED, 
and OLD-UPDATED—contain the net effect of all the operations within the transac-
tion that affected each table, since multiple operations may have been applied to 
each table during the transaction.

26.1.4 Potential Applications for Active Databases
We now briefly discuss some of the potential applications of active rules. Obvi-
ously, one important application is to allow notification of certain conditions that 

9As in the Oracle examples, rules R1S and R2S can be written without a condition. However, it may be 
more efficient to execute them with the condition since the action is not invoked unless it is required.
10If no order is specified between a pair of rules, the system default order is based on placing the rule 
declared first ahead of the other rule.
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occur. For example, an active database may be used to monitor, say, the tempera-
ture of an industrial furnace. The application can periodically insert in the database 
the temperature reading records directly from temperature sensors, and active rules 
can be written that are triggered whenever a temperature record is inserted, with a 
condition that checks if the temperature exceeds the danger level and results in the 
action to raise an alarm.

Active rules can also be used to enforce integrity constraints by specifying the 
types of events that may cause the constraints to be violated and then evaluating 
appropriate conditions that check whether the constraints are actually violated by 
the event or not. Hence, complex application constraints, often known as business 
rules, may be enforced that way. For example, in the UNIVERSITY database applica-
tion, one rule may monitor the GPA of students whenever a new grade is entered, 
and it may alert the advisor if the GPA of a student falls below a certain threshold; 
another rule may check that course prerequisites are satisfied before allowing a stu-
dent to enroll in a course; and so on.

Other applications include the automatic maintenance of derived data, such as the 
examples of rules R1 through R4 that maintain the derived attribute Total_sal when-
ever individual employee tuples are changed. A similar application is to use active 
rules to maintain the consistency of materialized views (see Section 5.3) whenever 
the base relations are modified. Alternately, an update operation specified on a view 
can be a triggering event, which can be converted to updates on the base relations 
by using an instead of trigger. These applications are also relevant to the new data 
warehousing technologies (see Chapter 29). A related application maintains that 
replicated tables are consistent by specifying rules that modify the replicas when-
ever the master table is modified.

26.1.5 Triggers in SQL-99
Triggers in the SQL-99 and later standards are similar to the examples we dis-
cussed in Section 26.1.1, with some minor syntactic differences. The basic events 
that can be specified for triggering the rules are the standard SQL update com-
mands: INSERT, DELETE, and UPDATE. In the case of UPDATE, one may specify the 
attributes to be updated. Both row-level and statement-level triggers are allowed, 
indicated in the trigger by the clauses FOR EACH ROW and FOR EACH  STATEMENT, 
respectively. One syntactic difference is that the trigger may specify particular 
tuple variable names for the old and new tuples instead of using the keywords 
NEW and OLD, as shown in Figure 26.1. Trigger T1 in Figure 26.6 shows how the 
row-level trigger R2 from Figure 26.1(a) may be specified in SQL-99. Inside the 
REFERENCING clause, we named tuple variables (aliases) O and N to refer to the OLD 
tuple (before modification) and NEW tuple (after modification), respectively. Trigger 
T2 in Figure 26.6 shows how the statement-level trigger R2S from Figure 26.5 may 
be specified in SQL-99. For a statement-level trigger, the  REFERENCING clause is 
used to refer to the table of all new tuples (newly inserted or newly updated) as N, 
whereas the table of all old tuples (deleted tuples or tuples before they were 
updated) is referred to as O.
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26.2 Temporal Database Concepts
Temporal databases, in the broadest sense, encompass all database applications that 
require some aspect of time when organizing their information. Hence, they pro-
vide a good example to illustrate the need for developing a set of unifying concepts 
for application developers to use. Temporal database applications have been devel-
oped since the early days of database usage. However, in creating these applications, 
it is mainly left to the application designers and developers to discover, design, pro-
gram, and implement the temporal concepts they need. There are many examples 
of applications where some aspect of time is needed to maintain the information in 
a database. These include healthcare, where patient histories need to be maintained; 
insurance, where claims and accident histories are required as well as information 
about the times when insurance policies are in effect; reservation systems in general 
(hotel, airline, car rental, train, and so on), where information on the dates and 
times when reservations are in effect are required; scientific databases, where data 
collected from experiments includes the time when each data is measured; and so 
on. Even the two examples used in this book may be easily expanded into temporal 
applications. In the COMPANY database, we may wish to keep SALARY, JOB, and 
PROJECT histories on each employee. In the UNIVERSITY database, time is already 
included in the SEMESTER and YEAR of each SECTION of a COURSE, the grade his-
tory of a STUDENT, and the information on research grants. In fact, it is realistic to 
conclude that the majority of database applications have some temporal informa-
tion. However, users often attempt to simplify or ignore temporal aspects because 
of the complexity that they add to their applications.

T1: CREATE TRIGGER Total_sal1
 AFTER UPDATE OF Salary ON EMPLOYEE
 REFERENCING OLD ROW AS O, NEW ROW AS N
 FOR EACH ROW
 WHEN ( N.Dno IS NOT NULL )
 UPDATE DEPARTMENT
 SET Total_sal = Total_sal + N.salary – O.salary
 WHERE Dno = N.Dno;

T2: CREATE TRIGGER Total_sal2
 AFTER UPDATE OF Salary ON EMPLOYEE
 REFERENCING OLD TABLE AS O, NEW TABLE AS N
 FOR EACH STATEMENT
 WHEN EXISTS ( SELECT *FROM N WHERE N.Dno IS NOT NULL ) OR
  EXISTS ( SELECT * FROM O WHERE O.Dno IS NOT NULL )
 UPDATE DEPARTMENT AS D
 SET D.Total_sal = D.Total_sal
 + ( SELECT SUM (N.Salary) FROM N WHERE D.Dno=N.Dno )
 – ( SELECT SUM (O.Salary) FROM O WHERE D.Dno=O.Dno )
 WHERE Dno IN ( ( SELECT Dno FROM N ) UNION ( SELECT Dno FROM O ) );

Figure 26.6 
Trigger T1 illustrating 
the syntax for defining 
triggers in SQL-99.
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In this section, we will introduce some of the concepts that have been developed to deal 
with the complexity of temporal database applications. Section 26.2.1 gives an over-
view of how time is represented in databases, the different types of temporal informa-
tion, and some of the different dimensions of time that may be needed. Section 26.2.2 
discusses how time can be incorporated into relational databases. Section 26.2.3 gives 
some additional options for representing time that are possible in database models that 
allow complex-structured objects, such as object databases. Section 26.2.4 introduces 
operations for querying temporal databases and gives a brief overview of the TSQL2 
language, which extends SQL with temporal concepts. Section 26.2.5 focuses on time 
series data, which is a type of temporal data that is very important in practice.

26.2.1  Time Representation, Calendars,  
and Time Dimensions

For temporal databases, time is considered to be an ordered sequence of points in 
some granularity that is determined by the application. For example, suppose that 
some temporal application never requires time units that are less than one second. 
Then, each time point represents one second using this granularity. In reality, each 
second is a (short) time duration, not a point, since it may be further divided into 
milliseconds, microseconds, and so on. Temporal database researchers have used 
the term chronon instead of point to describe this minimal granularity for a par-
ticular application. The main consequence of choosing a minimum granularity—
say, one second—is that events occurring within the same second will be considered 
to be simultaneous events, even though in reality they may not be.

Because there is no known beginning or ending of time, one needs a reference point 
from which to measure specific time points. Various calendars are used by various 
cultures (such as Gregorian (Western), Chinese, Islamic, Hindu, Jewish, Coptic, and 
so on) with different reference points. A calendar organizes time into different time 
units for convenience. Most calendars group 60 seconds into a minute, 60 minutes 
into an hour, 24 hours into a day (based on the physical time of earth’s rotation 
around its axis), and 7 days into a week. Further groupings of days into months and 
months into years either follow solar or lunar natural phenomena and are generally 
irregular. In the Gregorian calendar, which is used in most Western countries, days 
are grouped into months that are 28, 29, 30, or 31 days, and 12 months are grouped 
into a year. Complex formulas are used to map the different time units to one another.

In SQL2, the temporal data types (see Chapter 4) include DATE (specifying Year, 
Month, and Day as YYYY-MM-DD), TIME (specifying Hour, Minute, and Second 
as HH:MM:SS), TIMESTAMP (specifying a Date/Time combination, with options for 
including subsecond divisions if they are needed), INTERVAL (a relative time 
 duration, such as 10 days or 250 minutes), and PERIOD (an anchored time duration 
with a fixed starting point, such as the 10-day period from January 1, 2009, to Jan-
uary 10, 2009, inclusive).11

11Unfortunately, the terminology has not been used consistently. For example, the term interval is often 
used to denote an anchored duration. For consistency, we will use the SQL terminology.
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Event Information versus Duration (or State) Information. A temporal data-
base will store information concerning when certain events occur, or when certain 
facts are considered to be true. There are several different types of temporal infor-
mation. Point events or facts are typically associated in the database with a single 
time point in some granularity. For example, a bank deposit event may be associ-
ated with the timestamp when the deposit was made, or the total monthly sales of a 
product (fact) may be associated with a particular month (say, February 2010). 
Note that even though such events or facts may have different granularities, each is 
still associated with a single time value in the database. This type of information is 
often represented as time series data, as we will discuss in Section 26.2.5. Duration 
events or facts, on the other hand, are associated with a specific time period in the 
database.12 For example, an employee may have worked in a company from Aug-
ust 15, 2003 until November 20, 2008.

A time period is represented by its start and end time points [START-TIME, 
 ENDTIME]. For example, the above period is represented as [2003-08-15, 2008-11-20]. 
Such a time period is often interpreted to mean the set of all time points from start-
time to end-time, inclusive, in the specified granularity. Hence, assuming day gran-
ularity, the period [2003-08-15, 2008-11-20] represents the set of all days from 
August 15, 2003, until November 20, 2008, inclusive.13

Valid Time and Transaction Time Dimensions. Given a particular event or 
fact that is associated with a particular time point or time period in the database, the 
association may be interpreted to mean different things. The most natural interpre-
tation is that the associated time is the time that the event occurred, or the period 
during which the fact was considered to be true in the real world. If this interpreta-
tion is used, the associated time is often referred to as the valid time. A temporal 
database using this interpretation is called a valid time database.

However, a different interpretation can be used, where the associated time refers to 
the time when the information was actually stored in the database; that is, it is the 
value of the system time clock when the information is valid in the system.14 In this 
case, the associated time is called the transaction time. A temporal database using 
this interpretation is called a transaction time database.

Other interpretations can also be intended, but these are considered to be the most 
common ones, and they are referred to as time dimensions. In some applications, 
only one of the dimensions is needed and in other cases both time dimensions are 
required, in which case the temporal database is called a bitemporal database. If 

12This is the same as an anchored duration. It has also been frequently called a time interval, but to avoid 
confusion we will use period to be consistent with SQL terminology.
13The representation [2003-08-15, 2008-11-20] is called a closed interval representation. One can 
also use an open interval, denoted [2003-08-15, 2008-11-21), where the set of points does not include 
the end point. Although the latter representation is sometimes more convenient, we shall use closed 
intervals except where indicated.
14The explanation is more involved, as we will see in Section 26.2.3.
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other interpretations are intended for time, the user can define the semantics and 
program the applications appropriately, and this interpretation of time is called a 
user-defined time.

The next section shows how these concepts can be incorporated into relational 
databases, and Section 26.2.3 shows an approach to incorporate temporal concepts 
into object databases.

26.2.2  Incorporating Time in Relational Databases  
Using Tuple Versioning

Valid Time Relations. Let us now see how the different types of temporal databases 
may be represented in the relational model. First, suppose that we would like to include 
the history of changes as they occur in the real world. Consider again the database in 
Figure 26.1, and let us assume that, for this application, the granularity is day. Then, 
we could convert the two relations EMPLOYEE and DEPARTMENT into valid time 
 relations by adding the attributes Vst (Valid Start Time) and Vet (Valid End Time), 
whose data type is DATE in order to provide day granularity. This is shown in Fig-
ure 26.7(a), where the relations have been renamed EMP_VT and DEPT_VT, respectively.

Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE rela-
tion (Figure 26.1).15 In EMP_VT, each tuple V represents a version of an employee’s 

15A nontemporal relation is also called a snapshot relation because it shows only the current snapshot 
or current state of the database.

(a)

Name

EMP_VT

Salary DnoSsn Supervisor_ssn Vst Vet

Name Salary Supervisor_ssnSsn Tst Tet

(b)

(c)

Dname

DEPT_VT

EMP_TT

Dname Total_sal Manager_ssnDno

Dno

Tst Tet

DEPT_TT

Total_salDno Manager_ssn Vst Vet

Name Salary Supervisor_ssnSsn Dno Tst Tet

EMP_BT

Dname Total_sal Manager_ssnDno Tst Tet

DEPT_BT

Vst Vet

Vst Vet

Figure 26.7 
Different types of temporal 
relational databases. (a) Valid 
time database schema. 
(b) Transaction time database 
schema. (c) Bitemporal 
 database schema.



978 Chapter 26 Enhanced Data Models

information that is valid (in the real world) only during the time period [V.Vst, 
V.Vet], whereas in EMPLOYEE each tuple represents only the current state or current 
version of each employee. In EMP_VT, the current version of each employee typi-
cally has a special value, now, as its valid end time. This special value, now, is a 
temporal variable that implicitly represents the current time as time progresses. 
The nontemporal EMPLOYEE relation would only include those tuples from the 
EMP_VT relation whose Vet is now.

Figure 26.8 shows a few tuple versions in the valid-time relations EMP_VT and 
DEPT_VT. There are two versions of Smith, three versions of Wong, one version of 
Brown, and one version of Narayan. We can now see how a valid time relation 
should behave when information is changed. Whenever one or more attributes of 
an employee are updated, rather than actually overwriting the old values, as would 
happen in a nontemporal relation, the system should create a new version and close 
the current version by changing its Vet to the end time. Hence, when the user issued 
the command to update the salary of Smith effective on June 1, 2003, to $30000, the 
second version of Smith was created (see Figure 26.8). At the time of this update, 
the first version of Smith was the current version, with now as its Vet, but after the 
update now was changed to May 31, 2003 (one less than June 1, 2003, in day granu-
larity), to indicate that the version has become a closed or history version and that 
the new (second) version of Smith is now the current one.

It is important to note that in a valid time relation, the user must generally provide 
the valid time of an update. For example, the salary update of Smith may have been 

Name

Smith 123456789 25000 5 333445555 2002-06-15 2003-05-31

Smith 123456789 30000 5 333445555 2003-06-01 Now

333445555 25000 4 999887777 1999-08-20 2001-01-31

333445555 30000 5 999887777 2001-02-01 2002-03-31

333445555 40000 5 888665555 2002-04-01 Now

222447777 28000 4 999887777 2001-05-01 2002-08-10

666884444 38000 5 333445555 2003-08-01 Now

Wong

Wong

Wong

Brown

Narayan

. . .

. . .

EMP_VT

Ssn Salary Dno Supervisor_ssn Vst Vet

Dname

Research

Research

DEPT_VT

5 888665555 2002-03-312001-09-20

333445555 2002-04-015 Now

Dno Manager_ssn Vst Vet

Figure 26.8 
Some tuple versions in the valid time relations EMP_VT and DEPT_VT.
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entered in the database on May 15, 2003, at 8:52:12 a.m., say, even though the salary 
change in the real world is effective on June 1, 2003. This is called a proactive 
update, since it is applied to the database before it becomes effective in the real 
world. If the update is applied to the database after it becomes effective in the real 
world, it is called a retroactive update. An update that is applied at the same time 
as it becomes effective is called a simultaneous update.

The action that corresponds to deleting an employee in a nontemporal database 
would typically be applied to a valid time database by closing the current version of 
the employee being deleted. For example, if Smith leaves the company effective 
January 19, 2004, then this would be applied by changing Vet of the current version 
of Smith from now to 2004-01-19. In Figure 26.8, there is no current version for 
Brown, because he presumably left the company on 2002-08-10 and was logically 
deleted. However, because the database is temporal, the old information on Brown 
is still there.

The operation to insert a new employee would correspond to creating the first tuple 
version for that employee and making it the current version, with the Vst being the 
effective (real world) time when the employee starts work. In Figure 26.7, the tuple 
on Narayan illustrates this, since the first version has not been updated yet.

Notice that in a valid time relation, the nontemporal key, such as Ssn in EMPLOYEE, 
is no longer unique in each tuple (version). The new relation key for EMP_VT is a 
combination of the nontemporal key and the valid start time attribute Vst,16 so we 
use (Ssn, Vst) as primary key. This is because, at any point in time, there should be 
at most one valid version of each entity. Hence, the constraint that any two tuple 
versions representing the same entity should have nonintersecting valid time periods 
should hold on valid time relations. Notice that if the nontemporal primary key value 
may change over time, it is important to have a unique surrogate key attribute, 
whose value never changes for each real-world entity, in order to relate all versions of 
the same real-world entity.

Valid time relations basically keep track of the history of changes as they become 
effective in the real world. Hence, if all real-world changes are applied, the database 
keeps a history of the real-world states that are represented. However, because updates, 
insertions, and deletions may be applied retroactively or proactively, there is no 
record of the actual database state at any point in time. If the actual database states are 
important to an application, then one should use transaction time relations.

Transaction Time Relations. In a transaction time database, whenever a change 
is applied to the database, the actual timestamp of the transaction that applied the 
change (insert, delete, or update) is recorded. Such a database is most useful when 
changes are applied simultaneously in the majority of cases—for example, real-time 
stock trading or banking transactions. If we convert the nontemporal database in 
Figure 26.1 into a transaction time database, then the two relations EMPLOYEE and 
DEPARTMENT are converted into transaction time relations by adding the attri-
butes Tst (Transaction Start Time) and Tet (Transaction End Time), whose data 

16A combination of the nontemporal key and the valid end time attribute Vet could also be used.
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type is typically TIMESTAMP. This is shown in Figure 26.7(b), where the relations 
have been renamed EMP_TT and DEPT_TT, respectively.

In EMP_TT, each tuple V represents a version of an employee’s information that was 
created at actual time V.Tst and was (logically) removed at actual time V.Tet (because 
the information was no longer correct). In EMP_TT, the current version of each 
employee typically has a special value, uc (Until Changed), as its transaction end 
time, which indicates that the tuple represents correct information until it is 
changed by some other transaction.17 A transaction time database has also been 
called a rollback database,18 because a user can logically roll back to the actual 
database state at any past point in time T by retrieving all tuple versions V whose 
transaction time period [V.Tst, V.Tet] includes time point T.

Bitemporal Relations. Some applications require both valid time and transac-
tion time, leading to bitemporal relations. In our example, Figure 26.7(c) shows 
how the EMPLOYEE and DEPARTMENT nontemporal relations in Figure 26.1 would 
appear as bitemporal relations EMP_BT and DEPT_BT, respectively. Figure 26.9 
shows a few tuples in these relations. In these tables, tuples whose transaction end 
time Tet is uc are the ones representing currently valid information, whereas tuples 
whose Tet is an absolute timestamp are tuples that were valid until (just before) that 
timestamp. Hence, the tuples with uc in Figure 26.9 correspond to the valid time 
tuples in Figure 26.7. The transaction start time attribute Tst in each tuple is the 
timestamp of the transaction that created that tuple.

Now consider how an update operation would be implemented on a bitemporal 
relation. In this model of bitemporal databases,19 no attributes are physically changed 
in any tuple except for the transaction end time attribute Tet with a value of uc.20 To 
illustrate how tuples are created, consider the EMP_BT relation. The current version 
V of an employee has uc in its Tet attribute and now in its Vet attribute. If some attri-
bute—say, Salary—is updated, then the transaction T that performs the update 
should have two parameters: the new value of Salary and the valid time VT when the 
new salary becomes effective (in the real world). Assume that VT− is the time point 
before VT in the given valid time granularity and that transaction T has a timestamp 
TS(T). Then, the following physical changes would be applied to the EMP_BT table:

  1. Make a copy V2 of the current version V; set V2.Vet to VT−, V2.Tst to TS(T), 
V2.Tet to uc, and insert V2 in EMP_BT; V2 is a copy of the previous current 
version V after it is closed at valid time VT−.

17The uc variable in transaction time relations corresponds to the now variable in valid time relations. 
However, the semantics are slightly different.
18Here, the term rollback does not have the same meaning as transaction rollback (see Chapter 23) 
during recovery, where the transaction updates are physically undone. Rather, here the updates can be 
logically undone, allowing the user to examine the database as it appeared at a previous time point.
19There have been many proposed temporal database models. We describe specific models here as 
examples to illustrate the concepts.
20Some bitemporal models allow the Vet attribute to be changed also, but the interpretations of the 
tuples are different in those models.
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  2. Make a copy V3 of the current version V; set V3.Vst to VT, V3.Vet to now, V3.
Salary to the new salary value, V3.Tst to TS(T), V3.Tet to uc, and insert V3 in 
EMP_BT; V3 represents the new current version.

  3. Set V.Tet to TS(T) since the current version is no longer representing correct 
information.

As an illustration, consider the first three tuples V1, V2, and V3 in EMP_BT in Fig-
ure 26.9. Before the update of Smith’s salary from 25000 to 30000, only V1 was in 
EMP_BT and it was the current version and its Tet was uc. Then, a transaction T whose 
timestamp TS(T) is ‘2003-06-04,08:56:12’ updates the salary to 30000 with the effec-
tive valid time of ‘2003-06-01’. The tuple V2 is created, which is a copy of V1 except 
that its Vet is set to ‘2003-05-31’, one day less than the new valid time, and its Tst is the 
timestamp of the updating transaction. The tuple V3 is also created, which has the 
new salary, its Vst is set to ‘2003-06-01’, and its Tst is also the timestamp of the updat-
ing transaction. Finally, the Tet of V1 is set to the timestamp of the updating transac-
tion, ‘2003-06-04,08:56:12’. Note that this is a retroactive update, since the updating 
transaction ran on June 4, 2003, but the salary change is effective on June 1, 2003.

Similarly, when Wong’s salary and department are updated (at the same time) to 
30000 and 5, the updating transaction’s timestamp is ‘2001-01-07,14:33:02’ and the 
effective valid time for the update is ‘2001-02-01’. Hence, this is a proactive update 
because the transaction ran on January 7, 2001, but the effective date was Feb-
ruary 1, 2001. In this case, tuple V4 is logically replaced by V5 and V6.

Name

Smith 123456789 25000 5 333445555 2002-06-15

Smith 123456789 25000 5 333445555 2002-06-15

123456789 30000 5 333445555 2003-06-01

333445555 25000 4 999887777 1999-08-20

333445555 25000 4 999887777 1999-08-20

333445555 30000 5 999887777 2001-02-01

333445555 30000 5

5

4

4

5

999887777

888667777

999887777

999887777

333445555

2001-02-01

2002-04-01

2001-05-01

2001-05-01

2003-08-01

2002-06-08, 13:05:58

2003-06-04, 08:56:12

2003-06-04, 08:56:12

1999-08-20, 11:18:23

2001-01-07, 14:33:02

2001-01-07, 14:33:02

2002-03-28, 09:23:57

2002-03-28, 09:23:57

2001-04-27, 16:22:05

2002-08-12, 10:11:07

2003-07-28, 09:25:37

2003-06-04,08:56:12

uc

uc

2001-01-07,14:33:02

uc

2002-03-28,09:23:57

uc

uc

2002-08-12,10:11:07

uc

uc

Now

2003-05-31

Now

Now

2001-01-31

Now

2002-03-31

Now

Now

2002-08-10

Now

Smith

Wong

Wong

Wong

Wong

Wong 333445555

Brown 222447777

Brown 222447777

Narayan

. . .
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28000

28000

38000666884444
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Research

Research

DEPT_VT

5 888665555 Now2001-09-20

888665555 2001-09-205 1997-03-31

Dno Manager_ssn Vst Vet

2001-09-15,14:52:12

2002-03-28,09:23:57

Tst

2001-03-28,09:23:57

uc

Research 333445555 2002-04-015 Now 2002-03-28,09:23:57 uc

Tet

Figure 26.9 
Some tuple versions in the bitemporal relations EMP_BT and DEPT_BT.
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Next, let us illustrate how a delete operation would be implemented on a bitempo-
ral relation by considering the tuples V9 and V10 in the EMP_BT relation of Fig-
ure 26.9. Here, employee Brown left the company effective August 10, 2002, and the 
logical delete is carried out by a transaction T with TS(T) = 2002-08-12,10:11:07. 
Before this, V9 was the current version of Brown, and its Tet was uc. The logical 
delete is implemented by setting V9.Tet to 2002-08-12,10:11:07 to invalidate it, and 
creating the final version V10 for Brown, with its Vet = 2002-08-10 (see Figure 26.9). 
Finally, an insert operation is implemented by creating the first version as illus-
trated by V11 in the EMP_BT table.

Implementation Considerations. There are various options for storing the 
tuples in a temporal relation. One is to store all the tuples in the same table, as 
shown in Figures 26.8 and 26.9. Another option is to create two tables: one for the 
currently valid information and the other for the rest of the tuples. For example, in 
the bitemporal EMP_BT relation, tuples with uc for their Tet and now for their Vet 
would be in one relation, the current table, since they are the ones currently valid 
(that is, represent the current snapshot), and all other tuples would be in another 
relation. This allows the database administrator to have different access paths, such 
as indexes for each relation, and keeps the size of the current table reasonable. 
Another possibility is to create a third table for corrected tuples whose Tet is not uc.

Another option that is available is to vertically partition the attributes of the temporal 
relation into separate relations so that if a relation has many attributes, a whole new 
tuple version is created whenever any one of the attributes is updated. If the attributes 
are updated asynchronously, each new version may differ in only one of the attri-
butes, thus needlessly repeating the other attribute values. If a separate relation is cre-
ated to contain only the attributes that always change synchronously, with the primary 
key replicated in each relation, the database is said to be in temporal normal form. 
However, to combine the information, a variation of join known as temporal 
 intersection join would be needed, which is generally expensive to implement.

It is important to note that bitemporal databases allow a complete record of changes. 
Even a record of corrections is possible. For example, it is possible that two tuple 
versions of the same employee may have the same valid time but different attribute 
values as long as their transaction times are disjoint. In this case, the tuple with the 
later transaction time is a correction of the other tuple version. Even incorrectly 
entered valid times may be corrected this way. The incorrect state of the database 
will still be available as a previous database state for querying purposes. A database 
that keeps such a complete record of changes and corrections is sometimes called 
an append-only database.

26.2.3  Incorporating Time in Object-Oriented Databases  
Using Attribute Versioning

The previous section discussed the tuple versioning approach to implementing 
temporal databases. In this approach, whenever one attribute value is changed, a 
whole new tuple version is created, even though all the other attribute values will 
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be identical to the previous tuple version. An alternative approach can be used 
in database systems that support complex structured objects, such as object 
databases (see Chapter 11) or object-relational systems. This approach is called 
attribute versioning.

In attribute versioning, a single complex object is used to store all the temporal 
changes of the object. Each attribute that changes over time is called a time-
varying attribute, and it has its values versioned over time by adding temporal 
periods to the attribute. The temporal periods may represent valid time, transac-
tion time, or bitemporal, depending on the application requirements. Attributes 
that do not change over time are called non-time-varying and are not associated 
with the temporal periods. To illustrate this, consider the example in Fig-
ure 26.10, which is an attribute-versioned valid time representation of EMPLOYEE 

class TEMPORAL_SALARY
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute float Salary;
};

class TEMPORAL_DEPT
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute DEPARTMENT_VT Dept;
};

class TEMPORAL_SUPERVISOR
{ attribute Date Valid_start_time;
 attribute Date Valid_end_time;
 attribute EMPLOYEE_VT Supervisor;
};

class TEMPORAL_LIFESPAN
{ attribute Date Valid_ start time;
 attribute Date Valid end time;
};

class EMPLOYEE_VT
( extent EMPLOYEES )
{ attribute list<TEMPORAL_LIFESPAN> lifespan;
 attribute string  Name;
 attribute string  Ssn;
 attribute list<TEMPORAL_SALARY> Sal_history;
 attribute list<TEMPORAL_DEPT> Dept_history;
 attribute list <TEMPORAL_SUPERVISOR> Supervisor_history;
};

Figure 26.10 
Possible ODL schema 
for a temporal valid 
time EMPLOYEE_VT 
object class using  
attribute versioning.
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using the object definition language (ODL) notation for object databases (see 
Chapter 11). Here, we assumed that name and Social Security number are non-
time-varying attributes, whereas salary, department, and supervisor are time-
varying attributes (they may change over time). Each time-varying attribute is 
represented as a list of tuples <Valid_start_time, Valid_end_time, Value>, ordered by 
valid start time.

Whenever an attribute is changed in this model, the current attribute version is 
closed and a new attribute version for this attribute only is appended to the list. 
This allows attributes to change asynchronously. The current value for each attri-
bute has now for its Valid_end_time. When using attribute versioning, it is useful to 
include a lifespan temporal attribute associated with the whole object whose value 
is one or more valid time periods that indicate the valid time of existence for the 
whole object. Logical deletion of the object is implemented by closing the lifespan. 
The constraint that any time period of an attribute within an object should be a 
subset of the object’s lifespan should be enforced.

For bitemporal databases, each attribute version would have a tuple with five 
components:

<Valid_start_time, Valid_end_time, Trans_start_time, Trans_end_time, Value>

The object lifespan would also include both valid and transaction time dimensions. 
Therefore, the full capabilities of bitemporal databases can be available with attri-
bute versioning. Mechanisms similar to those discussed earlier for updating tuple 
versions can be applied to updating attribute versions.

26.2.4  Temporal Querying Constructs  
and the TSQL2 Language

So far, we have discussed how data models may be extended with temporal con-
structs. Now we give a brief overview of how query operations need to be extended 
for temporal querying. We will briefly discuss the TSQL2 language, which extends 
SQL for querying valid time and transaction time tables, as well as for querying of 
bitemporal relational tables.

In nontemporal relational databases, the typical selection conditions involve attri-
bute conditions, and tuples that satisfy these conditions are selected from the set of 
current tuples. Following that, the attributes of interest to the query are specified by 
a projection operation (see Chapter 6). For example, in the query to retrieve the 
names of all employees working in department 5 whose salary is greater than 30000, 
the selection condition would be as follows:

((Salary > 30000) AND (Dno = 5))

The projected attribute would be Name. In a temporal database, the conditions 
may involve time in addition to attributes. A pure time condition involves only 
time—for example, to select all employee tuple versions that were valid on a cer-
tain time point T or that were valid during a certain time period [T1, T2]. In this 
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case, the specified time period is compared with the valid time period of each tuple 
version [T.Vst, T.Vet], and only those tuples that satisfy the condition are selected. 
In these operations, a period is considered to be equivalent to the set of time points 
from T1 to T2 inclusive, so the standard set comparison operations can be used. 
Additional operations, such as whether one time period ends before another starts, 
are also needed.21

Some of the more common operations used in queries are as follows:

[T.Vst, T.Vet] INCLUDES [T1, T2] Equivalent to T1 ≥ T.Vst AND T2 ≤ T.Vet

[T.Vst, T.Vet] INCLUDED_IN [T1, T2] Equivalent to T1 ≤ T.Vst AND T2 ≥ T.Vet

[T.Vst, T.Vet] OVERLAPS [T1, T2] Equivalent to (T1 ≤ T.Vet AND T2 ≥ T.Vst)22

[T.Vst, T.Vet] BEFORE [T1, T2] Equivalent to T1 ≥ T.Vet

[T.Vst, T.Vet] AFTER [T1, T2] Equivalent to T2 ≤ T.Vst

[T.Vst, T.Vet] MEETS_BEFORE [T1, T2] Equivalent to T1 = T.Vet + 123

[T.Vst, T.Vet] MEETS_AFTER [T1, T2] Equivalent to T2 + 1 = T.Vst

Additionally, operations are needed to manipulate time periods, such as computing 
the union or intersection of two time periods. The results of these operations may 
not themselves be periods, but rather temporal elements—a collection of one or 
more disjoint time periods such that no two time periods in a temporal element are 
directly adjacent. That is, for any two time periods [T1, T2] and [T3, T4] in a tempo-
ral element, the following three conditions must hold:

 ■ [T1, T2] intersection [T3, T4] is empty.

 ■ T3 is not the time point following T2 in the given granularity.

 ■ T1 is not the time point following T4 in the given granularity.

The latter conditions are necessary to ensure unique representations of temporal 
elements. If two time periods [T1, T2] and [T3, T4] are adjacent, they are combined 
into a single time period [T1, T4]. This is called coalescing of time periods. Coalesc-
ing also combines intersecting time periods.

To illustrate how pure time conditions can be used, suppose a user wants to select 
all employee versions that were valid at any point during 2002. The appropriate 
selection condition applied to the relation in Figure 26.8 would be

[T.Vst, T.Vet] OVERLAPS [2002-01-01, 2002-12-31]

Typically, most temporal selections are applied to the valid time dimension. For a 
bitemporal database, one usually applies the conditions to the currently correct 

21A complete set of operations, known as Allen’s algebra (Allen, 1983), has been defined for comparing 
time periods.
22This operation returns true if the intersection of the two periods is not empty; it has also been called 
INTERSECTS_WITH.
23Here, 1 refers to one time point in the specified granularity. The MEETS operations basically specify if 
one period starts immediately after another period ends.
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tuples with uc as their transaction end times. However, if the query needs to be 
applied to a previous database state, an AS_OF T clause is appended to the query, 
which means that the query is applied to the valid time tuples that were correct in 
the database at time T.

In addition to pure time conditions, other selections involve attribute and time 
conditions. For example, suppose we wish to retrieve all EMP_VT tuple versions T 
for employees who worked in department 5 at any time during 2002. In this case, 
the condition is

[T.Vst, T.Vet]OVERLAPS [2002-01-01, 2002-12-31] AND (T.Dno = 5)

Finally, we give a brief overview of the TSQL2 query language, which extends SQL 
with constructs for temporal databases. The main idea behind TSQL2 is to allow 
users to specify whether a relation is nontemporal (that is, a standard SQL relation) 
or temporal. The CREATE TABLE statement is extended with an optional AS clause 
to allow users to declare different temporal options. The following options are 
available:

 ■ AS VALID STATE <GRANULARITY> (valid time relation with valid time 
period)

 ■ AS VALID EVENT <GRANULARITY> (valid time relation with valid time 
point)

 ■ AS TRANSACTION (transaction time relation with transaction time period)

 ■ AS VALID STATE <GRANULARITY> AND TRANSACTION (bitemporal relation, 
valid time period)

 ■ AS VALID EVENT <GRANULARITY> AND TRANSACTION (bitemporal relation, 
valid time point)

The keywords STATE and EVENT are used to specify whether a time period or time 
point is associated with the valid time dimension. In TSQL2, rather than have the 
user actually see how the temporal tables are implemented (as we discussed in the 
previous sections), the TSQL2 language adds query language constructs to specify 
various types of temporal selections, temporal projections, temporal aggregations, 
transformation among granularities, and many other concepts. The book by Snod-
grass et al. (1995) describes the language.

26.2.5 Time Series Data
Time series data is used very often in financial, sales, and economics applications. They 
involve data values that are recorded according to a specific predefined sequence of 
time points. Therefore, they are a special type of valid event data, where the event’s 
time points are predetermined according to a fixed calendar. Consider the example of 
closing daily stock prices of a particular company on the New York Stock Exchange. 
The granularity here is day, but the days that the stock market is open are known (non-
holiday weekdays). Hence, it has been common to specify a computational procedure 
that calculates the particular calendar associated with a time series. Typical queries on 
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time series involve temporal aggregation over higher granularity intervals—for 
example, finding the average or maximum weekly closing stock price or the maxi-
mum and minimum monthly closing stock price from the daily information.

As another example, consider the daily sales dollar amount at each store of a chain 
of stores owned by a particular company. Again, typical temporal aggregates would 
be retrieving the weekly, monthly, or yearly sales from the daily sales information 
(using the sum aggregate function), or comparing same store monthly sales with 
previous monthly sales, and so on.

Because of the specialized nature of time series data and the lack of support for it in 
older DBMSs, it has been common to use specialized time series management 
 systems rather than general-purpose DBMSs for managing such information. In 
such systems, it has been common to store time series values in sequential order in 
a file and apply specialized time series procedures to analyze the information. The 
problem with this approach is that the full power of high-level querying in  languages 
such as SQL will not be available in such systems.

More recently, some commercial DBMS packages began offering time series exten-
sions, such as the Oracle time cartridge and the time series data blade of Informix 
Universal Server. In addition, the TSQL2 language provides some support for time 
series in the form of event tables.

26.3 Spatial Database Concepts24

26.3.1 Introduction to Spatial Databases
Spatial databases incorporate functionality that provides support for databases that 
keep track of objects in a multidimensional space. For example, cartographic data-
bases that store maps include two-dimensional spatial descriptions of their objects—
from countries and states to rivers, cities, roads, seas, and so on. The systems 
that manage geographic data and related applications are known as geographic 
 information systems (GISs), and they are used in areas such as environmental 
applications, transportation systems, emergency response systems, and battle man-
agement. Other databases, such as meteorological databases for weather information, 
are three-dimensional, since temperatures and other meteorological information are 
related to three-dimensional spatial points. In general, a spatial database stores 
objects that have spatial characteristics that describe them and that have spatial rela-
tionships among them. The spatial relationships among the objects are important, 
and they are often needed when querying the database. Although a spatial database 
can in general refer to an n-dimensional space for any n, we will limit our discussion 
to two dimensions as an illustration.

A spatial database is optimized to store and query data related to objects in space, 
including points, lines and polygons. Satellite images are a prominent example of 

24The contribution of Pranesh Parimala Ranganathan to this section is appreciated.
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spatial data. Queries posed on these spatial data, where predicates for selection deal 
with spatial parameters, are called spatial queries. For example, “What are the 
names of all bookstores within five miles of the College of Computing building at 
Georgia Tech?” is a spatial query. Whereas typical databases process numeric and 
character data, additional functionality needs to be added for databases to process 
spatial data types. A query such as “List all the customers located within twenty 
miles of company headquarters” will require the processing of spatial data types 
typically outside the scope of standard relational algebra and may involve consult-
ing an external geographic database that maps the company headquarters and each 
customer to a 2-D map based on their address. Effectively, each customer will be 
associated to a <latitude, longitude> position. A traditional B+-tree index based on 
customers’ zip codes or other nonspatial attributes cannot be used to process this 
query since traditional indexes are not capable of ordering multidimensional coor-
dinate data. Therefore, there is a special need for databases tailored for handling 
spatial data and spatial queries.

Table 26.1 shows the common analytical operations involved in processing geo-
graphic or spatial data.25 Measurement operations are used to measure some 
global properties of single objects (such as the area, the relative size of an object’s 
parts, compactness, or symmetry) and to measure the relative position of different 
objects in terms of distance and direction. Spatial analysis operations, which often 
use statistical techniques, are used to uncover spatial relationships within and 
among mapped data layers. An example would be to create a map—known as a 
prediction map—that identifies the locations of likely customers for particular 
products based on the historical sales and demographic information. Flow analysis 
operations help in determining the shortest path between two points and also the 
connectivity among nodes or regions in a graph. Location analysis aims to find if 
the given set of points and lines lie within a given polygon (location). The process 
involves generating a buffer around existing geographic features and then identify-
ing or selecting features based on whether they fall inside or outside the boundary 
of the buffer. Digital terrain analysis is used to build three-dimensional models, 

Table 26.1  Common Types of Analysis for Spatial Data

Analysis Type Type of Operations and Measurements

Measurements Distance, perimeter, shape, adjacency, and direction

Spatial analysis/statistics Pattern, autocorrelation, and indexes of similarity and topology using 
spatial and nonspatial data

Flow analysis Connectivity and shortest path

Location analysis Analysis of points and lines within a polygon

Terrain analysis Slope/aspect, catchment area, drainage network

Search Thematic search, search by region

25List of GIS analysis operations as proposed in Albrecht (1996).
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where the topography of a geographical location can be represented with an x, y, z 
data model known as Digital Terrain (or Elevation) Model (DTM/DEM). The x and 
y dimensions of a DTM represent the horizontal plane, and z represents spot 
heights for the respective x, y coordinates. Such models can be used for analysis of 
environmental data or during the design of engineering projects that require ter-
rain information. Spatial search allows a user to search for objects within a particu-
lar spatial region. For example, thematic search allows us to search for objects 
related to a particular theme or class, such as “Find all water bodies within 25 miles 
of Atlanta” where the class is water.

There are also topological relationships among spatial objects. These are often 
used in Boolean predicates to select objects based on their spatial relationships. For 
example, if a city boundary is represented as a polygon and freeways are repre-
sented as multilines, a condition such as “Find all freeways that go through Arling-
ton, Texas” would involve an intersects operation, to determine which freeways 
(lines) intersect the city boundary (polygon).

26.3.2 Spatial Data Types and Models
This section briefly describes the common data types and models for storing spatial 
data. Spatial data comes in three basic forms. These forms have become a de facto 
standard due to their wide use in commercial systems.

 ■ Map data26 includes various geographic or spatial features of objects in a 
map, such as an object’s shape and the location of the object within the map. 
The three basic types of features are points, lines, and polygons (or areas). 
Points are used to represent spatial characteristics of objects whose loca-
tions correspond to a single 2-D coordinate (x, y, or longitude/latitude) in 
the scale of a particular application. Depending on the scale, some examples 
of point objects could be buildings, cellular towers, or stationary vehicles. 
Moving vehicles and other moving objects can be represented by a sequence 
of point locations that change over time. Lines represent objects having 
length, such as roads or rivers, whose spatial characteristics can be approxi-
mated by a sequence of connected lines. Polygons are used to represent spa-
tial characteristics of objects that have a boundary, such as countries, states, 
lakes, or cities. Notice that some objects, such as buildings or cities, can be 
represented as either points or polygons, depending on the scale of detail.

 ■ Attribute data is the descriptive data that GIS systems associate with map 
features. For example, suppose that a map contains features that represent 
counties within a U.S. state (such as Texas or Oregon). Attributes for each 
county feature (object) could include population, largest city/town, area in 
square miles, and so on. Other attribute data could be included for other 
features in the map, such as states, cities, congressional districts, census 
tracts, and so on.

26These types of geographic data are based on ESRI’s guide to GIS. See www.gis.com/implementing_gis/ 
data/data_types.html
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 ■ Image data includes data such as satellite images and aerial photographs, 
which are typically created by cameras. Objects of interest, such as buildings 
and roads, can be identified and overlaid on these images. Images can also 
be attributes of map features. One can add images to other map features so 
that clicking on the feature would display the image. Aerial and satellite 
images are typical examples of raster data.

Models of spatial information are sometimes grouped into two broad categories: 
field and object. A spatial application (such as remote sensing or highway traffic con-
trol) is modeled using either a field- or an object-based model, depending on the 
requirements and the traditional choice of model for the application. Field models 
are often used to model spatial data that is continuous in nature, such as terrain eleva-
tion, temperature data, and soil variation characteristics, whereas object models have 
traditionally been used for applications such as transportation networks, land parcels, 
buildings, and other objects that possess both spatial and non-spatial attributes.

26.3.3 Spatial Operators and Spatial Queries
Spatial operators are used to capture all the relevant geometric properties of objects 
embedded in the physical space and the relations between them, as well as to per-
form spatial analysis. Operators are classified into three broad categories.

 ■ Topological operators. Topological properties are invariant when topo-
logical transformations are applied. These properties do not change after 
transformations like rotation, translation, or scaling. Topological operators 
are hierarchically structured in several levels, where the base level offers 
operators the ability to check for detailed topological relations between 
regions with a broad boundary, and the higher levels offer more abstract 
operators that allow users to query uncertain spatial data independent of 
the underlying geometric data model. Examples include open (region), 
close (region), and inside (point, loop).

 ■ Projective operators. Projective operators, such as convex hull, are used to 
express predicates about the concavity/convexity of objects as well as other 
spatial relations (for example, being inside the concavity of a given object).

 ■ Metric operators. Metric operators provide a more specific description of 
the object’s geometry. They are used to measure some global properties of 
single objects (such as the area, relative size of an object’s parts, compact-
ness, and symmetry), and to measure the relative position of different objects 
in terms of distance and direction. Examples include length (arc) and dis-
tance (point, point).

Dynamic Spatial Operators. The operations performed by the operators men-
tioned above are static, in the sense that the operands are not affected by the appli-
cation of the operation. For example, calculating the length of the curve has no 
effect on the curve itself. Dynamic operations alter the objects upon which the 
operations act. The three fundamental dynamic operations are create, destroy, and 
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update. A representative example of dynamic operations would be updating a spa-
tial object that can be subdivided into translate (shift position), rotate (change ori-
entation), scale up or down, reflect (produce a mirror image), and shear (deform).

Spatial Queries. Spatial queries are requests for spatial data that require the 
use of spatial operations. The following categories illustrate three typical types of 
spatial queries:

 ■ Range queries. Find all objects of a particular type that are within a given 
spatial area; for example, find all hospitals within the Metropolitan Atlanta 
city area. A variation of this query is to find all objects within a particular 
distance from a given location; for example, find all ambulances within a 
five mile radius of an accident location.

 ■ Nearest neighbor queries. Finds an object of a particular type that is closest 
to a given location; for example, find the police car that is closest to the loca-
tion of a crime. This can be generalized to find the k nearest neighbors, such 
as the 5 closest ambulances to an accident location.

 ■ Spatial joins or overlays. Typically joins the objects of two types based on 
some spatial condition, such as the objects intersecting or overlapping spa-
tially or being within a certain distance of one another. For example, find all 
townships located on a major highway between two cities or find all homes 
that are within two miles of a lake. The first example spatially joins township 
objects and highway object, and the second example spatially joins lake 
objects and home objects.

26.3.4 Spatial Data Indexing
A spatial index is used to organize objects into a set of buckets (which correspond 
to pages of secondary memory), so that objects in a particular spatial region can be 
easily located. Each bucket has a bucket region, a part of space containing all objects 
stored in the bucket. The bucket regions are usually rectangles; for point data struc-
tures, these regions are disjoint and they partition the space so that each point 
belongs to precisely one bucket. There are essentially two

  1. Specialized indexing structures that allow efficient search for data objects 
based on spatial search operations are included in the database system. 
These indexing structures would play a similar role to that performed by 
B+-tree indexes in traditional database systems. Examples of these indexing 
structures are grid files and R-trees. Special types of spatial indexes, known as 
spatial join indexes, can be used to speed up spatial join operations.

  2. Instead of creating brand new indexing structures, the two-dimensional (2-D) 
spatial data is converted to single-dimensional (1-D) data, so that traditional 
indexing techniques (B+-tree) can be used. The algorithms for converting 
from 2-D to 1-D are known as space filling curves. We will not discuss these 
methods in detail (see the Selected Bibliography for further references).

We give an overview of some of the spatial indexing techniques next.
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Grid Files.  We introduced grid files for indexing of data on multiple attributes in 
Chapter 18. They can also be used for indexing two-dimensional and higher 
n-dimensional spatial data. The fixed-grid method divides an n-dimensional 
hyperspace into equal size buckets. The data structure that implements the fixed 
grid is an n-dimensional array. The objects whose spatial locations lie within a cell 
(totally or partially) can be stored in a dynamic structure to handle overflows. This 
structure is useful for uniformly distributed data like satellite imagery. However, 
the fixed-grid structure is rigid, and its directory can be sparse and large.

R-Trees. The R-tree is a height-balanced tree, which is an extension of the B+-tree 
for k-dimensions, where k > 1. For two dimensions (2-D), spatial objects are 
approximated in the R-tree by their minimum bounding rectangle (MBR), which 
is the smallest rectangle, with sides parallel to the coordinate system (x and y) axis, 
that contains the object. R-trees are characterized by the following properties, 
which are similar to the properties for B+-trees (see Section 18.3) but are adapted to 
2-D spatial objects. As in Section 18.3, we use M to indicate the maximum number 
of entries that can fit in an R-tree node.

  1. The structure of each index entry (or index record) in a leaf node is (I, object-
identifier), where I is the MBR for the spatial object whose identifier is 
object-identifier.

  2. Every node except the root node must be at least half full. Thus, a leaf 
node that is not the root should contain m entries (I, object-identifier) where 
M/2 ≤ m ≤ M. Similarly, a non-leaf node that is not the root should contain 
m entries (I, child-pointer) where M/2 ≤ m ≤ M, and I is the MBR that con-
tains the union of all the rectangles in the node pointed at by child-pointer.

  3. All leaf nodes are at the same level, and the root node should have at least 
two pointers unless it is a leaf node.

  4. All MBRs have their sides parallel to the axes of the global coordinate system.

Other spatial storage structures include quadtrees and their variations. Quadtrees 
generally divide each space or subspace into equally sized areas and proceed with 
the subdivisions of each subspace to identify the positions of various objects. 
Recently, many newer spatial access structures have been proposed, and this 
remains an active research area.

Spatial Join Index. A spatial join index precomputes a spatial join operation 
and stores the pointers to the related object in an index structure. Join indexes 
improve the performance of recurring join queries over tables that have low 
update rates. Spatial join conditions are used to answer queries such as “Create a 
list of highway-river combinations that cross.” The spatial join is used to identify 
and retrieve these pairs of objects that satisfy the cross spatial relationship. 
Because computing the results of spatial relationships is generally time consum-
ing, the result can be computed once and stored in a table that has the pairs of 
object identifiers (or tuple ids) that satisfy the spatial relationship, which is essen-
tially the join index.
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A join index can be described by a bipartite graph G = (V1, V2, E), where V1 contains 
the tuple ids of relation R and V2 contains the tuple ids of relation S. Edge set con-
tains an edge (vr, vs) for vr in R and vs in S, if there is a tuple corresponding to (vr , vs) 
in the join index. The bipartite graph models all of the related tuples as connected 
vertices in the graphs. Spatial join indexes are used in operations (see Section 26.3.3) 
that involve computation of relationships among spatial objects.

26.3.5 Spatial Data Mining
Spatial data tends to be highly correlated. For example, people with similar charac-
teristics, occupations, and backgrounds tend to cluster together in the same neigh-
borhoods. The three major spatial data mining techniques are spatial classification, 
spatial association, and spatial clustering.

 ■ Spatial classification. The goal of classification is to estimate the value of an 
attribute of a relation based on the value of the relation’s other attributes. An 
example of the spatial classification problem is determining the locations of 
nests in a wetland based on the value of other attributes (for example, vege-
tation durability and water depth); it is also called the location prediction 
problem. Similarly, where to expect hotspots in crime activity is also a loca-
tion prediction problem.

 ■ Spatial association. Spatial association rules are defined in terms of spatial 
predicates rather than items. A spatial association rule is of the form

P1 ∧ P2 ∧ … ∧ Pn ⇒ Q1 ∧ Q2 ∧ … ∧ Qm

where at least one of the Pi’s or Qj’s is a spatial predicate. For example, the 
rule

is_a(x, country) ∧ touches(x, Mediterranean) ⇒ is_a (x, wine-exporter)

(that is, a country that is adjacent to the Mediterranean Sea is typically a wine 
exporter) is an example of an association rule, which will have a certain sup-
port s and confidence c.27

Spatial colocation rules attempt to generalize association rules to point to collec-
tion data sets that are indexed by space. There are several crucial differences 
between spatial and nonspatial associations, including the following:

  1. The notion of a transaction is absent in spatial situations, since data is 
embedded in continuous space. Partitioning space into transactions would 
lead to an overestimate or an underestimate of interest measures, for exam-
ple, support or confidence.

  2. Size of item sets in spatial databases is small, that is, there are many fewer 
items in the item set in a spatial situation than in a nonspatial situation.

27Concepts of support and confidence for association rules are discussed as part of data mining in 
Section 28.2.
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In most instances, spatial items are a discrete version of continuous variables. For 
example, in the United States income regions may be defined as regions where the 
mean yearly income is within certain ranges, such as, below $40,000, from $40,000 
to $100,000, and above $100,000.

 ■ Spatial clustering attempts to group database objects so that the most similar 
objects are in the same cluster, and objects in different clusters are as dissimi-
lar as possible. One application of spatial clustering is to group together seis-
mic events in order to determine earthquake faults. An example of a spatial 
clustering algorithm is density-based clustering, which tries to find clusters 
based on the density of data points in a region. These algorithms treat clus-
ters as dense regions of objects in the data space. Two variations of these 
algorithms are density-based spatial clustering of applications with noise 
(DBSCAN)28 and density-based clustering (DENCLUE).29 DBSCAN is a 
density-based clustering algorithm because it finds a number of clusters 
starting from the estimated density distribution of corresponding nodes.

26.3.6 Applications of Spatial Data
Spatial data management is useful in many disciplines, including geography, remote 
sensing, urban planning, and natural resource management. Spatial database man-
agement is playing an important role in the solution of challenging scientific prob-
lems such as global climate change and genomics. Due to the spatial nature of 
genome data, GIS and spatial database management systems have a large role to 
play in the area of bioinformatics. Some of the typical applications include pattern 
recognition (for example, to check if the topology of a particular gene in the genome 
is found in any other sequence feature map in the database), genome browser devel-
opment, and visualization maps. Another important application area of spatial data 
mining is the spatial outlier detection. A spatial outlier is a spatially referenced 
object whose nonspatial attribute values are significantly different from those of 
other spatially referenced objects in its spatial neighborhood. For example, if a 
neighborhood of older houses has just one brand-new house, that house would be 
an outlier based on the nonspatial attribute ‘house_age’. Detecting spatial outliers is 
useful in many applications of geographic information systems and spatial data-
bases. These application domains include transportation, ecology, public safety, 
public health, climatology, and location-based services.

26.4 Multimedia Database Concepts
Multimedia databases provide features that allow users to store and query differ-
ent types of multimedia information, which includes images (such as photos or 
drawings), video clips (such as movies, newsreels, or home videos), audio clips 

28DBSCAN was proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996).
29DENCLUE was proposed by Hinnenberg and Gabriel (2007).
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(such as songs, phone messages, or speeches), and documents (such as books or 
articles). The main types of database queries that are needed involve locating mul-
timedia sources that contain certain objects of interest. For example, one may 
want to locate all video clips in a video database that include a certain person, say 
Michael Jackson. One may also want to retrieve video clips based on certain activ-
ities included in them, such as video clips where a soccer goal is scored by a certain 
player or team.

The above types of queries are referred to as content-based retrieval, because the 
multimedia source is being retrieved based on its containing certain objects or 
activities. Hence, a multimedia database must use some model to organize and 
index the multimedia sources based on their contents. Identifying the contents of 
multimedia sources is a difficult and time-consuming task. There are two main 
approaches. The first is based on automatic analysis of the multimedia sources to 
identify certain mathematical characteristics of their contents. This approach uses 
different techniques depending on the type of multimedia source (image, video, 
audio, or text). The second approach depends on manual identification of the 
objects and activities of interest in each multimedia source and on using this infor-
mation to index the sources. This approach can be applied to all multimedia 
sources, but it requires a manual preprocessing phase in which a person must scan 
each multimedia source to identify and catalog the objects and activities it contains 
so that they can be used to index the sources.

In the first part of this section, we will briefly discuss some of the characteristics of 
each type of multimedia source—images, video, audio, and text/documents. Then 
we will discuss approaches for automatic analysis of images followed by the prob-
lem of object recognition in images. We end this section with some remarks on 
analyzing audio sources.

An image is typically stored either in raw form as a set of pixel or cell values, or 
in compressed form to save space. The image shape descriptor describes the geo-
metric shape of the raw image, which is typically a rectangle of cells of a certain 
width and height. Hence, each image can be represented by an m by n grid of 
cells. Each cell contains a pixel value that describes the cell content. In black-
and-white images, pixels can be one bit. In grayscale or color images, a pixel is 
multiple bits. Because images may require large amounts of space, they are often 
stored in compressed form. Compression standards, such as GIF, JPEG, or 
MPEG, use various mathematical transformations to reduce the number of cells 
stored but still maintain the main image characteristics. Applicable mathemati-
cal transforms include discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), and wavelet transforms.

To identify objects of interest in an image, the image is typically divided into 
homogeneous segments using a homogeneity predicate. For example, in a color 
image, adjacent cells that have similar pixel values are grouped into a segment. 
The homogeneity predicate defines conditions for automatically grouping those 
cells. Segmentation and compression can hence identify the main characteristics 
of an image.
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A typical image database query would be to find images in the database that are 
similar to a given image. The given image could be an isolated segment that con-
tains, say, a pattern of interest, and the query is to locate other images that contain 
that same pattern. There are two main techniques for this type of search. The first 
approach uses a distance function to compare the given image with the stored 
images and their segments. If the distance value returned is small, the probability of 
a match is high. Indexes can be created to group stored images that are close in the 
distance metric so as to limit the search space. The second approach, called the 
transformation approach, measures image similarity by having a small number of 
transformations that can change one image’s cells to match the other image. Trans-
formations include rotations, translations, and scaling. Although the transforma-
tion approach is more general, it is also more time-consuming and difficult.

A video source is typically represented as a sequence of frames, where each frame is 
a still image. However, rather than identifying the objects and activities in every 
individual frame, the video is divided into video segments, where each segment 
comprises a sequence of contiguous frames that includes the same objects/activi-
ties. Each segment is identified by its starting and ending frames. The objects and 
activities identified in each video segment can be used to index the segments. An 
indexing technique called frame segment trees has been proposed for video index-
ing. The index includes both objects, such as persons, houses, and cars, as well as 
activities, such as a person delivering a speech or two people talking. Videos are also 
often compressed using standards such as MPEG.

Audio sources include stored recorded messages, such as speeches, class presenta-
tions, or even surveillance recordings of phone messages or conversations by law 
enforcement. Here, discrete transforms can be used to identify the main character-
istics of a certain person’s voice in order to have similarity-based indexing and 
retrieval. We will briefly comment on their analysis in Section 26.4.4.

A text/document source is basically the full text of some article, book, or magazine. 
These sources are typically indexed by identifying the keywords that appear in the 
text and their relative frequencies. However, filler words or common words called 
stopwords are eliminated from the process. Because there can be many keywords 
when attempting to index a collection of documents, techniques have been devel-
oped to reduce the number of keywords to those that are most relevant to the col-
lection. A dimensionality reduction technique called singular value decomposition 
(SVD), which is based on matrix transformations, can be used for this purpose. An 
indexing technique called telescoping vector trees (TV-trees) can then be used to 
group similar documents. Chapter 27 discusses document processing in detail.

26.4.1 Automatic Analysis of Images
Analysis of multimedia sources is critical to support any type of query or search 
interface. We need to represent multimedia source data such as images in terms of 
features that would enable us to define similarity. The work done so far in this area 
uses low-level visual features such as color, texture, and shape, which are directly 
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related to the perceptual aspects of image content. These features are easy to extract 
and represent, and it is convenient to design similarity measures based on their 
statistical properties.

Color is one of the most widely used visual features in content-based image retrieval 
since it does not depend upon image size or orientation. Retrieval based on color 
similarity is mainly done by computing a color histogram for each image that iden-
tifies the proportion of pixels within an image for the three color channels (red, 
green, blue—RGB). However, RGB representation is affected by the orientation of 
the object with respect to illumination and camera direction. Therefore, current 
image retrieval techniques compute color histograms using competing invariant 
representations such as HSV (hue, saturation, value). HSV describes colors as 
points in a cylinder whose central axis ranges from black at the bottom to white at 
the top with neutral colors between them. The angle around the axis corresponds to 
the hue, the distance from the axis corresponds to the saturation, and the distance 
along the axis corresponds to the value (brightness).

Texture refers to the patterns in an image that present the properties of homogene-
ity that do not result from the presence of a single color or intensity value. Examples 
of texture classes are rough and silky. Examples of textures that can be identified 
include pressed calf leather, straw matting, cotton canvas, and so on. Just as pictures 
are represented by arrays of pixels (picture elements), textures are represented by 
arrays of texels (texture elements). These textures are then placed into a number of 
sets, depending on how many textures are identified in the image. These sets not only 
contain the texture definition but also indicate where in the image the texture is 
located. Texture identification is primarily done by modeling it as a two-dimensional, 
gray-level variation. The relative brightness of pairs of pixels is computed to estimate 
the degree of contrast, regularity, coarseness, and directionality.

Shape refers to the shape of a region within an image. It is generally determined by 
applying segmentation or edge detection to an image. Segmentation is a region-
based approach that uses an entire region (sets of pixels), whereas edge detection is 
a boundary-based approach that uses only the outer boundary characteristics of 
entities. Shape representation is typically required to be invariant to translation, 
rotation, and scaling. Some well-known methods for shape representation include 
Fourier descriptors and moment invariants.

26.4.2 Object Recognition in Images
Object recognition is the task of identifying real-world objects in an image or a 
video sequence. The system must be able to identify the object even when the 
images of the object vary in viewpoints, size, scale, or even when they are rotated 
or translated. Some approaches have been developed to divide the original image 
into regions based on similarity of contiguous pixels. Thus, in a given image 
showing a tiger in the jungle, a tiger subimage may be detected against the back-
ground of the jungle, and when compared with a set of training images, it may be 
tagged as a tiger.
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The representation of the multimedia object in an object model is extremely impor-
tant. One approach is to divide the image into homogeneous segments using a 
homogeneous predicate. For example, in a colored image, adjacent cells that have 
similar pixel values are grouped into a segment. The homogeneity predicate defines 
conditions for automatically grouping those cells. Segmentation and compression 
can hence identify the main characteristics of an image. Another approach finds 
measurements of the object that are invariant to transformations. It is impossible to 
keep a database of examples of all the different transformations of an image. To deal 
with this, object recognition approaches find interesting points (or features) in an 
image that are invariant to transformations.

An important contribution to this field was made by Lowe,30 who used scale-invari-
ant features from images to perform reliable object recognition. This approach is 
called scale-invariant feature transform (SIFT). The SIFT features are invariant to 
image scaling and rotation, and partially invariant to change in illumination and 
3D camera viewpoint. They are well localized in both the spatial and frequency 
domains, reducing the probability of disruption by occlusion, clutter, or noise. In 
addition, the features are highly distinctive, which allows a single feature to be cor-
rectly matched with high probability against a large database of features, providing 
a basis for object and scene recognition.

For image matching and recognition, SIFT features (also known as keypoint fea-
tures) are first extracted from a set of reference images and stored in a database. 
Object recognition is then performed by comparing each feature from the new 
image with the features stored in the database and finding candidate matching fea-
tures based on the Euclidean distance of their feature vectors. Since the keypoint 
features are highly distinctive, a single feature can be correctly matched with good 
probability in a large database of features.

In addition to SIFT, there are a number of competing methods available for object 
recognition under clutter or partial occlusion. For example, RIFT, a rotation invari-
ant generalization of SIFT, identifies groups of local affine regions (image features 
having a characteristic appearance and elliptical shape) that remain approximately 
affinely rigid across a range of views of an object, and across multiple instances of 
the same object class.

26.4.3 Semantic Tagging of Images
The notion of implicit tagging is an important one for image recognition and com-
parison. Multiple tags may attach to an image or a subimage: for instance, in the 
example we referred to above, tags such as “tiger,” “jungle,” “green,” and “stripes” 
may be associated with that image. Most image search techniques retrieve images 
based on user-supplied tags that are often not very accurate or comprehensive. To 
improve search quality, a number of recent systems aim at automated generation of 
these image tags. In case of multimedia data, most of its semantics is present in its 

30See Lowe (2004), “Distinctive Image Features from Scale-Invariant Keypoints.”
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content. These systems use image-processing and statistical-modeling techniques 
to analyze image content to generate accurate annotation tags that can then be used 
to retrieve images by content. Since different annotation schemes will use different 
vocabularies to annotate images, the quality of image retrieval will be poor. To solve 
this problem, recent research techniques have proposed the use of concept hierar-
chies, taxonomies, or ontologies using OWL (Web Ontology Language), in which 
terms and their relationships are clearly defined. These can be used to infer higher-
level concepts based on tags. Concepts like “sky” and “grass” may be further divided 
into “clear sky” and “cloudy sky” or “dry grass” and “green grass” in such a taxon-
omy. These approaches generally come under semantic tagging and can be used in 
conjunction with the above feature-analysis and object-identification strategies.

26.4.4 Analysis of Audio Data Sources
Audio sources are broadly classified into speech, music, and other audio data. Each 
of these is significantly different from the others; hence different types of audio data 
are treated differently. Audio data must be digitized before it can be processed and 
stored. Indexing and retrieval of audio data is arguably the toughest among all types 
of media, because like video, it is continuous in time and does not have easily mea-
surable characteristics such as text. Clarity of sound recordings is easy to perceive 
humanly but is hard to quantify for machine learning. Interestingly, speech data 
often uses speech recognition techniques to aid the actual audio content, as this can 
make indexing this data a lot easier and more accurate. This is sometimes referred 
to as text-based indexing of audio data. The speech metadata is typically content 
dependent, in that the metadata is generated from the audio content; for example, 
the length of the speech, the number of speakers, and so on. However, some of the 
metadata might be independent of the actual content, such as the length of the 
speech and the format in which the data is stored. Music indexing, on the other 
hand, is done based on the statistical analysis of the audio signal, also known as 
content-based indexing. Content-based indexing often makes use of the key features 
of sound: intensity, pitch, timbre, and rhythm. It is possible to compare different 
pieces of audio data and retrieve information from them based on the calculation of 
certain features, as well as application of certain transforms.

26.5 Introduction to Deductive Databases

26.5.1 Overview of Deductive Databases
In a deductive database system we typically specify rules through a declarative 
 language—a language in which we specify what to achieve rather than how to 
achieve it. An inference engine (or deduction mechanism) within the system can 
deduce new facts from the database by interpreting these rules. The model used for 
deductive databases is closely related to the relational data model, and particularly 
to the domain relational calculus formalism (see Section 6.6). It is also related to the 
field of logic programming and the Prolog language. The deductive database work 
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based on logic has used Prolog as a starting point. A variation of Prolog called 
Datalog is used to define rules declaratively in conjunction with an existing set of 
relations, which are themselves treated as literals in the language. Although the lan-
guage structure of Datalog resembles that of Prolog, its operational semantics—that 
is, how a Datalog program is executed—is still different.

A deductive database uses two main types of specifications: facts and rules. Facts 
are specified in a manner similar to the way relations are specified, except that it is 
not necessary to include the attribute names. Recall that a tuple in a relation 
describes some real-world fact whose meaning is partly determined by the attribute 
names. In a deductive database, the meaning of an attribute value in a tuple is deter-
mined solely by its position within the tuple. Rules are somewhat similar to rela-
tional views. They specify virtual relations that are not actually stored but that can 
be formed from the facts by applying inference mechanisms based on the rule spec-
ifications. The main difference between rules and views is that rules may involve 
recursion and hence may yield virtual relations that cannot be defined in terms of 
basic relational views.

The evaluation of Prolog programs is based on a technique called backward chain-
ing, which involves a top-down evaluation of goals. In the deductive databases that 
use Datalog, attention has been devoted to handling large volumes of data stored in 
a relational database. Hence, evaluation techniques have been devised that resemble 
those for a bottom-up evaluation. Prolog suffers from the limitation that the order 
of specification of facts and rules is significant in evaluation; moreover, the order of 
literals (defined in Section 26.5.3) within a rule is significant. The execution tech-
niques for Datalog programs attempt to circumvent these problems.

26.5.2 Prolog/Datalog Notation
The notation used in Prolog/Datalog is based on providing predicates with unique 
names. A predicate has an implicit meaning, which is suggested by the predicate 
name, and a fixed number of arguments. If the arguments are all constant values, 
the predicate simply states that a certain fact is true. If, on the other hand, the pred-
icate has variables as arguments, it is either considered as a query or as part of a rule 
or constraint. In our discussion, we adopt the Prolog convention that all constant 
values in a predicate are either numeric or character strings; they are represented as 
identifiers (or names) that start with a lowercase letter, whereas variable names 
always start with an uppercase letter.

Consider the example shown in Figure 26.11, which is based on the relational data-
base in Figure 3.6, but in a much simplified form. There are three predicate names: 
supervise, superior, and subordinate. The SUPERVISE predicate is defined via a set of 
facts, each of which has two arguments: a supervisor name, followed by the name of 
a direct supervisee (subordinate) of that supervisor. These facts correspond to the 
actual data that is stored in the database, and they can be considered as constituting 
a set of tuples in a relation SUPERVISE with two attributes whose schema is

SUPERVISE(Supervisor, Supervisee)
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Thus, SUPERVISE(X, Y) states the fact that X supervises Y. Notice the omission of 
the attribute names in the Prolog notation. Attribute names are only represented by 
virtue of the position of each argument in a predicate: the first argument represents 
the supervisor, and the second argument represents a direct subordinate.

The other two predicate names are defined by rules. The main contributions of 
deductive databases are the ability to specify recursive rules and to provide a frame-
work for inferring new information based on the specified rules. A rule is of the 
form head :– body, where :– is read as if and only if. A rule usually has a single 
predicate to the left of the :– symbol—called the head or left-hand side (LHS) or 
conclusion of the rule—and one or more predicates to the right of the :– symbol—
called the body or right-hand side (RHS) or premise(s) of the rule. A predicate 
with constants as arguments is said to be ground; we also refer to it as an instantiated 
predicate. The arguments of the predicates that appear in a rule typically include 
a number of variable symbols, although predicates can also contain constants as 
arguments. A rule specifies that, if a particular assignment or binding of constant 
values to the variables in the body (RHS predicates) makes all the RHS predicates 
true, it also makes the head (LHS predicate) true by using the same assignment of 
constant values to variables. Hence, a rule provides us with a way of generating 
new facts that are instantiations of the head of the rule. These new facts are 
based on facts that already exist, corresponding to the instantiations (or 
 bindings) of predicates in the body of the rule. Notice that by listing multiple 
predicates in the body of a rule we implicitly apply the logical AND operator to 
these predicates. Hence, the commas between the RHS predicates may be read 
as meaning and.

