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Preface

This	book	 is	 about	 learning	 to	program	 in	Lisp.	Although	widely	known	as
the	principal	language	of	artificial	intelligence	research—one	of	the	most	ad‐
vanced	areas	of	computer	 science—Lisp	 is	an	excellent	 language	 for	begin‐
ners.	 It	 is	 increasingly	 the	 language	 of	 choice	 in	 introductory	 programming
courses	due	 to	 its	 friendly,	 interactive	environment,	 rich	data	structures,	and
powerful	software	tools	that	even	a	novice	can	master	in	short	order.

When	I	wrote	the	book	I	had	three	types	of	reader	in	mind.	I	would	like	to
address	each	in	turn.

•	Students	 taking	their	first	programming	course.	The	student	could	be
from	 any	 discipline,	 from	 computer	 science	 to	 the	 humanities.	 For
you,	let	me	stress	the	word	gentle	in	the	title.	I	assume	no	prior	mathe‐
matical	 background	beyond	 arithmetic.	Even	 if	 you	 don’t	 like	math,
you	may	find	you	enjoy	computer	programming.	I’ve	avoided	techni‐
cal	jargon,	and	there	are	lots	of	examples.	Also	you	will	find	plenty	of
exercises	interspersed	with	the	text,	and	the	answers	to	all	of	them	are
included	in	Appendix	C.

•	Psychologists,	 linguists,	 computer	 scientists,	 and	other	persons	 inter‐
ested	in	Artificial	Intelligence.	As	you	begin	your	inquiry	into	AI,	you
will	 see	 that	 almost	 all	 research	 in	 this	 field	 is	 carried	 out	 in	 Lisp.
Most	Lisp	 texts	are	written	exclusively	 for	computer	science	majors,
but	I	have	gone	to	great	effort	to	make	this	book	accessible	to	every‐
one.	It	can	be	your	doorway	to	the	technical	literature	of	AI,	as	well	as
a	quick	introduction	to	its	central	tool.

•	Computer	hobbyists.	Prior	 to	about	1984,	 the	Lisps	available	on	per‐
sonal	computers	weren’t	very	good	due	to	the	small	memories	of	the
early	machines.	Today’s	personal	computers	often	come	with	several
megabytes	of	RAM	and	a	hard	disk	as	standard	equipment.	They	run
full	 implementations	 of	 the	Common	Lisp	 standard,	 and	provide	 the
same	 high-quality	 tools	 as	 the	 Lisps	 in	 university	 and	 industrial	 re‐
search	 labs.	 The	 “Lisp	 Toolkit”	 sections	 of	 this	 book	will	 introduce
you	to	the	advanced	features	of	the	Common	Lisp	programming	envi‐
ronment	that	have	made	the	language	such	a	productive	tool	for	rapid
prototyping	and	AI	programming.

6



This	 current	 volume	 of	 the	 “gentle	 introduction”	 uses	 Common	 Lisp
throughout.	Lisp	has	been	changing	continuously	since	its	invention	30	years
ago.	In	the	past,	not	only	were	the	Lisp	dialects	on	different	machines	incom‐
patible,	but	programs	written	in	one	dialect	would	often	no	longer	run	in	that
same	 dialect	 a	 few	 years	 later,	 because	 the	 language	 had	 evolved	 out	 from
under	them.	Rapid,	unconstrained	evolution	was	beneficial	in	the	early	days,
but	demand	for	a	standard	eventually	grew,	so	Common	Lisp	was	created.	At
present,	Common	Lisp	 is	 the	de	 facto	 standard	supported	by	all	major	com‐
puter	 manufacturers.	 It	 is	 currently	 undergoing	 refinement	 into	 an	 official
standard.	But	Lisp	will	continue	to	evolve	nonetheless,	and	the	standard	will
be	updated	periodically	to	reflect	new	contributions	people	have	made	to	the
language.	Perhaps	one	of	those	contributors	will	be	you.

DAVID	S.	TOURETZKY
PITTSBURGH,	PENNSYLVANIA	1989

DOVER	EDITION	ADDENDUM
This	2013	edition	from	Dover	Publications	 includes	roughly	 two	dozen	cor‐
rections	to	the	original	manuscript,	and	a	few	additions	to	the	Further	Read‐
ings	section.	With	the	arrival	of	ANSI	Common	Lisp	as	the	official	standard,
and	 the	 availability	of	 several	 good	open	 source	 implementations,	Lisp	will
remain	an	important	language	for	years	to	come.
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Note	to	Instructors

Much	has	been	 learned	 in	 the	 last	 few	years	about	how	to	 teach	Lisp	effec‐
tively	to	beginners:	where	they	stumble	and	what	we	can	do	about	it.	In	addi‐
tion,	the	switch	to	Common	Lisp	has	necessitated	changes	in	the	way	certain
topics	are	taught,	especially	variables,	scoping,	and	assignment.	This	version
of	 the	“gentle	 introduction”	has	been	completely	 revised	 for	Common	Lisp,
and	includes	several	new	teaching	tools	that	I	believe	you	will	find	invaluable
in	 the	 classroom.	 Let	 me	 share	 with	 you	 some	 of	 the	 thinking	 behind	 this
book’s	novel	approach	to	Lisp.

GRAPHICAL	NOTATION
The	first	two	chapters	use	a	graphical	box-and-arrow	notation	for	describing
primitive	functions	and	function	composition.	This	notation	allows	students	to
get	comfortable	with	the	basic	idea	of	computation	and	the	three	fundamental
data	structures—numbers,	symbols,	and	lists—before	grappling	with	side	is‐
sues	such	as	the	syntax	of	a	function	call	or	when	to	use	quotes.	Although	so‐
phisticated	Lispers	profit	 from	 the	 realization	 that	 programs	are	data,	 to	 the
beginner	 this	 is	 a	 major	 source	 of	 confusion.	 The	 box-and-arrow	 notation
makes	programs	and	data	visually	distinct,	and	thereby	eliminates	most	syn‐
tax	errors.	Another	advantage	of	this	notation	is	its	lack	of	explicit	variables;
the	 inputs	 to	 a	 function	 are	 simply	 arrows	 that	 enter	 the	 function	definition
from	outside.	Since	there	is	no	computer	implementation	of	function	box	no‐
tation,	the	first	two	chapters	are	designed	to	be	covered	rapidly	using	just	pen‐
cil	and	paper.	This	also	shelters	the	student	temporarily	from	another	source
of	frustration—learning	the	mechanics	of	using	an	actual	machine,	editing	ex‐
pressions,	and	coping	with	the	debugger.

Readers	 who	 are	 familiar	 with	 other	 programming	 languages	 can	 flip
through	Chapter	1	 in	a	minute	or	so,	read	the	summary	at	 the	end,	and	then
skim	Chapter	2	to	pick	up	the	basic	list	manipulation	primitives.

In	Chapter	3	the	student	is	introduced	to	standard	EVAL	notation;	the	con‐
cepts	of	quoting	and	named	variables	follow	fairly	naturally.	Now	he	or	she	is
ready	to	discard	paper	and	pencil	for	a	real	computer	(and	is	probably	eager	to
do	so),	whereas	at	 the	 start	of	 the	course	 this	might	have	been	viewed	with
trepidation.
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OTHER	FEATURES
Three	other	unique	 features	of	 the	book	 first	 appear	 in	Chapter	3:	 evaltrace
notation,	Lisp	Toolkit	sections,	and	a	comprehensive	graphical	representation
for	Lisp	data	structures,	 including	function	objects	and	the	 internal	structure
of	symbols.

Evaltrace	notation	shows	step-by-step	how	Lisp	expressions	are	evaluated,
how	 functions	 are	 applied	 to	 arguments,	 and	 how	variables	 are	 created	 and
bound.	 The	 different	 roles	 of	 EVAL	 and	APPLY,	 the	 scoping	 of	 variables,
and	the	nesting	of	lexical	contours	can	all	be	explained	graphically	using	this
notation.	It	makes	the	process	of	evaluation	transparent	to	the	student	by	de‐
scribing	it	in	a	visual	language	which	he	or	she	can	remember	and	use.

The	 Lisp	 Toolkit	 sections	 introduce	 the	 various	 programming	 aids	 that
Common	Lisp	provides,	such	as	DESCRIBE,	INSPECT,	TRACE,	STEP,	and
the	debugger.	There	are	also	two	tools	unique	to	this	book;	their	source	code
appears	 in	Appendices	A	 and	B,	 and	 is	 available	 on	diskette	 from	 the	 pub‐
lisher.	The	first	tool,	SDRAW,	draws	cons	cell	diagrams.	It	is	part	of	a	read-
eval-draw	 loop	 that	 has	 proven	 invaluable	 for	 teaching	 beginners	 to	 reason
about	 cons	 cell	 structures,	 particularly	 the	 differences	 among	CONS,	LIST,
and	APPEND.	The	second	tool,	DTRACE,	is	a	tracing	package	that	generates
more	detailed	output	than	most	implementations	of	TRACE,	and	is	therefore
more	useful	for	teaching	beginners.

Finally,	 the	 graphical	 representation	 of	 Lisp	 data	 structures—particularly
the	 internal	 structure	of	 symbols	with	 their	name,	 function,	value,	plist,	 and
package	cells—helps	students	understand	the	true	nature	of	Lisp	interpreters
and	 highlights	 the	 distinctions	 between	 symbols,	 functions,	 variables,	 and
print	names.

ORGANIZATION	OF	LATER	CHAPTERS
Applicative	 operators	 are	 introduced	 in	 Chapter	 7,	 where	 the	 student	 also
learns	about	lexical	closures.	In	Chapter	8,	the	dragon	stories	that	were	a	pop‐
ular	 feature	 of	 the	 previous	 version	 have	 been	 retained,	 but	 they	 are	 now
backed	up	with	a	new	device—recursion	templates—that	helps	beginners	ana‐
lyze	 recursive	 functions	 to	 extract	 the	 essence	 of	 the	 recursive	 style.	 Since
some	instructors	prefer	to	teach	recursion	before	applicatives,	these	two	chap‐
ters	have	been	written	so	that	they	may	be	covered	in	either	order.

The	book	promotes	a	clean,	 side-effect-free	 style	of	programming	 for	 the
first	eight	chapters.	Chapter	9	discusses	i/o.	Chapter	10	provides	a	unified	pic‐
ture	of	assignment	that	includes	ordinary	variables,	generalized	variables,	and

9



destructive	sequence	operations.	Chapter	11	covers	iteration,	and	shows	how
DO	and	DO*	can	be	used	 to	construct	 substantial	 iterative	expressions	with
no	 explicit	 assignments.	 Chapter	 12	 introduces	 structures,	 and	 Chapter	 13
covers	arrays,	hash	tables,	and	property	lists.	The	final	chapter,	Chapter	14,	is
devoted	 to	macros	 and	 compilation.	 It	 also	 explains	 the	 difference	 between
lexical	 and	 dynamic	 scoping.	 Evaltrace	 diagrams	 clarify	 the	 semantics	 of
macros	and	special	variables.

EMPHASIS	ON	SIMPLICITY
Because	Common	Lisp	 is	 such	 a	 complex	 language,	 there	 are	 a	 few	places
where	I	have	chosen	to	simplify	things	to	better	meet	the	needs	of	beginners.
For	 example,	 the	 1+	 and	 1-	 functions	 are	 banished	 from	 this	 book	 because
their	names	are	very	confusing.	Also,	 the	book	 relies	 almost	 exclusively	on
EQUAL	 because	 this	 is	 the	 most	 useful	 equality	 predicate.	 EQ,	 EQL,
EQUALP,	and	=	are	mentioned	in	advanced	topics	sections,	but	not	used	very
much.	In	a	few	places	I	have	chosen	to	write	a	function	slightly	less	concisely
rather	 than	 introduce	 one	 of	 the	 more	 obscure	 primitives	 like	 PUSHNEW.
And	I	make	no	attempt	to	cover	the	most	advanced	features,	such	as	multiple
values	or	the	package	system.

Some	people	prefer	 to	 teach	Scheme	 in	 introductory	courses	because	 it	 is
so	much	smaller	 than	Common	Lisp.	But	one	can	easily	 teach	 the	subset	of
Common	Lisp	 that	 is	equivalent	 to	Scheme,	 so	 language	size	 isn’t	 really	an
issue	 for	 beginners.	 A	more	 compelling	 argument	 is	 that	 there	 is	 a	 certain
style	of	applicative	programming,	making	heavy	use	of	lexical	closures,	that
can	be	expressed	more	elegantly	 in	Scheme	syntax.	But	 there	are	also	areas
where	Common	Lisp	 is	superior	 to	Scheme,	such	as	 its	support	 for	user-de‐
fined	 macros,	 its	 elegant	 unification	 of	 lists	 and	 vectors	 into	 a	 sequence
datatype,	and	its	use	of	keyword	arguments	to	greatly	extend	the	utility	of	the
sequence	functions.	The	combination	of	tremendous	power,	extensive	manu‐
facturer	 support,	 and	 a	 built-in	 object-oriented	 programming	 facility	 make
Common	Lisp	 the	 only	 “industrial	 strength”	Lisp.	Although	 this	 book	 does
emphasize	 a	 side-effect-free,	 applicative	 approach	 to	 programming	 with
which	Scheme	afficionados	will	feel	quite	at	home,	it	does	so	in	purely	Com‐
mon	Lisp	style.

This	book	has	been	carefully	designed	to	meet	the	needs	of	beginning	pro‐
grammers	and	non-computer	science	students,	but	the	optional	advanced	top‐
ics	sections	at	the	end	of	each	chapter	provide	enough	enrichment	material	to
hold	the	interest	of	junior	and	senior	computer	science	majors.	For	advanced
undergraduates,	Guy	L.	Steele	Jr.’s	Common	Lisp:	The	Language,	2nd	edition
(published	by	Digital	Press)	or	Paul	Graham’s	ANSI	Common	Lisp	would	be
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useful	companions	to	the	introduction	provided	here.
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1

Functions	and	Data

1.1	INTRODUCTION
This	chapter	begins	with	an	overview	of	the	notions	of	function	and	data,	fol‐
lowed	 by	 examples	 of	 several	 built-in	 Lisp	 functions.	 If	 you	 already	 have
some	experience	programming	 in	other	 languages,	you	can	 flip	 through	 this
chapter	in	just	a	few	minutes.	You’ll	see	arithmetic	functions,	followed	by	an
introduction	 to	 symbols,	 one	 of	 the	 key	 datatypes	 of	 Lisp,	 and	 predicates,
which	answer	yes-or-no	questions.	When	you	think	you’ve	grasped	this	mate‐
rial,	read	the	summary	section	on	page	26	to	test	your	understanding.

If	you’re	new	to	programming,	this	chapter	is	designed	specifically	for	you.
We’ll	start	by	explaining	what	functions	and	data	are.*	The	term	data	means
information,	 such	 as	 numbers,	words,	 or	 lists	 of	 things.	You	 can	 think	of	 a
function	as	a	box	through	which	data	flows.	The	function	operates	on	the	data
in	some	way,	and	the	result	is	what	flows	out.

After	 covering	 some	 of	 the	 built-in	 functions	 provided	 by	 Lisp,	 we	 will
learn	how	to	put	existing	functions	together	to	make	new	ones—the	essence
of	computer	programming.	Several	useful	 techniques	 for	creating	new	func‐
tions	will	then	be	presented.

1.2	FUNCTIONS	ON	NUMBERS
Probably	 the	most	 familiar	 functions	 are	 the	 simple	 arithmetic	 functions	 of
addition,	 subtraction,	multiplication,	and	division.	Here	 is	how	we	represent
the	addition	of	two	numbers:

The	name	of	the	function	is	“	+	.”	We	can	describe	what’s	going	on	in	the
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figure	in	several	ways.	From	the	point	of	view	of	the	data:	The	numbers	2	and
3	flow	into	the	function,	and	the	number	5	flows	out.	From	the	point	of	view
of	 the	 function:	The	 function	“	+	“	 received	 the	numbers	2	and	3	as	 inputs,
and	 it	 produced	 5	 as	 its	 result.	 From	 the	 programmer’s	 point	 of	 view:	We
called	(or	invoked)	the	function	“	+	“	on	the	inputs	2	and	3,	and	the	function
returned	 5.	 These	 different	 ways	 of	 talking	 about	 functions	 and	 data	 are
equivalent;	you	will	encounter	all	of	them	in	various	places	in	this	book.

Here	is	a	table	of	Lisp	functions	that	do	useful	things	with	numbers:
+ Adds	two	numbers
- Subtracts	the	second	number	from	the	first
* Multiplies	two	numbers
/ Divides	the	first	number	by	the	second
ABS Absolute	value	of	a	number
SQRT Square	root	of	a	number

Let’s	 look	at	another	example	of	how	data	 flows	 through	a	 function.	The
output	 of	 the	 absolute	value	 function,	ABS,	 is	 the	 same	as	 its	 input,	 except
that	negative	numbers	are	converted	to	positive	ones.

The	number	-4	enters	the	ABS	function,	which	computes	the	absolute	value
and	outputs	a	result	of	4.