Consider the definition of the predicate SUPERIOR in Figure 26.11, whose first argu-
ment is an employee name and whose second argument is an employee who is either 
a direct or an indirect subordinate of the first employee. By indirect subordinate, we 

Facts
SUPERVISE(franklin, john).
SUPERVISE(franklin, ramesh).
SUPERVISE(franklin, joyce).
SUPERVISE(jennifer, alicia).
SUPERVISE(jennifer, ahmad).
SUPERVISE(james, franklin).
SUPERVISE(james, jennifer).
. . .

Rules
SUPERIOR(X, Y ) :– SUPERVISE(X, Y ).
SUPERIOR(X, Y ) :– SUPERVISE(X, Z ), SUPERIOR(Z, Y ).
SUBORDINATE(X, Y ) :– SUPERIOR(Y, X ).

Queries
SUPERIOR(james, Y )? 
SUPERIOR(james, joyce)?

joyceramesh

franklin

james(b)(a)

john ahmad

jennifer

alicia

Figure 26.11 
(a) Prolog notation.  
(b) The supervisory tree.
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mean the subordinate of some subordinate down to any number of levels. Thus 
SUPERIOR(X, Y) stands for the fact that X is a superior of Y through direct or indirect 
supervision. We can write two rules that together specify the meaning of the new 
predicate. The first rule under Rules in the figure states that for every value of X and 
Y, if SUPERVISE(X, Y)—the rule body—is true, then SUPERIOR(X, Y)—the rule 
head—is also true, since Y would be a direct subordinate of X (at one level down). 
This rule can be used to generate all direct superior/subordinate relationships from 
the facts that define the SUPERVISE predicate. The second recursive rule states that if 
SUPERVISE(X, Z) and SUPERIOR(Z, Y) are both true, then SUPERIOR(X, Y) is also 
true. This is an example of a recursive rule, where one of the rule body predicates in 
the RHS is the same as the rule head predicate in the LHS. In general, the rule body 
defines a number of premises such that if they are all true, we can deduce that the 
conclusion in the rule head is also true. Notice that if we have two (or more) rules 
with the same head (LHS predicate), it is equivalent to saying that the predicate is 
true (that is, that it can be instantiated) if either one of the bodies is true; hence, it is 
equivalent to a logical OR operation. For example, if we have two rules X :– Y and  
X :– Z, they are equivalent to a rule X :– Y OR Z. The latter form is not used in deduc-
tive systems, however, because it is not in the standard form of rule, called a Horn 
clause, as we discuss in Section 26.5.4.

A Prolog system contains a number of built-in predicates that the system can inter-
pret directly. These typically include the equality comparison operator = (X, Y), 
which returns true if X and Y are identical and can also be written as X = Y by using 
the standard infix notation.31 Other comparison operators for numbers, such as 
<, <=, >, and >=, can be treated as binary predicates. Arithmetic functions such as 
+, –, *, and / can be used as arguments in predicates in Prolog. In contrast, Datalog 
(in its basic form) does not allow functions such as arithmetic operations as argu-
ments; indeed, this is one of the main differences between Prolog and Datalog. 
However, extensions to Datalog have been proposed that do include functions.

A query typically involves a predicate symbol with some variable arguments, and 
its meaning (or answer) is to deduce all the different constant combinations that, 
when bound (assigned) to the variables, can make the predicate true. For example, 
the first query in Figure 26.11 requests the names of all subordinates of james at any 
level. A different type of query, which has only constant symbols as arguments, 
returns either a true or a false result, depending on whether the arguments pro-
vided can be deduced from the facts and rules. For example, the second query in 
Figure 26.11 returns true, since SUPERIOR(james, joyce) can be deduced.

26.5.3 Datalog Notation
In Datalog, as in other logic-based languages, a program is built from basic objects 
called atomic formulas. It is customary to define the syntax of logic-based lan-
guages by describing the syntax of atomic formulas and identifying how they can be 
combined to form a program. In Datalog, atomic formulas are literals of the form 

31A Prolog system typically has a number of different equality predicates that have different interpretations.
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p(a1, a2, … , an), where p is the predicate name and n is the number of arguments 
for predicate p. Different predicate symbols can have different numbers of argu-
ments, and the number of arguments n of predicate p is sometimes called the arity 
or degree of p. The arguments can be either constant values or variable names. As 
mentioned earlier, we use the convention that constant values either are numeric 
or start with a lowercase character, whereas variable names always start with an 
uppercase character.

A number of built-in predicates are included in Datalog and can also be used to con-
struct atomic formulas. The built-in predicates are of two main types: the binary com-
parison predicates < (less), <= (less_or_equal), > (greater), and >= (greater_or_equal) 
over ordered domains; and the comparison predicates = (equal) and /= (not_equal) over 
ordered or unordered domains. These can be used as binary predicates with the same 
functional syntax as other predicates—for example, by writing less(X, 3)—or they can 
be specified by using the customary infix notation X<3. Note that because the domains 
of these predicates are potentially infinite, they should be used with care in rule defini-
tions. For example, the predicate greater(X, 3), if used alone, generates an infinite set of 
values for X that satisfy the predicate (all integer numbers greater than 3).

A literal is either an atomic formula as defined earlier—called a positive literal—or an 
atomic formula preceded by not. The latter is a negated atomic formula, called a 
 negative literal. Datalog programs can be considered to be a subset of the predicate 
calculus formulas, which are somewhat similar to the formulas of the domain relational 
calculus (see Section 6.7). In Datalog, however, these formulas are first converted into 
what is known as clausal form before they are expressed in Datalog, and only formulas 
given in a restricted clausal form, called Horn clauses,32 can be used in Datalog.

26.5.4 Clausal Form and Horn Clauses
Recall from Section 6.6 that a formula in the relational calculus is a condition that 
includes predicates called atoms (based on relation names). Additionally, a formula 
can have quantifiers—namely, the universal quantifier (for all) and the existential 
quantifier (there exists). In clausal form, a formula must be transformed into 
another formula with the following characteristics:

 ■ All variables in the formula are universally quantified. Hence, it is not neces-
sary to include the universal quantifiers (for all) explicitly; the quantifiers 
are removed, and all variables in the formula are implicitly quantified by the 
universal quantifier.

 ■ In clausal form, the formula is made up of a number of clauses, where each 
clause is composed of a number of literals connected by OR logical connec-
tives only. Hence, each clause is a disjunction of literals.

 ■ The clauses themselves are connected by AND logical connectives only, to form 
a formula. Hence, the clausal form of a formula is a conjunction of clauses.

32Named after the mathematician Alfred Horn.
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It can be shown that any formula can be converted into clausal form. For our pur-
poses, we are mainly interested in the form of the individual clauses, each of which 
is a disjunction of literals. Recall that literals can be positive literals or negative liter-
als. Consider a clause of the form:

NOT(P1) OR NOT(P2) OR … OR NOT(Pn) OR Q1 OR Q2 OR … OR Qm (1)

This clause has n negative literals and m positive literals. Such a clause can be trans-
formed into the following equivalent logical formula:

P1 AND P2 AND … AND Pn ⇒ Q1 OR Q2 OR … OR Qm (2)

where ⇒ is the implies symbol. The formulas (1) and (2) are equivalent, meaning 
that their truth values are always the same. This is the case because if all the Pi 
literals (i = 1, 2, … , n) are true, the formula (2) is true only if at least one of the 
Qi’s is true, which is the meaning of the ⇒ (implies) symbol. For formula (1), if all 
the Pi literals (i = 1, 2, … , n) are true, their negations are all false; so in this case 
formula (1) is true only if at least one of the Qi’s is true. In Datalog, rules are 
expressed as a restricted form of clauses called Horn clauses, in which a clause 
can contain at most one positive literal. Hence, a Horn clause is either of the form

NOT (P1) OR NOT(P2) OR … OR NOT(Pn) OR Q (3)

or of the form

NOT (P1) OR NOT(P2) OR … OR NOT(Pn) (4)

The Horn clause in (3) can be transformed into the clause

P1 AND P2 AND … AND Pn ⇒ Q (5)

which is written in Datalog as the following rule:

Q :– P1, P2, … , Pn. (6)

The Horn clause in (4) can be transformed into

P1 AND P2 AND … AND Pn ⇒ (7)

which is written in Datalog as follows:

P1, P2, … , Pn. (8)

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based on form-
ula (5), is that if the predicates P1 AND P2 AND … AND Pn are all true for a particular 
binding to their variable arguments, then Q is also true and can hence be inferred. 
The Datalog expression (8) can be considered as an integrity constraint, where all 
the predicates must be true to satisfy the query.

In general, a query in Datalog consists of two components:

 ■ A Datalog program, which is a finite set of rules

 ■ A literal P(X1, X2, … , Xn), where each Xi is a variable or a constant

A Prolog or Datalog system has an internal inference engine that can be used to 
process and compute the results of such queries. Prolog inference engines typically 
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return one result to the query (that is, one set of values for the variables in the 
query) at a time and must be prompted to return additional results. On the con-
trary, Datalog returns results set-at-a-time.

26.5.5 Interpretations of Rules
There are two main alternatives for interpreting the theoretical meaning of rules: 
proof-theoretic and model-theoretic. In practical systems, the inference mechanism 
within a system defines the exact interpretation, which may not coincide with either 
of the two theoretical interpretations. The inference mechanism is a computational 
procedure and hence provides a computational interpretation of the meaning of 
rules. In this section, first we discuss the two theoretical interpretations. Then we 
briefly discuss inference mechanisms as a way of defining the meaning of rules.

In the proof-theoretic interpretation of rules, we consider the facts and rules to be 
true statements, or axioms. Ground axioms contain no variables. The facts are 
ground axioms that are given to be true. Rules are called deductive axioms, since 
they can be used to deduce new facts. The deductive axioms can be used to construct 
proofs that derive new facts from existing facts. For example, Figure 26.12 shows 
how to prove the fact SUPERIOR(james, ahmad) from the rules and facts given in 
Figure 26.11. The proof-theoretic interpretation gives us a procedural or computa-
tional approach for computing an answer to the Datalog query. The process of prov-
ing whether a certain fact (theorem) holds is known as theorem proving.

The second type of interpretation is called the model-theoretic interpretation. 
Here, given a finite or an infinite domain of constant values,33 we assign to a predi-
cate every possible combination of values as arguments. We must then determine 
whether the predicate is true or false. In general, it is sufficient to specify the combi-
nations of arguments that make the predicate true, and to state that all other com-
binations make the predicate false. If this is done for every predicate, it is called an 
interpretation of the set of predicates. For example, consider the interpretation 
shown in Figure 26.13 for the predicates SUPERVISE and SUPERIOR. This interpre-
tation assigns a truth value (true or false) to every possible combination of argu-
ment values (from a finite domain) for the two predicates.

An interpretation is called a model for a specific set of rules if those rules are always 
true under that interpretation; that is, for any values assigned to the variables in the 
rules, the head of the rules is true when we substitute the truth values assigned to 

33The most commonly chosen domain is finite and is called the Herbrand Universe.

1. SUPERIOR(X, Y ) :– SUPERVISE(X, Y ). (rule 1)
2. SUPERIOR(X, Y ) :– SUPERVISE(X, Z ), SUPERIOR(Z, Y ). (rule 2)
3. SUPERVISE(jennifer, ahmad). (ground axiom, given)
4. SUPERVISE(james, jennifer). (ground axiom, given)
5. SUPERIOR(jennifer, ahmad). (apply rule 1 on 3)
6. SUPERIOR(james, ahmad). (apply rule 2 on 4 and 5)

Figure 26.12 
Proving a new fact.
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the predicates in the body of the rule by that interpretation. Hence, whenever a 
particular substitution (binding) to the variables in the rules is applied, if all the 
predicates in the body of a rule are true under the interpretation, the predicate in 
the head of the rule must also be true. The interpretation shown in Figure 26.13 is a 
model for the two rules shown, since it can never cause the rules to be violated. 
Notice that a rule is violated if a particular binding of constants to the variables 
makes all the predicates in the rule body true but makes the predicate in the rule 
head false. For example, if SUPERVISE(a, b) and SUPERIOR(b, c) are both true under 
some interpretation, but SUPERIOR(a, c) is not true, the interpretation cannot be a 
model for the recursive rule:

SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y)

In the model-theoretic approach, the meaning of the rules is established by provid-
ing a model for these rules. A model is called a minimal model for a set of rules if 
we cannot change any fact from true to false and still get a model for these rules. For 

Rules
SUPERIOR(X, Y ) :– SUPERVISE(X, Y ).
SUPERIOR(X, Y ) :– SUPERVISE(X, Z), SUPERIOR(Z, Y ).

Interpretation

Known Facts:
SUPERVISE(franklin, john) is true.
SUPERVISE(franklin, ramesh) is true.
SUPERVISE(franklin, joyce) is true.
SUPERVISE(jennifer, alicia) is true.
SUPERVISE(jennifer, ahmad) is true.
SUPERVISE(james, franklin) is true.
SUPERVISE(james, jennifer) is true.
SUPERVISE(X, Y) is false for all other possible (X, Y) combinations

Derived Facts:
SUPERIOR(franklin, john) is true.
SUPERIOR(franklin, ramesh) is true.
SUPERIOR(franklin, joyce) is true.
SUPERIOR(jennifer, alicia) is true.
SUPERIOR(jennifer, ahmad) is true.
SUPERIOR(james, franklin) is true.
SUPERIOR(james, jennifer) is true.
SUPERIOR(james, john) is true.
SUPERIOR(james, ramesh) is true.
SUPERIOR(james, joyce) is true.
SUPERIOR(james, alicia) is true.
SUPERIOR(james, ahmad) is true.
SUPERIOR(X, Y) is false for all other possible (X, Y) combinations

Figure 26.13 
An interpretation that 
is a minimal model.
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example, consider the interpretation in Figure 26.13, and assume that the SUPERVISE 
predicate is defined by a set of known facts, whereas the SUPERIOR predicate is 
defined as an interpretation (model) for the rules. Suppose that we add the predi-
cate SUPERIOR(james, bob) to the true predicates. This remains a model for the 
rules shown, but it is not a minimal model, since changing the truth value of 
SUPERIOR(james,bob) from true to false still provides us with a model for the rules. 
The model shown in Figure 26.13 is the minimal model for the set of facts that are 
defined by the SUPERVISE predicate.

In general, the minimal model that corresponds to a given set of facts in the model-
theoretic interpretation should be the same as the facts generated by the proof- theoretic 
interpretation for the same original set of ground and deductive axioms. However, this 
is generally true only for rules with a simple structure. Once we allow negation in the 
specification of rules, the correspondence between interpretations does not hold. In 
fact, with negation, numerous minimal models are possible for a given set of facts.

A third approach to interpreting the meaning of rules involves defining an inference 
mechanism that is used by the system to deduce facts from the rules. This inference 
mechanism would define a computational interpretation to the meaning of the 
rules. The Prolog logic programming language uses its inference mechanism to define 
the meaning of the rules and facts in a Prolog program. Not all Prolog programs cor-
respond to the proof-theoretic or model-theoretic interpretations; it depends on the 
type of rules in the program. However, for many simple Prolog programs, the Prolog 
inference mechanism infers the facts that correspond either to the proof-theoretic 
interpretation or to a minimal model under the model-theoretic interpretation.

26.5.6 Datalog Programs and Their Safety
There are two main methods of defining the truth values of predicates in actual 
Datalog programs. Fact-defined predicates (or relations) are defined by listing all 
the combinations of values (the tuples) that make the predicate true. These corre-
spond to base relations whose contents are stored in a database system. Figure 26.14 
shows the fact-defined predicates EMPLOYEE, MALE, FEMALE, DEPARTMENT, 
SUPERVISE, PROJECT, and WORKS_ON, which correspond to part of the relational 
database shown in Figure 5.6. Rule-defined predicates (or views) are defined by 
being the head (LHS) of one or more Datalog rules; they correspond to virtual rela-
tions whose contents can be inferred by the inference engine. Figure 26.15 shows a 
number of rule-defined predicates.

A program or a rule is said to be safe if it generates a finite set of facts. The general 
theoretical problem of determining whether a set of rules is safe is undecidable. 
However, one can determine the safety of restricted forms of rules. For example, the 
rules shown in Figure 26.16 are safe. One situation where we get unsafe rules that 
can generate an infinite number of facts arises when one of the variables in the rule 
can range over an infinite domain of values, and that variable is not limited to rang-
ing over a finite relation. For example, consider the following rule:

BIG_SALARY(Y) :– Y>60000
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EMPLOYEE(john). MALE(john).
EMPLOYEE(franklin). MALE(franklin).
EMPLOYEE(aIicia). MALE(ramesh).
EMPLOYEE(jennifer). MALE(ahmad).
EMPLOYEE(ramesh). MALE(james).
EMPLOYEE(joyce).
EMPLOYEE(ahmad). FEMALE(alicia).
EMPLOYEE(james). FEMALE(jennifer).
 FEMALE(joyce).
SALARY(john, 30000).
SALARY(franklin, 40000). PROJECT(productx).
SALARY(alicia, 25000). PROJECT(producty).
SALARY(jennifer, 43000). PROJECT(productz).
SALARY(ramesh, 38000). PROJECT(computerization).
SALARY(joyce, 25000). PROJECT(reorganization).
SALARY(ahmad, 25000). PROJECT(newbenefits).
SALARY(james, 55000).
 WORKS_ON(john, productx, 32).
DEPARTMENT(john, research). WORKS_ON(john, producty, 8).
DEPARTMENT(franklin, research). WORKS_ON(ramesh, productz, 40).
DEPARTMENT(alicia, administration). WORKS_ON(joyce, productx, 20).
DEPARTMENT(jennifer, administration). WORKS_ON(joyce, producty, 20).
DEPARTMENT(ramesh, research). WORKS_ON(franklin, producty, 10).
DEPARTMENT(joyce, research). WORKS_ON(franklin, productz, 10).
DEPARTMENT(ahmad, administration). WORKS_ON(franklin, computerization, 10).
DEPARTMENT(james, headquarters). WORKS_ON(franklin, reorganization, 10).
 WORKS_ON(alicia, newbenefits, 30).
SUPERVISE(franklln, john). WORKS_ON(alicia, computerization, 10).
SUPERVISE(franklln, ramesh) WORKS_ON(ahmad, computerization, 35).
SUPERVISE(frankin , joyce). WORKS_ON(ahmad, newbenefits, 5).
SUPERVISE(jennifer, aIicia). WORKS_ON(jennifer, newbenefits, 20).
SUPERVISE(jennifer, ahmad). WORKS_ON(jennifer, reorganization, 15).
SUPERVISE(james, franklin). WORKS_ON(james, reorganization, 10).
SUPERVISE(james, jennifer).

Figure 26.14 
Fact-defined  
predicates for part  
of the database from 
Figure 5.6.

SUPERIOR(X, Y) :– SUPERVISE(X, Y).
SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y).

SUBORDINATE(X, Y) :– SUPERIOR(Y, X).

SUPERVISOR(X) :– EMPLOYEE(X), SUPERVISE(X, Y).
OVER_40K_EMP(X) :– EMPLOYEE(X), SALARY(X, Y), Y >= 40000.
UNDER_40K_SUPERVISOR(X) :– SUPERVISOR(X), NOT(OVER_40_K_EMP(X)).
MAIN_PRODUCTX_EMP(X) :– EMPLOYEE(X), WORKS_ON(X, productx, Y), Y >=20.
PRESIDENT(X) :– EMPLOYEE(X), NOT(SUPERVISE(Y, X) ).

Figure 26.15 
Rule-defined  
predicates.
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Here, we can get an infinite result if Y ranges over all possible integers. But suppose 
that we change the rule as follows:

BIG_SALARY(Y) :– EMPLOYEE(X), Salary(X, Y), Y>60000

In the second rule, the result is not infinite, since the values that Y can be bound to 
are now restricted to values that are the salary of some employee in the database—
presumably, a finite set of values. We can also rewrite the rule as follows:

BIG_SALARY(Y) :– Y>60000, EMPLOYEE(X), Salary(X, Y)

In this case, the rule is still theoretically safe. However, in Prolog or any other sys-
tem that uses a top-down, depth-first inference mechanism, the rule creates an 
infinite loop, since we first search for a value for Y and then check whether it is a 
salary of an employee. The result is generation of an infinite number of Y values, 
even though these, after a certain point, cannot lead to a set of true RHS predi-
cates. One definition of Datalog considers both rules to be safe, since it does not 
depend on a particular inference mechanism. Nonetheless, it is generally advisable 
to write such a rule in the safest form, with the predicates that restrict possible 
bindings of variables placed first. As another example of an unsafe rule, consider 
the following rule:

HAS_SOMETHING(X, Y) :– EMPLOYEE(X)

REL_ONE(A, B, C).
REL_TWO(D, E, F).
REL_THREE(G, H, I, J).

SELECT_ONE_A_EQ_C(X, Y, Z) :– REL_ONE(C, Y, Z).
SELECT_ONE_B_LESS_5(X, Y, Z) :– REL_ONE(X, Y, Z), Y < 5.
SELECT_ONE_A_EQ_C_AND_B_LESS_5(X, Y, Z) :– REL_ONE(C, Y, Z), Y<5.

SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z) :– REL_ONE(C, Y, Z).
SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z) :– REL_ONE(X, Y, Z), Y<5.

PROJECT_THREE_ON_G_H(W, X) :– REL_THREE(W, X, Y, Z).

UNION_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z).
UNION_ONE_TWO(X, Y, Z) :– REL_TWO(X, Y, Z).

INTERSECT_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z), REL_TWO(X, Y, Z).

DIFFERENCE_TWO_ONE(X, Y, Z) :– _TWO(X, Y, Z) NOT(REL_ONE(X, Y, Z).

CART PROD _ONE_THREE(T, U, V, W, X, Y, Z) :–
REL_ONE(T, U, V), REL_THREE(W, X, Y, Z).

NATURAL_JOIN_ONE_THREE_C_EQ_G(U, V, W, X, Y, Z) :–
REL_ONE(U, V, W), REL_THREE(W, X, Y, Z).

Figure 26.16 
Predicates for illustrating 
relational operations.
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Here, an infinite number of Y values can again be generated, since the variable Y 
appears only in the head of the rule and hence is not limited to a finite set of values. 
To define safe rules more formally, we use the concept of a limited variable. A vari-
able X is limited in a rule if (1) it appears in a regular (not built-in) predicate in the 
body of the rule; (2) it appears in a predicate of the form X = c or c = X or (c1 <= X 
and X <= c2) in the rule body, where c, c1, and c2 are constant values; or (3) it appears 
in a predicate of the form X = Y or Y = X in the rule body, where Y is a limited vari-
able. A rule is said to be safe if all its variables are limited.

26.5.7 Use of Relational Operations
It is straightforward to specify many operations of the relational algebra in the form 
of Datalog rules that define the result of applying these operations on the database 
relations (fact predicates). This means that relational queries and views can easily 
be specified in Datalog. The additional power that Datalog provides is in the speci-
fication of recursive queries, and views based on recursive queries. In this section, 
we show how some of the standard relational operations can be specified as Datalog 
rules. Our examples will use the base relations (fact-defined predicates) REL_ONE, 
REL_TWO, and REL_THREE, whose schemas are shown in Figure 26.16. In Datalog, 
we do not need to specify the attribute names as in Figure 26.16; rather, the arity 
(degree) of each predicate is the important aspect. In a practical system, the domain 
(data type) of each attribute is also important for operations such as UNION, 
 INTERSECTION, and JOIN, and we assume that the attribute types are compatible for 
the various operations, as discussed in Chapter 3.

Figure 26.16 illustrates a number of basic relational operations. Notice that if the 
Datalog model is based on the relational model and hence assumes that predicates 
(fact relations and query results) specify sets of tuples, duplicate tuples in the same 
predicate are automatically eliminated. This may or may not be true, depending on 
the Datalog inference engine. However, it is definitely not the case in Prolog, so any 
of the rules in Figure 26.16 that involve duplicate elimination are not correct for 
Prolog. For example, if we want to specify Prolog rules for the UNION operation 
with duplicate elimination, we must rewrite them as follows:

UNION_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z).
UNION_ONE_TWO(X, Y, Z) :– REL_TWO(X, Y, Z), NOT(REL_ONE(X, Y, Z)).

However, the rules shown in Figure 26.16 should work for Datalog, if duplicates are 
automatically eliminated. Similarly, the rules for the PROJECT operation shown in 
Figure 26.16 should work for Datalog in this case, but they are not correct for Pro-
log, since duplicates would appear in the latter case.

26.5.8 Evaluation of Nonrecursive Datalog Queries
In order to use Datalog as a deductive database system, it is appropriate to define an 
inference mechanism based on relational database query processing concepts. The 
inherent strategy involves a bottom-up evaluation, starting with base relations; the 
order of operations is kept flexible and subject to query optimization. In this section 
we discuss an inference mechanism based on relational operations that can be 
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applied to nonrecursive Datalog queries. We use the fact and rule base shown in 
Figures 26.14 and 26.15 to illustrate our discussion.

If a query involves only fact-defined predicates, the inference becomes one of 
searching among the facts for the query result. For example, a query such as

DEPARTMENT(X, Research)?

is a selection of all employee names X who work for the Research department. In 
relational algebra, it is the query:

π$1 (σ$2 = “Research” (DEPARTMENT))

which can be answered by searching through the fact-defined predicate 
department(X, Y). The query involves relational SELECT and PROJECT operations 
on a base relation, and it can be handled by the database query processing and opti-
mization techniques discussed in Chapter 19.

When a query involves rule-defined predicates, the inference mechanism must 
compute the result based on the rule definitions. If a query is nonrecursive and 
involves a predicate p that appears as the head of a rule p :– p1, p2, … , pn, the strat-
egy is first to compute the relations corresponding to p1, p2, … , pn and then to 
compute the relation corresponding to p. It is useful to keep track of the depen-
dency among the predicates of a deductive database in a predicate dependency 
graph. Figure 26.17 shows the graph for the fact and rule predicates shown in Fig-
ures 26.14 and 26.15. The dependency graph contains a node for each predicate. 
Whenever a predicate A is specified in the body (RHS) of a rule, and the head 
(LHS) of that rule is the predicate B, we say that B depends on A, and we draw a 
directed edge from A to B. This indicates that in order to compute the facts for the 
predicate B (the rule head), we must first compute the facts for all the predicates A 
in the rule body. If the dependency graph has no cycles, we call the rule set nonre-
cursive. If there is at least one cycle, we call the rule set recursive. In Figure 26.17, 
there is one recursively defined predicate—namely, SUPERIOR—which has a 
recursive edge pointing back to itself. Additionally, because the predicate subordi-
nate depends on SUPERIOR, it also requires recursion in computing its result.

A query that includes only nonrecursive predicates is called a nonrecursive query. 
In this section we discuss only inference mechanisms for nonrecursive queries. In 
Figure 26.17, any query that does not involve the predicates SUBORDINATE or 
SUPERIOR is nonrecursive. In the predicate dependency graph, the nodes corre-
sponding to fact-defined predicates do not have any incoming edges, since all fact-
defined predicates have their facts stored in a database relation. The contents of a 
fact-defined predicate can be computed by directly retrieving the tuples in the cor-
responding database relation.

The main function of an inference mechanism is to compute the facts that corre-
spond to query predicates. This can be accomplished by generating a relational 
expression involving relational operators as SELECT, PROJECT, JOIN, UNION, and 
SET DIFFERENCE (with appropriate provision for dealing with safety issues) that, 
when executed, provides the query result. The query can then be executed by utilizing 
the internal query processing and optimization operations of a relational database 
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management system. Whenever the inference mechanism needs to compute the fact 
set corresponding to a nonrecursive rule-defined predicate p, it first locates all the 
rules that have p as their head. The idea is to compute the fact set for each such rule 
and then to apply the UNION operation to the results, since UNION corresponds to a 
logical OR operation. The dependency graph indicates all predicates q on which each 
p depends, and since we assume that the predicate is nonrecursive, we can always 
determine a partial order among such predicates q. Before computing the fact set for 
p, first we compute the fact sets for all predicates q on which p depends, based on their 
partial order. For example, if a query involves the predicate UNDER_40K_SUPERVISOR, 
we must first compute both SUPERVISOR and OVER_40K_EMP. Since the latter two 
depend only on the fact-defined predicates EMPLOYEE, SALARY, and SUPERVISE, 
they can be computed directly from the stored database relations.

This concludes our introduction to deductive databases. Additional material may be 
found at the book’s Web site, where the complete Chapter 25 from the third edition is 
available. Information on the Web site includes a discussion on algorithms for recur-
sive query processing. We have included an extensive bibliography of work in deduc-
tive databases, recursive query processing, magic sets, combination of relational 
databases with deductive rules, and GLUE-NAIL! System, at the end of this chapter.

26.6 Summary
In this chapter, we introduced database concepts for some of the common features 
that are needed by advanced applications: active databases, temporal databases, 
spatial databases, multimedia databases, and deductive databases. It is important to 
note that each of these is a broad topic and warrants a complete textbook.

SUPERVISOR UNDER_40K_SUPERVISOR

OVER_40K_EMP

PRESIDENT

MAIN_PRODUCT_EMP

WORKS_ON EMPLOYEE SALARY SUPERVISE

DEPARTMENT PROJECT FEMALE MALE

SUBORDINATE

SUPERIOR

Figure 26.17 
Predicate dependency 
graph for Figures 26.15 
and 26.16.
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First in Section 26.1 we introduced the topic of active databases, which provide addi-
tional functionality for specifying active rules. We introduced the event-condition-
action (ECA) model for active databases. The rules can be automatically triggered by 
events that occur—such as a database update—and they can initiate certain actions 
that have been specified in the rule declaration if certain conditions are true. Many 
commercial packages have some of the functionality provided by active databases in 
the form of triggers. We gave examples of row-level triggers in the Oracle commercial 
system in Section 26.1.1. We discussed the different options for specifying triggers in 
Section 26.1.2, such as row-level versus statement-level, before versus after, and 
immediate versus deferred. Then in Section 26.1.3 we gave examples of statement-
level rules in the STARBURST experimental system. We briefly discussed some 
design issues and some possible applications for active databases in Section 26.1.4. 
The syntax for triggers in the SQL-99 standard was also discussed in Section 26.1.5.

Next in Section 26.2 we introduced some of the concepts of temporal databases, 
which permit the database system to store a history of changes and allow users to 
query both current and past states of the database. In Section 26.2.1, we discussed 
how time is represented and distinguished between the valid time and transaction 
time dimensions. In Section 26.2.2 we discussed how valid time, transaction time, 
and bitemporal relations can be implemented using tuple versioning in the rela-
tional model, and we provided examples to illustrate how updates, inserts, and 
deletes are implemented. We also showed how complex objects can be used to 
implement temporal databases using attribute versioning in Section 26.2.3. We 
looked at some of the querying operations for temporal relational databases and 
gave a brief introduction to the TSQL2 language in Section 26.2.4.

Then we turned to spatial databases in Section 26.3. Spatial databases provide 
concepts for databases that keep track of objects that have spatial characteristics. 
We gave an introduction to spatial databases in Section 26.3.1. We discussed the 
types of spatial data and spatial data models in Section 26.3.2, then the types of 
operators for processing spatial data and the types of spatial queries in Sec-
tion 26.3.3. In Section 26.3.4, we gave an overview of spatial indexing techniques, 
including the popular R-trees. Then we introduced some spatial data mining 
techniques in Section 26.3.5, and discussed some applications that require spatial 
databases in Section 26.3.6.

In Section 26.4 we discussed some basic types of multimedia databases and their 
important characteristics. Multimedia databases provide features that allow users 
to store and query different types of multimedia information, which includes 
images (such as pictures and drawings), video clips (such as movies, newsreels, and 
home videos), audio clips (such as songs, phone messages, and speeches), and doc-
uments (such as books and articles). We provided a brief overview of the various 
types of media sources and how multimedia sources may be indexed. Images are an 
extremely common type of data among databases today and are likely to occupy a 
large proportion of stored data in databases. We therefore provided a more detailed 
treatment of images: their automatic analysis (Section 26.4.1), recognition of objects 
within images (Section 26.4.2), and their semantic tagging (Section 26.1.3)—all of 
which contribute to developing better systems to retrieve images by content, which 
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still remains a challenging problem. We also commented on the analysis of audio 
data sources in Section 26.4.4.

We concluded the chapter with an introduction to deductive databases in Section 26.5. 
We introduced deductive databases in Section 26.5.1, and gave an overview of Prolog 
and Datalog notation in Sections 26.5.2 and 26.5.3. We discussed the clausal form of 
formulas in Section 26.5.4. Datalog rules are restricted to Horn clauses, which contain 
at most one positive literal. We discussed the proof-theoretic and model-theoretic 
interpretation of rules in Section 26.5.5. We briefly discussed the safety of Datalog rules 
in Section 26.5.6 and the ways of expressing relational operators using Datalog rules in 
Section 26.5.7. Finally, we discussed an inference mechanism based on relational oper-
ations that can be used to evaluate nonrecursive Datalog queries using relational query 
optimization techniques in Section 26.5.8. Although Datalog has been a popular lan-
guage with some applications, implementations of deductive database systems such as 
LDL or VALIDITY have not become widely commercially available.

Review Questions
 26.1. What are the differences between row-level and statement-level active rules?

 26.2. What are the differences among immediate, deferred, and detached consid-
eration of active rule conditions?

 26.3. What are the differences among immediate, deferred, and detached execu-
tion of active rule actions?

 26.4. Briefly discuss the consistency and termination problems when designing a 
set of active rules.

 26.5. Discuss some applications of active databases.

 26.6. Discuss how time is represented in temporal databases and compare the dif-
ferent time dimensions.

 26.7. What are the differences among valid time, transaction time, and bitempo-
ral relations?

 26.8. Describe how the insert, delete, and update commands should be imple-
mented on a valid time relation.

 26.9. Describe how the insert, delete, and update commands should be imple-
mented on a bitemporal relation.

 26.10. Describe how the insert, delete, and update commands should be imple-
mented on a transaction time relation.

 26.11. What are the main differences between tuple versioning and attribute 
versioning?

 26.12. How do spatial databases differ from regular databases?

 26.13. What are the different types of spatial data?
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 26.14. Name the main types of spatial operators and different classes of spatial queries.

 26.15. What are the properties of R-trees that act as an index for spatial data?

 26.16. Describe how a spatial join index between spatial objects can be constructed.

 26.17. What are the different types of spatial data mining?

 26.18. State the general form of a spatial association rule. Give an example of a spa-
tial association rule.

 26.19. What are the different types of multimedia sources?

 26.20. How are multimedia sources indexed for content-based retrieval?

 26.21. What important features of images are used to compare them?

 26.22. What are the different approaches to recognizing objects in images?

 26.23. How is semantic tagging of images used?

 26.24. What are the difficulties in analyzing audio sources?

 26.25. What are deductive databases?

 26.26. Write sample rules in Prolog to define that courses with course number 
above CS5000 are graduate courses and that DBgrads are those graduate 
students who enroll in CS6400 and CS8803.

 26.27. Define the clausal form of formulas and Horn clauses.

 26.28. What is theorem proving, and what is proof-theoretic interpretation of 
rules?

 26.29. What is model-theoretic interpretation and how does it differ from proof-
theoretic interpretation?

 26.30. What are fact-defined predicates and rule-defined predicates?

 26.31. What is a safe rule?

 26.32. Give examples of rules that can define relational operations SELECT, 
PROJECT, JOIN, and SET operations.

 26.33. Discuss the inference mechanism based on relational operations that can be 
applied to evaluate nonrecursive Datalog queries.

Exercises
 26.34. Consider the COMPANY database described in Figure 5.6. Using the syntax 

of Oracle triggers, write active rules to do the following:

a. Whenever an employee’s project assignments are changed, check if the 
total hours per week spent on the employee’s projects are less than 30 or 
greater than 40; if so, notify the employee’s direct supervisor.
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b. Whenever an employee is deleted, delete the PROJECT tuples and 
DEPENDENT tuples related to that employee, and if the employee man-
ages a department or supervises employees, set the Mgr_ssn for that 
department to NULL and set the Super_ssn for those employees to NULL.

 26.35. Repeat Exercise 26.34 but use the syntax of STARBURST active rules.

 26.36. Consider the relational schema shown in Figure 26.18. Write active rules for 
keeping the Sum_commissions attribute of SALES_PERSON equal to the sum 
of the Commission attribute in SALES for each sales person. Your rules should 
also check if the Sum_commissions exceeds 100000; if it does, call a procedure 
Notify_manager(S_id). Write both statement-level rules in STARBURST nota-
tion and row-level rules in Oracle.

 26.37. Consider the UNIVERSITY EER schema in Figure 4.10. Write some rules (in 
English) that could be implemented via active rules to enforce some com-
mon integrity constraints that you think are relevant to this application.

 26.38. Discuss which of the updates that created each of the tuples shown in Fig-
ure 26.9 were applied retroactively and which were applied proactively.

 26.39. Show how the following updates, if applied in sequence, would change the 
contents of the bitemporal EMP_BT relation in Figure 26.9. For each update, 
state whether it is a retroactive or proactive update.

a. On 2004-03-10,17:30:00, the salary of Narayan is updated to 40000, effec-
tive on 2004-03-01.

b. On 2003-07-30,08:31:00, the salary of Smith was corrected to show that it 
should have been entered as 31000 (instead of 30000 as shown), effective 
on 2003-06-01.

c. On 2004-03-18,08:31:00, the database was changed to indicate that 
 Narayan was leaving the company (that is, logically deleted) effective on 
2004-03-31.

d. On 2004-04-20,14:07:33, the database was changed to indicate the hiring 
of a new employee called Johnson, with the tuple <‘Johnson’, ‘334455667’, 
1, NULL > effective on 2004-04-20.

e. On 2004-04-28,12:54:02, the database was changed to indicate that Wong 
was leaving the company (that is, logically deleted) effective on 2004-06-01.

f. On 2004-05-05,13:07:33, the database was changed to indicate the rehir-
ing of Brown, with the same department and supervisor but with salary 
35000 effective on 2004-05-01.

S_id V_id Commission

SALES

Salesperson_id Name Title Phone Sum_commissions

SALES_PERSON
Figure 26.18 
Database schema for sales 
and salesperson commissions 
in Exercise 26.36.
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 26.40. Show how the updates given in Exercise 26.39, if applied in sequence, would 
change the contents of the valid time EMP_VT relation in Figure 26.8.

 26.41. Add the following facts to the sample database in Figure 26.11:

SUPERVISE(ahmad, bob), SUPERVISE(franklin, gwen)

First modify the supervisory tree in Figure 26.11(b) to reflect this change. 
Then construct a diagram showing the top-down evaluation of the query 
SUPERIOR(james, Y) using rules 1 and 2 from Figure 26.12.

 26.42. Consider the following set of facts for the relation PARENT(X, Y), where Y is 
the parent of X:

PARENT(a, aa), PARENT(a, ab), PARENT(aa, aaa), PARENT(aa, aab),
PARENT(aaa, aaaa), PARENT(aaa, aaab)

Consider the rules

r1: ANCESTOR(X, Y) :– PARENT(X, Y)
r2: ANCESTOR(X, Y) :– PARENT(X, Z), ANCESTOR(Z, Y)

which define ancestor Y of X as above.

a. Show how to solve the Datalog query

ANCESTOR(aa, X)?

and show your work at each step.

b. Show the same query by computing only the changes in the ancestor rela-
tion and using that in rule 2 each time.

[This question is derived from Bancilhon and Ramakrishnan (1986).]

 26.43. Consider a deductive database with the following rules:

ANCESTOR(X, Y) :– FATHER(X, Y)
ANCESTOR(X, Y) :– FATHER(X, Z), ANCESTOR(Z, Y)

Notice that FATHER(X, Y) means that Y is the father of X; ANCESTOR(X, Y) 
means that Y is the ancestor of X.

Consider the following fact base:

FATHER(Harry, Issac), FATHER(Issac, John), FATHER(John, Kurt)

a. Construct a model-theoretic interpretation of the above rules using the 
given facts.

b. Consider that a database contains the above relations FATHER(X, Y), 
another relation BROTHER(X, Y), and a third relation BIRTH(X, B), where 
B is the birth date of person X. State a rule that computes the first cousins 
of the following variety: their fathers must be brothers.

c. Show a complete Datalog program with fact-based and rule-based literals 
that computes the following relation: list of pairs of cousins, where the 
first person is born after 1960 and the second after 1970. You may use 
greater than as a built-in predicate. (Note: Sample facts for brother, birth, 
and person must also be shown.)
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 26.44. Consider the following rules:

REACHABLE(X, Y) :– FLIGHT(X, Y)
REACHABLE(X, Y) :– FLIGHT(X, Z), REACHABLE(Z, Y)

  where REACHABLE(X, Y) means that city Y can be reached from city X, and 
FLIGHT(X, Y) means that there is a flight to city Y from city X.

a. Construct fact predicates that describe the following:

Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore, 
Sydney are cities.

The following flights exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt, 
Frankfurt to Atlanta, Frankfurt to Singapore, and Singapore to Sydney. 
(Note: No flight in reverse direction can be automatically assumed.)

b. Is the given data cyclic? If so, in what sense?

c. Construct a model-theoretic interpretation (that is, an interpretation 
similar to the one shown in Figure 26.13) of the above facts and rules.

d. Consider the query

REACHABLE(Atlanta, Sydney)?

How will this query be executed? List the series of steps it will go through.

e. Consider the following rule-defined predicates:

ROUND-TRIP-REACHABLE(X, Y) :–
REACHABLE(X, Y), REACHABLE(Y, X)
DURATION(X, Y, Z)

Draw a predicate dependency graph for the above predicates. (Note: 
DURATION(X, Y, Z) means that you can take a flight from X to Y in Z hours.)

f. Consider the following query: What cities are reachable in 12 hours from 
Atlanta? Show how to express it in Datalog. Assume built-in predicates 
like greater-than(X, Y). Can this be converted into a relational algebra 
statement in a straightforward way? Why or why not?

g. Consider the predicate population(X, Y), where Y is the population of 
city X. Consider the following query: List all possible bindings of the 
predicate pair (X, Y), where Y is a city that can be reached in two flights 
from city X, which has over 1 million people. Show this query in Datalog. 
Draw a corresponding query tree in relational algebraic terms.
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27
Introduction to Information 

Retrieval and Web Search

In most of the chapters in this book so far, we have 
discussed techniques for modeling, designing, query-

ing, transaction processing of, and managing structured data. In Section 13.1, we 
discussed the differences among structured, semistructured, and unstructured data. 
Information retrieval deals mainly with unstructured data, and the techniques for 
indexing, searching, and retrieving information from large collections of unstruc-
tured documents. In Chapter 24, on NOSQL technologies, we considered systems, 
like MongoDB, that are suited to handling data in the form of documents. In this 
chapter,1 we will provide an introduction to information retrieval. This is a very 
broad topic, so we will focus on the similarities and differences between informa-
tion retrieval and database technologies, and on the indexing techniques that form 
the basis of many information retrieval systems.

This chapter is organized as follows. In Section 27.1, we introduce information 
retrieval (IR) concepts and discuss how IR differs from traditional databases. Sec-
tion 27.2 is devoted to a discussion of retrieval models, which form the basis for IR 
search. Section 27.3 covers different types of queries in IR systems. Section 27.4 
discusses text preprocessing, and Section 27.5 provides an overview of IR indexing, 
which is at the heart of any IR system. In Section 27.6, we describe the various 
evaluation metrics for IR systems performance. Section 27.7 details Web analysis 
and its relationship to information retrieval, and Section 27.8 briefly introduces the 
current trends in IR. Section 27.9 summarizes the chapter. For a limited overview of 
IR, we suggest that students read Sections 27.1 through 27.6.

chapter 27

1This chapter is coauthored with Saurav Sahay, Intel Labs.
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27.1 Information Retrieval (IR) Concepts
Information retrieval is the process of retrieving documents from a collection in 
response to a query (or a search request) by a user. This section provides an over-
view of IR concepts. In Section 27.1.1, we introduce information retrieval in general 
and then discuss the different kinds and levels of search that IR encompasses. In 
Section 27.1.2, we compare IR and database technologies. Section 27.1.3 gives a 
brief history of IR. We then present the different modes of user interaction with IR 
systems in Section 27.1.4. In Section 27.1.5, we describe the typical IR process with 
a detailed set of tasks and then with a simplified process flow, and we end with a 
brief discussion of digital libraries and the Web.

27.1.1 Introduction to Information Retrieval
We first review the distinction between structured and unstructured data (see Sec-
tion 13.1) to see how information retrieval differs from structured data manage-
ment. Consider a relation (or table) called HOUSES with the attributes:

HOUSES(Lot#, Address, Square_footage, Listed_price)

This is an example of structured data. We can compare this relation with home-
buying contract documents, which are examples of unstructured data. These types 
of documents can vary from city to city, and even county to county, within a given 
state in the United States. Typically, a contract document in a particular state will 
have a standard list of clauses described in paragraphs within sections of the docu-
ment, with some predetermined (fixed) text and some variable areas whose content 
is to be supplied by the specific buyer and seller. Other variable information would 
include interest rate for financing, down-payment amount, closing dates, and so 
on. The documents could also include pictures taken during a home inspection. 
The information content in such documents can be considered unstructured data 
that can be stored in a variety of possible arrangements and formats. By  unstructured 
information, we generally mean information that does not have a well-defined 
 formal model and corresponding formal language for representation and reason-
ing, but rather is based on understanding of natural language.

With the advent of the World Wide Web (or Web, for short), the volume of 
unstructured information stored in messages and documents that contain textual 
and multimedia information has exploded. These documents are stored in a variety 
of standard formats, including HTML, XML (see Chapter 13), and several audio 
and video formatting standards. Information retrieval deals with the problems of 
storing, indexing, and retrieving (searching) such information to satisfy the needs 
of users. The problems that IR deals with are exacerbated by the fact that the num-
ber of Web pages and the number of social interaction events is already in the bil-
lions and is growing at a phenomenal rate. All forms of unstructured data described 
above are being added at the rates of millions per day, expanding the searchable 
space on the Web at rapidly increasing rates.

Historically, information retrieval is “the discipline that deals with the structure, 
analysis, organization, storage, searching, and retrieval of information” as defined 
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by Gerald Salton, an IR pioneer.2 We can enhance the definition slightly to say that 
it applies in the context of unstructured documents to satisfy a user’s information 
needs. This field has existed even longer than the database field and was originally 
concerned with retrieval of cataloged information in libraries based on titles, 
authors, topics, and keywords. In academic programs, the field of IR has long been 
a part of Library and Information Science programs. Information in the context of 
IR does not require machine-understandable structures, such as in relational data-
base systems. Examples of such information include written texts, abstracts, docu-
ments, books, Web pages, e-mails, instant messages, and collections from digital 
libraries. Therefore, all loosely represented (unstructured) or semistructured infor-
mation is also part of the IR discipline.

We introduced XML modeling and retrieval in Chapter 13 and discussed advanced 
data types, including spatial, temporal, and multimedia data, in Chapter 26. RDBMS 
vendors are providing modules to support many of these data types,  as well as XML 
data, in the newer versions of their products. These newer versions are sometimes 
referred to as extended RDBMSs, or object-relational database management systems 
(ORDBMSs; see Chapter 12). The challenge of dealing with unstructured data is 
largely an information retrieval problem, although database researchers have been 
applying database indexing and search techniques to some of these problems.

IR systems go beyond database systems in that they do not limit the user to a spe-
cific query language, nor do they expect the user to know the structure (schema) or 
content of a particular database. IR systems use a user’s information need expressed 
as a free-form search request (sometimes called a keyword search query, or just 
query) for interpretation by the system. Whereas the IR field historically dealt with 
cataloging, processing, and accessing text in the form of documents for decades, in 
today’s world the use of Web search engines is becoming the dominant way to find 
information. The traditional problems of text indexing and making collections of 
documents searchable have been transformed by making the Web itself into a 
quickly accessible repository of human knowledge or a virtual digital library.

An IR system can be characterized at different levels: by types of users, types of data, 
and the types of the information need, along with the size and scale of the informa-
tion repository it addresses. Different IR systems are designed to address specific 
problems that require a combination of different characteristics. These characteris-
tics can be briefly described as follows:

Types of Users. Users can greatly vary in their abilities to interact with compu-
tational systems. This ability depends on a multitude of factors, such as educa-
tion, culture, and past exposure to computational environments. The user may 
be an expert user (for example, a curator or a librarian) who is searching for 
specific information that is clear in his/her mind, understands the scope and 
the structure of the available repository, and forms relevant queries for the task, 
or a layperson user with a generic information need. The latter cannot create 
highly relevant queries for search (for example, students trying to find infor-
mation about a new topic, researchers trying to assimilate different points of 

2See Salton’s 1968 book entitled Automatic Information Organization and Retrieval.
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view about a historical issue, a scientist verifying a claim by another scientist, or 
a person trying to shop for clothing). Designing systems suitable for different 
types of users is an important topic of IR that is typically studied in a field 
known as Human-Computer Information Retrieval.

Types of Data. Search systems can be tailored to specific types of data. For exam-
ple, the problem of retrieving information about a specific topic may be handled 
more efficiently by customized search systems that are built to collect and retrieve 
only information related to that specific topic. The information repository could 
be hierarchically organized based on a concept or topic hierarchy. These topical 
domain-specific or vertical IR systems are not as large as or as diverse as the generic 
World Wide Web, which contains information on all kinds of topics. Given that 
these domain-specific collections exist and may have been acquired through a 
specific process, they can be exploited much more efficiently by a specialized sys-
tem. Types of data can have different dimensions, such as velocity, variety, vol-
ume, and veracity. We discussed these in Section 25.1.

Types of Information Need. In the context of Web search, users’ information 
needs may be defined as navigational, informational, or transactional.3 Naviga-
tional search refers to finding a particular piece of information (such as the 
Georgia Tech University Web site) that a user needs quickly. The purpose of 
informational search is to find current information about a topic (such as 
research activities in the college of computing at Georgia Tech—this is the clas-
sic IR system task). The goal of transactional search is to reach a site where 
further interaction happens resulting in some transactional event (such as join-
ing a social network, shopping for products, making online reservations, 
accessing databases, and so on).

Levels of Scale. In the words of Nobel Laureate Herbert Simon,

“What information consumes is rather obvious: it consumes the attention of its 
recipients. Hence a wealth of information creates a poverty of attention, and a 
need to allocate that attention efficiently among the overabundance of informa-
tion sources that might consume it.” 4

This overabundance of information sources in effect creates a high noise-to-signal 
ratio in IR systems. Especially on the Web, where billions of pages are indexed, IR 
interfaces are built with efficient scalable algorithms for distributed searching, index-
ing, caching, merging, and fault tolerance. IR search engines can be limited in level 
to more specific collections of documents. Enterprise search systems offer IR solu-
tions for searching different entities in an enterprise’s intranet, which consists of the 
network of computers within that enterprise. The searchable entities include e-mails, 
corporate documents, manuals, charts, and presentations, as well as reports related 
to people, meetings, and projects. Enterprise search systems still typically deal with 
hundreds of millions of entities in large global enterprises. On a smaller scale, there 
are personal information systems such as those on desktops and laptops, called 

3See Broder (2002) for details.
4From Herbert A. Simon (1971), “Designing Organizations for an Information-Rich World.”
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desktop search engines (for example, Google Desktop, OS X Spotlight), for retriev-
ing files, folders, and different kinds of entities stored on the computer. There are 
other systems that use peer-to-peer technology, such as the BitTorrent protocol, 
which allows sharing of music in the form of audio files, as well as specialized search 
engines for audio, such as Lycos and Yahoo! audio search.

27.1.2 Databases and IR Systems: A Comparison
Within the computer science discipline, databases and IR systems are closely related 
fields. Databases deal with structured information retrieval through well-defined 
formal languages for representation and manipulation based on the theoretically 
founded data models. Efficient algorithms have been developed for operators that 
allow rapid execution of complex queries. IR, on the other hand, deals with unstruc-
tured search with possibly vague query or search semantics and without a well-
defined logical schematic representation. Some of the key differences between 
databases and IR systems are listed in Table 27.1.

Whereas databases have fixed schemas defined in some data model such as the rela-
tional model, an IR system has no fixed data model; it views data or documents 
according to some scheme, such as the vector space model, to aid in query process-
ing (see Section 27.2). Databases using the relational model employ SQL for queries 
and transactions. The queries are mapped into relational algebra operations and 
search algorithms (see Chapter 19) and return a new relation (table) as the query 
result, providing an exact answer to the query for the current state of the database. 
In IR systems, there is no fixed language for defining the structure (schema) of the 
document or for operating on the document—queries tend to be a set of query 
terms (keywords) or a free-form natural language phrase. An IR query result is a list 
of document id’s, or some pieces of text or multimedia objects (images, videos, and 
so on), or a list of links to Web pages.

The result of a database query is an exact answer; if no matching records (tuples) 
are found in the relation, the result is empty (null). On the other hand, the answer 

Table 27.1 A Comparison of Databases and IR Systems

Databases IR Systems

 ■ Structured data  ■ Unstructured data

 ■ Schema driven
 ■ Relational (or object, hierarchical, and  

network) model is predominant
 ■ Structured query model

 ■ No fixed schema; various data models  
(e.g., vector space model)

 ■ Free-form query models
 ■ Rich data operations

 ■ Rich metadata operations
 ■ Query returns data

 ■ Search request returns list or pointers to  
documents

 ■ Results are based on exact matching (always 
correct)

 ■ Results are based on approximate matching  
and measures of effectiveness (may be  
imprecise and ranked)
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to a user request in an IR query represents the IR system’s best attempt at retrieving 
the information most relevant to that query. Whereas database systems maintain a 
large amount of metadata and allow their use in query optimization, the operations 
in IR systems rely on the data values themselves and their occurrence frequencies. 
Complex statistical analysis is sometimes performed to determine the relevance of 
each document or parts of a document to the user request.

27.1.3 A Brief History of IR
Information retrieval has been a common task since the times of ancient civiliza-
tions, which devised ways to organize, store, and catalog documents and records. 
Media such as papyrus scrolls and stone tablets were used to record documented 
information in ancient times. These efforts allowed knowledge to be retained and 
transferred among generations. With the emergence of public libraries and the 
printing press, large-scale methods for producing, collecting, archiving, and dis-
tributing documents and books evolved. As computers and automatic storage sys-
tems emerged, the need to apply these methods to computerized systems arose. 
Several techniques emerged in the 1950s, such as the seminal work of H. P. Luhn,5 

who proposed using words and their frequency counts as indexing units for docu-
ments, and using measures of word overlap between queries and documents as the 
retrieval criterion. It was soon realized that storing large amounts of text was not 
difficult. The harder task was to search for and retrieve that information selectively 
for users with specific information needs. Methods that explored word distribution 
statistics gave rise to the choice of keywords based on their distribution properties6 

and also led to keyword-based weighting schemes.

The earlier experiments with document retrieval systems such as SMART7 in the 1960s 
adopted the inverted file organization based on keywords and their weights as the 
method of indexing (see Section 17.6.4 on inverted indexing). Serial (or sequential) 
organization proved inadequate if queries required fast, near real-time response times. 
Proper organization of these files became an important area of study; document clas-
sification and clustering schemes ensued. The scale of retrieval experiments remained 
a challenge due to lack of availability of large text collections. This soon changed with 
the World Wide Web. Also, the Text Retrieval Conference (TREC) was launched by 
NIST (National Institute of Standards and Technology) in 1992 as a part of the 
 TIPSTER program8 with the goal of providing a platform for evaluating information 
retrieval methodologies and facilitating technology transfer to develop IR products.

A search engine is a practical application of information retrieval to large-scale docu-
ment collections. With significant advances in computers and communications tech-
nologies, people today have interactive access to enormous amounts of user-generated 

5See Luhn (1957) “A statistical approach to mechanized encoding and searching of literary information.”
6See Salton, Yang, and Yu (1975).
7For details, see Buckley et al. (1993).
8For details, see Harman (1992).
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distributed content on the Web. This has spurred the rapid growth in search engine 
technology, where search engines are trying to discover different kinds of real-time 
content found on the Web. The part of a search engine responsible for discovering, 
analyzing, and indexing these new documents is known as a crawler. Other types of 
search engines exist for specific domains of knowledge. For example, the biomedical 
literature search database was started in the 1970s and is now supported by the 
PubMed search engine,9 which gives access to over 24 million abstracts.

Although continuous progress is being made to tailor search results to the needs of 
an end user, the challenge remains in providing high-quality, pertinent, and timely 
information that is precisely aligned to the information needs of individual users.

27.1.4 Modes of Interaction in IR Systems
In the beginning of Section 27.1, we defined information retrieval as the process of 
retrieving documents from a collection in response to a query (or a search request) 
by a user. Typically the collection is made up of documents containing unstruc-
tured data. Other kinds of documents include images, audio recordings, video 
strips, and maps. Data may be scattered nonuniformly in these documents with no 
definitive structure. A query is a set of terms (also referred to as keywords) used by 
the searcher to specify an information need (for example, the terms databases and 
operating systems may be regarded as a query to a computer science bibliographic 
database). An informational request or a search query may also be a natural lan-
guage phrase or a question (for example, “What is the currency of China?” or “Find 
Italian restaurants in Sarasota, Florida.”).

There are two main modes of interaction with IR systems—retrieval and brows-
ing—which, although similar in goal, are accomplished through different interac-
tion tasks. Retrieval is concerned with the extraction of relevant information from 
a repository of documents through an IR query, whereas browsing signifies the 
exploratory activity of a user visiting or navigating through similar or related docu-
ments based on the user’s assessment of relevance. During browsing, a user’s infor-
mation need may not be defined a priori and is flexible. Consider the following 
browsing scenario: A user specifies ‘Atlanta’ as a keyword. The information retrieval 
system retrieves links to relevant result documents containing various aspects of 
Atlanta for the user. The user comes across the term ‘Georgia Tech’ in one of the 
returned documents and uses some access technique (such as clicking on the phrase 
‘Georgia Tech’ in a document that has a built-in link) and visits documents about 
Georgia Tech in the same or a different Web site (repository). There the user finds 
an entry for ‘Athletics’ that leads the user to information about various athletic pro-
grams at Georgia Tech. Eventually, the user ends his search at the Fall schedule for 
the Yellow Jackets football team, which he finds to be of great interest. This user 
activity is known as browsing. Hyperlinks are used to interconnect Web pages and 
are mainly used for browsing. Anchor texts are text phrases within documents used 
to label hyperlinks and are very relevant to browsing.

9See www.ncbi.nlm.nih.gov/pubmed/
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Web search combines both aspects—browsing and retrieval—and is one of the 
main applications of information retrieval today. Web pages are analogous to docu-
ments. Web search engines maintain an indexed repository of Web pages, usually 
using the technique of inverted indexing (see Section 27.5). They retrieve the most 
relevant Web pages for the user in response to the user’s search request with a pos-
sible ranking in descending order of relevance. The rank of a Web page in a 
retrieved set is the measure of its relevance to the query that generated the result set.

27.1.5 Generic IR Pipeline
As we mentioned earlier, documents are made up of unstructured natural language 
text composed of character strings from English and other languages. Common 
examples of documents include newswire services (such as AP or Reuters), corporate 
manuals and reports, government notices, Web page articles, blogs, tweets, books, 
and journal papers. There are two main approaches to IR: statistical and semantic.

In a statistical approach, documents are analyzed and broken down into chunks of 
text (words, phrases, or n-grams, which are all subsequences of length n characters 
in a text or document) and each word or phrase is counted, weighted, and mea-
sured for relevance or importance. These words and their properties are then com-
pared with the query terms for potential degree of match to produce a ranked list of 
resulting documents that contain the words. Statistical approaches are further clas-
sified based on the method employed. The three main statistical approaches are 
Boolean, vector space, and probabilistic (see Section 27.2).

Semantic approaches to IR use knowledge-based techniques of retrieval that 
broadly rely on the syntactic, lexical, sentential, discourse-based, and pragmatic 
levels of knowledge understanding. In practice, semantic approaches also apply 
some form of statistical analysis to improve the retrieval process.

Figure 27.1 shows the various stages involved in an IR processing system. The steps 
shown on the left in Figure 27.1 are typically offline processes, which prepare a set of 
documents for efficient retrieval; these are document preprocessing, document 
modeling, and indexing. The right side of Figure 27.1 deals with the process of a user 
interacting with the IR system either during a querying, browsing, or searching. It 
shows the steps involved; namely, query formation, query processing, searching 
mechanism, document retrieval, and relevance feedback, In each box, we highlight 
the important concepts and issues. The rest of this chapter describes some of the 
concepts involved in the various tasks within the IR process shown in Figure 27.1.

Figure 27.2 shows a simplified IR processing pipeline. In order to perform retrieval 
on documents, the documents are first represented in a form suitable for retrieval. 
The significant terms and their properties are extracted from the documents and 
are represented in a document index where the words/terms and their properties 
are stored in a matrix that contains each individual document in a row and each 
row contains the references to the words contained in those documents. This index 
is then converted into an inverted index (see Figure 27.4) of a word/term versus 
document matrix. Given the query words, the documents containing these words—
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and the document properties, such as date of creation, author, and type of docu-
ment—are fetched from the inverted index and compared with the query. This 
comparison results in a ranked list shown to the user. The user can then provide 
feedback on the results that triggers implicit or explicit query modification and 
expansion to fetch results that are more relevant for the user. Most IR systems allow 
for an interactive search in which the query and the results are successively refined.

27.2 Retrieval Models
In this section, we briefly describe the important models of IR. These are the 
three main statistical models—Boolean, vector space, and probabilistic—and the 
semantic model.

Legend: Dashed lines indicate next iteration
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27.2.1 Boolean Model
In this model, documents are represented as a set of terms. Queries are formulated 
as a combination of terms using the standard Boolean logic set-theoretic operators 
such as AND, OR and NOT. Retrieval and relevance are considered as binary con-
cepts in this model, so the retrieved elements are an “exact match” retrieval of rele-
vant documents. There is no notion of ranking of resulting documents. All retrieved 
documents are considered equally important—a major simplification that does not 
consider frequencies of document terms or their proximity to other terms com-
pared against the query terms.

Boolean retrieval models lack sophisticated ranking algorithms and are among the 
earliest and simplest information retrieval models. These models make it easy to 
associate metadata information and write queries that match the contents of the 
documents as well as other properties of documents, such as date of creation, 
author, and type of document.

Documents
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PROCESS

Inverted Index
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Query x

Documents
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Figure 27.2 
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27.2.2 Vector Space Model
The vector space model provides a framework in which term weighting, ranking of 
retrieved documents, and determining the relevance of feedback are possible. 
Using individual terms as dimensions, each document is represented by an 
n-dimensional vector of values. The values themselves may be a Boolean value to 
represent the existence or absence of the term in that document; alternately, they 
may be a number representative of the weight or frequency in the document. 
 Features are a subset of the terms in a set of documents that are deemed most relevant 
to an IR search for this particular set of documents. The process of selecting these 
important terms (features) and their properties as a sparse (limited) list out of the 
very large number of available terms (the vocabulary can contain hundreds of thou-
sands of terms) is independent of the model specification. The query is also speci-
fied as a terms vector (vector of features), and this is compared to the document 
vectors for similarity/relevance assessment.

The similarity assessment function that compares two vectors is not inherent to the 
model—different similarity functions can be used. However, the cosine of the angle 
between the query and document vector is a commonly used function for similarity 
assessment. As the angle between the vectors decreases, the cosine of the angle 
approaches one, meaning that the similarity of the query with a document vector 
increases. Terms (features) are weighted proportional to their frequency counts to 
reflect the importance of terms in the calculation of relevance measure. This is dif-
ferent from the Boolean model, which does not take into account the frequency of 
words in the document for relevance match.

In the vector model, the document term weight wij (for term i in document j) is 
represented based on some variation of the TF (term frequency) or TF-IDF (term 
frequency–inverse document frequency) scheme (as we will describe below). TF-IDF 
is a statistical weight measure that is used to evaluate the importance of a document 
word in a collection of documents. The following formula is typically used:
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In the formula given above, we use the following symbols:

 ■ dj is the document vector for document j.

 ■ q is the query vector.

 ■ wij is the weight of term i in document j.

 ■ wiq is the weight of term i in query vector q.

 ■ |V| is the number of dimensions in the vector that is the total number of 
important keywords (or features).

TF-IDF uses the product of normalized frequency of a term i (TFij) in document 
Dj and the inverse document frequency of the term i (IDFi) to weight a term in a 
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document. The idea is that terms that capture the essence of a document occur 
frequently in the document (that is, their TF is high), but if such a term were to be 
a good term that discriminates the document from others, it must occur in only a 
few documents in the general population (that is, its IDF should be high as well).

IDF values can be easily computed for a fixed collection of documents. In case of 
Web search engines, taking a representative sample of documents approximates 
IDF computation. The following formulas can be used:
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In these formulas, the meaning of the symbols is:

 ■ TFij is the normalized term frequency of term i in document Dj.

 ■ fij is the number of occurrences of term i in document Dj.

 ■ IDFi is the inverse document frequency weight for term i.

 ■ N is the number of documents in the collection.

 ■ ni is the number of documents in which term i occurs.

Note that if a term i occurs in all documents, then ni = N and hence IDFi = log(1) 
becomes zero, nullifying its importance and creating a situation where division by 
zero can occur. The weight of term i in document j, wij, is computed based on its 
TF-IDF value in some techniques. To prevent division by zero, it is common to add 
a 1 to the denominator in the formulae such as the cosine formula above.

Sometimes, the relevance of the document with respect to a query (rel(Dj,Q)) is 
directly measured as the sum of the TF-IDF values of the terms in the query Q:

rel( , )D Q TF IDFj i Q ij i= ×∈∑
The normalization factor (similar to the denominator of the cosine formula) is 
incorporated into the TF-IDF formula itself, thereby measuring relevance of a doc-
ument to the query by the computation of the dot product of the query and docu-
ment vectors.

The Rocchio10 algorithm is a well-known relevance feedback algorithm based on 
the vector space model that modifies the initial query vector and its weights in 
response to user-identified relevant documents. It expands the original query vec-
tor q to a new vector qe as follows:
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10See Rocchio (1971).
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Here, Dr stands for document–relevant (Dr) and Dnr stands for document–nonrelevant 
(Dnr); these terms represent relevant and nonrelevant document sets, respectively. 
Terms from relevant and nonrelevant documents get added to the original query 
vector with positive and negative weights, respectively, to create the modified query 
vector. a, b, and g are parameters of the equation. The summation over dr repre-
sents summation over all relevant terms of document dr. Similarly, summation over 
dnr represents summation over all nonrelevant terms of document dnr. The values 
of these parameters determine how the feedback affects the original query, and 
these may be determined after a number of trial-and-error experiments.

27.2.3 Probabilistic Model
The similarity measures in the vector space model are somewhat ad hoc. For exam-
ple, the model assumes that those documents closer to the query in cosine space are 
more relevant to the query vector. In the probabilistic model, a more concrete and 
definitive approach is taken: ranking documents by their estimated probability of 
relevance with respect to the query and the document. This is the basis of the prob-
ability ranking principle developed by Robertson.11

In the probabilistic framework, the IR system must decide whether the documents 
belong to the relevant set or the nonrelevant set for a query. To make this decision, it 
is assumed that a predefined relevant set and nonrelevant set exist for the query, and 
the task is to calculate the probability that the document belongs to the relevant set and 
compare that with the probability that the document belongs to the nonrelevant set.

Given the document representation D of a document, estimating the relevance R 
and nonrelevance NR of that document involves computation of conditional prob-
ability P(R|D) and P(NR|D). These conditional probabilities can be calculated using 
Bayes’ rule:12

P(R|D) = P(D|R) × P(R)/P(D)
P(NR|D) = P(D|NR) × P(NR)/P(D)

A document D is classified as relevant if P(R|D) > P(NR|D). Discarding the constant 
P(D), this is equivalent to saying that a document is relevant if:

P(D|R) × P(R) > P(D|NR) × P(NR)

The likelihood ratio P(D|R)/P(D|NR) is used as a score to determine the likelihood 
of the document with representation D belonging to the relevant set.

The term independence or naïve Bayes assumption is used to estimate P(D|R) using 
computation of P(ti|R) for term ti. The likelihood ratios P(D|R)/P(D|NR) of documents 
are used as a proxy for ranking based on the assumption that highly ranked documents 
will have a high likelihood of belonging to the relevant set.13

12Bayes’ theorem is a standard technique for measuring likelihood; see Howson and Urbach (1993), 
for example.

11For a description of the Cheshire II system, see Robertson (1997).

13Readers should refer to Croft et al. (2009) pages 246–247 for a detailed description.
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With some reasonable assumptions and estimates about the probabilistic model 
along with extensions for incorporating query term weights and document term 
weights in the model, a probabilistic ranking algorithm called BM25 (Best Match 
25) is quite popular. This weighting scheme has evolved from several versions of 
the Okapi14 system.

The Okapi weight for document dj and query q is computed by the formula below. 
Additional notations are as follows:

 ■ ti is a term.

 ■ fij is the raw frequency count of term ti in document dj.

 ■ fiq is the raw frequency count of term ti in query q.

 ■ N is the total number of documents in the collection.

 ■ dfi is the number of documents that contain the term ti.

 ■ dlj is the document length (in bytes) of dj.

 ■ avdl is the average document length of the collection.