1.3	THREE	KINDS	OF	NUMBERS
In	 this	book	we	will	work	mostly	with	 integers,	which	are	whole	numbers.
Common	Lisp	provides	many	other	kinds	of	numbers.	One	kind	you	should
know	 about	 is	 floating	 point	 numbers.	 A	 floating	 point	 number	 is	 always
written	with	a	decimal	point;	for	example,	the	number	five	would	be	written
5.0.	The	SQRT	function	generally	returns	a	floating	point	number	as	its	result,
even	when	its	input	is	an	integer.

Ratios	 are	 yet	 another	 kind	 of	 number.	 On	 a	 pocket	 calculator,	 one-half
must	be	written	in	floating	point	notation,	as	0.5,	but	in	Common	Lisp	we	can
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also	write	one-half	as	the	ratio	1/2.	Common	Lisp	automatically	simplifies	ra‐
tios	to	use	the	smallest	possible	denominator;	for	example,	the	ratios	4/6,	6/9,
and	10/15	would	all	be	simplified	to	2/3.

When	 we	 call	 an	 arithmetic	 function	 with	 integer	 inputs,	 Common	 Lisp
will	usually	produce	an	integer	or	ratio	result.	If	we	use	a	mixture	of	integers
and	floating	point	numbers,	the	result	will	be	a	floating	point	number:

1.4	ORDER	OF	INPUTS	IS	IMPORTANT
By	convention,	when	we	refer	to	the	“first”	input	to	a	function,	we	mean	the
topmost	arrow	entering	the	function	box.	The	“second”	input	is	the	next	high‐
est	arrow,	and	so	on.	The	order	in	which	inputs	are	supplied	to	a	function	is
important.	For	example,	dividing	8	by	2	is	not	the	same	as	dividing	2	by	8:

When	we	divide	8	by	2	we	get	4.	When	we	divide	2	by	8	we	get	the	ratio	1/4.
By	the	way,	ratios	need	not	always	be	less	than	1.	For	example:

EXERCISE
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1.1.	Here	are	some	function	boxes	with	inputs	and	outputs.	In	each	case	one
item	of	information	is	missing.	Use	your	knowledge	of	arithmetic	to	fill
in	the	missing	item:

Here	 are	 a	 few	 more	 challenging	 problems.	 I’ll	 throw	 in	 some	 negative
numbers	and	ratios	just	to	make	things	interesting.
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1.5	SYMBOLS
Symbols	are	another	type	of	data	in	Lisp.	Most	people	find	them	more	inter‐
esting	than	numbers.	Symbols	are	typically	named	after	English	words	(such
as	TUESDAY),	or	phrases	(e.g.,	BUFFALO-BREATH),	or	common	abbrevi‐
ations	(like	SQRT	for	“square	root.”)	Symbol	names	may	contain	practically
any	combination	of	letters	and	numbers,	plus	some	special	characters	such	as
hyphens.	Here	are	some	examples	of	Lisp	symbols:

Notice	 that	symbols	may	include	digits	 in	 their	names,	as	 in	“R2D2,”	but
this	does	not	make	them	numbers.	It	is	important	that	you	be	able	to	tell	the
difference	between	numbers—especially	integers—and	symbols.	These	defin‐
itions	should	help:

inte‐ A	sequence	of	digits	“0”	through	“9,”	optionally	preceded	by	a	plus	or
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ger minus	sign.
sym‐
bol

Any	sequence	of	letters,	digits,	and	permissible	special	characters	that
is	not	a	number.

So	FOUR	is	a	symbol,	4	is	an	integer,	+4	is	an	integer,	but	+	is	a	symbol.	And
7–11	is	also	a	symbol.

EXERCISE
1.2.	Next	to	each	of	the	following,	put	an	“S”	if	it	is	a	symbol,	“I”	if	it	is	an

integer,	or	“N”	if	it	is	some	other	kind	of	number.	Remember:	English
words	may	sound	like	integers,	but	a	true	Lisp	integer	contains	only	the
digits	0–9,	with	an	optional	sign.

1.6	THE	SPECIAL	SYMBOLS	T	AND	NIL
Two	Lisp	symbols	have	special	meanings	attached	to	them.	They	are:

T Truth,	“yes”
NIL Falsity,	emptiness,	“no”

T	and	NIL	are	so	basic	to	Lisp	that	if	you	ask	a	really	dedicated	Lisp	pro‐
grammer	a	yes-or-no	question,	he	may	answer	with	T	or	NIL	instead	of	Eng‐
lish.	(“Hey,	Jack,	want	to	go	to	dinner?”	“NIL.	I	just	ate.”)	More	importantly,
certain	Lisp	functions	answer	questions	with	T	or	NIL.	Such	yes-or-no	func‐
tions	are	called	predicates.

1.7	SOME	SIMPLE	PREDICATES
A	predicate	is	a	question-answering	function.	Predicates	output	the	symbol	T
when	they	mean	yes	and	the	symbol	NIL	when	they	mean	no.	The	first	predi‐
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cate	we	will	study	is	the	one	that	tests	whether	its	input	is	a	number	or	not.	It
is	called	NUMBERP	(pronounced	“number-pee,”	as	in	“number	predicate”),
and	it	looks	like	this:

Similarly,	 the	 SYMBOLP	 predicate	 tests	 whether	 its	 input	 is	 a	 symbol.
SYMBOLP	returns	T	when	given	an	input	that	is	a	symbol;	it	returns	NIL	for
inputs	that	are	not	symbols.

The	 ZEROP,	 EVENP,	 and	 ODDP	 predicates	 work	 only	 on	 numbers.
ZEROP	returns	T	if	its	input	is	zero.

ODDP	returns	T	if	its	input	is	odd;	otherwise	it	returns	NIL.	EVENP	does
the	reverse.
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By	now	you’ve	caught	on	to	the	convention	of	tacking	a	“P”	onto	a	func‐
tion	name	to	show	that	 it	 is	a	predicate.	 (“Hey,	Jack,	HUNGRYP?”	“T,	I’m
starved!”)	Not	all	Lisp	predicates	obey	this	rule,	but	most	do.

Here	are	 two	more	predicates:	<	 returns	T	 if	 its	 first	 input	 is	 less	 than	 its
second,	while	>	returns	T	if	its	first	input	is	greater	than	its	second.	(They	are
also	 our	 first	 exceptions	 to	 the	 convention	 that	 predicate	 names	 end	with	 a
“P.”)

1.8	THE	EQUAL	PREDICATE
EQUAL	is	a	predicate	for	comparing	two	things	to	see	if	they	are	the	same.
EQUAL	returns	T	if	its	two	inputs	are	equal;	otherwise	it	returns	NIL.	Com‐
mon	Lisp	also	includes	predicates	named	EQ,	EQL,	and	EQUALP	whose	be‐
havior	 is	slightly	different	 than	EQUAL;	the	differences	will	not	concern	us
here.	For	beginners,	EQUAL	is	the	right	one	to	use.
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EXERCISE
1.3.	Fill	in	the	result	of	each	computation:
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1.9	PUTTING	FUNCTIONS	TOGETHER
So	far	we’ve	covered	about	a	dozen	of	the	many	functions	built	into	Common
Lisp.	These	built-in	functions	are	called	primitive	functions,	or	primitives.
We	make	new	functions	by	putting	primitives	together	in	various	ways.

1.9.1	Defining	ADD1
Let’s	define	a	function	that	adds	one	to	its	input.**	We	already	have	a	primi‐
tive	function	for	addition:	The	+	function	will	add	any	two	numbers	it	is	given
as	input.	Our	ADD1	function	will	take	a	single	number	as	input,	and	add	one
to	it.

Now	that	we’ve	defined	ADD1	we	can	use	 it	 to	add	1	 to	any	number	we
like.	We	just	draw	a	box	with	the	name	ADD1	and	supply	an	input,	such	as	5:

If	we	look	inside	the	ADD1	box	we	can	see	how	the	function	works:
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1.9.2	Defining	ADD2
Now	 suppose	we	want	 a	 function	 that	 adds	 2	 to	 its	 input.	We	 could	 define
ADD2	 the	 same	way	we	 defined	ADD1.	But	 in	 Lisp	 there	 is	 always	more
than	one	way	to	solve	a	problem;	sometimes	it	is	interesting	to	look	at	alterna‐
tive	solutions.	For	example,	we	could	build	ADD2	out	of	two	ADD1	boxes:

Once	we’ve	defined	ADD2,	we	are	free	to	use	it	 to	add	2	to	any	number.
Looking	 at	 the	 ADD2	 box	 from	 the	 outside,	 we	 have	 no	 way	 of	 knowing
which	solution	was	chosen:

But	if	we	look	inside	the	ADD2	box	we	can	see	exactly	what’s	going	on.
The	number	5	flows	into	the	first	ADD1	box,	which	produces	6	as	its	result.
The	6	then	flows	into	the	second	ADD1	box,	and	its	result	is	7.
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If	we	want	to	peer	deeper	still,	we	could	see	the	+	box	inside	each	ADD1
box,	like	so:

This	is	as	deep	as	we	can	go.	We	can’t	look	inside	the	+	boxes	because	+	is
a	primitive	function.

1.9.3	Defining	TWOP
We	can	use	our	new	knowledge	to	make	our	own	predicates	too,	since	predi‐
cates	are	just	a	special	type	of	function.	Predicates	are	functions	that	return	a
result	of	T	or	NIL.	The	TWOP	predicate	defined	below	returns	T	if	its	input	is
equal	to	2.

Some	examples	of	the	use	of	TWOP:
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EXERCISES
1.4.	Define	a	SUB2	function	that	subtracts	two	from	its	input.

1.5.	Show	how	to	write	TWOP	in	terms	of	ZEROP	and	SUB2.

1.6.	The	HALF	function	returns	a	number	that	is	one-half	of	its	input.	Show
how	to	define	HALF	two	different	ways.

1.7.	 Write	 a	 MULTI-DIGIT-P	 predicate	 that	 returns	 true	 if	 its	 input	 is
greater	than	9.

1.8.	What	does	this	function	do	to	a	number?

1.9.4	Defining	ONEMOREP
Let’s	 try	defining	a	 function	of	 two	 inputs.	Here	 is	 the	ONEMOREP	predi‐
cate,	which	tests	whether	its	first	input	is	exactly	one	greater	than	its	second
input.

Do	you	see	how	ONEMOREP	works?	If	the	first	input	is	one	greater	than
the	second	input,	adding	1	to	the	second	input	should	make	the	two	equal.	In
this	case,	 the	EQUAL	predicate	will	return	T.	On	the	other	hand,	 if	 the	first
input	 to	ONEMOREP	 isn’t	 one	 greater	 than	 the	 second	 input,	 the	 inputs	 to
EQUAL	won’t	be	equal,	so	it	will	return	NIL.	Example:
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In	 your	mind	 (or	 out	 loud	 if	 you	 prefer),	 trace	 the	 flow	 of	 data	 through
ONEMOREP	for	the	preceding	example.	You	should	say	something	like	this:
“The	first	input	is	a	7.	The	second	input,	a	6,	enters	ADD1,	which	outputs	a	7.
The	two	7’s	enter	the	EQUAL	function,	and	since	they	are	equal,	it	outputs	a
T.	T	is	the	result	of	ONEMOREP.”	Here	is	another	example	to	trace:

For	this	second	example	you	should	say:	“The	first	input	is	a	7.	The	second
input,	a	3,	enters	ADD1,	which	outputs	a	4.	The	7	and	the	4	enter	the	EQUAL
function,	and	since	they	are	not	equal,	 it	outputs	a	NIL.	NIL	is	 the	result	of
ONEMOREP.”

EXERCISES
1.9.	Write	a	predicate	TWOMOREP	that	returns	T	if	its	first	input	is	exactly

two	more	than	its	second	input.	Use	the	ADD2	function	in	your	defini‐
tion	of	TWOMOREP.

1.10.	Find	a	way	to	write	the	TWOMOREP	predicate	using	SUB2	instead	of
ADD2.

1.11.	The	average	of	 two	numbers	is	half	 their	sum.	Write	 the	AVERAGE
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function.

1.12.	 Write	 a	 MORE-THAN-HALF-P	 predicate	 that	 returns	 T	 if	 its	 first
input	is	more	than	half	of	its	second	input.

1.13.	 The	 following	 function	 returns	 the	 same	 result	 no	 matter	 what	 its
input.	What	result	does	it	return?

1.10	THE	NOT	PREDICATE
NOT	is	the	“opposite”	predicate:	It	turns	yes	into	no,	and	no	into	yes.	In	Lisp
terminology,	given	an	input	of	T,	NOT	returns	NIL.	Given	an	input	of	NIL,
NOT	 returns	T.	The	neat	 thing	about	NOT	 is	 that	 it	 can	be	attached	 to	 any
other	predicate	to	derive	its	opposite;	for	example,	we	can	make	a	“not	equal”
predicate	 from	NOT	and	EQUAL,	or	 a	 “nonzero”	predicate	 from	NOT	and
ZEROP.	We’ll	see	how	this	is	done	in	the	next	section.	First,	some	examples
of	NOT:

By	convention,	NIL	 is	 the	only	way	 to	say	no	 in	Lisp.	Everything	else	 is
treated	as	yes.	So	NOT	returns	NIL	for	every	input	except	NIL.

This	is	not	just	an	arbitrary	convention.	It	turns	out	to	be	extremely	useful	to
treat	NIL	as	the	only	“false”	object.	You’ll	see	why	in	later	chapters.
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EXERCISE
1.14.	Fill	in	the	results	of	the	following	computations:

1.11	NEGATING	A	PREDICATE
Suppose	we	want	 to	make	 a	 predicate	 that	 tests	whether	 two	 things	 are	 not
equal—the	opposite	of	the	EQUAL	predicate.	We	can	build	it	by	starting	with
EQUAL	and	running	its	output	through	NOT	to	get	the	opposite	result:

Because	 of	 the	 NOT	 function,	 whenever	 EQUAL	would	 say	 “T,”	 NOT-
EQUAL	 will	 say	 “NIL,”	 and	 whenever	 EQUAL	 would	 say	 “NIL,”	 NOT-
EQUAL	will	say	“T.”	Here	are	some	examples	of	NOT-EQUAL.	In	the	first
one,	the	symbols	PINK	and	GREEN	are	different,	so	EQUAL	outputs	a	NIL
and	NOT	changes	it	to	a	T.

37



In	the	second	example,	PINK	and	PINK	are	the	same,	so	EQUAL	outputs	a
T.	NOT	changes	this	to	NIL.

EXERCISES
1.15.	Write	 a	 predicate	NOT-ONEP	 that	 returns	 T	 if	 its	 input	 is	 anything

other	than	one.

1.16.	 Write	 the	 predicate	 NOT-PLUSP	 that	 returns	 T	 if	 its	 input	 is	 not
greater	than	zero.

1.17.	 Some	 earlier	 Lisp	 dialects	 did	 not	 have	 the	 EVENP	 primitive;	 they
only	had	ODDP.	Show	how	to	define	EVENP	in	terms	of	ODDP.

1.18.	Under	what	condition	does	this	predicate	function	return	T?

1.19.	What	 result	 does	 the	 function	 below	 produce	 when	 given	 the	 input
NIL?	What	about	the	input	T?	Will	all	data	flow	through	this	function
unchanged?	What	result	is	produced	for	the	input	RUTABAGA?
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1.20.	A	truth	function	is	a	function	whose	inputs	and	output	are	truth	val‐
ues,	that	is,	true	or	false.	NOT	is	a	truth	function.	(Even	though	NOT
accepts	other	inputs	besides	T	or	NIL,	it	only	cares	if	its	input	is	true
or	not.)	Write	XOR,	 the	exclusive-or	 truth	 function,	which	 returns	T
when	one	of	its	inputs	is	NIL	and	the	other	is	T,	but	returns	NIL	when
both	are	NIL	or	both	are	T.	{Hint:	This	is	easier	than	it	sounds.)

1.12	NUMBER	OF	INPUTS	TO	A	FUNCTION
Some	functions	require	a	fixed	number	of	 inputs,	such	as	ODDP,	which	ac‐
cepts	 exactly	 one	 input,	 and	 EQUAL,	 which	 takes	 exactly	 two.	 But	 many
functions	 accept	 a	 variable	 number	 of	 inputs.	 For	 example,	 the	 arithmetic
functions	+,-,*,	and	/	will	accept	any	number	of	inputs.

To	 multiply	 three	 numbers,	 the	 *	 function	 multiplies	 the	 first	 two,	 then
multiplies	the	result	by	the	third,	like	so:

When	-	or	/	is	given	more	than	two	inputs,	the	result	is	the	first	input	dimin‐
ished	(or	divided,	respectively)	by	the	remaining	inputs.
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The	-	and	/	functions	behave	differently	when	given	only	one	input.	What	-
does	 is	negate	 its	 input,	 in	other	words,	 it	changes	 the	sign	from	positive	 to
negative	 or	 vice	 versa	 by	 subtracting	 it	 from	 zero.	When	 the	 /	 function	 is
given	a	single	input,	it	divides	one	by	that	input,	which	gives	the	reciprocal.