The Okapi relevance score of a document dj for a query q is given by the equa-
tion below, where k1 (between 1.0–2.0), b (usually 0.75), and k2 (between 1–1,000) 
are parameters:
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27.2.4 Semantic Model
However sophisticated the above statistical models become, they can miss many 
relevant documents because those models do not capture the complete meaning or 
information need conveyed by a user’s query. In semantic models, the process of 
matching documents to a given query is based on concept level and semantic 
matching instead of index term (keyword) matching. This allows retrieval of rele-
vant documents that share meaningful associations with other documents in the 
query result, even when these associations are not inherently observed or statisti-
cally captured.

Semantic approaches include different levels of analysis, such as morphological, 
syntactic, and semantic analysis, to retrieve documents more effectively. In 
 morphological analysis, roots and affixes are analyzed to determine the parts of 
speech (nouns, verbs, adjectives, and so on) of the words. Following morphological 
analysis, syntactic analysis follows to parse and analyze complete phrases in docu-
ments. Finally, the semantic methods have to resolve word ambiguities and/or 
 generate relevant synonyms based on the semantic relationships among levels of 
structural entities in documents (words, paragraphs, pages, or entire documents).

14City University of London Okapi System by Robertson, Walker, and Hancock-Beaulieu (1995).
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The development of a sophisticated semantic system requires complex knowledge 
bases of semantic information as well as retrieval heuristics. These systems often 
require techniques from artificial intelligence and expert systems. Knowledge bases 
like Cyc15 and WordNet16 have been developed for use in knowledge-based IR sys-
tems based on semantic models. The Cyc knowledge base, for example, is a repre-
sentation of a vast quantity of commonsense knowledge. It presently contains 15.94 
million assertions, 498,271 atomic concepts, and 441,159 nonatomic derived con-
cepts for reasoning about the objects and events of everyday life. WordNet is an 
extensive thesaurus (over 117,000 concepts) that is very popular and is used by 
many systems and is under continuous development (see Section 27.4.3).

27.3 Types of Queries in IR Systems
Different keywords are associated with the document set during the process of 
indexing. These keywords generally consist of words, phrases, and other character-
izations of documents such as date created, author names, and type of document. 
They are used by an IR system to build an inverted index (see Section 27.5), which 
is then consulted during the search. The queries formulated by users are compared 
to the set of index keywords. Most IR systems also allow the use of Boolean and 
other operators to build a complex query. The query language with these operators 
enriches the expressiveness of a user’s information need.

27.3.1 Keyword Queries
Keyword-based queries are the simplest and most commonly used forms of IR que-
ries: the user just enters keyword combinations to retrieve documents. The query 
keyword terms are implicitly connected by a logical AND operator. A query such as 
‘database concepts’ retrieves documents that contain both the words ‘database’ and 
‘concepts’ at the top of the retrieved results. In addition, most systems also retrieve 
documents that contain only ‘database’ or only ‘concepts’ in their text. Some sys-
tems remove most commonly occurring words (such as a, the, of, and so on, called 
stopwords) as a preprocessing step before sending the filtered query keywords to 
the IR engine. Most IR systems do not pay attention to the ordering of these words 
in the query. All retrieval models provide support for keyword queries.

27.3.2 Boolean Queries
Some IR systems allow using the AND, OR, NOT, ( ), + , and − Boolean operators in 
combinations of keyword formulations. AND requires that both terms be found. 
OR lets either term be found. NOT means any record containing the second term 
will be excluded. ‘( )’ means the Boolean operators can be nested using parentheses. 
‘+’ is equivalent to AND, requiring the term; the ‘+’ should be placed directly in front 

15See Lenat (1995).
16See Miller (1990) for a detailed description of WordNet.
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of the search term. ‘–’ is equivalent to AND NOT and means to exclude the term; 
the ‘–’ should be placed directly in front of the search term not wanted. Complex 
Boolean queries can be built out of these operators and their combinations, and 
they are evaluated according to the classical rules of Boolean algebra. No ranking is 
possible, because a document either satisfies such a query (is “relevant”) or does not 
satisfy it (is “nonrelevant”). A document is retrieved for a Boolean query if the 
query is logically true as an exact match in the document. Users generally do not 
use combinations of these complex Boolean operators, and IR systems support a 
restricted version of these set operators. Boolean retrieval models can directly sup-
port different Boolean operator implementations for these kinds of queries.

27.3.3 Phrase Queries
When documents are represented using an inverted keyword index for searching, 
the relative order of the terms in the document is lost. In order to perform exact 
phrase retrieval, these phrases should be encoded in the inverted index or imple-
mented differently (with relative positions of word occurrences in documents). A 
phrase query consists of a sequence of words that makes up a phrase. The phrase is 
generally enclosed within double quotes. Each retrieved document must contain at 
least one instance of the exact phrase. Phrase searching is a more restricted and spe-
cific version of proximity searching that we mention below. For example, a phrase 
searching query could be ‘conceptual database design’. If phrases are indexed by the 
retrieval model, any retrieval model can be used for these query types. A phrase the-
saurus may also be used in semantic models for fast dictionary searching of phrases.

27.3.4 Proximity Queries
Proximity search refers to a search that accounts for how close within a record mul-
tiple terms should be to each other. The most commonly used proximity search 
option is a phrase search that requires terms to be in the exact order. Other proxim-
ity operators can specify how close terms should be to each other. Some will also 
specify the order of the search terms. Each search engine can define proximity 
operators differently, and the search engines use various operator names such as 
NEAR, ADJ(adjacent), or AFTER. In some cases, a sequence of single words is 
given, together with a maximum allowed distance between them. Vector space 
models that also maintain information about positions and offsets of tokens (words) 
have robust implementations for this query type. However, providing support for 
complex proximity operators becomes computationally expensive because it 
requires the time-consuming preprocessing of documents and is thus suitable for 
smaller document collections rather than for the Web.

27.3.5 Wildcard Queries
Wildcard searching is generally meant to support regular expressions and pattern 
matching–based searching in text. In IR systems, certain kinds of wildcard search sup-
port may be implemented—usually words with any trailing characters (for example, 
‘data*’ would retrieve data, database, datapoint, dataset, and so on). Providing full  support 



 27.4 Text Preprocessing 1037

for wildcard searches in Web search engines involves preprocessing overhead and is 
not generally implemented by many Web search engines today.17 Retrieval models do 
not directly provide support for this query type. Lucene18 provides support for certain 
types of wildcard queries. The query parser in Lucene computes a large Boolean query 
combining all combinations and expansions of words from the index.

27.3.6 Natural Language Queries
There are a few natural language search engines that aim to understand the structure 
and meaning of queries written in natural language text, generally as a question or nar-
rative. This is an active area of research that employs techniques like shallow semantic 
parsing of text, or query reformulations based on natural language understanding. The 
system tries to formulate answers for such queries from retrieved results. Some search 
systems are starting to provide natural language interfaces to provide answers to spe-
cific types of questions, such as definition and factoid questions, which ask for defini-
tions of technical terms or common facts that can be retrieved from specialized 
databases. Such questions are usually easier to answer because there are strong linguis-
tic patterns giving clues to specific types of sentences—for example, ‘defined as’ or 
‘refers to’. Semantic models can provide support for this query type.

27.4 Text Preprocessing
In this section, we review the commonly used text preprocessing techniques that 
are part of the text processing task in Figure 27.1.

27.4.1 Stopword Removal
Stopwords are very commonly used words in a language that play a major role in the 
formation of a sentence but that seldom contribute to the meaning of that sentence. 
Words that are expected to occur in 80% or more of the documents in a collection 
are typically referred to as stopwords, and they are rendered potentially useless. 
Because of the commonness and function of these words, they do not contribute 
much to the relevance of a document for a query search. Examples include words 
such as the, of, to, a, and, in, said, for, that, was, on, he, is, with, at, by, and it. These 
words are presented here with decreasing frequency of occurrence from a large cor-
pus of documents called AP89.19 The fist six of these words account for 20% of all 
words in the listing, and the most frequent 50 words account for 40% of all text.

Removal of stopwords from a document must be performed before indexing. Arti-
cles, prepositions, conjunctions, and some pronouns are generally classified as stop-
words. Queries must also be preprocessed for stopword removal before the actual 
retrieval process. Removal of stopwords results in elimination of possible spurious 

17See http://www.livinginternet.com/w/wu_expert_wild.htm for further details.
18http://lucene.apache.org/
19For details, see Croft et al. (2009), pages 75–90.
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indexes, thereby reducing the size of an index structure by about 40% or more. How-
ever, doing so could impact the recall if the stopword is an integral part of a query 
(for example, a search for the phrase ‘To be or not to be’, where removal of stop-
words makes the query inappropriate, as all the words in the phrase are stopwords). 
Many search engines do not employ query stopword removal for this reason.

27.4.2 Stemming
A stem of a word is defined as the word obtained after trimming the suffix and pre-
fix of an original word. For example, ‘comput’ is the stem word for computer, com-
puting, computable, and computation. These suffixes and prefixes are very common 
in the English language for supporting the notion of verbs, tenses, and plural forms. 
Stemming reduces the different forms of the word formed by inflection (due to 
plurals or tenses) and derivation to a common stem.

A stemming algorithm can be applied to reduce any word to its stem. In English, 
the most famous stemming algorithm is Martin Porter’s stemming algorithm. The 
Porter stemmer20 is a simplified version of Lovin’s technique that uses a reduced set 
of about 60 rules (from 260 suffix patterns in Lovin’s technique) and organizes 
them into sets; conflicts within one subset of rules are resolved before going on to 
the next. Using stemming for preprocessing data results in a decrease in the size of 
the indexing structure and an increase in recall, possibly at the cost of precision.

27.4.3 Utilizing a Thesaurus
A thesaurus comprises a precompiled list of important concepts and the main 
word that describes each concept for a particular domain of knowledge. For each 
concept in this list, a set of synonyms and related words is also compiled.21 Thus, a 
synonym can be converted to its matching concept during preprocessing. This pre-
processing step assists in providing a standard vocabulary for indexing and search-
ing. Usage of a thesaurus, also known as a collection of synonyms, has a substantial 
impact on the recall of information systems. This process can be complicated 
because many words have different meanings in different contexts.

UMLS22 is a large biomedical thesaurus of millions of concepts (called the meta-
thesaurus) and a semantic network of meta concepts and relationships that organize 
the metathesaurus (see Figure 27.3). The concepts are assigned labels from the 
semantic network. This thesaurus of concepts contains synonyms of medical 
terms, hierarchies of broader and narrower terms, and other relationships among 
words and concepts that make it a very extensive resource for information retrieval 
of documents in the medical domain. Figure 27.3 illustrates part of the UMLS 
Semantic Network.

20See Porter (1980).
21See Baeza-Yates and Ribeiro-Neto (1999).
22Unified Medical Language System from the National Library of Medicine.
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WordNet23 is a manually constructed thesaurus that groups words into strict syn-
onym sets called synsets. These synsets are divided into noun, verb, adjective, and 
adverb categories. Within each category, these synsets are linked together by appro-
priate relationships such as class/subclass or “is-a” relationships for nouns.

WordNet is based on the idea of using a controlled vocabulary for indexing, thereby 
eliminating redundancies. It is also useful in providing assistance to users with 
locating terms for proper query formulation.

27.4.4 Other Preprocessing Steps: Digits, Hyphens,  
Punctuation Marks, Cases
Digits, dates, phone numbers, e-mail addresses, URLs, and other standard types of 
text may or may not be removed during preprocessing. Web search engines, how-
ever, index them in order to use this type of information in the document metadata 
to improve precision and recall (see Section 27.6 for detailed definitions of precision 
and recall).
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Figure 27.3 
A portion of the UMLS Semantic Network: “Biologic Function” Hierarchy.
Source: UMLS Reference Manual, National Library of Medicine.

23See Fellbaum (1998) for a detailed description of WordNet.
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Hyphens and punctuation marks may be handled in different ways. Either the 
entire phrase with the hyphens/punctuation marks may be used, or they may be 
eliminated. In some systems, the character representing the hyphen/punctuation 
mark may be removed, or may be replaced with a space. Different information 
retrieval systems follow different rules of processing. Handling hyphens automati-
cally can be complex: it can either be done as a classification problem, or more com-
monly by some heuristic rules. For example, the StandardTokenizer in Lucene24 

treats the hyphen as a delimeter to break words—with the exception that if there is 
a number in the token, the words are not split (for example, words like AK-47, 
phone numbers, etc.). Many domain-specific terms like product catalogs, different 
versions of a product, and so on have hyphens in them. When search engines crawl 
the Web for indexing, it becomes difficult to automatically treat hyphens correctly; 
therefore, simpler strategies are devised to process hyphens.

Most information retrieval systems perform case-insensitive search, converting 
all the letters of the text to uppercase or lowercase. It is also worth noting that 
many of these text preprocessing steps are language specific, such as involving 
accents and diacritics and the idiosyncrasies that are associated with a particular 
language.

27.4.5 Information Extraction
Information extraction (IE) is a generic term used for extracting structured con-
tent from text. Text analytic tasks such as identifying noun phrases, facts, events, 
people, places, and relationships are examples of IE tasks. These tasks are also 
called named entity recognition tasks and use rule-based approaches with either a 
thesaurus, regular expressions and grammars, or probabilistic approaches. For IR 
and search applications, IE technologies are mostly used to identify named entities 
that involve text analysis, matching, and categorization for improving the rele-
vance of search systems. Language technologies using part-of-speech tagging are 
applied to semantically annotate the documents with extracted features to aid 
search relevance.

27.5 Inverted Indexing
The simplest way to search for occurrences of query terms in text collections can be 
performed by sequentially scanning the text. This kind of online searching is only 
appropriate when text collections are small. Most information retrieval systems 
process the text collections to create indexes and operate upon the inverted index 
data structure (refer to the indexing task in Figure 27.1). An inverted index struc-
ture comprises vocabulary and document information. Vocabulary is a set of dis-
tinct query terms in the document set. Each term in a vocabulary set has an 
associated collection of information about the documents that contain the term, 
such as document id, occurrence count, and offsets within the document where the 

24See further details on StandardTokenizer at https://lucene.apache.org/



 27.5 Inverted Indexing 1041

term occurs. The simplest form of vocabulary terms consists of words or individual 
tokens of the documents. In some cases, these vocabulary terms also consist of 
phrases, n-grams, entities, links, names, dates, or manually assigned descriptor 
terms from documents and/or Web pages. For each term in the vocabulary, the cor-
responding document id’s, occurrence locations of the term in each document, 
number of occurrences of the term in each document, and other relevant informa-
tion may be stored in the document information section.

Weights are assigned to document terms to represent an estimate of the usefulness 
of the given term as a descriptor for distinguishing the given document from other 
documents in the same collection. A term may be a better descriptor of one docu-
ment than of another by the weighting process (see Section 27.2).

An inverted index of a document collection is a data structure that attaches distinct 
terms with a list of all documents that contains the term. The process of inverted 
index construction involves the extraction and processing steps shown in Fig-
ure 27.2. Acquired text is first preprocessed and the documents are represented 
with the vocabulary terms. Documents’ statistics are collected in document lookup 
tables. Statistics generally include counts of vocabulary terms in individual docu-
ments as well as different collections, their positions of occurrence within the docu-
ments, and the lengths of the documents. The vocabulary terms are weighted at 
indexing time according to different criteria for collections. For example, in some 
cases terms in the titles of the documents may be weighted more heavily than terms 
that occur in other parts of the documents.

One of the most popular weighting schemes is the TF-IDF (term frequency–inverse 
document frequency) metric that we described in Section 27.2. For a given term, 
this weighting scheme distinguishes to some extent the documents in which the 
term occurs more often from those in which the term occurs very little or never. 
These weights are normalized to account for varying document lengths, further 
ensuring that longer documents with proportionately more occurrences of a word 
are not favored for retrieval over shorter documents with proportionately fewer 
occurrences. These processed document-term streams (matrices) are then inverted 
into term-document streams (matrices) for further IR steps.

Figure 27.4 shows an illustration of term-document-position vectors for the four 
illustrative terms—example, inverted, index, and market—which shows the posi-
tions where each term occurs in the three documents.

The steps involved in inverted index construction can be summarized as follows:

  1. Break the documents into vocabulary terms by tokenizing, cleansing, remov-
ing stopwords, stemming, and/or using an additional thesaurus as vocabulary.

  2. Collect document statistics and store the statistics in a document lookup 
table.

  3. Invert the document-term stream into a term-document stream along with 
additional information such as term frequencies, term positions, and term 
weights.
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Searching for relevant documents from the inverted index, given a set of query 
terms, is generally a three-step process.

  1. Vocabulary search. If the query comprises multiple terms, they are sepa-
rated and treated as independent terms. Each term is searched in the vocab-
ulary. Various data structures, like variations of B+-tree or hashing, may be 
used to optimize the search process. Query terms may also be ordered in 
lexicographic order to improve space efficiency.

  2. Document information retrieval. The document information for each 
term is retrieved.

  3. Manipulation of retrieved information. The document information vector 
for each term obtained in step 2 is now processed further to incorporate 
various forms of query logic. Various kinds of queries like prefix, range, 
context, and proximity queries are processed in this step to construct the 
final result based on the document collections returned in step 2.
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Figure 27.4 
Example of an 
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27.5.1 Introduction to Lucene
Lucene is an actively maintained open source indexing/search engine that has 
become popular in both academic and commercial settings. Indexing is the primary 
focus of Lucene, but it uses indexing to facilitate search. The Lucene library is writ-
ten in Java and comes with out-of-the-box scalable and high-performance capabil-
ity. Lucene is the engine that powers another widely popular enterprise search 
application called Solr.25 Solr provides many add-on capabilities to Lucene, such as 
providing Web interfaces for indexing many different document formats.

An upcoming book by Moczar (2015) discusses both Lucene and Solr.

Indexing: In Lucene, documents must go through a process of indexing before they 
become available for search. A Lucene document is made up of a set of fields. Fields 
hold the type of data in the index and are loosely comparable to columns in a database 
table. A field can be of type binary, numeric, or text data. Text fields consist of either 
entire chunk of untokenized text or a series of processed lexical units called token 
streams. The token streams are created via application of different types of available 
tokenization and filtering algorithms. For example, StandardTokenizer is one of the 
available tokenizers in Lucene that implements Unicode text segmentation for split-
ting words apart. There are other tokenizers, such as a WhitespaceTokenizer, that 
divide text at whitespaces. It is also easy to extend these tokenizers and filters in 
Lucene to create custom text analysis algorithms for tokenization and filtering. These 
analysis algorithms are central to achieving desired search results. Lucene provides 
APIs and several implementations for many high-speed and efficient tokenization 
and filtering algorithms. These algorithms have been extended for several different 
languages and domains, and they feature implementations of natural language pro-
cessing algorithms for stemming, conducting dictionary-driven lemmatization, per-
forming morphological analysis, conducting phonetic analysis, and so on.

Search: With a powerful search API, queries are matched against documents and a 
ranked list of results is retrieved. Queries are compared against the term vectors in 
inverted indexes to compute relevance scores based on the vector space model (see Sec-
tion 27.2.2). Lucene provides a highly configurable search API wherein one can create 
queries for wildcard, exact, Boolean, proximity, and range searches. Lucene’s default 
scoring algorithm uses variants of TF-IDF scoring to rank search results. To speed up 
search, Lucene maintains document-dependent normalization factors precomputed at 
index time; these are called norms of term vectors in document fields. These precom-
puted norms speed up the scoring process in Lucene. The actual query matching algo-
rithms use functions that do very little computation at query matching time.

Applications: One of the reasons for Lucene’s immense popularity is the ease of 
availability of Lucene applications for handling various document collections and 

25See http://lucene.apache.org/solr/
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deployment systems for indexing large unstructured document collections. The 
enterprise search application built on top of Lucene is called Solr. Solr is a Web 
server application that provides support for faceted search (see Section 27.8.1 on 
faceted search), custom format document processing support (such as PDF, HTML, 
etc.), and Web services for several API functions for indexing and search in Lucene.

27.6  Evaluation Measures  
of Search Relevance

Without proper evaluation techniques, one cannot compare and measure the rele-
vance of different retrieval models and IR systems in order to make improvements. 
Evaluation techniques of IR systems measure the topical relevance and user rele-
vance. Topical relevance measures the extent to which the topic of a result matches 
the topic of the query. Mapping one’s information need with “perfect” queries is a 
cognitive task, and many users are not able to effectively form queries that would 
retrieve results more suited to their information need. Also, since a major chunk of 
user queries are informational in nature, there is no fixed set of right answers to 
show to the user. User relevance is a term used to describe the “goodness” of a 
retrieved result with regard to the user’s information need. User relevance includes 
other implicit factors, such as user perception, context, timeliness, the user’s envi-
ronment, and current task needs. Evaluating user relevance may also involve sub-
jective analysis and study of user retrieval tasks to capture some of the properties of 
implicit factors involved in accounting for users’ bias for judging performance.

In Web information retrieval, no binary classification decision is made on whether 
a document is relevant or nonrelevant to a query (whereas the Boolean (or binary) 
retrieval model uses this scheme, as we discussed in Section 27.2.1). Instead, a rank-
ing of the documents is produced for the user. Therefore, some evaluation mea-
sures focus on comparing different rankings produced by IR systems. We discuss 
some of these measures next.

27.6.1 Recall and Precision
Recall and precision metrics are based on the binary relevance assumption (whether 
each document is relevant or nonrelevant to the query). Recall is defined as the num-
ber of relevant documents retrieved by a search divided by the total number of actu-
ally relevant documents existing in the database. Precision is defined as the number 
of relevant documents retrieved by a search divided by the total number of docu-
ments retrieved by that search. Figure 27.5 is a pictorial representation of the terms 
retrieved versus relevant and shows how search results relate to four different sets of 
documents.

The notation for Figure 27.5 is as follows:

 ■ TP: true positive

 ■ FP: false positive
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 ■ FN: false negative

 ■ TN: true negative

The terms true positive, false positive, false negative, and true negative are generally 
used in any type of classification tasks to compare the given classification of an 
item with the desired correct classification. Using the term hits for the documents 
that truly or “correctly” match the user request, we can define recall and precision 
as follows:

Recall = |Hits|/|Relevant|
Precision = |Hits|/|Retrieved|

Recall and precision can also be defined in a ranked retrieval setting. Let us assume 
that there is one document at each rank position. The recall at rank position i for 
document di

q (denoted by r(i)) (di
q is the retrieved document at position i for 

query q) is the fraction of relevant documents from d1
q to di

q in the result set for 
the query. Let the set of relevant documents from d1

q to di
q in that set be Si with 

cardinality | Si |. Let (|Dq| be the size of relevant documents for the query. In this 
case,|Si | ≤ |Dq|). Then:

Ranked retrieval_recall: r(i) = |Si |/|Dq|

The precision at rank position i or document di
q (denoted by p(i)) is the fraction of 

documents from d1
q to di

q in the result set that are relevant:

Ranked_retrieval_precision: p(i) = |Si |/i

Table 27.2 illustrates the p(i), r(i), and average precision (discussed in the next sec-
tion) metrics. It can be seen that recall can be increased by presenting more results 
to the user, but this approach runs the risk of decreasing the precision. In the exam-
ple, the number of relevant documents for some query = 10. The rank position and 
the relevance of an individual document are shown. The precision and recall value 
can be computed at each position within the ranked list as shown in the last two 
columns. As we see in Table 27.2, the ranked_retrieval_recall rises monotonically 
whereas the precision is prone to fluctuation.
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Figure 27.5 
Retrieved versus relevant 
search results.
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27.6.2 Average Precision
Average precision is computed based on the precision at each relevant document in 
the ranking. This measure is useful for computing a single precision value to com-
pare different retrieval algorithms on a query q.

P p i D
d D q

i

q

q
avg = ∈∑ ( ) | |

Consider the sample precision values of relevant documents in Table 27.2. The 
average precision (Pavg value) for the example in Table 27.2 is P(1) + P(2) + P(3) + 
P(7) + P(8) + P(10)/6 = 79.93% (only relevant documents are considered in this 
calculation). Many good algorithms tend to have high top-k average precision for 
small values of k, with correspondingly low values of recall.

27.6.3 Recall/Precision Curve
A recall/precision curve can be drawn based on the recall and precision values at 
each rank position, where the x-axis is the recall and the y-axis is the precision. 
Instead of using the precision and recall at each rank position, the curve is com-
monly plotted using recall levels r(i) at 0%, 10%, 20% … 100%. The curve usually 
has a negative slope, reflecting the inverse relationship between precision and recall.

27.6.4 F-Score
F-score (F) is the harmonic mean of the precision (p) and recall (r) values. That is,

p r
+

=
2

1 1

F
1

Table 27.2 Precision and Recall for Ranked Retrieval

Doc. No. Rank Position i Relevant Precision(i) Recall(i)

10 1 Yes 1/1 = 100% 1/10 = 10%

2 2 Yes 2/2 = 100% 2/10 = 20%

3 3 Yes 3/3 = 100% 3/10 = 30%

5 4 No 3/4 = 75% 3/10 = 30%

17 5 No 3/5 = 60% 3/10 = 30%

34 6 No 3/6 = 50% 3/10 = 30%

215 7 Yes 4/7 = 57.1% 4/10 = 40%

33 8 Yes 5/8 = 62.5% 5/10 = 50%

45 9 No 5/9 = 55.5% 5/10 = 50%

16 10 Yes 6/10 = 60% 6/10 = 60%



 27.7 Web Search and Analysis 1047

High precision is achieved almost always at the expense of recall and vice versa. It is 
a matter of the application’s context whether to tune the system for high precision 
or high recall. F-score is typically used as a single measure that combines precision 
and recall to compare different result sets:

F
pr

p r
=

+
2

One of the properties of harmonic mean is that the harmonic mean of two numbers 
tends to be closer to the smaller of the two. Thus F is automatically biased toward 
the smaller of the precision and recall values. Therefore, for a high F-score, both 
precision and recall must be high.

F

p r

=
+

2
1 1

27.7 Web Search and Analysis26

The emergence of the Web has brought millions of users to search for information, 
which is stored in a very large number of active sites. To make this information 
accessible, search engines such as Google, bing and Yahoo! must crawl and index 
these sites and document collections in their index databases. Moreover, search 
engines must regularly update their indexes given the dynamic nature of the Web 
as new Web sites are created and current ones are updated or deleted. Since there 
are many millions of pages available on the Web on different topics, search engines 
must apply many sophisticated techniques such as link analysis to identify the 
importance of pages.

There are other types of search engines besides the ones that regularly crawl the 
Web and create automatic indexes: these are human-powered, vertical search 
engines or metasearch engines. These search engines are developed with the help of 
computer-assisted systems to aid the curators with the process of assigning indexes. 
They consist of manually created specialized Web directories that are hierarchically 
organized indexes to guide user navigation to different resources on the Web. Vertical 
search engines are customized topic-specific search engines that crawl and index a 
specific collection of documents on the Web and provide search results from that 
specific collection. Metasearch engines are built on top of search engines: they 
query different search engines simultaneously and aggregate and provide search 
results from these sources.

Another source of searchable Web documents is digital libraries. Digital libraries 
can be broadly defined as collections of electronic resources and services for the 
delivery of materials in a variety of formats. These collections may include a univer-
sity’s library catalog, catalogs from a group of participating universities, as in the 

26The contribution of Pranesh P. Ranganathan and Hari P. Kumar to this section is appreciated.
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State of Florida University System, or a compilation of multiple external resources 
on the World Wide Web, such as Google Scholar or the IEEE/ACM index. These 
interfaces provide universal access to different types of content—such as books, 
articles, audio, and video—situated in different database systems and remote repos-
itories. Similar to real libraries, these digital collections are maintained via a catalog 
and organized in categories for online reference. Digital libraries “include personal, 
distributed, and centralized collections such as online public-access catalogs 
(OPACs) and bibliographic databases, distributed document databases, scholarly 
and professional discussion lists and electronic journals, other online databases, 
forums, and bulletin boards.”27

27.7.1  Web Analysis and Its Relationship  
to Information Retrieval

In addition to browsing and searching the Web, another important activity closely 
related to information retrieval is to analyze or mine information on the Web for 
new information of interest. (We discuss mining of data from files and databases 
in Chapter 28.) Application of data analysis techniques for discovery and analysis 
of useful information from the Web is known as Web analysis. Over the past few 
years, the World Wide Web has emerged as an important repository of informa-
tion for many day-to-day applications for individual consumers, as well as a sig-
nificant platform for e-commerce and for social networking. These properties 
make it an interesting target for data analysis applications. The Web mining and 
analysis field is an integration of a wide range of fields spanning information 
retrieval, text analysis, natural language processing, data mining, machine learn-
ing, and statistical analysis.

The goals of Web analysis are to improve and personalize search results relevance 
and to identify trends that may be of value to various businesses and organizations. 
We elaborate on these goals next.

 ■ Finding relevant information. People usually search for specific informa-
tion on the Web by entering keywords in a search engine or browsing infor-
mation portals and using services. Search services are heavily constrained by 
search relevance problems since search engines must map and approximate 
the information need of millions of users as an a priori task. Low precision 
(see Section 27.6) ensues due to results that are nonrelevant to the user. In 
the case of the Web, high recall (see Section 27.6) is impossible to determine 
due to the inability to index all the pages on the Web. Also, measuring recall 
does not make sense since the user is concerned with only the top few docu-
ments. The most relevant results for the user are typically from only the top 
few results.

 ■ Personalization of the information. Different people have different con-
tent and presentation preferences. Various customization tools used in 

27Covi and Kling (1996), page 672.
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Web-based applications and services (such as click-through monitoring, 
eyeball tracking, explicit or implicit user profile learning, and dynamic ser-
vice composition using Web APIs) are used for service adaptation and per-
sonalization. A personalization engine typically has algorithms that make 
use of the user’s personalization information—collected by various tools—
to generate user-specific search results. The Web has become a rich land-
scape where people leave traces as they navigate, click, like, comment, and 
buy things in this virtual space. This information is of high commercial 
value, and many companies in all kinds of consumer goods mine and sell 
this information for customer targeting.

 ■ Finding information of social value. With more than 1 billion downloads 
of the Facebook app on various Android devices, one can imagine how pop-
ular the various social networks have become in recent times. People build 
what is called social capital in these virtual worlds such as Twitter and Face-
book. Social capital refers to features of social organizations, such as net-
works, norms, and social trust, that facilitate coordination and cooperation 
for mutual benefit. Social scientists are studying social capital and how to 
harness this rich resource to benefit society in various ways. We briefly 
touch upon aspects of social search in Section 27.8.2.

Web analysis can be further classified into three categories: Web structure  analysis, 
which discovers knowledge from hyperlinks that represent the structure of the Web; 
Web content analysis, which deals with extracting useful information/knowledge 
from Web page contents; and Web usage analysis, which mines user access patterns 
from usage logs that record the activity of every user.

27.7.2 Web Structure Analysis
The World Wide Web is a huge corpus of information, but locating resources that 
are both high quality and relevant to the needs of the user is very difficult. The set of 
Web pages taken as a whole has almost no unifying structure, with variability in 
authoring style and content; this variability makes it difficult to precisely locate 
needed information. Index-based search engines have been one of the primary 
tools by which users search for information on the Web. Web search engines crawl 
the Web and create an index to the Web for searching purposes. When a user spec-
ifies her need for information by supplying keywords, these Web search engines 
query their repository of indexes and produce links or URLs with abbreviated con-
tent as search results. There may be thousands of pages relevant to a particular 
query. A problem arises when only a few most relevant results are returned to the 
user. Our discussions of querying and relevance-based ranking in IR systems in (see 
Sections 27.2 and 27.3) is applicable to Web search engines. These ranking algo-
rithms explore the link structure of the Web.

Web pages, unlike standard text collections, contain connections to other Web 
pages or documents (via the use of hyperlinks), allowing users to browse from page 
to page. A hyperlink has two components: a destination page and an anchor text 
that describes the link. For example, a person can link to the Yahoo Web site on her 
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Web page with anchor text such as “My favorite Web site.” Anchor texts can be 
thought of as being implicit endorsements. They provide important latent human 
annotation. A person linking to other Web pages from her Web page is assumed to 
have some relation to those Web pages. Web search engines aim to distill results 
per their relevance and authority. There are many redundant hyperlinks, like the 
links to the homepage on every Web page of the Web site. Such hyperlinks must be 
eliminated from the search results by the search engines.

A hub is a Web page or a Web site that links to a collection of prominent sites 
(authorities) on a common topic. A good authority is a page that is pointed to by 
many good hubs, whereas a good hub is a page that points to many good authori-
ties. These ideas are used by the HITS ranking algorithm. We briefly discuss a cou-
ple of ranking algorithms in the next section.

27.7.3 Analyzing the Link Structure of Web Pages
The goal of Web structure analysis is to generate a structural representation about 
the Web site and Web pages. Web structure analysis focuses on the inner structure 
of documents and deals with the link structure using hyperlinks at the interdocu-
ment level. The structure and content of Web pages are often combined for infor-
mation retrieval by Web search engines. Given a collection of interconnected Web 
documents, interesting and informative facts describing their connectivity in the 
Web subset can be discovered. Web structure analysis is also used to help with nav-
igation and make it possible to compare/integrate different Web page schemes. 
This aspect of Web structure analysis facilitates Web document classification and 
clustering on the basis of structure.

The PageRank Ranking Algorithm. As discussed earlier, ranking algorithms 
are used to order search results based on relevance and authority. Google uses the 
well-known PageRank algorithm,28 which is based on the “importance” of each 
page. Every Web page has a number of forward links (out-edges) and backlinks (in-
edges). It is very difficult to determine all the backlinks of a Web page, whereas it is 
relatively straightforward to determine its forward links. According to the PageRank 
algorithm, highly linked pages are more important (have greater authority) than 
pages with fewer links. However, not all backlinks are important. A backlink to a 
page from a credible source is more important than a link from some arbitrary 
page. Thus a page has a high rank if the sum of the ranks of its backlinks is high. 
PageRank was an attempt to see how good an approximation of the “importance” 
of a page can be obtained from the link structure.

The computation of page ranking follows an iterative approach. PageRank of a Web 
page is calculated as a sum of the PageRanks of all its backlinks. PageRank treats the 
Web like a Markov model. An imaginary Web surfer visits an infinite string of pages by 
clicking randomly. The PageRank of a page is an estimate of how often the surfer winds 

28The PageRank algorithm was proposed by Lawrence Page (1998) and Sergey Brin, founders of 
Google. For more information, see http://en.wikipedia.org/wiki/PageRank
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up at a particular page. PageRank is a measure of the query-independent importance 
of a page/node. For example, let P(X) be the PageRank of any page X and C(X) be 
the number of outgoing links from page X, and let d be the damping factor in the range 
0 < d < 1. Usually d is set to 0.85. Then PageRank for a page A can be calculated as:

P(A) = (1 − d) + d(P(T1)/C(T1) + P(T2)/C(T2)+… + P(Tn)/C(Tn))

Here T1, T2, … , Tn are the pages that point to Page A (that is, are citations to page A). 
PageRank forms a probability distribution over Web pages, so the sum of all Web 
pages’ PageRanks is one.

The HITS Ranking Algorithm. The HITS29 algorithm proposed by Jon Kleinberg 
is another type of ranking algorithm exploiting the link structure of the Web. The 
algorithm presumes that a good hub is a document that points to many hubs, and a 
good authority is a document that is pointed at by many other authorities. The 
algorithm contains two main steps: a sampling component and a weight-propagation 
component. The sampling component constructs a focused collection S of pages 
with the following properties:

  1. S is relatively small.

  2. S is rich in relevant pages.

  3. S contains most (or a majority) of the strongest authorities.

The weight component recursively calculates the hub and authority values for each 
document as follows:

  1. Initialize hub and authority values for all pages in S by setting them to 1.

  2. While (hub and authority values do not converge):

a. For each page in S, calculate authority value = Sum of hub values of all 
pages pointing to the current page.

b. For each page in S, calculate hub value = Sum of authority values of all 
pages pointed at by the current page.

c. Normalize hub and authority values such that sum of all hub values in S 
equals 1 and the sum of all authority values in S equals 1.

27.7.4 Web Content Analysis
As mentioned earlier, Web content analysis refers to the process of discovering use-
ful information from Web content/data/documents. The Web content data consists 
of unstructured data such as free text from electronically stored documents, semi-
structured data typically found as HTML documents with embedded image data, 
and more structured data such as tabular data and pages in HTML, XML, or other 
markup languages generated as output from databases. More generally, the term 
Web content refers to any real data in the Web page that is intended for the user 
accessing that page. This usually consists of but is not limited to text and graphics.

29See Kleinberg (1999).
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We will first discuss some preliminary Web content analysis tasks and then look at 
the traditional analysis tasks of Web page classification and clustering.

Structured Data Extraction. Structured data on the Web is often very important 
because it represents essential information, such as a structured table showing the 
airline flight schedule between two cities. There are several approaches to struc-
tured data extraction. One includes writing a wrapper, or a program that looks for 
different structural characteristics of the information on the page and extracts the 
right content. Another approach is to manually write an extraction program for 
each Web site based on observed format patterns of the site, which is very labor 
intensive and time consuming. This latter approach does not scale to a large num-
ber of sites. A third approach is wrapper induction or wrapper learning, where the 
user first manually labels a set of training set pages and the learning system gener-
ates rules—based on the learning pages—that are applied to extract target items 
from other Web pages. A fourth approach is the automatic approach, which aims to 
find patterns/grammars from the Web pages and then uses wrapper generation to 
produce a wrapper to extract data automatically.

Web Information Integration. The Web is immense and has billions of docu-
ments, authored by many different persons and organizations. Because of this, Web 
pages that contain similar information may have different syntax and different 
words that describe the same concepts. This creates the need for integrating infor-
mation from diverse Web pages. Two popular approaches for Web information 
integration are:

  1. Web query interface integration, to enable querying multiple Web data-
bases that are not visible in external interfaces and are hidden in the “deep 
Web.” The deep Web30 consists of those pages that do not exist until they 
are created dynamically as the result of a specific database search, which 
produces some of the information in the page (see Chapter 11). Since tradi-
tional search engine crawlers cannot probe and collect information from 
such pages, the deep Web has heretofore been hidden from crawlers.

  2. Schema matching, such as integrating directories and catalogs to come up 
with a global schema for applications. An example of such an application 
would be to match and combine into one record data from various sources 
by cross-linking health records from multiple systems. The result would be 
an individual global health record.

These approaches remain an area of active research, and a detailed discussion of 
them is beyond the scope of this text. Consult the Selected Bibliography at the end 
of this chapter for further details.

Ontology-Based Information Integration. This task involves using ontologies to 
effectively combine information from multiple heterogeneous sources. Ontologies—
formal models of representation with explicitly defined concepts and named 

30The deep Web as defined by Bergman (2001).
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relationships linking them—are used to address the issues of semantic heterogene-
ity in data sources. Different classes of approaches are used for information integra-
tion using ontologies.

 ■ Single ontology approaches use one global ontology that provides a shared 
vocabulary for the specification of the semantics. They work if all informa-
tion sources to be integrated provide nearly the same view on a domain of 
knowledge. For example, UMLS (described in Section 27.4.3) can serve as a 
common ontology for biomedical applications.

 ■ In a multiple ontology approach, each information source is described by 
its own ontology. In principle, the “source ontology” can be a combination 
of several other ontologies, but it cannot be assumed that the different 
“source ontologies” share the same vocabulary. Dealing with multiple, par-
tially overlapping, and potentially conflicting ontologies is a difficult prob-
lem faced by many applications, including those in bioinformatics and other 
complex topics of study.

Building Concept Hierarchies. One common way of organizing search results is 
via a linear ranked list of documents. But for some users and applications, a better 
way to display results would be to create groupings of related documents in the 
search result. One way of organizing documents in a search result, and for organiz-
ing information in general, is by creating a concept hierarchy. The documents in a 
search result are organized into groups in a hierarchical fashion. Other related tech-
niques to organize docments are through classification and clustering (see Chap-
ter 28). Clustering creates groups of documents, where the documents in each 
group share many common concepts.

Segmenting Web Pages and Detecting Noise. There are many superfluous 
parts in a Web document, such as advertisements and navigation panels. The infor-
mation and text in these superfluous parts should be eliminated as noise before 
classifying the documents based on their content. Hence, before applying classifica-
tion or clustering algorithms to a set of documents, the areas or blocks of the docu-
ments that contain noise should be removed.

27.7.5 Approaches to Web Content Analysis
The two main approaches to Web content analysis are (1) agent based (IR view) 
and (2) database based (DB view).

The agent-based approach involves the development of sophisticated artificial 
intelligence systems that can act autonomously or semi-autonomously on 
behalf of a particular user, to discover and process Web-based information. 
Generally, the agent-based Web analysis systems can be placed into the follow-
ing three categories:

 ■ Intelligent Web agents are software agents that search for relevant infor-
mation using characteristics of a particular application domain (and possi-
bly a user profile) to organize and interpret the discovered information. For 
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example, an intelligent agent retrieves product information from a variety of 
vendor sites using only general information about the product domain.

 ■ Information filtering/categorization is another technique that utilizes 
Web agents for categorizing Web documents. These Web agents use meth-
ods from information retrieval, as well as semantic information based on 
the links among various documents, to organize documents into a concept 
hierarchy.

 ■ Personalized Web agents are another type of Web agents that utilize the 
personal preferences of users to organize search results, or to discover infor-
mation and documents that could be of value for a particular user. User 
preferences could be learned from previous user choices, or from other indi-
viduals who are considered to have similar preferences to the user.

The database-based approach aims to infer the structure of the Web site or to 
transform a Web site to organize it as a database so that better information man-
agement and querying on the Web become possible. This approach of Web con-
tent analysis primarily tries to model the data on the Web and integrate it so that 
more sophisticated queries than keyword-based search can be performed. These 
could be achieved by finding the schema of Web documents or building a Web 
document warehouse, a Web knowledge base, or a virtual database. The database-
based approach may use a model such as the Object Exchange Model (OEM),31 

which represents semistructured data by a labeled graph. The data in the OEM is 
viewed as a graph, with objects as the vertices and labels on the edges. Each object 
is identified by an object identifier and a value that is either atomic—such as inte-
ger, string, GIF image, or HTML document—or complex in the form of a set of 
object references.

The main focus of the database-based approach has been with the use of multilevel 
databases and Web query systems. A multilevel database at its lowest level is a 
database containing primitive semistructured information stored in various Web 
repositories, such as hypertext documents. At the higher levels, metadata or gener-
alizations are extracted from lower levels and organized in structured collections 
such as relational or object-oriented databases. In a Web query system, informa-
tion about the content and structure of Web documents is extracted and organized 
using database-like techniques. Query languages similar to SQL can then be used to 
search and query Web documents. These types of queries combine structural que-
ries, based on the organization of hypertext documents, and content-based queries.

27.7.6 Web Usage Analysis
Web usage analysis is the application of data analysis techniques to discover usage 
patterns from Web data, in order to understand and better serve the needs of Web-
based applications. This activity does not directly contribute to information 
retrieval; but it is important for improving and enhancing users’ search experiences. 

31See Kosala and Blockeel (2000).
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Web usage data describes the pattern of usage of Web pages, such as IP addresses, 
page references, and the date and time of accesses for a user, user group, or an 
application. Web usage analysis typically consists of three main phases: preprocess-
ing, pattern discovery, and pattern analysis.

  1. Preprocessing. Preprocessing converts the information collected about 
usage statistics and patterns into a form that can be utilized by the pattern 
discovery methods. For example, we use the term page view to refer to pages 
viewed or visited by a user. There are several different types of preprocessing 
techniques available:

 � Usage preprocessing analyzes the available collected data about usage 
patterns of users, applications, and groups of users. Because this data is 
often incomplete, the process is difficult. Data cleaning techniques are 
necessary to eliminate the impact of irrelevant items in the analysis result. 
Frequently, usage data is identified by an IP address and consists of click-
ing streams that are collected at the server. Better data is available if a 
usage tracking process is installed at the client site.

 � Content preprocessing is the process of converting text, image, scripts, 
and other content into a form that can be used by the usage analysis. 
Often, this process consists of performing content analysis such as classi-
fication or clustering. The clustering or classification techniques can group 
usage information for similar types of Web pages, so that usage patterns 
can be discovered for specific classes of Web pages that describe particular 
topics. Page views can also be classified according to their intended use, 
such as for sales or for discovery or for other uses.

 � Structure preprocessing can be done by parsing and reformatting the 
information about hyperlinks and structure between viewed pages. One 
difficulty is that the site structure may be dynamic and may have to be 
constructed for each server session.

  2. Pattern discovery. The techniques that are used in pattern discovery are based 
on methods from the fields of statistics, machine learning, pattern recognition, 
data analysis, data mining, and other similar areas. These techniques are adapted 
so they take into consideration the specific knowledge and characteristics of 
Web analysis. For example, in association rule discovery (see Section 28.2), the 
notion of a transaction for market-basket analysis considers the items to be 
unordered. But the order of accessing of Web pages is important, and so it 
should be considered in Web usage analysis. Hence, pattern discovery involves 
mining sequences of page views. In general, using Web usage data, the following 
types of data mining activities may be performed for pattern discovery.

 � Statistical analysis. Statistical techniques are the most common method 
of extracting knowledge about visitors to a Web site. By analyzing the ses-
sion log, it is possible to apply statistical measures such as mean, median, 
and frequency count to parameters such as pages viewed, viewing time 
per page, length of navigation paths between pages, and other parameters 
that are relevant to Web usage analysis.
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 � Association rules. In the context of Web usage analysis, association rules 
refer to sets of pages that are accessed together with a support value 
exceeding some specified threshold. (See Section 28.2 on association 
rules.) These pages may not be directly connected to one another via 
hyperlinks. For example, association rule discovery may reveal a correla-
tion between users who visited a page containing electronic products to 
those who visit a page about sporting equipment.

 � Clustering. In the Web usage domain, there are two kinds of interesting 
clusters to be discovered: usage clusters and page clusters. Clustering of 
users tends to establish groups of users exhibiting similar browsing pat-
terns. Such knowledge is especially useful for inferring user demographics 
in order to perform market segmentation in e-commerce applications or 
provide personalized Web content to the users. Clustering of pages is 
based on the content of the pages, and pages with similar contents are 
grouped together. This type of clustering can be utilized in Internet search 
engines and in tools that provide assistance to Web browsing.

 � Classification. In the Web domain, one goal is to develop a profile of 
users belonging to a particular class or category. This requires extraction 
and selection of features that best describe the properties of a given class 
or category of users. For example, an interesting pattern that may 
be   discovered would be: 60% of users who placed an online order in 
/ Product/Books are in the 18–25 age group and live in rented apartments.

 � Sequential patterns. These kinds of patterns identify sequences of Web 
accesses, which may be used to predict the next set of Web pages to be 
accessed by a certain class of users. These patterns can be used by market-
ers to produce targeted advertisements on Web pages. Another type of 
sequential pattern pertains to which items are typically purchased follow-
ing the purchase of a particular item. For example, after purchasing a 
computer, a printer is often purchased.

 � Dependency modeling. Dependency modeling aims to determine and 
model significant dependencies among the various variables in the Web 
domain. For example, one may be interested in building a model that rep-
resents the various stages a visitor undergoes while shopping in an online 
store; this model would be based on user actions (e.g., being a casual visi-
tor versus being a serious potential buyer).

  3. Pattern analysis. The final step is to filter out those rules or patterns that 
are considered to be not of interest based on the discovered patterns. One 
common technique for pattern analysis is to use a query language such as 
SQL to detect various patterns and relationships. Another technique 
involves loading usage data into a data warehouse with ETL tools and per-
forming OLAP operations to view the data along multiple dimensions (see 
Section 29.3). It is common to use visualization techniques, such as graph-
ing patterns or assigning colors to different values, to highlight patterns or 
trends in the data.
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27.7.7 Practical Applications of Web Analysis
Web Analytics. The goal of web analytics is to understand and optimize the per-
formance of Web usage. This requires collecting, analyzing, and monitoring the 
performance of Internet usage data. On-site Web analytics measures the perfor-
mance of a Web site in a commercial context. This data is typically compared 
against key performance indicators to measure effectiveness or performance of the 
Web site as a whole, and it can be used to improve a Web site or improve the mar-
keting strategies.

Web Spamming. It has become increasingly important for companies and indi-
viduals to have their Web sites/Web pages appear in the top search results. To 
achieve this, it is essential to understand search engine ranking algorithms and to 
present the information in one’s page in such a way that the page is ranked high 
when the respective keywords are queried. There is a thin line separating legitimate 
page optimization for business purposes and spamming. Web spamming is thus 
defined as a deliberate activity to promote one’s page by manipulating the results 
returned by the search engines. Web analysis may be used to detect such pages and 
discard them from search results.

Web Security. Web analysis can be used to find interesting usage patterns of Web 
sites. If any flaw in a Web site has been exploited, it can be inferred using Web 
analysis, thereby allowing the design of more robust Web sites. For example, the 
backdoor or information leak of Web servers can be detected by using Web analysis 
techniques on abnormal Web application log data. Security analysis techniques 
such as intrusion detection and denial-of-service attacks are based on Web access 
pattern analysis.

Web Crawlers. These are programs that visit Web pages and create copies of all 
the visited pages so they can be processed by a search engine for indexing the down-
loaded pages and providing fast searches. Another use of crawlers is to automati-
cally check and maintain Web sites. For example, the HTML code and the links in a 
Web site can be checked and validated by the crawler. Another unfortunate use of 
crawlers is to collect e-mail addresses and other personal information from Web 
pages; the information is subsequently used in sending spam e-mails.

27.8 Trends in Information Retrieval
In this section, we review a few concepts that are being considered in recent research 
work in information retrieval.

27.8.1 Faceted Search
Faceted search is a technique that allows for an integrated search and navigation 
experience by allowing users to explore by filtering available information. This 
search technique is often used in ecommerce Web sites and applications and 
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enables users to navigate a multi-dimensional information space. Facets are gener-
ally used for handling three or more dimensions of classification. These multiple 
dimensions of classification allow the faceted classification scheme to classify an 
object in various ways based on different taxonomical criteria. For example, a Web 
page may be classified in various ways: by content (airlines, music, news, etc.); by 
use (sales, information, registration, etc.); by location; by language used (HTML, 
XML, etc.); and in other ways or facets. Hence, the object can be classified in mul-
tiple ways based on multiple taxonomies.

A facet defines properties or characteristics of a class of objects. The properties 
should be mutually exclusive and exhaustive. For example, a collection of art objects 
might be classified using an artist facet (name of artist), an era facet (when the art 
was created), a type facet (painting, sculpture, mural, etc.), a country of origin facet, 
a media facet (oil, watercolor, stone, metal, mixed media, etc.), a collection facet 
(where the art resides), and so on.

Faceted search uses faceted classification, which enables a user to navigate informa-
tion along multiple paths corresponding to different orderings of the facets. This 
contrasts with traditional taxonomies, in which the hierarchy of categories is fixed 
and unchanging. University of California–Berkeley’s Flamenco project32 is one of 
the earlier examples of a faceted search system. Most e-commerce sites today, such 
as Amazon or Expedia, use faceted search in their search interfaces to quickly com-
pare and navigate various aspects related to search criteria.

27.8.2 Social Search
The traditional view of Web navigation and browsing assumes that a single user is 
searching for information. This view contrasts with previous research by library 
scientists who studied users’ information-seeking habits. This research demon-
strated that additional individuals may be valuable information resources during 
information search by a single user. More recently, research indicates that there is 
often direct user cooperation during Web-based information search. Some studies 
report that significant segments of the user population are engaged in explicit col-
laboration on joint search tasks on the Web. Active collaboration by multiple par-
ties also occurs in certain cases (for example, enterprise settings); at other times, 
and perhaps for a majority of searches, users often interact with others remotely, 
asynchronously, and even involuntarily and implicitly.

Socially enabled online information search (social search) is a new phenomenon 
facilitated by recent Web technologies. Collaborative social search involves different 
ways for active involvement in search-related activities such as co-located search, 
remote collaboration on search tasks, use of social network for search, use of expertise 
networks, use of social data mining or collective intelligence to improve the search 
process, and use of social interactions to facilitate information seeking and sense 
making. This social search activity may be done synchronously, asynchronously, 

32Yee (2003) describes faceted metadata for image search.
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co-located, or in remote shared workspaces. Social psychologists have experimen-
tally validated that the act of social discussions has facilitated cognitive performance. 
People in social groups can provide solutions (answers to questions), pointers to 
databases or to other people (meta-knowledge), and validation and legitimization of 
ideas; in addition, social groups can serve as memory aids and can help with problem 
reformulation. Guided participation is a process in which people co-construct 
knowledge in concert with peers in their community. Information seeking is mostly 
a solitary activity on the Web today. Some recent work on collaborative search 
reports several interesting findings and the potential of this technology for better 
information access. It is increasingly common for people to use social networks such 
as Facebook to seek opinions and clarifications on various topics and to read prod-
uct reviews before making a purchase.

27.8.3 Conversational Information Access
Conversational information access is an interactive and collaborative informa-
tion-finding interaction. The participants engage in a natural human-to-human 
conversation, and intelligent agents listen to the conversation in the background 
and perform intent extraction to provide participants with need-specific informa-
tion. Agents use direct or subtle interactions with participants via mobile or wear-
able communication devices. These interactions require technologies like speaker 
identification, keyword spotting, automatic speech recognition, semantic under-
standing of conversations, and discourse analysis as a means of providing users 
with faster and relevant pointers for conversations. Via technologies like those just 
mentioned, information access is transformed from a solitary activity to a partici-
patory activity. In addition, information access becomes more goal specific as 
agents use multiple technologies to gather relevant information and as participants 
provide conversational feedback to agents.

27.8.4 Probabilistic Topic Modeling
The unprecedented growth in information generated with the advent of the Web 
has led to issues concerning how to organize data into categories that will facilitate 
correct and efficient dissemination of information. For example, international news 
agencies like Reuters and the Associated Press gather daily news worldwide per-
taining to business, sports, politics, technology, and so on. It is a tremendous chal-
lenge to organize effectively this plethora of information. Search engines have 
conventionally organized words within and links among documents to make them 
accessible on the Web. Organizing information according to the topics and themes 
of documents allows users to navigate through the vast amount of information 
based on the topics they are interested in.

To address this problem, a class of machine learning algorithms known as 
 probabilistic topic models has emerged in the last decade. These algorithms can 
automatically organize large collections of documents into relevant themes. The 
beauty of these algorithms is that they are totally unsupervised, meaning that they 
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do not need any training sets or human annotations to perform this thematic 
extrapolation. The concept of this class of algorithms is as follows: Every document 
is inherently organized thematically. For example, documents about Barack Obama 
may mention other presidents, other issues related to the government, or a particular 
political theme. An article about one of the Iron Man movies may contain refer-
ences to other sci-fi (science fiction) characters from the Marvel series or generally 
have a sci-fi theme. These inherent structures in documents can be extracted by 
probabilistic modeling and estimation methods. As another example, let us assume 
that every document is made up of a collection of different topics in differing pro-
portions (e.g., a document about politics may also be about presidents and Ameri-
can history). Also, every topic is made up of a collection of words.

By considering Figure 27.6, we can guess that document D, which mentions U.S. 
Presidents Barack Obama and George W. Bush, can belong to the topics Presidents, 
Politics, Democrats, Republicans, and Government. In general, topics share a fixed 
vocabulary of words. This vocabulary of words is extracted from the collection of 
documents for which we wish to train the topic models. We generally choose the 
number of topics we wish to extract from the collection. Every topic ranks words 
differently according to how often a word is represented under a certain topic in 
different documents. In Figure 27.6, the bars representing topic proportions should 
all sum to 1. Document D primarily belongs to the topic Presidents, as shown in the 
bar graph. Figure 27.6 depicts the topics related to Presidents along with the list of 
words associated with this topic.

Probabilistic topic modeling estimates topic distributions using a learning algo-
rithm that assumes that documents can be generated as a mixture of topic propor-
tions. These topic proportion estimates are computed using sampling and 
expectation maximization algorithms. An algorithm called latent Dirichlet alloca-
tion (LDA)33 is used to generate the topic models. The model assumes a generative 
process wherein documents are mixtures of latent topics and topics are distribu-
tions over words. A generative model randomly generates observable data given 
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33See Blei, Ng, and Jordan (2003).
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some hidden parameters. These hidden/unobserved parameters are the Dirichlet 
distribution34 priors for words and topics, topic distributions, and per-topic word dis-
tributions. Bayesian inference methods such as Gibbs sampling35 are used to fit 
the hidden parameters based on the observed data (the words in the documents).

27.8.5 Question Answering Systems
Question answering (QA) has become a hot topic of study due to the surge in vir-
tual assistant technology (e.g., Apple’s Siri and Microsoft’s Cortana). These virtual 
assistant technologies are advancements in interactive voice response (IVR) sys-
tems, which primarily rely on speech recognition techniques such as keyword spot-
ting. Question answering deals with complex understanding of natural language 
queries. Recently, IBM created history by developing the QA system called Watson, 
that participated in the Jeopardy! Challenge36 and defeated human players in the 
popular TV quiz show. Question answering has emerged as a practical engineering 
discipline that comprises techniques such as parsing; named entity recognition 
(NER); focus extraction; answer type extraction; relation extraction; ontological 
inference; and search, indexing, and classification algorithms. Question answering 
techniques also involve knowledge engineering from large unstructured corpora 
such as Web document collections and structured databases that incorporate 
knowledge from various domains. These document collections are generally large 
enough to require application of big data tools and technologies, some of which we 
discussed in Chapter 25. In the following sections, we consider the main concepts 
involved in question answering.

Types of Questions: In question answering systems, it is important to know the 
category or type of question, because answering strategies rely heavily on the type 
of questions. Some of these categories are not always mutually exclusive and hence 
require hybrid answering strategies. Generally, questions can be categorized into 
the following types:

Factoid Questions: This type of question pinpoints the right phrase in a docu-
ment or a database that correctly addresses the question. Examples of this type 
include questions such as, “Who is the president of the United States?”, “In 
which city was Elvis Presley born?”, ‘Where is Hartsfield Jackson International 
Airport located?’, and “At what time will today’s sunset occur?”.

List Questions: This type of question seeks a list of factoid responses that sat-
isfy a given criterion. Examples include “Name three plays that were written by 
Shakespeare”, “Name the male actors who played the role of James Bond in the 
James Bond 007 movie series”, and “List three red-colored vegetables”.

34S. Kotz, N. Balakrishnan, and N. L. Johnson (2000).
35German and German (1984).
36See Ferrucci et al. (2010).
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Definition Questions: This type of question asks about the definition and 
meaning of the concept, and to extract the essential information and properties 
of the concept. Examples include “What is an inert gas ?”, “Who is Alexander 
the Great?”, and “What is the LIBOR rate?”.

Opinion Questions: This type of question seeks different views on a subject 
that the question. For example, “What countries should be allowed to test 
nuclear weapons?” and “What is the sentiment in Saudi Arabia about terrorism 
in the Middle East?”

In recent years, joint initiatives in research and academia have advocated adopting 
common metrics, architectures, tools, and methodologies to create baselines that 
will facilitate and improve the QA technique.

Architectures. Most state-of-the-art QA architectures are generally made up of 
pipelines that comprise the following stages:

Question Analysis: This stage involves analyzing questions and converting 
them to structural representations of analyzed text for processing by down-
stream components. Answer types are extracted from parsed representations of 
questions using some or all of the following techniques: shallow semantic pars-
ing, focus detection, answer type classification, named entity recognition, and 
co-reference resolution.

 � Shallow semantic parsing: The process of assigning surface-level markups to 
sentence structures via supervised machine learning methods. In general, 
frames are automatically instantiated for sentences by trying to match “WHO 
did WHAT to WHOM, WHEN, WHERE, WHY, and HOW” elements.

 � Focus detection: In an image, certain things stand out whereas others 
remain in the background. We say that things that stand out are in focus. 
Similarly, in QA, questions have focus words that contain references to 
answers. For example, in the question “Which book of Shakespeare is a 
tragedy about lovers?”, the focus words “book of Shakespeare” can be 
instantiated with the rule “which X”, where X is a noun phrase in a sen-
tence. QA systems use focus words to trigger directed searches and to aid 
in answer resolution.

 � Answer type classification: This phase helps determine the categories of 
answers in QA. In the preceding example, the headword of the focus words, 
“book”, is the answer type for this question. Several machine learning tech-
niques are applied in QA to determine the answer type of a question.

 � Named entity recognition: Named entity recognition seeks to classify ele-
ments in text into predefined categories, such as person, place, animal, 
country, river, continent.

 � Co-reference resolution: The task of co-reference resolution is about 
identifying multiple expressions in text that refer to the same thing. For 
example, in the sentence “John said that he wanted to go to the theater on 
Sunday.”, the pronoun “he” refers to “John” and is a co-reference in text.
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Query Generation: In this stage, the analyzed text is used to generate multiple 
queries using query normalization and expansion techniques for one or more 
underlying search engines in which the answers may be embedded. For example, 
in the question, “Which book of Shakespeare is about tragedy of lovers?”, the 
expanded queries can be “Shakespeare love story”, “novels of Shakespeare”, “tragic 
love story author Shakespeare”, “love story genre tragedy author Shakespeare”, 
and so on. Extracted keywords, answer types, synonyms information, and named 
entities are generally used in different combinations to create different queries.

Search: In this stage, the queries are sent to different search engines and rele-
vant passages are retrieved. Search engines where searches are performed can 
be online, such as Google or bing, and offline, such as Lucene or Indri.37

Candidate Answer Generation: Named entity extractors are used on retrieved 
passages and matched against desired answer types to come up with candidate 
answers. Depending on the desired granularity of the answer, candidate gen-
eration and answer type matching algorithms are applied (e.g., surface pattern 
matching and structural matching). In surface pattern matching, regular 
expression templates are instantiated with arguments from the question and 
matched against lexical chunks of retrieved passages to extract answers. For 
example, focus words are aligned with passages containing potential answers to 
extract answer candidates. In the sentence, “Romeo and Juliet is a tragic love 
story by Shakespeare”, the phrase “Romeo and Juliet” can simply replace 
“Which book” in the question, “Which book is a tragic love story by Shake-
speare?”. In structural matching, questions and retrieved passages are parsed 
and aligned together using syntactic and semantic alignment to find answer 
candidates. A sentence such as, “Shakespeare wrote the tragic love story Romeo 
and Juliet” cannot be surface matched with the aforementioned question, but 
with correct parsing and alignment will structurally match with the question.

Answer Scoring: In this stage, confidence scores for the candidate answers are 
estimated. Similar answers are merged; knowledge sources can be reused to 
gather supporting evidence for different candidate answers.

27.9 Summary
In this chapter, we covered an important area called information retrieval (IR) that 
is closely related to databases. With the advent of the Web, unstructured data with 
text, images, audio, and video is proliferating at phenomenal rates. Although data-
base management systems have a very good handle on structured data, the unstruc-
tured data containing a variety of data types is being stored mainly on ad hoc 
information repositories on the Web that are available for consumption primarily 
via IR systems. Google, Yahoo, and similar search engines are IR systems that make 
the advances in this field readily available for the average end user and give end 
users a richer and continually improving search experience.

37http://www.lemurproject.org/indri/
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We started in Section 27.1 by first introducing the field of IR in section 27.1.1 and 
comparing IR and database technologies in Section 27.1.2. A brief history of IR was 
presented in Section 27.1.3, and the query and browsing modes of interaction in IR 
systems were introduced in Section 27.1.4.

We presented in Section 27.2 the various retrieval models used in IR, including 
Boolean, vector space, probabilistic, and semantic models. These models allow us to 
measure whether a document is relevant to a user query and provide similarity 
measurement heuristics. In Section 27.3 we presented different types of queries—in 
addition to keyword-based queries, which dominate, there are other types, includ-
ing Boolean, phrase, proximity, natural language, and others for which explicit sup-
port needs to be provided by the retrieval model. Text preprocessing is important in 
IR systems, and we discussed in Section 27.4 various activities like stopword 
removal, stemming, and the use of thesauruses. We then discussed the construction 
and use of inverted indexes in Section 27.5, which are at the core of IR systems and 
contribute to factors involving search efficiency. We then discussed in Section 27.6 
various evaluation metrics, such as recall precision and F-score, to measure the 
goodness of the results of IR queries. The Lucene open source indexing and search 
engine and its extension called Solr was discussed. Relevance feedback was briefly 
addressed—it is important to modify and improve the retrieval of pertinent infor-
mation for the user through his interaction and engagement in the search process.

We provided in Section 27.7 a somewhat detailed introduction to analysis of the Web 
as it relates to information retrieval. We divided this treatment into the analysis of 
content, structure, and usage of the Web. Web search was discussed, including an 
analysis of the Web link structure (Section 27.7.3), including an introduction to algo-
rithms for ranking the results from a Web search such as PageRank and HITS. Finally, 
we briefly discussed current trends, including faceted search, social search, and con-
versational search. We also presented probabilistic modeling of topics of documents 
and a popular technique called latent Dirichlet allocation. We ended the chapter with 
a discussion of question answering systems (Section 27.7.5), which are becoming very 
popular and use tools like Siri from Apple and Cortana from Microsoft.

This chapter provided an introductory treatment of a vast field. The interested 
reader should refer to the end-of-chapter bibliography for specialized texts on 
information retrieval and search engines.

Review Questions
 27.1. What is structured data and what is unstructured data? Give an example of 

each from your experience.

 27.2. Give a general definition of information retrieval (IR). What does informa-
tion retrieval involve when we consider information on the Web?

 27.3. Discuss the types of data and the types of users in today’s information 
retrieval systems.
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 27.4. What is meant by navigational, informational, and transformational search?

 27.5. What are the two main modes of interaction with an IR system? Describe 
and provide examples.

 27.6. Explain the main differences between the database and IR systems men-
tioned in Table 27.1.

 27.7. Describe the main components of the IR system as shown in Figure 27.1.

 27.8. What are digital libraries? What types of data are typically found in them?

 27.9. Name some digital libraries that you have accessed. What do they contain 
and how far back does the data go?

 27.10. Give a brief history of IR and mention the landmark developments in this field.

 27.11. What is the Boolean model of IR? What are its limitations?

 27.12. What is the vector space model of IR? How does a vector get constructed to 
represent a document?

 27.13. Define the TF-IDF scheme of determining the weight of a keyword in a 
document. Why is it necessary to include IDF in the weight of a term?

 27.14. What are probabilistic and semantic models of IR?

 27.15. Define recall and precision in IR systems.

 27.16. Give the definition of precision and recall in a ranked list of results at 
position i.

 27.17. How is an F-score defined as a metric of information retrieval? In what way 
does it account for both precision and recall?

 27.18. What are the different types of queries in an IR system? Describe each with 
an example.

 27.19. What are the approaches to processing phrase and proximity queries?

 27.20. Describe the detailed IR process shown in Figure 27.2.

 27.21. What is stopword removal and stemming? Why are these processes neces-
sary for better information retrieval?

 27.22. What is a thesaurus? How is it beneficial to IR?

 27.23. What is information extraction? What are the different types of information 
extraction from structured text?

 27.24. What are vocabularies in IR systems? What role do they play in the indexing 
of documents?

 27.25. Gather five documents that contain about three sentences each and each 
contain some related content. Construct an inverted index of all important 
stems (keywords) from these documents.
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 27.26. Describe the process of constructing the result of a search request using an 
inverted index.

 27.27. Define relevance feedback.

 27.28. Describe the three types of Web analyses discussed in this chapter.

 27.29. List the important tasks mentioned that are involved in analyzing Web con-
tent. Describe each in a couple of sentences.

 27.30. What are the three categories of agent-based Web content analyses men-
tioned in this chapter?

 27.31. What is the database-based approach to analyzing Web content? What are 
Web query systems?

 27.32. What algorithms are popular in ranking or determining the importance of 
Web pages? Which algorithm was proposed by the founders of Google?

 27.33. What is the basic idea behind the PageRank algorithm?

 27.34. What are hubs and authority pages? How does the HITS algorithm use these 
concepts?

 27.35. What can you learn from Web usage analysis? What data does it generate?

 27.36. What mining operations are commonly performed on Web usage data? 
Give an example of each.

 27.37. What are the applications of Web usage mining?

 27.38. What is search relevance? How is it determined?

 27.39. Define faceted search. Make up a set of facets for a database containing all 
types of buildings. For example, two facets could be “building value or price” 
and “building type (residential, office, warehouse, factory, and so on)”.

 27.40. What is social search? What does collaborative social search involve?

 27.41. Define and explain conversational search.

 27.42. Define topic modeling.

 27.43. How do question answering systems work?

Selected Bibliography
Information retrieval and search technologies are active areas of research and 
development in industry and academia. There are many IR textbooks that provide 
detailed discussion of the materials that we have briefly introduced in this chapter. 
The book entitled Search Engines: Information Retrieval in Practice by Croft, Met-
zler, and Strohman (2009) gives a practical overview of search engine concepts and 
principles. Introduction to Information Retrieval by Manning, Raghavan, and Schu-
tze (2008) is an authoritative book on information retrieval. Another introductory 
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textbook in IR is Modern Information Retrieval by Ricardo Baeza-Yates and Berthier 
Ribeiro-Neto (1999), which provides detailed coverage of various aspects of IR 
technology. Gerald Salton’s (1968) and van Rijsbergen’s (1979) classic books on 
information retrieval provide excellent descriptions of the foundational research 
done in the IR field until the late 1960s. Salton also introduced the vector space 
model as a model of IR. Manning and Schutze (1999) provide a good summary of 
natural language technologies and text preprocessing. “Interactive Information 
Retrieval in Digital Environments” by Xie (2008) provides a good human-centered 
approach to information retrieval. The book Managing Gigabytes by Witten, Mof-
fat, and Bell (1999) provides detailed discussions for indexing techniques. The 
TREC book by Voorhees and Harman (2005) provides a description of test collec-
tion and evaluation procedures in the context of TREC competitions.