The	 two-input	 case	 is	 clearly	 the	 defining	 case	 for	 the	 basic	 arithmetic
functions.	While	they	can	accept	more	or	fewer	than	two	inputs,	they	convert
those	cases	to	instances	of	the	two-input	case.	For	example,	the	above	compu‐
tation	of	the	reciprocal	of	4.0	is	really	just	a	division:

1.13	ERRORS
Even	 though	 our	 system	 of	 functions	 is	 a	 very	 simple	 one,	we	 can	 already
make	several	 types	of	errors	 in	 it.	One	error	 is	 to	give	a	function	the	wrong
type	of	data.	For	example,	the	+	function	can	add	only	numbers;	it	cannot	add
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symbols:

Another	error	is	to	give	a	function	too	few	or	too	many	inputs:

Finally,	an	error	may	occur	because	a	function	cannot	do	what	is	requested	of
it.	This	is	what	happens	when	we	try	to	divide	a	number	by	zero:

Learning	to	recognize	errors	is	an	important	part	of	programming.	You	will
undoubtedly	get	lots	of	practice	in	this	art,	since	few	computer	programs	are
ever	written	correctly	the	first	time.

EXERCISE
1.21.	What	is	wrong	with	each	of	these	functions?
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SUMMARY
In	this	chapter	we	covered	two	types	of	data:	numbers	and	symbols.	We	also
learned	several	built-in	functions	that	operate	on	them.

Predicates	 are	 a	 special	 class	 of	 functions	 that	 use	 T	 and	NIL	 to	 answer
questions	about	their	inputs.	The	symbol	NIL	means	false,	and	the	symbol	T
means	true.	Actually,	anything	other	than	NIL	is	treated	as	true	in	Lisp.

A	function	must	have	a	definition	before	we	can	use	it.	We	can	make	new
functions	by	putting	old	ones	together	in	various	ways.	A	particularly	useful
combination,	used	quite	often	in	programming,	is	to	feed	the	output	of	a	pred‐
icate	 through	 the	NOT	 function	 to	derive	 its	 opposite,	 as	 the	NOT-EQUAL
predicate	was	derived	from	EQUAL.

REVIEW	EXERCISES
1.22.	Are	all	predicates	functions?	Are	all	functions	predicates?

1.23.	Which	built-in	predicates	 introduced	 in	 this	 chapter	 have	names	 that
do	not	end	in	“P”?
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1.24.	Is	NUMBER	a	number?	Is	SYMBOL	a	symbol?

1.25.	Why	is	FALSE	true	in	Lisp?

1.26.	True	or	false:	(a)	All	predicates	accept	T	or	NIL	as	input;	(b)	all	predi‐
cates	produce	T	or	NIL	as	output.

1.27.	Give	an	example	of	the	use	of	EVENP	that	would	cause	a	wrong-type-
input	error.	Give	an	example	that	would	cause	a	wrong-number-of-in‐
puts	error.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Arithmetic	functions:	+,	-,	*,	/,	ABS,	SQRT.

Predicates:	 NUMBERP,	 SYMBOLP,	 ZEROP,	 ODDP,	 EVENP,	 <,	 >,
EQUAL,	NOT.

1	Advanced	Topics
The	Advanced	Topics	sections	at	the	end	of	each	chapter	have	been	added	not
only	to	introduce	advanced	programming	material,	but	also	to	show	computer
programming	in	its	broader	mathematical	and	logical	perspective.

These	sections	are	entirely	optional.	Beginning	programmers	may	wish	to
skip	them	on	their	first	trip	through	the	book.	Some	of	the	later	chapters	do,	in
a	few	places,	refer	to	material	introduced	in	earlier	advanced	topics	sections,
but	 those	 instances	are	clearly	marked,	so	 it	 is	easy	 to	go	back	and	read	 the
appropriate	advanced-topics	section	before	continuing.

1.14	THE	HISTORY	OF	LISP
The	origins	of	Lisp	date	back	to	1956,	when	a	summer	research	meeting	on
artificial	 intelligence	was	 held	 at	 Dartmouth	 College.	 At	 the	meeting,	 John
McCarthy	 learned	 about	 a	 technique	 called	 “list	 processing”	 that	 Allen
Newell,	J.	C.	Shaw,	and	Herbert	Simon	had	developed.	Most	programming	in
the	1950s	was	done	 in	 assembly	 language,	 a	primitive	 language	defined	di‐
rectly	by	the	circuitry	of	the	computer.	Newell,	Shaw,	and	Simon	had	created
something	more	abstract,	called	IPL	(for	Information	Processing	Language),
that	manipulated	symbols	and	lists,	two	important	datatypes	in	artificial	intel‐
ligence	programming.	But	IPL’s	syntax	was	similar	to	(and	as	akward	as)	as‐
sembly	language.

Elsewhere	in	the	1950s	a	new	language	called	FORTRAN	was	being	devel‐
oped.	FORTRAN	was	designed	for	the	sort	of	numerical	calculations	that	are
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common	in	scientific	computing.	It	allowed	the	programmer	to	think	in	terms
of	algebraic	expressions	such	as	A=(X+Y)*Z	instead	of	writing	assembly	lan‐
guage	instructions.	The	idea	that	programmers	should	expresss	their	ideas	in
familiar	mathematical	notation,	and	the	computer	should	be	the	one	to	trans‐
late	 these	 expressions	 into	 assembly	 language,	 was	 a	 radical	 innovation.	 It
made	 FORTRAN	 a	 powerful	 numerical	 computing	 language.	 McCarthy
wanted	to	build	an	equally	powerful	language	for	symbolic	computing.

One	approach	he	suggested	was	to	build	on	top	of	FORTRAN,	by	creating
a	 set	 of	 special	 subroutines	 for	 list	manipulation.	This	 idea	was	pursued	by
Herbert	 Gelemtner	 and	 Carl	 Gerberich	 at	 IBM,	 and	 was	 called	 FLPL,	 for
FORTRAN	List	Processing	Language.	But	McCarthy	himself,	working	 first
at	Dartmouth	and	later	at	the	Massachusetts	Institute	of	Technology,	designed
a	 new	 language,	 LISP	 (for	 LISt	 Processor),	 that	 drew	 on	 ideas	 from	 IPL,
FORTRAN,	and	FLPL.	The	first	version,	Lisp	1,	was	developed	for	the	IBM
704	computer.

Lisp	1.5	was	the	first	Lisp	dialect	to	be	widely	used.	The	Lisp	1.5	Program‐
mer’s	Manual	by	McCarthy	et	al.	appeared	in	1962.	By	1964	Lisp	was	run‐
ning	 on	 several	 types	 of	 computers,	 including	 an	 IBM	 7094	 under	 MIT’s
Compatible	Timesharing	System;	it	was	thus	one	of	the	first	interactive	pro‐
gramming	 languages.	 Digital	 Equipment	 Corporation	 (DEC)	 also	 played	 a
prominent	 role	 in	Lisp’s	history.	One	of	 the	early	Lisp	 implementations	 ran
on	its	first	computer,	the	PDP-1.	The	PDP-6	and	PDP-10	(later	DECSystem-
20)	computers	were	specifically	designed	to	implement	Lisp	efficiently.

After	 the	mid-1960s,	Lisp	 implementations	began	 to	diverge.	MIT	devel‐
oped	MacLisp,	while	Bolt,	Beranek	and	Newman	and	the	Xerox	Corporation
jointly	developed	Interlisp.	Stanford	Lisp	1.6	was	an	offshoot	of	an	early	ver‐
sion	of	MacLisp;	 it	eventually	gave	rise	 to	UCI	Lisp.	Each	of	 these	dialects
substantially	extended	 the	original	Lisp	1.5,	but	 they	did	so	 in	 incompatible
ways.

In	the	1970s	Guy	Steele	and	Gerald	Sussman	defined	a	new	kind	of	Lisp,
called	Scheme,	that	combined	some	of	the	elegant	ideas	from	the	Algol	fam‐
ily	of	programming	languages	with	the	power	of	Lisp’s	syntax	and	data	struc‐
tures.	Extended	dialects	of	Scheme	began	evolving,	paralleling	 the	develop‐
ment	of	Lisp.

By	 the	 early	 1980s	 there	were	 dozens	 of	 incompatible	 Lisp	 implementa‐
tions	 in	 existence,	 with	 about	 half	 a	 dozen	 major	 dialects.	 A	 project	 was
begun,	led	by	Scott	Fahlman,	Daniel	Weinreb,	David	Moon,	Guy	Steele,	and
Richard	Gabriel,	to	define	a	Common	Lisp	that	would	merge	the	best	features
of	 existing	dialects	 into	 a	 coherent	whole.	The	 first	 edition	of	 the	Common
Lisp	 standard	 appeared	 in	 1984;	 a	 revised	 standard	 appeared	 in	 1990.	 The
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ANSI	Common	Lisp	standard	was	released	in	1994	and	was	revised	in	2004.
Common	Lisp	rapidly	became	the	Lisp	of	choice	in	both	academic	and	indus‐
trial	 settings.	 The	 other	 dialects	 have	 mostly	 died	 out,	 except	 for	 Scheme,
which	continues	to	enjoy	a	modest	popularity	for	educational	applications.

Many	of	 the	more	 important	 ideas	 in	programming	 systems	 first	 arose	 in
connection	with	Lisp.	These	include	mixing	of	interpreted	and	compiled	func‐
tions,	garbage	collection,	recursive	function	calls,	source-level	tracing	and	de‐
bugging,	and	syntax-directed	editors.	Today	Lisp	is	a	leading	language	for	so‐
phisticated	research	on	functional,	object-oriented,	and	parallel	programming
styles.

For	additional	 information	on	 the	history	of	Lisp,	 see	 the	articles	by	Mc‐
Carthy	 and	Gabriel	 cited	 in	 the	Further	Readings	 section	 at	 the	back	of	 the
book,	and	Paul	Graham’s	Lisp	pages	at	www.paulgraham.com.

*Technical	terms	like	these,	which	appear	in	boldface	in	the	text,	are	defined	in	the	glossary	at	the	back
of	the	book.

**Note	 to	 instructors:	Common	Lisp	contains	built-in	 functions	1+	and	1-	 that	add	1	 to	or	 subtract	1
from	their	 input,	 respectively.	But	since	 these	unusual	names	are	almost	certain	 to	confuse	beginning
programmers,	I	will	not	refer	to	them	in	this	book.
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2

Lists

2.1	LISTS	ARE	THE	MOST	VERSATILE	DATA
TYPE
The	name	“Lisp”	is	an	acronym	for	List	Processor.	Even	though	the	language
has	matured	 in	many	ways	over	 the	years,	 lists	 remain	 its	central	data	 type.
Lists	 are	 important	 because	 they	 can	 be	made	 to	 represent	 practically	 any‐
thing:	sets,	tables,	and	graphs,	and	even	English	sentences.	Functions	can	also
be	represented	as	lists,	but	we’ll	save	that	topic	for	the	next	chapter.

2.2	WHAT	DO	LISTS	LOOK	LIKE?
Every	 list	 has	 two	 forms:	 a	 printed	 representation	 and	 an	 internal	 one.	 The
printed	representation	is	most	convenient	for	people	to	use,	because	it’s	com‐
pact	and	easy	to	type	on	a	computer	keyboard.	The	internal	representation	is
the	 way	 the	 list	 actually	 exists	 in	 the	 computer’s	 memory.	 We	 will	 use	 a
graphical	notation	when	we	want	to	refer	to	lists	in	their	internal	form.

In	its	printed	form,	a	list	is	a	bunch	of	items	enclosed	in	parentheses.	These
items	are	called	the	elements	of	the	list.	Here	are	some	examples	of	lists	writ‐
ten	in	parenthesis	notation:

The	internal	representation	of	lists	does	not	involve	parentheses.	Inside	the
computer’s	memory,	 lists	are	organized	as	chains	of	cons	cells,	which	we’ll
draw	as	boxes.	The	 cons	 cells	 are	 linked	 together	 by	pointers,	which	we’ll
draw	as	arrows.	Each	cons	cell	has	two	pointers.	One	of	them	always	points
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to	an	element	of	the	list,	such	as	RED,	while	the	other	points	to	the	next	cons
cell	in	the	chain.*	When	we	say	“lists	may	include	symbols	or	numbers	as	el‐
ements,”	what	we	are	really	saying	is	that	cons	cells	may	contain	pointers	to
symbols	or	numbers,	as	well	as	pointers	 to	other	cons	cells.	The	computer’s
internal	representation	of	the	list	(RED	GREEN	BLUE)	is	drawn	this	way:**

Looking	at	 the	 rightmost	cell,	you’ll	note	 that	 the	cons	cell	chain	ends	 in
NIL.	This	is	a	convention	in	Lisp.	It	may	be	violated	in	some	circumstances,
but	most	of	the	time	lists	will	end	in	NIL.	When	the	list	is	written	in	parenthe‐
sis	notation,	the	NIL	at	the	end	of	the	chain	is	omitted,	again	by	convention.

EXERCISE
2.1.	Show	how	the	list	(TO	BE	OR	NOT	TO	BE)	would	be	represented	in

computer	memory	by	drawing	its	cons	cell	representation.

2.3	LISTS	OF	ONE	ELEMENT
A	 symbol	 and	 a	 list	 of	 one	 element	 are	 not	 the	 same.	 Consider	 the	 list
(AARDVARK)	shown	below;	it	is	represented	by	a	cons	cell.	One	of	the	cons
cell’s	pointers	points	to	the	symbol	AARDVARK;	the	other	points	to	NIL.	So
you	see	that	the	list	(AARDVARK)	and	the	symbol	AARDVARK	are	differ‐
ent	objects.	The	former	is	a	cons	cell	that	points	to	the	latter.

2.4	NESTED	LISTS
A	list	may	contain	other	lists	as	elements.	Given	the	three	lists

we	can	make	a	list	of	them	by	enclosing	them	within	another	pair	of	parenthe‐
ses.	The	result	is	shown	below.	Note	the	importance	of	having	two	levels	of
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parentheses:	This	is	a	list	of	three	lists,	not	a	list	of	six	symbols.

We	can	display	the	three	elements	of	this	list	vertically	instead	of	horizon‐
tally	 if	we	choose.	Spacing	and	 indentation	don’t	matter	 as	 long	as	 the	 ele‐
ments	 themselves	and	 the	parenthesization	aren’t	changed.	For	example,	 the
list	of	three	lists	could	have	been	written	like	this:

The	first	element	of	this	list	is	still	(BLUE	SKY).	In	cons	cell	notation,	the
list	would	be	written	as	shown	below.	Since	 it	has	 three	elements,	 there	are
three	cons	cells	in	the	top-level	chain.	Since	each	element	is	a	list	of	two	sym‐
bols,	each	top-level	cell	points	to	a	lower-level	chain	of	two	cons	cells.

Lists	that	contain	other	lists	are	called	nested	lists.	In	parenthesis	notation,
a	nested	list	has	one	or	more	sets	of	parentheses	nested	within	the	outermost
pair.	 In	 cons	 cell	 notation,	 a	 nested	 list	 has	 at	 least	 one	 level	 of	 cons	 cells
below	the	top-level	chain.	Lists	that	are	not	nested	are	called	flat	lists.	A	flat
list	has	only	a	top-level	cons	cell	chain.

Lists	aren’t	always	uniform	in	shape.	Here’s	a	nested	list	whose	elements
are	a	list,	a	symbol,	and	a	list:

You	can	see	 the	pattern	of	parenthesization	 reflected	 in	 the	cons	cell	dia‐
gram	below.

Anything	we	write	in	parenthesis	notation	will	have	an	equivalent	descrip‐
tion	 inside	 the	computer	as	a	cons	cell	structure—if	 the	parentheses	balance
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properly.	 If	 they	 don’t	 balance,	 as	 in	 the	 malformed	 expression	 “(RED
(GREEN	BLUE,”	the	computer	cannot	make	a	cons	cell	chain	corresponding
to	 that	 expression.	 The	 computer	 will	 respond	 with	 an	 error	 message	 if	 it
reads	an	expression	with	unbalanced	parentheses.

EXERCISES
2.2.	Which	of	 these	 are	well-formed	 lists?	properly	balanced	parentheses?

That	is,	which	ones	have

2.3.	 Draw	 the	 cons	 cell	 representation	 of	 the	 list	 (PLEASE	 (BE	 MY)
VALENTINE).

2.4.	What	is	the	parenthesis	notation	for	this	cons	cell	structure?

2.5	LENGTH	OF	LISTS
The	length	of	a	list	is	the	number	of	elements	it	has,	for	example,	the	list	(HI
MOM)	is	of	length	two.	But	what	about	lists	of	lists?	When	a	list	is	written	in
parenthesis	 notation,	 its	 elements	 are	 the	 things	 that	 appear	 inside	 only	one
level	of	parentheses.	For	example,	the	elements	of	the	list	(A	(B	C)	D)	are	A,
the	list	(B	C),	and	D.	The	symbols	B	and	C	are	not	elements	themselves,	they
are	merely	components	of	the	element	(B	C).

Remember	that	the	computer	does	not	use	parentheses	internally.	From	the
computer’s	 point	 of	 view,	 the	 list	 (A	 (B	C)	D)	 contains	 three	 elements	 be‐
cause	its	internal	representation	contains	three	top-level	cons	cells,	like	this:
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So	you	see	that	the	length	of	a	list	is	independent	of	the	complexity	of	its
elements.	The	following	lists	all	have	exactly	three	elements,	even	though	in
some	cases	 the	elements	are	 themselves	 lists.	The	 three	elements	are	under‐
lined.