Broder (2002) classifies Web queries into three distinct classes—navigational, 
informational, and transactional—and presents a detailed taxonomy of Web search. 
Covi and Kling (1996) give a broad definition of digital libraries and discuss organi-
zational dimensions of effective digital library use. Luhn (1957) did seminal work in 
IR at IBM in the 1950s on autoindexing and business intelligence. The SMART 
system (Salton et al. (1993)), developed at Cornell, was one of the earliest advanced 
IR systems that used fully automatic term indexing, hierarchical clustering, and 
document ranking by degree of similarity to the query. The SMART system repre-
sented documents and queries as weighted term vectors according to the vector 
space model.

Porter (1980) is credited with the weak and strong stemming algorithms that have 
become standards. Robertson (1997) developed a sophisticated weighting scheme 
in the City University of London Okapi system that became very popular in TREC 
competitions. Lenat (1995) started the Cyc project in the 1980s for incorporating 
formal logic and knowledge bases in information processing systems. Efforts 
toward creating the WordNet thesaurus continued in the 1990s and are still ongo-
ing. WordNet concepts and principles are described in the book by Fellbaum 
(1998). Rocchio (1971) describes the relevance feedback algorithm, which is 
described in Salton’s (1971) book on The SMART Retrieval System—Experiments in 
Automatic Document Processing.

Abiteboul, Buneman, and Suciu (1999) provide an extensive discussion of data on 
the Web in their book that emphasizes semistructured data. Atzeni and Mendelzon 
(2000) wrote an editorial in the VLDB journal on databases and the Web. Atzeni et 
al. (2002) propose models and transformations for Web-based data. Abiteboul et al. 
(1997) propose the Lord query language for managing semistructured data.

Chakrabarti (2002) is an excellent book on knowledge discovery from the Web. The 
book by Liu (2006) consists of several parts, each providing a comprehensive over-
view of the concepts involved with Web data analysis and its applications. Excellent 
survey articles on Web analysis include Kosala and Blockeel (2000) and Liu et al. 
(2004). Etzioni (1996) provides a good starting point for understanding Web min-
ing and describes the tasks and issues related to data mining on the World Wide 
Web. An excellent overview of the research issues, techniques, and development 
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efforts associated with Web content and usage analysis is presented by Cooley et al. 
(1997). Cooley (2003) focuses on mining Web usage patterns through the use of 
Web structure. Spiliopoulou (2000) describes Web usage analysis in detail. Web 
mining based on page structure is described in Madria et al. (1999) and Chakraborti 
et al. (1999). Algorithms to compute the rank of a Web page are given by Page et al. 
(1999), who describe the famous PageRank algorithm, and Kleinberg (1998), who 
presents the HITS algorithm.

Harth, Hose, and Schenkel (2014) present techniques for querying and managing 
linked data on the Web and show the potential of these techniques for research and 
commercial applications. Question answering technology is described in some 
detail by Ferrucci et al. (2010), who developed the IBM Watson system. Bikel and 
Zitouni (2012) is a comprehensive guide for developing robust and accurate multi-
lingual NLP (natural language processing) systems. Blei, Ng, and Jordan (2003) 
provide an overview on topic modeling and latent Dirichlet allocation. For an in-
depth, hands-on guide to Lucene and Solr technologies, refer to the upcoming book 
by Moczar (2015).
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28
Data Mining Concepts

Over the last several decades, many organizations 
have generated a large amount of machine-read-

able data in the form of files and databases. Existing database technology can pro-
cess this data and supports query languages like SQL. However, SQL is a structured 
language that assumes the user is aware of the database schema. SQL supports oper-
ations of relational algebra that allow a user to select rows and columns of data from 
tables or join related information from tables based on common fields. In the next 
chapter, we will see that data warehousing technology affords several types of func-
tionality: that of consolidation, aggregation, and summarization of data. Data ware-
houses let us view the same information along multiple dimensions. In this chapter, 
we will focus our attention on another very popular area of interest known as data 
mining. As the term connotes, data mining refers to the mining or discovery of 
new information in terms of patterns or rules from vast amounts of data. To be 
practically useful, data mining must be carried out efficiently on large files and 
databases. Although some data mining features are being provided in RDBMSs, 
data mining is not well-integrated with database management systems. The busi-
ness world is presently fascinated by the potential of data mining, and the field of 
data mining is popularly called business intelligence or data analytics.

We will briefly review the basic concepts and principles of the extensive field of data 
mining, which uses techniques from such areas as machine learning, statistics, neu-
ral networks, and genetic algorithms. We will highlight the nature of the informa-
tion that is discovered, the types of problems faced when trying to mine databases, 
and the applications of data mining. We will also survey the state of the art of a large 
number of commercial data mining tools (see Section 28.7) and describe a number 
of research advances that are needed to make this area viable.

chapter 28
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28.1 Overview of Data Mining Technology
In reports such as the popular Gartner Report,1 data mining has been hailed as one 
of the top technologies for the near future. In this section, we relate data mining to 
the broader area called knowledge discovery and contrast the two by means of an 
illustrative example.

28.1.1 Data Mining versus Data Warehousing
The goal of a data warehouse (see Chapter 29) is to support decision making with 
data. Data mining can be used in conjunction with a data warehouse to help with 
certain types of decisions. Data mining can be applied to operational databases with 
individual transactions. To make data mining more efficient, the data warehouse 
should have an aggregated or summarized collection of data. Data mining helps in 
extracting meaningful new patterns that cannot necessarily be found by merely 
querying or processing data or meta-data in the data warehouse. Therefore, data 
mining applications should be strongly considered early, during the design of a data 
warehouse. Also, data mining tools should be designed to facilitate their use in con-
junction with data warehouses. In fact, for very large databases running into tera-
bytes and even petabytes of data, successful use of data mining applications will 
depend first on the construction of a data warehouse.

28.1.2  Data Mining as a Part of the Knowledge  
Discovery Process

Knowledge discovery in databases, frequently abbreviated as KDD, typically 
encompasses more than data mining. The knowledge discovery process comprises 
six phases:2 data selection, data cleansing, enrichment, data transformation or 
encoding, data mining, and the reporting and display of the discovered information.

As an example, consider a transaction database maintained by a specialty consumer 
goods retailer. Suppose the client data includes a customer name, zip code, phone 
number, date of purchase, item code, price, quantity, and total amount. A variety of 
new knowledge can be discovered by KDD processing on this client database. Dur-
ing data selection, data about specific items or categories of items, or from stores in 
a specific region or area of the country, may be selected. The data cleansing process 
then may correct invalid zip codes or eliminate records with incorrect phone pre-
fixes. Enrichment typically enhances the data with additional sources of informa-
tion. For example, given the client names and phone numbers, the store may 
purchase other data about age, income, and credit rating and append them to each 
record. Data transformation and encoding may be done to reduce the amount of 

1The Gartner Report is one example of the many technology survey publications that corporate 
 managers rely on to discuss and select data mining technology.

2This discussion is largely based on Adriaans and Zantinge (1996).
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data. For instance, item codes may be grouped in terms of product categories into 
audio, video, supplies, electronic gadgets, camera, accessories, and so on. Zip codes 
may be aggregated into geographic regions, incomes may be divided into ranges, 
and so on. In Figure 29.1, we will show a process called extraction, transformation, 
and load (ETL) as a precursor to the data warehouse creation. If data mining is 
based on an existing warehouse for this retail store chain, we would expect that the 
cleaning has already been applied. It is only after such preprocessing that data min-
ing techniques are used to mine different rules and patterns.

The result of mining may be to discover the following types of new information:

 ■ Association rules—for example, whenever a customer buys video equip-
ment, he or she also buys another electronic gadget.

 ■ Sequential patterns—for example, suppose a customer buys a camera, and 
within three months he or she buys photographic supplies, then within six 
months he is likely to buy an accessory item. This defines a sequential pattern 
of transactions. A customer who buys more than twice in lean periods may be 
likely to buy at least once during the December holiday shopping period.

 ■ Classification trees—for example, customers may be classified by frequency 
of visits, types of financing used, amount of purchase, or affinity for types of 
items; some revealing statistics may be generated for such classes.

As this retail store example shows, data mining must be preceded by significant 
data preparation before it can yield useful information that can directly influence 
business decisions.

The results of data mining may be reported in a variety of formats, such as listings, 
graphic outputs, summary tables, and visualizations.

28.1.3 Goals of Data Mining and Knowledge Discovery
Data mining is typically carried out with some end goals or applications. Broadly 
speaking, these goals fall into the following classes: prediction, identification, clas-
sification, and optimization.

 ■ Prediction. Data mining can show how certain attributes within the data 
will behave in the future. Examples of predictive data mining include the 
analysis of buying transactions to predict what consumers will buy under 
certain discounts, how much sales volume a store will generate in a given 
period, and whether deleting a product line will yield more profits. In such 
applications, business logic is used coupled with data mining. In a scientific 
context, certain seismic wave patterns may predict an earthquake with high 
probability.

 ■ Identification. Data patterns can be used to identify the existence of an 
item, an event, or an activity. For example, intruders trying to break a sys-
tem may be identified by the programs executed, files accessed, and CPU 
time per session. In biological applications, existence of a gene may be 
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 identified by certain sequences of nucleotide symbols in the DNA sequence. 
The area known as authentication is a form of identification. It ascertains 
whether a user is indeed a specific user or one from an authorized class, and 
it involves comparing parameters or images or signals against a database.

 ■ Classification. Data mining can partition the data so that different classes or 
categories can be identified based on combinations of parameters. For exam-
ple, customers in a supermarket can be categorized into discount- seeking 
shoppers, shoppers in a rush, loyal regular shoppers, shoppers attached to 
name brands, and infrequent shoppers. This classification may be used in 
different analyses of customer buying transactions as a post–mining activity. 
Sometimes classification based on common domain knowledge is used as an 
input to decompose the mining problem and make it simpler. For instance, 
health foods, party foods, and school lunch foods are distinct categories in 
the supermarket business. It makes sense to analyze relationships within 
and across categories as separate problems. Such categorization may be used 
to encode the data appropriately before subjecting it to further data mining.

 ■ Optimization. One eventual goal of data mining may be to optimize the use 
of limited resources such as time, space, money, or materials and to maxi-
mize output variables such as sales or profits under a given set of constraints. 
As such, this goal of data mining resembles the objective function used in 
operations research problems that deals with optimization under constraints.

The term data mining is popularly used in a broad sense. In some situations, it 
includes statistical analysis and constrained optimization as well as machine learn-
ing. There is no sharp line separating data mining from these disciplines. It is 
beyond our scope, therefore, to discuss in detail the entire range of applications that 
make up this vast body of work. For a detailed understanding of the topic, readers 
are referred to specialized books devoted to data mining.

28.1.4 Types of Knowledge Discovered during Data Mining
The term knowledge is broadly interpreted as involving some degree of intelligence. 
There is a progression from raw data to information to knowledge as we go through 
additional processing. Knowledge is often classified as inductive versus deductive. 
Deductive knowledge deduces new information based on applying prespecified logi-
cal rules of deduction on the given data. Data mining addresses inductive knowledge, 
which discovers new rules and patterns from the supplied data. Knowledge can be 
represented in many forms: In an unstructured sense, it can be represented by rules or 
propositional logic. In a structured form, it may be represented in decision trees, 
semantic networks, neural networks, or hierarchies of classes or frames. It is common 
to describe the knowledge discovered during data mining as follows:

 ■ Association rules. These rules correlate the presence of a set of items with 
another range of values for another set of variables. Examples: (1) When a 
female retail shopper buys a handbag, she is likely to buy shoes. (2) An X-ray 
image containing characteristics a and b is likely to also exhibit characteristic c.
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 ■ Classification hierarchies. The goal is to work from an existing set of events 
or transactions to create a hierarchy of classes. Examples: (1) A population 
may be divided into five ranges of credit worthiness based on a history of 
previous credit transactions. (2) A model may be developed for the factors 
that determine the desirability of a store location on a 1–10 scale. (3) Mutual 
funds may be classified based on performance data using characteristics 
such as growth, income, and stability.

 ■ Sequential patterns. A sequence of actions or events is sought. Example: If 
a patient underwent cardiac bypass surgery for blocked arteries and an 
aneurysm and later developed high blood urea within a year of surgery, he 
or she is likely to suffer from kidney failure within the next 18 months. 
Detecting sequential patterns is equivalent to detecting associations among 
events with certain temporal relationships.

 ■ Patterns within time series. Similarities can be detected within positions of 
a time series of data, which is a sequence of data taken at regular intervals, 
such as daily sales or daily closing stock prices. Examples: (1) Stocks of a 
utility company, ABC Power, and a financial company, XYZ Securities, 
showed the same pattern during 2014 in terms of closing stock prices. (2) Two 
products show the same selling pattern in summer but a different one in 
winter. (3) A pattern in solar magnetic wind may be used to predict changes 
in Earth’s atmospheric conditions.

 ■ Clustering. A given population of events or items can be partitioned (seg-
mented) into sets of “similar” elements. Examples: (1) An entire population 
of treatment data on a disease may be divided into groups based on the sim-
ilarity of side effects produced. (2) The adult population in the United States 
may be categorized into five groups from most likely to buy to least likely to 
buy a new product. (3) The Web accesses made by a collection of users 
against a set of documents (say, in a digital library) may be analyzed in terms 
of the keywords of documents to reveal clusters or categories of users.

For most applications, the desired knowledge is a combination of the above types. 
We expand on each of the above knowledge types in the following sections.

28.2 Association Rules

28.2.1 Market-Basket Model, Support, and Confidence
One of the major technologies in data mining involves the discovery of association 
rules. The database is regarded as a collection of transactions, each involving a set of 
items. A common example is that of market-basket data. Here the market basket 
corresponds to the sets of items a consumer buys in a supermarket during one visit. 
Consider four such transactions in a random sample shown in Figure 28.1.

An association rule is of the form X => Y, where X = {x1, x2, … , xn}, and Y = {y1, y2, 
… , ym} are sets of items, with xi and yj being distinct items for all i and all j. This 
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association states that if a customer buys X, he or she is also likely to buy Y. In general, 
any association rule has the form LHS (left-hand side) => RHS (right-hand side), 
where LHS and RHS are sets of items. The set LHS ∪ RHS is called an itemset, the set 
of items purchased by customers. For an association rule to be of interest to a data 
miner, the rule should satisfy some interest measure. Two common interest measures 
are support and confidence.

The support for a rule LHS => RHS is with respect to the itemset; it refers to how 
frequently a specific itemset occurs in the database. That is, the support is the per-
centage of transactions that contain all of the items in the itemset LHS ∪ RHS. If 
the support is low, it implies that there is no overwhelming evidence that items in 
LHS ∪ RHS occur together because the itemset occurs in only a small fraction of 
transactions. Another term for support is prevalence of the rule.

The confidence is with regard to the implication shown in the rule. The confidence 
of the rule LHS => RHS is computed as the support(LHS ∪ RHS)/support(LHS). 
We can think of it as the probability that the items in RHS will be purchased given 
that the items in LHS are purchased by a customer. Another term for confidence is 
strength of the rule.

As an example of support and confidence, consider the following two rules: milk => 
juice and bread => juice. Looking at our four sample transactions in Figure 28.1, we 
see that the support of {milk, juice} is 50% and the support of {bread, juice} is only 
25%. The confidence of milk => juice is 66.7% (meaning that, of three transactions 
in which milk occurs, two contain juice) and the confidence of bread => juice is 
50% (meaning that one of two transactions containing bread also contains juice).

As we can see, support and confidence do not necessarily go hand in hand. The goal 
of mining association rules, then, is to generate all possible rules that exceed some 
minimum user-specified support and confidence thresholds. The problem is thus 
decomposed into two subproblems:

  1. Generate all itemsets that have a support that exceeds the threshold. These 
sets of items are called large (or frequent) itemsets. Note that large here 
means large support.

  2. For each large itemset, all the rules that have a minimum confidence are 
generated as follows: For a large itemset X and Y ⊂ X, let Z = X − Y; then if 
support(X)/support(Z) > minimum confidence, the rule Z => Y (that is,  
X − Y => Y) is a valid rule.

Generating rules by using all large itemsets and their supports is relatively straight-
forward. However, discovering all large itemsets together with the value for their 

Transaction_id Time Items_bought
101 6:35 milk, bread, cookies, juice
792 7:38 milk, juice

1130 8:05 milk, eggs
1735 8:40 bread, cookies, coffee

Figure 28.1 
Sample transactions in 
market-basket model.
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support is a major problem if the cardinality of the set of items is very high. A typi-
cal supermarket has thousands of items. The number of distinct itemsets is 2m, 
where m is the number of items, and counting support for all possible itemsets 
becomes very computation intensive. To reduce the combinatorial search space, 
algorithms for finding association rules utilize the following properties:

 ■ A subset of a large itemset must also be large (that is, each subset of a large 
itemset exceeds the minimum required support).

 ■ Conversely, a superset of a small itemset is also small (implying that it does 
not have enough support).

The first property is referred to as downward closure. The second property, called 
the antimonotonicity property, helps to reduce the search space of possible solu-
tions. That is, once an itemset is found to be small (not a large itemset), then any 
extension to that itemset, formed by adding one or more items to the set, will also 
yield a small itemset.

28.2.2 Apriori Algorithm
The first algorithm to use the downward closure and antimontonicity properties 
was the apriori algorithm, shown as Algorithm 28.1.

We illustrate Algorithm 28.1 using the transaction data in Figure 28.1 using a mini-
mum support of 0.5. The candidate 1-itemsets are {milk, bread, juice, cookies, eggs, 
coffee} and their respective supports are 0.75, 0.5, 0.5, 0.5, 0.25, and 0.25. The first 
four items qualify for L1 since each support is greater than or equal to 0.5. In the 
first iteration of the repeat-loop, we extend the frequent 1-itemsets to create the 
candidate frequent 2-itemsets, C2. C2 contains {milk, bread}, {milk, juice}, {bread, 
juice}, {milk, cookies}, {bread, cookies}, and {juice, cookies}. Notice, for example, 
that {milk, eggs} does not appear in C2 since {eggs} is small (by the antimonotonic-
ity property) and does not appear in L1. The supports for the six sets contained in 
C2 are 0.25, 0.5, 0.25, 0.25, 0.5, and 0.25 and are computed by scanning the set of 
transactions. Only the second 2-itemset {milk, juice} and the fifth 2-itemset {bread, 
cookies} have support greater than or equal to 0.5. These two 2-itemsets form the 
frequent 2-itemsets, L2.

Algorithm 28.1. Apriori Algorithm for Finding Frequent (Large) Itemsets

Input: Database of m transactions, D, and a minimum support, mins, 
represented as a fraction of m.

Output: Frequent itemsets, L1, L2, … , Lk

Begin /* steps or statements are numbered for better readability */

  1. Compute support(ij) = count(ij)/m for each individual item, i1, i2, …, in 
by scanning the database once and counting the number of transactions 
that item ij appears in (that is, count(ij));

  2. The candidate frequent 1-itemset, C1, will be the set of items i1, i2, …, in;
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  3. The subset of items containing ij from C1 where support(ij) >= mins 
becomes the frequent 1-itemset, L1;

  4. k = 1;

termination = false;

repeat

  1. Lk+1 = (empty set);

  2. Create the candidate frequent (k+1)-itemset, Ck+1, by combining mem-
bers of Lk that have k–1 items in common (this forms candidate frequent 
(k+1)-itemsets by selectively extending frequent k-itemsets by one item);

  3. In addition, only consider as elements of Ck+1 those k+1 items such that 
every subset of size k appears in Lk;

  4. Scan the database once and compute the support for each member of Ck+1; if 
the support for a member of Ck+1 >= mins then add that member to Lk+1;

  5. If Lk+1 is empty then termination = true

else k = k + 1;

until termination;

End;

In the next iteration of the repeat-loop, we construct candidate frequent 3-itemsets 
by adding additional items to sets in L2. However, for no extension of itemsets in L2 
will all 2-item subsets be contained in L2. For example, consider {milk, juice, bread}; 
the 2-itemset {milk, bread} is not in L2, hence {milk, juice, bread} cannot be a fre-
quent 3-itemset by the downward closure property. At this point the algorithm ter-
minates with L1 equal to {{milk}, {bread}, {juice}, {cookies}} and L2 equal to {{milk, 
juice}, {bread, cookies}}.

Several other algorithms have been proposed to mine association rules. They vary 
mainly in terms of how the candidate itemsets are generated and how the supports 
for the candidate itemsets are counted. Some algorithms use data structures such as 
bitmaps and hashtrees to keep information about itemsets. Several algorithms have 
been proposed that use multiple scans of the database because the potential number 
of itemsets, 2m, can be too large to set up counters during a single scan. We will 
examine three improved algorithms (compared to the Apriori algorithm) for asso-
ciation rule mining: the sampling algorithm, the frequent-pattern tree algorithm, 
and the partition algorithm.

28.2.3 Sampling Algorithm
The main idea for the sampling algorithm is to select a small sample, one that fits 
in main memory, of the database of transactions and to determine the frequent 
itemsets from that sample. If those frequent itemsets form a superset of the frequent 
itemsets for the entire database, then we can determine the real frequent itemsets by 
scanning the remainder of the database in order to compute the exact support val-
ues for the superset itemsets. A superset of the frequent itemsets can usually be 
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found from the sample by using, for example, the apriori algorithm, with a lowered 
minimum support.

In rare cases, some frequent itemsets may be missed and a second scan of the data-
base is needed. To decide whether any frequent itemsets have been missed, the con-
cept of the negative border is used. The negative border with respect to a frequent 
itemset, S, and set of items, I, is the minimal itemsets contained in PowerSet(I) and 
not in S. The basic idea is that the negative border of a set of frequent itemsets con-
tains the closest itemsets that could also be frequent. Consider the case where a set 
X is not contained in the frequent itemsets. If all subsets of X are contained in the 
set of frequent itemsets, then X would be in the negative border.

We illustrate this with the following example. Consider the set of items I = {A, B, C, 
D, E} and let the combined frequent itemsets of size 1 to 3 be S = {{A}, {B}, {C}, {D}, 
{AB}, {AC}, {BC}, {AD}, {CD}, {ABC}}. The negative border is {{E}, {BD}, {ACD}}. 
The set {E} is the only 1-itemset not contained in S, {BD} is the only 2-itemset not 
in S but whose 1-itemset subsets are, and {ACD} is the only 3-itemset whose 2-item-
set subsets are all in S. The negative border is important since it is necessary to 
determine the support for those itemsets in the negative border to ensure that no 
large itemsets are missed from analyzing the sample data.

Support for the negative border is determined when the remainder of the database 
is scanned. If we find that an itemset, X, in the negative border belongs in the set of 
all frequent itemsets, then there is a potential for a superset of X to also be frequent. 
If this happens, then a second pass over the database is needed to make sure that all 
frequent itemsets are found.

28.2.4 Frequent-Pattern (FP) Tree and FP-Growth Algorithm
The frequent-pattern tree (FP-tree) is motivated by the fact that apriori-based algo-
rithms may generate and test a very large number of candidate itemsets. For example, 
with 1,000 frequent 1-itemsets, the apriori algorithm would have to generate

1000

2

⎛
⎝⎜

⎞
⎠⎟

or 499,500 candidate 2-itemsets. The FP-growth algorithm is one approach that 
eliminates the generation of a large number of candidate itemsets.

The algorithm first produces a compressed version of the database in terms of an 
FP-tree (frequent-pattern tree). The FP-tree stores relevant itemset information 
and allows for the efficient discovery of frequent itemsets. The actual mining pro-
cess adopts a divide-and-conquer strategy, where the mining process is decom-
posed into a set of smaller tasks that each operates on a conditional FP-tree, a subset 
(projection) of the original tree. To start with, we examine how the FP-tree is con-
structed. The database is first scanned and the frequent 1-itemsets along with their 
support are computed. With this algorithm, the support is the count of transactions 
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containing the item rather than the fraction of transactions containing the item. 
The frequent 1-itemsets are then sorted in nonincreasing order of their support. 
Next, the root of the FP-tree is created with a NULL label. The database is scanned a 
second time and for each transaction T in the database, the frequent 1-itemsets in T 
are placed in order as was done with the frequent 1-itemsets. We can designate this 
sorted list for T as consisting of a first item, the head, and the remaining items, the 
tail. The itemset information (head, tail) is inserted into the FP-tree recursively, 
starting at the root node, as follows:

  1. If the current node, N, of the FP-tree has a child with an item name = head, 
then increment the count associated with node N by 1, else create a new 
node, N, with a count of 1, link N to its parent and link N with the item 
header table (used for efficient tree traversal).

  2. If the tail is nonempty, then repeat step (1) using as the sorted list only the 
tail, that is, the old head is removed and the new head is the first item from 
the tail and the remaining items become the new tail.

The item header table, created during the process of building the FP-tree, contains 
three fields per entry for each frequent item: item identifier, support count, and 
node link. The item identifier and support count are self-explanatory. The node 
link is a pointer to an occurrence of that item in the FP-tree. Since multiple occur-
rences of a single item may appear in the FP-tree, these items are linked together as 
a list where the start of the list is pointed to by the node link in the item header 
table. We illustrate the building of the FP-tree using the transaction data in Fig-
ure 28.1. Let us use a minimum support of 2. One pass over the four transactions 
yields the following frequent 1-itemsets with associated support: {{(milk, 3)}, 
{(bread, 2)}, {(cookies, 2)}, {(juice, 2)}}. The database is scanned a second time and 
each transaction will be processed again.

For the first transaction, we create the sorted list, T = {milk, bread, cookies, juice}. 
The items in T are the frequent 1-itemsets from the first transaction. The items are 
ordered based on the nonincreasing ordering of the count of the 1-itemsets found 
in pass 1 (that is, milk first, bread second, and so on). We create a NULL root node 
for the FP-tree and insert milk as a child of the root, bread as a child of milk, cookies 
as a child of bread, and juice as a child of cookies. We adjust the entries for the fre-
quent items in the item header table.

For the second transaction, we have the sorted list {milk, juice}. Starting at the root, 
we see that a child node with label milk exists, so we move to that node and update 
its count (to account for the second transaction that contains milk). We see that 
there is no child of the current node with label juice, so we create a new node with 
label juice. The item header table is adjusted.

The third transaction only has 1-frequent item, {milk}. Again, starting at the root, 
we see that the node with label milk exists, so we move to that node, increment its 
count, and adjust the item header table. The final transaction contains frequent 
items, {bread, cookies}. At the root node, we see that a child with label bread does 
not exist. Thus, we create a new child of the root, initialize its counter, and then 
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insert cookies as a child of this node and initialize its count. After the item header 
table is updated, we end up with the FP-tree and item header table as shown in Fig-
ure 28.2. If we examine this FP-tree, we see that it indeed represents the original 
transactions in a compressed format (that is, only showing the items from each 
transaction that are large 1-itemsets).

Algorithm 28.2 is used for mining the FP-tree for frequent patterns. With the FP-
tree, it is possible to find all frequent patterns that contain a given frequent item by 
starting from the item header table for that item and traversing the node links in the 
FP-tree. The algorithm starts with a frequent 1-itemset (suffix pattern) and con-
structs its conditional pattern base and then its conditional FP-tree. The condi-
tional pattern base is made up of a set of prefix paths, that is, where the frequent 
item is a suffix. For example, if we consider the item juice, we see from Figure 28.2 
that there are two paths in the FP-tree that end with juice: (milk, bread, cookies, 
juice) and (milk, juice). The two associated prefix paths are (milk, bread, cookies) 
and (milk). The conditional FP-tree is constructed from the patterns in the condi-
tional pattern base. The mining is recursively performed on this FP-tree. The fre-
quent patterns are formed by concatenating the suffix pattern with the frequent 
patterns produced from a conditional FP-tree.

Algorithm 28.2. FP-Growth Algorithm for Finding Frequent Itemsets

Input: FP-tree and a minimum support, mins

Output: frequent patterns (itemsets)
procedure FP-growth (tree, alpha);

Begin
 if tree contains a single path P then
  for each combination, beta, of the nodes in the path
   generate pattern (beta ∪ alpha)
   with support = minimum support of nodes in beta

Item Support Link

Milk 3

Bread 2

Cookies 2

Juice 2

Bread: 1Milk: 3

Bread: 1

Cookies: 1

Juice: 1

Juice: 1 Cookies: 1

NULL

Figure 28.2 
FP-tree and item 
header table.
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 else
  for each item, i, in the header of the tree do
   begin
    generate pattern beta = (i ∪ alpha) with support = i.support;
    construct beta’s conditional pattern base;
    construct beta’s conditional FP-tree, beta_tree;
    if beta_tree is not empty then
     FP-growth(beta_tree, beta);
   end;
End;

We illustrate the algorithm using the data in Figure 28.1 and the tree in Figure 28.2. 
The procedure FP-growth is called with the two parameters: the original FP-tree 
and NULL for the variable alpha. Since the original FP-tree has more than a single 
path, we execute the else part of the first if statement. We start with the frequent 
item, juice. We will examine the frequent items in order of lowest support (that is, 
from the last entry in the table to the first). The variable beta is set to juice with sup-
port equal to 2.

Following the node link in the item header table, we construct the conditional pat-
tern base consisting of two paths (with juice as suffix). These are (milk, bread, cook-
ies: 1) and (milk: 1). The conditional FP-tree consists of only a single node, milk: 2. 
This is due to a support of only 1 for node bread and cookies, which is below the 
minimal support of 2. The algorithm is called recursively with an FP-tree of only a 
single node (that is, milk: 2) and a beta value of juice. Since this FP-tree only has 
one path, all combinations of beta and nodes in the path are generated—that is, 
{milk, juice}—with support of 2.

Next, the frequent item, cookies, is used. The variable beta is set to cookies with 
support = 2. Following the node link in the item header table, we construct the con-
ditional pattern base consisting of two paths. These are (milk, bread: 1) and (bread: 1). 
The conditional FP-tree is only a single node, bread: 2. The algorithm is called 
recursively with an FP-tree of only a single node (that is, bread: 2) and a beta value 
of cookies. Since this FP-tree only has one path, all combinations of beta and nodes 
in the path are generated, that is, {bread, cookies} with support of 2. The frequent 
item, bread, is considered next. The variable beta is set to bread with support = 2. 
Following the node link in the item header table, we construct the conditional pat-
tern base consisting of one path, which is (milk: 1). The conditional FP-tree is 
empty since the count is less than the minimum support. Since the conditional FP-
tree is empty, no frequent patterns will be generated.

The last frequent item to consider is milk. This is the top item in the item 
header table and as such has an empty conditional pattern base and empty 
conditional FP-tree. As a result, no frequent patterns are added. The result of 
executing the algorithm is the following frequent patterns (or itemsets) with 
their support: {{milk: 3}, {bread: 2}, {cookies: 2}, {juice: 2}, {milk, juice: 2}, 
{bread, cookies: 2}}.
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28.2.5 Partition Algorithm
Another algorithm, called the partition algorithm,3 is summarized below. If we are 
given a database with a small number of potential large itemsets, say, a few thou-
sand, then the support for all of them can be tested in one scan by using a partition-
ing technique. Partitioning divides the database into nonoverlapping subsets; these 
are individually considered as separate databases and all large itemsets for that par-
tition, called local frequent itemsets, are generated in one pass. The apriori algo-
rithm can then be used efficiently on each partition if it fits entirely in main 
memory. Partitions are chosen in such a way that each partition can be accommo-
dated in main memory. As such, a partition is read only once in each pass. The only 
caveat with the partition method is that the minimum support used for each parti-
tion has a slightly different meaning from the original value. The minimum support 
is based on the size of the partition rather than the size of the database for deter-
mining local frequent (large) itemsets. The actual support threshold value is the 
same as given earlier, but the support is computed only for a partition.

At the end of pass one, we take the union of all frequent itemsets from each parti-
tion. This forms the global candidate frequent itemsets for the entire database. 
When these lists are merged, they may contain some false positives. That is, some of 
the itemsets that are frequent (large) in one partition may not qualify in several 
other partitions and hence may not exceed the minimum support when the original 
database is considered. Note that there are no false negatives; no large itemsets will 
be missed. The global candidate large itemsets identified in pass one are verified in 
pass two; that is, their actual support is measured for the entire database. At the end 
of phase two, all global large itemsets are identified. The partition algorithm lends 
itself naturally to a parallel or distributed implementation for better efficiency. Fur-
ther improvements to this algorithm have been suggested.4

28.2.6 Other Types of Association Rules

Association Rules among Hierarchies. There are certain types of associations 
that are particularly interesting for a special reason. These associations occur among 
hierarchies of items. Typically, it is possible to divide items among disjoint hierar-
chies based on the nature of the domain. For example, foods in a supermarket, 
items in a department store, or articles in a sports shop can be categorized into 
classes and subclasses that give rise to hierarchies. Consider Figure 28.3, which 
shows the taxonomy of items in a supermarket. The figure shows two hierarchies—
beverages and desserts, respectively. The entire groups may not produce associa-
tions of the form beverages => desserts, or desserts => beverages. However, 
associations of the type Healthy-brand frozen yogurt => bottled water, or Rich 

3See Savasere et al. (1995) for details of the algorithm, the data structures used to implement it, and its 
performance comparisons.

4See Cheung et al. (1996) and Lin and Dunham (1998).
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cream-brand ice cream => wine cooler may produce enough confidence and sup-
port to be valid association rules of interest.

Therefore, if the application area has a natural classification of the itemsets into 
hierarchies, discovering associations within the hierarchies is of no particular inter-
est. The ones of specific interest are associations across hierarchies. They may occur 
among item groupings at different levels.

Multidimensional Associations. Discovering association rules involves search-
ing for patterns in a file. In Figure 28.1, we have an example of a file of customer 
transactions with three dimensions: Transaction_id, Time, and Items_bought. 
However, our data mining tasks and algorithms introduced up to this point only 
involve one dimension: Items_bought. The following rule is an example of includ-
ing the label of the single dimension: Items_bought(milk) => Items_bought(juice). 
It may be of interest to find association rules that involve multiple dimensions, for 
example, Time(6:30 … 8:00) => Items_bought(milk). Rules like these are called 
multidimensional association rules. The dimensions represent attributes of records 
of a file or, in terms of relations, columns of rows of a relation, and can be categori-
cal or quantitative. Categorical attributes have a finite set of values that display no 
ordering relationship. Quantitative attributes are numeric and their values display 
an ordering relationship, for example, <. Items_bought is an example of a categori-
cal attribute and Transaction_id and Time are quantitative.

Beverages

Carbonated Noncarbonated

Orange Apple Others Plain Clear

Colas Clear
drinks

Mixed
drinks

Bottled
juices

Bottled
water

Wine
coolers

Desserts

Ice cream Baked Frozen yogurt

Rich
cream

Reduce Healthy
Figure 28.3 
Taxonomy of items 
in a supermarket.
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One approach to handling a quantitative attribute is to partition its values into non-
overlapping intervals that are assigned labels. This can be done in a static manner 
based on domain-specific knowledge. For example, a concept hierarchy may group 
values for Salary into three distinct classes: low income (0 < Salary < 29,999), middle 
income (30,000 < Salary < 74,999), and high income (Salary > 75,000). From here, 
the typical apriori-type algorithm or one of its variants can be used for the rule min-
ing since the quantitative attributes now look like categorical attributes. Another 
approach to partitioning is to group attribute values based on data distribution (for 
example, equi-depth partitioning) and to assign integer values to each partition. 
The partitioning at this stage may be relatively fine, that is, a larger number of inter-
vals. Then during the mining process, these partitions may combine with other 
adjacent partitions if their support is less than some predefined maximum value. 
An apriori-type algorithm can be used here as well for the data mining.

Negative Associations. The problem of discovering a negative association is 
harder than that of discovering a positive association. A negative association is of 
the following type: 60% of customers who buy potato chips do not buy bottled water. 
(Here, the 60% refers to the confidence for the negative association rule.) In a data-
base with 10,000 items, there are 210,000 possible combinations of items, a majority 
of which do not appear even once in the database. If the absence of a certain item 
combination is taken to mean a negative association, then we potentially have mil-
lions and millions of negative association rules with RHSs that are of no interest at 
all. The problem, then, is to find only interesting negative rules. In general, we are 
interested in cases in which two specific sets of items appear very rarely in the same 
transaction. This poses two problems.

  1. For a total item inventory of 10,000 items, the probability of any two being 
bought together is (1/10,000) * (1/10,000) = 10–8. If we find the actual sup-
port for these two occurring together to be zero, that does not represent a 
significant departure from expectation and hence is not an interesting (neg-
ative) association.

  2. The other problem is more serious. We are looking for item combinations 
with very low support, and there are millions and millions with low or even 
zero support. For example, a data set of 10 million transactions has most of 
the 2.5 billion pairwise combinations of 10,000 items missing. This would 
generate billions of useless rules.

Therefore, to make negative association rules interesting, we must use prior knowl-
edge about the itemsets. One approach is to use hierarchies. Suppose we use the 
hierarchies of soft drinks and chips shown in Figure 28.4.

Soft drinks

Joke Wakeup Topsy

Chips

Days Nightos Party’Os

Figure 28.4 
Simple hierarchy of 
soft drinks and chips.
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A strong positive association has been shown between soft drinks and chips. If we 
find a large support for the fact that when customers buy Days chips they predomi-
nantly buy Topsy and not Joke and not Wakeup, that would be interesting because 
we would normally expect that if there is a strong association between Days and 
Topsy, there should also be such a strong association between Days and Joke or 
Days and Wakeup.5

In the frozen yogurt and bottled water groupings shown in Figure 28.3, suppose 
the Reduce versus Healthy-brand division is 80–20 and the Plain and Clear 
brands division is 60–40 among respective categories. This would give a joint 
probability of Reduce frozen yogurt being purchased with Plain bottled water as 
48% among the transactions containing a frozen yogurt and bottled water. If this 
support, however, is found to be only 20%, it would indicate a significant nega-
tive association among Reduce yogurt and Plain bottled water; again, that would 
be interesting.

The problem of finding negative association is important in the above situations 
given the domain knowledge in the form of item generalization hierarchies (that is, 
the beverage given and desserts hierarchies shown in Figure 28.3), the existing pos-
itive associations (such as between the frozen yogurt and bottled water groups), and 
the distribution of items (such as the name brands within related groups). The 
scope of discovery of negative associations is limited in terms of knowing the item 
hierarchies and distributions. Exponential growth of negative associations remains 
a challenge.

28.2.7 Additional Considerations for Association Rules
The mining of association rules in real-life databases is complicated by the following 
factors:

 ■ The cardinality of itemsets in most situations is extremely large, and the vol-
ume of transactions is very high as well. Some operational databases in 
retailing and communication industries collect tens of millions of transac-
tions per day.

 ■ Transactions show variability in such factors as geographic location and sea-
sons, making sampling difficult.

 ■ Item classifications exist along multiple dimensions. Hence, driving the dis-
covery process with domain knowledge, particularly for negative rules, is 
extremely difficult.

 ■ Quality of data is variable; significant problems exist with missing, errone-
ous, conflicting, as well as redundant data in many industries.

5For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy.
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28.3 Classification
Classification is the process of learning a model that describes different classes of 
data. The classes are predetermined. For example, in a banking application, cus-
tomers who apply for a credit card may be classified as a poor risk, fair risk, or good 
risk. Hence this type of activity is also called supervised learning. Once the model 
is built, it can be used to classify new data. The first step—learning the model—is 
accomplished by using a training set of data that has already been classified. Each 
record in the training data contains an attribute, called the class label, which indi-
cates which class the record belongs to. The model that is produced is usually in the 
form of a decision tree or a set of rules. Some of the important issues with regard to 
the model and the algorithm that produces the model include the model’s ability to 
predict the correct class of new data, the computational cost associated with the 
algorithm, and the scalability of the algorithm.

We will examine the approach where our model is in the form of a decision tree. A 
decision tree is simply a graphical representation of the description of each class or, in 
other words, a representation of the classification rules. A sample decision tree is pic-
tured in Figure 28.5. We see from Figure 28.5 that if a customer is married and if sal-
ary ≥ 50K, then she is a good risk for a bank credit card. This is one of the rules that 
describe the class good risk. Traversing the decision tree from the root to each leaf node 
forms other rules for this class and the two other classes. Algorithm 28.3 shows the pro-
cedure for constructing a decision tree from a training data set. Initially, all training sam-
ples are at the root of the tree. The samples are partitioned recursively based on selected 
attributes. The attribute used at a node to partition the samples is the one with the best 
splitting criterion, for example, the one that maximizes the information gain measure.

Married

Salary Acct_balance

Fair risk Good risk

Poor risk

< 20K >= 20K >= 50K < 5K >= 5K

< 25 >= 25

< 50K

NoYes

Fair risk Good risk Poor risk Age

Figure 28.5 
Sample decision tree for 
credit card applications.
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Algorithm 28.3. Algorithm for Decision Tree Induction

Input: Set of training data records: R1, R2, … , Rm and set of attributes: A1, 
A2, …, An

Output: Decision tree

procedure Build_tree (records, attributes);
Begin
 create a node N;
 if all records belong to the same class C, then
  return N as a leaf node with class label C;
 if attributes is empty then
  return N as a leaf node with class label C, such that the majority of
  records belong to it;
 select attribute Ai (with the highest information gain) from attributes;
 label node N with Ai;
 for each known value, vj, of Ai do
  begin
   add a branch from node N for the condition Ai = vj;
   Sj = subset of records where Ai = vj;
   if Sj is empty then
    add a leaf, L, with class label C, such that the majority of
     records belong to it and return L
   else add the node returned by Build_tree(Sj, attributes − Ai);
  end;
End;

Before we illustrate Algorithm 28.3, we will explain the information gain measure 
in more detail. The use of entropy as the information gain measure is motivated by 
the goal of minimizing the information needed to classify the sample data in the 
resulting partitions and thus minimizing the expected number of conditional tests 
needed to classify a new record. The expected information needed to classify train-
ing data of s samples, where the Class attribute has n values (v1, … , vn) and si is the 
number of samples belonging to class label vi, is given by

I S S S p pn i i
i

n

1 2 2
1

, , ..., log( )= −
=
∑

where pi is the probability that a random sample belongs to the class with label vi. An 
estimate for pi is si/s. Consider an attribute A with values {v1, … , vm} used as the test 
attribute for splitting in the decision tree. Attribute A partitions the samples into the 
subsets S1, … , Sm where samples in each Sj have a value of vj for attribute A. Each Sj 
may contain samples that belong to any of the classes. The number of samples in Sj that 
belong to class i can be denoted as sij. The entropy associated with using attribute A as 
the test attribute is defined as
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I(s1j, … , snj) can be defined using the formulation for I(s1, … , sn) with pi being replaced 
by pij where pij = sij/sj. Now the information gain by partitioning on attribute A, Gain(A), 
is defined as I(s1, …, sn) − E(A). We can use the sample training data from Fig-
ure 28.6 to illustrate the algorithm.

The attribute RID represents the record identifier used for identifying an individual 
record and is an internal attribute. We use it to identify a particular record in our 
example. First, we compute the expected information needed to classify the training 
data of 6 records as I(s1, s2) where there are two classes: the first class label value 
corresponds to yes and the second to no. So

I(3,3) = − 0.5log2 0.5 − 0.5log2 0.5 = 1

Now, we compute the entropy for each of the four attributes as shown below. For 
Married = yes, we have s11 = 2, s21 = 1 and I(s11, s21) = 0.92. For Married = no, we have 
s12 = 1, s22 = 2 and I(s12, s22) = 0.92. So the expected information needed to classify a 
sample using attribute Married as the partitioning attribute is

E(Married) = 3/6 I(s11, s21) + 3/6 I(s12, s22) = 0.92

The gain in information, Gain(Married), would be 1 − 0.92 = 0.08. If we follow simi-
lar steps for computing the gain with respect to the other three attributes we end up 
with

E(Salary) = 0.33   and  Gain(Salary) = 0.67
E(Acct_balance) = 0.92  and Gain(Acct_balance) = 0.08
E(Age) = 0.54   and Gain(Age) = 0.46

Since the greatest gain occurs for attribute Salary, it is chosen as the partitioning 
attribute. The root of the tree is created with label Salary and has three branches, 
one for each value of Salary. For two of the three values, that is, < 20K and > 50K, all 
the samples that are partitioned accordingly (records with RIDs 4 and 5 for < 20K 
and records with RIDs 1 and 2 for ≥ 50K) fall within the same class loanworthy no 
and loanworthy yes, respectively, for those two values. So we create a leaf node for 
each. The only branch that needs to be expanded is for the value 20K … 50K with 
two samples, records with RIDs 3 and 6 in the training data. Continuing the process 
using these two records, we find that Gain(Married) is 0, Gain(Acct_balance) is 1, and 
Gain(Age) is 1.

RID Married Salary Acct_balance Age Loanworthy 

1 no >=50K <5K >=25 yes

2 yes >=50K >=5K >=25 yes

3 yes 20K. . .50K <5K <25 no

4 no <20K >=5K <25 no

5 no <20K <5K >=25 no

6 yes 20K. . .50K >=5K >=25 yes

Figure 28.6 
Sample training data 
for classification 
algorithm.
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We can choose either Age or Acct_balance since they both have the largest gain. Let 
us choose Age as the partitioning attribute. We add a node with label Age that has 
two branches, less than 25, and greater or equal to 25. Each branch partitions the 
remaining sample data such that one sample record belongs to each branch and 
hence one class. Two leaf nodes are created and we are finished. The final decision 
tree is pictured in Figure 28.7.

28.4 Clustering
The previous data mining task of classification deals with partitioning data based 
on using a preclassified training sample. However, it is often useful to partition data 
without having a training sample; this is also known as unsupervised learning. For 
example, in business, it may be important to determine groups of customers who 
have similar buying patterns, or in medicine, it may be important to determine 
groups of patients who show similar reactions to prescribed drugs. The goal of 
clustering is to place records into groups, such that records in a group are simi-
lar to each other and dissimilar to records in other groups. The groups are usu-
ally disjoint.

An important facet of clustering is the similarity function that is used. When the 
data is numeric, a similarity function based on distance is typically used. For exam-
ple, the Euclidean distance can be used to measure similarity. Consider two 
n-dimensional data points (records) rj and rk. We can consider the value for the ith 
dimension as rji and rki for the two records. The Euclidean distance between points 
rj and rk in n-dimensional space is calculated as:

Distance( , ) ...r r r r r r r rj k j k j k jn kn= − + − + + −1 1

2

2 2

2 2

The smaller the distance between two points, the greater is the similarity as 
we think of them. A classic clustering algorithm is the k-means algorithm, 
Algorithm 28.4.

Salary

{3} {6}

{4,5}

Class is “no”

Class is “no”

Class is “yes”

Class is “yes”

< 20K
20K . . . 50K

>= 50K

< 25 >= 25

{1,2}Age

Figure 28.7 
Decision tree based on sample 
training data where the leaf nodes 
are represented by a set of RIDs  
of the partitioned records.
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Algorithm 28.4. k-Means Clustering Algorithm

Input: a database D, of m records, r1, …, rm and a desired number of clusters k

Output: set of k clusters that minimizes the squared error criterion

Begin
 randomly choose k records as the centroids for the k clusters;
 repeat
 assign each record, ri, to a cluster such that the distance between ri

  and the cluster centroid (mean) is the smallest among the k clusters;
 recalculate the centroid (mean) for each cluster based on the records
  assigned to the cluster;
 until no change;
End;

The algorithm begins by randomly choosing k records to represent the centroids 
(means), m1, …, mk, of the clusters, C1, …, Ck. All the records are placed in a 
given cluster based on the distance between the record and the cluster mean. If 
the distance between mi and record rj is the smallest among all cluster means, 
then record rj is placed in cluster Ci. Once all records have been initially placed in 
a cluster, the mean for each cluster is recomputed. Then the process repeats, by 
examining each record again and placing it in the cluster whose mean is closest. 
Several iterations may be needed, but the algorithm will converge, although it 
may terminate at a local optimum. The terminating condition is usually the 
squared-error criterion. For clusters C1, …, Ck with means m1, …, mk, the error is 
defined as:

Error Distance=
∀ ∈=
∑∑ ( , )r mj i
r Ci

k

j i

2

1

We will examine how Algorithm 28.4 works with the (two-dimensional) records in 
Figure 28.8. Assume that the number of desired clusters k is 2. Let the algorithm 
choose records with RID 3 for cluster C1 and RID 6 for cluster C2 as the initial cluster 
centroids. The remaining records will be assigned to one of those clusters during 
the first iteration of the repeat loop. The record with RID 1 has a distance from C1 of 
22.4 and a distance from C2 of 32.0, so it joins cluster C1. The record with RID 2 has 

RID Age Years_of_service

5031

52052

51053

5524

01035

52556

Figure 28.8 
Sample two-dimensional 
records for clustering 
example (the RID  
column is not  
considered).
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a distance from C1 of 10.0 and a distance from C2 of 5.0, so it joins cluster C2. The 
record with RID 4 has a distance from C1 of 25.5 and a distance from C2 of 36.6, so it 
joins cluster C1. The record with RID 5 has a distance from C1 of 20.6 and a distance 
from C2 of 29.2, so it joins cluster C1. Now, the new means (centroids) for the two 
clusters are computed. The mean for a cluster, Ci, with n records of m dimensions is 
the vector:

C
n

r
n

ri ji
r C

jm
r Cj i j i

=
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⎝
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⎜

⎞

⎠
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The new mean for C1 is (33.75, 8.75) and the new mean for C2 is (52.5, 25). A sec-
ond iteration proceeds and the six records are placed into the two clusters as fol-
lows: records with RIDs 1, 4, 5 are placed in C1 and records with RIDs 2, 3, 6 are 
placed in C2. The mean for C1 and C2 is recomputed as (28.3, 6.7) and (51.7, 21.7), 
respectively. In the next iteration, all records stay in their previous clusters and the 
algorithm terminates.

Traditionally, clustering algorithms assume that the entire data set fits in main 
memory. More recently, researchers have developed algorithms that are efficient 
and are scalable for very large databases. One such algorithm is called BIRCH. 
BIRCH is a hybrid approach that uses both a hierarchical clustering approach, 
which builds a tree representation of the data, as well as additional clustering meth-
ods, which are applied to the leaf nodes of the tree. Two input parameters are used 
by the BIRCH algorithm. One specifies the amount of available main memory and 
the other is an initial threshold for the radius of any cluster. Main memory is used 
to store descriptive cluster information such as the center (mean) of a cluster and 
the radius of the cluster (clusters are assumed to be spherical in shape). The radius 
threshold affects the number of clusters that are produced. For example, if the 
radius threshold value is large, then few clusters of many records will be formed. 
The algorithm tries to maintain the number of clusters such that their radius is 
below the radius threshold. If available memory is insufficient, then the radius 
threshold is increased.

The BIRCH algorithm reads the data records sequentially and inserts them into an 
in-memory tree structure, which tries to preserve the clustering structure of the 
data. The records are inserted into the appropriate leaf nodes (potential clusters) 
based on the distance between the record and the cluster center. The leaf node 
where the insertion happens may have to split, depending upon the updated center 
and radius of the cluster and the radius threshold parameter. Additionally, when 
splitting, extra cluster information is stored, and if memory becomes insufficient, 
then the radius threshold will be increased. Increasing the radius threshold may 
actually produce a side effect of reducing the number of clusters since some nodes 
may be merged.

Overall, BIRCH is an efficient clustering method with a linear computational com-
plexity in terms of the number of records to be clustered.



 28.5 Approaches to Other Data Mining Problems  1091

28.5  Approaches to Other Data  
Mining Problems

28.5.1 Discovery of Sequential Patterns
The discovery of sequential patterns is based on the concept of a sequence of item-
sets. We assume that transactions such as the supermarket-basket transactions we 
discussed previously are ordered by time of purchase. That ordering yields a 
sequence of itemsets. For example, {milk, bread, juice}, {bread, eggs}, {cookies, 
milk, coffee} may be such a sequence of itemsets based on three visits by the same 
customer to the store. The support for a sequence S of itemsets is the percentage of 
the given set U of sequences of which S is a subsequence. In this example, {milk, 
bread, juice} {bread, eggs} and {bread, eggs} {cookies, milk, coffee} are considered 
subsequences. The problem of identifying sequential patterns, then, is to find all 
subsequences from the given sets of sequences that have a user-defined minimum 
support. The sequence S1, S2, S3, … is a predictor of the fact that a customer who 
buys itemset S1 is likely to buy itemset S2 and then S3, and so on. This prediction is 
based on the frequency (support) of this sequence in the past. Various algorithms 
have been investigated for sequence detection.

28.5.2 Discovery of Patterns in Time Series
Time series are sequences of events; each event may be a given fixed type of a 
transaction. For example, the closing price of a stock or a fund is an event that 
occurs every weekday for each stock and fund. The sequence of these values per 
stock or fund constitutes a time series. For a time series, one may look for a 
variety of patterns by analyzing sequences and subsequences as we did above. 
For example, we might find the period during which the stock rose or held 
steady for n days, or we might find the longest period over which the stock had 
a fluctuation of no more than 1% over the previous closing price, or we might 
find the quarter during which the stock had the most percentage gain or percent-
age loss. Time series may be compared by establishing measures of similarity to 
identify companies whose stocks behave in a similar fashion. Analysis and min-
ing of time series is an extended functionality of temporal data management (see 
Chapter 26).

28.5.3 Regression
Regression is a special application of the classification rule. If a classification rule is 
regarded as a function over the variables that maps these variables into a target 
class variable, the rule is called a regression rule. A general application of regres-
sion occurs when, instead of mapping a tuple of data from a relation to a specific 
class, the value of a variable is predicted based on that tuple. For example, consider 
a relation

LAB_TESTS (patient ID, test 1, test 2, … , test n)
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which contains values that are results from a series of n tests for one patient. The 
target variable that we wish to predict is P, the probability of survival of the patient. 
Then the rule for regression takes the form:

(test 1 in range1) and (test 2 in range2) and … (test n in rangen) ⇒ P = x,  
or x < P ≤ y

The choice depends on whether we can predict a unique value of P or a range of 
values for P. If we regard P as a function:

P = f (test 1, test 2, …, test n)

the function is called a regression function to predict P. In general, if the function 
appears as

Y = f (X1, X2, … , Xn),

and f is linear in the domain variables xi, the process of deriving f from a given set of 
tuples for <X1, X2, … , Xn, y> is called linear regression. Linear regression is a com-
monly used statistical technique for fitting a set of observations or points in n 
dimensions with the target variable y.

Regression analysis is a very common tool for analysis of data in many research 
domains. The discovery of the function to predict the target variable is equivalent to 
a data mining operation.

28.5.4 Neural Networks
A neural network is a technique derived from artificial intelligence research that 
uses generalized regression and provides an iterative method to carry it out. Neural 
networks use the curve-fitting approach to infer a function from a set of samples. 
This technique provides a learning approach; it is driven by a test sample that is 
used for the initial inference and learning. With this kind of learning method, 
responses to new inputs may be able to be interpolated from the known samples. 
This interpolation, however, depends on the world model (internal representation 
of the problem domain) developed by the learning method.

Neural networks can be broadly classified into two categories: supervised and unsu-
pervised networks. Adaptive methods that attempt to reduce the output error are 
supervised learning methods, whereas those that develop internal representations 
without sample outputs are called unsupervised learning methods.

Neural networks self-adapt; that is, they learn from information about a specific 
problem. They perform well on classification tasks and are therefore useful in data 
mining. Yet they are not without problems. Although they learn, they do not pro-
vide a good representation of what they have learned. Their outputs are highly 
quantitative and not easy to understand. As another limitation, the internal repre-
sentations developed by neural networks are not unique. Also, in general, neural 
networks have trouble modeling time series data. Despite these shortcomings, they 
are popular and frequently used by several commercial vendors.
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28.5.5 Genetic Algorithms
Genetic algorithms (GAs) are a class of randomized search procedures capable 
of adaptive and robust search over a wide range of search space topologies. Mod-
eled after the adaptive emergence of biological species from evolutionary mecha-
nisms, and introduced by Holland,6 GAs have been successfully applied in such 
diverse fields as image analysis, scheduling, and engineering design.

Genetic algorithms extend the idea from human genetics of the four-letter 
alphabet (based on the A, C, T, G nucleotides) of the human DNA code. The 
construction of a genetic algorithm involves devising an alphabet that encodes 
the solutions to the decision problem in terms of strings of that alphabet. 
Strings are equivalent to individuals. A fitness function defines which solu-
tions can survive and which cannot. The ways in which solutions can be com-
bined are patterned after the cross-over operation of cutting and combining 
strings from a father and a mother. An initial population of a well-varied pop-
ulation is provided, and a game of evolution is played in which mutations 
occur among strings. They combine to produce a new generation of individu-
als; the fittest individuals survive and mutate until a family of successful solu-
tions develops.

The solutions produced by GAs are distinguished from most other search 
techniques by the following characteristics:

 ■ A GA search uses a set of solutions during each generation rather than a 
single solution.

 ■ The search in the string-space represents a much larger parallel search in the 
space of encoded solutions.

 ■ The memory of the search done is represented solely by the set of solutions 
available for a generation.

 ■ A genetic algorithm is a randomized algorithm since search mechanisms use 
probabilistic operators.

 ■ While progressing from one generation to the next, a GA finds near-optimal 
balance between knowledge acquisition and exploitation by manipulating 
encoded solutions.

Genetic algorithms are used for problem solving and clustering problems. Their 
ability to solve problems in parallel provides a powerful tool for data mining. The 
drawbacks of GAs include the large overproduction of individual solutions, the 
random character of the searching process, and the high demand on computer pro-
cessing. In general, substantial computing power is required to achieve anything of 
significance with genetic algorithms.

6Holland’s seminal work (1975) entitled Adaptation in Natural and Artificial Systems introduced the idea 
of genetic algorithms.
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28.6 Applications of Data Mining
Data mining technologies can be applied to a large variety of decision-making con-
texts in business. In particular, areas of significant payoffs are expected to include 
the following:

 ■ Marketing. Applications include analysis of consumer behavior based on 
buying patterns; determination of marketing strategies, including adver-
tising, store location, and targeted mailing; segmentation of customers, 
stores, or products; and design of catalogs, store layouts, and advertising 
campaigns.

 ■ Finance. Applications include analysis of creditworthiness of clients; seg-
mentation of account receivables; performance analysis of finance invest-
ments like stocks, bonds, and mutual funds; evaluation of financing options; 
and fraud detection.

 ■ Manufacturing. Applications involve optimization of resources like 
machines, personnel, and materials; and optimal design of manufacturing 
processes, shop-floor layouts, and product design, such as for automobiles 
based on customer requirements.

 ■ Healthcare. Applications include discovery of patterns in radiological 
images, analysis of microarray (gene-chip) experimental data to cluster 
genes and to relate to symptoms or diseases, analysis of side effects of drugs 
and effectiveness of certain treatments, optimization of processes within a 
hospital, and analysis of the relationship between patient wellness data and 
doctor qualifications.

28.7 Commercial Data Mining Tools
Currently, commercial data mining tools use several common techniques to extract 
knowledge. These include association rules, clustering, neural networks, sequenc-
ing, and statistical analysis. We discussed these earlier. Also used are decision trees, 
which are a representation of the rules used in classification or clustering, and sta-
tistical analyses, which may include regression and many other techniques. Other 
commercial products use advanced techniques such as genetic algorithms, case-
based reasoning, Bayesian networks, nonlinear regression, combinatorial optimiza-
tion, pattern matching, and fuzzy logic. In this chapter, we have already discussed 
some of these.

Most data mining tools use the ODBC (Open Database Connectivity) interface. 
ODBC is an industry standard that works with databases; it enables access to data in 
most of the popular database programs such as Access, dBASE, Informix, Oracle, 
and SQL Server. Some of these software packages provide interfaces to specific 
database programs; the most common are Oracle, Access, and SQL Server. Most of 
the tools work in the Microsoft Windows environment and a few work in the UNIX 
operating system. The trend is for all products to operate under the Microsoft 
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 Windows environment. One tool, Data Surveyor, mentions ODMG compliance; 
see Chapter 12, where we discussed the ODMG object-oriented standard.

In general, these programs perform sequential processing in a single machine. 
Many of these products work in the client/server mode. Some products incorporate 
parallel processing in parallel computer architectures and work as a part of online 
analytical processing (OLAP) tools.

28.7.1 User Interface
Most of the tools run in a graphical user interface (GUI) environment. Some prod-
ucts include sophisticated visualization techniques to view data and rules (for 
example, SGI’s MineSet), and are even able to manipulate data this way interac-
tively. Text interfaces are rare and are more common in tools available for UNIX, 
such as IBM’s Intelligent Miner.

28.7.2 Application Programming Interface
Usually, the application programming interface (API) is an optional tool. Most 
products do not permit using their internal functions. However, some of them 
allow the application programmer to reuse their code. The most common inter-
faces are C libraries and dynamic link libraries (DLLs). Some tools include propri-
etary database command languages.

Table 28.1 lists 11 representative data mining tools. To date, there are hundreds of 
commercial data mining products available worldwide. Non-U.S. products include 
Data Surveyor from the Netherlands and PolyAnalyst from Russia.

28.7.3 Future Directions
Data mining tools are continually evolving, building on ideas from the latest scien-
tific research. Many of these tools incorporate the latest algorithms taken from arti-
ficial intelligence (AI), statistics, and optimization. Currently, fast processing is 
done using modern database techniques—such as distributed processing—in cli-
ent/server architectures, in parallel databases, and in data warehousing. For the 
future, the trend is toward developing Internet capabilities more fully. Additionally, 
hybrid approaches will become commonplace, and processing will be done using 
all resources available. Processing will take advantage of both parallel and distrib-
uted computing environments. This shift is especially important because modern 
databases contain very large amounts of information.

The primary direction for data mining is to analyze terabytes and petabytes of data 
in the so-called big data systems that we presented in Chapter 25. These systems are 
being equipped with their own tools and libraries for data mining, such as Mahout, 
which runs on top of Hadoop, which we described in detail. The data mining area 
will also be closely tied to data that will be housed in the cloud in data warehouses 
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Table 28.1 Some Representative Data Mining Tools

Company Product Technique Platform Interface*

AcknoSoft Kate Decision trees, case-based 
reasoning

Windows 
UNIX

Microsoft 
Access

Angoss Knowledge SEEKER Decision trees, statistics Windows ODBC

Business Objects Business Miner Neural nets, machine 
learning

Windows ODBC

CrossZ QueryObject Statistical analysis,  
optimization algorithm

Windows MVS 
UNIX

ODBC

Data Distilleries Data Surveyor Comprehensive; can  
mix different types of  
data mining

UNIX ODBC and 
ODMG- 
compliant

DBMiner  
Technology Inc.

DBMiner OLAP analysis, associa-
tions, classification,  
clustering algorithms

Windows Microsoft 7.0 
OLAP

IBM Intelligent Miner Classification, association 
rules, predictive models

UNIX (AIX) IBM DB2

Megaputer  
Intelligence

PolyAnalyst Symbolic knowledge 
acquisition, evolutionary 
programming

Windows OS/2 ODBC  
Oracle DB2

NCR Management  
Discovery Tool (MDT)

Association rules Windows ODBC

Purple Insight MineSet Decision trees,  
association rules

UNIX (Irix) Oracle  
Sybase  
Informix

SAS Enterprise Miner Decision trees, association 
rules, Nneural nets,  
regression, clustering

UNIX (Solaris) 
Windows 
Macintosh

ODBC  
Oracle 
AS/400

*ODBC: Open Database Connectivity
ODMG: Object Data Management Group

and brought into service for mining operations as needed using OLAP (online ana-
lytical processing) servers. Not only are multimedia databases growing, but, in 
addition, image storage and retrieval are slow operations. Also, the cost of second-
ary storage is decreasing, so massive information storage will be feasible, even for 
small companies. Thus, data mining programs will have to deal with larger sets of 
data of more companies.

Most of data mining software will use the ODBC standard to extract data from 
business databases; proprietary input formats can be expected to disappear. 
There is a definite need to include nonstandard data, including images and other 
multimedia data, as source data for data mining.
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28.8  Summary
In this chapter, we surveyed the important discipline of data mining, which uses 
database technology to discover additional knowledge or patterns in the data. We 
gave an illustrative example of knowledge discovery in databases, which has a wider 
scope than data mining. For data mining, among the various techniques, we focused 
on the details of association rule mining, classification, and clustering. We pre-
sented algorithms in each of these areas and illustrated with examples of how those 
algorithms work.

A variety of other techniques, including the AI-based neural networks and genetic 
algorithms, were also briefly discussed. Active research is ongoing in data mining, 
and we have outlined some of the expected research directions. In the future data-
base technology products market, a great deal of data mining activity is expected. 
We summarized 11 out of several hundred data mining tools available; future 
research is expected to extend the number and functionality significantly.

Review Questions
 28.1.  What are the different phases of the knowledge discovery from databases? 

Describe a complete application scenario in which new knowledge may be 
mined from an existing database of transactions.

 28.2.  What are the goals or tasks that data mining attempts to facilitate?

 28.3.  What are the five types of knowledge produced from data mining?

 28.4.  What are association rules as a type of knowledge? Define support and confi-
dence, and use these definitions to define an association rule.

 28.5.  What is the downward closure property? How does it aid in developing an 
efficient algorithm for finding association rules; that is, with regard to find-
ing large itemsets?

 28.6.  What was the motivating factor for the development of the FP-tree algo-
rithm for association rule mining?

 28.7.  Describe an association rule among hierarchies and provide an example.

 28.8.  What is a negative association rule in the context of the hierarchy in Figure 28.3?

 28.9.  What are the difficulties of mining association rules from large databases?

 28.10.  What are classification rules, and how are decision trees related to them?

 28.11.  What is entropy, and how is it used in building decision trees?

 28.12.  How does clustering differ from classification?

 28.13.  Describe neural networks and genetic algorithms as techniques for data 
mining. What are the main difficulties in using these techniques?
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Exercises
 28.14.  Apply the apriori algorithm to the following data set.

Trans_id Items_purchased

101 milk, bread, eggs

102 milk, juice

103 juice, butter

104 milk, bread, eggs

105 coffee, eggs

106 coffee

107 coffee, juice

108 milk, bread, cookies, eggs

109 cookies, butter

110 milk, bread

  The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2 
for the minimum support value.

 28.15.  Show two rules that have a confidence of 0.7 or greater for an itemset con-
taining three items from Exercise 28.14.

 28.16.  For the partition algorithm, prove that any frequent itemset in the database 
must appear as a local frequent itemset in at least one partition.

 28.17.  Show the FP-tree that would be made for the data from Exercise 28.14.

 28.18.  Apply the FP-growth algorithm to the FP-tree from Exercise 28.17 and show 
the frequent itemsets.

 28.19.  Apply the classification algorithm to the following set of data records. The 
class attribute is Repeat_customer.

RID Age City Gender Education Repeat_customer
101 20 … 30 NY F college YES

102 20 … 30 SF M graduate YES

103 31 … 40 NY F college YES

104 51 … 60 NY F college NO

105 31 … 40 LA M high school NO

106 41 … 50 NY F college YES

107 41 … 50 NY F graduate YES

108 20 … 30 LA M college YES

109 20 … 30 NY F high school NO

110 20 … 30 NY F college YES
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 28.20.  Consider the following set of two-dimensional records:

RID Dimension1 Dimension2

1 8 4

2 5 4

3 2 4

4 2 6

5 2 8

6 8 6

  Also consider two different clustering schemes: (1) where Cluster1 contains 
records {1, 2, 3} and Cluster2 contains records {4, 5, 6}, and (2) where Cluster1 
contains records {1, 6} and Cluster2 contains records {2, 3, 4, 5}. Which scheme 
is better and why?

 28.21. Use the k-means algorithm to cluster the data from Exercise 28.20. We can 
use a value of 3 for K, and we can assume that the records with RIDs 1, 3, 
and 5 are used for the initial cluster centroids (means).

 28.22. The k-means algorithm uses a similarity metric of distance between a record 
and a cluster centroid. If the attributes of the records are not quantitative but 
categorical in nature, such as Income_level with values {low, medium, high} 
or Married with values {Yes, No} or State_of_residence with values {Alabama, 
Alaska, … , Wyoming}, then the distance metric is not meaningful. Define a 
more suitable similarity metric that can be used for clustering data records 
that contain categorical data.

Selected Bibliography
Literature on data mining comes from several fields, including statistics, mathe-
matical optimization, machine learning, and artificial intelligence. Chen et al. 
(1996) give a good summary of the database perspective on data mining. The book 
by Han and Kamber (2006) is an excellent text and describes in detail the different 
algorithms and techniques used in the data mining area. Work at IBM Almaden 
Research has produced a large number of early concepts and algorithms as well as 
results from some performance studies. Agrawal et al. (1993) report the first major 
study on association rules. Their apriori algorithm for market-basket data in 
Agrawal and Srikant (1994) is improved by using partitioning in Savasere et al. 
(1995); Toivonen (1996) proposes sampling as a way to reduce the processing effort. 
Cheung et al. (1996) extends the partitioning to distributed environments; Lin and 
Dunham (1998) propose techniques to overcome problems with data skew. Agrawal 
et al. (1993b) discuss the performance perspective on association rules. Mannila et 
al. (1994), Park et al. (1995), and Amir et al. (1997) present additional efficient algo-
rithms related to association rules. Han et al. (2000) present the FP-tree algorithm 
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discussed in this chapter. Srikant and Agrawal (1995) proposes mining generalized 
rules. Savasere et al. (1998) present the first approach to mining negative associa-
tions. Agrawal et al. (1996) describe the Quest system at IBM. Sarawagi et al. (1998) 
describe an implementation where association rules are integrated with a relational 
database management system. Piatesky-Shapiro and Frawley (1992) have contrib-
uted papers from a wide range of topics related to knowledge discovery. Zhang et al. 
(1996) present the BIRCH algorithm for clustering large databases. Information 
about decision tree learning and the classification algorithm presented in this chap-
ter can be found in Mitchell (1997).