The	primitive	function	LENGTH	computes	the	length	of	a	list.	It	is	an	error
to	give	LENGTH	a	symbol	or	number	as	input.

EXERCISE
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2.5.	How	many	elements	do	each	of	the	following	lists	have?

2.6	NIL:	THE	EMPTY	LIST
A	list	of	zero	elements	is	called	an	empty	list.	It	has	no	cons	cells.	It	is	writ‐
ten	as	an	empty	pair	of	parentheses:

(		)

Inside	the	computer	the	empty	list	is	represented	by	the	symbol	NIL.	This
is	 a	 tricky	 point:	 the	 symbol	NIL	 is	 the	 empty	 list;	 that’s	why	 it	 is	 used	 to
mark	the	end	of	a	cons	cell	chain.	Since	NIL	and	the	empty	list	are	identical,
we	are	always	free	to	write	NIL	instead	of	(),	and	vice	versa.	Thus	(A	NIL	B)
can	 also	 be	written	 (A	 ()	B).	 It	makes	 no	 difference	which	 printed	 form	 is
used;	inside	the	computer	the	two	are	the	same.

The	length	of	the	empty	list	is	zero.	Even	though	NIL	is	a	symbol,	it	is	still
a	valid	input	to	LENGTH	because	NIL	is	also	a	list.	NIL	is	the	only	thing	that
is	both	a	symbol	and	a	list.
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EXERCISE
2.6.	Match	each	list	on	the	left	with	a	corresponding	list	on	the	right	by	sub‐

stituting	NIL	for	()	wherever	possible.	Pay	careful	attention	to	levels	of
parenthesization.

2.7	EQUALITY	OF	LISTS
Two	 lists	 are	 considered	 EQUAL	 if	 their	 corresponding	 elements	 are
EQUAL.	Consider	the	lists	(A	(B	C)	D)	and	(A	B	(C	D))	shown	below.

These	two	lists	have	the	same	number	of	elements	(three),	but	they	are	not
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EQUAL.	The	 second	element	of	 the	 former	 is	 (B	C),	while	 the	 second	ele‐
ment	of	the	latter	is	B.	And	neither	list	is	equal	to	(A	B	C	D),	which	has	four
elements.	 If	 two	 lists	 have	 different	 numbers	 of	 elements,	 they	 are	 never
EQUAL.

2.8	FIRST,	SECOND,	THIRD,	AND	REST
Lisp	 provides	 primitive	 functions	 for	 extracting	 elements	 from	 a	 list.	 The
functions	FIRST,	SECOND,	and	THIRD	return	the	first,	second,	and	third	el‐
ement	of	their	input,	respectively.

It	is	an	error	to	give	these	functions	inputs	that	are	not	lists.

The	REST	function	is	the	complement	of	FIRST:	It	returns	a	list	containing
everything	but	the	first	element.
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Using	 just	FIRST	and	one	or	more	RESTs,	 it	 is	possible	 to	construct	our
own	versions	of	SECOND,	THIRD,	FOURTH,	and	so	on.	For	example:

If	the	input	to	MY-SECOND	is	(PENGUINS	LOVE	ITALIAN	ICES),	the
REST	function	will	output	 the	 list	 (LOVE	ITALIAN	ICES),	and	 the	FIRST
element	of	that	is	LOVE.

EXERCISES
2.7.	What	goes	on	inside	the	MY-SECOND	box	when	it	is	given	the	input

(HONK	IF	YOU	LIKE	GEESE)?

2.8.	Show	how	to	write	MY-THIRD	using	FIRST	and	two	RESTs.

2.9.	Show	how	to	write	MY-THIRD	using	SECOND.

2.9	FUNCTIONS	OPERATE	ON	POINTERS
When	we	say	that	an	object	such	as	a	list	or	symbol	is	an	input	to	a	function,
we	 are	 speaking	 informally.	 Inside	 the	 computer,	 everything	 is	 done	 with
pointers,	so	the	real	input	to	the	function	isn’t	the	object	itself,	but	a	pointer	to
the	object.	Likewise,	the	result	returned	by	a	function	is	really	a	pointer.
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Suppose	(THE	BIG	BOPPER)	 is	supplied	as	 input	 to	REST.	What	REST
actually	 receives	 is	 a	 pointer	 to	 the	 first	 cons	 cell.	 This	 pointer	 is	 shown
below,	drawn	as	a	wavy	line.	The	line	is	wavy	because	the	pointer’s	location
isn’t	 specified.	 In	other	words,	 it	 does	not	 live	 inside	 any	cons	 cell;	 it	 lives
elsewhere	 in	 the	 computer.	 Computer	 scientists	 would	 say	 that	 the	 pointer
lives	“in	a	register”	or	“on	the	stack,”	but	these	details	need	not	concern	us.

The	result	returned	by	REST	is	a	pointer	to	the	second	cons	cell,	which	is
the	 first	cell	of	 the	 list	 (BIG	BOPPER).	Where	did	 this	pointer	come	from?
What	REST	did	was	extract	 the	pointer	 from	 the	 right	half	of	 the	 first	 cons
cell,	 and	 return	 that	pointer	 as	 its	 result.	So	 the	 result	 of	REST	 is	 a	pointer
into	the	same	cons	cell	chain	as	the	input	to	REST.	(See	the	figure	below.)	No
new	cons	cells	were	created	by	REST	when	it	returned	(BIG	BOPPER);	all	it
did	was	extract	and	return	a	pointer.

Note:	We	show	a	cons	cell	pointing	to	THE	in	the	above	figure	to	empha‐
size	that	the	result	is	part	of	the	same	chain	as	the	input	to	REST.	But	the	cons
cell	that	points	to	THE	is	not	part	of	the	result	of	REST.	There	is	no	way	to
reach	this	cell	from	the	pointer	returned	by	REST.	(You	can’t	follow	pointers
backward,	only	forward.)

2.10	CARANDCDR
By	now	you	know	that	each	half	of	a	cons	cell	points	to	something.	The	two
halves	have	obscure	names.	The	left	half	is	called	the	CAR,	and	the	right	half
is	 called	 the	 CDR	 (pronounced	 “cou-der,”	 rhymes	 with	 “good-er”).	 These
names	are	relics	from	the	early	days	of	computing,	when	Lisp	first	ran	on	a
machine	 called	 the	 IBM	704.	The	704	was	 so	primitive	 it	 didn’t	 even	have
transistors—it	 used	 vacuum	 tubes.	 Each	 of	 its	 “registers”	 was	 divided	 into
several	components,	two	of	which	were	the	address	portion	and	the	decrement
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portion.	Back	then,	the	name	CAR	stood	for	Contents	of	Address	portion	of
Register,	and	CDR	stood	for	Contents	of	Decrement	portion	of	Register.	Even
though	these	terms	don’t	apply	to	modem	computer	hardware,	Common	Lisp
still	uses	the	acronyms	CAR	and	CDR	when	referring	to	cons	cells,	partly	for
historical	reasons,	and	partly	because	these	names	can	be	composed	to	form
longer	names	such	as	CADR	and	CDDAR,	as	you	will	see	shortly.

Besides	naming	the	two	halves	of	a	cons	cell,	CAR	and	CDR	are	also	the
names	of	built-in	Lisp	functions	that	return	whatever	pointer	is	in	the	CAR	or
CDR	half	of	 the	 cell,	 respectively.	Consider	 again	 the	 list	 (THE	BIG	BOP‐
PER).	When	 this	 list	 is	 used	 as	 input	 to	 a	 function	 such	 as	CAR,	what	 the
function	actually	receives	is	not	the	list	itself,	but	rather	a	pointer	to	the	first
cons	cell:

Input	to	CAR/CDR

CAR	 follows	 this	 pointer	 to	 get	 to	 the	 actual	 cons	 cell	 and	 extracts	 the
pointer	sitting	in	the	CAR	half.	So	CAR	returns	as	its	result	a	pointer	to	the
symbol	THE.	What	does	CDR	return	when	given	the	same	list	as	input?

CDR	follows	the	pointer	to	get	to	the	cons	cell,	and	extracts	the	pointer	sit‐
ting	in	the	CDR	half,	which	it	returns.	So	the	result	of	CDR	is	a	pointer	to	the
list	(BIG	BOPPER).	From	this	example	you	can	see	that	CAR	is	the	same	as
FIRST,	and	CDR	is	 the	same	as	REST.	Lisp	programmers	usually	prefer	 to
express	it	the	other	way	around:	FIRST	returns	the	CAR	of	a	list,	and	REST
returns	the	CDR.

2.10.1	The	CDR	of	a	Single-Element	List
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We	saw	previously	 that	 the	 list	 (AARDVARK)	 is	not	 the	same	 thing	as	 the
symbol	AARDVARK.	The	list	(AARDVARK)	looks	like	this:

Since	a	list	of	length	one	is	represented	inside	the	computer	as	a	single	cons
cell,	the	CDR	of	a	list	of	length	one	is	the	list	of	length	zero,	NIL.

The	list	((PHONE	HOME))	has	only	one	element.	Remember	that	the	ele‐
ments	of	a	list	are	the	items	that	appear	inside	only	one	level	of	parentheses,
in	 other	 words,	 the	 items	 pointed	 to	 by	 top-level	 cons	 cells.	 ((PHONE
HOME))	looks	like	this:

Since	the	CAR	and	CDR	functions	extract	their	respective	pointers	from	the
first	cons	cell	of	a	list,	the	CAR	of	((PHONE	HOME))	is	(PHONE	HOME),
and	the	CDR	is	NIL.
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EXERCISES
2.10.	 Draw	 the	 cons	 cell	 representation	 of	 the	 list	 (((PHONE	 HOME))),

which	 has	 three	 levels	 of	 parentheses.	What	 is	 the	CAR	of	 this	 list?
What	is	the	CDR?

2.11.	Draw	the	cons	cell	representation	of	the	list	(A	(TOLL)	((CALL))).

2.10.2	Combinations	of	CAR	and	CDR
Consider	the	list	(FEE	FIE	FOE	FUM),	the	first	element	of	which	is	FEE.	The
second	element	of	this	list	is	the	FIRST	of	the	REST,	or,	in	our	new	terminol‐
ogy,	the	CAR	of	the	CDR.

If	you	read	the	names	of	these	function	boxes	from	left	to	right,	you’ll	read
“CDR”	and	then	“CAR.”	But	since	the	input	to	the	CAR	function	is	the	out‐
put	of	the	CDR	function,	we	say	in	English	that	we	are	computing	“the	CAR
of	the	CDR”	of	the	list,	not	the	other	way	around.	In	Lisp,	the	CADR	function
is	 an	 abbreviation	 for	 “the	CAR	 of	 the	CDR.”	CADR	 is	 pronounced	 “kae-
der.”

What	would	happen	 if	we	 switched	 the	A	and	 the	D?	The	CDAR	 (“cou-
dar”)	 function	 takes	 the	CDR	of	 the	CAR	of	 a	 list.	 The	CAR	of	 (FEE	FIE
FOE	FUM)	is	FEE;	if	we	try	to	take	the	CDR	of	that	we	get	an	error	message.
Obviously,	CDAR	doesn’t	work	on	 lists	of	symbols.	 It	works	perfectly	well
on	lists	of	lists,	though.
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The	CADDR	(“ka-dih-der”)	function	returns	the	THIRD	element	of	a	list.
(If	 you’re	 having	 trouble	 with	 these	 strange	 names,	 see	 the	 pronunciation
guide	on	page	48.)	Once	again,	the	name	indicates	how	the	function	works:	It
takes	the	CAR	of	the	CDR	of	the	CDR	of	the	list.

To	really	understand	how	CADDR	works,	you	have	to	read	the	As	and	Ds
from	right	 to	 left.	Starting	with	 the	 list	 (FEE	FIE	FOE	FUM),	 first	 take	 the
CDR,	 yielding	 (FIE	 FOE	 FUM).	 Then	 take	 the	 CDR	 of	 that,	 which	 gives
(FOE	FUM).	Finally	take	the	CAR,	which	produces	FOE.

Here’s	 another	way	 to	 look	 at	CADDR.	Start	with	 the	CDDR	 (“cou-dih-
der”)	function,	which	takes	the	CDR	of	the	CDR,	or	the	REST	of	the	REST.
The	CDDR	of	(FEE	FIE	FOE	FUM)	is	(FOE	FUM),	and	the	CAR	of	that	is
FOE.	The	CAR	of	the	CDDR	is	the	CADDR!

Common	 Lisp	 provides	 built-in	 definitions	 for	 all	 combinations	 of	 CAR
and	 CDR	 up	 to	 and	 including	 four	 As	 and	 Ds	 in	 the	 function	 name.	 So
CAADDR	is	built	in,	but	not	CAADDAR.	Common	Lisp	also	provides	built-
in	definitions	for	FIRST	through	TENTH.

EXERCISE
2.12.	What	C...R	name	does	Lisp	use	for	the	function	that	returns	the	fourth

element	of	a	list?	How	would	you	pronounce	it?

2.10.3	CAR	and	CDR	of	Nested	Lists
CAR	and	CDR	can	be	used	to	take	apart	nested	lists	just	as	easily	as	flat	ones.
Let’s	see	how	we	can	get	at	the	various	components	of	the	nested	list	((BLUE
CUBE)	(RED	PYRAMID)),	which	looks	like	this:
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The	CAR	of	this	list	is	(BLUE	CUBE).	To	get	to	BLUE,	we	must	take	the
CAR	of	the	CAR.	The	CAAR	function,	pronounced	“ka-ar,”	does	this.

What	about	getting	to	the	symbol	CUBE?	Put	your	finger	on	the	first	cons
cell	of	the	list.	Following	the	CAR	pointer	from	the	first	cell	takes	us	to	the
list	(BLUE	CUBE).	Following	the	CDR	pointer	from	that	cell	takes	us	to	the
list	(CUBE),	and	following	the	CAR	pointer	from	there	takes	us	to	the	symbol
CUBE.	So	CUBE	is	the	CAR	of	the	CDR	of	the	CAR	of	the	list,	or,	in	short,
the	CADAR	(“ka-dar”).

Here’s	another	way	to	think	about	it.	The	first	element	of	the	nested	list	is
(BLUE	CUBE),	so	CUBE	is	the	SECOND	of	the	FIRST	of	the	list.	This	is	the
CADR	of	the	CAR,	which	is	precisely	the	CADAR.

Now	 let’s	 try	 to	get	 to	 the	 symbol	RED.	RED	 is	 the	FIRST	of	 the	SEC‐
OND	of	the	list.	You	know	by	now	that	this	is	the	CAR	of	the	CADR.	Putting
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the	 two	 names	 together	 yields	 CAADR,	 which	 is	 pronounced	 “ka-ae-der.”
Reading	from	right	to	left,	put	your	finger	on	the	first	cons	cell	and	follow	the
CDR	pointer,	then	the	CAR	pointer,	and	then	the	CAR	pointer	again;	you	will
end	up	at	RED.

Let’s	build	a	table	of	the	steps	to	follow	to	get	to	PYRAMID:

EXERCISES
2.13.	Write	down	tables	similar	to	the	one	above	to	illustrate	how	to	get	to

each	word	in	the	list	(((FUN))	(IN	THE)	(SUN)).

2.14.	 What	 would	 happen	 if	 you	 tried	 to	 explain	 the	 operation	 of	 the
CAADR	 function	 on	 the	 list	 ((BLUE	CUBE)	 (RED	 PYRAMID)	 by
reading	the

As	and	Ds	from	left	to	right	instead	of	from	right	to	left?

2.15.	Using	 the	 list	 (	 (A	B)	 (C	D)	 (E	F)	 ),	 fill	 in	 the	missing	parts	of	 this
table.

2.16.	What	does	CAAR	do	when	given	the	input	(FRED	NIL)?

2.10.4	CAR	and	CDR	of	NIL
Here	is	another	interesting	fact	about	NIL:	The	CAR	and	CDR	of	NIL	are	de‐
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fined	to	be	NIL.	At	this	point	it’s	probably	not	obvious	why	this	should	be	so.
In	some	earlier	Lisp	dialects	it	was	actually	an	error	to	try	to	take	the	CAR	or
CDR	of	NIL.	But	experience	shows	that	defining	the	CAR	and	CDR	of	NIL
to	be	NIL	has	useful	consequences	in	certain	programming	situations.	You’ll
see	some	examples	in	later	chapters.

Since	FIRST,	SECOND,	THIRD,	and	so	on	are	defined	 in	 terms	of	CAR
and	CDR,	you	now	know	what	will	happen	if	you	try	to	extract	an	element	of
a	 list	 that	 is	 too	 short,	 such	 as	 taking	 the	 third	 element	 of	 the	 list	 (DING
ALING).	THIRD	is	CADDR.	The	CDR	of	(DING	ALING)	is	(ALING);	the
CDR	of	(ALING)	is	NIL,	and	the	CAR	of	that	is	NIL,	so:

EXERCISE
2.17.	Fill	in	the	results	of	the	following	computations.
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2.11	CONS
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The	 CONS	 function	 creates	 cons	 cells.	 It	 takes	 two	 inputs	 and	 returns	 a
pointer	 to	 a	 new	 cons	 cell	 whose	 CAR	 points	 to	 the	 first	 input	 and	whose
CDR	points	to	the	second.	The	term	“CONS”	is	short	for	CONStruct.