Adriaans and Zantinge (1996), Fayyad et al. (1997), and Weiss and Indurkhya (1998) 
are books devoted to the different aspects of data mining and its use in prediction. 
The idea of genetic algorithms was proposed by Holland (1975); a good survey of 
genetic algorithms appears in Srinivas and Patnaik (1994). Neural networks have a 
vast literature; a comprehensive introduction is available in Lippman (1987).

Tan, Steinbach, and Kumar (2006) provides a comprehensive introduction to data 
mining and has a detailed set of references. Readers are also advised to consult pro-
ceedings of two prominent annual conferences in data mining: the Knowledge  
Discovery and Data Mining Conference (KDD), which has been running since 1995, 
and the SIAM International Conference on Data Mining (SDM), which has been run-
ning since 2001. Links to past conferences may be found at http://dblp.uni-trier.de.
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29
Overview of Data  

Warehousing and OLAP

Data warehouses are databases that store and 
maintain analytical data separately from transac-

tion-oriented databases for the purpose of decision support. Regular transaction-
oriented databases store data for a limited period of time before the data loses its 
immediate usefulness and it is archived. On the other hand, data warehouses tend 
to keep years’ worth of data in order to enable analysis of historical data. They 
provide storage, functionality, and responsiveness to queries beyond the capabili-
ties of transaction-oriented databases. Accompanying this ever-increasing power 
is a great demand to improve the data access performance of databases. In modern 
organizations, users of data are often completely removed from the data sources. 
Many people only need read-access to data, but still need fast access to a larger 
volume of data than can conveniently be downloaded to their desktops. Often 
such data comes from multiple databases. Because many of the analyses performed 
are recurrent and predictable, software vendors and systems support staff are 
designing systems to support these functions. Data warehouses are modeled and 
structured differently, they use different types of technologies for storage and 
retrieval, and they are used by different types of users than transaction-oriented 
databases. Presently there is a great need to provide decision makers from middle 
management upward with information at the correct level of detail to support 
decision making. Data warehousing, online analytical processing (OLAP), and data 
mining provide this functionality. We gave an introduction to data mining tech-
niques in Chapter 28. In this chapter, we give a broad overview of data warehous-
ing and OLAP technologies.

chapter 29
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29.1  Introduction, Definitions, and Terminology
In Chapter 1, we defined a database as a collection of related data and a database 
system as a database and database software together. A data warehouse is also a col-
lection of information as well as a supporting system. However, a clear distinction 
exists. Traditional databases are transactional (relational, object-oriented, network, 
or hierarchical). Data warehouses have the distinguishing characteristic that they 
are mainly intended for decision-support applications. They are optimized for data 
retrieval, not routine transaction processing.

Because data warehouses have been developed in numerous organizations to meet 
particular needs, there is no single, canonical definition of the term data warehouse. 
Professional magazine articles and books in the popular press have elaborated on 
the meaning in a variety of ways. Vendors have capitalized on the popularity of the 
term to help market a variety of related products, and consultants have provided a 
large variety of services, all under the data warehousing banner. However, data 
warehouses are distinct from traditional databases in their structure, functioning, 
performance, and purpose.

W. H. Inmon1 characterized a data warehouse as a subject-oriented, integrated, 
nonvolatile, time-variant collection of data in support of management’s decisions. 
Data warehouses provide access to data for complex analysis, knowledge discovery, 
and decision making through ad hoc and canned queries. Canned queries refer to 
a-priori defined queries with parameters that may recur with high frequency. They 
support high-performance demands on an organization’s data and information. 
Several types of applications—OLAP, DSS, and data mining applications—are sup-
ported. We define each of these next.

OLAP (online analytical processing) is a term used to describe the analysis of 
complex data from the data warehouse. In the hands of skilled knowledge workers, 
OLAP tools enable quick and straightforward querying of the analytical data stored 
in data warehouses and data marts (analytical databases similar to data warehouses 
but with a defined narrow scope).

DSS (decision-support systems), also known as EIS (or MIS)—executive 
 information systems (or management information systems), not to be confused 
with enterprise integration systems—support an organization’s leading decision 
makers with higher-level (analytical) data for complex and important decisions. 
Data mining (which we discussed in Chapter 28) is used for knowledge discovery, 
the ad hoc process of searching data for unanticipated new knowledge (not unlike 
looking for pearls of wisdom in an ocean of data).

Traditional databases support online transaction processing (OLTP), which 
includes insertions, updates, and deletions while also supporting information query 
requirements. Traditional relational databases are optimized to process queries that 

1Inmon (1992) is credited with initially using the term warehouse. Inmon et al. (2008) is titled “DW 2.0: 
The architecture for the next generation of Data Warehousing.”
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may touch a small part of the database and transactions that deal with insertions or 
updates of a few tuples per relation to process. Thus, they cannot be optimized for 
OLAP, DSS, or data mining. By contrast, data warehouses are designed precisely to 
support efficient extraction, processing, and presentation for analytic and decision-
making purposes. In comparison to traditional databases, data warehouses gener-
ally contain very large amounts of data from multiple sources that may include 
databases from different data models and sometimes files acquired from indepen-
dent systems and platforms.

29.2 Characteristics of Data Warehouses
To discuss data warehouses and distinguish them from transactional databases 
calls for an appropriate data model. The multidimensional data model (explained 
in more detail in Section 29.3) is a good fit for OLAP and decision-support tech-
nologies. In contrast to multidatabases, which provide access to disjoint and 
usually heterogeneous databases, a data warehouse is frequently a store of inte-
grated data from multiple sources, processed for storage in a multidimensional 
model. Unlike most transactional databases, data warehouses typically support 
time series and trend analyses along with what-if or predictive-type analyses, all 
of which require more historical data than is generally maintained in transac-
tional databases.

Compared with transactional databases, data warehouses are nonvolatile. This 
means that information in the data warehouse is typically not subject to modifica-
tion and is often referred to as read/append/purge only. A data warehouse may be 
regarded as non–real-time with periodic insertions. In transactional systems, trans-
actions are the unit and are the agent of change to the database; by contrast, data 
warehouse information is much more coarse-grained and is refreshed according to a 
careful choice of refresh policy, usually incremental. Warehouse insertions are han-
dled by the warehouse’s ETL (extract, transform, load) process, which does a large 
amount of preprocessing and which is shown in Figure 29.1. We can also describe 
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Extract, Transform,
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Data
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Figure 29.1 
Overview of the general 
architecture of a data 
warehouse.
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data warehousing more generally as a collection of decision-support technologies 
aimed at enabling the knowledge worker (executive, manager, analyst) to make better 
and faster decisions.2 Figure 29.1 gives an overview of the conceptual structure of a 
data warehouse. It shows the entire data warehousing process, which includes pos-
sible cleaning and reformatting of data before loading it into the warehouse. This 
process is handled by tools known as ETL (extraction, transformation, and loading) 
tools. At the back end of the process, OLAP, data mining, and DSS may generate 
new relevant information such as rules (or additional meta-data); this information is 
shown in Figure 29.1 as going back as additional data inputs into the warehouse. The 
figure also shows that data sources may include files.

The important characteristics of data warehouses that accompanied the defini-
tion of the term OLAP in 1993 included the following, and they are applicable 
even today:3

 ■ Multidimensional conceptual view

 ■ Unlimited dimensions and aggregation levels

 ■ Unrestricted cross-dimensional operations

 ■ Dynamic sparse matrix handling

 ■ Client/server architecture

 ■ Multiuser support

 ■ Accessibility

 ■ Transparency

 ■ Intuitive data manipulation

 ■ Inductive and deductive analysis

 ■ Flexible distributed reporting

Because they encompass large volumes of data, data warehouses are generally an 
order of magnitude (sometimes two orders of magnitude) larger than the source 
databases. The sheer volume of data (likely to be in terabytes or even petabytes) is 
an issue that has been dealt with through enterprise-wide data warehouses, virtual 
data warehouses, logical data warehouses, and data marts:

 ■ Enterprise-wide data warehouses are huge projects requiring massive 
investment of time and resources.

 ■ Virtual data warehouses provide views of operational databases that are 
materialized for efficient access.

 ■ Logical data warehouses use data federation, distribution, and virtualiza-
tion techniques.

 ■ Data marts generally are targeted to a subset of the organization, such as a 
department, and are more tightly focused.

3Codd and Salley (1993) coined the term OLAP and mentioned the characteristics listed here.

2Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting definition.
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Other terms frequently encountered in the context of data warehousing are 
as follows:

 ■ Operational data store (ODS): This term is commonly used for intermedi-
ate form of databases before they are cleansed, aggregated, and transformed 
into a data warehouse.

 ■ Analytical data store (ADS): Those are the database that are built for the 
purpose of conducting data analysis. Typically, ODSs are reconfigured and 
repurposed into ADSs through the processes of cleansing, aggregation, and 
transformation.

29.3 Data Modeling for Data Warehouses
Multidimensional models take advantage of inherent relationships in data to popu-
late data in multidimensional matrices called data cubes. (These may be called hyper-
cubes if they have more than three dimensions.) For data that lends itself to 
multidimensional modeling, query performance in multidimensional matrices can 
be much better than in the relational data model. Three examples of dimensions in a 
corporate data warehouse are the corporation’s fiscal periods, products, and regions.

A standard spreadsheet is a two-dimensional matrix. One example would be a 
spreadsheet of regional sales by product for a particular time period. Products could 
be shown as rows, with columns comprising sales revenues for each region. (Fig-
ure 29.2 shows this two-dimensional organization.) Adding a time dimension, such 
as an organization’s fiscal quarters, would produce a three-dimensional matrix, 
which could be represented using a data cube.

Figure 29.3 shows a three-dimensional data cube that organizes product sales data by 
fiscal quarters and sales regions. Each cell could contain data for a specific product, 
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specific fiscal quarter, and specific region. By including additional dimensions, a data 
hypercube could be produced, although more than three dimensions cannot be easily 
visualized or graphically presented. The data can be queried directly in any combina-
tion of dimensions, thus bypassing complex database queries. Tools exist for viewing 
data according to the user’s choice of dimensions.

Changing from one-dimensional hierarchy (orientation) to another is easily accom-
plished in a data cube with a technique called pivoting (also called rotation). In this 
technique, the data cube can be thought of as rotating to show a different orienta-
tion of the axes. For example, you might pivot the data cube to show regional sales 
revenues as rows, the fiscal quarter revenue totals as columns, and the company’s 
products in the third dimension (Figure 29.4). Hence, this technique is equivalent 
to having a regional sales table for each product separately, where each table shows 
quarterly sales for that product region by region. The term slice is used to refer to a 
two-dimensional view of a three- or higher-dimensional cube. The Product vs. 
Region 2-D view shown in Figure 29.2 is a slice of the 3-D cube shown in Figure 
29.3. The popular term “slice and dice” implies a systematic reduction of a body of 
data into smaller chunks or views so that the information is made visible from mul-
tiple angles or viewpoints.

Multidimensional models lend themselves readily to hierarchical views in what is 
known as roll-up display and drill-down display. A roll-up display moves up the 
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hierarchy, grouping into larger units along a dimension (for example, summing 
weekly data by quarter or by year). Figure 29.5 shows a roll-up display that moves 
from individual products to a coarser grain of product categories. Shown in Fig-
ure 29.6, a drill-down display provides the opposite capability, furnishing a 
finer-grained view, perhaps disaggregating country sales by region and then 
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regional sales by subregion and also breaking up products by styles. Typically, in 
a warehouse, the drill-down capability is limited to the lowest level of aggregated 
data stored in the warehouse. For example, compared to the data shown in Fig-
ure 29.6, lower- level data will correspond to something like “the total sales for 
style P123 substyle A color Black in zipcode 30022 of sub-region 1.” That level of 
aggregation may have been kept in the ODS. Some DBMSs like Oracle offer the 
“nested table” concept, which enables access to lower levels of data and thus 
makes the drill-down penetrate deeper.

The multidimensional model (also called the dimensional model)-involves two 
types of tables: dimension tables and fact tables. A dimension table consists of 
tuples of attributes of the dimension. A fact table can be thought of as having 
tuples, one per a recorded fact. This fact contains some measured or observed 
variable(s) and identifies it (them) with pointers to dimension tables. The fact 
table contains the data, and the dimensions identify each tuple in that data. 
Another way to look at a fact table is as an agglomerated view of the transaction 
data whereas each dimension table represents so-called “master data” that those 
transactions belonged to. In multidimensional database systems, the multidimen-
sional model has been implemented as specialized software system known as a 
multidimensional database, which we do not discuss. Our treatment of the multi-
dimensional model is based on storing the warehouse as a relational database in 
an RDBMS.

Figure 29.7 shows an example of a fact table that can be viewed from the perspective 
of multi-dimension tables. Two common multidimensional schemas are the star 
schema and the snowflake schema. The star schema consists of a fact table with a 
single table for each dimension (Figure 29.7). The snowflake schema is a variation 
on the star schema in which the dimensional tables from a star schema are organized 
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into a hierarchy by normalizing them (Figure 29.8). A fact constellation is a set 
of fact tables that share some dimension tables. Figure 29.9 shows a fact constella-
tion with two fact tables, business results and business forecast. These share the 
dimension table called product. Fact constellations limit the possible queries for 
the warehouse.

Data warehouse storage also utilizes indexing techniques to support high-
performance access (see Chapter 17 for a discussion of indexing). A technique called 
bitmap indexing constructs a bit vector for each value in a domain (column) being 
indexed. It works very well for domains of low cardinality. There is a 1 bit placed in 
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A star schema with fact 
and dimensional tables.
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the jth position in the vector if the jth row contains the value being indexed. For 
example, imagine an inventory of 100,000 cars with a bitmap index on car size. If 
there are four car sizes—economy, compact, mid-size, and full-size—there will be 
four bit vectors, each containing 100,000 bits (12.5kbytes) for a total index size of 50K. 
Bitmap indexing can provide considerable input/output and storage space advan-
tages in low-cardinality domains. With bit vectors, a bitmap index can provide 
 dramatic improvements in comparison, aggregation, and join performance. We 
showed an example of a query on a star schema in Section 19.8, and we also showed 
the star schema’s transformation for efficient execution that uses bitmap indexes.

In a star schema, dimensional data can be indexed to tuples in the fact table by join 
indexing. Join indexes are traditional indexes used to maintain relationships 
between primary key and foreign key values. They relate the values of a dimension 
of a star schema to rows in the fact table. Consider a sales fact table that has city and 
fiscal quarter as dimensions. If there is a join index on city, for each city the join 
index maintains the tuple IDs of tuples containing that city. Join indexes may 
involve multiple dimensions.

Data warehouse storage can facilitate access to summary data by taking further 
advantage of the nonvolatility of data warehouses and a degree of predictability of 
the analyses that will be performed using them. Two approaches have been used: 
(1) smaller tables that include summary data such as quarterly sales or revenue by 
product line, and (2) encoding of level (for example, weekly, quarterly, annual) into 
existing tables. The overhead of creating and maintaining such aggregations would 
likely be excessive in a dynamically changing, transaction-oriented database.

The purpose of master data management (MDM), a popular concept within enter-
prises, is to define the standards, processes, policies, and governance related to the 
critical data entities of the organization. The dimension tables—which in a data 
warehouse physicalize concepts, such as customers, regions and product catego-
ries—represent essentially the master data. Since dimensions are shared across 
multiple facts or reporting data marts, data warehouse designers typically must 
spend a considerable amount of time cleansing and harmonizing these dimensions 
(i.e., reconciling definitional and notional differences across multiple source sys-
tems that the dimension data comes from). As such, table structures containing 
these dimensions become good candidates for special copies of master data that can 
be used in other environments.
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Figure 29.9 
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29.4 Building a Data Warehouse
In constructing a data warehouse, builders should take a broad view of the antici-
pated use of the warehouse. There is no way to anticipate all possible queries or 
analyses during the design phase. However, the design should specifically support 
ad hoc querying; that is, accessing data with any combination of values for the 
attributes that would be meaningful in the dimension or fact tables. For example, a 
marketing-intensive consumer-products company would require different ways of 
organizing the data warehouse than would a nonprofit charity focused on fund 
raising. An appropriate schema should be chosen that reflects anticipated usage.

Acquisition of data for the warehouse involves the following steps:

  1. The data must be extracted from multiple, heterogeneous sources; for exam-
ple, databases or other data feeds such as those containing financial market 
data or environmental data.

  2. Data must be formatted for consistency within the warehouse. Names, 
meanings, and domains of data from unrelated sources must be reconciled. 
For instance, subsidiary companies of a large corporation may have differ-
ent fiscal calendars with quarters ending on different dates, making it diffi-
cult to aggregate financial data by quarter. Various credit cards may report 
their transactions differently, making it difficult to compute all credit sales. 
These format inconsistencies must be resolved.

  3. The data must be cleaned to ensure validity. Data cleaning is an involved 
and complex process that has been identified as the largest labor-demanding 
component of data warehouse construction. For input data, cleaning must 
occur before the data is loaded into the warehouse. Since input data must be 
examined and formatted consistently, data warehouse builders should take 
this opportunity to check each input for validity and quality. Recognizing 
erroneous and incomplete data is difficult to automate, and cleaning that 
requires automatic error correction can be even tougher. Some aspects, such 
as domain checking, are easily coded into data cleaning routines, but auto-
matic recognition of other data problems can be more challenging. (For 
example, one might require that City = ‘San Francisco’ together with State = 
‘CT’ be recognized as an incorrect combination.) After such problems have 
been taken care of, similar data from different sources must be coordinated 
for loading into the warehouse. As data managers in the organization dis-
cover that their data is being cleaned for input into the warehouse, they will 
likely want to upgrade their data with the cleaned data. The process of 
returning cleaned data to the source is called backflushing (see Figure 29.1).

  4. The data must be fitted into the data model of the warehouse. Data from the 
various sources must be represented in the data model of the warehouse. 
Data may have to be converted from relational, object-oriented, or legacy 
databases (network and/or hierarchical) to a multidimensional model.

  5. The data must be loaded into the warehouse. The sheer volume of data in 
the warehouse makes loading the data a significant task. Monitoring tools 
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for loads as well as methods to recover from incomplete or incorrect loads 
are required. With the huge volume of data in the warehouse, incremental 
updating is usually the only feasible approach. The refresh policy will prob-
ably emerge as a compromise that takes into account the answers to the fol-
lowing questions:

 � How up-to-date must the data be?

 � Can the warehouse go offline, and for how long?

 � What are the data interdependencies?

 � What is the storage availability?

 � What are the distribution requirements (such as for replication and parti-
tioning)?

 � What is the loading time (including cleaning, formatting, copying, trans-
mitting, and overhead such as index rebuilding)?

Data in a warehouse can come from multiple sources, geographies, and/or time 
zones. Data loads, therefore, need to be carefully planned and staged. The order 
in which data is loaded into the warehouse is critical; failure to load data in the 
correct order could lead to integrity constraints or semantic rule violations, both 
of which could cause load failures. For example, master data (whether new or 
changed) such as Customer and Product must be loaded prior to the transactions 
that contain them; and invoice data must be loaded before the billing data that 
references it.

As we have said, databases must strike a balance between efficiency in transaction 
processing and support for query requirements (ad hoc user requests), but a data 
warehouse is typically optimized for access from a decision maker’s needs. Data 
storage in a data warehouse reflects this specialization and involves the following 
processes:

 ■ Storing the data according to the data model of the warehouse

 ■ Creating and maintaining required data structures

 ■ Creating and maintaining appropriate access paths

 ■ Providing for time-variant data as new data are added

 ■ Supporting the updating of warehouse data

 ■ Refreshing the data

 ■ Purging data

Although adequate time can be devoted initially to constructing the warehouse, the 
sheer volume of data in the warehouse generally makes it impossible to simply 
reload the warehouse in its entirety later on. Alternatives include selective (partial) 
refreshing of data and separate warehouse versions (which requires double storage 
capacity for the warehouse). When the warehouse uses an incremental data refresh-
ing mechanism, data may need to be purged periodically; for example, a warehouse 
that maintains data on the previous twelve business quarters may periodically purge 
its data each year, or even each quarter.
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Data warehouses must also be designed with full consideration of the environment 
in which they will reside. Important design considerations include the following:

 ■ Usage projections

 ■ The fit of the data model

 ■ Characteristics of available sources

 ■ Design of the meta-data component

 ■ Modular component design

 ■ Design for manageability and change

 ■ Considerations of distributed and parallel architecture

We discuss each of these in turn. Warehouse design is initially driven by usage pro-
jections; that is, by expectations about who will use the warehouse and how they 
will use it. Choice of a data model to support this usage is a key initial decision. 
Usage projections and the characteristics of the warehouse’s data sources are both 
taken into account. Modular design is a practical necessity to allow the warehouse 
to evolve with the organization and its information environment. Additionally, a 
well-built data warehouse must be designed for maintainability, enabling the ware-
house managers to plan for and manage change effectively while providing optimal 
support to users.

You may recall the term meta-data from Chapter 1; meta-data was defined as the 
description of a database; this description includes the database’s schema defini-
tion. The meta-data repository is a key data warehouse component. The meta-data 
repository includes both technical and business meta-data. The first, technical 
meta-data, covers details of acquisition, processing, storage structures, data 
descriptions, warehouse operations and maintenance, and access support function-
ality. The second, business meta-data, includes the relevant business rules and 
organizational details supporting the warehouse.

The architecture of the organization’s distributed computing environment is a 
major determining characteristic for the design of the warehouse. There are two 
basic distributed architectures: the distributed warehouse and the federated ware-
house. For a distributed warehouse, all the issues of distributed databases are rele-
vant; for example, replication, partitioning, communications, and consistency 
concerns. A distributed architecture can provide benefits particularly important to 
warehouse performance, such as improved load balancing, scalability of perfor-
mance, and higher availability. A single replicated meta-data repository would 
reside at each distribution site. The idea of the federated warehouse is like that of 
the federated database: a decentralized confederation of autonomous data ware-
houses, each with its own meta-data repository. Given the magnitude of the chal-
lenge inherent to data warehouses, it is likely that such federations will consist of 
smaller scale components, such as data marts.

Businesses are becoming dissatisfied with the traditional data warehousing tech-
niques and technologies. New analytic requirements are driving new analytic appli-
ances; examples include Netezza of IBM, Greenplum of EMC, Hana of SAP, and 
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ParAccel of Tableau Software. Big data analytics have driven Hadoop and other 
specialized databases such as graph and key-value stores into the next generation of 
data warehousing (see Chapter 25 for a discussion of big data technology based on 
Hadoop). Data virtualization platforms such as the one from Cisco4 will enable 
such logical data warehouses to be built in the future.

29.5  Typical Functionality of a Data Warehouse
Data warehouses exist to facilitate complex, data-intensive, and frequent ad hoc 
queries. Accordingly, data warehouses must provide far greater and more efficient 
query support than is demanded of transactional databases. The data warehouse 
access component supports enhanced spreadsheet functionality, efficient query 
processing, structured queries, ad hoc queries, data mining, and materialized views. 
In particular, enhanced spreadsheet functionality includes support for state-of-the-
art spreadsheet applications (for example, MS Excel) as well as for OLAP applica-
tions programs. These enhanced spreadsheet products offer preprogrammed 
functionalities such as the following:

 ■ Roll-up (also drill-up). Data is summarized with increasing generalization 
(for example, weekly to quarterly to annually).

 ■ Drill-down. Increasing levels of detail are revealed (the complement of 
roll-up).

 ■ Pivot. Cross tabulation (also referred to as rotation) is performed.

 ■ Slice and dice. Projection operations are performed on the dimensions.

 ■ Sorting. Data is sorted by ordinal value.

 ■ Selection. Data is filtered by value or range.

 ■ Derived (computed) attributes. Attributes are computed by operations on 
stored and derived values.

Because data warehouses are free from the restrictions of the transactional environ-
ment, there is an increased efficiency in query processing. Among the tools and 
techniques used are query transformation; index intersection and union; special 
ROLAP (relational OLAP) and MOLAP (multidimensional OLAP) functions; SQL 
extensions; advanced join methods; and intelligent scanning (as in piggy-backing 
multiple queries).

There is also a HOLAP (hybrid OLAP) option available that combines both ROLAP 
and MOLAP. For summary-type information, HOLAP leverages cube technology 
(using MOLAP) for faster performance. When detailed information is needed, 
HOLAP can “drill through” from the cube into the underlying relational data 
(which is in the ROLAP component).

4See the description of Cisco’s Data Virtualization Platform at http://www.compositesw.com/products-
services/data-virtualization-platform/
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Improved performance has also been attained with parallel processing. Parallel 
server architectures include symmetric multiprocessor (SMP), cluster, and mas-
sively parallel processing (MPP), and combinations of these.

Knowledge workers and decision makers use tools ranging from parametric queries 
to ad hoc queries to data mining. Thus, the access component of the data ware-
house must provide support for structured queries (both parametric and ad hoc). 
Together, these make up a managed query environment. Data mining itself uses 
techniques from statistical analysis and artificial intelligence. Statistical analysis can 
be performed by advanced spreadsheets, by sophisticated statistical analysis soft-
ware, or by custom-written programs. Techniques such as lagging, moving aver-
ages, and regression analysis are also commonly employed. Artificial intelligence 
techniques, which may include genetic algorithms and neural networks, are used 
for classification and are employed to discover knowledge from the data warehouse 
that may be unexpected or difficult to specify in queries. (We discussed data mining 
in detail in Chapter 28.)

29.6 Data Warehouse versus Views
Some people consider data warehouses to be an extension of database views. Ear-
lier we mentioned materialized views as one way of meeting requirements for 
improved access to data (see Section 7.3 for a discussion of views). Materialized 
views have been explored for their performance enhancement. In Section 19.2.4, 
we discussed how materialized views are maintained and used as a part of query 
optimization. Views, however, provide only a subset of the functions and capabili-
ties of data warehouses. Views and data warehouses are similar in some aspects; 
for example, they both have read-only extracts from databases and they allow 
 orientation by subject. However, data warehouses are different from views in the 
following ways:

 ■ Data warehouses exist as persistent storage instead of being materialized 
on demand.

 ■ Data warehouses are not just relational views; they are multidimensional 
views with levels of aggregation.

 ■ Data warehouses can be indexed to optimize performance. Views cannot be 
indexed independent of the underlying databases.

 ■ Data warehouses characteristically provide specific support of functionality; 
views cannot.

 ■ Data warehouses provide large amounts of integrated and often temporal 
data, generally more than is contained in one database, whereas views are an 
extract of a database.

 ■ Data warehouses bring in data from multiple sources via a complex ETL 
process that involves cleaning, pruning, and summarization, whereas views 
are an extract from a database through a predefined query.
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29.7  Difficulties of Implementing  
Data Warehouses

Some significant operational issues arise with data warehousing: construction, 
administration, and quality control. Project management—the design, construc-
tion, and implementation of the warehouse—is an important and challenging 
consideration that should not be underestimated. The building of an enterprise-
wide warehouse in a large organization is a major undertaking, potentially taking 
years from conceptualization to implementation. Because of the difficulty and 
amount of lead time required for such an undertaking, the widespread develop-
ment and deployment of data marts may provide an attractive alternative, espe-
cially to those organizations with urgent needs for OLAP, DSS, and/or data 
mining support.

The administration of a data warehouse is an intensive enterprise, proportional to 
the size and complexity of the warehouse. An organization that attempts to admin-
ister a data warehouse must realistically understand the complex nature of its 
administration. Although designed for read access, a data warehouse is no more a 
static structure than any of its information sources. Source databases can be 
expected to evolve. The warehouse’s schema and acquisition component must be 
expected to be updated to handle these evolutions.

A significant issue in data warehousing is the quality control of data. Both quality 
and consistency of data—especially as it relates to dimension data, which in turn 
affects master data management—are major concerns. Although the data passes 
through a cleaning function during acquisition, quality and consistency remain sig-
nificant issues for the database administrator and designer alike. Melding data from 
heterogeneous and disparate sources is a major challenge given differences in nam-
ing, domain definitions, identification numbers, and the like. Every time a source 
database changes, the data warehouse administrator must consider the possible 
interactions with other elements of the warehouse.

Usage projections should be estimated conservatively prior to construction of the 
data warehouse and should be revised continually to reflect current requirements. 
As utilization patterns become clear and change over time, storage and access paths 
can be tuned to remain optimized for support of the organization’s use of its ware-
house. This activity should continue throughout the life of the warehouse in order 
to remain ahead of the demand. The warehouse should also be designed to accom-
modate the addition and attrition of data sources without major redesign. Sources 
and source data will evolve, and the warehouse must accommodate such change. 
Fitting the available source data into the data model of the warehouse will be a con-
tinual challenge, a task that is as much art as science. Because there is continual 
rapid change in technologies, both the requirements and capabilities of the ware-
house will change considerably over time. Additionally, data warehousing technol-
ogy itself will continue to evolve for some time, so component structures and 
functionalities will continually be upgraded. This certain change is an excellent 
motivation for fully modular design of components.
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Administration of a data warehouse will require far broader skills than are needed for 
traditional database administration. Often, different parts of a large organization view 
the data differently. A team of highly skilled technical experts with overlapping areas of 
expertise will likely be needed, rather than a single individual. The team must also pos-
sess a thorough knowledge of the business and specifically the rules and regulations, the 
constraints and the policies of the enterprise. Like database administration, data ware-
house administration is only partly technical; a large part of the responsibility requires 
working effectively with all the members of the organization who have an interest in the 
data warehouse. However difficult that can be at times for database administrators, it is 
that much more challenging for data warehouse administrators because the scope of 
their responsibilities is considerably broader than that faced by database administrators.

Design of the management function and selection of the management team for a 
database warehouse are crucial. Managing the data warehouse in a large organiza-
tion will surely be a major task. Many commercial tools are available to support 
management functions. Effective data warehouse management will be a team func-
tion that requires a wide set of technical skills, careful coordination, and effective 
leadership. Just as we must prepare for the evolution of the warehouse, we must also 
recognize that the skills of the management team will, of necessity, evolve with it.

29.8 Summary
In this chapter, we surveyed the field known as data warehousing. Data warehousing 
can be seen as a process that requires a variety of activities to precede it. In contrast, 
data mining (see Chapter 28) may be thought of as an activity that draws knowledge 
from an existing data warehouse or other sources of data. We first introduced in Sec-
tion 29.1 key concepts related to a data warehouse and defined terms such as OLAP 
and DSS and contrasted them with OLTP. We presented a general architecture of 
data warehousing systems. We discussed in Section 29.2 the fundamental characteris-
tics of data warehouses and their different types. We then discussed in Section 29.3 
the modeling of data in warehouses using what is popularly known as the multidi-
mensional data model. Different types of tables and schemas were discussed. We gave 
an elaborate account of the processes and design considerations involved in building 
a data warehouse in Section 29.4. We then presented the typical special functionality 
associated with a data warehouse in Section 29.5. The view concept from the rela-
tional model was contrasted with the multidimensional view of data in data ware-
houses in Section 29.6. We finally discussed in Section 29.7 the difficulties of 
implementing data warehouses and the challenges of data warehouse administration.

Review Questions
 29.1. What is a data warehouse? How does it differ from a database?

 29.2. Define the following terms: OLAP (online analytical processing), ROLAP 
(relational OLAP), MOLAP (multidimensional OLAP), and DSS (decision-
support systems).
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 29.3. Describe the characteristics of a data warehouse. Divide them into the func-
tionality of a warehouse and the advantages users derive from the warehouse.

 29.4. What is the multidimensional data model? How is it used in data warehousing?

 29.5. Define the following terms: star schema, snowflake schema, fact constella-
tion, data marts.

 29.6. What types of indexes are built for a warehouse? Illustrate the uses for each 
with an example.

 29.7. Describe the steps of building a warehouse.

 29.8. What considerations play a major role in the design of a warehouse?

 29.9. Describe the functions a user can perform on a data warehouse, and illustrate 
the results of these functions on a sample multidimensional data warehouse.

 29.10. How is the relational view concept similar to a data warehouse and how are 
they different?

 29.11. List the difficulties in implementing a data warehouse.

 29.12. List the ongoing issues and research problems pertaining to data warehousing.

 29.13. What is master data management? How is it related to data warehousing?

 29.14. What are logical data warehouses? Do an online search for the data virtual-
ization platform from Cisco, and disvcuss how it will help in building a logi-
cal data warehouse?

Selected Bibliography
Inmon (1992, 2005) is credited for giving the term wide acceptance. Codd and Salley 
(1993) popularized the term online analytical processing (OLAP) and defined a set of 
characteristics for data warehouses to support OLAP. Kimball (1996) is known for 
his contribution to the development of the data warehousing field. Mattison (1996) 
is one of the several books on data warehousing that gives a comprehensive analysis 
of techniques available in data warehouses and the strategies companies should use 
in deploying them. Ponniah (2010) gives a very good practical overview of the data 
warehouse building process from requirements collection to deployment mainte-
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30
Database Security

This chapter discusses techniques for securing data-
bases against a variety of threats. It also presents 

schemes of providing access privileges to authorized users. Some of the security 
threats to databases—such as SQL injection—will be presented. At the end of the 
chapter, we summarize how a mainstream RDBMS—specifically, the Oracle sys-
tem—provides different types of security. We start in Section 30.1 with an intro-
duction to security issues and the threats to databases, and we give an overview of 
the control measures that are covered in the rest of this chapter. We also comment 
on the relationship between data security and privacy as it applies to personal infor-
mation. Section 30.2 discusses the mechanisms used to grant and revoke privileges 
in relational database systems and in SQL, mechanisms that are often referred to as 
discretionary access control. In Section 30.3, we present an overview of the mecha-
nisms for enforcing multiple levels of security—a particular concern in database 
system security that is known as mandatory access control. Section 30.3 also intro-
duces the more recently developed strategies of role-based access control, and 
label-based and row-based security. Section 30.3 also provides a brief discussion of 
XML access control. Section 30.4 discusses a major threat to databases—SQL injec-
tion—and discusses some of the proposed preventive measures against it. Sec-
tion 30.5 briefly discusses the security problem in statistical databases. Section 30.6 
introduces the topic of flow control and mentions problems associated with covert 
channels. Section 30.7 provides a brief summary of encryption and symmetric key 
and asymmetric (public) key infrastructure schemes. It also discusses digital certifi-
cates. Section 30.8 introduces privacy-preserving techniques, and Section 30.9 pres-
ents the current challenges to database security. In Section 30.10, we discuss Oracle 
label-based security. Finally, Section 30.11 summarizes the chapter. Readers who 
are interested only in basic database security mechanisms will find it sufficient to 
cover the material in Sections 30.1 and 30.2.

chapter 30
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30.1 Introduction to Database Security Issues1

30.1.1 Types of Security
Database security is a broad area that addresses many issues, including the following:

 ■ Various legal and ethical issues regarding the right to access certain infor-
mation—for example, some information may be deemed to be private and 
cannot be accessed legally by unauthorized organizations or persons. In the 
United States, there are numerous laws governing privacy of information.

 ■ Policy issues at the governmental, institutional, or corporate level regarding 
what kinds of information should not be made publicly available—for 
example, credit ratings and personal medical records.

 ■ System-related issues such as the system levels at which various security 
functions should be enforced—for example, whether a security function 
should be handled at the physical hardware level, the operating system level, 
or the DBMS level.

 ■ The need in some organizations to identify multiple security levels and to 
categorize the data and users based on these classifications—for example, 
top secret, secret, confidential, and unclassified. The security policy of the 
organization with respect to permitting access to various classifications of 
data must be enforced.

Threats to Databases. Threats to databases can result in the loss or degradation 
of some or all of the following commonly accepted security goals: integrity, avail-
ability, and confidentiality.

 ■ Loss of integrity. Database integrity refers to the requirement that informa-
tion be protected from improper modification. Modification of data includes 
creating, inserting, and updating data; changing the status of data; and delet-
ing data. Integrity is lost if unauthorized changes are made to the data by 
either intentional or accidental acts. If the loss of system or data integrity is 
not corrected, continued use of the contaminated system or corrupted data 
could result in inaccuracy, fraud, or erroneous decisions.

 ■ Loss of availability. Database availability refers to making objects available to a 
human user or a program who/which has a legitimate right to those data objects. 
Loss of availability occurs when the user or program cannot access these objects.

 ■ Loss of confidentiality. Database confidentiality refers to the protection of 
data from unauthorized disclosure. The impact of unauthorized disclosure 
of confidential information can range from violation of the Data Privacy Act 
to the jeopardization of national security. Unauthorized, unanticipated, or 
unintentional disclosure could result in loss of public confidence, embar-
rassment, or legal action against the organization.

1The substantial contributions of Fariborz Farahmand, Bharath Rengarajan, and Frank Rietta to this and 
subsequent sections of this chapter is much appreciated.
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Database Security: Not an Isolated Concern. When considering the threats 
facing databases, it is important to remember that the database management sys-
tem alone cannot be responsible for maintaining the confidentiality, integrity, and 
availability of the data. Rather, the database works as part of a network of services, 
including applications, Web servers, firewalls, SSL terminators, and security moni-
toring systems. Because security of an overall system is only as strong as its weakest 
link, a database may be compromised even if it would have been perfectly secure on 
its own merits.

To protect databases against the threats discussed above, it is common to imple-
ment four kinds of control measures: access control, inference control, flow control, 
and encryption. We discuss each of these in this chapter.

In a multiuser database system, the DBMS must provide techniques to enable 
certain users or user groups to access selected portions of a database without 
gaining access to the rest of the database. This is particularly important when a 
large integrated database is to be used by many different users within the same 
organization. For example, sensitive information such as employee salaries or 
performance reviews should be kept confidential from most of the database sys-
tem’s users. A DBMS typically includes a database security and authorization 
subsystem that is responsible for ensuring the security of portions of a database 
against unauthorized access. It is now customary to refer to two types of database 
security mechanisms:

 ■ Discretionary security mechanisms. These are used to grant privileges to 
users, including the capability to access specific data files, records, or fields 
in a specified mode (such as read, insert, delete, or update).

 ■ Mandatory security mechanisms. These are used to enforce multilevel 
security by classifying the data and users into various security classes (or 
levels) and then implementing the appropriate security policy of the organi-
zation. For example, a typical security policy is to permit users at a certain 
classification (or clearance) level to see only the data items classified at the 
user’s own (or lower) classification level. An extension of this is role-based 
security, which enforces policies and privileges based on the concept of orga-
nizational roles. (See Section 30.4.2 for role based access control.)

We discuss discretionary security in Section 30.2 and mandatory and role-based 
security in Section 30.3.

30.1.2 Control Measures
Four main control measures are used to provide security of data in databases:

 ■ Access control

 ■ Inference control

 ■ Flow control

 ■ Data encryption
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A security problem common to computer systems is that of preventing unauthor-
ized persons from accessing the system itself, either to obtain information or to 
make malicious changes in a portion of the database. The security mechanism of a 
DBMS must include provisions for restricting access to the database system as a 
whole. This function, called access control, is handled by creating user accounts 
and passwords to control the login process by the DBMS. We discuss access control 
techniques in Section 30.1.3.

Statistical databases are used to provide statistical information or summaries of 
values based on various criteria. For example, a database for population statistics 
may provide statistics based on age groups, income levels, household size, educa-
tion levels, and other criteria. Statistical database users such as government statis-
ticians or market research firms are allowed to access the database to retrieve 
statistical information about a population but not to access the detailed confiden-
tial information about specific individuals. Security for statistical databases must 
ensure that information about individuals cannot be accessed. It is sometimes 
possible to deduce or infer certain facts concerning individuals from queries that 
involve only summary statistics on groups; consequently, this must not be per-
mitted either. This problem, called statistical database security, is discussed 
briefly in Section 30.4. The corresponding control measures are called inference 
control measures.

Another security issue is that of flow control, which prevents information from 
flowing in such a way that it reaches unauthorized users. Flow control is discussed 
in Section 30.6. Covert channels are pathways on which information flows implic-
itly in ways that violate the security policy of an organization. We briefly discuss 
some issues related to covert channels in Section 30.6.1.

A final control measure is data encryption, which is used to protect sensitive data 
(such as credit card numbers) that is transmitted via some type of communications 
network. Encryption can be used to provide additional protection for sensitive por-
tions of a database as well. The data is encoded using some coding algorithm. An 
unauthorized user who accesses encoded data will have difficulty deciphering it, 
but authorized users are given decoding or decrypting algorithms (or keys) to deci-
pher the data. Encrypting techniques that are very difficult to decode without a key 
have been developed for military applications. However, encrypted database 
records are used today in both private organizations and governmental and mili-
tary applications. In fact, state and federal laws prescribe encryption for any system 
that deals with legally protected personal information. For example, according to 
Georgia Law (OCGA 10-1-911):

“Personal information” means an individual’s first name or first initial and last 
name in combination with any one or more of the following data elements, 
when either the name or the data elements are not encrypted or redacted:

 � Social security number;

 � Driver’s license number or state identification card number;
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 � Account number, credit card number, or debit card number, if circum-
stances exist wherein such a number could be used without additional 
identifying information, access codes, or passwords;

 � Account passwords or personal identification numbers or other access codes

Because laws defining what constitutes personal information vary from state to state, 
systems must protect individuals’ privacy and enforce privacy measures adequately. 
Discretionary access control (see Section 30.2) alone may not suffice. Section 30.7 
briefly discusses encryption techniques, including popular techniques such as public 
key encryption (which is heavily used to support Web-based transactions against 
databases) and digital signatures (which are used in personal communications).

A comprehensive discussion of security in computer systems and databases is outside 
the scope of this text. We give only a brief overview of database security techniques 
here. Network- and communication-based security is also a vast topic that we do not 
cover. For a comprehensive discussion, the interested reader can refer to several of the 
references discussed in the Selected Bibliography at the end of this chapter.

30.1.3 Database Security and the DBA
As we discussed in Chapter 1, the database administrator (DBA) is the central 
authority for managing a database system. The DBA’s responsibilities include 
granting privileges to users who need to use the system and classifying users and 
data in accordance with the policy of the organization. The DBA has a DBA account 
in the DBMS, sometimes called a system or superuser account, which provides 
powerful capabilities that are not made available to regular database accounts and 
users.2 DBA-privileged commands include commands for granting and revoking 
privileges to individual accounts, users, or user groups and for performing the fol-
lowing types of actions:

  1. Account creation. This action creates a new account and password for a 
user or a group of users to enable access to the DBMS.

  2. Privilege granting. This action permits the DBA to grant certain privileges 
to certain accounts.

  3. Privilege revocation. This action permits the DBA to revoke (cancel) cer-
tain privileges that were previously given to certain accounts.

  4. Security level assignment. This action consists of assigning user accounts to 
the appropriate security clearance level.

The DBA is responsible for the overall security of the database system. Action 1 in 
the preceding list is used to control access to the DBMS as a whole, whereas actions 
2 and 3 are used to control discretionary database authorization, and action 4 is 
used to control mandatory authorization.

2This account is similar to the root or superuser accounts that are given to computer system administra-
tors and that allow access to restricted operating system commands.
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30.1.4 Access Control, User Accounts, and Database Audits
Whenever a person or a group of persons needs to access a database system, the 
individual or group must first apply for a user account. The DBA will then create a 
new account number and password for the user if there is a legitimate need to 
access the database. The user must log in to the DBMS by entering the account 
number and password whenever database access is needed. The DBMS checks that 
the account number and password are valid; if they are, the user is permitted to use 
the DBMS and to access the database. Application programs can also be considered 
users and are required to log in to the database (see Chapter 10).

It is straightforward to keep track of database users and their accounts and pass-
words by creating an encrypted table or file with two fields: AccountNumber and 
Password. This table can easily be maintained by the DBMS. Whenever a new 
account is created, a new record is inserted into the table. When an account is can-
celed, the corresponding record must be deleted from the table.

The database system must also keep track of all operations on the database that are 
applied by a certain user throughout each login session, which consists of the 
sequence of database interactions that a user performs from the time of logging in 
to the time of logging off. When a user logs in, the DBMS can record the user’s 
account number and associate it with the computer or device from which the user 
logged in. All operations applied from that computer or device are attributed to the 
user’s account until the user logs off. It is particularly important to keep track of 
update operations that are applied to the database so that, if the database is tam-
pered with, the DBA can determine which user did the tampering.

To keep a record of all updates applied to the database and of particular users who 
applied each update, we can modify the system log. Recall from Chapters 20 and 22 
that the system log includes an entry for each operation applied to the database that 
may be required for recovery from a transaction failure or system crash. We can 
expand the log entries so that they also include the account number of the user and 
the online computer or device ID that applied each operation recorded in the log. If 
any tampering with the database is suspected, a database audit is performed, which 
consists of reviewing the log to examine all accesses and operations applied to the 
database during a certain time period. When an illegal or unauthorized operation is 
found, the DBA can determine the account number used to perform the operation. 
Database audits are particularly important for sensitive databases that are updated 
by many transactions and users, such as a banking database that can be updated by 
thousands of bank tellers. A database log that is used mainly for security purposes 
serves as an audit trail.

30.1.5 Sensitive Data and Types of Disclosures
Sensitivity of data is a measure of the importance assigned to the data by its 
owner for the purpose of denoting its need for protection. Some databases con-
tain only sensitive data whereas other databases may contain no sensitive data at 
all. Handling databases that fall at these two extremes is relatively easy because 
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such databases can be covered by access control, which is explained in the next 
section. The situation becomes tricky when some of the data is sensitive whereas 
other data is not.

Several factors can cause data to be classified as sensitive:

  1. Inherently sensitive. The value of the data itself may be so revealing or con-
fidential that it becomes sensitive—for example, a person’s salary or who a 
patient has HIV/AIDS.

  2. From a sensitive source. The source of the data may indicate a need for 
secrecy—for example, an informer whose identity must be kept secret.

  3. Declared sensitive. The owner of the data may have explicitly declared it as 
sensitive.

  4. A sensitive attribute or sensitive record. The particular attribute or record 
may have been declared sensitive—for example, the salary attribute of an 
employee or the salary history record in a personnel database.

  5. Sensitive in relation to previously disclosed data. Some data may not be 
sensitive by itself but will become sensitive in the presence of some other 
data—for example, the exact latitude and longitude information for a loca-
tion where some previously recorded event happened that was later deemed 
sensitive.

It is the responsibility of the database administrator and security administrator to 
collectively enforce the security policies of an organization. This dictates whether 
access should or should not be permitted to a certain database attribute (also known 
as a table column or a data element) for individual users or for categories of users. 
Several factors must be considered before deciding whether it is safe to reveal the 
data. The three most important factors are data availability, access acceptability, 
and authenticity assurance.

  1. Data availability. If a user is updating a field, then this field becomes inac-
cessible and other users should not be able to view this data. This blocking 
is only temporary and only to ensure that no user sees any inaccurate data. 
This is typically handled by the concurrency control mechanism (see 
Chapter 21).

  2. Access acceptability. Data should only be revealed to authorized users. A 
database administrator may also deny access to a user request even if the 
request does not directly access a sensitive data item, on the grounds that the 
requested data may reveal information about the sensitive data that the user 
is not authorized to have.

  3. Authenticity assurance. Before granting access, certain external character-
istics about the user may also be considered. For example, a user may only 
be permitted access during working hours. The system may track previous 
queries to ensure that a combination of queries does not reveal sensitive 
data. The latter is particularly relevant to statistical database queries (see 
Section 30.5).
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The term precision, when used in the security area, refers to allowing as much as 
possible of the data to be available, subject to protecting exactly the subset of data 
that is sensitive. The definitions of security versus precision are as follows:

 ■ Security: Means of ensuring that data is kept safe from corruption and that 
access to it is suitably controlled. To provide security means to disclose only 
nonsensitive data and to reject any query that references a sensitive field.

 ■ Precision: To protect all sensitive data while disclosing or making avail-
able as much nonsensitive data as possible. Note that this definition of pre-
cision is not related to the precision of information retrieval defined in 
Section 27.6.1.

The ideal combination is to maintain perfect security with maximum precision. If 
we want to maintain security, precision must be sacrificed to some degree. Hence 
there is typically a tradeoff between security and precision.

30.1.6  Relationship between Information Security  
and Information Privacy

The rapid advancement of the use of information technology (IT) in industry, govern-
ment, and academia raises challenging questions and problems regarding the protec-
tion and use of personal information. Questions of who has what rights to information 
about individuals for which purposes become more important as we move toward a 
world in which it is technically possible to know just about anything about anyone.

Deciding how to design privacy considerations in technology for the future includes 
philosophical, legal, and practical dimensions. There is a considerable overlap 
between issues related to access to resources (security) and issues related to appro-
priate use of information (privacy). We now define the difference between security 
and privacy.

Security in information technology refers to many aspects of protecting a system 
from unauthorized use, including authentication of users, information encryption, 
access control, firewall policies, and intrusion detection. For our purposes here, we 
will limit our treatment of security to the concepts associated with how well a sys-
tem can protect access to information it contains. The concept of privacy goes 
beyond security. Privacy examines how well the use of personal information that 
the system acquires about a user conforms to the explicit or implicit assumptions 
regarding that use. From an end user perspective, privacy can be considered from 
two different perspectives: preventing storage of personal information versus ensur-
ing appropriate use of personal information.

For the purposes of this chapter, a simple but useful definition of privacy is the abil-
ity of individuals to control the terms under which their personal information is 
acquired and used. In summary, security involves technology to ensure that infor-
mation is appropriately protected. Security is a required building block for privacy. 
Privacy involves mechanisms to support compliance with some basic principles and 
other explicitly stated policies. One basic principle is that people should be informed 
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about information collection, told in advance what will be done with their informa-
tion, and given a reasonable opportunity to approve or disapprove of such use of the 
information. A related concept, trust, relates to both security and privacy and is seen 
as increasing when it is perceived that both security and privacy are provided for.

30.2  Discretionary Access Control Based  
on Granting and Revoking Privileges

The typical method of enforcing discretionary access control in a database system 
is based on the granting and revoking of privileges. Let us consider privileges in the 
context of a relational DBMS. In particular, we will discuss a system of privileges 
somewhat similar to the one originally developed for the SQL language (see Chap-
ters 7 and 8). Many current relational DBMSs use some variation of this technique. 
The main idea is to include statements in the query language that allow the DBA 
and selected users to grant and revoke privileges.

30.2.1 Types of Discretionary Privileges
In SQL2 and later versions,3 the concept of an authorization identifier is used to 
refer, roughly speaking, to a user account (or group of user accounts). For simplic-
ity, we will use the words user or account interchangeably in place of authorization 
identifier. The DBMS must provide selective access to each relation in the database 
based on specific accounts. Operations may also be controlled; thus, having an 
account does not necessarily entitle the account holder to all the functionality pro-
vided by the DBMS. Informally, there are two levels for assigning privileges to use 
the database system:

 ■ The account level. At this level, the DBA specifies the particular privileges 
that each account holds independently of the relations in the database.

 ■ The relation (or table) level. At this level, the DBA can control the privilege 
to access each individual relation or view in the database.

The privileges at the account level apply to the capabilities provided to the account 
itself and can include the CREATE SCHEMA or CREATE TABLE privilege, to create a 
schema or base relation; the CREATE VIEW privilege; the ALTER privilege, to apply 
schema changes such as adding or removing attributes from relations; the DROP 
privilege, to delete relations or views; the MODIFY privilege, to insert, delete, or 
update tuples; and the SELECT privilege, to retrieve information from the database 
by using a SELECT query. Notice that these account privileges apply to the account 
in general. If a certain account does not have the CREATE TABLE privilege, no rela-
tions can be created from that account. Account-level privileges are not defined as 
part of SQL2; they are left to the DBMS implementers to define. In earlier versions 
of SQL, a CREATETAB privilege existed to give an account the privilege to create 
tables (relations).

3Discretionary privileges were incorporated into SQL2 and are applicable to later versions of SQL.
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The second level of privileges applies to the relation level, which includes base rela-
tions and virtual (view) relations. These privileges are defined for SQL2. In the fol-
lowing discussion, the term relation may refer either to a base relation or to a view, 
unless we explicitly specify one or the other. Privileges at the relation level specify 
for each user the individual relations on which each type of command can be 
applied. Some privileges also refer to individual columns (attributes) of relations. 
SQL2 commands provide privileges at the relation and attribute level only. Although 
this distinction is general, it makes it difficult to create accounts with limited privi-
leges. The granting and revoking of privileges generally follow an authorization 
model for discretionary privileges known as the access matrix model, where the 
rows of a matrix M represent subjects (users, accounts, programs) and the columns 
represent objects (relations, records, columns, views, operations). Each position 
M(i, j) in the matrix represents the types of privileges (read, write, update) that sub-
ject i holds on object j.

To control the granting and revoking of relation privileges, each relation R in a 
database is assigned an owner account, which is typically the account that was used 
when the relation was created in the first place. The owner of a relation is given all 
privileges on that relation. In SQL2, the DBA can assign an owner to a whole 
schema by creating the schema and associating the appropriate authorization iden-
tifier with that schema, using the CREATE SCHEMA command (see Section 7.1.1). 
The owner account holder can pass privileges on any of the owned relations to 
other users by granting privileges to their accounts. In SQL, the following types of 
privileges can be granted on each individual relation R:

 ■ SELECT (retrieval or read) privilege on R. Gives the account retrieval privi-
lege. In SQL, this gives the account the privilege to use the SELECT state-
ment to retrieve tuples from R.

 ■ Modification privileges on R. This gives the account the capability to mod-
ify the tuples of R. In SQL, this includes three privileges: UPDATE, DELETE, 
and INSERT. These correspond to the three SQL commands (see Sec-
tion 7.4) for modifying a table R. Additionally, both the INSERT and UPDATE 
privileges can specify that only certain attributes of R can be modified by the 
account.

 ■ References privilege on R. This gives the account the capability to reference 
(or refer to) a relation R when specifying integrity constraints. This privilege 
can also be restricted to specific attributes of R.

Notice that to create a view, the account must have the SELECT privilege on all rela-
tions involved in the view definition in order to specify the query that corresponds 
to the view.

30.2.2 Specifying Privileges through the Use of Views
The mechanism of views is an important discretionary authorization mechanism in 
its own right. For example, if the owner A of a relation R wants another account B 
to be able to retrieve only some fields of R, then A can create a view V of R that 
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includes only those attributes and then grant SELECT on V to B. The same applies 
to limiting B to retrieving only certain tuples of R; a view V′ can be created by 
defining the view by means of a query that selects only those tuples from R that A 
wants to allow B to access. We will illustrate this discussion with the example given 
in Section 30.2.5.

30.2.3 Revoking of Privileges
In some cases, it is desirable to grant a privilege to a user temporarily. For example, 
the owner of a relation may want to grant the SELECT privilege to a user for a spe-
cific task and then revoke that privilege once the task is completed. Hence, a mech-
anism for revoking privileges is needed. In SQL, a REVOKE command is included 
for the purpose of canceling privileges. We will see how the REVOKE command is 
used in the example in Section 30.2.5.

30.2.4 Propagation of Privileges Using the GRANT OPTION
Whenever the owner A of a relation R grants a privilege on R to another account B, 
the privilege can be given to B with or without the GRANT OPTION. If the GRANT 
OPTION is given, this means that B can also grant that privilege on R to other 
accounts. Suppose that B is given the GRANT OPTION by A and that B then grants 
the privilege on R to a third account C, also with the GRANT OPTION. In this way, 
privileges on R can propagate to other accounts without the knowledge of the 
owner of R. If the owner account A now revokes the privilege granted to B, all the 
privileges that B propagated based on that privilege should automatically be revoked 
by the system.

It is possible for a user to receive a certain privilege from two or more sources. For 
example, A4 may receive a certain UPDATE R privilege from both A2 and A3. In such 
a case, if A2 revokes this privilege from A4, A4 will still continue to have the privilege 
by virtue of having been granted it from A3. If A3 later revokes the privilege from A4, 
A4 totally loses the privilege. Hence, a DBMS that allows propagation of privileges 
must keep track of how all the privileges were granted in the form of some internal 
log so that revoking of privileges can be done correctly and completely.

30.2.5  An Example to Illustrate Granting and Revoking  
of Privileges

Suppose that the DBA creates four accounts—A1, A2, A3, and A4—and wants only 
A1 to be able to create base relations. To do this, the DBA must issue the following 
GRANT command in SQL:

GRANT CREATETAB TO A1;

The CREATETAB (create table) privilege gives account A1 the capability to create 
new database tables (base relations) and is hence an account privilege. This privi-
lege was part of earlier versions of SQL but is now left to each individual system 
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implementation to define. Note that A1 , A2, and so forth may be individuals, like 
John in IT department or Mary in marketing; but they may also be applications or 
programs that want to access a database.

In SQL2, the same effect can be accomplished by having the DBA issue a CREATE 
SCHEMA command, as follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

User account A1 can now create tables under the schema called EXAMPLE. To con-
tinue our example, suppose that A1 creates the two base relations EMPLOYEE and 
DEPARTMENT shown in Figure 30.1; A1 is then the owner of these two relations and 
hence has all the relation privileges on each of them.

Next, suppose that account A1 wants to grant to account A2 the privilege to insert and 
delete tuples in both of these relations. However, A1 does not want A2 to be able to 
propagate these privileges to additional accounts. A1 can issue the following command:

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

Notice that the owner account A1 of a relation automatically has the GRANT OPTION, 
allowing it to grant privileges on the relation to other accounts. However, account A2 
cannot grant INSERT and DELETE privileges on the EMPLOYEE and DEPARTMENT 
tables because A2 was not given the GRANT OPTION in the preceding command.

Next, suppose that A1 wants to allow account A3 to retrieve information from either 
of the two tables and also to be able to propagate the SELECT privilege to other 
accounts. A1 can issue the following command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

The clause WITH GRANT OPTION means that A3 can now propagate the privilege to 
other accounts by using GRANT. For example, A3 can grant the SELECT privilege on 
the EMPLOYEE relation to A4 by issuing the following command:

GRANT SELECT ON EMPLOYEE TO A4;

Notice that A4 cannot propagate the SELECT privilege to other accounts because 
the GRANT OPTION was not given to A4.

Now suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE 
relation from A3; A1 then can issue this command:

REVOKE SELECT ON EMPLOYEE FROM A3;

DEPARTMENT

DnameDnumber Mgr_ssn

Name Bdate Address Sex Salary Dno

EMPLOYEE

Ssn

Figure 30.1 
Schemas for the two relations 
EMPLOYEE and DEPARTMENT.
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The DBMS must now revoke the SELECT privilege on EMPLOYEE from A3, and it 
must also automatically revoke the SELECT privilege on EMPLOYEE from A4. 
This is because A3 granted that privilege to A4, but A3 does not have the privilege 
any more.

Next, suppose that A1 wants to give back to A3 a limited capability to SELECT from 
the EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege. 
The limitation is to retrieve only the Name, Bdate, and Address attributes and only 
for the tuples with Dno = 5. A1 then can create the following view:

CREATE VIEW A3EMPLOYEE AS
SELECT Name, Bdate, Address
FROM EMPLOYEE
WHERE Dno = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 
as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that A1 wants to allow A4 to update only the Salary attribute of 
EMPLOYEE; A1 can then issue the following command:

GRANT UPDATE ON EMPLOYEE (Salary) TO A4;

The UPDATE and INSERT privileges can specify particular attributes that may be 
updated or inserted in a relation. Other privileges (SELECT, DELETE) are not attri-
bute specific, because this specificity can easily be controlled by creating the appro-
priate views that include only the desired attributes and granting the corresponding 
privileges on the views. However, because updating views is not always possible (see 
Chapter 8), the UPDATE and INSERT privileges are given the option to specify the 
particular attributes of a base relation that may be updated.

30.2.6 Specifying Limits on Propagation of Privileges
Techniques to limit the propagation of privileges have been developed, although 
they have not yet been implemented in most DBMSs and are not a part of SQL. 
Limiting horizontal propagation to an integer number i means that an account B 
given the GRANT OPTION can grant the privilege to at most i other accounts. 
 Vertical propagation is more complicated; it limits the depth of the granting of 
privileges. Granting a privilege with a vertical propagation of zero is equivalent to 
granting the privilege with no GRANT OPTION. If account A grants a privilege to 
account B with the vertical propagation set to an integer number j > 0, this means 
that the account B has the GRANT OPTION on that privilege, but B can grant the 
privilege to other accounts only with a vertical propagation less than j. In effect, 
vertical propagation limits the sequence of GRANT OPTIONS that can be given from 
one account to the next based on a single original grant of the privilege.

We briefly illustrate horizontal and vertical propagation limits—which are not 
available currently in SQL or other relational systems—with an example. Suppose 
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that A1 grants SELECT to A2 on the EMPLOYEE relation with horizontal propaga-
tion equal to 1 and vertical propagation equal to 2. A2 can then grant SELECT to at 
most one account because the horizontal propagation limitation is set to 1. Addi-
tionally, A2 cannot grant the privilege to another account except with vertical prop-
agation set to 0 (no GRANT OPTION) or 1; this is because A2 must reduce the vertical 
propagation by at least 1 when passing the privilege to others. In addition, the hori-
zontal propagation must be less than or equal to the originally granted horizontal 
propagation. For example, if account A grants a privilege to account B with the 
horizontal propagation set to an integer number j > 0, this means that B can grant 
the privilege to other accounts only with a horizontal propagation less than or equal 
to j. As this example shows, horizontal and vertical propagation techniques are 
designed to limit the depth and breadth of propagation of privileges.

30.3  Mandatory Access Control and Role-Based 
Access Control for Multilevel Security

The discretionary access control technique of granting and revoking privileges on 
relations has traditionally been the main security mechanism for relational data-
base systems. This is an all-or-nothing method: A user either has or does not have a 
certain privilege. In many applications, an additional security policy is needed that 
classifies data and users based on security classes. This approach, known as 
 mandatory access control (MAC), would typically be combined with the discre-
tionary access control mechanisms described in Section 30.2. It is important to note 
that most mainstream RDBMSs currently provide mechanisms only for discretionary 
access control. However, the need for multilevel security exists in government, mil-
itary, and intelligence applications, as well as in many industrial and corporate 
applications. Because of the overriding concerns for privacy, in many systems the 
levels are determined by who has what access to what private information (also 
called personally identifiable information). Some DBMS vendors—for example, 
Oracle—have released special versions of their RDBMSs that incorporate manda-
tory access control for government use.

Typical security classes are top secret (TS), secret (S), confidential (C), and unclas-
sified (U), where TS is the highest level and U the lowest. Other more complex 
security classification schemes exist, in which the security classes are organized in 
a lattice. For simplicity, we will use the system with four security classification lev-
els, where TS ≥ S ≥ C ≥ U, to illustrate our discussion. The commonly used model 
for multilevel security, known as the Bell-LaPadula model,4 classifies each subject 
(user, account, program) and object (relation, tuple, column, view, operation) into 
one of the security classifications TS, S, C, or U. We will refer to the clearance 
(classification) of a subject S as class(S) and to the classification of an object O as 
class(O). Two restrictions are enforced on data access based on the subject/object 
classifications:

4Bell and La Padulla (1976) was a MITRE technical report on secure computer systems in Multics.
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  1. A subject S is not allowed read access to an object O unless class(S) ≥ 
class(O). This is known as the simple security property.

  2. A subject S is not allowed to write an object O unless class(S) ≤ class(O). 
This is known as the star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can read 
an object whose security classification is higher than the subject’s security clearance. 
The second restriction is less intuitive. It prohibits a subject from writing an object at 
a lower security classification than the subject’s security clearance. Violation of this 
rule would allow information to flow from higher to lower classifications, which vio-
lates a basic tenet of multilevel security. For example, a user (subject) with TS clear-
ance may make a copy of an object with classification TS and then write it back as a 
new object with classification U, thus making it visible throughout the system.

To incorporate multilevel security notions into the relational database model, it is 
common to consider attribute values and tuples as data objects. Hence, each attri-
bute A is associated with a classification attribute C in the schema, and each attribute 
value in a tuple is associated with a corresponding security classification. In addition, 
in some models, a tuple classification attribute TC is added to the relation attributes 
to provide a classification for each tuple as a whole. The model we describe here is 
known as the multilevel model, because it allows classifications at multiple security 
levels. A multilevel relation schema R with n attributes would be represented as:

R(A1, C1, A2, C2, … , An, Cn, TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the tuple classification attribute TC in each tuple t—which is the high-
est of all attribute classification values within t—provides a general classification for 
the tuple itself. Each attribute classification Ci provides a finer security classification 
for each attribute value within the tuple. The value of TC in each tuple t is the high-
est of all attribute classification values Ci within t.

The apparent key of a multilevel relation is the set of attributes that would have 
formed the primary key in a regular (single-level) relation. A multilevel relation will 
appear to contain different data to subjects (users) with different clearance levels. In 
some cases, it is possible to store a single tuple in the relation at a higher classifica-
tion level and produce the corresponding tuples at a lower-level classification 
through a process known as filtering. In other cases, it is necessary to store two or 
more tuples at different classification levels with the same value for the apparent 
key. This leads to the concept of polyinstantiation,5 where several tuples can have 
the same apparent key value but have different attribute values for users at different 
clearance levels.

We illustrate these concepts with the simple example of a multilevel relation shown 
in Figure 30.2(a), where we display the classification attribute values next to each 

5This is similar to the notion of having multiple versions in the database that represent the same 
real-world object.
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attribute’s value. Assume that the Name attribute is the apparent key, and consider the 
query SELECT * FROM EMPLOYEE. A user with security clearance S would see the same 
relation shown in Figure 30.2(a), since all tuple classifications are less than or equal to 
S. However, a user with security clearance C would not be allowed to see the values for 
Salary of ‘Brown’ and Job_performance of ‘Smith’, since they have higher classification. 
The tuples would be filtered to appear as shown in Figure 30.2(b), with Salary and 
Job_performance appearing as null. For a user with security clearance U, the filtering 
allows only the Name attribute of ‘Smith’ to appear, with all the other attributes appear-
ing as null (Figure 30.2(c)). Thus, filtering introduces null values for attribute values 
whose security classification is higher than the user’s security clearance.

In general, the entity integrity rule for multilevel relations states that all attributes 
that are members of the apparent key must not be null and must have the same 
security classification within each individual tuple. Additionally, all other attribute 
values in the tuple must have a security classification greater than or equal to that of 
the apparent key. This constraint ensures that a user can see the key if the user is 
permitted to see any part of the tuple. Other integrity rules, called null integrity 
and interinstance integrity, informally ensure that if a tuple value at some security 
level can be filtered (derived) from a higher-classified tuple, then it is sufficient to 
store the higher-classified tuple in the multilevel relation.

Name Salary JobPerformance TC
Smith U C40000 SFair S
Smith U C40000 CExcellent C
Brown C S80000 CGood S

EMPLOYEE(d)

Name Salary JobPerformance TC
Smith U C40000 SFair S
Brown C S80000 CGood S

EMPLOYEE(a)

Name Salary JobPerformance TC

Smith U C40000 CNULL C
Brown C CNULL CGood C

EMPLOYEE(b)

Name Salary JobPerformance TC

Smith U UNULL UNULL U

EMPLOYEE(c)Figure 30.2 
A multilevel relation to 
 illustrate multilevel security. 
(a) The original EMPLOYEE 
tuples. (b) Appearance of 
EMPLOYEE after filtering 
for classification C users. 
(c) Appearance of 
EMPLOYEE after filtering 
for classification U users. 
(d) Polyinstantiation of the 
Smith tuple.
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To illustrate polyinstantiation further, suppose that a user with security clearance C 
tries to update the value of Job_performance of ‘Smith’ in Figure 30.2 to ‘Excellent’; 
this corresponds to the following SQL update being submitted by that user:

UPDATE EMPLOYEE
SET Job_performance = ‘Excellent’
WHERE Name = ‘Smith’;

Since the view provided to users with security clearance C (see Figure 30.2(b)) per-
mits such an update, the system should not reject it; otherwise, the user could infer 
that some nonnull value exists for the Job_performance attribute of ‘Smith’ rather 
than the null value that appears. This is an example of inferring information 
through what is known as a covert channel, which should not be permitted in 
highly secure systems (see Section 30.6.1). However, the user should not be allowed 
to overwrite the existing value of Job_performance at the higher classification level. 
The solution is to create a polyinstantiation for the ‘Smith’ tuple at the lower clas-
sification level C, as shown in Figure 30.2(d). This is necessary since the new tuple 
cannot be filtered from the existing tuple at classification S.

The basic update operations of the relational model (INSERT, DELETE, UPDATE) 
must be modified to handle this and similar situations, but this aspect of the prob-
lem is outside the scope of our presentation. We refer the interested reader to the 
Selected Bibliography at the end of this chapter for further details.

30.3.1  Comparing Discretionary Access Control  
and Mandatory Access Control

Discretionary access control (DAC) policies are characterized by a high degree of 
flexibility, which makes them suitable for a large variety of application domains. 
The main drawback of DAC models is their vulnerability to malicious attacks, such 
as Trojan horses embedded in application programs. The reason for this vulnerabil-
ity is that discretionary authorization models do not impose any control on how 
information is propagated and used once it has been accessed by users authorized 
to do so. By contrast, mandatory policies ensure a high degree of protection—in a 
way, they prevent any illegal flow of information. Therefore, they are suitable for 
military and high-security types of applications, which require a higher degree of 
protection. However, mandatory policies have the drawback of being too rigid in 
that they require a strict classification of subjects and objects into security levels, 
and therefore they are applicable to few environments and place an additional bur-
den of labeling every object with its security classification. In many practical situa-
tions, discretionary policies are preferred because they offer a better tradeoff 
between security and applicability than mandatory policies.