If	we	 try	 to	 explain	CONS	using	parenthesis	 notation,	we	might	 say	 that
CONS	 adds	 an	 element	 to	 the	 front	 of	 a	 list.	 For	 example,	we	 can	 add	 the
symbol	A	to	the	front	of	the	list	(BCD):

Another	example:	adding	the	symbol	SINK	onto	the	list	(OR	SWIM).

Here	is	a	function	GREET	that	adds	the	symbol	HELLO	onto	whatever	list
it	is	given	as	input:

Examples	of	GREET:

To	really	understand	what	CONS	does,	 it	 is	better	 to	 think	about	 it	using
cons	cell	notation.	CONS	is	a	very	simple	function:	It	doesn’t	know	anything
about	 the	 “front	 of	 a	 list.”	 (Remember,	 inside	 the	 computer	 there	 are	 no
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parentheses.)	All	CONS	does	 is	create	one	new	cons	cell.	But	 if	 the	second
input	to	CONS	is	a	cons	cell	chain	of	length	n,	the	new	cell	will	form	the	head
of	aeons	cell	chain	of	length	n+\.	See	Figure	2-1.	So	even	though	CONS	just
returns	a	pointer	to	the	cell	it	created,	in	effect	it	returns	a	cons	cell	chain	one
longer	than	its	second	input.

CONS	creates	a	new	cons	cell:

It	fills	in	the	CAR	and	CDR	pointers:

And	it	returns	a	pointer	to	the	new	cell,	which	is	now	the	head	of	a	cons	cell
chain	one	longer	than	CONS’s	second	input:

Figure	2-1	Creating	a	new	cons	cell	with	CONS.

2.11.1	CONS	and	the	Empty	List
Since	NIL	is	the	empty	list,	if	we	use	CONS	to	add	something	onto	NIL	we
get	a	list	of	one	element.

You	should	be	able	to	confirm	this	result	by	looking	at	the	cons	cell	nota‐
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tion	for	 the	 list	 (FROB).	The	CAR	of	(FROB)	is	 the	symbol	FROB	and	the
CDR	of	 (FROB)	 is	NIL,	 so	CONS	must	 have	 built	 the	 list	 from	 the	 inputs
FROB	and	NIL.

Here’s	another	example	that’s	very	similar,	except	that	NIL	has	been	sub‐
stituted	for	FROB:

In	printed	notation,	consing	something	onto	NIL	is	equivalent	to	throwing
an	extra	pair	of	parentheses	around	it.

2.11.2	Building	Nested	Lists	With	CONS
Any	time	the	first	input	to	CONS	is	a	nonempty	list,	the	result	will	be	a	nested
list,	that	is,	a	list	with	more	than	one	level	of	cons	cells.	Examples:

2.11.3	CONS	Can	Build	Lists	From	Scratch
Suppose	we	wish	 to	 construct	 the	 list	 (FOO	BAR	BAZ)	 from	 scratch.	We
could	start	by	adding	the	symbol	BAZ	onto	the	empty	list.	This	gives	us	the
list	(BAZ).
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Then	we	can	add	BAR	onto	that:

Finally	we	add	the	FOO:

We	have	cascaded	three	CONSs	together	to	build	the	list	(FOO	BAR	BAZ)
from	scratch.	Here	is	a	diagram	of	the	cascade:

If	you	turn	this	diagram	sideways	you	will	see	that	it	is	almost	identical	to
the	cons	cell	diagram	for	 the	 list	 (FOO	BAR	BAZ).	This	should	give	you	a
clue	as	to	why	cons	cells	and	the	CONS	function	share	the	same	name.

EXERCISE
2.18.	Write	 a	 function	 that	 takes	 any	 two	 inputs	 and	makes	 a	 list	 of	 them

using	CONS.

2.12	SYMMETRY	OF	CONS	AND	CAR/CDR
There	is	an	interesting	symmetry	between	CONS	and	CAR/CDR.	Given	some
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list	x,	 if	we	know	 the	CAR	of	x	 and	 the	CDR	of	x	we	can	CONS	 them	 to‐
gether	to	figure	out	what	x	is.	For	example,	if	the	CAR	of	x	is	the	symbol	A
and	the	CDR	of	x	is	the	list	(E	I	O	U),	we	know	that	x	must	be	the	list	(A	E	I
O	U).

The	symmetry	between	CONS	and	CAR/CDR	can	be	expressed	formally	as:

x	=	CONS	of	(CAR	of	x)	and	(CDR	of	x)

However,	 this	 relationship	only	holds	 for	nonempty	 lists.	When	x	 is	NIL,
the	CAR	and	CDR	of	x	are	also	NIL.	If	we	try	to	reconstruct	x	by	consing	to‐
gether	its	CAR	and	CDR	portions—that	is,	CONS	of	NIL	and	NIL—we	get
the	list	(NIL),	not	the	empty	list	NIL.	This	should	not	be	taken	to	mean	that
NIL	and	(NIL)	are	identical,	for	we	know	that	they	are	not.	Instead	it	serves	to
remind	us	 that	 although	NIL	 is	 a	 list,	 it’s	 a	 very	unusual	 one.	Certain	 facts
about	 lists	apply	only	to	nonempty	ones,	 in	other	words,	 those	containing	at
least	one	cons	cell.

2.13	LIST
Creating	a	list	from	a	bunch	of	elements	is	such	a	common	operation	that	Lisp
has	a	built-in	function	to	do	just	that.	The	LIST	function	takes	any	number	of
inputs	and	makes	a	list	of	them.	That	is,	it	makes	a	new	cons	cell	chain,	end‐
ing	 in	NIL,	with	as	many	cells	 as	 there	 are	 inputs.	Figure	2-2	demonstrates
this	process.

Recall	 that	CONS	always	makes	a	single	new	cons	cell;	 it	appears	 to	add
its	first	input	onto	the	list	that	is	its	second	input.	The	LIST	function,	on	the
other	hand,	makes	an	entirely	new	cons	cell	chain.	In	parenthesis	notation,	it
appears	to	throw	a	pair	of	parentheses	around	its	inputs,	however	many	there
are.	The	 result	 of	LIST	always	has	 one	more	 level	 of	 parenthesization	 than
any	input	had.

LIST	allocates	three	new	cons	cells:
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It	fills	in	the	CAR	pointers:

Then	it	fills	in	the	CDR	pointers	to	form	a	chain,	and	returns	a	pointer	to	the
first	cell:

Figure	2-2	How	LIST	builds	a	new	list.

LIST	 actually	 works	 by	 building	 a	 new	 chain	 of	 cons	 cells.	 The	 CAR
halves	of	the	cells	point	to	the	inputs	LIST	received.	The	result	of	LIST	is	a
pointer	to	the	first	cell	in	the	chain.	Examples	of	LIST:
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Here	is	a	function	called	BLURT	that	takes	two	inputs	and	uses	them	to	fill
in	the	blanks	in	a	sentence	constructed	with	LIST.

Example	of	BLURT:
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Let’s	look	again	at	the	difference	between	CONS	and	LIST.	CONS	makes
a	single	cons	cell.	LIST	makes	a	new	cons	cell	chain	list	out	of	however	many
inputs	it	receives.

Another	way	to	understand	LIST	is	to	think	of	it	as	expanding	into	a	cas‐
cade	of	CONS	boxes,	much	the	way	a	call	to	an	arithmetic	function	like	“+	of
2,	3,	7,	and	12”	expands	into	a	cascade	of	calls	to	the	two-input	version	of	+.
So,	what	really	goes	on	inside	the	LIST	primitive,	given	an	expression	like	is
that	several	cascaded	calls	to	CONS	are	made:
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EXERCISE
2.19.	Fill	in	the	results	of	the	following	computations.

2.14	REPLACING	THE	FIRST	ELEMENT	OF	A
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LIST
Suppose	we	want	to	replace	the	first	element	of	a	list	with	the	symbol	WHAT.
The	REST	function	can	be	used	to	obtain	the	sublist	beyond	the	first	element;
then	we	can	use	CONS	to	add	the	symbol	WHAT	to	the	front	of	that	sublist.
We’ll	call	our	function	SAY-WHAT.

Here’s	an	example	of	SAY-WHAT:

The	REST	 of	 (TAKE	A	NAP)	 is	 (A	NAP).	Consing	 the	 symbol	WHAT
onto	that	yields	(WHAT	A	NAP).

As	you	can	see	now,	the	SAY-WHAT	function	doesn’t	really	replace	any
part	of	the	list.	What	it	does	is	generate	a	new	list	by	making	a	new	cons	cell
whose	CDR	half	points	to	a	portion	of	the	old	list.	The	input	to	SAY-WHAT
and	the	result	it	returns	are	both	shown	below.
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EXERCISES
2.20.	What	results	are	returned	by	the	following?

2.21.	 Write	 a	 function	 that	 takes	 four	 inputs	 and	 returns	 a	 two-element
nested	list.	The	first	element	should	be	a	list	of	the	first	two	inputs,	and
the	second	element	a	list	of	the	last	two	inputs.

2.22.	Suppose	we	wanted	to	make	a	function	called	DUO-CONS	that	added
two	elements	 to	 the	front	of	a	 list.	Remember	 that	 the	regular	CONS
function	adds	only	one	element	to	a	list.	DUO-CONS	would	be	a	func‐
tion	 of	 three	 inputs.	 For	 example,	 if	 the	 inputs	 were	 the	 symbol
PATRICK,	 the	 symbol	 SEYMOUR,	 and	 the	 list	 (MARVIN),	 DUO-
CONS	would	return	the	list	(PATRICK	SEYMOUR	MARVIN).	Show
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how	to	write	the	DUO-CONS	function.

2.23.	TWO-DEEPER	is	a	function	that	surrounds	its	input	with	two	levels	of
parentheses.	TWO-DEEPER	of	MOO	is	((MOO)).	TWO-DEEPER	of
(BOW	 WOW)	 is	 (((BOW	 WOW))).	 Show	 how	 to	 write	 TWO-
DEEPER	using	LIST.	Write	another	version	using	CONS.

2.24.	What	built-in	Lisp	function	would	extract	the	symbol	NIGHT	from	the
list	(((GOOD))	((NIGHT)))?

2.15	LIST	PREDICATES
The	LISTP	predicate	returns	T	if	its	input	is	a	list.	LISTP	returns	NIL	for	non-
lists.

The	CONSP	predicate	returns	T	if	its	input	is	a	cons	cell.	CONSP	is	almost
the	same	as	LISTP;	the	difference	is	in	their	treatment	of	NIL.	NIL	is	a	list,
but	it	is	not	a	cons	cell.

The	ATOM	predicate	 returns	T	 if	 its	 input	 is	 anything	 other	 than	 a	 cons
cell.	ATOM	and	CONSP	are	opposites;	when	one	returns	T,	the	other	always
returns	NIL.
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The	 word	 “atom”	 comes	 from	 the	 Greek	 atornos,	 meaning	 indivisible.
Numbers	and	 symbols	are	atomic	because	 they	cannot	be	 taken	apart.	Non‐
empty	lists	aren’t	atomic:	FIRST	and	REST	take	them	apart.

The	NULL	predicate	returns	T	if	its	input	is	NIL.	Its	behavior	is	the	same
as	 the	 NOT	 predicate.	 By	 convention,	 Lisp	 programmers	 reserve	 NOT	 for
logical	operations:	changing	 true	 to	 false	and	 false	 to	 true.	They	use	NULL
when	they	want	to	test	whether	a	list	is	empty.

SUMMARY
This	chapter	introduced	the	most	versatile	data	type	in	Lisp:	lists.	Lists	have
both	 a	 printed	 and	 an	 internal	 representation.	 They	 may	 contain	 numbers,
symbols,	or	other	lists	as	elements.

We	 can	 take	 lists	 apart	 using	CAR	and	CDR	 (“first”	 and	 “rest”)	 and	put
them	together	with	CONS	or	LIST.	The	LENGTH	function	counts	the	num‐
ber	of	 elements	 in	 a	 list,	which	 is	 the	 same	as	 its	 number	of	 top-level	 cons
cells.

The	important	points	about	CAR	and	CDR	are:

•	CAR	and	CDR	accept	only	lists	as	input.

•	FIRST	and	REST	are	the	same	as	CAR	and	CDR.

•	SECOND	and	THIRD	are	the	same	as	CADR	and	CADDR.

•	Common	Lisp	provides	built-in	C...R	functions	for	all	combinations	of
CAR	and	CDR	up	to	and	including	four	As	and	Ds.

The	symbol	NIL	has	several	interesting	properties:
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•	NIL	is	a	symbol.	It	is	the	only	way	to	say	“no”	or	“false”	in	Lisp.

•	NIL	is	a	list.	It	is	the	empty	list;	its	LENGTH	is	zero.

•	NIL	is	the	only	Lisp	object	that	is	both	a	symbol	and	a	list.

•	 NIL	 marks	 the	 end	 of	 a	 cons	 cell	 chain.	 When	 lists	 are	 printed	 in
parenthesis	notation,	the	NILs	at	the	end	of	chains	are	omitted	by	con‐
vention.

•	NIL	and	()	are	interchangeable	notations	for	the	same	object.

•	The	CAR	and	CDR	of	NIL	are	defined	to	be	NIL.

REVIEW	EXERCISES
2.25.	Why	do	cons	cells	and	the	CONS	function	share	the	same	name?

2.26.	What	do	these	two	functions	do	when	given	the	input	(A	B	C)?

2.27.	When	does	the	internal	representation	of	a	list	involve	more	cons	cells
than	the	list	has	elements?

2.28.	Using	just	CAR	and	CDR,	is	it	possible	to	write	a	function	that	returns
the	last	element	of	a	list,	no	matter	how	long	the	list	is?	Explain.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
List	 functions:	 FIRST,	 SECOND,	 THIRD,	 FOURTH,	 REST,	 CAR,	 CDR,
CONS,	LIST,	LENGTH.

Compositions	of	CAR	and	CDR:	CADR,	CADDR,	and	so	on.
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Predicates:	LISTP,	CONSP,	ATOM,	NULL.

2	Advanced	Topics

2.16	UNARY	ARITHMETIC	WITH	LISTS
Lists	can	be	used	to	do	unary	(“base	one”)	arithmetic.	In	this	system,	numbers
are	represented	by	lists	of	tally	symbols,	like	the	marks	a	prisoner	might	make
on	the	wall	of	his	cell	to	record	the	passage	of	time.	The	number	1	is	repre‐
sented	by	one	tally,	the	number	2	by	two	tallies,	and	so	on.	We	can	represent
0	by	no	tallies.	We	will	not	consider	negative	numbers.

Let’s	use	X	as	our	tally	symbol.	We	can	write	down	unary	numbers	as	lists
of	Xs:

Having	defined	unary	numbers	in	terms	of	lists,	we	may	proceed	to	investi‐
gate	what	effects	list-manipulation	functions	have	on	them.	The	REST	func‐
tion	subtracts	1	in	unary,	just	as	a	SUB1	function	defined	using	-	would	take	1
away	from	an	ordinary	integer.	Let’s	subtract	1	from	3:

Subtracting	1	from	1	yields	0:

But	subtracting	1	from	0	yields	0,	not	-1.	Remember	that	our	unary	number
scheme	was	only	defined	for	nonnegative	integers.
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The	LENGTH	function	converts	unary	numbers	to	regular	integers.	Here	is
an	instance	of	LENGTH	operating	on	the	unary	number	(X	X	X	X):

Not	 all	 primitive	 list	 functions	 translate	 into	 interesting	 unary	 arithmetic
functions.	The	CAR	function	does	not,	for	example.	However,	it	is	possible	to
write	our	own	nonprimitive	functions	that	perform	useful	unary	operations.

EXERCISES
2.29.	Write	 a	 function	UNARY-ADD	1	 that	 increases	 a	 unary	 number	 by

one.

2.30.	What	does	the	CDDR	function	do	to	unary	numbers?

2.31.	Write	a	UNARY-ZEROP	predicate.

2.32.	Write	a	UNARY-GREATERP	predicate,	analogous	to	the	>	predicate
on	ordinary	numbers.

2.33.	CAR	can	be	viewed	as	a	predicate	on	unary	numbers.	 Instead	of	 re‐
turning	T	 or	NIL,	CAR	 returns	X	 or	NIL.	Remember	 that	X	 or	 any
other	non-NIL	object	 is	 taken	as	 true	 in	Lisp.	What	question	about	a
unary	number	does	CAR	answer?

2.17	NONLIST	CONS	STRUCTURES
A	proper	list	 is	a	cons	cell	chain	ending	in	NIL.	The	convention	is	 to	omit
this	NIL	when	writing	lists	 in	parenthesis	notation,	so	the	structure	below	is
written	(A	B	C).

There	 are	 other	 sorts	 of	 cons	 cell	 structures	 that	 are	 not	 proper	 lists,	 be‐
cause	their	chains	do	not	end	in	NIL.	How	can	the	structure	below	be	repre‐
sented	in	parenthesis	notation?

79



When	printing	 a	 list	 in	 parenthesis	 notation,	Lisp	 starts	 by	printing	 a	 left
parenthesis	followed	by	all	the	elements,	separated	by	spaces.	Then,	if	the	list
ends	in	NIL,	Lisp	prints	a	right	parenthesis.	If	it	does	not	end	in	NIL,	before
printing	the	right	parenthesis	Lisp	prints	a	space,	a	period,	another	space,	and
the	 atom	 that	 ends	 the	 chain.	 The	 list	 above,	 which	 is	 called	 a	dotted	 list
rather	than	a	proper	list,	is	written	like	this:

So	far,	the	only	way	we	have	to	produce	a	cons	cell	structure	that	doesn’t
end	in	NIL	is	to	use	CONS.

The	result	of	the	CONS	of	A	and	B	is	called	a	dotted	pair.	It	is	written	(A	.
B)	in	parenthesis	notation,	while	in	cons	cell	notation	it	looks	like	this:

A	dotted	pair	is	a	single	cons	cell	whose	CDR	is	not	NIL.	The	dotted	list	(A
B	.	C)	contains	two	cons	cells,	and	is	constructed	this	way:

In	cons	cell	notation,	(A	B	.	C)	looks	like	this:
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Although	LIST	is	often	a	more	convenient	tool	than	CONS	for	constructing
lists,	the	LIST	function	can	only	build	proper	lists,	since	it	always	constructs	a
chain	ending	in	NIL.	For	dotted	lists	CONS	must	be	used.

EXERCISES
2.34.	Write	an	expression	involving	cascaded	calls	to	CONS	to	construct	the

dotted	list	(ABC.	D).

2.35.	Draw	the	dotted	 list	 ((A	 .	B)	(C	 .	D))	 in	cons	cell	notation.	Write	an
expression	to	construct	this	list.

2.18	CIRCULAR	LISTS
Dotted	lists	may	look	a	bit	strange,	but	even	stranger	structures	are	possible.
For	example,	here	is	a	circular	list:

If	 the	 computer	 tried	 to	 display	 this	 list	 in	 printed	 form,	 one	 of	 several
things	might	 happen,	 depending	on	 the	 setting	 of	 certain	 printer	 parameters
that	will	be	discussed	later.	The	computer	could	go	into	an	infinite	loop.	Or	it
might	try	to	print	part	of	the	list,	using	ellipsis	(three	dots),	as	in:

This	way	of	writing	the	list	is	incorrect,	because	it	suggests	that	the	list	con‐
tains	more	than	ten	elements,	when	in	fact	it	contains	only	three.

Common	 Lisp	 does	 provide	 a	 completely	 correct	 way	 to	 print	 circular
structures,	 using	 something	 called	 “sharp-equal	 notation,”	 based	 on	 the	 #
(sharp-sign)	character.	Essentially,	to	write	circular	structures	we	need	a	way
to	assign	a	label	to	a	cons	cell	so	we	can	refer	back	to	it	later.	(For	example,
in	the	circular	list	above,	the	CDR	of	the	third	cons	cell	refers	back	to	the	first
cell.)	We	will	use	integers	for	labels,	and	the	notation	#n=	to	label	an	object.
We’ll	write	#n#	to	refer	to	the	object	later	on	in	the	expression.	The	list	above
is	therefore	written	this	way:

EXERCISE
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2.36.	 Prove	by	 contradiction	 that	 this	 list	 cannot	 be	 constructed	using	 just
CONS.	Hint:	Think	about	the	order	in	which	the	cells	are	created.

An	even	more	deviant	structure	 is	 the	one	below,	 in	which	 the	CAR	of	a
cons	cell	points	directly	back	to	the	cell	itself.

If	the	computer	tried	to	print	this	structure,	it	might	end	up	printing	an	infinite
series	of	left	parentheses.	But	if	the	printer	is	instructed	to	use	sharp-equal	no‐
tation,	the	list	would	print	this	way:

2.19	LENGTH	OF	NONLIST	CONS
STRUCTURES
The	 LENGTH	 of	 a	 list	 is	 the	 number	 of	 top-level	 cons	 cells	 in	 the	 chain.
Therefore	 the	 length	of	 (A	B	C	 .	D)	 is	3,	not	4.	 It	 is	 the	same	length	as	 the
chain	(A	B	C),	which	can	also	be	written	(ABC.	NIL).

If	given	a	circular	 list	such	as	#1=(A	B	C	.	#1#)	as	 input,	LENGTH	may
not	 return	 a	value	 at	 all.	 In	most	 implementations	 it	will	 go	 into	 an	 infinite
loop.

*What	each	cons	cell	actually	is,	internally,	is	a	small	piece	of	memory,	split	in	two,	big	enough	to	hold
two	addresses	(pointers)	to	other	places	in	memory	where	the	actual	data	(like	RED,	or	NIL,	or	another
cons	cell)	is	stored.	On	most	computers	pointers	are	four	bytes	long,	so	each	cons	cells	is	eight	bytes.

**Note	to	instructors:	If	students	are	already	using	the	computer,	this	would	be	a	good	time	to	introduce
the	SDRAW	tool	appearing	in	the	appendix.
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3

EVAL	Notation

3.1	INTRODUCTION
Before	 progressing	 further	 in	 our	 study	 of	 Lisp,	we	must	 switch	 to	 a	more
flexible	notation,	called	EVAL	notation.	Instead	of	using	boxes	to	represent
functions,	we	will	use	lists.	Box	notation	is	easy	to	read,	but	EVAL	notation
has	several	advantages:

•	Programming	concepts	that	are	too	sophisticated	to	express	in	box	no‐
tation	can	be	expressed	in	EVAL	notation.

•	EVAL	notation	is	easy	to	type	on	a	computer	keyboard;	box	notation
is	not.

•	 From	 a	 mathematical	 standpoint,	 representing	 functions	 as	 ordinary
lists	 is	 an	 elegant	 thing	 to	 do,	 because	 then	we	 can	 use	 exactly	 the
same	notation	for	functions	as	for	data.

•	 In	 Lisp,	 functions	 are	 data,	 and	 EVAL	 notation	 allows	 us	 to	 write
functions	that	accept	other	functions	as	inputs.	We’ll	explore	this	pos‐
sibility	further	in	chapter	7.

•	When	you	have	mastered	EVAL	notation,	you	will	know	most	of	what
you	need	to	begin	conversing	in	Lisp	with	a	computer.

3.2	THE	EVAL	FUNCTION
The	EVAL	function	is	the	heart	of	Lisp.	EVAL’s	job	is	to	evaluate	Lisp	ex‐
pressions	to	compute	their	result.	Most	expressions	consist	of	a	function	fol‐
lowed	by	a	set	of	inputs.	If	we	give	EVAL	the	expression	(+	2	3),	for	exam‐
ple,	it	will	invoke	the	built-in	function	+	on	the	inputs	2	and	3,	and	+	will	re‐
turn	5.	We	therefore	say	the	expression	(+2	3)	evaluates	to	5.
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From	now	on,	 instead	of	drawing	an	EVAL	box	we’ll	 just	 use	 an	 arrow.
The	preceding	example	will	be	written	like	this:

When	we	want	to	be	slightly	more	verbose,	we’ll	use	a	two-headed	arrow:

And	when	we	want	to	show	as	much	detail	as	possible,	we	will	use	a	three-
headed	arrow,	like	this:

The	meanings	of	 the	 thin	and	thick	lines	will	be	explained	later.	Here	are
some	more	examples	of	expressions	in	EVAL	notation:

3.3	EVAL	NOTATION	CAN	DO	ANYTHING	BOX
NOTATION	CAN	DO
It	should	be	obvious	that	any	expression	we	write	in	box	notation	can	also	be
written	in	EVAL	notation.	The	expression

can	be	represented	in	EVAL	notation	as
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Similarly,	the	EVAL	notation	expression

is	represented	in	box	notation	as

You	may	notice	that	EVAL	notation	appears	to	read	opposite	to	box	nota‐
tion,	 in	other	words,	 if	you	 read	 the	box	notation	expression	above	as	“five
six,	 EQUAL,	 NOT,”	 the	 corresponding	 EVAL	 notation	 expression	 reads
“NOT	EQUAL	five	six.”	 In	 the	box	notation	version	 the	computation	starts
on	the	left	and	flows	rightward.	In	EVAL	notation	the	inputs	to	a	function	are
processed	 left	 to	 right,	 but	 since	 expressions	 are	 nested,	 evaluation	 actually
starts	 at	 the	 innermost	 expression	 and	 flows	 outward,	 making	 the	 order	 of
function	calls	in	this	example	right	to	left.

3.4	EVALUATION	RULES	DEFINE	THE
BEHAVIOR	OF	EVAL
EVAL	works	by	following	a	set	of	evaluation	rules.	One	rule	is	that	numbers
and	 certain	 other	 objects	 are	 “self-evaluating,”	 meaning	 they	 evaluate	 to
themselves.	The	special	symbols	T	and	NIL	also	evaluate	to	themselves.

Evaluation	Rule	 for	Numbers,	 T,	 and	NIL:	Numbers,	 and	 the	 symbols	 T
and	NIL,	evaluate	to	themselves.

There	is	also	a	rule	for	evaluating	lists.	The	first	element	of	a	list	specifies	a
function	to	call;	the	remaining	elements	are	the	unevaluated	arguments	to	the
function.	These	arguments	must	be	evaluated,	in	left	 to	right	order,	 to	deter‐
mine	 the	 inputs	 to	 the	 function.	 For	 example,	 to	 evaluate	 the	 expression
(ODDP	(+	1	6))	the	first	thing	we	must	do	is	evaluate	ODDP’s	argument:	the
list	(+	1	6).	To	do	that,	we	start	by	evaluating	the	arguments	to	+.	1	evaluates
to	1,	and	6	evaluates	to	6.	Now	we	can	call	the	+	function	with	those	inputs
and	get	back	the	result	7.	The	7	then	serves	as	the	input	to	ODDP,	which	re‐
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turns	T.

Evaluation	Rule	for	Lists:	The	first	element	of	the	list	specifies	a	function
to	 be	 called.	 The	 remaining	 elements	 specify	 arguments	 to	 the	 function.
The	function	is	called	on	the	evaluated	arguments.

The	following	diagram,	called	an	evaltrace	diagram,	shows	how	the	eval‐
uation	of	 (ODDP	(+	1	6))	 takes	place.	Notice	 that	evaluation	proceeds	from
the	inner	nested	expression,	(+	1	6),	to	the	outer	expression,	ODDP.	This	in‐
ner-to-outer	quality	is	reflected	in	the	shape	of	the	evaltrace	diagram.

Here’s	another	example	of	the	arguments	to	a	function	getting	evaluated	be‐
fore	the	function	is	called:	an	evaltrace	for	the	expression	(EQUAL	(+	7	5)	(*
2	8)):

EXERCISES
3.1.	What	does	(NOT	(EQUAL	3	(ABS	-3)))	evaluate	to?

3.2.	Write	an	expression	in	EVAL	notation	to	add	8	to	12	and	divide	the	re‐
sult	by	2.

3.3.	You	can	square	a	number	by	multiplying	it	by	itself.	Write	an	expres‐
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sion	in	EVAL	notation	to	add	the	square	of	3	and	the	square	of	4.

3.4.	Draw	an	evaltrace	diagram	for	each	of	the	following	expressions.

3.5	DEFINING	FUNCTIONS	IN	EVAL
NOTATION
In	 box	notation	we	defined	 a	 function	 by	 showing	what	went	 on	 inside	 the
box.	The	 inputs	 to	 the	 function	were	depicted	as	arrows,	 In	EVAL	notation
we	use	lists	to	define	functions,	and	we	refer	to	the	function’s	arguments	by
giving	them	names.	We	can	name	the	inputs	to	box	notation	functions	too,	by
writing	the	name	next	to	the	arrow	like	this:

Definition	of	AVERAGE:

The	AVERAGE	function	is	defined	in	EVAL	notation	this	way:

DEFUN	is	a	special	kind	of	 function,	called	a	macro	function,	 that	does
not	evaluate	its	arguments.	Therefore	they	do	not	have	to	be	quoted.	DEFUN
is	used	to	define	other	functions.	The	first	input	to	DEFUN	is	the	name	of	the
function	being	defined.	The	second	input	is	the	argument	list:	It	specifies	the
names	the	function	will	use	to	refer	to	its	arguments.	The	remaining	inputs	to
DEFUN	define	the	body	of	the	function:	what	goes	on	“inside	the	box.”	By
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the	way,	DEFUN	stands	for	defmQ	function.

Once	 you’ve	 typed	 the	 function	 definition	 for	AVERAGE	 into	 the	 com‐
puter,	you	can	call	AVERAGE	using	EVAL	notation.	When	you	 type	(AV‐
ERAGE	6	8),	for	example,	AVERAGE	uses	6	as	the	value	for	X	and	8	as	the
value	for	Y.	The	result,	naturally,	is	7.0.

Here	is	another	example	of	function	definition	with	DEFUN:

The	function’s	name	is	SQUARE.	Its	argument	 list	 is	 (N),	meaning	it	ac‐
cepts	one	argument	which	it	refers	to	as	N.	The	body	of	the	function	is	the	ex‐
pression	(*	N	N).	The	right	way	to	read	this	definition	aloud	(or	in	your	head)
is:	“DEFUN	SQUARE	of	N,	times	N	N.”

Almost	any	symbol	except	T	or	NIL	can	serve	as	the	name	of	an	argument.
X,	 Y,	 and	 N	 are	 commonly	 used,	 but	 BOZO	 or	 ARTICHOKE	would	 also
work.	Functions	are	more	readable	when	 their	argument	names	mean	some‐
thing.	A	function	 that	computed	 the	 total	cost	of	a	merchandise	order	might
name	its	arguments	QUANTITY,	PRICE,	and	HANDLING-CHARGE.

EXERCISES
3.5.	Write	definitions	for	HALF,	CUBE,	and	ONEMOREP	using	DEFUN.

(The	CUBE	function	should	take	a	number	n	as	input	and	return	w3.)

3.6.	Define	a	function	PYTHAG	that	takes	two	inputs,	x	and	y,	and	returns
the	square	root	of	x2+y2.	You	may	recognize	this	as	Pythagoras’s	for‐
mula	 for	 computing	 the	 length	 of	 the	 hypotenuse	 of	 a	 right	 triangle
given	the	lengths	of	the	other	two	sides.	(PYTHAG	3	4)	should	return
5.0.

3.7.	Define	a	function	MILES-PER-GALLON	that	takes	three	inputs,	called
INITIAL-ODOMETER-READING,	 FINAL-ODOMETER-READ‐
ING,	 and	 GALLONS-CONSUMED,	 and	 computes	 the	 number	 of
miles	traveled	per	gallon	of	gas.

3.8.	How	would	you	define	SQUARE	in	box	notation?

3.6	VARIABLES
A	variable	 is	 a	 place	where	 data	 is	 stored.*	Let’s	 consider	 the	AVERAGE
function	again.	When	we	call	AVERAGE,	Lisp	creates	two	new	variables	to
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hold	the	inputs	so	that	the	expression	in	the	body	can	refer	to	them	by	name.
The	names	of	the	variables	are	X	and	Y.	It	is	important	to	distinguish	here	be‐
tween	variables	and	symbols.	Variables	are	not	symbols;	variables	are	named
by	symbols.	Functions	are	also	named	by	symbols.

The	value	of	a	variable	is	the	data	it	holds.	When	we	evaluate	(AVERAGE
3	7),	Lisp	creates	variables	named	X	and	Y	and	assigns	them	the	values	3	and
7,	 respectively.	 In	 the	body	of	AVERAGE,	 the	 symbol	X	 refers	 to	 the	 first
variable	and	the	symbol	Y	refers	 to	 the	second.	These	variables	can	only	be
referenced	 inside	 the	body;	outside	of	AVERAGE	 they	are	 inaccessible.	Of
course	the	symbols	X	and	Y	still	exist	outside	of	AVERAGE,	but	they	don’t
have	 the	 same	meanings	outside	as	 they	have	 inside.	The	evaltrace	diagram
below	shows	how	AVERAGE	computes	its	result.