30.3.2 Role-Based Access Control
Role-based access control (RBAC) emerged rapidly in the 1990s as a proven tech-
nology for managing and enforcing security in large-scale enterprise-wide systems. 
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Its basic notion is that privileges and other permissions are associated with organi-
zational roles rather than with individual users. Individual users are then assigned 
to appropriate roles. Roles can be created using the CREATE ROLE and DESTROY 
ROLE commands. The GRANT and REVOKE commands discussed in Section 30.2 
can then be used to assign and revoke privileges from roles, as well as for individual 
users when needed. For example, a company may have roles such as sales account 
manager, purchasing agent, mailroom clerk, customer service manager, and so on. 
Multiple individuals can be assigned to each role. Security privileges that are com-
mon to a role are granted to the role name, and any individual assigned to this role 
would automatically have those privileges granted.

RBAC can be used with traditional discretionary and mandatory access controls; it 
ensures that only authorized users in their specified roles are given access to certain 
data or resources. Users create sessions during which they may activate a subset of 
roles to which they belong. Each session can be assigned to several roles, but it maps 
to one user or a single subject only. Many DBMSs have allowed the concept of roles, 
where privileges can be assigned to roles.

Separation of duties is another important requirement in various mainstream 
DBMSs. It is needed to prevent one user from doing work that requires the involve-
ment of two or more people, thus preventing collusion. One method in which sepa-
ration of duties can be successfully implemented is with mutual exclusion of roles. 
Two roles are said to be mutually exclusive if both the roles cannot be used simul-
taneously by the user. Mutual exclusion of roles can be categorized into two types, 
namely authorization time exclusion (static) and runtime exclusion (dynamic). In 
authorization time exclusion, two roles that have been specified as mutually exclu-
sive cannot be part of a user’s authorization at the same time. In runtime exclusion, 
both these roles can be authorized to one user but cannot be activated by the user at 
the same time. Another variation in mutual exclusion of roles is that of complete 
and partial exclusion.

The role hierarchy in RBAC is a natural way to organize roles to reflect the organi-
zation’s lines of authority and responsibility. By convention, junior roles at the bot-
tom are connected to progressively senior roles as one moves up the hierarchy. The 
hierarchic diagrams are partial orders, so they are reflexive, transitive, and antisym-
metric. In other words, if a user has one role, the user automatically has roles lower 
in the hierarchy. Defining a role hierarchy involves choosing the type of hierarchy 
and the roles, and then implementing the hierarchy by granting roles to other roles. 
Role hierarchy can be implemented in the following manner:

GRANT ROLE full_time TO employee_type1
GRANT ROLE intern TO employee_type2

The above are examples of granting the roles full_time and intern to two types of 
employees.

Another issue related to security is identity management. Identity refers to a unique 
name of an individual person. Since the legal names of persons are not necessarily 
unique, the identity of a person must include sufficient additional information to 
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make the complete name unique. Authorizing this identity and managing the 
schema of these identities is called identity management. Identity management 
addresses how organizations can effectively authenticate people and manage their 
access to confidential information. It has become more visible as a business require-
ment across all industries affecting organizations of all sizes. Identity management 
administrators constantly need to satisfy application owners while keeping expen-
ditures under control and increasing IT efficiency.

Another important consideration in RBAC systems is the possible temporal con-
straints that may exist on roles, such as the time and duration of role activations 
and the timed triggering of a role by an activation of another role. Using an RBAC 
model is a highly desirable goal for addressing the key security requirements of 
Web-based applications. Roles can be assigned to workflow tasks so that a user with 
any of the roles related to a task may be authorized to execute it and may play a 
certain role only for a certain duration.

RBAC models have several desirable features, such as flexibility, policy neutrality, 
better support for security management and administration, and a natural enforce-
ment of the hierarchical organization structure within organizations. They also 
have other aspects that make them attractive candidates for developing secure 
Web-based applications. These features are lacking in DAC and MAC models. 
RBAC models do include the capabilities available in traditional DAC and MAC 
policies. Furthermore, an RBAC model provides mechanisms for addressing the 
security issues related to the execution of tasks and workflows, and for specifying 
user-defined and organization-specific policies. Easier deployment over the Inter-
net has been another reason for the success of RBAC models.

30.3.3 Label-Based Security and Row-Level Access Control
Many mainstream RDBMSs currently use the concept of row-level access control, 
where sophisticated access control rules can be implemented by considering the 
data row by row. In row-level access control, each data row is given a label, which 
is used to store information about data sensitivity. Row-level access control pro-
vides finer granularity of data security by allowing the permissions to be set for 
each row and not just for the table or column. Initially the user is given a default 
session label by the database administrator. Levels correspond to a hierarchy of 
data-sensitivity levels to exposure or corruption, with the goal of maintaining pri-
vacy or security. Labels are used to prevent unauthorized users from viewing or 
altering certain data. A user having a low authorization level, usually represented 
by a low number, is denied access to data having a higher-level number. If no such 
label is given to a row, a row label is automatically assigned to it depending upon 
the user’s session label.

A policy defined by an administrator is called a label security policy. Whenever 
data affected by the policy is accessed or queried through an application, the policy 
is automatically invoked. When a policy is implemented, a new column is added to 
each row in the schema. The added column contains the label for each row that 
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reflects the sensitivity of the row as per the policy. Similar to MAC (mandatory 
access control), where each user has a security clearance, each user has an identity 
in label-based security. This user’s identity is compared to the label assigned to each 
row to determine whether the user has access to view the contents of that row. 
However, the user can write the label value himself, within certain restrictions and 
guidelines for that specific row. This label can be set to a value that is between the 
user’s current session label and the user’s minimum level. The DBA has the privi-
lege to set an initial default row label.

The label security requirements are applied on top of the DAC requirements for 
each user. Hence, the user must satisfy the DAC requirements and then the label 
security requirements to access a row. The DAC requirements make sure that the 
user is legally authorized to carry on that operation on the schema. In most applica-
tions, only some of the tables need label-based security. For the majority of the 
application tables, the protection provided by DAC is sufficient.

Security policies are generally created by managers and human resources person-
nel. The policies are high-level, technology neutral, and relate to risks. Policies are a 
result of management instructions to specify organizational procedures, guiding 
principles, and courses of action that are considered to be expedient, prudent, or 
advantageous. Policies are typically accompanied by a definition of penalties and 
countermeasures if the policy is transgressed. These policies are then interpreted 
and converted to a set of label-oriented policies by the label security  administrator, 
who defines the security labels for data and authorizations for users; these labels 
and authorizations govern access to specified protected objects.

Suppose a user has SELECT privileges on a table. When the user executes a SELECT 
statement on that table, label security will automatically evaluate each row returned 
by the query to determine whether the user has rights to view the data. For example, 
if the user has a sensitivity of 20, then the user can view all rows having a security 
level of 20 or lower. The level determines the sensitivity of the information con-
tained in a row; the more sensitive the row, the higher its security label value. Such 
label security can be configured to perform security checks on UPDATE, DELETE, 
and INSERT statements as well.

30.3.4 XML Access Control
With the worldwide use of XML in commercial and scientific applications, efforts 
are under way to develop security standards. Among these efforts are digital signa-
tures and encryption standards for XML. The XML Signature Syntax and Process-
ing specification describes an XML syntax for representing the associations between 
cryptographic signatures and XML documents or other electronic resources. The 
specification also includes procedures for computing and verifying XML signa-
tures. An XML digital signature differs from other protocols for message signing, 
such as OpenPGP (Pretty Good Privacy—a confidentiality and authentication ser-
vice that can be used for electronic mail and file storage application), in its support 
for signing only specific portions of the XML tree (see Chapter 13) rather than the 
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complete document. Additionally, the XML signature specification defines mecha-
nisms for countersigning and transformations—so-called canonicalization—to 
ensure that two instances of the same text produce the same digest for signing even 
if their representations differ slightly; for example, in typographic white space.

The XML Encryption Syntax and Processing specification defines XML vocabulary 
and processing rules for protecting confidentiality of XML documents in whole or in 
part and of non-XML data as well. The encrypted content and additional processing 
information for the recipient are represented in well-formed XML so that the result 
can be further processed using XML tools. In contrast to other commonly used tech-
nologies for confidentiality, such as SSL (Secure Sockets Layer—a leading Internet 
security protocol) and virtual private networks, XML encryption also applies to parts 
of documents and to documents in persistent storage. Database systems such as 
PostgreSQL or Oracle support JSON (JavaScript Object Notation) objects as a data 
format and have similar facilities for JSON objects like those defined above for XML.

30.3.5  Access Control Policies for the Web  
and Mobile Appplications

Publicly accessible Web application environments present a unique challenge to 
database security. These systems include those responsible for handling sensitive or 
private information and include social networks, mobile application API servers, 
and e-commerce transaction platforms.

Electronic commerce (e-commerce) environments are characterized by any trans-
actions that are done electronically. They require elaborate access control policies 
that go beyond traditional DBMSs. In conventional database environments, access 
control is usually performed using a set of authorizations stated by security officers 
or users according to some security policies. Such a simple paradigm is not well 
suited for a dynamic environment like e-commerce. Furthermore, in an e-com-
merce environment the resources to be protected are not only traditional data but 
also knowledge and experience. Such peculiarities call for more flexibility in speci-
fying access control policies. The access control mechanism must be flexible enough 
to support a wide spectrum of heterogeneous protection objects.

Because many reservation, ticketing, payment, and online shopping systems pro-
cess information that is protected by law, the security architecture that goes beyond 
simple database access control must be put in place to protect the information. 
When an unauthorized party inappropriately accesses protected information, it 
amounts to a data breach, which has significant legal and financial consequences. 
This unauthorized party could be an adversary that actively seeks to steal protected 
information or may be an employee who overstepped his or her role or incorrectly 
distributed protected information to others. Inappropriate handling of credit card 
data, for instance, has led to significant data breaches at major retailers.

In conventional database environments, access control is usually performed using a 
set of authorizations stated by security officers. But in Web applications, it is all too 
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common that the Web application itself is the user rather than a duly authorized 
individual. This gives rise to a situation where the DBMS’s access control mecha-
nisms are bypassed and the database becomes just a relational data store to the sys-
tem. In such environments, vulnerabilities like SQL injection (which we cover in 
depth in Section 30.4) become significantly more dangerous bacause it may lead to 
a total data breach rather than being limited to data that a particular account is 
authorized to access.

To protect against data breaches in these systems, a first requirement is a compre-
hensive information security policy that goes beyond the technical access control 
mechanisms found in mainstream DBMSs. Such a policy must protect not only 
traditional data, but also processes, knowledge, and experience.

A second related requirement is the support for content-based access control. 
 Content-based access control allows one to express access control policies that 
take the protection object content into account. In order to support content-based 
access control, access control policies must allow inclusion of conditions based on 
the object content.

A third requirement is related to the heterogeneity of subjects, which requires 
access control policies based on user characteristics and qualifications rather than 
on specific and individual characteristics (for example, user Ids). A possible solu-
tion that will allow better accounting of user profiles in the formulation of access 
control policies, is to support the notion of credentials. A credential is a set of prop-
erties concerning a user that are relevant for security purposes (for example, age or 
position or role within an organization). For instance, by using credentials, one can 
simply formulate policies such as Only permanent staff with five or more years of 
service can access documents related to the internals of the system.

XML is expected to play a key role in access control for e-commerce applications6 

because XML is becoming the common representation language for document 
interchange over the Web, and is also becoming the language for e-commerce. 
Thus, on the one hand, there is the need to make XML representations secure by 
providing access control mechanisms specifically tailored to the protection of 
XML documents. On the other hand, access control information (that is, access 
control policies and user credentials) can be expressed using XML itself. The 
Directory Services Markup Language (DSML) is a representation of directory 
service information in XML syntax. It provides a foundation for a standard for 
communicating with the directory services that will be responsible for providing 
and authenticating user credentials. The uniform presentation of both protection 
objects and access control policies can be applied to policies and credentials them-
selves. For instance, some credential properties (such as the user name) may be 
accessible to everyone, whereas other properties may be visible only to a restricted 
class of users. Additionally, the use of an XML-based language for specifying cre-
dentials and access control policies facilitates secure credential submission and 
export of access control policies.

6See Thuraisingham et al. (2001).
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30.4 SQL Injection
SQL injection is one of the most common threats to a database system. We will discuss 
it in detail later in this section. Some of the other frequent attacks on databases are:

 ■ Unauthorized privilege escalation. This attack is characterized by an indi-
vidual attempting to elevate his or her privilege by attacking vulnerable 
points in the database systems.

 ■ Privilege abuse. Whereas unauthorized privilege escalation is done by an 
unauthorized user, this attack is performed by a privileged user. For exam-
ple, an administrator who is allowed to change student information can use 
this privilege to update student grades without the instructor’s permission.

 ■ Denial of service. A denial of service (DOS) attack is an attempt to make 
resources unavailable to its intended users. It is a general attack category in 
which access to network applications or data is denied to intended users by 
overflowing the buffer or consuming resources.

 ■ Weak authentication. If the user authentication scheme is weak, an attacker 
can impersonate the identity of a legitimate user by obtaining her login 
credentials.

30.4.1 SQL Injection Methods
As we discussed in Chapter 11, Web programs and applications that access a data-
base can send commands and data to the database, as well as display data retrieved 
from the database through the Web browser. In an SQL injection attack, the 
attacker injects a string input through the application, which changes or manipu-
lates the SQL statement to the attacker’s advantage. An SQL injection attack can 
harm the database in various ways, such as unauthorized manipulation of the data-
base or retrieval of sensitive data. It can also be used to execute system-level com-
mands that may cause the system to deny service to the application. This section 
describes types of injection attacks.

SQL Manipulation. A manipulation attack, which is the most common type of 
injection attack, changes an SQL command in the application—for example, by add-
ing conditions to the WHERE-clause of a query, or by expanding a query with addi-
tional query components using set operations such as UNION, INTERSECT, or MINUS. 
Other types of manipulation attacks are also possible. A typical manipulation attack 
occurs during database login. For example, suppose that a simplistic authentication 
procedure issues the following query and checks to see if any rows were returned:

SELECT * FROM users WHERE username = ‘jake’ and PASSWORD = 
‘jakespasswd’ ;

The attacker can try to change (or manipulate) the SQL statement by changing it as 
follows:

SELECT * FROM users WHERE username = ‘jake’ and (PASSWORD = 
‘jakespasswd’ or ‘x’ = ‘x’) ;
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As a result, the attacker who knows that ‘jake’ is a valid login of some user is able to 
log into the database system as ‘jake’ without knowing his password and is able to 
do everything that ‘jake’ may be authorized to do to the database system.

Code Injection. This type of attack attempts to add additional SQL statements or 
commands to the existing SQL statement by exploiting a computer bug, which is 
caused by processing invalid data. The attacker can inject or introduce code into a 
computer program to change the course of execution. Code injection is a popular 
technique for system hacking or cracking to gain information.

Function Call Injection. In this kind of attack, a database function or operating 
system function call is inserted into a vulnerable SQL statement to manipulate the 
data or make a privileged system call. For example, it is possible to exploit a func-
tion that performs some aspect related to network communication. In addition, 
functions that are contained in a customized database package, or any custom data-
base function, can be executed as part of an SQL query. In particular, dynamically 
created SQL queries (see Chapter 10) can be exploited since they are constructed 
at runtime.

For example, the dual table is used in the FROM clause of SQL in Oracle when a user 
needs to run SQL that does not logically have a table name. To get today’s date, we 
can use:

SELECT SYSDATE FROM dual;

The following example demonstrates that even the simplest SQL statements can be 
vulnerable.

SELECT TRANSLATE (‘user input’, ‘from_string’, ‘to_string’) FROM dual;

Here, TRANSLATE is used to replace a string of characters with another string 
of characters. The TRANSLATE function above will replace the characters of the 
‘from_string’ with the characters in the ‘to_string’ one by one. This means that the 
f will be replaced with the t, the r with the o, the o with the _, and so on.

This type of SQL statement can be subjected to a function injection attack. Con-
sider the following example:

SELECT TRANSLATE (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) || ”, 
‘98765432’, ‘9876’) FROM dual;

The user can input the string (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) ||”), 
where || is the concatenate operator, thus requesting a page from a Web server. 
UTL_HTTP makes Hypertext Transfer Protocol (HTTP) callouts from SQL. The 
REQUEST object takes a URL (‘http://129.107.2.1/’ in this example) as a parame-
ter, contacts that site, and returns the data (typically HTML) obtained from that 
site. The attacker could manipulate the string he inputs, as well as the URL, to 
include other functions and do other illegal operations. We just used a dummy 
example to show conversion of ‘98765432’ to ‘9876’, but the user’s intent would be 
to access the URL and get sensitive information. The attacker can then retrieve 
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useful information from the database server—located at the URL that is passed as 
a parameter—and send it to the Web server (that calls the TRANSLATE function).

30.4.2 Risks Associated with SQL Injection
SQL injection is harmful and the risks associated with it provide motivation for 
attackers. Some of the risks associated with SQL injection attacks are explained below.

 ■ Database fingerprinting. The attacker can determine the type of database 
being used in the backend so that he can use database-specific attacks that 
correspond to weaknesses in a particular DBMS.

 ■ Denial of service. The attacker can flood the server with requests, thus 
denying service to valid users, or the attacker can delete some data.

 ■ Bypassing authentication. This is one of the most common risks, in which 
the attacker can gain access to the database as an authorized user and per-
form all the desired tasks.

 ■ Identifying injectable parameters. In this type of attack, the attacker gathers 
important information about the type and structure of the back-end database 
of a Web application. This attack is made possible by the fact that the default 
error page returned by application servers is often overly descriptive.

 ■ Executing remote commands. This provides attackers with a tool to exe-
cute arbitrary commands on the database. For example, a remote user can 
execute stored database procedures and functions from a remote SQL inter-
active interface.

 ■ Performing privilege escalation. This type of attack takes advantage of log-
ical flaws within the database to upgrade the access level.

30.4.3 Protection Techniques against SQL Injection
Protection against SQL injection attacks can be achieved by applying certain pro-
gramming rules to all Web-accessible procedures and functions. This section 
describes some of these techniques.

Bind Variables (Using Parameterized Statements). The use of bind variables 
(also known as parameters; see Chapter 10) protects against injection attacks and 
also improves performance.

Consider the following example using Java and JDBC:

PreparedStatement stmt = conn.prepareStatement( “SELECT * FROM 
 EMPLOYEE WHERE EMPLOYEE_ID=? AND PASSWORD=?”);

stmt.setString(1, employee_id);

stmt.setString(2, password);

Instead of embedding the user input into the statement, the input should be bound 
to a parameter. In this example, the input ‘1’ is assigned (bound) to a bind variable 
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‘employee_id’ and input ‘2’ to the bind variable ‘password’ instead of directly pass-
ing string parameters.

Filtering Input (Input Validation). This technique can be used to remove escape 
characters from input strings by using the SQL Replace function. For example, the 
delimiter single quote (‘) can be replaced by two single quotes (‘’). Some SQL 
manipulation attacks can be prevented by using this technique, since escape charac-
ters can be used to inject manipulation attacks. However, because there can be a 
large number of escape characters, this technique is not reliable.

Function Security. Database functions, both standard and custom, should be 
restricted, as they can be exploited in the SQL function injection attacks.

30.5  Introduction to Statistical  
Database Security

Statistical databases are used mainly to produce statistics about various popula-
tions. The database may contain confidential data about individuals; this informa-
tion should be protected from user access. However, users are permitted to retrieve 
statistical information about the populations, such as averages, sums, counts, maxi-
mums, minimums, and standard deviations. The techniques that have been devel-
oped to protect the privacy of individual information are beyond the scope of this 
text. We will illustrate the problem with a very simple example, which refers to the 
relation shown in Figure 30.3. This is a PERSON relation with the attributes Name, 
Ssn, Income, Address, City, State, Zip, Sex, and Last_degree.

A population is a set of tuples of a relation (table) that satisfy some selection condi-
tion. Hence, each selection condition on the PERSON relation will specify a particu-
lar population of PERSON tuples. For example, the condition Sex = ‘M’ specifies the 
male population; the condition ((Sex = ‘F’) AND (Last_degree = ‘M.S.’ OR Last_degree 
= ‘Ph.D.’)) specifies the female population that has an M.S. or Ph.D. degree as their 
highest degree; and the condition City = ‘Houston’ specifies the population that 
lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples. 
For example, we may want to retrieve the number of individuals in a population 
or the average income in the population. However, statistical users are not allowed 
to retrieve individual data, such as the income of a specific person. Statistical 
 database security techniques must prohibit the retrieval of individual data. This 
can be achieved by prohibiting queries that retrieve attribute values and by allowing 

Name Ssn Income Address City State Zip Sex Last_degree

PERSON

Figure 30.3 
The PERSON relation schema for illustrating statistical database security.
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only queries that involve statistical aggregate functions such as COUNT, SUM, MIN, 
MAX, AVERAGE, and STANDARD DEVIATION. Such queries are sometimes called 
 statistical queries.

It is the responsibility of a database management system to ensure the confidentiality 
of information about individuals while still providing useful statistical summaries of 
data about those individuals to users. Provision of privacy protection of users in a 
statistical database is paramount; its violation is illustrated in the following example.

In some cases it is possible to infer the values of individual tuples from a sequence 
of statistical queries. This is particularly true when the conditions result in a popu-
lation consisting of a small number of tuples. As an illustration, consider the fol-
lowing statistical queries:

Q1: SELECT COUNT (*)FROM PERSON
 WHERE <condition>;

Q2: SELECT AVG (Income) FROM PERSON
 WHERE <condition>;

Now suppose that we are interested in finding the Salary of Jane Smith, and we 
know that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We 
issue the statistical query Q1 with the following condition:

(Last_degree=‘Ph.D.’ AND Sex=‘F’ AND City=‘Bellaire’ AND State=‘Texas’)

If we get a result of 1 for this query, we can issue Q2 with the same condition and 
find the Salary of Jane Smith. Even if the result of Q1 on the preceding condition is 
not 1 but is a small number—say 2 or 3—we can issue statistical queries using the 
functions MAX, MIN, and AVERAGE to identify the possible range of values for the 
Salary of Jane Smith.

The possibility of inferring individual information from statistical queries is reduced if 
no statistical queries are permitted whenever the number of tuples in the population 
specified by the selection condition falls below some threshold. Another technique for 
prohibiting retrieval of individual information is to prohibit sequences of queries that 
refer repeatedly to the same population of tuples. It is also possible to introduce slight 
inaccuracies or noise into the results of statistical queries deliberately, to make it diffi-
cult to deduce individual information from the results. Another technique is partition-
ing of the database. Partitioning implies that records are stored in groups of some 
minimum size; queries can refer to any complete group or set of groups, but never to 
subsets of records within a group. The interested reader is referred to the bibliography 
at the end of this chapter for a discussion of these techniques.

30.6 Introduction to Flow Control
Flow control regulates the distribution or flow of information among accessible 
objects. A flow between object X and object Y occurs when a program reads values 
from X and writes values into Y. Flow controls check that information contained in 
some objects does not flow explicitly or implicitly into less protected objects. Thus, a 
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user cannot get indirectly in Y what he or she cannot get directly in X. Active flow 
control began in the early 1970s. Most flow controls employ some concept of security 
class; the transfer of information from a sender to a receiver is allowed only if the 
receiver’s security class is at least as privileged as the sender’s. Examples of a flow con-
trol include preventing a service program from leaking a customer’s confidential data, 
and blocking the transmission of secret military data to an unknown classified user.

A flow policy specifies the channels along which information is allowed to move. The 
simplest flow policy specifies just two classes of information—confidential (C) and 
nonconfidential (N)—and allows all flows except those from class C to class N. This 
policy can solve the confinement problem that arises when a service program handles 
data such as customer information, some of which may be confidential. For example, 
an income-tax-computing service might be allowed to retain a customer’s address 
and the bill for services rendered, but not a customer’s income or deductions.

Access control mechanisms are responsible for checking users’ authorizations for 
resource access: Only granted operations are executed. Flow controls can be 
enforced by an extended access control mechanism, which involves assigning a 
security class (usually called the clearance) to each running program. The program 
is allowed to read a particular memory segment only if its security class is as high as 
that of the segment. It is allowed to write in a segment only if its class is as low as 
that of the segment. This automatically ensures that no information transmitted by 
the person can move from a higher to a lower class. For example, a military pro-
gram with a secret clearance can only read from objects that are unclassified and 
confidential and can only write into objects that are secret or top secret.

Two types of flow can be distinguished: explicit flows, which occur as a consequence 
of assignment instructions, such as Y:= f(X1,Xn,); and implicit flows, which are gen-
erated by conditional instructions, such as if f(Xm+1, … , Xn) then Y:= f (X1,Xm).

Flow control mechanisms must verify that only authorized flows, both explicit and 
implicit, are executed. A set of rules must be satisfied to ensure secure information 
flows. Rules can be expressed using flow relations among classes and assigned to 
information, stating the authorized flows within a system. (An information flow 
from A to B occurs when information associated with A affects the value of infor-
mation associated with B. The flow results from operations that cause information 
transfer from one object to another.) These relations can define, for a class, the set 
of classes where information (classified in that class) can flow, or can state the spe-
cific relations to be verified between two classes to allow information to flow from 
one to the other. In general, flow control mechanisms implement the controls by 
assigning a label to each object and by specifying the security class of the object. 
Labels are then used to verify the flow relations defined in the model.

30.6.1 Covert Channels
A covert channel allows a transfer of information that violates the security or the 
policy. Specifically, a covert channel allows information to pass from a higher 
classification level to a lower classification level through improper means. Covert 
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channels can be classified into two broad categories: timing channels and storage. 
The distinguishing feature between the two is that in a timing channel the infor-
mation is conveyed by the timing of events or processes, whereas storage channels 
do not require any temporal synchronization, in that information is conveyed by 
accessing system information or what is otherwise inaccessible to the user.

In a simple example of a covert channel, consider a distributed database system in 
which two nodes have user security levels of secret (S) and unclassified (U). In order 
for a transaction to commit, both nodes must agree to commit. They mutually can 
only do operations that are consistent with the *-property, which states that in any 
transaction, the S site cannot write or pass information to the U site. However, if 
these two sites collude to set up a covert channel between them, a transaction 
involving secret data may be committed unconditionally by the U site, but the S site 
may do so in some predefined agreed-upon way so that certain information may be 
passed from the S site to the U site, violating the *-property. This may be achieved 
where the transaction runs repeatedly, but the actions taken by the S site implicitly 
convey information to the U site. Measures such as locking, which we discussed in 
Chapters 21 and 22, prevent concurrent writing of the information by users with 
different security levels into the same objects, preventing the storage-type covert 
channels. Operating systems and distributed databases provide control over the 
multiprogramming of operations, which allows a sharing of resources without the 
possibility of encroachment of one program or process into another’s memory or 
other resources in the system, thus preventing timing-oriented covert channels. In 
general, covert channels are not a major problem in well-implemented robust data-
base implementations. However, certain schemes may be contrived by clever users 
that implicitly transfer information.

Some security experts believe that one way to avoid covert channels is to disallow 
programmers to actually gain access to sensitive data that a program will process 
after the program has been put into operation. For example, a programmer for a 
bank has no need to access the names or balances in depositors’ accounts. Program-
mers for brokerage firms do not need to know what buy and sell orders exist for 
clients. During program testing, access to a form of real data or some sample test 
data may be justifiable, but not after the program has been accepted for regular use.

30.7 Encryption and Public Key Infrastructures
The previous methods of access and flow control, despite being strong control mea-
sures, may not be able to protect databases from some threats. Suppose we commu-
nicate data, but our data falls into the hands of a nonlegitimate user. In this situation, 
by using encryption we can disguise the message so that even if the transmission is 
diverted, the message will not be revealed. Encryption is the conversion of data into 
a form, called a ciphertext, that cannot be easily understood by unauthorized per-
sons. It enhances security and privacy when access controls are bypassed, because 
in cases of data loss or theft, encrypted data cannot be easily understood by unau-
thorized persons.
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With this background, we adhere to following standard definitions:7

 ■ Ciphertext: Encrypted (enciphered) data

 ■ Plaintext (or cleartext): Intelligible data that has meaning and can be read or 
acted upon without the application of decryption

 ■ Encryption: The process of transforming plaintext into ciphertext

 ■ Decryption: The process of transforming ciphertext back into plaintext

Encryption consists of applying an encryption algorithm to data using some pre-
specified encryption key. The resulting data must be decrypted using a decryption 
key to recover the original data.

30.7.1  The Data Encryption and Advanced  
Encryption Standards

The Data Encryption Standard (DES) is a system developed by the U.S. govern-
ment for use by the general public. It has been widely accepted as a cryptographic 
standard both in the United States and abroad. DES can provide end-to-end 
encryption on the channel between sender A and receiver B. The DES algorithm 
is a careful and complex combination of two of the fundamental building blocks 
of encryption: substitution and permutation (transposition). The algorithm 
derives its strength from repeated application of these two techniques for a total 
of 16 cycles. Plaintext (the original form of the message) is encrypted as blocks of 
64 bits. Although the key is 64 bits long, in effect the key can be any 56-bit num-
ber. After questioning the adequacy of DES, the NIST introduced the Advanced 
Encryption Standard (AES). This algorithm has a block size of 128 bits, com-
pared with DES’s 56-block size, and can use keys of 128, 192, or 256 bits, com-
pared with DES’s 56-bit key. AES introduces more possible keys, compared with 
DES, and thus takes a much longer time to crack. In present systems, AES is the 
default with large key lengths. It is also the standard for full drive encryption 
products, with both Apple FileVault and Microsoft BitLocker using 256-bit or 
128-bit keys. TripleDES is a fallback option if a legacy system cannot use a mod-
ern encryption standard.

30.7.2 Symmetric Key Algorithms
A symmetric key is one key that is used for both encryption and decryption. By 
using a symmetric key, fast encryption and decryption is possible for routine 
use with sensitive data in the database. A message encrypted with a secret key can 
be decrypted only with the same secret key. Algorithms used for symmetric 
key  encryption are called secret key algorithms. Since secret-key algorithms 
are  mostly used for encrypting the content of a message, they are also called 
 content-encryption algorithms.

7U.S. Department of Commerce.
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The major liability associated with secret-key algorithms is the need for sharing the 
secret key. A possible method is to derive the secret key from a user-supplied password 
string by applying the same function to the string at both the sender and receiver; this 
is known as a password-based encryption algorithm. The strength of the symmetric key 
encryption depends on the size of the key used. For the same algorithm, encrypting 
using a longer key is tougher to break than the one using a shorter key.

30.7.3 Public (Asymmetric) Key Encryption
In 1976, Diffie and Hellman proposed a new kind of cryptosystem, which they 
called public key encryption. Public key algorithms are based on mathematical 
functions rather than operations on bit patterns. They address one drawback of 
symmetric key encryption, namely that both sender and recipient must exchange 
the common key in a secure manner. In public key systems, two keys are used for 
encryption/decryption. The public key can be transmitted in a nonsecure way, 
whereas the private key is not transmitted at all. These algorithms—which use two 
related keys, a public key and a private key, to perform complementary operations 
(encryption and decryption)—are known as asymmetric key encryption 
 algorithms. The use of two keys can have profound consequences in the areas of 
confidentiality, key distribution, and authentication. The two keys used for public 
key encryption are referred to as the public key and the private key. The private key 
is kept secret, but it is referred to as a private key rather than a secret key (the key 
used in conventional encryption) to avoid confusion with conventional encryption. 
The two keys are mathematically related, since one of the keys is used to perform 
encryption and the other to perform decryption. However, it is very difficult to 
derive the private key from the public key.

A public key encryption scheme, or infrastructure, has six ingredients:

  1. Plaintext. This is the data or readable message that is fed into the algorithm 
as input.

  2. Encryption algorithm. This algorithm performs various transformations 
on the plaintext.

  3. and 4. Public and private keys. These are a pair of keys that have been 
selected so that if one is used for encryption, the other is used for decryp-
tion. The exact transformations performed by the encryption algorithm 
depend on the public or private key that is provided as input. For example, if 
a message is encrypted using the public key, it can only be decrypted using 
the private key.

  5. Ciphertext. This is the scrambled message produced as output. It depends 
on the plaintext and the key. For a given message, two different keys will 
produce two different ciphertexts.

  6. Decryption algorithm. This algorithm accepts the ciphertext and the 
matching key and produces the original plaintext.

As the name suggests, the public key of the pair is made public for others to use, 
whereas the private key is known only to its owner. A general-purpose public key 
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cryptographic algorithm relies on one key for encryption and a different but related 
key for decryption. The essential steps are as follows:

  1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

  2. Each user places one of the two keys in a public register or other accessible 
file. This is the public key. The companion key is kept private.

  3. If a sender wishes to send a private message to a receiver, the sender encrypts 
the message using the receiver’s public key.

  4. When the receiver receives the message, he or she decrypts it using the 
receiver’s private key. No other recipient can decrypt the message because 
only the receiver knows his or her private key.

The RSA Public Key Encryption Algorithm. One of the first public key schemes 
was introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT8 and 
is named after them as the RSA scheme. The RSA scheme has since then reigned 
supreme as the most widely accepted and implemented approach to public key 
encryption. The RSA encryption algorithm incorporates results from number the-
ory, combined with the difficulty of determining the prime factors of a target. The 
RSA algorithm also operates with modular arithmetic—mod n.

Two keys, d and e, are used for decryption and encryption. An important property 
is that they can be interchanged. n is chosen as a large integer that is a product of 
two large distinct prime numbers, a and b, n = a × b. The encryption key e is a ran-
domly chosen number between 1 and n that is relatively prime to (a − 1) × (b − 1). 
The plaintext block P is encrypted as Pe where Pe = P mod n. Because the exponen-
tiation is performed mod n, factoring Pe to uncover the encrypted plaintext is diffi-
cult. However, the decrypting key d is carefully chosen so that (Pe)d mod n = P. The 
decryption key d can be computed from the condition that d × e = 1 mod ((a − 1) × 
(b − 1)). Thus, the legitimate receiver who knows d simply computes (Pe)d mod n = 
P and recovers P without having to factor Pe.

30.7.4 Digital Signatures
A digital signature is an example of using encryption techniques to provide authen-
tication services in electronic commerce applications. Like a handwritten signature, 
a digital signature is a means of associating a mark unique to an individual with a 
body of text. The mark should be unforgettable, meaning that others should be able 
to check that the signature comes from the originator.

A digital signature consists of a string of symbols. If a person’s digital signature 
were always the same for each message, then one could easily counterfeit it by sim-
ply copying the string of symbols. Thus, signatures must be different for each use. 
This can be achieved by making each digital signature a function of the message 

8Rivest et al. (1978).
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that it is signing, together with a timestamp. To be unique to each signer and coun-
terfeitproof, each digital signature must also depend on some secret number that is 
unique to the signer. Thus, in general, a counterfeitproof digital signature must 
depend on the message and a unique secret number of the signer. The verifier of the 
signature, however, should not need to know any secret number. Public key tech-
niques are the best means of creating digital signatures with these properties.

30.7.5 Digital Certificates
A digital certificate is used to combine the value of a public key with the identity of 
the person or service that holds the corresponding private key into a digitally signed 
statement. Certificates are issued and signed by a certification authority (CA). The 
entity receiving this certificate from a CA is the subject of that certificate. Instead of 
requiring each participant in an application to authenticate every user, third-party 
authentication relies on the use of digital certificates.

The digital certificate itself contains various types of information. For example, 
both the certification authority and the certificate owner information are included. 
The following list describes all the information included in the certificate:

  1. The certificate owner information, which is represented by a unique identi-
fier known as the distinguished name (DN) of the owner. This includes the 
owner’s name, as well as the owner’s organization and other information 
about the owner.

  2. The certificate also includes the public key of the owner.

  3. The date of issue of the certificate is also included.

  4. The validity period is specified by ‘Valid From’ and ‘Valid To’ dates, which 
are included in each certificate.

  5. Issuer identifier information is included in the certificate.

  6. Finally, the digital signature of the issuing CA for the certificate is included. 
All the information listed is encoded through a message-digest function, 
which creates the digital signature. The digital signature basically certifies 
that the association between the certificate owner and public key is valid.

30.8 Privacy Issues and Preservation
Preserving data privacy is a growing challenge for database security and privacy 
experts. In some perspectives, to preserve data privacy we should even limit per-
forming large-scale data mining and analysis. The most commonly used techniques 
to address this concern are to avoid building mammoth central warehouses as a 
single repository of vital information. This is one of the stumbling blocks for creat-
ing nationwide registries of patients for many important diseases. Another possible 
measure is to intentionally modify or perturb data.

If all data were available at a single warehouse, violating only a single repository’s 
security could expose all data. Avoiding central warehouses and using distributed 
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data mining algorithms minimizes the exchange of data needed to develop globally 
valid models. By modifying, perturbing, and anonymizing data, we can also miti-
gate privacy risks associated with data mining. This can be done by removing iden-
tity information from the released data and injecting noise into the data. However, 
by using these techniques, we should pay attention to the quality of the resulting 
data in the database, which may undergo too many modifications. We must be able 
to estimate the errors that may be introduced by these modifications.

Privacy is an important area of ongoing research in database management. It is 
complicated due to its multidisciplinary nature and the issues related to the subjec-
tivity in the interpretation of privacy, trust, and so on. As an example, consider 
medical and legal records and transactions, which must maintain certain privacy 
requirements. Providing access control and privacy for mobile devices is also 
receiving increased attention. DBMSs need robust techniques for efficient storage 
of security-relevant information on small devices, as well as trust negotiation tech-
niques. Where to keep information related to user identities, profiles, credentials, 
and permissions and how to use it for reliable user identification remains an impor-
tant problem. Because large-sized streams of data are generated in such environ-
ments, efficient techniques for access control must be devised and integrated with 
processing techniques for continuous queries. Finally, the privacy of user location 
data, acquired from sensors and communication networks, must be ensured.

30.9  Challenges to Maintaining  
Database Security

Considering the vast growth in volume and speed of threats to databases and infor-
mation assets, research efforts need to be devoted to a number of issues: data qual-
ity, intellectual property rights, and database survivability, to name a few. We 
briefly outline the work required in a few important areas that researchers in data-
base security are trying to address.

30.9.1 Data Quality
The database community needs techniques and organizational solutions to assess 
and attest to the quality of data. These techniques may include simple mechanisms 
such as quality stamps that are posted on Web sites. We also need techniques that 
provide more effective integrity semantics verification and tools for the assessment 
of data quality, based on techniques such as record linkage. Application-level recov-
ery techniques are also needed for automatically repairing incorrect data. The ETL 
(extract, transform, load) tools widely used to load data in data warehouses (see 
Section 29.4) are presently grappling with these issues.

30.9.2 Intellectual Property Rights
With the widespread use of the Internet and intranets, legal and informational 
aspects of data are becoming major concerns for organizations. To address these 
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concerns, watermarking techniques for relational data have been proposed. The 
main purpose of digital watermarking is to protect content from unauthorized 
duplication and distribution by enabling provable ownership of the content. Digital 
watermarking has traditionally relied upon the availability of a large noise domain 
within which the object can be altered while retaining its essential properties. How-
ever, research is needed to assess the robustness of such techniques and to investi-
gate different approaches aimed at preventing intellectual property rights violations.

30.9.3 Database Survivability
Database systems need to operate and continue their functions, even with reduced 
capabilities, despite disruptive events such as information warfare attacks. A DBMS, 
in addition to making every effort to prevent an attack and detecting one in the 
event of occurrence, should be able to do the following:

 ■ Confinement. Take immediate action to eliminate the attacker’s access to 
the system and to isolate or contain the problem to prevent further spread.

 ■ Damage assessment. Determine the extent of the problem, including failed 
functions and corrupted data.

 ■ Reconfiguration. Reconfigure to allow operation to continue in a degraded 
mode while recovery proceeds.

 ■ Repair. Recover corrupted or lost data and repair or reinstall failed system 
functions to reestablish a normal level of operation.

 ■ Fault treatment. To the extent possible, identify the weaknesses exploited in 
the attack and take steps to prevent a recurrence.

The goal of the information warfare attacker is to damage the organization’s opera-
tion and fulfillment of its mission through disruption of its information systems. 
The specific target of an attack may be the system itself or its data. Although attacks 
that bring the system down outright are severe and dramatic, they must also be well 
timed to achieve the attacker’s goal, since attacks will receive immediate and con-
centrated attention in order to bring the system back to operational condition, 
diagnose how the attack took place, and install preventive measures.

To date, issues related to database survivability have not been sufficiently investi-
gated. Much more research needs to be devoted to techniques and methodologies 
that ensure database system survivability.

30.10 Oracle Label-Based Security
Restricting access to entire tables or isolating sensitive data into separate databases 
is a costly operation to administer. Oracle label security overcomes the need for 
such measures by enabling row-level access control. It is available starting with 
Oracle Database 11g Release 1 (11.1) Enterprise Edition. Each database table or 
view has a security policy associated with it. This policy executes every time the 
table or view is queried or altered. Developers can readily add label-based access 
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control to their Oracle Database applications. Label-based security provides an 
adaptable way of controlling access to sensitive data. Both users and data have labels 
associated with them. Oracle label security uses these labels to provide security.

30.10.1 Virtual Private Database (VPD) Technology
Virtual private databases (VPDs) are a feature of the Oracle Enterprise Edition 
that add predicates to user statements to limit their access in a transparent manner 
to the user and the application. The VPD concept allows server-enforced, fine-
grained access control for a secure application.

VPD provides access control based on policies. These VPD policies enforce object-
level access control or row-level security. VPD provides an application program-
ming interface (API) that allows security policies to be attached to database tables 
or views. Using PL/SQL, a host programming language used in Oracle applications, 
developers and security administrators can implement security policies with the 
help of stored procedures.9 VPD policies allow developers to remove access security 
mechanisms from applications and centralize them within the Oracle Database.

VPD is enabled by associating a security “policy” with a table, view, or synonym. 
An administrator uses the supplied PL/SQL package, DBMS_RLS, to bind a policy 
function with a database object. When an object having a security policy associated 
with it is accessed, the function implementing this policy is consulted. The policy 
function returns a predicate (a WHERE clause) that is then appended to the user’s 
SQL statement, thus transparently and dynamically modifying the user’s data 
access. Oracle label security is a technique of enforcing row-level security in the 
form of a security policy.

30.10.2 Label Security Architecture
Oracle label security is built on the VPD technology delivered in the Oracle Data-
base 11.1 Enterprise Edition. Figure 30.4 illustrates how data is accessed under Ora-
cle label security, showing the sequence of DAC and label security checks.

Figure 30.4 shows the sequence of discretionary access control (DAC) and label 
security checks. The left part of the figure shows an application user in an Oracle 
Database 11g Release 1 (11.1) session sending out an SQL request. The Oracle 
DBMS checks the DAC privileges of the user, making sure that he or she has SELECT 
privileges on the table. Then it checks whether the table has a virtual private data-
base (VPD) policy associated with it to determine if the table is protected using 
Oracle label security. If it is, the VPD SQL modification (WHERE clause) is added to 
the original SQL statement to find the set of accessible rows for the user to view. 
Then Oracle label security checks the labels on each row to determine the subset of 
rows to which the user has access (as explained in the next section). This modified 
query is processed, optimized, and executed.

9Stored procedures are discussed in Section 8.2.2.



 30.10 Oracle Label-Based Security 1157

30.10.3 How Data Labels and User Labels Work Together
A user’s label indicates the information the user is permitted to access. It also deter-
mines the type of access (read or write) that the user has on that information. A 
row’s label shows the sensitivity of the information that the row contains as well as 
the ownership of the information. When a table in the database has a label-based 
access associated with it, a row can be accessed only if the user’s label meets certain 
criteria defined in the policy definitions. Access is granted or denied based on the 
result of comparing the data label and the session label of the user.

Compartments allow a finer classification of sensitivity of the labeled data. All data 
related to the same project can be labeled with the same compartment. Compart-
ments are optional; a label can contain zero or more compartments.

Groups are used to identify organizations as owners of the data with corresponding 
group labels. Groups are hierarchical; for example, a group can be associated with a 
parent group.

If a user has a maximum level of SENSITIVE, then the user potentially has access to 
all data having levels SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED. This user has 
no access to HIGHLY_SENSITIVE data. Figure 30.5 shows how data labels and user 
labels work together to provide access control in Oracle label security.

As shown in Figure 30.5, User 1 can access the rows 2, 3, and 4 because his maxi-
mum level is HS (Highly_Sensitive). He has access to the FIN (Finance) compart-
ment, and his access to group WR (Western Region) hierarchically includes group 
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WR_SAL (WR Sales). He cannot access row 1 because he does not have the CHEM 
(Chemical) compartment. It is important that a user has authorization for all com-
partments in a row’s data label so the user can access that row. Based on this exam-
ple, user 2 can access both rows 3 and 4 and has a maximum level of S, which is less 
than the HS in row 2. So, although user 2 has access to the FIN compartment, he 
can only access the group WR_SAL and thus cannot access row 1.

30.11 Summary
In this chapter, we discussed several techniques for enforcing database system 
security. Section 30.1 is an introduction to database security. We presented in Sec-
tion 30.1.1 different threats to databases in terms of loss of integrity, availability, 
and confidentiality. We discussed in Section 30.1.2 the types of control measures 
to deal with these problems: access control, inference control, flow control, and 
encryption. In the rest of Section 30.1, we covered various issues related to secu-
rity, including data sensitivity and type of disclosures; security versus precision of 
results when a user requests information; and the relationship between informa-
tion security and privacy.

Security enforcement deals with controlling access to the database system as a 
whole and controlling authorization to access specific portions of a database. The 
former is usually done by assigning accounts with passwords to users. The latter 
can be accomplished by using a system of granting and revoking privileges to 
individual accounts for accessing specific parts of the database. This approach, 
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presented in Section 30.2, is generally referred to as discretionary access control 
(DAC). We presented some SQL commands for granting and revoking privileges, 
and we illustrated their use with examples. Then in Section 30.3 we gave an over-
view of mandatory access control (MAC) mechanisms that enforce multilevel 
security. These require the classifications of users and data values into security 
classes and enforce the rules that prohibit flow of information from higher to 
lower security levels. Some of the key concepts underlying the multilevel rela-
tional model, including filtering and polyinstantiation, were presented. Role-
based access control (RBAC) was introduced in Section 30.3.2, which assigns 
privileges based on roles that users play. We introduced the notion of role hierar-
chies, mutual exclusion of roles, and row- and label-based security. We explained 
the main ideas behind the threat of SQL injection in Section 30.4, the methods in 
which it can be induced, and the various types of risks associated with it. Then we 
gave an idea of the various ways SQL injection can be prevented.

We briefly discussed in Section 30.5 the problem of controlling access to statistical 
databases to protect the privacy of individual information while concurrently pro-
viding statistical access to populations of records. The issues related to flow control 
and the problems associated with covert channels were discussed next in Sec-
tion 30.6, as well as encryption and public-versus-private key-based infrastructures 
in Section 30.7. The idea of symmetric key algorithms and the use of the popular 
asymmetric key-based public key infrastructure (PKI) scheme was explained in 
Section 30.7.3. We also covered in Sections 30.7.4 and 30.7.5 the concepts of digital 
signatures and digital certificates. We highlighted in Section 30.8 the importance of 
privacy issues and hinted at some privacy preservation techniques. We discussed in 
Section 30.9 a variety of challenges to security, including data quality, intellectual 
property rights, and data survivability. We ended the chapter in Section 30.10 by 
introducing the implementation of security policies by using a combination of 
label-based security and virtual private databases in Oracle 11g.

Review Questions
 30.1. Discuss what is meant by each of the following terms: database authoriza-

tion, access control, data encryption, privileged (system) account, database 
audit, audit trail.

 30.2. Which account is designated as the owner of a relation? What privileges 
does the owner of a relation have?

 30.3. How is the view mechanism used as an authorization mechanism?

 30.4. Discuss the types of privileges at the account level and those at the relation level.

 30.5. What is meant by granting a privilege? What is meant by revoking a privilege?

 30.6. Discuss the system of propagation of privileges and the restraints imposed 
by horizontal and vertical propagation limits.

 30.7. List the types of privileges available in SQL.
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 30.8. What is the difference between discretionary and mandatory access control?

 30.9. What are the typical security classifications? Discuss the simple security 
property and the *-property, and explain the justification behind these rules 
for enforcing multilevel security.

 30.10. Describe the multilevel relational data model. Define the following terms: 
apparent key, polyinstantiation, filtering.

 30.11. What are the relative merits of using DAC or MAC?

 30.12. What is role-based access control? In what ways is it superior to DAC and 
MAC?

 30.13. What are the two types of mutual exclusion in role-based access control?

 30.14. What is meant by row-level access control?

 30.15. What is label security? How does an administrator enforce it?

 30.16. What are the different types of SQL injection attacks?

 30.17. What risks are associated with SQL injection attacks?

 30.18. What preventive measures are possible against SQL injection attacks?

 30.19. What is a statistical database? Discuss the problem of statistical database 
security.

 30.20. How is privacy related to statistical database security? What measures can be 
taken to ensure some degree of privacy in statistical databases?

 30.21. What is flow control as a security measure? What types of flow control exist?

 30.22. What are covert channels? Give an example of a covert channel.

 30.23. What is the goal of encryption? What process is involved in encrypting data 
and then recovering it at the other end?

 30.24. Give an example of an encryption algorithm and explain how it works.

 30.25. Repeat the previous question for the popular RSA algorithm.

 30.26. What is a symmetric key algorithm for key-based security?

 30.27. What is the public key infrastructure scheme? How does it provide security?

 30.28. What are digital signatures? How do they work?

 30.29. What type of information does a digital certificate include?

Exercises
 30.30. How can privacy of data be preserved in a database?

 30.31. What are some of the current outstanding challenges for database security?
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 30.32. Consider the relational database schema in Figure 5.5. Suppose that all the 
relations were created by (and hence are owned by) user X, who wants to 
grant the following privileges to user accounts A, B, C, D, and E:

a. Account A can retrieve or modify any relation except DEPENDENT and 
can grant any of these privileges to other users.

b. Account B can retrieve all the attributes of EMPLOYEE and DEPARTMENT 
except for Salary, Mgr_ssn, and Mgr_start_date.

c. Account C can retrieve or modify WORKS_ON but can only retrieve the 
Fname, Minit, Lname, and Ssn attributes of EMPLOYEE and the Pname and 
Pnumber attributes of PROJECT.

d. Account D can retrieve any attribute of EMPLOYEE or DEPENDENT and 
can modify DEPENDENT.

e. Account E can retrieve any attribute of EMPLOYEE but only for EMPLOYEE 
tuples that have Dno = 3.

f. Write SQL statements to grant these privileges. Use views where appropriate.

 30.33. Suppose that privilege (a) of Exercise 30.32 is to be given with GRANT 
OPTION but only so that account A can grant it to at most five accounts, and 
each of these accounts can propagate the privilege to other accounts but 
without the GRANT OPTION privilege. What would the horizontal and verti-
cal propagation limits be in this case?

 30.34. Consider the relation shown in Figure 30.2(d). How would it appear to a 
user with classification U? Suppose that a classification U user tries to update 
the salary of ‘Smith’ to $50,000; what would be the result of this action?
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tial protection techniques for data confidentiality in the cloud.
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A
Alternative Diagrammatic 

Notations for ER Models

Figure A.1 shows a number of different diagram-
matic notations for representing ER and EER 

model concepts. Unfortunately, there is no standard notation: different database 
design practitioners prefer different notations. Similarly, various CASE (computer-
aided software engineering) tools and OOA (object-oriented analysis) methodolo-
gies use various notations. Some notations are associated with models that have 
additional concepts and constraints beyond those of the ER and EER models 
described in Chapters 7 through 9, while other models have fewer concepts and 
constraints. The notation we used in Chapter 7 is quite close to the original notation 
for ER diagrams, which is still widely used. We discuss some alternate notations 
here.

Figure A.1(a) shows different notations for displaying entity types/classes, attri-
butes, and relationships. In Chapters 7 through 9, we used the symbols marked (i) in 
Figure A.1(a)—namely, rectangle, oval, and diamond. Notice that symbol (ii) for 
entity types/classes, symbol (ii) for attributes, and symbol (ii) for relationships are 
similar, but they are used by different methodologies to represent three different 
concepts. The straight line symbol (iii) for representing relationships is used by 
several tools and methodologies.

Figure A.1(b) shows some notations for attaching attributes to entity types. We used 
notation (i). Notation (ii) uses the third notation (iii) for attributes from Figure A.1(a). 
The last two notations in Figure A.1(b)—(iii) and (iv)—are popular in OOA meth-
odologies and in some CASE tools. In particular, the last notation displays both the 
attributes and the methods of a class, separated by a horizontal line.
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Entity type/class symbols E(i) E(ii)

Attribute symbols (i) (ii)

Relationship symbols (i) (ii)

(iii)

(iii)

(a)

A

R

A A

R R

(b)
Ssn
Name
Address

.

.

.

EMPLOYEE(ii)

EMPLOYEE

Ssn(i)
Name

Address . . .

.

.

.

(iii)
Ssn

Name
Address

EMPLOYEE

.

.

.

.

.

.

(iv)

Ssn

Name
Address

Hire_emp

Fire_emp

EMPLOYEE

(c) (i)

(ii)

1 N

(iii)

(iv)

(v)

(vi) *

(d) (i)

(ii)

1 N

(0,n) (1,1)

(0,n)(1,1)
(iii)

(iv)

(e) (i)

(iv) C

(ii) (iii)C

S2S1 S3

d o

S2S1 S3

G

Gs

C

S2S1 S3

C

S2S1 S3

(v) (vi)C

S2S1 S3

C

S2S1 S3

G

(v)
  0..n 1..1

Figure A.1
Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying  
attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for  
displaying specialization/generalization.
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Figure A.1(c) shows various notations for representing the cardinality ratio of 
binary relationships. We used notation (i) in Chapters 7 through 9. Notation (ii)—
known as the chicken feet notation—is quite popular. Notation (iv) uses the arrow as 
a functional reference (from the N to the 1 side) and resembles our notation for for-
eign keys in the relational model (see Figure 9.2); notation (v)—used in Bachman 
diagrams and the network data model—uses the arrow in the reverse direction (from 
the 1 to the N side). For a 1:1 relationship, (ii) uses a straight line without any 
chicken feet; (iii) makes both halves of the diamond white; and (iv) places arrow-
heads on both sides. For an M:N relationship, (ii) uses chicken feet at both ends of 
the line; (iii) makes both halves of the diamond black; and (iv) does not display any 
arrowheads.

Figure A.1(d) shows several variations for displaying (min, max) constraints, which 
are used to display both cardinality ratio and total/partial participation. We mostly 
used notation (i). Notation (ii) is the alternative notation we used in Figure 7.15 and 
discussed in Section 7.7.4. Recall that our notation specifies the constraint that each 
entity must participate in at least min and at most max relationship instances. 
Hence, for a 1:1 relationship, both max values are 1; for M:N, both max values are n. 
A min value greater than 0 (zero) specifies total participation (existence depen-
dency). In methodologies that use the straight line for displaying relationships, it is 
common to reverse the positioning of the (min, max) constraints, as shown in (iii); a 
variation common in some tools (and in UML notation) is shown in (v). Another 
popular technique—which follows the same positioning as (iii)—is to display the 
min as o (“oh” or circle, which stands for zero) or as | (vertical dash, which stands 
for 1), and to display the max as | (vertical dash, which stands for 1) or as chicken 
feet (which stands for n), as shown in (iv).

Figure A.1(e) shows some notations for displaying specialization/generalization. We 
used notation (i) in Chapter 8, where a d in the circle specifies that the subclasses 
(S1, S2, and S3) are disjoint and an o in the circle specifies overlapping subclasses. 
Notation (ii) uses G (for generalization) to specify disjoint, and Gs to specify over-
lapping; some notations use the solid arrow, while others use the empty arrow 
(shown at the side). Notation (iii) uses a triangle pointing toward the superclass, 
and notation (v) uses a triangle pointing toward the subclasses; it is also possible to 
use both notations in the same methodology, with (iii) indicating generalization 
and (v) indicating specialization. Notation (iv) places the boxes representing 
subclasses within the box representing the superclass. Of the notations based on 
(vi), some use a single-lined arrow, and others use a double-lined arrow (shown 
at the side).

The notations shown in Figure A.1 show only some of the diagrammatic symbols 
that have been used or suggested for displaying database conceptual schemes. Other 
notations, as well as various combinations of the preceding, have also been used. It 
would be useful to establish a standard that everyone would adhere to, in order to 
prevent misunderstandings and reduce confusion.



This page intentionally left blank



1167

B
Parameters of Disks

The most important disk parameter is the time 
required to locate an arbitrary disk block, given its 

block address, and then to transfer the block between the disk and a main memory 
buffer. This is the random access time for accessing a disk block. There are three 
time components to consider as follows:

  1. Seek time (s). This is the time needed to mechanically position the  
read/write head on the correct track for movable-head disks. (For fixed-head 
disks, it is the time needed to electronically switch to the appropriate  
read/write head.) For movable-head disks, this time varies, depending on the 
distance between the current track under the read/write head and the track 
specified in the block address. Usually, the disk manufacturer provides an 
average seek time in milliseconds. The typical range of average seek time is 4 
to 10 msec. This is the main culprit for the delay involved in transferring 
blocks between disk and memory.

  2. Rotational delay (rd). Once the read/write head is at the correct track, the 
user must wait for the beginning of the required block to rotate into position 
under the read/write head. On average, this takes about the time for half a 
revolution of the disk, but it actually ranges from immediate access (if 
the start of the required block is in position under the read/write head right 
after the seek) to a full disk revolution (if the start of the required block just 
passed the read/write head after the seek). If the speed of disk rotation is p 
revolutions per minute (rpm), then the average rotational delay rd is given by

rd = (1/2) * (1/p) min = (60 * 1000)/(2 * p) msec = 30000/p msec

A typical value for p is 10,000 rpm, which gives a rotational delay of rd =  
3 msec. For fixed-head disks, where the seek time is negligible, this component 
causes the greatest delay in transferring a disk block.
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  3. Block transfer time (btt). Once the read/write head is at the beginning of 
the required block, some time is needed to transfer the data in the block. 
This block transfer time depends on the block size, track size, and rotational 
speed. If the transfer rate for the disk is tr bytes/msec and the block size is  
B bytes, then

btt = B/tr msec

If we have a track size of 50 Kbytes and p is 3600 rpm, then the transfer rate 
in bytes/msec is

tr = (50 * 1000)/(60 * 1000/3600) = 3000 bytes/msec

In this case, btt = B/3000 msec, where B is the block size in bytes.

The average time (s) needed to find and transfer a block, given its block address, is 
estimated by

(s + rd + btt) msec

This holds for either reading or writing a block. The principal method of reducing 
this time is to transfer several blocks that are stored on one or more tracks of the 
same cylinder; then the seek time is required for the first block only. To transfer 
consecutively k noncontiguous blocks that are on the same cylinder, we need 
approximately

s + (k * (rd + btt)) msec

In this case, we need two or more buffers in main storage because we are continu-
ously reading or writing the k blocks, as we discussed in Chapter 17. The transfer 
time per block is reduced even further when consecutive blocks on the same track or 
cylinder are transferred. This eliminates the rotational delay for all but the first 
block, so the estimate for transferring k consecutive blocks is

s + rd + (k * btt) msec

A more accurate estimate for transferring consecutive blocks takes into account the 
interblock gap (see Section 17.2.1), which includes the information that enables the 
read/write head to determine which block it is about to read. Usually, the disk man-
ufacturer provides a bulk transfer rate (btr) that takes the gap size into account 
when reading consecutively stored blocks. If the gap size is G bytes, then

btr = (B/(B + G)) * tr bytes/msec

The bulk transfer rate is the rate of transferring useful bytes in the data blocks. The 
disk read/write head must go over all bytes on a track as the disk rotates, including 
the bytes in the interblock gaps, which store control information but not real data. 
When the bulk transfer rate is used, the time needed to transfer the useful data in 
one block out of several consecutive blocks is B/btr. Hence, the estimated time to 
read k blocks consecutively stored on the same cylinder becomes

s + rd + (k * (B/btr)) msec
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Another parameter of disks is the rewrite time. This is useful in cases when we read 
a block from the disk into a main memory buffer, update the buffer, and then write 
the buffer back to the same disk block on which it was stored. In many cases, the 
time required to update the buffer in main memory is less than the time required for 
one disk revolution. If we know that the buffer is ready for rewriting, the system can 
keep the disk heads on the same track, and during the next disk revolution the 
updated buffer is rewritten back to the disk block. Hence, the rewrite time Tr w, is 
usually estimated to be the time needed for one disk revolution:

Tr w = 2 * rd msec = 60000/p msec

To summarize, the following is a list of the parameters we have discussed and the 
symbols we use for them:

Seek time: s msec

Rotational delay: rd msec

Block transfer time: btt msec

Rewrite time: Tr w msec

Transfer rate: tr bytes/msec

Bulk transfer rate: btr bytes/msec

Block size: B bytes

Interblock gap size: G bytes

Disk speed: p rpm (revolutions per minute)
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C
Overview of the QBE  

Language

The Query-By-Example (QBE) language is impor-
tant because it is one of the first graphical query 

languages with minimum syntax developed for database systems. It was developed 
at IBM Research and is available as an IBM commercial product as part of the QMF 
(Query Management Facility) interface option to DB2. The language was also 
implemented in the Paradox DBMS, and is related to a point-and-click type inter-
face in the Microsoft Access DBMS. It differs from SQL in that the user does not 
have to explicitly specify a query using a fixed syntax; rather, the query is formulated 
by filling in templates of relations that are displayed on a monitor screen. Figure C.1 
shows how these templates may look for the database of Figure 3.5. The user does 
not have to remember the names of attributes or relations because they are dis-
played as part of these templates. Additionally, the user does not have to follow rigid 
syntax rules for query specification; rather, constants and variables are entered in 
the columns of the templates to construct an example related to the retrieval or 
update request. QBE is related to the domain relational calculus, as we shall see, and 
its original specification has been shown to be relationally complete.

C.1 Basic Retrievals in QBE
In QBE retrieval queries are specified by filling in one or more rows in the templates 
of the tables. For a single relation query, we enter either constants or example 
 elements (a QBE term) in the columns of the template of that relation. An example 
element stands for a domain variable and is specified as an example value preceded 
by the underscore character (_). Additionally, a P. prefix (called the P dot operator) 
is entered in certain columns to indicate that we would like to print (or display) 
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DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure C.1
The relational schema of Figure 3.5 
as it may be displayed by QBE.

values in those columns for our result. The constants specify values that must be 
exactly matched in those columns.

For example, consider the query Q0: Retrieve the birth date and address of John B. 
Smith. In Figures C.2(a) through C.2(d) we show how this query can be specified in 
a progressively more terse form in QBE. In Figure C.2(a) an example of an employee 
is presented as the type of row that we are interested in. By leaving John B. Smith as 
constants in the Fname, Minit, and Lname columns, we are specifying an exact match 
in those columns. The rest of the columns are preceded by an underscore indicating 
that they are domain variables (example elements). The P. prefix is placed in the 
Bdate and Address columns to indicate that we would like to output value(s) in those 
columns.

Q0 can be abbreviated as shown in Figure C.2(b). There is no need to specify exam-
ple values for columns in which we are not interested. Moreover, because example 
values are completely arbitrary, we can just specify variable names for them, as 
shown in Figure C.2(c). Finally, we can also leave out the example values entirely, as 
shown in Figure C.2(d), and just specify a P. under the columns to be retrieved.

To see how retrieval queries in QBE are similar to the domain relational calculus, 
compare Figure C.2(d) with Q0 (simplified) in domain calculus as follows:

Q0 : { uv | EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and s=‘Smith’}
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We can think of each column in a QBE template as an implicit domain variable; 
hence, Fname corresponds to the domain variable q, Minit corresponds to r, …, and 
Dno corresponds to z. In the QBE query, the columns with P. correspond to vari-
ables specified to the left of the bar in domain calculus, whereas the columns with 
constant values correspond to tuple variables with equality selection conditions on 
them. The condition EMPLOYEE(qrstuvwxyz) and the existential quantifiers are 
implicit in the QBE query because the template corresponding to the EMPLOYEE 
relation is used.

In QBE, the user interface first allows the user to choose the tables (relations) needed 
to formulate a query by displaying a list of all relation names. Then the templates for 
the chosen relations are displayed. The user moves to the appropriate columns in 
the templates and specifies the query. Special function keys are provided to move 
among templates and perform certain functions.

We now give examples to illustrate basic facilities of QBE. Comparison operators 
other than = (such as > or ≥) may be entered in a column before typing a constant 
value. For example, the query Q0A: List the social security numbers of employees who 
work more than 20 hours per week on project number 1 can be specified as shown in 
Figure C.3(a). For more complex conditions, the user can ask for a condition box, 
which is created by pressing a particular function key. The user can then type the 
complex condition.1 

EMPLOYEE(a)

(b)

(c)

(d)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith _123456789 P._9/1/60 P._100 Main, Houston, TX _M _25000 _123456789 _3

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._9/1/60 P._100 Main, Houston, TX

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._X P._Y

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P. P.

Figure C.2
Four ways to specify the query Q0 in QBE.

1Negation with the ¬ symbol is not allowed in a condition box.
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For example, the query Q0B: List the social security numbers of employees who work 
more than 20 hours per week on either project 1 or project 2 can be specified as shown 
in Figure C.3(b).

Some complex conditions can be specified without a condition box. The rule is that 
all conditions specified on the same row of a relation template are connected by the 
and logical connective (all must be satisfied by a selected tuple), whereas conditions 
specified on distinct rows are connected by or (at least one must be satisfied). Hence, 
Q0B can also be specified, as shown in Figure C.3(c), by entering two distinct rows 
in the template.

Now consider query Q0C: List the social security numbers of employees who work on 
both project 1 and project 2; this cannot be specified as in Figure C.4(a), which lists 
those who work on either project 1 or project 2. The example variable _ES will bind 
itself to Essn values in <–, 1, –> tuples as well as to those in <–, 2, –> tuples. Fig- 
ure C.4(b) shows how to specify Q0C correctly, where the condition (_EX = _EY) in 
the box makes the _EX and _EY variables bind only to identical Essn values.

In general, once a query is specified, the resulting values are displayed in the template 
under the appropriate columns. If the result contains more rows than can be displayed 
on the screen, most QBE implementations have function keys to allow scrolling up 
and down the rows. Similarly, if a template or several templates are too wide to appear 
on the screen, it is possible to scroll sideways to examine all the templates.

A join operation is specified in QBE by using the same variable2  in the columns to 
be joined. For example, the query Q1: List the name and address of all employees who 

WORKS_ON

(a) Essn Pno Hours

P. > 20

WORKS_ON

(b) Essn Pno Hours

P. _PX  _HX

_HX > 20 and (PX = 1 or PX = 2)

CONDITIONS

WORKS_ON

(c) Essn Pno Hours

P. > 201
P. > 202

Figure C.3
Specifying complex conditions 
in QBE. (a) The query Q0A. 
(b) The query Q0B with a 
condition box. (c) The query 
Q0B without a condition box.

2A variable is called an example element in QBE manuals.
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work for the ‘Research’ department can be specified as shown in Figure C.5(a). Any 
number of joins can be specified in a single query. We can also specify a result table 
to display the result of the join query, as shown in Figure C.5(a); this is needed if the 
result includes attributes from two or more relations. If no result table is specified, 
the system provides the query result in the columns of the various relations, which 
may make it difficult to interpret. Figure C.5(a) also illustrates the feature of QBE 
for specifying that all attributes of a relation should be retrieved, by placing the P. 
operator under the relation name in the relation template.

To join a table with itself, we specify different variables to represent the different 
references to the table. For example, query Q8: For each employee retrieve the 
employee’s first and last name as well as the first and last name of his or her immedi-
ate supervisor can be specified as shown in Figure C.5(b), where the variables start-
ing with E refer to an employee and those starting with S refer to a supervisor.

C.2  Grouping, Aggregation, and Database 
Modification in QBE

Next, consider the types of queries that require grouping or aggregate functions. A 
grouping operator G. can be specified in a column to indicate that tuples should be 
grouped by the value of that column. Common functions can be specified, such as 
AVG., SUM., CNT. (count), MAX., and MIN. In QBE the functions AVG., SUM., and 
CNT. are applied to distinct values within a group in the default case. If we want 
these functions to apply to all values, we must use the prefix ALL.3  This convention 
is different in SQL, where the default is to apply a function to all values.

WORKS_ON
(a) Essn Pno Hours

P._ES 1
P._ES 2

WORKS_ON
(b) Essn Pno Hours

P._EX 1
P._EY 2

_EX = _EY

CONDITIONS

Figure C.4
Specifying EMPLOYEES who work 
on both projects. (a) Incorrect 
specification of an AND condition. 
(b) Correct specification.

3ALL in QBE is unrelated to the universal quantifier.
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EMPLOYEE(a)

(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_FN

Research

P. _FN _LN _Addr

_DX

_LN _Addr _DX

DEPARTMENT

Dname Dnumber Mgrssn Mgr_start_date

RESULT

P. _E1 _E2 _S1

RESULT
_S2

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_E1 _E2 _Xssn

_S1 _S2 _Xssn

Figure C.5
Illustrating JOIN and result relations in QBE. (a) The query Q1. (b) The query Q8.

Figure C.6(a) shows query Q23, which counts the number of distinct salary values 
in the EMPLOYEE relation. Query Q23A (Figure C.6(b) counts all salary values, 
which is the same as counting the number of employees. Figure C.6(c) shows Q24, 
which retrieves each department number and the number of employees and average 
salary within each department; hence, the Dno column is used for grouping as indi-
cated by the G. function. Several of the operators G., P., and ALL can be specified in 
a single column. Figure C.6(d) shows query Q26, which displays each project name 
and the number of employees working on it for projects on which more than two 
employees work.