Now	I	can	explain	the	meaning	of	the	thick	and	thin	arrows.	A	thin	arrow
connects	an	expression	with	its	value.	You	see,	for	example,	that	the	value	of
the	 expression	 (+	X	Y)	 is	 10.	A	 thick	 arrow	 is	 used	 to	 show	entry	 into	 the
body	 of	 a	 function	 and	 exit	 from	 that	 body.	Within	 the	 scope	 of	 the	 thick
arrow	we	 show	what	 goes	 on	 inside	 the	 body.	 In	 the	 body	 of	AVERAGE,
variables	are	created	and	expressions	are	evaluated.	We	can’t	 see	 inside	 the
bodies	of	+	or	/	because	they’re	primitive,	so	there’s	not	much	point	in	using	a
thick	arrow	for	those	functions,	although	we	could	if	we	wanted	to	show	their
entry	and	exit.	For	user-defined	functions	like	AVERAGE	we	start	with	a	thin
arrow	showing	the	expression	generating	the	function	call,	and	attach	to	it	a
thick	arrow	showing	the	entry	to	and	exit	from	the	body.	The	abstract	syntax
for	this	kind	of	display	is:
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Evaltrace	 notation	 is	 flexible:	We	 can	 suppress	 detail	 when	 appropriate,
such	as	by	not	showing	function	bodies.	Another	way	to	simplify	an	evaltrace
is	 to	 not	 display	 the	 evaluation	 of	 numbers,	 since	 they	 always	 evaluate	 to
themselves.	Sometimes	we	will	also	omit	the	evaluation	of	symbols.	Here	is
an	evaltrace	of	ONEMOREP	using	a	fairly	brief	format:

3.7	EVALUATING	SYMBOLS
The	names	a	function	uses	for	its	arguments	are	independent	of	the	names	any
other	function	uses.	Two	functions	such	as	HALF	and	SQUARE	might	both
call	 their	argument	N,	but	when	N	appears	 in	HALF	it	can	only	refer	 to	 the
input	of	HALF;	it	has	no	relation	to	the	use	of	N	in	SQUARE.

The	rule	EVAL	uses	for	evaluating	symbols	is	simple:

Evaluation	Rule	for	Symbols:	A	symbol	evaluates	to	the	value	of	the	vari‐
able	it	refers	to.

Outside	 the	 bodies	 of	 HALF	 and	 SQUARE,	 the	 symbol	 N	 refers	 to	 the
global	variable	named	N.	A	global	variable	is	one	that	is	not	associated	with
any	function.	PI	is	an	example	of	a	global	variable	that	is	built	in	to	Common
Lisp.

Informally,	Lisp	programmers	sometimes	talk	of	evaluating	variables.	They
might	say	“variables	evaluate	to	their	values.”	What	they	really	mean	is	that	a
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symbol	evaluates	 to	 the	value	of	 the	variable	 it	 refers	 to.	Since	 there	can	be
many	variables	named	N,	which	one	you	get	depends	on	where	the	symbol	N
appears.	If	 it	appears	 inside	the	body	of	SQUARE,	you	get	 the	variable	that
holds	the	input	to	SQUARE.	If	it	appears	outside	of	any	function,	you	get	the
global	variable	named	N.

Lisp	will	complain	if	you	ask	it	for	the	value	of	a	variable	that	has	not	been
assigned	a	value.	We	refer	to	this	as	an	“unassigned	variable	error.”**	For	ex‐
ample,	 there	 is	 no	 built-in	 variable	 named	 EGGPLANT	 in	 Common	 Lisp.
Evaluating	the	symbol	EGGPLANT	causes	an	unassigned	variable	error,	un‐
less,	of	course,	you	evaluate	it	inside	the	body	of	some	function	that	calls	one
of	its	inputs	EGGPLANT.

There	is	also	no	built-in	variable	named	N	in	Common	Lisp,	so	evaluating	N
outside	the	body	of	HALF	or	SQUARE	will	cause	the	same	error.

3.8	USING	SYMBOLS	AND	LISTS	AS	DATA
Suppose	we	want	to	call	EQUAL	on	the	symbols	KIRK	and	SPOCK.	In	box
notation	this	was	easy,	because	symbols	and	lists	were	always	treated	as	data.
But	in	EVAL	notation	symbols	are	used	to	name	variables,	so	if	we	write

Lisp	 will	 think	 we	 are	 trying	 to	 compare	 the	 value	 of	 the	 global	 variable
named	KIRK	with	the	value	of	the	global	variable	named	SPOCK.	Since	we
haven’t	given	any	values	to	these	variables,	this	will	cause	an	error:

What	we	 really	want	 to	do	 is	compare	 the	symbols	 themselves.	We	can	 tell
Lisp	to	treat	KIRK	and	SPOCK	as	data	rather	than	as	variable	references	by
putting	a	quote	before	each	one.

Because	the	symbols	T	and	NIL	evaluate	to	themselves,	they	don’t	need	to	be
quoted	to	use	them	as	data.	Most	other	symbols	do,	though.

Whether	symbols	are	used	as	data	in	a	function	definition,	or	are	passed	as	in‐
puts	when	the	function	is	called,	they	must	be	quoted	to	prevent	evaluation.
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Lists	 also	need	 to	be	quoted	 to	use	 them	as	data;	otherwise	Lisp	will	 try	 to
evaluate	them,	which	typically	results	in	an	“undefined	function”	error.

Evaluation	Rule	for	Quoted	Objects:	A	quoted	object	evaluates	to	the	ob‐
ject	itself	without	the	quote.

Here	are	 some	more	examples	of	 the	difference	between	quoting	and	not
quoting	a	list:

The	error	in	the	last	example	occurs	because	ODDP	is	called	with	the	list
(+	1	2)	as	input.	Quoting	prevented	the	list	from	being	evaluated.	ODDP	can’t
accept	lists	as	inputs;	it	can	only	accept	numbers.

Now	let’s	see	an	evaltrace	of	an	expression	involving	quotes:
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3.9	THE	PROBLEM	OF	MISQUOTING
It	is	easy	for	beginning	Lisp	programmers	to	get	confused	about	quoting	and
either	put	quotes	in	the	wrong	place	or	leave	them	out	where	they	are	needed.
The	 error	messages	Lisp	gives	 are	 a	 good	hint	 about	what	went	wrong.	An
unassigned	variable	or	undefined	function	error	usually	indicates	that	a	quote
was	left	out:

On	the	other	hand,	wrong-type	input	errors	or	funny	results	may	be	an	indi‐
cation	that	a	quote	was	put	in	where	it	doesn’t	belong.

When	we	quote	a	list,	the	quote	must	go	outside	the	list	to	prevent	the	list
from	being	 evaluated.	 If	we	 put	 the	 quote	 inside	 the	 list,	 EVAL	will	 try	 to
evaluate	the	list	and	an	error	will	result:

3.10	THREE	WAYS	TO	MAKE	LISTS
We	have	three	ways	to	make	lists	using	EVAL	notation.	We	can	write	the	list
out	directly,	using	a	quote	to	prevent	its	evaluation,	like	this:

Or	we	can	use	LIST	or	CONS	to	build	the	list	up	from	individual	elements.	If
we	use	this	method,	we	must	quote	each	argument	to	the	function:
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One	advantage	of	building	the	list	up	from	individual	elements	is	that	some	of
the	elements	can	be	computed	rather	than	specified	directly.

If	we	quote	a	list,	nothing	inside	it	will	get	evaluated:

We	have	seen	several	ways	things	can	go	wrong	if	quotes	are	not	used	prop‐
erly	when	building	a	list:

EXERCISES
3.9.	The	following	expressions	evaluate	without	any	errors.	Write	down	the

results.

3.10.	The	following	expressions	all	result	in	errors.	Write	down	the	type	of
error	 that	 occurs,	 explain	 how	 the	 error	 arose	 (for	 example,	missing
quote,	quote	in	wrong	place),	and	correct	the	expression	by	changing
only	the	quotes.
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3.11.	Define	a	predicate	called	LONGER-THAN	that	takes	two	lists	as	input
and	returns	T	if	the	first	list	is	longer	than	the	second.

3.12.	Write	a	function	ADDLENGTH	that	takes	a	list	as	input	and	returns	a
new	list	with	the	length	of	 the	input	added	onto	the	front	of	 it.	 If	 the
input	is	(MOO	GOO	GAI	PAN),	the	output	should	be	(4	MOO	GOO
GAI	PAN).	What	is	the	result	of	(ADDLENGTH	(ADDLENGTH	‘(A
B	C)))?

3.13.	Study	this	function	definition:

How	many	arguments	does	this	function	require?	What	are	the	names
of	 the	 arguments?	 What	 is	 the	 result	 of	 (CALL-UP	 ‘FRED
‘WANDA)?

3.14.	Here	is	a	variation	on	the	CALL-UP	function	from	the	previous	prob‐
lem.	What	is	the	result	of	(CRANK-CALL	‘WANDA	‘FRED)?

3.11	FOUR	WAYS	TO	MISDEFINE	A	FUNCTION
Beginning	users	of	EVAL	notation	sometimes	have	trouble	writing	syntacti‐
cally	correct	function	definitions.	Let’s	take	a	close	look	at	a	proper	definition
for	the	function	INTRO:

Notice	that	INTRO’s	argument	list	consists	of	two	symbols,	X	and	Y,	with
neither	quotes	nor	parentheses	around	them,	and	the	variables	X	and	Y	are	not
quoted	or	parenthesized	in	the	body,	either.
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The	first	way	to	misdefine	a	function	is	to	put	something	other	than	plain,
unadorned	symbols	in	the	function’s	argument	list.	If	we	put	quotes	or	extra
levels	of	parentheses	in	the	argument	list,	the	function	won’t	work.	Beginners
are	 sometimes	 tempted	 to	 do	 this	 when	 they	 write	 a	 function	 that	 is	 to	 be
called	with	a	list	instead	of	a	symbol	as	input.	This	is	always	a	mistake.

The	second	way	to	misdefine	a	function	is	to	put	parentheses	around	vari‐
ables	where	they	appear	in	the	body.	Only	function	calls	should	have	paren‐
theses	around	them.	Putting	parentheses	around	a	variable	will	cause	an	unde‐
fined	function	error:

The	third	way	to	misdefine	a	function	is	to	quote	a	variable.	Symbols	must
be	 left	 unquoted	when	 they	 refer	 to	 variables.	 Here	 is	 an	 example	 of	what
happens	when	variables	are	quoted:

The	 fourth	 way	 to	 misdefine	 a	 function	 is	 to	 not	 quote	 something	 that
should	be	quoted.	In	the	INTRO	function,	the	symbols	X	and	Y	are	variables
but	THIS	and	IS	are	not.	If	we	don’t	quote	THIS	and	IS,	an	unassigned	vari‐
able	error	results.

3.12	MORE	ABOUT	VARIABLES
In	Lisp,	a	function	creates	variables	automatically	when	it	is	is	invoked;	they
(usually)	 go	 away	when	 the	 function	 returns.	 Consider	 the	DOUBLE	 func‐
tion,	which	creates	a	variable	named	N	every	time	we	call	it:

Outside	of	DOUBLE,	the	symbol	N	refers	to	the	global	variable	named	N.
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The	global	variable	N	has	not	been	assigned	any	value,	 so	evaluating	N	 re‐
sults	in	an	error.

Suppose	we	evaluate	(DOUBLE	3).	Inside	DOUBLE,	the	symbol	N	refers
to	a	newly	created	variable	 that	holds	 the	 input	 to	DOUBLE,	not	 the	global
variable	N.	The	evaltrace	diagram	below	illustrates	this.

If	we	call	DOUBLE	again,	for	example,	(DOUBLE	8),	a	brand-new	vari‐
able	 named	N	will	 be	 created	with	 a	 value	 of	 8.	 Outside	 of	 DOUBLE	 the
name	N	still	refers	to	the	global	variable	N,	which	still	has	no	value.

Now	 let’s	 try	 an	 example	 with	 two	 variables.	 Here	 is	 a	 definition	 for
QUADRUPLE	in	terms	of	DOUBLE:

Both	DOUBLE	and	QUADRUPLE	call	their	input	N.	Suppose	we	evaluate
the	expression	(QUADRUPLE	5)	as	in	the	diagram	on	the	next	page.	When
we	enter	QUADRUPLE,	Lisp	creates	a	new	variable	N	with	value	5	and	eval‐
uates	the	expression	(DOUBLE	(DOUBLE	N)).	What	happens	when	we	call
DOUBLE	with	 input	 5?	DOUBLE	 creates	 its	 own	 variable	N,	 bound	 to	 its
own	input,	which	is	5.	The	body	of	DOUBLE	evaluates	to	10.	Now	we	have
evaluated	 (DOUBLE	 N),	 so	 we	 can	 use	 that	 result	 to	 evaluate	 (DOUBLE
(DOUBLE	N)).	DOUBLE	is	called	again,	this	time	with	input	10,	so	it	creates
yet	 another	 variable	 named	N,	 binds	 it	 to	 10,	 and	 evaluates	 (*	N	 2).	After
DOUBLE	returns	20,	QUADRUPLE	returns	20	as	 its	 result,	and	we	end	up
back	at	top	level	again,	where	the	name	N	refers	to	the	global	variable	N,	still
with	no	value	assigned.
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EXERCISES
3.15.	Consider	the	following	function,	paying	close	attention	to	the	quotes:

The	symbol	WORD	is	used	two	different	ways	in	this	function.	What
are	they?	What	is	the	result	of	(SCRABBLE	‘AARDVARK)?	What	is
the	result	of	(SCRABBLE	‘WORD)?

3.16.	Here’s	a	real	confuser:

What	does	the	following	evaluate	to?	It	will	help	to	write	down	what
value	each	variable	is	bound	to	and,	of	course,	mind	the	quotes!

3.17.	Why	can’t	the	special	symbols	T	or	NIL	be	used	as	variables	in	a	func‐
tion	definition?	(Consider	the	evaluation	rule	for	T	and	NIL	versus	the
rule	for	evaluating	ordinary	symbols.)

SUMMARY
In	 this	 chapter	we	 learned	 EVAL	 notation,	which	 allows	 expressions	 to	 be
represented	as	lists.	Lists	are	interpreted	by	the	EVAL	function	according	to	a
built-in	set	of	evaluation	rules.	The	evaluation	rules	we	learned	were:
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•	Numbers	are	self-evaluating,	meaning	they	evaluate	to	themselves.	So
do	T	and	NIL.

•	When	 evaluating	 a	 list,	 the	 first	 element	 specifies	 a	 function	 to	 call,
and	the	remaining	elements	specify	its	arguments.	The	arguments	are
evaluated	from	left	to	right	to	derive	the	inputs	that	are	passed	to	the
function.

•	Symbols	appearing	anywhere	other	than	the	first	element	of	a	list	are
interpreted	as	variable	references.	A	symbol	evaluates	to	the	value	of
the	variable	it	names.	Exactly	which	variable	a	symbol	is	referring	to
depends	 on	 the	 context	 in	which	 the	 symbol	 appears.	Variables	 that
haven’t	been	assigned	values	cause	“unassigned	variable”	errors	when
the	symbol	is	evaluated.

•	A	quoted	list	or	symbol	evaluates	to	itself,	without	the	quote.

A	 list	of	 form	(DEFUN	function-name	 (argument-list)	 function-body)	de‐
fines	a	function.	DEFUN	is	a	special	kind	of	function;	its	inputs	do	not	have
to	be	quoted.	A	function’s	argument	list	is	a	list	of	symbols	giving	names	to
the	function’s	inputs.	Inside	the	body	of	the	function,	the	variables	that	hold
the	function’s	inputs	can	be	referred	to	by	these	symbols.

REVIEW	EXERCISES
3.18.	Name	two	advantages	of	EVAL	notation	over	box	notation.

3.19.	Evaluate	each	of	the	following	lists.	If	the	list	causes	an	error,	tell	what
the	error	is.	Otherwise,	write	the	result	of	the	evaluation.

3.20.	Here	is	a	mystery	function:

What	result	or	error	is	produced	by	evaluating	each	of	the	following?
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3.21.	What	is	wrong	with	each	of	the	following	function	definitions?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
The	evaluator:	EVAL.

Macro	function	for	defining	new	functions:	DEFUN.

Lisp	on	the	Computer
Congratulations!	Having	made	 it	 successfully	 through	all	 the	pencil-and-pa‐
per	work,	it’s	time	for	you	to	learn	how	to	use	Lisp	on	a	real	computer.	Un‐
fortunately,	I	can’t	give	you	a	detailed	introduction;	there	are	too	many	types
of	computers—and	too	many	implementations	of	Common	Lisp—for	that	to
be	 practical.	You	might	want	 to	 spend	 a	 few	minutes	 glancing	 through	 the
user’s	manuals	for	the	computer	and	Lisp	implementation	you’ll	be	using.	A
better	approach	would	be	to	talk	to	someone	who	is	already	familiar	with	your
machine.

3.13	RUNNING	LISP
The	first	thing	you	need	to	find	out	is	how	to	start	up	Lisp	on	your	computer.
If	you’re	lucky	you	can	just	type	“lisp”	and	hit	the	Return	key,	but	you	might
have	 to	 type	 something	 more	 complicated.	When	 Lisp	 starts	 up	 it	 prints	 a
greeting	message.	Each	 implementation	 has	 its	 own	 style	 of	 greeting,	 but	 a
typical	message	looks	something	like	this:

>

The	 “>“	 character	 that	 appears	 after	 the	 greeting	 is	 called	 a	 top-level
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prompt.	 It	 indicates	 that	 Lisp	 is	 waiting	 for	 you	 to	 type	 something.	 Some
Lisps	use	a	different	prompt	character;	many	use	“*”	(an	asterisk).

The	next	thing	you	need	to	find	out	is	which	control	characters	your	Lisp
uses,	specifically:

•	 How	 do	 you	 delete	 a	 character:	 by	 pressing	 Delete,	 Backspace,	 or
some	other	key?