QBE has a negation symbol, ¬, which is used in a manner similar to the NOT EXISTS 
function in SQL. Figure C.7 shows query Q6, which lists the names of employees 
who have no dependents. The negation symbol ¬ says that we will select values of 
the _SX variable from the EMPLOYEE relation only if they do not occur in the 
DEPENDENT relation. The same effect can be produced by placing a ¬ _SX in the 
Essn column.

Although the QBE language as originally proposed was shown to support the 
equivalent of the EXISTS and NOT EXISTS functions of SQL, the QBE implementa-
tion in QMF (under the DB2 system) does not provide this support. Hence, the 
QMF version of QBE, which we discuss here, is not relationally complete. Queries 
such as Q3: Find employees who work on all projects controlled by department 5 
cannot be specified.
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EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.ALL

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.AVG.ALL P.G.P.CNT.ALL

PROJECT(d)

Pname Pnumber Plocation

_PXP.

Dnum

WORKS_ON

Essn Pno Hours

P.CNT.EX G._PX

CNT._EX > 2

CONDITIONS

Figure C.6
Functions and grouping in QBE.  
(a) The query Q23. (b) The query Q23A. 
(c) The query Q24. (d) The query Q26.

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P. P. _SX

DEPENDENT

Essn Dependent_name Sex Bdate Relationship
_SX

Figure C.7
Illustrating negation by the query Q6.

There are three QBE operators for modifying the database: I. for insert, D. for delete, 
and U. for update. The insert and delete operators are specified in the template col-
umn under the relation name, whereas the update operator is specified under the 
columns to be updated. Figure C.8(a) shows how to insert a new EMPLOYEE tuple. 
For deletion, we first enter the D. operator and then specify the tuples to be deleted 
by a condition (Figure C.8(b)). To update a tuple, we specify the U. operator under 
the attribute name, followed by the new value of the attribute. We should also select 
the tuple or tuples to be updated in the usual way. Figure C.8(c) shows an update 
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request to increase the salary of ‘John Smith’ by 10 percent and also to reassign him 
to department number 4.

QBE also has data definition capabilities. The tables of a database can be specified 
interactively, and a table definition can also be updated by adding, renaming, or 
removing a column. We can also specify various characteristics for each column, 
such as whether it is a key of the relation, what its data type is, and whether an index 
should be created on that field. QBE also has facilities for view definition, authoriza-
tion, storing query definitions for later use, and so on.

QBE does not use the linear style of SQL; rather, it is a two-dimensional language 
because users specify a query moving around the full area of the screen. Tests on 
users have shown that QBE is easier to learn than SQL, especially for nonspecialists. 
In this sense, QBE was the first user-friendly visual relational database language.

More recently, numerous other user-friendly interfaces have been developed for 
commercial database systems. The use of menus, graphics, and forms is now becom-
ing quite common. Filling forms partially to issue a search request is akin to using 
QBE. Visual query languages, which are still not so common, are likely to be offered 
with commercial relational databases in the future.

EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

RichardI. MariniK M 37000 987654321 4653298653 30-Dec-52 98 Oak Forest, Katy, TX

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

D. 653298653

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John Smith U._S*1.1 U.4

Figure C.8
Modifying the database in QBE. (a) Insertion. (b) Deletion. (c) Update in QBE.
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‘ ’, string notation (single quotation), 182, 
196, 347–348

:, multiple inheritance (colon) notation, 
393

@, XPath attribute names, 444
=, EQUIJOIN comparison operator, 253
–>, dereferencing in SQL, 386
–>, operation arrow notation, 392
←, assignment operation, relational 

algebra, 245
ρ, RENAME operator, 245–246
“ ”, operator notation (double quotation), 

196, 347–348
$, XQuery variable prefix, 445
%, arbitrary number replacement 

symbol, SQL, 195–196
( ), SQL notation

constraint conditions for assertions, 
226

explicit set of values, 214
tuple value comparisons, 210

( ), XML DTD element notation, 434
*, SQL notation

attribute specification and retrieval, 
193

tuple rows in query results, 218
*, XPath elements (wildcard symbol), 444
*__, NATURAL JOIN comparison 

operator, 253
/ and //, path separators, XML, 443
/, escape operator, SQL, 196
[ ], UDT arrays (brackets), 383
_, single character replacement symbol, 

SQL, 195–196
||, concatenation operator (double bar), 

SQL, 182–183
d, disjointness constraint notation, 

114–115
∪, set union operation, 120
≡, equivalent to symbol, 274
σ, SELECT operator, 241
⇒, implies symbol, 274
1NF, see First normal form (1NF)
2NF, see Second normal form (2NF)
3NF, see Third normal form (3NF)
4NF, see Fourth normal form (4NF)
5NF, see Fifth normal form (5NF)
Abstraction concepts

aggregation, 131–133
association, 131–132
classification, 130
identification, 130–131

instantiation, 130
knowledge representation (KR) and, 

129
Access control

content-based, 1142
credentials and, 1142
defined, 1126
Directory Services Markup Language 

(DSML) and, 1142
e-commerce environment and, 1141
mandatory access control (MAC), 

1121, 1134–1137
mobile applications, 1141–1142
row-level, 1139–1140
Web policies, 1141–1142
XML, 1140–1141, 1142

Access paths
data modeling, 34
DBMS classification from, 52

Action, SQL triggers, 227
Active database systems, 4, 22
Active database techniques, SQL, 202
Active databases

design issues, 967–972
enhanced data models, 963–974
event-condition-action (ECA) model, 

963–964
expert (knowledge-based) systems, 

962–963
implementation issues, 967–972
triggers, 963–967, 973–974

Active rules
applications for, 972–973
event-condition-action (ECA) model, 

963–964
functionality of, 962
statement-level rules in STARBURST, 

970–972
Actuator, disk devices, 551
Acyclic graphs, 52. See also Hierarchies
Adaptive optimization, Oracle, 735
ADD CONSTRAINT keyword, SQL, 234
Advanced Encryption Standards (AES), 

1150
After image (AFIM) updating, 816
Agent-based approach, Web content 

analysis, 1053–1054
Aggregate functions

asterisk (*) for tuple rows of query 
results, 218

discarded NULL values, 218
grouping and, 216–218, 260–261

OQL collections and, 413–414
parallel algorithms, 686
QBE (Query-by-Example) language, 

1175–1177
query execution and, 709
SQL query retrieval and, 216–219
relational algebra for, 260–261

Aggregate operation implementation, 
678–679

Aggregation
semantic modeling process, 131–133
UML class diagrams, 87–88

Algorithms, concurrency control
Thomas’s write rule, 795
timestamp ordering (TO), 793

Algorithms, data mining
apriori algorithm, 1075–1076
BIRCH algorithm, 1090
FP-growth algorithm, 1077–1080
genetic algorithms (GAs), 1093
k-means algorithm, 1088–1089
partition algorithm, 1081
sampling algorithm, 1076–1077

Algorithms, database recovery
ARIES recovery algorithm, 827–831
idempotent operations of, 815
NO-UNDO/REDO, 815, 821–823
UNDO/REDO, 815

Algorithms, encryption
asymmetric key encryption 

algorithms, 1151
RSA public key encryption algorithm, 

1152
symmetric key algorithms, 1150–1151

Algorithms, normalization
alternative RDB designs, 524–527
BCNF schemas, 522–523
dependency preservation, 519–522
ER-to-relational mapping, 290–296
nonadditive (lossless) join property 

decomposition, 519–523
RDB schema design, 519–527
3NF schemas, 519–522

Algorithms, queries
external sorting, 660–663
heuristic algebra optimization, 

700–701
parallel processing, 683–687
PROJECT operation, 676–678
SELECT operation, 663–668
set operation, 676–678

Alias (tuple variables) of attributes, 192
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ALL option, SQL, 194–195, 210
All-key relation, 491, 493
Allocation of file blocks on a disk, 564
ALTER command, SQL, 233–234
ALTER TABLE command, SQL, 180
Analysis, RDB design by, 503
Analytical data store (ADS), 1105
Analytical operations, spatial databases, 

988
Anchor texts, 1027
AND/OR/NOT operators

Boolean conditions, 270–271
quantifier transformations using, 274

Annotations, XML language, 440
Anomalies

deletion, 467
insertion, 465–466
modification, 467
RDB design and, 465–467
tuple redundant information 

avoidance using, 465–467
update, 465–467

Anti-join (AJ) operator, 658–660, 
677–678, 681, 719–720

Apache systems
Apache Cassandra, 900
Apache Giraph, 943
Apache Hive, 933–936
Apache Pig, 932–933
Apache Tez, 943
Apache Zookeeper, 900
Big data technologies for, 932–936, 

943–944
API (Application programming 

interface)
client-side program calls from, 49
data mining, 1095
database programming and, 312, 326
library of functions, 312, 326

Application-based (semantic) 
constraints, 158

Application development environments, 
47

Application programmers, 16
Application programs, 6, 313
Application server, 44, 50
ApplicationMaster (AM), YARN, 942
Apriori algorithm, 1075–1076
Arbitrary number replacement symbol 

(%), 195–196
Architecture

automated storage tiering (AST), 591
centralized DBMS, 46–47
client/server, 47–49
data independence and, 37–38
database systems and, 46–51
distributed databases (DDBs), 868–875
federated database (FDBS) schema, 

871–872
Fibre Channel over Ethernet (FCoE), 

590–591
Fibre Channel over IP (FCIP), 590

Internet SCSI (iSCSI), 590
label security, 1156–1157
mappings, 37
network-attached storage (NAS), 

589–590
n-tier for Web applications, 49–51
parallel database, 683
parallel versus distributed, 869
pure distributed databases, 869–871
shared-disk, 683
shared-memory, 683
shared-nothing, 684
storage area networks (SANs), 

588–589
storage, 588–592
three-schema, 36–38
three-tier client/server, 49–51, 872–875
two-tier client-server, 49
Web applications, 49–51
YARN (Hadoop v2), 940–942

ARIES recovery algorithm, 827–831
Arithmetic operations, SQL query 

recovery and, 196–197
Armstrong’s axioms, 506–509
Array constructor, 369
Array processing, Oracle, 735–736
Arrays

associative, 350
brackets ([ ]) for, 383
dynamic, 345–346
numeric, 349
PHP programming, 345–346, 348–350
UDT elements, 383

AS option, SQL, 196
Assertions

constraint conditions in parentheses 
( ) for, 226

CREATE ASSERTION statement, 
225–226

declarative, 225–227
relation schema and, 156
SQL constraint specification, 158, 165, 

225–226
Assignment operations (←), relational 

algebra, 245
Association rules

apriori algorithm, 1075–1076
complications with, 1084
confidence of, 1074
data mining, 1073–1084
FP-growth algorithm, 1077–1080
frequent-pattern (FP) tree, 1077–1080
hierarchies and, 1081–1082
market-basket data model, 1073–1075
multidimensional associations, 

1082–1083
negative associations, 1082–1084
partition algorithm, 1081
sampling algorithm, 1076–1077
support for, 1074

Association, semantic modeling process, 
131–132

Associations, UML class diagrams 87–88
Associative arrays, PHP, 350
Asterisk (*)

all attribute specification, 193
tuple rows of query results, 218

Asymmetric key encryption algorithms, 
1151

Atom constructor, 368, 369
Atomic (single-valued) types, 368
Atomic literals, 388
Atomic objects, ODMG models, 388, 

395–398
Atomic values

domains, 151
first normal form (1NF), 477–478
tuples, 155

Atomicity property, transactions, 14, 157
Atoms

domain relational calculus formulas, 
277–278

tuple relational calculus formulas, 
270–271

truth value of, 270, 277
Attribute data, 989
Attribute-defined specialization, 114, 126
Attribute preservation, RDB 

decomposition condition, 513
Attribute versioning, 982–984
Attributes. See also Entities

ambiguous, prevention of, 191–192
asterisk (*) for, 193
clarity of in RDB design, 461–465
complex, 66–67, 441
composite, 65–66, 441
conceptual data models, 33
constraints and defaults in SQL, 

184–186
data types in SQL, 182–184
default values, 184–186
defined, 63
defining, 114
degree (arity) of, 152
derived, 66
discriminating, 299–300
EER-to-relational mapping, 298–300
entities and, 63–65
ER models, 63–70
ER-to-relational mapping, 295–296
functional dependency of, 472–473
grouping, 219, 260–261
HTML tags, 430
key (uniqueness constraint), 68–69
multiple keys for, 631–632
multivalued, 66, 295–296, 481
normal form keys, 477
NULL values, 66, 184–186
ODMG model objects, 396
ordered indexes, 631–632
partial key, 79
prime/nonprime, 477
project, 189
query retrieval in SQL, 191–192
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RDB design and, 461–465, 472–473
relation schema and, 152, 461–465
relational algebra, 245–246
relational model domains and, 

152–153
relationships as, 74
relationships types of, 78
renaming, 192, 214–215, 245–246
roles for a domain, 152
semantics for, 461–465
simple (atomic), 65–66
single-valued, 66
SQL use of, 184–186, 191–192
stored, 66
subclass specialization, 114
tree-structured data models, XML, 433
tuple modification for, 166, 168–169
update (modify) operation for, 

168–169
value sets (domains) of, 69–70
versioning, 982–984
visible/hidden, 371, 375
XML, 433, 441

Audio data source analysis, 999
Audio sources, multimedia databases, 

996
Audit trail, 1127
Authorization, SQL views as mechanisms 

of, 232
AUTHORIZATION command, SQL, 315
Authorization identifier, SQL schemas, 

179
Automated storage tiering (AST), 591
Autonomy, DDBs, 845–846
Auxiliary access structure, 546
Availability

DDBs, 844–845
loss of, database threat of, 1122
NOSQL, 885–886

AVERAGE function, grouping, 260
AVG function, SQL, 217
Axioms, 1005
B-trees

dynamic multilevel indexes 
implementation, 617–622

file organization and, 583
dynamic multilevel index 

implementation, 617–622
physical database design and, 601–602, 

617–622
unbalanced, 617
variations of, 629–630

B+-trees
bitmaps for leaf nodes of, 636–637
dynamic multilevel index 

implementation, 622–625
physical database design and, 601–602, 

622–630
search, insert and deletion with, 

625–629
variations of, 629–630

Backup and recovery subsystem, 20

Backup utility, 45
Bag constructor, 369
Base class, 127
Base tables (relations), 180, 182
Before image (BFIM) updating, 816
Behavior inheritance, 393
BETWEEN comparison operator, SQL, 

196–197
Bidirectional associations, UML class 

diagrams, 87
Big data storage systems, 3, 26, 31, 51
Big data technologies

Apache systems, 932–936, 943–944
cloud computing, 947–949
distributed and database combination, 

841
Hadoop, 916–917, 921–926
MapReduce (MR), 917–921, 926–936
parallel RDBMS compared to, 944–946
technological development of, 

911–913
variety of data, 915
velocity of data, 915
veracity of data, 915–916
volume of data, 914
YARN (Hadoop v2), 936–944, 949–953

Binary association, UML class diagrams, 
87

Binary locks, 782–784
Binary operations

complete set of, 255
DIVISION operation, 255–257
JOIN operation, 251–255
OUTER JOIN operations, 262–264
query tree notation, 257–259
relational algebra and, 240, 251–259, 

262–264
set theory for, 247

Binary relationships
cardinality ratios for, 76–77
constraints on, 76–78
degree of, 73
ER models, 73–74, 76–78
ER-to-relational mapping, 293–295
existence dependency, 77–78
participation constraints, 77–78
relationship type, 73–74
ternary relationships compared to, 

88–91
Binary search, files, 570
Bind variables, SQL injection and, 

1145–1146
Binding

C++ language binding, 417–418
early (static), 344
JDBC statement parameters, 333
late (dynamic), 377
OBDs, 377
ODMG standards and, 386, 417–418
programming language, 312
polymorphism and, 377
SQL/CLI statement parameters, 329

BIRCH algorithm, 1090
Bitemporal relations, 980–982
Bit-level striping, RAID, 584, 586
Bit-string data types, 183
Bits of data, 547
Bitmap indexes, 634–637, 1109–1110
BLOBs (binary large objects, 560–561
Block-level striping, RAID, 584–585, 586
Block transfer time, disk devices, 552
Blocking factor, records, 563
Blocking records, 563–564
Boolean data types, 183
Boolean model, IR, 1030
Boolean queries, 1035–1036
Boolean (TRUE/FALSE) statements

OQL, 414
relational algebra expressions, 241–242
SQL query retrieval, 212–214
tuple relational calculus formulas, 

270–271
Bottom-tier database server, DBMS as, 

344
Bottom-up conceptual synthesis, 119
Bottom-up method, RDB design, 460, 

504
Bound columns approach, SQL/CLI 

query results, 329
Boyce-Codd normal form (BCNF)

decomposition of relations not in, 
489–491

definition of, 488
nonadditive join test for binary 

decomposition (NJB), 490
relations in, 487–489

Browsing, 1027
Browsing interfaces, 40
Bucket join, MapReduce (MR), 931
Buckets, hashing, 575–576
Buffer, disk blocks, 550–551
Buffer replacement policy, 749
Buffer space, nested-loop join and, 

672–673
Buffering

buffer management, 557–558
buffer replacement strategies, 559–560
CPU processing and, 556–557
data using disk devices, 552
database recovery, 815–816
disk blocks, 541, 556–560, 815–816
double buffering technique, 556–557

Buffering (caching) modules, 20, 42
Built-in functions, UDT, 384
Built-in interfaces, ODMG models, 

393–396
Built-in variables, PHP, 352–353
Bulk loading process, indexes, 639
Bulk transfer time, disk devices, 552
Business rules, 21
Bytes of data, 547
C language, SQL/CLI (SQI call level 

interface), 326–331
C++ language binding, ODMG, 417–418
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Cache memory, 543
Caching (buffering) disk blocks, database 

recovery, 815–816
Calendar, 975
CALL statement, stored procedures, 337
Candidate key, 159–160, 477
Canned transactions, 15
CAP theorem, NOSQL, 888–890
Cardinality

JOIN operations, 719–720
of a relational domain, 152

CARDINALITY function, 383
Cardinality ratios, 76–77
Cartesian product of a relational domain, 

153
CARTESIAN PRODUCT operation, 

249–251
CASCADE option, SQL, 233, 234
Cascaded values

insert violation and, 167
SELECT operation sequence of, 243
SQL constraint options, 186–187

Cascading rollback phenomenon
database recovery and, 819–821
schedules, 762
timestamp ordering, 794

CASE (computer-aided software 
engineering), 46–47

CASE clause, SQL, 222–223
Casual end users, 15–16
Catalog management, DDBs, 875
Catalogs

component modules and, 42–45
DBMS, 10–11, 35, 38, 42–45
file storage in, 10–11
schema description storage, 35, 38, 180
SQL concept, 179–180

Catastrophic failures, database backup 
and recovery from, 832–833

Categories
defined, 126
EER modeling concept, 108, 120–122, 

126
EER-to-relational mapping, 302–303
partial, 122
superclasses and, 120–122
total, 122
union types using, 120–122, 302–303

Cautious waiting algorithm, deadlock 
prevention, 791

Central processing unit (CPU), primary 
storage of, 542

Centralized DBMS, 52
Centralized DBMS architectures, 46–47
Certification of transactions, 781
Certify locks, 796–797
Chaining, hashing collision resolution, 574
Character-string data types, 182–183
Characters of data, 547
CHECK clauses for, 187
Checkpoints, database recovery, 

818–819, 828–829

Child nodes, tree structures, 617
Ciphertext, 1149
Class diagrams, UML, 85–88
Class library

OOPL (object-oriented programming 
language) and, 312

SQL imported from JDBC, 331, 332
Classes

EER model relationships, 108–110
inheritance, 110, 118
interface inheritance, ODL, 404–405
interfaces, instantiable behavior and, 

392
Java, 331
object data models, 52
ODL, 400, 404–405
ODMG models, 392, 404–405
operations and type definitions, 371
property specification, 130
subclasses, 108–110, 126
superclasses, 109, 110, 126

Clausal form, deductive databases, 
1003–1005

Client, defined, 48
Client computer, 44
Client machines, 47
Client module, 31
Client program, 313
Client/server architectures

basic, 47–49
centralized DBMS, 46–47
two-tier, 49

Client tier, HTML and, 344
CLOSE CURSOR command, SQL, 318
Closed world assumption, 156
Closure, functional dependencies, 

505–506, 508
Cloud computing

Big data technology for, 947–949
environment, 31
Cloud storage, 3

Clustered file, 572, 583, 602–603
Clustering, data mining, 1088–1091
Clustering indexes, 602, 606–608
Clusters, file blocks, 564
Code generator, query processing, 655
Code injection, SQL, 1144
Collection (multivalued) constructors, 

369
Collection objects, ODMG models, 

393–394
Collection operators, OQL, 413–416
Collections

built-in interfaces, ODMG, 393–396
entity sets, 67–68
object extent and, 373, 376
persistent, 373, 376
transient, 376

Collision resolution, hashing, 574
Column, SQL, 179
Column-based data models, 51, 53
Column-based NOSQL, 888, 900–903

Column-based storage of relations, 
indexing for, 642

Comments, PHP programming, 345
Commit point, transaction processing, 756
Committed projection, schedules, 760
Communication autonomy, DDBs, 845
Communication software, DBMS, 46
Communication variables in embedded 

SQL, 315, 316
Commutative property, SELECT 

operation, 243
Comparison operators

select-from-where query structure 
and, 188–190

select-project-join query structure 
and, 189, 191

SQL query retrieval, 188–191, 195–197
substring pattern matching, 195–197

Compiled queries, 710
Compilers

DBMS interface modules, 42–45
DDL for schema definitions, 42–43
query, 43–44
precompiler, 44

Complete schedule conditions, 760
Complete set of relational binary 

operations, 255
Completeness (totalness) constraint, 115
Complex attributes, 66–67
Complex elements, XML, 431, 441
Composite, 65–66
Composite (compound) attributes, 

XML, 441
Composite keys, 631
Concatenation operator (||) in SQL, 

182–183
Concept hierarchy, 1053
Conceptual (schema) level, 37
Conceptual data models, 33
Conceptual design

comparison of ODB and RDB, 405–406
high-level data model design, 61–62
mapping EER schema to ODB schema, 

407–408
Conceptualization, ontology and, 134
Concurrency

control, 749–752, 770–771
serializability of schedules and, 

770–771
transaction processing, 746–747

Concurrency control protocols, 781
Concurrency control software, 13–14
Concurrency control techniques

data insertion and, 806
deletion operation and, 806
distributed databases (DDBs), 854–857
granularity of data items, 800–801
index concurrency control using locks, 

805–806
interactive transactions and, 807
latches and, 807
locking data items, 781
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locks used for, 782–786, 796–797, 
805–806

multiple granularity locking, 801–804
multiversion concurrency control, 

781, 795–797
phantom records and, 806–807
snapshot isolation, 781, 799–800
timestamp ordering (TO), 792–795, 796
timestamps, 781, 790–791, 793
two-phase locking (2PL), 782–792, 

796–797
validation (optimistic) of transactions, 

781, 798–799
Conditions

constraint parentheses ( ) for 
assertions, 226

trigger component in SQL, 227
Conflict equivalence, schedules, 765–766
Conjunctive selection, search methods 

for, 665–666
CONNECT TO command, SQL, 315
Connecting fields for mixed records, 

582–583
Connecting to a database

embedded SQL, 315–316
PHP, 353–355

Connection record, SQL/CLI, 327–328
Connection to database server, 313
Consistency preservation, transactions, 

757
Constant nodes, query graphs, 273
Constraint specification language, 165
Constraints

application-based (semantic), 158
assertions in SQL, 58, 165, 225–226
attribute defaults and, 184–186
attribute-defined specialization, 114
binary relationships, 76–78
business rules, 21
CHECK clauses for, 187
completeness (totalness), 115
conditions in parentheses ( ) for 

assertions, 226
database applications, 21–22, 160–163
disjointness (d notation), 114–115
domain, 158
EER models and, 113–116
ER models and, 76–78, 91–92
existence dependency, 77–78
foreign keys, 163, 186–187
generalization, 113–116
indexes for management of, 641
inherent model-based (implicit), 157
inherent rules, 22
insert operation and, 166–167
integrity, 21–22, 160–163
key, 21, 158–160, 163–165, 186–187
minimum cardinality, 77
naming, 187
NULL value and, 160, 163
participation, 77–78
predicate-defined subclasses, 113–114

referential integrity, 21, 186–187
relational database schemas, 160–163
relational models and, 157–167
relationships and, 76–78
row-based, 187
schema-based (explicit), 157
semantics and, 21
specialization, 113–116
SQL specifications, 165, 184–187, 

225–226
state, 165
structural, 78
table-based, 184–187
ternary relationships, 91–92
transition, 165
triggers in SQL, 58, 165
UML notation for, 127–128
uniqueness, 21
user-defined subclasses, 114
violations, 166–167

Constructor function, SQL 
encapsulation, 384

Constructors, see Type constructors
Constructs, 35
Content-based access control, 1142
Content-based retrieval, 995
Contiguous allocation, file blocks, 564
Control measures, database security, 

1123–1125
Conversational information access, IR, 

1059
Conversion of locks, 786
Core specifications, SQL, 178
Correlated nested queries, SQL, 211–212
Cost-based query optimization

approach, 710–712
defined, 710
dynamic programming compared to, 

716
illustration of, 726–728

Cost estimation
catalog information in cost functions 

for, 712
histograms for, 713
JOIN optimization based on cost 

formulas, 720–721
query execution components, 710–712
query optimization technique, 657, 

710–713, 716–717
selection based on cost formulas, 

716–717
Cost functions

JOIN operation use of, 717–726
query optimization, 714–715, 717–726
SELECT operation use of, 714

COUNT function
grouping, 260
SQL, 217

Covert channels, flow control and, 
1148–1149

CREATE ASSERTION statement, SQL, 
225–226

CREATE SCHEMA statement, 179–180
CREATE TABLE command, SQL, 

180–182
CREATE TRIGGER statement, SQL, 

225, 226–227
CREATE TYPE command, 184, 380–383
CREATE VIEW statement, SQL, 

228–229
Credentials, access control and, 1142
CROSS PRODUCT operation

relational algebra set theory, 249–251
SQL tuple combinations, 192–193

CRUD (create, read, update, and delete) 
operations, NOSQL, 887, 893, 903

Cursors
declaration of, 317, 319–320
impedance mismatch and, 312
iterator as, 318
SQL query result processing, 312, 

317–320
updating records, 318

Cypher query language, Neo4j system, 
905–908

Dangling tuples, RDB design problems, 
523–524

Data
Big data technology for, 914–916
complex relationships among, 21
conceptual representation of, 12
databases and, 7–8, 12–14
defined, 4
directed graph representation of, 

427–428
elements, 7
eXtended Markup Language (XML) 

and, 25, 426–430
granularity of data items, 800–801
insulation from programs and, 12–13
integrity constraints, 21–22
interchanging on the Web, 25
logical independence, 37–38
multiple views of, 13
multiuser transactions and, 13–14
physical independence, 38
records, 6–7
requirements collection and analysis, 

60–61
self-describing, 10, 427
semantics and, 21
semistructured, 426–428
sharing, 13–14
storage, 3–4
structured, 426
tag notation and use, HTML, 428–430
three-schema architecture and, 37–38
type, 7–8
unstructured, 428–430
variety of, 915
velocity of, 915
veracity of, 915–916
volume of, 914
virtual, 13
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Data abstraction
conceptual representation of, 12–13
data models and, 12, 32–34
program independence from, 12

Data allocation, DDBs, 849–853
Data-based approach, Web content 

analysis, 1054
Data buffers, transaction processing, 

748–749
Data-centric documents, XML, 431
Data collection and records, PHP, 355–356
Data definition, SQL, 179
Data dictionary (data repository), 45–46
Data Encryption Standards (DES), 1150
Data fragmentation, DDBs, 847–853
Data independence, three-schema 

architecture and, 37–38
Data insertion, concurrency control and, 

806
Data manipulation language (DML), 

39–40, 44
Data marts, 1102
Data mining

application programming interface 
(API), 1095

applications of, 1094
association rules, 1073–1084
BIRCH algorithm, 1090
classification, 1085–1088
clustering, 1088–1091
commercial tools, 1094–1096
data warehousing compared to, 1070
decision trees, 1085–1086
genetic algorithms (GAs), 1093
graphical user interface (GUI), 1095
k-means algorithm, 1088–1089
knowledge discovery in databases 

(KDD), 1070–1073
neural networks, 1092
Open Database Connectivity (ODBC) 

interface, 1094–1095
regression, 1091–1092
sequential pattern discovery, 1091
spatial databases, 993–994

Data model mapping
database design and, 62
logical database design, 289

Data models. See also Object data models
access path, 34
basic operations, 32
categories of, 33–34
conceptual, 12–13, 33
data abstraction and, 12, 32–34
database schemas for, 34–38
DBMS classification from, 51–53
dynamic aspect of applications, 23
EER (enhanced entity-relationship), 

107–146
ER (entity-relationship), 59–105
object, 33, 51, 52–53
relational, 33, 51, 52, 149–157

representational, 33
self-describing, 34

Data normalization, 475–476
Data organization transparency, DDBs, 

843
Data quality, database security and, 1154
Data replication, DDBs, 849–853
Data security

access acceptability and, 1127
authenticity assurance and, 1127
data availability and, 1127
sensitivity of data and, 1126–1127

Data sources
databases as, 425
JDBC, 331

Data striping, RAID, 584–585
Data transfer costs, DDB query 

processing, 860–862
Data types

attributes in SQL, 182–184
bit strings, 183
Boolean, 183
character strings, 182–183
CREATE TYPE command, 184
DATE, 183
INTERVAL, 184
numeric, 182
records, 560–561
relational model domains, 151
spatial, 989–990
TIME, 183
TIMESTAMP, 183–184

Data values, records, 560
Data warehouses

building, 1111–1114
data modeling for, 1105–1110
defined, 1102
ETL (extract, transform, load) process, 

1103
functionality of, 1114–1115
use of, 4
views compared to, 1115

Data warehousing
analytical data store (ADS), 1105
characteristics of, 1103–1104
data mining compared to, 1070
DSS (decision-support systems), 1102
master data management (MDM), 1110
OLAP (online analytical processing), 

1102
OLTP (online transaction processing), 

1102–1103
operational data store (ODS), 1105
query optimization, 731–733
use of, 1101
warehouse implementation difficulties, 

1115–1117
Database administrator, see DBA 

(database administrator)
Database design

active databases, 967–972

conceptual design, 61–62, 70–72
data modal mapping, 62
entities and attributes for, 70–72
ER (Entity-Relationship) models for, 

60–62, 70–72
functional requirements for, 61
logical design, 62
physical design, 62
requirements collection and analysis, 

60–61
schema creation, 61–62

Database designer, 15
Database items, transaction processing, 

748
Database management systems, see DBMS 

(database management system)
Database monitoring, SQL triggers for, 

226–227
Database programming

application programming interface 
(API), 312

database application implementation, 
309

embedding commands in programming 
language, 311, 314–320

evolution of, 309–310
impendence mismatch, 312–313
language design for, 312, 339
library of functions or classes for, 

311–312, 326–335
overview of techniques and issues, 

310–311
sequence of interaction, 313–314
stored procedures, 335–338
Web programming using PHP, 343–359

Database recovery techniques
ARIES recovery algorithm, 827–831
caching (buffering) disk blocks, 815–816
cascading rollback and, 819–821
checkpoints, 818–819, 828–829
database backup and recovery from 

catastrophic failures, 832–833
deferred updates for recovery, 814, 

821–823
force/no-force rules, 817–818
fuzzy checkpointing, 819, 828
idempotent operations, 815
immediate updates for recovery, 815, 

823–826
multidatabase system recovery, 

831–834
NO-UNDO/REDO algorithm, 815, 

821–823
shadow paging, 826–827
steal/no-steal rules, 817–818
system log for, 814, 817, 818–819
transaction rollback and, 819
transactions not affecting database, 821
UNDO/REDO algorithm, 815, 818
write-ahead logging (WAL), 816–818

Database schema, ontology as, 134



 Index 1221

Database security
access acceptability and, 1127
access control, 1126
additional forms of protection, 1123
authenticity assurance and, 1127
challenges for maintaining, 1154–1155
control measures, 1123–1125
data availability and, 1127
database administrator (DBA) and, 

1125–1126
discretionary action control, 1121, 

1129–1134
discretionary privileges, types of, 

1129–1130
discretionary security mechanisms, 1123
encryption, 1149–1153
flow control, 1147–1149
GRANT command for, 1131
GRANT OPTION for, 1131
granting and revoking privileges, 

1129–1134
information privacy relationship to, 

1128–1129
label-based security policy, 1139–1140, 

1155–1158
limiting privilege propagation, 

1133–1134
mandatory access control (MAC), 

1121, 1134–1137
mandatory security mechanisms, 1123
Oracle, 1155–1158
precision compared to security, 1128
privacy issues and preservation, 

1153–1154
privilege specification using views, 

1130–1131
propagation of privileges, 1131, 

1133–1134
revoking of privileges, 1131
role-based access control (RBAC), 

1121, 1137–1139
row-level access control, 1139–1140
sensitivity of data and, 1126–1127
SQL injection, 1143–1146
statistical database security, 1146–1147
system log modifications and, 1125
threats to databases, 1122
types of security for, 1122
XML access control, 1140–1141

Database security and authorization 
subsystem, DBMS, 1123

Database server, 44
Database storage

organization of, 545–546
reorganization, 45

Database system
architectures, 46–51
catalog, 10–11, 35, 42–45
communication software, 46
current state, 35
data models, 32–34

DBMS classification, 51–53
defined, 6
environment
environment of, 6–7, 42–46
extension of, 35
initial state, 35
instances, 35
interfaces, 40–42
languages, 38–40
module functions in, 31, 42–45
populating (loading), 35
schemas, 34–38
tools, 45–46
utilities, 45
valid state, 35

Databases
big data storage systems and, 26
DBMS (database management 

systems) for, 6, 9, 17–23, 27
active systems, 4, 22
application programs for, 6
backing up, magnetic tape storage for, 

555–556
backup and recovery subsystem, 20
big data storage, 3
characteristics of, 10–14
cloud storage, 3
constructing, 6, 9
data abstraction, 12–13
data relationship complexity and, 21
database users and, 3–29
deductive systems, 22
defined, 4
development time reduction, 22–23
economies of scale, 23
employment concerning, 15–17
eXtended Markup Language (XML) 

and, 25
extending capabilities of, 25
extracting XML documents from, 

442–443, 447–453
file processing, 10–11
flexibility of, 23
hierarchical and network systems used 

as, 23–24
history of applications, 23–26
information retrieval (IR) systems 

compared to, 1025–1026
integrity constraints, 21–22
interchanging Web data, 25
maintenance, 6
manipulating, 6, 9
meta-data, 6, 10
multiple user interfaces, 20–21
multiple views of, 13
multiuser transaction processing, 13–14
NOSQL system, 3, 26
object-oriented (OODB), 24–25
object-oriented systems and, 19
online transaction processing  

(OLTP), 14

persistent storage, 19–20
program-data independence, 12
program-operation independence, 12
properties of, 5
protection, 6
queries, 6, 20
real-time technology, 4
redundancy control, 18–19
relational, 24
rules for inferencing information, 22
search techniques, 4
self-describing data, 10
sharing, 6
Structured Query Language (SQL), 26
standards enforced by, 22
traditional applications, 3
transactions, 6, 14
triggers for, 22
unauthorized access restriction, 19
updating information, 23

Datalog language
clausal form, 1003–1005
deductive databases, 1001, 1002–1003
Horn clauses, 1004
notation, 1000–1003
program safety, 1007–1010
queries in, 1004, 1010–1012

DATE data type, 183
DBA (database administrators)

interfaces for, 42
role of, 15

DBMIN method, transaction processing, 
757

DBMS (database management systems)
advantages of approach, 17–23
access path options, 52
backup and recovery subsystem, 20
bottom-tier database server as, 344
centralized, 51
centralized architecture of, 46–47
classification of, 51–53
client/server architectures, 47–49
component modules, 42–45
conceptual design phase, 9
concurrency control software for, 13–14
data complexity and, 21
data models and, 51–53
defined, 6
disadvantages of, 27
distributed, 51
federated, 52
general purpose, 52
heterogeneous, 52
homogeneous, 52
integrity constraints, 21–22
interfaces, 40–42
language, 38–40
logical design phase, 9
multiple user interfaces, 20–21
multiuser systems, 51
number of sites for, 51–52
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DBMS (continued)
operators and maintenance personnel, 

17
persistent storage, 19–20
physical design phase, 9
query processing, 20
redundancy control, 18–19
requirements specification and 

analysis phase, 9
single-user systems, 51
special purpose, 52
SQL and, 177–178
stored procedures and, 336–337
system designers and implementers, 17
tool developers, 17
two-tier client-server architecture, 49
unauthorized access restriction, 19
XML document storage, 442

DBMS-specific buffer replacement 
policies, 756–757

DDBMSs (distributed database 
management systems)

degree of local autonomy, 865–866
degree of homogeneity, 865–866
technology and, 841
update decomposition and, 863–865

DDBs (distributed databases)
advantages of, 846
architectures, 868–875
autonomy, 845–846
availability, 844–845
catalog management, 875
concurrent control and recovery in, 

854–857
conditions for, 842–843
data allocation, 849–853
data fragmentation, 847–853
data replication, 849–853
network topologies, 843
partition tolerance, 845
query processing and optimization, 

859–865
reliability, 844–845
scalability, 845
sharding, 847–848
technology and, 841
transaction management in, 857–859
transparency, 843–844

DDL (data definition language)
compiler for schema definitions, 

42–43
DBMS languages and, 39

Deadlock
cautious waiting algorithm, 791
detection, 791–792
no waiting algorithm, 791
occurrence in transactions, 789–790
prevention protocols, 790–791
timeouts for, 792
transaction timestamps and, 790–791

Debt–credit transactions, 773

Decision-support systems, see DSS 
(decision-support systems)

Decision trees, data mining, 1085–1086
Declaration, XML documents, 433
Declarative assertions, 225–227
Declarative expressions, 268
Declarative languages, 40, 999
Decomposition

algorithms, 519–523
Boyce-Codd normal form (BCNF), 

489–491, 522–523
dependency preservation, 514–515, 

519–522
DDMS (distributed database 

management service), 863–865
fourth normal form (4NF), 527–530
nonadditive (lossless) join property, 

476, 515–518, 519–523, 530
nonadditive join test for binary 

decomposition (NJB), 490
normalization and, 489–491
properties of, 504, 513–518
queries, 863–865
relations not in BCNF, 489–491
three normal form (3NF), 519–522
update, 863–865

Deductive database systems, 22
Deductive databases

clausal form, 1003–1005
Datalog language for, 1001, 1002–1003
Datalog program safety, 1007–1010
Datalog rule, 1004
declarative language of, 999
enhanced data models, 962, 999–1012
Horn clauses, 1004
nonrecursive query evaluation, 

1010–1012
overview of, 999–1000
Prolog language for, 1000–1001
Prolog/Datalog notation, 1000–1003
relational operators for, 1010
rules, 1000, 1005–1007

Deep Web, 1052
Default values, SQL attributes, 184–186
Deferred updates, database recovery, 814, 

821–823
Degree of homogeneity, 865–866
Degree of local autonomy, 865–866
Degree of relation

schema attributes, 152
SELECT operations, 243
PROJECT operation, 244

DELETE command, SQL, 200
Delete operation, relational data models, 

166, 167–168
Deletion, B-Trees, 629–630
Deletion anomalies, RDB design and, 467
Deletion marker, files, 568
Deletion operation, concurrency control 

and, 806
Denormalization, 476

Dependency
diagrammatic notation for, 474
equivalence of sets of, 508
functional, 471–474, 505–512, 

527–528, 532
inclusion, 531–532
inference rules for, 505–509, 527–528
join (JD), 494–495, 530–531
minimal sets of, 510–512
multivalued (MVD), 491–494, 527–530
preservation property, 476

Dependency preservation
algorithms, 519–522
nonadditive (lossless) join 

decomposition and, 519–522
property of decomposition, 514–515
3NF schema using, 519–522

Dereferencing (–>), SQL, 386
Derived attribute, 66
Descendant nodes, tree structures, 617
Description record, SQL/CLI, 327–328
Descriptors, SQL schemas, 179
Design, see Database design
Design autonomy, DDBs, 845
Design transparency, DDBs, 844
Destructor, object operation, 371
Dictionary, ontology as, 134
Dictionary constructor, 369
Digital certificates, 1153
Digital libraries, 1047–1048
Digital signatures, 1152–1153
Digital terrain analysis, 988–989
Directed acyclic graph (DAG), 655
Directed graph, XML data 

representation, 427–428
Dirty bit, buffer (cache) management, 

558, 816
Dirty page tables, database recovery, 

828–831
Dirty read problem, transaction 

processing, 750
DISCONNECT command, SQL, 316
Discretionary action control, 1121, 

1129–1134
Discretionary privileges, types of, 

1129–1130
Discretionary security mechanisms, 1123
Discriminating attributes, 299–300
Discriminator key, UML class diagrams, 88
Disjointness constraint (d notation), 

114–115
Disjunctive selection, search methods 

for, 666–667
Disk blocks (pages)

allocating files on, 564
block size, 549–550
buffering, 556–560, 815–816
database recovery, 815–816
hardware addresses of, 550–551
interblock gaps in, 550
reading/writing data from, 551



 Index 1223

Disk drive, 550, 551–552
Disk pack, 547
Disk storage devices

capacity of, 547
double-sided, 547
efficient data access from, 552–553
fixed-head, 551
formatting, 549–550
external hashing, 575–577
hardware disk drive (HDD), 547
hardware of, 547-
interfacing drives with computer 

systems, 551–552
moveable head, 551
parameters, 1167–1169
RAID, parallelizing access using, 542, 

584–588
single-sided, 547

DISTINCT option, SQL, 188, 194
Distributed computing systems, 841
Distributed database management 

systems, see DDBMs (distributed 
database management systems)

Distributed databases, see DDBs 
(distributed databases)

Distributed DBMS, 51
Distributed query processing

mapping, 859
localization, 859
data transfer costs, 860–862
semi-join operator, 862–863

DIVISION operation, 255–257
Document-based data models, 51, 53
Document-based NOSQL, 888, 890–895
Document body specification, HTML, 

429
Document-centric documents, XML, 431
Document header specifications, HTML, 

428
Document type definition (DTD), XML, 

434–436
Documents

data-centric, 431
DBMS storage of, 442
declaration, XML, 433
document-centric, 431
extracting from databases, 442–443, 

447–453
graph-based data for, 447–452
hierarchical views of, 447–452
hybrid, 431
hypertext, 425
parentheses for element specifications, 

434
relational data models for, 447–449
schemaless, 432–433
schemas, 448–452
self-describing, 425
storage of, 442–443
tags for XML unstructured data, 

428–430

tree-structured data models for, 
431–433, 449–453

type of element, 434
valid, 434
well-formed, 433–424
XML, 431–436, 442–443, 447–453

Domain-key normal form (DKNF), 
532–533

Domain relational calculus
formulas (conditions), 277–278
join condition, 278
nonprocedural language of, 268
quantifiers for, 279
selection condition, 278
variables, 277

Domain separation (DS) method, 
transaction processing, 756–757

Domains
atomic values of, 151
attribute roles, 152
attribute value sets, 69–70
cardinality of, 153
Cartesian product of, 153
constraints, 158
data type specification, 151, 184
ER model entity types, 69–70
format of, 151
mathematical relation, 153
relation schema and, 152
relational data models, 151–152, 158
SQL, 184
tuples for, 151–152

Dot notation
object operation application, 372, 392
path expressions, SQL, 386
UDT components, 383

Double buffering technique, 556–557
Double-sided disks, 547
Downgrading locks, 786
Driver manager, JDBC, 331
Drivers, JDBC, 331–332
DROP command, SQL, 233
DROP TABLE command, SQL, 200
DROP VIEW command, SQL, 229
DSS (decision-support systems), 1102
Duplicates

indexes for management of, 641
parallel algorithm projection and, 685
PROJECT operation elimination of, 

245
unary operation elimination of, 

244–245
Durability (permanency) property, 

transactions, 758
Dynamic arrays, PHP, 345–346
Dynamic file expansion, hashing for, 

577–582
Dynamic files, 566
Dynamic hashing, 580
Dynamic multilevel indexes

B-trees and, 601–602, 622–630

B-trees and, 601–602, 617–622
concept of, 616
search trees and, 618–619
search, insert and deletion with, 

625–629
Dynamic programming, query 

optimization and, 716, 725–726
Dynamic random-access memory 

(DRAM), 543
Dynamic spatial operators, 990–991
Dynamic SQL

command preparation and execution, 
320–321

defined, 310
queries specified at runtime, 320–321

DynamoDB model, 896–867
e-commerce environment, access control 

and, 1141
e-mail servers, client/server architecture, 

47
Early (static) binding, 344
EER (Enhanced Entity-Relationship) 

model
abstraction concepts, 129–133
categories, 108, 120–122, 126
class relationships, 108–110
conceptual schema refinement, 

119–120
constraints, 113–116
database schema, 122–124
design choices, 124–126
generalization, 108, 112–120, 

124–128
hierarchies, 116–119
inheritance, 110, 117–119
knowledge representation (KR), 

128–129
lattices, 116–119
mapping to ODB schema, 407–408
ontology, 129, 132–134
semantic data models, 107–108, 

129–134
specialization, 108, 110–120, 

124–128
subclasses, 108–110, 117–119, 126
superclasses, 109, 110, 117–118, 126
UML class diagrams, 127–128
union type modeling, 108, 120–122

EER-to-Relational mapping
attributes of relations, 298–300
categories, 302–303
generalization options, 298–301
model constructs to relations, 

298–303
multiple inheritance and, 301
multiple-relation options, 299–300
shared subclasses, 301
single-relation options, 299–300
specialization options, 298–301
union types, 302–303

Element operator, OQL, 413
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Elements
complex, XML structure specification, 

441
empty elements, 440
parentheses for specifications of, 434
root elements, 440
tree-structured data models, 430–431
type of in documents, 434, 440–441
XML, 430–431, 434, 440–441

Embedded SQL
communication variables in, 315, 316
connecting to a database, 315–316
cursors for, 317–320
database programming approach, 311, 

338–339
defined, 310, 311
host language for, 314
Java commands using SQLJ, 321–325
precompiler or preprocessor for, 311, 314
program variables in, 314–315
query results and, 317–320
shared variables in, 314
tuple retrieval, 311, 314–317

Empty elements, XML, 440
Encapsulation

constructor function for, 384
mutator function for, 384
ODBs, 366, 370–374, 384–385
object behavior and, 366, 371
observer function for, 384
operations, 366, 370–374, 384–385
object naming and reachability, 373–374
SQL, 379–380, 384–385
user-defined type (UDT) for, 384–385

Encryption
Advanced Encryption Standards 

(AES), 1150
asymmetric key encryption 

algorithms, 1151
Data Encryption Standards (DES), 1150
database security, 1149–1153
defined, 1149–1150
digital certificates, 1153
digital signatures, 1152–1153
public key encryption, 1151–1152
RSA public key encryption algorithm, 

1152
symmetric key algorithms, 1150–1151

End/start tag (</…>), HTML, 428
End users, 15–16
Enhanced data models

active databases, 963–974
active rules, 962, 963–964, 969–973
deductive databases, 962, 999–1012
functionality and, 961
logic databases, 962
multimedia databases, 962, 994–999
spatial databases, 962, 987–994
temporal databases, 962, 974–987
temporal querying constructs, 

984–986
time series data, 986–987

Enhanced Entity-Relationship model, see 
EER (Enhanced Entity-Relationship) 
model

Enterprise flash drives (EFDs), 553
Entities

attributes, 63–70
conceptual data modeling, 33
conceptual design and, 70–72
defined, 63
ER mapping of, 291–293
ER models and, 63–72, 75, 79
generalized, 126
identifying (owner) type, 79
key (uniqueness constraint) attributes, 

68–69, 79
NULL values, 66
overlapping, 115
participation in relationships, 72–73
recursive (self-referencing) 

relationships and, 75
role names, 75
sets (collection), 67–68
strong, 79
subclass as, 110, 114–115
superclass as, 110
types, 67–68, 79, 110
value sets (domains) of attributes, 69–70
weak, 79, 292–293

Entity integrity, relational data modeling, 
163–165

Entity-Relationship model, see ER 
(Entity-Relationship) model

Entrypoints, object names as, 373, 387
Environment record, SQL/CLI, 327–328
Environments

application programs, 6–7, 46
communication software, 46
database system, 6–7, 42–46
modules, 31, 42–45
tools, 45–46

EQUIJOIN (=) comparison operator, 253
Equivalence of sets of functional 

dependency, 508
Equi-width/equi-height histograms, 713
ER (Entity-Relationship) diagrams

conceptual design choices, 82–84
database application use of, 63–64
database schema as, 81
entity type distinction, 79
notations for, 81, 83–88, 1163–1165
schema construct names, 82

ER (Entity-Relationship) model
applications of, 59, 62–64, 70–72, 

92–94
attributes, 63–70
constraints on, 73–74, 76–78, 91–92
data model type, 33
data modeling using, 59–105
database design using, 60–62, 80
entities, 63–72, 79
relationships, 72–78, 88–92
schema and, 61–62, 81–85

Unified Modeling Language (UML) 
and, 60, 85–88

Error checking, PHP, 355
Errors, DDBs, 844
ER-to-Relational mapping

algorithm, 290–296
binary relationship types, 293–295
entity types, 291–293
ER model constructs, 296–298
multivalued attributes, 295–296
n-ary relationship types, 296
relational database design, 290–298
weak entity types, 292–293

Escape operator (/) in SQL, 196
ETL (extract, transform, load) process, 1103
Evaluation for query execution, 701–702
Event-condition-action (ECA) model

active rules (triggers), 963–964
SQL trigger components, 227

Event information versus duration 
information, 976

Events, SQL trigger component, 227
Eventual consistency, NOSQL, 885–886
EXCEPT operation, SQL sets, 194–195
Exceptions

error handling, 322–323, 393–394
ODMG models, 393–394, 397–398
operation signature and, 397–398
SQLJ, 322–323

Execution autonomy, DDBs, 845
Execution for query optimization, 701–712
Execution transparency, DDBs, 844
Existence bitmap, 636
Existence dependency, 77–78
Existential quantifiers, 271, 274
EXISTS function, SQL query retrieval, 

212–214
Exists quantifier, OQL, 415
Expert (knowledge-based) systems, 

962–963
Explicit set of values, SQL, 214
Expressions

Boolean, 241–242
declarative, 268
formulas and, 270–271
in-line, 245
relational algebra, 239
safe, 276–277
tuple relational calculus, 270–271, 

276–277
EXtended Markup Language, see XML 

(EXtended Markup Language)
Extendible hashing, 578–580
EXTENDS inheritance, 393
Extensible Stylesheet Language (XLS), 447
Extensible Stylesheet Language for 

Transformations (XSLT), 447
Extensions, SQL, 178
Extent inheritance, 377, 385
Extents

class declaration of, 398
constraints on, 376–377
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defined, 376
object persistence and, 373
ODMG models, 373, 376–377, 398
persistent collection for, 373, 376
transient collection for, 376
type hierarchy and, 376–377

External hashing, 575–577
External (schema) level (views), 37
External sorting, files, 568
External sorting algorithms, 660–663
Extraneous attribute, 510
F-score, IR, 1046–1047
Faceted search, IR, 1058–1059
Fact constellation, 1109
Fact tables, 1108
Factory objects, ODMG models, 398–400
Facts, relation schema and, 156
Fan-out, multilevel indexes, 613, 622
Fault, DDBs, 844–845
Fault tolerance, Big data technology and, 

942, 946
Federated database (FDBS) schema 

architecture, 871–872
Federated database system (FDBS), 

866–868
Federated DBMS, 52
FETCH command, SQL, 317, 319–320
FETCH INTO command, 325
Fibre Channel over Ethernet (FCoE), 

590–591
Fibre Channel over IP (FCIP), 590
Fields

connecting, 582–583
data type of, 560
Fields, records, 560, 561–563, 568–569
fixed-length records, 561
key, 568
mixed records, 582–583
optional, 562
ordered records, 568–569
ordering, 568
record type, 583
records, 560, 561–563, 568–569
repeating, 562–563
variable-length records, 561

Fifth normal form (5NF)
definition of, 494
functional dependency in, 532
join dependency (JD) in, 494–495, 

530–531
inclusion dependency in, 531–532

File load factor, hashing, 582
File processing, 10–11
File servers, client/server architecture, 47
Files

allocating blocks on a disk, 564
B-trees for organization of, 583
binary search for, 570
clustered files, 572, 583, 602–603
data storage using, 541–542
database catalog for, 10–11
defined, 7

dynamic files, 566
fully inverted file, 641
grid files, 632–633
hashing techniques, 572–582
headers, 564
heaps, 567–568
indexed-sequential, 571
indexes, 20
indexing structures for, 601–652
inverted files, 641
linear search for, 564, 567–568
main (master) files, 571
mixed records, 582–583
operations on, 564–567
ordered (sorted) records, 568–572
overflow (transaction), 571
records, 560–564, 567–572, 582–583
static files, 566
storage of, 10–11, 560–572, 582–583
unordered records (heaps), 567–568

Filtering input, SQL injection and, 1146
First normal form (1NF)

atomic (indivisible) values of, 477–478
multivalued attributes, 481
nested relations, 479–480
techniques for relations, 478–479
unnest relation, 479–480

Fixed-head disks, 551
Fixed-length records, 561–563
Flag fields, EER-to-relational mapping 

with, 300
Flash memory, 543–544
Flat files, 150
Flat relational model, 155
Flow analysis operations, 988
Flow control, 1147–1149
FLWOR expression, XQuery, 445
FOR clause, XQuery, 445–446
FOR UPDATE OF clause, SQL, 318
Force/no-force rules, 817–818
Foreign keys

relational data modeling, 163–165
SQL constraints, 186–187
XML specification, 441

Formal languages, see Relational algebra; 
Relational calculus

Format, relational model domains, 151
Formatting styles, HTML, 428
Forms-based interfaces, 41
Forms specification language, 41
Formulas (conditions)

atoms in, 270–271, 277–278
Boolean conditions, 270–271
domain relational calculus, 277–278
tuple relational calculus, 270–271

Fourth normal form (4NF)
decomposition of relations, 529
definition of, 493, 528
functional dependency and, 527–528
inference rules for, 527–528
multivalued dependency (MVD) and, 

491–494, 527–528

nonadditive join decomposition into, 
530

normalizing relations, 493–494
FP-growth algorithm, 1077–1080
Fragmentation transparency, DDBs, 

843–844
Free-form search request, 1023
Frequent-pattern (FP) tree, 1077–1080
FROM clause, SQL, 188–189, 197, 232
Full functional dependency, 2NF, 481–482
Fully inverted file, 641
Function-based indexing, 637–638
Function call injection, SQL, 1144–1145
Functional data models, 75
Functional dependency (FD)

Armstrong’s axioms, 506–509
closure, 505–506, 508
defined, 472, 505
equivalence of sets of, 508
extraneous attribute, 510
full functional dependency, 2NF, 481–482
inference rules for, 505–509, 527–528
left- and right-hand attributes of, 472
legal relation states (extensions), 472
minimal sets of, 510–512
normal forms, 481–483
notation for diagrams, 474
RDB design and, 471–474, 505–512
semantics of attributes and, 472–473
transitive dependency, 3NF, 483
universal schema relation for, 471–474

Functional requirements, 61
Functions

aggregate, 216–219, 260–261
built-in, 384
hashing (randomizing), 572, 580
inheritance specifications and, 385
overloading, 385
PHP programming, 350–352
query retrieval and, 216–219
relational algebra for, 260–261
SQL, 216–219, 384–385
type (class) hierarchies and, 374–375
UDT, 384–385
XML data creation using, 453–455

Fuzzy checkpointing, 819, 828
Garbage collection, 827
Generalization

conceptual schema refinement, 119–120
constraints on, 113–116
defined, 113
design choices for, 124–128
EER diagram notation for, 112
EER modeling concept, 108, 112–120, 

124–128
entity type, 126
hierarchies, 119
lattices, 116–119
semantic modeling process, 131
superclass from subclasses, 112–113
total, 115
UML notation for, 127–128
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Generalized projection operation, 259–260
Genetic algorithms (GAs), 1093
Geographic information systems (GISs), 

4, 987
Global depth, hashing, 578
Global query optimization, 860
Global query optimizer, Oracle, 734–735
Glossary, ontology as, 134
GRANT command, 1131
GRANT OPTION, 1131
Granting and revoking privileges, 

1129–1134
Graph-based data, XML document 

extraction using, 447–452
Graph-based data models, 51, 53
Graph-based NOSQL, 888, 903–909
Graphical User Interfaces, see GUI 

(Graphical User Interface)
Grid files, 632–633
GROUP BY clause

SQL, 219–220
view merging, subqueries, 705–706

Grouping
aggregate functions and, 216–218, 

260–261
attributes, 219, 260–261
GROUP BY clause for, 219–220
HAVING clause for, 219–221
NULL values in grouping attributes, 219
operator, 415–416
OQL, 415–416
partitions, 219, 415–416
QBE (Query-by-Example) language, 

1175–1177
relations partitioning into tuples, 219
separate groups for tuples, 219
SQL query retrieval and, 216–222
WHERE clause for, 221–222

GUI (Graphical User Interface)
data mining, 1095
DBMS provision of, 20–21
use of, 41

Hadoop
advantages of technology, 936
Big data technology for, 916–917, 

921–926
distributed file system (HDFS), 921–926
ecosystem, 926
historical background of, 916–917
parallel RDBMS compared to, 944–946
releases, 921
YARN (Hadoop v2), 936–944, 949–953

Handles, SQL/CLI records, 328
Handle variables, SQL/CLI declaration 

of, 328
Hardware

addresses, 550–551
disk storage devices, 547–552

Hash field, 572
Hash file, 572
Hash (randomizing) functions, 572, 580
Hash indexes, 633–634

Hash key, 572
Hash partitioning, 684
Hash tables, 572–573
Hashing techniques

dynamic file expansion, 577–582
dynamic hashing, 580
extendible hashing, 578–580
external hashing, 575–577
file storage, 572–582
folding, 574
internal hashing, 572–575
linear hashing, 580–582
multiple keys and, 632
partitioned hashing, 632
static hashing, 577

Having clause, OQL, 416
HAVING clause, SQL, 219–221
Hbase data model

column based systems, 900–903
CRUD operations, 903
distributed system concepts for, 903
NOSQL, 900–903
versioning, 900–902

Headers, file descriptors, 564
Heaps (unordered file records), 567–568
Here documents, PHP, 347–348
Heterogeneous DBMS, 52
Heuristic rules for query optimization, 

657, 692, 697–701
Hidden attributes, objects, 371, 375
Hierarchical data models, 33, 53. See also 

Tree-structured data models
Hierarchical systems using databases, 

23–24
Hierarchical views, XML document 

extraction using, 447–453
Hierarchies

association rules for data mining, 
1081–1082

EER models, 116–119
generalization, 119
inheritance and, 118
memory, 543–545
object data models (acyclic graphs), 52
specialization, 116–119
tree structure, 116, 452–453
type (class), 366, 374–377, 385

High-level (conceptual) data models, 33, 
60–62

High-level (nonprocedural) DML, 39–40
High-level language support, Big data 

technology and, 946
High-performance data access, NOSQL, 

886–887
Hints, Oracle, 736
Histograms

cost estimation from, 713
equi-width/equi-height, 713
selection conditions and, 668

HITS ranking algorithm, 1051
HOLAP (hybrid OLAP) option, 1114
Homogeneous DBMS, 52

Horizontal fragmentation (sharding), 
DDB data, 843–844, 847–848

Horizontal partitioning, 684
Horn clauses, 1004
Host language, embedded SQL, 314
Hot set method, transaction processing, 

757
Hoya (Hortonworks HBase on YARN), 

943–944
HTML (HyperText Markup Language)

client tier of, 344
tag notation and use, 428–430
Web data and, 25

HTML tag (<…>), 428
Hybrid documents, XML, 431
Hybrid-hash join, 675–676
Hyperlinks, 25, 1027
Hypertext documents, 425
HyperText Markup Language, see HTML 

(HyperText Markup Language)
Idempotent operations, 815
Identification, semantic modeling 

process, 130–131
Identifying (owner) entity type and 

relationship, 79
Image data, 989
Images

automatic analysis, 996–997
color, 997
defined, 995
multimedia databases for, 995–999
object recognition, 997–998
semantic tagging of, 998–999
shape, 997
texture, 997

Immediate updates
database recovery, 815, 823–826
SQL views, 230

Immutable property of OID, 367
Impendence mismatch, 312–313
Implementation

active databases, 967–972
aggregate operations, 678–679
database operations, 12
JOIN operations for, 668–681
operation encapsulation and, 371
pipelining using iterators, 682–683
query processing, 668–676, 679–681
temporal databases, 982

Implementation (physical storage) level, 
RDB design, 459–460

IN comparison operator, SQL, 209–210
In-line expression, 245
In-line views, SQL, 232
In-place updating, 816
Inclusion dependency, 5NF, 531–532
Incorporating time, temporal databases, 

977–984
Incorrect summary problem, transaction 

processing, 750
Incremental updates, SQL views, 230
Incremental view maintenance, 707–710
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Index-based nested-loop join, 559, 
718–719

Indexed allocation, file blocks, 564
Indexed (ordered) collection expressions, 

OQL, 415
Indexed-sequential file, 571, 616
Indexes

bitmap indexes, 634–637
clustering, 602, 606–608
constraint management using, 641
creation of, 639–640
data modeling access path, 34
DBMS auxiliary files, 20
duplicate management using, 641
fully inverted file, 641
hash indexes, 633–634
locks for concurrency control, 

805–806
logical versus physical, 638–639
multilevel, 613–617
multiple keys for, 613–633
ordered index on multiple attributes, 

631–632
physical database file structures as, 641
primary, 602, 603–606
rebuilding, 640
secondary, 603, 609–612
single-level ordered, 602–613
spatial data, 991–993
SQL creation of, 201–202
tuning, 640–641

Indexing fields, 601, 602
Indexing structures

column-based storage of relations, 642
hints in queries, 641–642
physical database design and, 601–652
indexed sequential access method 

(ISAM), 601
B-trees, 601–602, 622–630, 636–637
B-trees, 601–602, 617–622, 629–630
single-level ordered indexes, 602–613
multilevel indexes, 613–617
multiple keys for, 631–633
hash indexes, 633–634
bitmap indexes, 634–637
function-based indexing, 637–638
issues concerning, 638–642
RDB design and, 643–646
strings, 640

Industrial internet of things (IIOT or 
IOT), 914

Inference engine, deductive databases, 
999, 1004–1005

Inference rules
Armstrong’s axioms, 506–509
closure, 505–506, 508
4NF schema using, 527–528
functional dependencies, 505–509, 

527–528
proof by contradiction, 507
multivalued dependencies, 527–528

Information extraction (IE), 1040

Information privacy, security 
relationship to, 1128–1129

Information repository, DBMS, 46
Information retrieval (IR)

Boolean model, 1030
data, 1024
databases compared to IR systems, 

1025–1026
defined, 1022–1023
desktop search engines for, 1025
enterprise search systems for, 1024
F-score for, 1046–1047
free-form search request, 1023
history of, 1026–1027
information need, 1024
inverted indexing, 1040–1044
levels of scale, 1024
modes of interaction in IR systems, 

1027–1028
pipeline for processing, 1028–1029
probabilistic model, 1033–1034
queries in IR systems, 1035–1037
recall and precision, 1044–1046
search relevance, 1044–1047
semantic approach, 1028
semantic model, 1034–1035
statistical approach, 1028
text preprocessing, 1037–1040
trends in, 1057–1063
unstructured information, 1022
users, 1023–1024
vector space model, 1031–1033

Information updating, 23
Inherent model-based (implicit) 

constraints, 157
Inherent rules, 22
Inheritance

behavior inheritance, 393
class–schema interface, ODL, 404–405
colon (:) notation for, 393
EER-to-relational mapping, 301
EXTENDS, 393
extent inheritance, 377, 385
function overloading and, 385
generalization lattice or hierarchy, 119
interface inheritance, 377, 393
multiple, 118, 301, 377–378, 393
ODBs, 366, 374–377, 377–378, 385, 393
ODMG object model and, 393, 404–405
selective, 377
simplified model for, 347–377
single, 118–119
specialization lattice or hierarchy, 

117–118
SQL, 380
subclass/superclass relationships, 110, 

117–119
table inheritance, 385
type inheritance, 385

Initial hash function, 580
Initial state, populating (loading) 

databases and, 35

Inner join, SQL table (relations), 
215–216

Inner/outer joins, 254, 263–264
Innermost nested query, 211
INSERT command, SQL, 198–200
Insert operation

constraint violations and, 166–167
relational data models, 166–167

Insertion, B-trees, 626–629
Insertion anomalies, RDB design and, 

465–466
Instance variables, 365–366
Instances (occurrences), 35, 72
Instantiable class behavior, interface 

and, 392
Instantiation, semantic modeling 

process, 130
Integrity constraints

database applications and, 21–22
entity integrity, 163–165
foreign keys and, 163–164
referential integrity, 21, 163–165
relational modeling and, 160–165
relational database schemas and, 

160–163
semantic, 165
valid and not valid states and, 160–161

Intellectual property rights, 1154–1155
Intention, 35
Interactive query interface, 43–44
Interactive transactions, concurrency 

control and, 807
Interblock gaps, disk devices, 550
Interface inheritance, 377, 393
Interfaces. See also GUI (Graphical User 

Interfaces)
built-in, ODMG models, 393–396
class–schema inheritance, ODL, 

404–405
database operations, 12
DBMS, 20–21, 40–42
disk drives with computer systems, 

551–552
instantiable class behavior and, 392
multiple user, 20–21
noninstantiable object behavior and, 

392
object model definitions, 389–392
ODMG models and, 389–396, 

404–405
operation encapsulation and, 371
operation specifications, 366

Interleaved concurrency, 747
Interleaved processes, 747
Internal hashing, 572–575
Internal (schema) level, 36
Internal nodes, tree structures, 622
Internet SCSI (iSCSI), 590
Interpolating variables within text 

strings, 347
Interpreted queries, 710
Interquery parallelism, 687
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INTERSECT operation, SQL sets, 
194–195

INTERSECTION operation, 247–249
INTERVAL data type, 184
INTO clause, 317
Intraquery parallelism, 687
inverse references, 366, 370, 396–397
Inverse relationships, ODMG objects, 

396–397
Inverted files, 641
Inverted indexing

construction of, 1041–1042
defined, 1041
information retrieval (IR), 1040–1044
Lucern indexing/search engine for, 

1043–1044
process of, 1042

IS-A relationship, 109, 126
IS/IS NOT comparison operators, 209
Isolation. See also Snapshot isolation

levels of in transactions, 758
property, transactions, 14, 158

Iterator object, ODMG models, 393
Iterator variables

query results and, 312
OQL, 409–410

Iterators
defined, 682
pipelining implementation using, 

682–683
SQLJ query result processing with, 

323–325
Java

embedding SQL commands (SQLJ), 
321–325

exceptions for error handling, 322–323
Web programming technologies, 358

Java server pages (JSP), 358
Java servlets, 358
JavaScript, 358
JavaScript Object Notation (JSON), 358
JDBC (Java Database Connectivity)

class library imported from, 331, 332
drivers, 331–332
programming steps, 332–335
SQL class library, 326, 331–335
two-tier client/server architecture and, 

49
Join attribute, 253
Join condition, 189, 191, 252, 278
Join dependency (JD), 5NF, 494–495
JOIN operations

aggregate operation implementation 
and, 678–679

anti-join (AJ) operator, 658–660, 
677–678, 681, 719–720

attributes, 668
bucket join, 931
buffer space and, 672–673
cardinality, 719–720
cost functions for, 717–726

distributed query processing, 862–863
dynamic programming approach to 

ordering, 725–726
EQUIJOIN (=) comparison operator, 

253
hybrid-hash join, 675–676
index-based nested-loop join, 559, 

718–719
inner/outer, 254, 263–264
join selectivity (js) operator, 717–718
MapReduce (MR), 930–932
map-side hash join, 930
multiway joins, 668
N-way joins, 931–932
NATURAL JOIN (*__) comparison 

operator, 253, 262–263
nested-loop join, 558–559, 672–673, 718
non-equi-join, 681
optimization based on cost formulas, 

720–721
ordering choices in multirelational 

queries, 721–724
OUTER JOIN operations, 262–264, 

679–681
parallel algorithms, 685–686
partition-hash join, 559, 674–675, 719, 

930–931
performance of, 673–674
physical optimization, 724
query processing implementation, 

668–676, 679–681
recursive closure operations, 262
relational algebra and, 251–255, 

262–264
semi-join (SJ) operator, 658–660, 681, 

719–720, 862–863
SQL query retrieval, 215–216
SQL relations, 215–216
sort-merge join, 559, 719, 930
two-way join, 668

k-means algorithm, 1088–1089
Key constraints

attributes, 68–69, 302
database integrity and, 21
integrity constraints and, 163–165
referential integrity constraints and, 

163–165
relational modeling and, 158–160, 

163–165
relational schema and, 157–165
surrogate, 302
uniqueness property, 68–69, 159

Key field, records, 568
Key-value storage (data models), 34, 51, 53
Key-value stores, NOSQL, 888, 895–900
Keys

attributes, 477
candidate key, 159–160, 477
composite keys, 631
defined, 476
foreign keys, 163–165, 186–187

indexes with, 631–633
multiple keys, 631–633
normal forms and, 476–477
ODMG object model, 398
primary key, 159, 186–187, 441, 477
SQL, 186–187
superkey, 158–159, 476–477
unique keys, 160
XML schema specification, 441

Keyword-based data search, 41
Keyword queries, 1035
Knowledge discovery in databases 

(KDD), 1070–1073
Knowledge representation (KR)

abstraction concepts, 129–133
domain of knowledge for, 129
EER modeling and, 128–129
ontology and, 129
reasoning mechanisms, 129

Label-based security policy
architecture, 1156–1157
multilevel security, 1139–1140
Oracle, 1155–1158
Virtual private database (VPD) 

technology, 1156
Language design for database 

programming, 312, 339
Latches, concurrency control and, 807
Late (dynamic) binding, 377
Lattices

EER models, 116–119
generalization, 119
inheritance and, 117–118
specialization, 116–119

Lazy updates, SQL views, 230
Leaf class, 127
Leaf nodes, tree structures, 257, 617, 623
Least recently used (LRU) strategy, 

buffering, 559
Legacy data models, 33, 51, 53
Legal relation states (extensions), 472
Level trigger, 967
Library of functions or classes

application programming interface 
(API), 312, 326

database programming approach, 311, 
338–339

JDBC: SQL class library, 326, 331–335
SQL/CLI (SQI call level interface), 

326–331
Lifetime of an object, 388
LIKE comparison operator, SQL, 

195–196
Linear hashing, 580–582
Linear regression, data mining, 1092
Linear scale-up, 684
Linear search, files, 564, 567–568
Linear speed-up, 684
Link structure analysis, Web search and, 

1050–1051
Linked allocation, file blocks, 564
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Links, UML class diagrams, 87
List constructor, 369
Literal declaration, 392
Literals

atomic (single-valued) types, 368, 388
collection, 392
constructors for, 368–370
deductive databases, 1002–1003
objects compared to, 368
ODBs, 368–370, 388, 392
ODMG models, 388, 392
structured, 388
type generators, 368–369
type structures for, 368–370

Loading utility, 45
Local area network, 842
Local depth, hashing, 578
Local query optimization, 860
Localization, DDB query processing, 

859
Location analysis, 988
Location transparency, DDBs, 843
Locking data items, 781
Locks

binary locks, 782–784
certify locks, 796–797
concurrency control and, 782–786, 

796–797, 805–806
conversion of, 786
downgrading, 786
index concurrency control using, 

805–806
shared/exclusive (read/write) locks, 

784–786
upgrading, 786, 797

Log buffers, 755, 756
Log sequence number (LSN), 828
Logic databases, 962
Logical (conceptual) level, RDB design, 

459–460
Logical comparison operators, SQL, 

188–190
Logical data independence, 37–38
Logical database design, see Data model 

mapping
Logical design, 62
Logical index, 638–639
Logical theory, ontology as, 134
Loss of confidentiality, database threat 

of, 1122
Loss of integrity, database threat of, 1122
Lossy design, 515
Lost update problem, transaction 

processing, 750
Low-level (physical) data models, 33–34
Low-level (procedural) DML, 40
Lucern indexing/search engine, 

1043–1044
Magnetic tape

backing up databases using, 555–556
memory hierarchy and, 544–545

storage devices, 555–556
tape reel, 555

Main (master) file, 571
Main memory, 543
Maintenance, databases, 6
Maintenance personnel, 17
Mandatory access control (MAC), 1121, 

1134–1137
Mandatory security mechanisms, 1123
Map data, 989
Mappings

data model, 62
database schema views, 37
distributed query processing, 859
EER model constructs to relations, 

298–303
EER schema to ODB schema, 407–408
ER-to-relational, 290–298
ODB conceptual design, 407–408
tuples for relations, 154

MapReduce (MR)
advantages of technology, 936
Big data technology for, 917–921, 

926–936
historical background of, 917–918
joins in, 930–932
parallel RDBMS compared to, 944–946
programming model, 918–921
runtime, 927–930

Map-side hash join, MapReduce (MR), 
930

Mark up, XML documents for HTML, 
428–429

Market-basket data model, 1073–1075
Mass storage, 543
Master data management (MDM), 1110
Master-master replication, NOSQL, 886
Master-slave replication, NOSQL, 886
Materialized evaluation, 681, 702–702
Materialized views, query execution, 

707–710
Mathematical relation, domains, 152
MAX function, SQL, 217
MAXIMUM function, grouping, 260
Measurement operations, 988
Mechanical arm, disk devices, 551
Memory

cache, 543
dynamic random-access (DRAM), 543
flash memory, 543–544
hierarchies, 543–545
magnetic tape, 544–545
main, 543
optical drives, 544
random-access (RAM), 543
storage capacity and, 543
storage devices for, 543–545

Menu-based interfaces, 40
Merging phase, external algorithms, 661
Meta-data

database catalog and, 10–11

defined, 6
schema storage, 35

Methods
database operations, 12
object data models, 53
operation implementation and, 366, 

371
Middle-tier Web server, PHP as, 344
Middleware layer, n-tier architecture, 

50–51
MIN function, SQL, 217
Minimal sets of functional dependency, 

510–512
MINIMUM function, grouping, 260
Miniworld, 5
MINUS operation, 247–249
Mirroring, (shadowing), RAID, 585
Mixed (hybrid) fragmentation, DDB 

data, 847–848
Mixed records, files for, 582–583
Mobile applications, access control of, 

1141–1142
Mobile device apps

ER modeling and, 59
interfacing, 40–41
user transactions by, 16

Model-theoretic interpretation of rules, 
1005

Models, see Data models; EER (Enhanced 
Entity-Relationship) model; ER 
(Entity-Relationship) model; Object 
data models

Modification anomalies, RDB design 
and, 467

Modifier, object operations, 371
Modules

buffering (caching), 20, 42
client module, 31
compilers, 42–45
database queries and, 20, 43–44
database systems, 31, 42–45
DBMS components, 42–45
interactive query interface, 43–44
server module, 31
stored data manager, 42

MOLAP (multidimensional OLAP) 
function, 1114

MongoDB data model
CRUD operations, 893
documents, 890–893
NOSQL, 890–895
replication in, 894
sharding in, 894–895

Moveable head disks, 551
Multidatabase system recovery, 831–834
Multidimensional models, 1108
Multilevel indexes

dynamic, 616, 617–630
fan-out, 613, 622
levels, 613–616
physical database design and, 613–617
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Multimedia databases
audio data source analysis, 999
concepts, 994–996
enhanced data models, 962, 994–999
image automatic analysis, 996–997
object recognition, 997–998
semantic tagging of images, 998–999
types of, 3–4

Multiple granularity locking
concurrency control and, 801–804
granularity levels for, 801
granularity of data items, 800–801
protocol, 802–804

Multiple hashing, collision resolution, 575
Multiple inheritance, 118, 301, 377–378, 

393
Multiple keys

grid files and, 632–633
indexes on, 613–633
multiple attributes and, 631–632
ordered index on, 631–632
partitioned hashing with, 632
physical database design and, 613–633

Multiple-relation options, EER-to-
relational mapping, 299–300

Multiple user interfaces, 20–21
Multiplicities, UML class diagrams, 87
Multiprogramming

concept of, 746–747
operating systems, 747

Multirelational queries, JOIN ordering 
choices and, 721–724

Multiset (tuple) operations
comparisons for query retrieval, 209–211
SQL tables, 193–195

Multiuser DBMS systems, 51
Multiuser transaction processing, 13–14
Multivalued attributes, 66, 295–296, 481
Multivalued dependency, see MVD 

(multivalued dependency)
Multiversion concurrency control, 781, 

795–797
certify locks for, 796–797
timestamp ordering (TO), 796
two-phase locking (2PL), 796–797

Multiway joins
implementing, 668
SQL table (relations), 216

Mutator function, SQL encapsulation, 384
MVD (multivalued dependency)

all-key relation of, 491, 493
definition of, 491–492
fourth normal form (4NF) and, 

491–494, 527–530
inference rules for, 527–528
normalizing relations, 493–494
trivial/nontrivial, 493

n-ary relationship types, mapping of, 296
n-degree relationships, 88–92
n-tier architecture for Web applications, 

49–51

N-way joins, MapReduce (MR), 931–932
Named iterator, SQLJ, 323
Namespace, XML, 440
Naming mechanisms

constraints, SQL, 187
database entrypoints, 373
object persistence and, 373–374
operations for renaming attributes, 

245–246
query retrieval and, 192, 214–215
renaming attributes, 192, 214–215, 

245–246
schema constructs, 82

Naming transparency, DDBs, 843
NATURAL JOIN (*__) comparison 

operator, 253, 262–263
NATURAL JOIN operation, SQL tables, 

215
Natural language interfaces, 41
Natural language queries, 1037
Neo4j system

cypher query language of, 905–908
distributed system concepts for, 

908–909
nodes, 904–905
NOSQL, 903–909
relationships, 904–905

Nested-loop join, 558–559, 672–673, 718
Nested queries

comparison operators for, 210–211
correlated, 211–212
innermost query of, 211
outer query of, 209
query optimization and, 702–704
subqueries, 702–704
tuple values in, 209–211
unnesting (decorrelation), 704

Nested relations, 1NF in, 479–480
Network-attached storage (NAS), 589–590
Network data models, 33, 51, 53
Network systems using databases, 23–24
Network topologies, 843
Neural networks, data mining, 1092
No waiting algorithm, deadlock 

prevention, 791
NodeManager, YARN, 942
Nodes

constant, query graphs, 273
leaf, query trees, 257
relation, query graphs, 273
tree structures, 617

Non-equi join implementation, 681
Nonadditive (lossless) join property

algorithms, 519–523
Boyce-Codd normal form (BCNF) 

schemas using, 522–523
dependency preservation and, 519–522
4NF schema using, 530
normalization process, 476
RDB decomposition, 515–518, 519–522
successive decompositions, 517–518

testing binary decompositions for, 517
3NF schema using, 519–522

Nonadditive join test for binary 
decomposition (NJB), 490

Noninstantiable object behavior, 
interface and, 392

Nonprocedural language, 268
Nonrecursive query evaluation, 1010–1012
Nonserial schedules, 763, 764–765
Normal form test, 475
Normal forms

Boyce-Codd normal form (BCNF), 
487–491

defined, 475
denormalization, 476
domain-key (DKNF), 532–533
fifth normal form (5NF), 494–495
first normal form (1NF), 477–481
fourth normal form (4NF), 491–494
insufficiency of for relational 

decomposition, 513–514
join dependency (JD) and, 494–495
keys, attributes and definitions for, 

476–477
multivalued dependency (MVD) and, 

491–494
normalization of relations, 474–476, 

482, 485, 486–487, 493–494
practical use of, 476
primary keys for, 483–495
RDB design and, 474–495, 513–514, 

528–533
second normal form (2NF), 481–482, 

484–486
third normal form (3NF), 483–484, 

486–487
Normalization process

algorithms, 519–527
data normalization, 475–476
dependency preservation property, 476
multivalued dependency (MVD), 

493–494
nonadditive (lossless) join property, 476
normal form test for, 475
relations, 474–476

NOSQL database system
availability, 885–886
big data storage uses, 3, 26
CAP theorem, 888–890
categories of, 887–888
column-based, 888, 900–903
CRUD (create, read, update, and 

delete) operations, 887, 893, 903
data models, 34, 51
DDB similar characteristics, 885–887
distributed storage using, 883
document-based, 888, 890–895
emergence of, 884–885
eventual consistency, 885–886
graph-based, 888, 903–909
Hbase data model, 900–903
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high-performance data access, 
886–887

key-value stores, 888, 895–900
MongoDB data model for, 890–895
Neo4j system, 903–909
query language similar characteristics, 

887
replication models for, 886
replication, 885–886, 894
scalability, 885
sharding, 886, 894–895
versioning, 887, 899, 900–902

NOT FINAL, UDT inheritance 
specification, 385

NOT operator, see AND/OR/NOT 
operators

NO-UNDO/REDO algorithm, 815, 
821–823

NULL values
aggregate functions and, 218
attribute not applicable, 208
complex query retrieval and, 208–209
constraints on attributes, 160, 

184–186
discarded values, 218
entity attributes, 66
grouping attributes with, 219
IS/IS NOT comparison operators for, 

209
query retrieval in SQL, 208–209, 218, 

219
RDB design problems, 523–524
referential integrity and, 163–164
relational modeling and, 155–156, 160
relation schema for RDB design and, 

467–468
grouping attributes, 219
SQL attribute constraints, 184–186
three-valued logic for comparisons, 

208–209
tuples for relations, 155–156, 163, 

467–468
unavailable (or withheld) value, 208
unknown value, 208

Numeric arrays, PHP, 349
Numeric data types, 182, 348
Object-based storage, 591–592
Object Data Management Group, see 

ODMG (Object Data Management 
Group)

Object data models
classes, 52
data model type, 33
DBMS classification from, 51, 52–53
hierarchies (acyclic graphs), 52
methods, 53
ODMG, 387–400

Object databases, see ODBs (object 
databases)

Object definition language, see ODL 
(object definition language)

Object identifier, see OID (object identifier)
Object identity

literal values for, 368
ODBs, 367–368, 378
OID implementation of, 367
SQL, 379

Object-oriented systems, persistent 
storage, 19–20

Object query language, see OQL (object 
query language)

Object recognition, multimedia 
databases, 997–998

Object-relational systems
extended-relational systems, 53
SQL, 202

Objects
arrow (–>;) notation for, 392
atomic (single-valued) types, 368, 388, 

396–398
attributes, 396
behavior of based on operations, 371
collections, 373, 376
constructors for, 368–370
dot notation for, 372, 392
encapsulation of, 366, 371
exceptions, 397–398
hidden attributes, 371
instance variables, 365–366
interfaces, noninstantiable behavior 

and, 392
lifetime, 388
literals compared to, 368
naming, 373–374, 387
ODBs, 365–371, 387–388, 395–400
ODMG models, 387–388, 392, 395–400
operations for, 370–372
persistent, 365, 373–374, 376
reachability, 373–374
relationships, 396–397
signatures, 366, 397
state of, 387
structure of, 388
transient, 365, 373, 376
type generators, 368–369
type structures for, 368–370
unique identity, 367–368
visible/hidden attributes, 371, 375

Observer function, SQL encapsulation, 384
ODBC (Open Database Connectivity)

data mining, 1094–1095
standard, 49, 326

ODBs (object databases)
C++ language binding, 417–418
conceptual design, 405–408
development of, 363–365
encapsulation of operations, 366, 

370–374, 384–385
inheritance and, 366, 374–377,  

378, 385, 393
instance variables, 365–366
inverse references, 366, 370, 396–397

literals in, 368–370, 388–392
Object Data Management Group 

(ODGM) model, 386–405, 417–418
object definition language (ODL) and, 

386, 400–405
object identifier (OID), 367–368
object query language (OQL), 408–416
object-oriented (OO) concepts, 365–366
objects in, 365–371, 387–388, 395–400
polymorphism (operator overloading), 

366, 377
RDB compared to, 405–406
SQL extended from, 379–386
type (class) hierarchy, 366, 374–377

ODL (object definition language)
classes, 400, 404–405
class–schema interface inheritance, 

401–404
Object Data Management Group 

(ODGM) model and, 386, 400–405
object databases (ODBs) and, 386–387, 

400–405
schemas, 400–403
type constructors in, 369

ODMG (Object Data Management Group)
atomic (user-defined) objects, 395–398
bindings, 386, 417–418
built-in interfaces and classes, 393–396
C++ language binding, 386, 417–418
database standard, 33, 364–365
extents, 373, 376–377, 398
factory objects, 398–400
inheritance in object models, 393
interface definitions for object models, 

389–392
keys, 398
literals in object models, 388, 392
object databases (ODBs), 386–405, 

417–418
object definition language (ODL) and, 

386, 400–405
object model of, 387–400
object query language (OQL) and, 386, 

408
objects, 387–388, 392, 395–400
standards, 386, 417–417

OID (object identifier)
immutable property of, 367
ODB unique object identity and, 367–368
ODMG models, 387
reference types used for in SQL, 383

OLAP (Online analytical processing)
data warehousing and, 1102
data warehousing characteristics and, 

1104
HOLAP (hybrid OLAP) option, 1114
MOLAP (multidimensional OLAP) 

function, 1114
ROLAP (relational OLAP) function, 

1114
use of, 4
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OLTP (online transaction processing)
data warehousing and, 1102
multiuser transaction processing, 14
relational data modeling, 169
special-purpose DBMS use, 52

Online analytical processing, see OLAP 
(Online analytical processing)

Online transaction processing, see OLTP 
(online transaction processing)

Ontology
conceptualization and, 134
defined, 134
knowledge representation (KR) and, 129
semantic Web data models, 133–134
specification and, 134
types of, 134

Ontology-based information integration, 
1052–1053

OO (object-oriented) concepts, 365–366
OODB (object-oriented database)

attribute versioning, 982–984
database complexity and, 24–25
development of, 363
temporal databases incorporating time 

in, 982–984
OQL (object query language)

aggregate functions, 413–414
Boolean (true/false) results, 414
collection operators, 413–416
element operator, 413
exists quantifier, 415
grouping operator, 415–416
indexed (ordered) collection 

expressions, 415
iterator variables for, 409–410
named query specification, 412–413
ODBs, 408–416
ODGM model queries and, 408–416
ODMG standard and, 386
path expressions, 410–412
query results, 410–412
select…from…where structure of, 409

OOPL (object-oriented programming 
language), class library for, 312

op comparison operator, 270
Open addressing, hashing collision 

resolution, 574
OPEN CURSOR command, SQL, 317
OpenPGP (Pretty Good Privacy) 

protocol, XML, 1140–1141
Operating system (OS), 42
Operational data store (ODS), 583, 1105
Operations. See also Query processing 

strategies
aggregate, 678–679
assignment (←) for, 245
binary, 240, 251–259, 262–264
defined, 12
delete, 166, 167–168
dot notation for objects, 372
encapsulation, 366, 370–374, 384–385
files, 564–567

generalized projection, 259–260
insert, 166–167
JOIN, 251–255, 262–264, 668–676
method (body) of, 366, 371
ODBs, 366, 370–374, 384–385
pipelining for combinations of, 

681–683
program variables for, 565–566
record-at-a-time, 566
recursive closure, 262
relational algebra, 240–259, 262–265
relational data modeling, 165–168
renaming attributes, 245–246
retrievals, 165–166, 564–565
schedules, 759–760, 773
selection conditions for, 564–565
sequence of, 245–246
set-at-a-time, 566
set theory and, 246–251, 264–265
signature (interface) of, 366, 371
SQL query recovery and, 194–197
SQL sets, 194–195
unary, 240, 241–246
UNION, 194–195, 264–265
update (modify), 166, 168–169, 564–565
user-defined functional requirements, 

61
Operator-level parallelism, 684–686
Operators

aggregate functions, 216–219, 260–261
arithmetic, SQL, 196–197
collections, 413–416
comparison, 209–211
nested queries, 209–211
defined, 17
grouping, 415–416
logical comparison, SQL, 188–190
OQL collections, 413–416
spacial, 990–991
SQL query recovery, 188–190, 

196–197, 209–211
SQL query translation into, 657–660

Optical drives, 544
Optimistic protocols, 781
Optional field, records, 561–562
OR logical connective, SQL, 209–210
OR operator, see AND/OR/NOT operators
Oracle

adaptive optimization, 735
array processing, 735–736
global query optimizer, 734–735
hints, 736
key-value store, 899
label-based security policy, 1155–1158
outlines, 736
physical optimizer, 733–734
query optimization in, 733–737
SQL plan management, 736–737
virtual private database (VPD) 

technology, 1156
ORDBMS (object-relational database 

management system), 364

ORDER BY clause
SQL, 197–198
XQuery, 446

Order preserving, hashing, 577
Ordered (sorted) records, 568–572
Ordering field, records, 568
OUTER JOIN operations, 216, 262–264
Outer query, 209
OUTER UNION operation, 264–265
Outlines, Oracle, 736
Overflow (transaction) file, 571
Overlapping entities, 115, 126
PageRank ranking algorithm, 1051
Parallel algorithms

aggregate operations for, 686
architectures for, 683–684
interquery parallelism, 687
intraquery parallelism, 687
join techniques, 685
operator-level parallelism, 684–686
partitioning strategies, 684
projection and duplicate elimination, 685
query processing using, 683–687
selection conditions, 685
set operations for, 686
sorting, 684

Parallel database architecture, 683
Parallel processing, 747
Parameters

binding, 329, 333
disks, 1167–1169
JDBC statement parameters, 333
SQL/CLI statement parameters, 329
stored procedure type and mode, 

336–337
Parametric (naïve) end users, 16
Parametric user interfaces, 42
Parent nodes, tree structures, 617
Parser, query processing, 655
Partial categories, 122
Partial key, 79, 479
Partial specialization, 115, 126
Participation constraints, 77–78
Partition algorithm, 1081
Partition-hash join, 559, 674–675, 719, 

930–931
Partition tolerance, DDBs, 845
Partitioned hashing, 632
Partitioning strategies

NOSQL, 886
parallel algorithms, 684

Partitions
OQL, 415–416
grouping and, 219, 415–416
SQL query retrieval and, 219

Path expressions
OQL, 410–412
SQL, 386
XPath for, 443–445

Path separators (/ and //), XML, 443
Patterns, substring matching in SQL, 

195–197
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PEAR (PHP Extension and Application 
Repository), 353–354

Performance, Big data technology and, 945
Performance monitoring, 45
Periodic updates, SQL views, 230
Persistent data, storage of, 545
Persistent objects, 365, 373–374
Persistent storage, 19–20
Persistent storage modules, 336
Phantom records, concurrency control 

and, 806–807
PHP (Hypertext processor)

arrays, 345–346, 348–350
built-in variables, 352–353
comments in, 345
connecting to a database, 353–355
data collection and records, 355–356
error checking, 355
Extension and Application Repository 

(PEAR), 353–354
functions, 350–352
here documents, 347–348
HTML and, 343–346
middle-tier Web server as, 344
numeric data types for, 348
placeholders, 356
predefined variables, 345–346
query retrieval, 356–357
query submission, 355
text strings in, 346, 347–348
use of, 343–345
variable names for, 346, 347
Web programming using, 343–359

Phrase queries, 1036
Physical clustering, mixed records, 583
Physical data independence, 38
Physical data models, 33–34
Physical database design

data storage and, 546
indexing design decisions, 645–646
indexing structures, 601–652
job mix factors for, 643–645
multilevel indexes, 613–617
relational databases (RDBs) with, 

643–646
single-level ordered indexes, 602–613

Physical database file structures, 641. See 
also Indexes

Physical design, data modeling, 62
Physical index, 638–639
Physical optimization, queries, 724
Physical optimizer, Oracle, 733–734
Pin count, buffer management, 558
Pin-unpin bit, database recovery cache, 816
Pipelined parallelism, 687
Pipelining

combining operations using, 681–683
iterators for implementation of, 682–683
materialized evaluation and, 681
pipelined evaluation, 682
processing information, 1028–1029
query processing using, 681–683

Placeholders, PHP, 356
Plan caching, query optimization, 730
Pointers

B-trees, 620, 623–624
file records, 563, 575–576

Polymorphism (operator overloading)
binding and, 377
ODBs, 366, 377

Populating (loading) databases, 35
Positional iterator, SQLJ, 323
Practical relational model, 177–206.  

See also SQL (Structured Query 
Language) system

Precompiler
DML command extraction, 44
embedded SQL and, 311, 314

Predefined variables, PHP, 345–346
Predicate, relation schema and, 156
Predicate-defined subclasses, 113, 126
Prefix compression, string indexing, 640
PreparedStatement objects, JDBC, 333
Preprocessor, embedded SQL and, 311, 314
Primary file organization, 546
Primary indexes, 602, 603–606
Primary keys

arbitrary designation of, 477
normal form based on, 483–495
relational data modeling, 159
SQL constraints, 186–187
XML specification, 441

Primary storage, 542, 543
Prime/nonprime attributes, 477
Printer servers, client/server architecture, 

47
Privacy issues and preservation, 

1153–1154
Privileged software use, 19
Privileges, granting and revoking in SQL, 

202
Probabilistic model, IR, 1033–1034
Probabilistic topic modeling, IR, 

1059–1061
Program variables

embedded SQL, 314–315
file operations, 565–566

Program-data independence, 12
Programming, see Database 

programming; SQL programming
Programming languages

DBMS, 38–40
declarative, 40
design for database programming, 

312–313, 339
impendence mismatch, 312–313
Java, 321–325, 358
PHP (Hypertext processor), 343–359
QBE (Query-by-Example), 1171–1178
XML, 434, 436–447

Programming model, MapReduce (MR), 
918–921

Program-operation independence, 12
Project attributes, 189

PROJECT operation
degree of relations, 244
duplicate elimination and, 244–245
query processing, algorithms for, 

676–678
relational algebra using, 243–245

Prolog language, deductive databases, 
1000–1003

Proof by contradiction, 507
Proof-theoretic interpretation of rules, 

1005
Properties of decomposition

attribute preservation condition, 513
dependency preservation, 514–515
insufficiency of normal forms, 

513–514
nonadditive (lossless) join, 515–517, 

519–523
RDB design and, 504, 513–518
universal relations and, 513

Protection, databases, 6
Proximity queries, 1036
Public key encryption, 1151–1152
Pure distributed database architecture, 

869–871
QBE (Query-by-Example) language

aggregate functions in, 1175–1177
grouping, 1175–1177
modifying the database, 1177–1178
retrievals in, 1171–1175

Qualified association, UML class 
diagrams, 88

Qualifier conditions, XML, 443
Quantifiers

domain relational calculus, 279
existential, 271, 274
queries using, 274–276
transformation of, 274
tuple relational calculus, 271, 274–276
universal, 271, 274–276

Queries
buffering (caching) modules for, 20, 42
compiler, 43–44
complex retrieval, 207–225
constant nodes, 273
Datalog language, 1004, 1010–1012
defined, 6
indexes for, 20
indexing hints in, 641–642
information retrieval (IR) systems, 

1035–1037
interactive interface, 43–44
join condition, 189, 191
keyword-based, 41
named specification, OQL, 412–413
nested, 209–212
nonrecursive evaluation, 1010–1012
object query language (OQL), 408–416
ODMG model for, 408–416
optimizer, 44
outer, 209
processing in databases, 20
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Queries (continued)
quantifiers for, 274–276
recursive, 223
relation nodes, 273
relational algebra for, 265–268
select-from-where structure, 188–190
selection condition, 189
select-project-join, 189–190, 273
spatial, 991
SQL retrieval, 187–198, 207–225
temporal constructs, 984–986
TSQL2 language for, 984–986
tuple relational calculus for, 272–276
XML languages for, 443–447

Query block, 657–658
Query decomposition, DDBMS, 863–865
Query execution

aggregate functions for, 709
cost components for, 711–712
GROUP-BY view merging, 705–706
incremental view maintenance, 707–710
materialized views for, 707–710
nested subqueries, 702–704
query evaluation for, 701–702
subquery (view) merging 

transformation for, 704–706
Query graphs

internal query representation by, 655
notation, 692–694
query optimization, 692–697
tuple relational calculus, 273–274

Query modification, SQL views, 229–230
Query optimization

cost estimation for, 657, 710–713, 
716–717

cost functions for, 714–715, 717-
cost-based optimization, 710–712, 716, 

726–728
data warehouses, 731–733
distributed databases (DDBs), 859–863
dynamic programming, 716, 725–726
execution plan, display of, 729
heuristic rules for, 657, 692, 697–701
histograms for, 713
JOIN operation for, 717–726
multirelation queries, 721–724
operation size estimation, 729–730
Oracle, 733–737
physical optimization, 724
plan caching, 730
query execution and, 701–712
query processing compared to, 

655–657
query trees and graphs for, 692–697
SELECT operation for, 714
semantic query optimization, 737–738
star-transformation optimization, 

731–733
top-k results, 730
transformation rules for relational 

algebra operations, 697–699
Query optimizer, 655

Query processing strategies
aggregate operation implementation, 

678–679
anti-join (AJ) operator for, 658–660
distributed databases (DDBs), 859–863
external sorting algorithms, 660–663
importance of, 656–657
JOIN operation implementation, 

668–676, 679–681
parallel algorithms for, 683–687
pipelining to combine operations, 

681–683
PROJECT operation algorithm, 676–678
query block for, 657–658
query optimization compared to, 

655–657
SELECT operation algorithms, 663–668
semi-join (SJ) operator for, 658–660
set operation algorithm, 676–678
SQL query translation, 657–660
steps for, 655–656

Query results
bound columns approach, 329
cursor (iterator variable) for, 312, 

317–320
embedded SQL, 312, 317–320
impedance mismatch and, 312
iterators for, 323–325
OQL, 410–412
path expressions, 386, 410–412
PHP, 356–357
SQL/CLI processing, 329
SQLJ processing of, 323–325

Query retrieval
aggregate functions in, 216–219
alias for, 192
arithmetic operators for, 196–197
asterisk (*) uses, 193, 218
attribute name qualification, 191
Boolean (TRUE/FALSE) statements 

for, 212–214
CASE clause for, 222–223
clauses used in, 198–199
comparison operators, 188–191, 195–197
complex queries, 207–225
EXISTS function for, 212–214
explicit sets of values, 214–215
FROM clause for, 188–189, 197, 232
grouping, 216–222
joined tables (relations), 215–216
LIKE comparison operator, 195–196
logical comparison operators for, 

188–190
multiset of tuples, 188, 193–195
nested queries, 209–212
NULL values and, 208–209
ORDER BY clause for, 197–198
ordering results, 197
PHP, 356–357
QBE (Query-by-Example) language, 

1171–1175
recursive queries, 223

renaming attributes, 192, 214–215
SELECT statement (clause) for, 

187–188, 194–195, 197
select-from-where block, 188–191
set operations for, 194–195
set/multiset comparisons, 209–211
SQL, 187–198, 207–225, 230–231
substring pattern matching, 195–197
table set relations, 193–195
three-valued logic for comparisons, 

208–209
tuple variables for, 192, 209–211
UNIQUE function for, 212–214
views (virtual tables) for, 230–231
WHERE clause for, 188, 192–193, 197
WITH clause for, 222–223

Query server, two-tier client/server 
architecture, 49

Query submission, PHP, 355
Query tree

defined, 257
heuristic optimization of, 694–694
internal query representation by, 655
notation, 257–259, 692–694
query optimization, 692–697
RDBMS use of, 257–259
semantic equivalence of, 694–695

Query validation, 655
Question answering (QA) systems, 

1061–1063
RAID (redundant arrays of inexpensive 

disks) technology
bit-level striping, 584, 586
block-level striping, 584–585, 586
data striping, 584–585
levels, 586–588
mirroring, (shadowing), 585
parallelizing disk access using, 542, 

584–588
performance, improvement with, 586
reliability, improvement with, 

585–586
Random-access memory (RAM), 543
Random access storage devices, 554
Range partitioning, 684, 886
Range relations, tuple variables and, 

269–270
RDBMS (Relational database 

management system)
query tree notation, 257–259
two-tier client/server architecture and, 

49
RDBs (relational databases)

application flexibility with, 24
data abstraction in, 24
indexing for, 643–646
integrity constraints and, 160–163
physical database design in, 643–646
relation schema sets as, 160
schemas, 160–163
temporal databases incorporating time 

in, 977–982
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tuple versioning, 977–982
valid and invalid relational states, 

160–161
Reachability, object persistence and, 

373–374
Read/write head, disk devices, 551
Read/write transactions, 748
Real-time database technology, 4
Reasoning mechanisms, 129
Recall and precision metrics, IR, 

1044–1046
Record type (format), 560
Record-at-a-time, file operations, 566
Record-at-time DML, 40
Record-based data models, 33
Records

blocking, 563–564
data types, 560–561
data values, 560
fields, 560, 561–563, 568–569, 582–583
file storage, 560–564, 567–572, 

582–583
fixed-length, 561–563
mixed, 582–583
ordered (sorted), 568–572
spanned versus unspanned, 563–564
unordered (heaps), 567–568
variable-length, 561–563

Recoverability basis of schedules, 761–762
Recoverable/nonrecoverable schedule, 761
Recursive closure operations, 262
Recursive queries, 223
Recursive (self-referencing) 

relationships, 75
Redis key-value cache, 900
Redundancy control, 18–19
REF keyword, 383, 386
Reference types, OIDs created using, 383
References

dot notation for path expressions, 386
inverse, 366, 370, 396–397
object identity from, 370
object type relationships, 369–370
relationships specified by, 386
SQL, 370, 386

Referential integrity
constraints, 21, 163–165, 186–187
NULL values and, 163–164
relational data modeling, 163–165
SQL constraints, 186–187

Referential triggered action clause, SQL, 
186

Reflexive association, UML class 
diagrams, 87

Regression, data mining, 1091–1092
Regression function, data mining, 1092
Relation extension/intension, 152
Relation nodes, query graphs, 273
Relation schema

anomalies and, 465–467
assertion, 156
attribute clarity and, 464

degree (arity) of attributes, 152
facts, 156
functional dependency of, 471–474
goodness of, 459
interpretation of, 156
key of, 159
nested relations, 479–480
normalization of relations, 474–476
NULL value in tuples, 467–468
predicate, 156
redundant information in tuples, 

465–467
relational database (RDB) design 

guidelines, 461–471
relational model constraints and, 

157–165
relational model domains and, 152
semantics of, 461–465
spurious tuple generation, 468–471
superkey of, 158–159
universal, 471–474

Relation state
current, 153
relational model domains and, 152–153
relational database, 160–161
tuple values in, 152–156
valid and not valid, 160–161

Relational algebra
aggregate functions, 240, 260–261
binary operations, 240, 251–259, 

262–264
expressions for, 239, 241–242, 245
formal relational modeling and, 239–240
generalized projection operation, 

259–260
groupings, 260–261
operations, purpose and notation of, 258
procedural order of, 268
queries in, 265–268
query optimization and, 697–699
recursive closure operations, 262
set theory and, 246–251, 264–265
SQL query translation into, 657–660
transformation rules for operations, 

697–699
unary operations, 240, 241–246

Relational calculus
declarative expressions for, 268
domains and, 268, 277–279
formal relational modeling and, 

240–241
nonprocedural language of, 268
query graphs, 273–274
relationally complete language of, 268
tuples and, 268–277

Relational data models
attributes, 152–153
breaking cycle for tree-structure model 

conversion, 452–453
concepts, 150–157
constraints, 157–167
DBMS criteria and, 51–52

delete operation, 166, 167–168
domains, 151–152
entity integrity, 163–165
extraction of XML documents using, 

447–449
flat files, 150
formal languages for, see Relational 

algebra; Relational calculus
insert operation, 166–167
key constraints, 21, 158–160, 163–165
mathematical relation of, 149
notation for, 156–157
operations, 165–168
referential integrity, 163–165
practical language for, see SQL 

(Structured Query Language)
relations, 152–156
representational model type, 33
retrievals (operations), 165–166
schemas, 152–165
table of values, 150–151
transactions, 169
tuples, 152–156
update (modify) operation, 166, 

168–169
Relational database (RDB) design

algorithms for schema design, 
519–523, 524–527

bottom-up method, 460, 504
by analysis, 503
by synthesis, 504, 503
dangling tuple problems, 523–524
data model mapping for, 289
designer intention for, 459–460
EER-to-relational mapping, 298–303
ER-to-relational mapping, 290–298
functional dependency and, 471–474, 

505–512, 527–528, 532
implementation (physical storage) 

level, 459–460
inclusion dependency and, 531–532
inference rules for, 505–509, 527–528
join dependency (JD) and, 494–495, 

530–531
keys for, 474–483
logical (conceptual) level, 459–460
multivalued dependency (MVD) and, 

491–494, 527–530
normal forms, 474–495, 513–514, 

528–533
normalization algorithm problems, 

524–527
normalization of relations, 474–476, 

482, 485, 486–487, 493–494
NULL value problems, 523–524
ODBs compared to, 405–406
properties of decomposition, 504, 

513–518
relation schema, guidelines for, 

461–471
top-down method, 460
universal relations, 471–474, 504
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Relational database management system, 
see RDBMS (Relational database 
management system)

Relational database state, 160–161
Relational databases, see RDBs (relational 

databases)
Relational operators for deductive 

databases, 1010
Relationally complete language of, 268
Relationships

aggregation, 87–88
associations, 87–88
attributes of, 78
attributes, as, 74
binary types, 76–78, 293–295
cardinality ratios for, 76–77
comparison of ternary and binary, 88–91
conceptual data models, 33
constraints on, 76–78, 91–92
degree of types, 71–74, 88
entity participation in, 72–73
ER models and, 72–78, 88–92
ER-to-relational mapping, 293–296
existence dependency, 77–78
identifying, 79
instances, 72
inverse, 396–397
multivalued attributes, 295–296
n-degree, 88–92, 296
ODMG model objects, 396–397
order of instances in, 87
participation constraints of, 77–78
recursive (self-referencing), 75
role names and, 75
sets, 72
structural constraints of, 78
subtype/supertype, 375–376
ternary, 88–92
type, 72–78, 126
type hierarchies, 375–376
UML class diagrams, 87–88

Reliability, DDBs, 844–845
RENAME operator (ρ), 245–246
Renaming attributes in SQL, 192, 214–215
Repeating field, records, 561–563
Replication models, 886
Replication transparency

DDBs, 843
NOSQL, 885–886, 894

Representational (implementation) data 
models), 33

Resource Description Framework 
(RDF), 447

ResourceManager (RM), YARN, 
941–942

RESTRICT option, SQL, 233, 234
Result equivalence, schedules, 765
ResultSet object JDBC, 334–335
Retrieval operations

files, 564–565
object information, 371
relational data models, 165–166

selection conditions, 564–565
Retrieval, 1027
RETURN clause, XQuery, 446
ROLAP (relational OLAP) function, 1114
Role-based access control (RBAC), 1121, 

1137–1139
Role names, 75
Roles of domain attributes, 152
Root, tree structures, 617
Root element, XML, 440
Root tag, XML documents, 434
Rotational delay (latency), disk devices, 552
Round-robin partitioning, 684
Row, SQL, 179
Row-based constraints, SQL, 187
Row-level access control, 1139–1140
ROW TYPE command, 380
RSA public key encryption algorithm, 

1152
Rules

active databases systems, 22
active rules, 962–964, 970–973
association rules, 1073–1084
axioms, 1005
deductive database systems, 22
deductive databases, 1000, 1005–1007
defined, 1000
force/no-force rules, 817–818
4NF schema, 527–528
functional dependencies, 505–509, 

527–528
inference rules, 505–509, 527–528
inferencing information using, 22
interpretation of, 1005–1007
models for, 1005–1006
model-theoretic interpretation of, 1005
proof-theoretic interpretation of, 1005
stored procedure for, 22
theorem proving, 1005
triggers as, 22

Runtime, MapReduce (MR), 927–930
Runtime database processor, 44, 655
Safe expressions, 276–277
Sampling algorithm, 1076–1077
Scalability

DDBs, 845
NOSQL, 885

Scale-invariant feature transform 
(SIFT), 998

Scanner, query processing, 655
Schedules (histories)

cascading rollback phenomenon, 762
committed projection of, 760
complete schedule conditions, 760
concurrency control and 

serializability, 770–771
conflict equivalence of, 765–766
conflicting operations in, 759–760
debt–credit transactions, 773
nonserial schedules, 763, 764–765
operation semantics for, 773
recoverability basis of, 761–762

recoverable/nonrecoverable schedule, 
761

result equivalence of, 765
serial schedules, 763–764
serializability basis of, 763–766
serializable schedules, 763, 765–766
strict schedule, 762
testing for serializability, 767–770
transaction processing, 759–773
transactions for, 759–760
view equivalence, 771–772
view serializability, 771–772

Schema-based (explicit) constraints, 157
Schema change statements

ALTER command, 233–234
DROP command, 233
schema evolution command use, 

232–233
Schema diagram, 34–35
Schema matching, 1052
Schemaless documents, XML, 432–433
Schemas

authorization identifier, 179
bottom-up conceptual synthesis, 119
catalog collection of, 35, 38, 180
conceptual level, 37, 61–62
constraints and, 157–165
constructs, 35
data independence and, 37–38
database descriptions, 34
database state (snapshot) and, 35
database requirements, 122–124
descriptors, 179
design creation (conceptual) of, 61–62
EER modeling and, 119–120, 122–124
EER schema to ODB schema, 407–408
ER diagram notation for, 81, 83–85
ER modeling and, 61–62
evolution, 35
external level (views), 37
intention, 35
interface inheritance, ODL, 404–405
internal level, 36
mappings, 37, 407–408
meta-data storage of, 35
naming constructs, 82
ODB conceptual design and, 407–408
ODL, 400–403
refinement using generalization and 

specialization, 119–120
relation, 157–160, 163–165
relational database, 160–163
SQL concepts, 179–180
three-schema architecture, 36–38
top-down conceptual refinement, 119
XML language, 434, 436–441

Script functions, HTML, 428
Search, B-trees, 625–626
Search engines

desktop, 1025
Lucern, 1043–1044
Web search, 1047
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Search relevance, IR, 1044–1047
Search techniques

conjunctive selection, 665–666
disjunctive selection, 666–667
keyword-based, 41
query processing, 663–667
SELECT operation algorithms, 

663–667
simple selection, 663–665
Web database applications, 4

Search trees, dynamic multilevel indexes, 
618–619

Second normal form (2NF)
definition of, 481
full functional dependency and, 

481–482
general definition of, 484–486
normalizing relations, 482, 484–486
primary key and, 483–484

Secondary access path, indexing, 601
Secondary indexes, 603, 609–612
Secondary storage

capacity of, 534
devices for, 547–556
random access devices, 554
sequential access devices, 554–555
solid-state drive (SSD), 542

Security, see Data security; Database 
security

Security and authorization subsystems, 19
Seek time, disk devices, 552
SELECT clause statement

ALL option with, 194–195
AS option with, 196
DISTINCT option with, 188, 194
mandatory use of, 197
multiset tables and, 194–195
SQL query retrieval and, 187–188, 

194–197
SELECT operation

Boolean expressions (clauses), 
241–242

cascade (sequence) with, 243
conjunctive selection, 665–666
cost functions for, 714
degree of relations, 243
disjunctive selection, 666–667
estimating selectivity of conditions, 

667–668
implementation options for, 663
query processing algorithms, 663–668
relational algebra using, 241–243
search methods for, 663–667
selectivity of a condition, 243, 667–668
simple selection, 663–665

SELECT operator (σ), 241
Select…from…where structure, OQL, 

409
Select-from-where block, SQL, 188–191
Select-project-join query, 189–190, 273
Selection conditions

domain variables, 278

file operations, 564–565
parallel algorithms, 685
WHERE clause queries, 189

Selective inheritance, 377
Selectivity

join operations, 254, 719–720
of a condition, 243, 667–668

Self-describing data, 10, 427
Self-describing data models, 34
Self-describing documents, 425. See also 

JSON; XML (EXtended Markup 
Language)

Semantic approach, IR, 1028
Semantic data models

abstraction concepts, 129–133
EER modeling, 107–108
ontology for, 132–134

Semantic equivalence, query trees, 
694–695

Semantic heterogeneity, 857–858
Semantic model, IR, 1034–1035
Semantic query optimization, 737–738
Semantic tagging, images, 998–999
Semantics

attribute clarity, 461–465
data constraints, 21
functional dependency of, 472–473
relation schema, 461–465
RDB design, 461–465, 472–473
schedule operations, 773

Semi-join (SJ) operator, 658–660, 681, 
719–720, 862–863

Semistructured data, XML, 426–428
Separator characters, records, 561
Sequence of interaction, database 

programming and, 313–314
Sequence of operations, relational 

algebra, 245–246
Sequential access storage devices, 

554–555
Sequential pattern discovery, data 

mining, 1091
Serial ATA (SATA), 551
Serial schedules, 763–764
Serializability

basis of schedules, 763–766
concurrency control and, 770–771
testing for, 767–770

Serializable schedules, 763, 765–766
Server, defined, 48
Servers

application, 44
database, 44
DBMS module, 31

SET clause, SQL, 201
SET CONNECTION command, SQL, 

316
Set constructor, 369
SET DIFFERENCE operation, 247–249
Set operations

anti-join (AJ) operator for set 
difference, 677–678

parallel algorithms, 686
query processing, algorithms for, 

676–678
SQL, 194–195

Set theory
CARTESIAN PRODUCT operation, 

249–251
INTERSECTION operation, 247–249
MINUS operation, 247–249
OUTER UNION operation, 264–265
relational algebra operations from, 

246–251, 264–265
SET DIFFERENCE operation, 

247–249
type compatibility, 247
UNION operation, 246–249

Set type, legacy data modeling with, 53
Set-at-a-time, file operations, 566
Set-at-time DML, 40
Sets

explicit set of values, 214
multiset comparisons, SQL query 

retrieval, 209–211
parentheses for, 214
SQL table relations, 188, 193–195

Shadow directory, 826
Shadow paging, database recovery, 

826–827
Shadowing, 816
Sharding

DDBs, 847–848
NOSQL, 886, 894–895

Shared-disk architecture, 683
Shared/exclusive (read/write) locks, 

784–786
Shared-memory architecture, 683
Shared-nothing architecture, 684
Shared subclasses, 118, 301
Shared variables in embedded SQL, 314
Signature of operations, 366, 397. See also 

Interfaces
Simple (atomic) attributes, 65–66
Simple elements, XML, 431
Simple Object Access Protocol (SOAP), 

447
Simple selection, search methods for, 

663–665
Single character replacement symbol (_), 

195–196
Single inheritance, 118–119
Single-level ordered indexes

clustering indexes, 602, 606–608
concept of, 602–603
physical database design and, 602–613
primary indexes, 602, 603–606
secondary indexes, 603, 609–612

Single-relation options, EER-to-
relational mapping, 299–300

Single-sided disks, 547
Single time point, 976
Single-user DBMS systems, 51
Single-valued attribute, ER modeling, 66
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Small computer system interface (SCSI), 
551

Snapshot isolation
concurrency control and, 758, 781, 

799–800
defined, 775
SQL transaction support and, 775–776

Snapshot (database) state, 35
Snowflake schema, 1108–1109
Social search, IR, 1058–1059
Software engineers, 16
Solid-state device (SSD) storage, 553–555
Solid-state drive (SSD), secondary 

storage of, 542
Sophisticated end users, 16
Sorting phase, external algorithms, 661
Sort-merge join, 559, 719, 930
Spanned versus unspanned records, 

563–564
Spatial analysis operations, 988
Spatial colocation rules, 993–994
Spatial databases

analytical operations, 988
applications of spatial data, 994
data mining, 993–994
data types, 989–990
enhanced data models, 962, 987–994
indexing, 991–993
models of information, 990
object storage by, 987–988
operators, 990–991
queries, 991

Specialization
attribute-defined, 114
conceptual schema refinement, 119–120
constraints on, 113–116
defined, 110
design choices for, 124–128
disjointness (d notation), 114–115
EER diagram notation for, 109, 110
EER modeling concept, 108, 110–120, 

124–128
EER-to-relational mapping options, 

298–301
hierarchies, 116–119
instances of, 111–112
lattices, 116–119
partial, 115
semantic modeling process, 131
total, 115
UML notation for, 127–128

Specialized servers, client/server 
architecture, 47

Specification, ontology and, 134
Speech input and output, 41
Spurious tuple generation, RDB design 

and, 468–471
SQL (Structured Query Language) 

system
active database techniques, 202
arithmetic operators, 196–197

assertions, 158, 156, 165, 225–226
attribute data types in, 182–184
catalog concepts, 179–180
CHECK clause, 187
comparison operators, 188–191, 195–197
complex queries, 207–225
constraints, 165, 184–187, 225–227
core specifications, 178
CREATE ASSERTION statement, 

225–226
CREATE TABLE command, 180–182
CREATE TRIGGER statement, 225, 

226–227
data definition, 179
DBMS use of, 177–178
DELETE command, 200
domains, 184
encapsulation of operations, 384–385
extensions, 178
function overloading, 385
granting and revoking privileges, 202
history of, 178
index creation, 201–202
inheritance, type specification of, 385
INSERT command, 198–200
logical comparison operators, 188–190
NOSQL database system and, 26
object identifiers, 383
object-relational systems, 202
ODB extensions to, 379–386
operators, query translation into, 

657–660
practical relational model, 177–206
query processing, translation for, 

657–660
query retrieval, 187–198, 207–225
reference types, 383
relational algebra, query translation 

into, 657–660
relational data models and, 51, 165
schema change statements, 232–234
schema concepts, 179–180
syntax of, 235
table creation, 383–384
transaction support, 773–776
triggers, 158, 165, 226–227
UPDATE command, 200–201
user-defined types (UDTs), 380–384
views (virtual tables), 228–232
XML data creation functions  

(XML/SQL), 453–455
SQL injection

bind variables, 1145–1146
code injection, 1144
database security, 1143–1146
filtering input, 1146
function call injection, 1144–1145
function security for, 1146
manipulation, 1143–1144
protection against attacks, 1145–1146
risks associated with, 1145

SQL plan management, Oracle, 736–737
SQL programming

comparison of approaches, 338–339
database programming language 

approaches, 309–314, 339
database stored procedures, 335–338
dynamic SQL, 320–321
embedded SQL, 311, 314–320, 338–339
JDBC: SQL class library, 331–335
library of functions or classes for, 

311–312, 326–335, 339
query specification and, 320–321
SQL/CLI (SQI call level interface), 

326–331
SQLJ: Java commands, 321–325

SQL server, two-tier client/server 
architecture, 49

SQL/CLI (SQI call level interface)
connection record, 327–328
database programming with, 326–331
description record, 327–328
environment record, 327–328
handles for records, 328
statement record, 327–328
steps for programming, 328–331

SQL/PSM (SQL/persistent stored 
modules), 337–338

SQLCODE variable, 316
SQLJ

embedding SQL commands in Java, 
321–325

exceptions for error handling, 322–323
iterators for, 323–325
query result processing, 323–325

SQLSTATE variable, 316
Standalone users, 16
Standards, enforcement of, 22
Star schema, 1108
STARBURST, statement-level rules in, 

970–972
Star-transformation optimization, 

731–733
Starvation, 792
State constraints, 165
State of an object or literal, 387
Statement object JDBC, 335
Statement parameter

binding, 329, 333
JDBC, 333
SQL/CLI, 329

Statement record, SQL/CLI, 327–329
Statement string, SQL/CLI, 329
Statement-level rules, STARBURST, 

970–972
Statement-level trigger, 967
Static files, 566
Static hashing, 577
Statistical approach, IR, 1028
Statistical database security, 1146–1147
Steal/no-steal rules, 817–818
Stemming, IR text processing, 1038
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Stopword removal, IR text processing, 
1037–1038

Storage
architectures for, 588–592
automated storage tiering (AST), 591
big data, 3
buffering blocks, 541, 556–560
capacity, 543
cloud, 3
column-based, indexing for, 642
database catalog for, 10–11
database organization of, 545–546
database reorganization, 45
devices for, 543–545, 547–556
Fibre Channel over Ethernet (FCoE), 

590–591
Fibre Channel over IP (FCIP), 590
file records, 560–564, 567–572, 

582–583
files, 10–11, 560–572, 582–583
hashing techniques, 572–582
Internet SCSI (iSCSI), 590
memory hierarchies, 543–545
meta-data, 6, 10
network-attached storage (NAS), 

589–590
object-based, 591–592
objects, 987–988
persistent, 19–20, 545
primary, 542, 543
program objects, 19–20
RAID technology, 542, 584–588
secondary, 542, 543, 547–556
spatial databases for, 987–988
storage area networks (SANs), 588–589
tertiary, 542, 543
XML documents, 442–443

Storage area networks (SANs), 588–589
Storage definition language (SDL), 39
Storage devices

databases, organization and, 545–546
disks, 547–553
flash memory, 543–544
magnetic tape, 544–545, 555–556
memory, 543–545, 547–556
optical drives, 544
secondary, 547–556
solid-state device (SSD), 553–555

Stored attribute, 66
Stored data manager, 42, 44
Stored procedures

CALL statement, 337
database programming and, 335–338
parameter type and mode, 336–337
persistent storage modules, 336
rule enforcement using, 22
SQL/PSM (SQL/persistent stored 

modules), 337–338
Stream-based processing, 682. See also 

Pipelining
Strict schedule, 762

Strings. See also Text strings
character data types, 182–183
double quotations (“ ”) for, 196, 347
indexing, 640
prefix compression, 640
single quotations (‘ ’) for, 182, 196, 347
SQL use of, 182–183, 195–197
substring pattern matching, 195–197

Strong entity types, 79
Struct (tuple) constructor, 368, 369
Structural constraints, 78
Structured data, XML, 426
Structured data extraction, WEB, 1052
Structured objects and literals, 388, 396
Structured Query Language, see SQL 

(Structured Query Language)
Subclasses

class relationships, 108–110
defined, 126
defining predicate of, 113–114
EER diagram notation for, 109
EER modeling concept, 108–110, 126
EER-to-relational mapping, 301
entity type as, 110
inheritance, 110, 117–119, 301
IS-A relationship, 109, 126
leaf class (UML node), 127
local attributes of, 110–111
overlapping entities, 115
predicate-defined, 113–114
shared, 118, 301
specialization of set of, 110–112
specific relationship types, 110–111
union type, 108, 120–122
user-defined, 114

Subqueries
nested, 702–704
query optimization and, 702–706
unnesting (decorrelation), 704
view merging transformation, 704–706

Substring pattern matching, SQL, 
195–197

Subtrees, 617
Subtypes, 375–376
SUM function

grouping, 260
SQL, 217

Superclasses
base class (UML root), 127
categories of, 120–122
class relationships, 109
EER modeling concept, 109, 110, 126
entity type as, 110
inheritance, 110, 117–118
subclass relationships, 110, 117–118

Superkey, 158–159, 476–477
Supertypes, 375–376
Surrogate key, 302
Symmetric key algorithms, 1150–1151
Synthesis, RDB design by, 503, 504
System analysts, 16

System designers and implementers, 17
System log

database recovery, 814, 817, 818–819
modifications for database security, 

1125
transaction processing, 755–756

Table inheritance, SQL, 385
Table of values, 150–151
Table-based constraints, SQL, 184–187
Tables

ALTER TABLE command, 180
base relations, 180, 182
CREATE TABLE command, 180–182
data definition statements, 180–182
database recovery, 828–831
inner join, 215–216
joined relations, 215–216
multiset operations, 193–195
multiway join, 216
NATURAL JOIN operation, 215
OUTER JOIN operations, 216
query retrieval and, 193–195
query retrieval and, 193–195, 215–216
sets of relations in, 188, 193–195
transaction, 828–831
trigger activation from, 22
UDT creation of for SQL, 383–384
views (virtual tables), 228–232
virtual relations, 82

Tags
attributes, 430
document body specification, 429
document header specifications, 428
end/start tag (</…>), 428
HTML tag (<…>), 428
mark up of documents using, 428–429
notation and use, HTML, 428–430
semantic tagging of images, 998–999
XML unstructured data and, 428–430

Tape jukeboxes, 544
Taxonomy, ontology as, 134
Temporal databases

applications of, 974
calendar, 975
enhanced data models, 962, 974–987
implementation considerations, 982
incorporating time, 977–984
object-oriented databases for, 982–984
relational databases for, 977–982
time representation, 975–977
versioning, 977–984

Temporal querying constructs, 984–986
Temporary update problem, transaction 

processing, 750
Ternary relationships

binary relationships compared to, 
88–89

degree of, 73–74
ER diagrams, 88–92
notation for diagrams, 88–89

Tertiary storage, 542, 543
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Testing for serializability, 767–770
Text/document source, multimedia 

databases, 996
Text preprocessing

information extraction (IE), 1040
information retrieval (IR), 1037–1040
stemming, 1038
stopword removal, 1037–1038
thesaurus use, 1038–1039

Text strings
double-quoted, 347–348
interpolating variables within, 347
length of, 346
PHP programming, 346, 347–348
single-quoted, 347–348

Thematic search, 989
Theorem proving, 1005
Thesaurus

IR text processing, 1038–1039
ontology as, 134

THETA JOIN condition, 252
Third normal form (3NF)

algorithm for RDB schema design, 
519–522

definition of, 483
dependency preservation and, 519–522
general definition of, 486–487
nonadditive (lossless) join 

decomposition and, 519–522
normalizing relations, 485, 486–487
primary key and, 483–484
transitive dependency and, 483

Thomas’s write rule, 795
Three-schema architecture, 36–38
Three-tier/client-server architecture

discrete databases (DDBs), 872–875
Web applications, 49–51

Three-valued logic for SQL NULL 
comparisons, 208–209

Thrown exceptions, SQLJ, 322–323
TIME data type, 183
Time period, 976
Time reduction, development of, 22–23
Time representation, temporal databases, 

975–977
Time series data, 986–987
Time series management systems, 987
Timeouts, deadlock prevention, 792
TIMESTAMP data type, 183–184
Timestamp ordering (TO)

algorithm, 793
basic, 794
concurrency control based on, 

792–795
multiversion technique based on, 796
strict, 794–795
Thomas’s write rule for, 795

Timestamps
concurrency control and, 781, 

790–791, 793
deadlock prevention using, 790–791, 793

generation of, 793
transaction timestamps, 790–791

Tool developers, 17
Tools, DBMS, 45–46
Top-down conceptual refinement, 119
Top-down method, RDB design, 460
Top-k results, query optimization, 730
Topological relationships, 989
Total categories, 122
Total specialization, 115, 126
Transaction management, DDBs, 857–859
Transaction processing

commit point, 756
concurrency control, 749–752
concurrency of, 746–747
data buffers, 748–749
database items, 748
DBMS-specific buffer replacement 

policies, 756–757
read/write transactions, 748
recovery for, 752–753
schedules (histories), 759–773
single-user versus multiuser systems, 

746–747
SQL transaction support, 773–776
system log, 755–756
systems, 745
transaction failures, 752–753
transaction states, 753–754
transactions for, 747–749, 757–758

Transaction rollback, database recovery, 
819

Transaction server, two-tier client/server 
architecture, 49

Transaction tables, database recovery, 
828–831

Transaction time dimensions, 976–977
Transaction time relations, 979–980
Transaction timestamps, deadlock 

prevention, 790–791
Transaction-id, 755
Transactions

atomicity property, 14, 757
certification of, 781
concurrency control and, 781, 

798–799, 807
consistency preservation, 757
database recovery, 821
debt–credit, 773
defined, 6, 169
desirable properties of, 757–758
durability (permanency) property, 758
interactive, 807
isolation property, 14, 758
multiuser processing, 13–14
not affecting database, 821
OTLP systems, 14, 52, 169
relational data modeling, 169
user-defined functional requirements, 

61
validation (optimistic) of, 781, 798–799

Transient data, storage of, 545
Transient objects, 365, 373
Transition constraints, 165
Transitive dependency, 3NF, 483
Transparency, DDBs, 843–844
Tree search data structures, see B-trees; 

B+-trees
Tree-structured data models

attributes, 433
breaking graph cycles for conversion 

to, 452–453
data-centric documents, 431
data mining, 1077–1080, 1085–1086
decision trees, 1085–1086
document-centric documents, 431
document extraction using, 447–453
elements, 430–431
frequent-pattern (FP) tree, 1077–1080
graph conversion into, 452–453
hierarchies for, 116, 452–453
hybrid documents, 431
schemaless documents, 432–433
XML, 51, 430–433, 447–453

Triggers
active databases, 963–967, 973–974
database tables and, 22
CREATE TRIGGER statement, 225, 

226–227
database monitoring, 226–227
event-condition-action (ECA) 

components, 227, 963–964
Oracle notation for, 965–967
SQL, 158, 165, 226–227
SQL-99 standards for, 973–974

Trivial/nontrivial MVD, 493
Truth value of atoms, 270, 277
TSQL2 language, 984–986
Tuning indexes, 640–641
Tuple relational calculus

expressions, 270–271, 276–277
formulas (conditions), 270–271
nonprocedural language of, 268
quantifiers, 271, 274–276
queries using, 272–276
query graphs, 273–274
range relations, 269–270
requested attributes, 269
safe expressions, 276–277
selected combinations for, 269
variables, 269–270

Tuple variables
alias of attributes, 192
bound, 271
free, 271
iterators, 189
range relations and, 269–270

Tuples
alternative definition of a relation and, 

154–155
anomalies and, 465–467
asterisk (*) for rows in query results, 218
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atomic value of, 155
attribute ambiguity and, 191–192
CHECK clause for, 187
CROSS PRODUCT operation for 

combinations, 192–193
dangling tuple problems, 523–524
delete operation for, 166, 167–168
embedded SQL retrieval of, 311, 

314–317
grouping and, 219
mapping relations with, 154
matching, 264–265
multisets of, 193–195
nested query values, 209–211
n-tuple for relations, 152
NULL value of, 155–156, 163, 467–468
ordering of, 154–155
OUTER UNION operation and, 

264–265
parentheses for comparisons, 210
partially compatible relations, 264
partitioning relations into, 219
precompiler or preprocessor for 

retrieval of, 311, 314
query retrieval and, 191–195, 209–211
RDB design problems, 523–524
redundant information in, 465–467
referential integrity of, 163
relation schema for RDB design, 

465–471
relation state values, 152–156
row-based constraints, 187
separate groups for NULL grouping 

attributes, 219
set of, 154–155
spurious tuple generation, 468–471
SQL tables and, 187, 191–195
type (union) compatibility, 247
update (modify) operation for, 166, 

168–169
versioning, 977–982

Two-phase locking (2PL)
basic 2PL, 788
concurrency control, 782–792, 796–797
conservative 2RL, 788
deadlock, 789–792
expanding (first) phase, 786
locks for, 782–786
multiversion concurrency control and, 

796–797
protocol, 786–788
rigorous 2PL, 789
shrinking (second) phase, 786
starvation, 792
strict 2PL, 788–789
subsystem for, 789

Two-tier client/server architecture, 49
Two-way join, 668
Type (class) hierarchies

constraints on extents corresponding 
to, 376–377

functions in, 374–375
inheritance, 385
ODBs, 366, 374–377
subtype/supertype relationships, 

375–376
visible/hidden attributes, 371, 375

Type (union) compatibility, 247
Type constructors

array, 369
atom, 368, 369
bag, 369
collection (multivalued), 369
dictionary, 369
list, 369
object definition language (ODL) 

and, 369
object operation, 371
ODB objects and literals, 368–370
references to object type relationships, 

369–370
set, 369
SQL, 379
struct (tuple), 368, 369
type structures and, 368–370

Type generators
ODB objects and literals, 368–369
ODMG models, 394–395

Type inheritance, 385
Type structures, 368–370. See also Type 

constructors
UDTs (User-defined types)

arrays, 383
built-in functions for, 384
CARDINALITY function, 383
CREATE TYPE command, 380–383
dot notation for, 383
encapsulation of operations, 384–385
inheritance specification (NOT 

FINAL), 385
SQL, 380–385
table creation based on, 383–384

UML (Unified Modeling Language)
aggregation, 87–88
associations, 87–88
base class, 127
bidirectional associations, 87
class diagrams, 85–88, 127–128
EER models and, 127–128
ER models and, 60, 85–88
leaf class, 127
links, 87
qualified association, 88
reflexive association, 87
unidirectional association, 87

Unary operations
assignment operations (←) for, 245
Boolean expressions (clauses), 

241–242
cascade (sequence) with, 243
defined, 243
degree of relations, 243, 244

duplicate elimination and, 244–245
PROJECT operation, 243–245
relational algebra and, 240, 241–246
renaming attributes, 245–246
SELECT operation, 241–243
selectivity of condition, 243
sequence of operations for, 245–246

Unauthorized access restriction, 19
UNDO/REDO algorithm, 815, 818
Unidirectional association, UML class 

diagrams, 87
Unified Modeling Language, see UML 

(Unified Modeling Language)
UNION operations

matching tuples, 264–265
OUTER UNION operation, 264–265
partially compatible relations, 264
relational algebra, 264–265
SQL sets, 194–195

Union types
categories of, 120–122, 302–303
EER diagram notation for, 120
EER modeling concept, 108, 120–122
EER-to-relational mapping, 302–303
set union operation (∪), 120
surrogate key for, 302

UNIQUE function, SQL query retrieval, 
212–214

Unique keys, 160
Uniqueness constraints

ER model entity types, 68–68
key attributes as, 68–69
key constraints with, 158–160
relation schema and, 158–160

Universal quantifiers, 271, 274–276
Universal relation assumption, 513
Universal schema relations, 471–474, 

504, 513
Universe of Discourse (UoD), 5
Unnest relation, 1NF, 479–480
Unordered file records (heaps), 567–568
Unrepeatable read problem, transaction 

processing, 752
Unstructured data, XML, 428–430
Unstructured information, 1022
Unstructured/semistructured data 

handling, Big data technology and, 
945

Update (modify) operations
relational data models, 166, 168–169
files, 564–565
relational data models, 166, 168–169
selection conditions for, 564–565
tuple modification using, 166, 168–169

Update anomalies, RDB design and, 
465–467

UPDATE command, SQL, 200–201
Update decomposition, DDBMS, 

863–865
Update strategies for SQL views, 230–232
Upgrading locks, 786
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User views, 37
User-defined subclass, 114, 126
User-defined types, see UDTs  

(User-defined types)
Utilities, DBMS functions, 45
Valid documents, XML, 434
Valid state, databases, 35, 160–161
Valid time, temporal databases, 976
Valid time relations, temporal databases, 

977–979
Validation (optimistic) concurrency 

control, 781, 798–799
Value (state) of an object or literal, 387
Value sets (domains) of attributes, 69–70
Variable-length records, 561–563
Variables

built-in, 352–353
communication, 316
domain, 277
embedded SQL, 314–316
iterator, OQL, 409–410
interpolating within text strings, 347
names for, 346, 347
PHP, 345–347, 352–353
predefined, 345–346
program, 314–315
shared, 314
tuple, 189, 192, 169–170

Vector space model, IR, 1031–1033
Versioning

attribute approach, 982–984
NOSQL, 887, 899, 900–902
object-oriented databases 

incorporating time, 982–984
relational databases incorporating 

time, 977–982
tuple approach, 977–982

Vertical fragmentation, DDBs, 844, 
848–849

Video source, multimedia databases, 996
View definition language, 39
View merging transformation, 

subqueries, 704–706
Views

database designer development of, 15
equivalence, schedules, 771–772
serializability, schedules, 771–772
support of multiple data, 13

Views (virtual tables)
authorization using, 232
base tables compared to, 228
CREATE VIEW statement, 228–229
data warehouses compared to, 1115
defining tables of, 228
hierarchical, 447–452
in-line, 232
DROP VIEW command, 229
materialization, 230

query modification for, 229–230
query retrieval using, 230–231
SQL virtual tables, 228–232
update strategies for, 230–232
virtual data in, 13
WITH CHECK option for, 232
XML document extraction and, 

447–452
Virtual data, 13
Virtual private database (VPD) 

technology, 1156
Virtual relations (tables), 82
Virtual storage access method (VSAM), 

541
Virtual tables, 228–232. See also Views 

(virtual tables)
Visible attributes, objects, 371, 375
Volatile/nonvolatile storage, 545
Voldemort key-value data store, 897–899
Weak entity types, 79, 292–293
Web analytics, 1057
Web-based user interfaces, 40
Web crawlers, 1057
Web database programming

HTML and, 343–346
Java technologies for, 358
PHP for, 343–359

Web database systems
access control policies, 1141–1142
data interchanging using XML, 25
HTML and, 25
menu-based interfaces, 40
n-tier architecture for, 49–51
security, 1141–1142
three-tier architecture for, 49–51

Web information integration, 1052
Web pages

hypertext documents for, 425
segmentation and noise reduction, 

1053
XML and formatting of, 425–426

Web search
defined, 1028
digital libraries for, 1047–1048
HITS ranking algorithm, 1051
link structure analysis, 1050–1051
PageRank ranking algorithm, 1051
search engines for, 1047
Web analysis and, 1048–1049
Web context analysis, 1051–1054
Web structure analysis, 1049–1050
Web usage analysis, 1054–1057

Web servers
client/server architecture, 47
three-tier architecture, 50

Web Services Description Language 
(WSDL), 447

Web spamming, 1057

Well-formed documents, XML, 433–424
WHERE clause

asterisk (*) for all attributes, 193
explicit set of values in, 214–215
grouping and, 221–222
SQL query retrieval and, 188–189, 

192–193, 197, 214–215
selection (Boolean) condition of, 189
unspecified, 192–193
XQuery, 446

WHERE CURRENT OF clause, SQL, 318
Wide area network, 842
Wildcard (*) queries, 1036–1037
WITH CHECK option, SQL views, 232
WITH clause, SQL, 222–223
Wrapper, 1025
Write-ahead logging (WAL), database 

recovery, 816–818
XML (EXtended Markup Language)

access control, 1140–1141
data models, 34, 51, 53
database extraction of documents, 

442–443, 447–453
document type definition (DTD), 

434–436
documents, 433–436, 442–443, 

447–453
hierarchical (tree) data models, 51, 

430–433, 447–453
hypertext documents and, 425
OpenPGP (Pretty Good Privacy) 

protocol, 1140–1141
protocols for, 446–447
query languages, 443–447
relational data model for document 

extraction, 447–449
schema language, 434, 436–441
semistructured data, 426–428
SQL functions for creation of data, 

453–455
structured data, 426
tag notation and use, HTML, 428–430
unstructured data, 428–430
Web data interchanging using, 25
Web page formatting by, 425–426
XPath for path expressions, 443–445
XQuery, 445–446

XPath, XML path expressions, 443–445
XQuery, XML query specifications, 

445–446

YARN (Hadoop v2)
architecture, 940–942
Big data technology for, 936–944, 

949–953
frameworks on, 943–944
rational behind development of, 

937–939
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