•	How	do	you	throw	away	a	line	of	input	so	you	can	start	over?	In	some
Lisps	you	can	discard	a	line	before	hitting	Return	by	typing	a	Control-
U.	 (While	 holding	 down	 the	Control	 key,	 press	 the	 “U”	key.)	Other
Lisps	use	a	different	character.

•	 What	 is	 the	 “abort”	 character	 that	 gets	 you	 back	 to	 the	 top-level
prompt?	Many	Lisps	use	Control-G	or	Control-C	for	this	purpose.

While	we’re	on	the	subject	of	special	characters,	remember	that	computers
always	provide	separate	keys	for	the	letter	“O”	and	the	digit	“0,”	and	for	the
letter	“1”	and	the	digit	“1.”	On	conventional	typewriters	it’s	fine	to	type	“O”
for	“0”	or	“1”	for	“1,”	but	when	you	talk	to	a	computer	you	must	be	sure	to
use	the	correct	character	for	what	you	mean.

Finally,	 you	 need	 to	 find	 out	 how	 to	 get	 out	 of	 Lisp	when	 you’re	 done.
Most	 Lisps	 require	 you	 to	 type	 something	 like	 (QUIT)	 or	 (EXIT)	 to	 leave.
Sometimes	an	end-of-file	character	like	Control-D	will	also	work.

3.14	THE	READ-EVAL-PRINT	LOOP
A	computer	running	Lisp	behaves	a	lot	like	a	pocket	calculator.	It	reads	an	ex‐
pression	that	you	type	on	the	keyboard,	evaluates	it	(using	EVAL),	and	prints
the	 result	on	 the	 screen.	Then	 it	prints	 another	prompt	and	waits	 for	you	 to
type	the	next	expression.	This	process	is	called	a	read-eval-print	loop.

Here	is	a	sample	dialog	with	a	computer	in	which	I	define	a	function	and
then	use	 that	 function.	 In	 this	example,	what	 I	 type	appears	after	 the	“>“	 in
lowercase;	the	computer’s	response	is	in	uppercase.	Not	all	Lisps	follow	this
convention,	but	many	do.
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3.15	RECOVERING	FROM	ERRORS
A	very	 important	 thing	 to	 learn	 at	 this	 point	 is	 how	 to	 recover	 from	errors.
First	let’s	consider	typing	errors.	If	after	entering	a	long	expression	I	realize
I’ve	made	a	 typing	error	near	 the	beginning,	 I	may	want	 to	 throw	away	 the
entire	expression	and	start	over.	In	my	Lisp,	the	way	to	do	that	is	to	type	Con‐
trol-G	to	get	back	to	the	top-level	prompt.	Here’s	an	example:

A	more	common	problem	is	an	expression	that	is	typed	correctly	but	results
in	an	evaluation	error.	Trying	to	add	a	number	and	a	symbol	is	an	example.
When	an	evaluation	error	occurs,	Lisp	prints	an	error	message	and	puts	you	in
a	 different	 kind	 of	 input	 loop.	 Instead	 of	 talking	 to	 the	 top-level	 read-eval-
print	loop,	you	are	now	talking	to	the	debugger’s	read-eval-print	loop.	We’ll
learn	how	to	use	the	debugger	in	Chapter	8.	For	now,	all	you	need	to	know	is
how	to	get	out	of	the	debugger	and	back	to	top	level.	In	my	Lisp,	Control-G	is
the	abort	character	that	gets	me	out	of	the	debugger	and	back	to	top	level.

If	you	define	a	function	in	Lisp	and	it	doesn’t	work,	you	can	redefine	it	and
try	again.	You	can	redefine	a	function	as	often	as	you	like;	only	the	last	defin‐
ition	 is	 retained.	The	 following	 example	 illustrates	 this	 and	 also	 shows	 that
you	can	hit	Return	at	any	point	in	an	expression	with	no	ill	effect.	This	is	be‐
cause	expressions	are	lists;	their	spacing	and	indentation	is	arbitrary.

102



Be	sure	you	don’t	use	names	 like	CONS,	+,	or	LIST	 for	your	own	 func‐
tions;	in	Lisp	these	are	the	names	of	built-in	functions.	Redefining	these	func‐
tions	may	cause	a	“fatal”	error,	in	which	case	you	will	have	to	leave	Lisp	and
start	it	up	again,	and	any	functions	you	defined	previously	will	be	lost.

Lisp	Toolkit:	ED
The	Lisp	Toolkit	sections	appearing	 in	 this	and	subsequent	chapters	will	 in‐
troduce	 you	 to	 the	 important	 tools	 of	 the	 Lisp	 programming	 environment.
Some	 of	 these	 tools,	 such	 as	 language-specific	 editors,	 program	 formatters,
and	source-level	debuggers,	are	available	today	for	other	languages,	but	they
first	 appeared	 in	Lisp.	Other	 tools	 remain	unique	 to	Lisp,	 and	 two	of	 them,
SDRAW	and	DTRACE,	are	unique	to	this	book.	The	source	listings	for	both
appear	in	an	appendix.

The	tool	we	will	cover	first	is	the	Lisp	editor.	The	Common	Lisp	standard
does	not	specify	what	sort	of	editor	should	be	provided	with	a	Lisp	implemen‐
tation,	 so	 I	 can’t	 tell	you	exactly	how	your	editor	works.	But	 I	 can	 tell	you
something	about	Lisp	editors	in	general,	why	they’re	different	from	ordinary
text	editors,	and	why	you	ought	to	take	the	time	to	learn	to	use	whatever	edi‐
tor	your	Lisp	provides.

The	most	frequently	occurring	errors	in	LISP	are	parenthetical	errors.	It
is	thus	almost	imperative	to	employ	some	sort	of	counting	or	pairing	de‐
vice	to	check	parentheses	every	time	that	a	function	is	changed.	
—	Elaine	Gord,	“Notes	on	the	debugging	of	LISP	programs,”	1964.

The	above	quote	was	written	25	years	ago,	when	Lisp	programs	were	typed
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on	punched	cards.	Today,	of	course,	we	use	 interactive	editors.	Lisp	editors
are	not	ordinary	text	editors:	They	“understand”	the	syntax	of	Lisp	programs.
On	my	machine,	whenever	 I	 type	 a	 right	 parenthesis,	 the	 editor	 flashes	 the
corresponding	left	parenthesis	for	me.	This	keeps	me	from	making	a	“paren‐
thetical	 error”	when	 entering	 Lisp	 expressions.	Another	 one	 of	my	 editor’s
jobs	is	to	automatically	indent	every	line	as	I	type	it.	If	a	function	definition
takes	several	lines,	it	will	be	indented	in	a	neat	and	orderly	format	that	is	easy
to	read.

Some	of	the	earliest	Lisp	books	were	written	before	anyone	thought	of	sys‐
tematically	indenting	programs	to	make	them	readable.	A	program	that	would
have	been	written	this	way	back	then:

would	today	be	automatically	indented	to	look	like	this:

There	are	two	more	things	a	good	Lisp	editor	provides.	One	is	an	easy	way
to	evaluate	expressions	while	editing.	You	can	position	the	cursor	(or	mouse)
on	a	 function	definition,	hit	 a	 few	keys,	 and	 that	 function	definition	will	be
evaluated	without	ever	leaving	the	editor.	The	second	thing	a	good	editor	pro‐
vides	is	rapid	access	to	online	documentation.	If	I	want	to	see	the	documenta‐
tion	 for	 any	Lisp	 function	 or	 variable,	 I	 can	 call	 it	 up	with	 just	 a	 few	key‐
strokes.	The	editor	also	provides	online	documentation	about	itself.

The	Common	Lisp	standard	specifies	 the	 interface	between	a	Lisp	 imple‐
mentation	 and	 the	 editor	 it	 provides.	 The	 interface	 is	 a	 function	 called	ED.
Typing	 (ED)	when	 at	 the	 top-level	 read-eval-print	 loop	 causes	 you	 to	 enter
the	editor,	but	many	Lisps	also	provide	faster	ways,	such	as	by	typing	a	char‐
acter	like	Control-E.

It	is	possible	to	supply	arguments	to	ED	to	cause	it	to	edit	a	particular	func‐
tion	or	file	of	functions,	but	we	won’t	go	into	that	here.	It’s	usually	easier	to
just	enter	the	editor	first,	then	use	the	editor’s	commands	to	call	up	whatever
it	is	on	which	you	wish	to	work.

Keyboard	Exercise
Keyboard	exercises	are	modest	programming	projects	you	can	solve	while	sit‐
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ting	at	a	computer.	(However,	this	first	keyboard	exercise	is	just	a	collection
of	small	unrelated	problems,	since	we	haven’t	covered	enough	of	Lisp	yet	to
do	 anything	 more	 ambitious.)	 Before	 attempting	 a	 keyboard	 exercise	 you
should	have	a	firm	understanding	of	the	material	in	that	chapter	and	be	able	to
handle	the	regular	exercises	included	there.

EXERCISE
3.22.	The	exercises	below	may	be	done	in	any	order.	What’s	most	important

is	that	you	get	comfortable	with	using	the	computer.	You	don’t	have	to
solve	all	of	these	problems;	feel	free	to	experiment	and	improvise	on
your	own	if	you	like.

a.	Find	out	how	to	run	Lisp	on	your	computer,	and	start	it	up.

b.	For	each	following	expression,	write	down	what	you	think	it	evalu‐
ates	to	or	what	kind	of	error	it	will	cause.	Then	try	it	on	the	com‐
puter	and	see.

c.	Here	is	an	example	of	the	function	MYFUN,	a	strange	function	of
two	inputs.

Write	MYFUN.	 Test	 your	 function	 to	make	 certain	 it	works	 cor‐
rectly.

d.	 Write	 a	 predicate	 FIRSTP	 that	 returns	 T	 if	 its	 first	 argument	 (a
symbol)	is	equal	to	the	first	element	of	its	second	argument	(a	list).
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That	 is,	 (FIRSTP	 ‘FOO	 ‘(FOO	 BAR	 BAZ))	 should	 return	 T.
(FIRSTP	‘BOING	‘(FOO	BAR	BAZ))	should	return	NIL.

e.	Write	a	function	MID-ADD1	that	adds	1	to	the	middle	element	of	a
three-element	 list.	 For	 example,	 (MID-ADD	1	 ‘(TAKE	2	COOK‐
IES))	 should	 return	 the	 list	 (TAKE	 3	COOKIES).	Note:	 You	 are
not	allowed	to	make	MID-ADD	1	a	function	of	three	inputs.	It	has
to	take	a	single	input	that	is	a	list	of	three	elements.

f.	Write	a	function	F-TO-C	that	converts	a	temperature	from	Fahren‐
heit	 to	 Celsius.	 The	 formula	 for	 doing	 the	 conversion	 is:	 Celsius
temperature	=	 [5	x	 (Fahrenheit	 temperature	 -	 32)]/9.	To	go	 in	 the
opposite	direction,	the	formula	is:	Fahrenheit	temperature	=	(9/5	x
Celsius	temperature)	+	32.

g.	What	is	wrong	with	this	function?	What	does	(FOO	5)	do?

3	Advanced	Topics

3.16	FUNCTIONS	OF	NO	ARGUMENTS
Suppose	we	wanted	to	write	a	function	that	multiplies	85	by	97.	Notice	that
this	function	requires	no	inputs;	 it	does	its	computation	using	only	prespeci‐
fied	constants.	Since	the	function	doesn’t	take	any	inputs,	when	we	write	its
definition,	 it	will	have	an	empty	 argument	 list.	The	empty	 list,	 of	 course,	 is
NIL.	Let’s	define	this	function	under	the	name	TEST:

After	doing	this,	we	see	that

TEST	is	a	function,	so	we	must	put	parentheses	around	it	 to	call	 it.	 If	we
omit	them,	the	symbol	TEST	is	interpreted	as	a	reference	to	a	variable.

3.17	THE	QUOTE	SPECIAL	FUNCTION
QUOTE	is	a	special	function:	Its	 input	does	not	get	evaluated.	The	QUOTE
special	function	simply	returns	its	input.	For	example:
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Early	versions	of	Lisp	used	QUOTE	instead	of	an	apostrophe	to	indicate	that
something	shouldn’t	be	evaluated.	That	is,	where	we	would	write

old-style	Lisp	programmers	would	write

Modem	Lisp	systems	use	 the	apostrophe	as	shorthand	 for	QUOTE.	 Inter‐
nally,	however,	they	convert	the	apostrophe	to	QUOTE.	We	can	demonstrate
that	this	happens	by	using	multiple	quotes.	The	first	quote	is	stripped	away	by
the	evaluation	process,	but	any	extra	quotes	remain.

Depending	on	the	version	of	Lisp	your	computer	runs,	you	may	occasion‐
ally	see	QUOTE	written	out	instead	of	in	its	shorthand	form,	the	apostrophe.

3.18	INTERNAL	STRUCTURE	OF	SYMBOLS
So	 far	 in	 this	 book	we	have	been	drawing	 symbols	 by	writing	 their	 names.
But	symbols	 in	Common	Lisp	are	actually	composite	objects,	meaning	 they
have	several	parts	to	them.	Conceptually,	a	symbol	is	a	block	of	five	pointers,
one	of	which	points	 to	 the	 representation	of	 the	 symbol’s	name.	The	others
will	 be	 defined	 later.	The	 internal	 structure	 of	 the	 symbol	FRED	 looks	 like
this:
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The	“FRED”	appearing	above	in	quotation	marks	is	called	a	string.	Strings
are	sequences	of	characters;	they	will	be	covered	more	fully	in	Chapter	9.	For
now	it	suffices	to	note	that	strings	are	used	to	store	the	names	of	symbols;	a
symbol	and	its	name	are	actually	two	different	things.

Some	symbols,	like	CONS	or	+,	are	used	to	name	built-in	Lisp	functions.
The	symbol	CONS	has	a	pointer	in	its	function	cell	to	a	“compiled	code	ob‐
ject”	that	represents	the	machine	language	instructions	for	creating	new	cons
cells.

When	we	draw	Lisp	expressions	such	as	(EQUAL	3	5)	as	cons	cell	chains,
we	usually	write	just	 the	name	of	the	symbol	instead	of	showing	its	internal
structure:

But	 if	 we	 choose	 we	 can	 show	 more	 detail,	 in	 which	 case	 the	 expression
(EQUAL	3	5)	looks	like	this:

We	can	extract	the	various	components	of	a	symbol	using	built-in	Common
Lisp	 functions	 like	SYMBOL-NAME	and	SYMBOL-FUNCTION.	The	 fol‐
lowing	dialog	illustrates	this;	you’ll	see	something	slightly	different	if	you	try
it	on	your	computer,	but	the	basic	idea	is	the	same.
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3.19	LAMBDA	NOTATION
Lambda	notation	was	created	by	Alonzo	Church,	a	mathematician	at	Prince‐
ton	University.	Church	wanted	 a	 clear,	 unambiguous	way	 to	 describe	 func‐
tions,	their	inputs,	and	the	computations	they	perform.	In	lambda	notation,	a
function	that	adds	3	to	a	number	would	be	written	as	shown	below;	the	λ	is
the	Greek	letter	lambda:	λ,x.	(3	+x).

John	 McCarthy,	 the	 originator	 of	 Lisp,	 was	 a	 student	 of	 Church.	 He
adopted	Church’s	 notation	 for	 specifying	 functions.	 The	 Lisp	 equivalent	 of
the	unnamed	function	λx.	(3	+x)	is	the	list

A	function	f(x,y)	=	3x+y2	would	be	written	λ,(x,y)	.	(3x+y2)	in	lambda	nota‐
tion.	In	Lisp	it	is	written

As	you	can	see,	the	syntax	of	lambda	expressions	in	Lisp	is	similar	to	that	of
Church’s	 notation,	 and	 even	more	 similar	 to	 DEFUN.	 But	 unlike	 DEFUN,
LAMBDA	is	not	a	function;	it	is	a	marker	treated	specially	by	EVAL.	We’ll
learn	more	about	lambda	expressions	in	chapter	7.

DEFUN’s	job	is	to	associate	names	with	functions.	When	typing	in	a	new
function	definition,	such	as	 for	HALF,	 there	are	 two	kinds	of	naming	going
on.	The	string	“HALF”	names	the	symbol,	and	the	symbol	HALF	names	the
function.	In	the	diagram	below,	you	can	see	the	name	cell	of	HALF	pointing
to	the	string	“HALF”.	Its	function	cell	points	to	a	function	object	that	is	the
real	function.	Exactly	what	this	function	object	looks	like	depends	on	which
implementation	of	Common	Lisp	you’re	using,	but	as	the	diagram	indicates,
there’s	probably	a	lambda	expression	in	there	somewhere.
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Of	course,	the	lambda	expression	is	just	a	list	constructed	out	of	cons	cells.
And	each	of	the	symbols	in	the	lambda	expression,	such	as	N	and	/,	is	really	a
block	of	five	pointers.	Since	the	symbol	/	names	the	division	function,	it	con‐
tains	a	pointer	to	a	built-in	function	object	for	performing	division.	So,	indi‐
rectly,	HALF	points	to	the	built-in	division	function.	Figure	3-1	shows	these
details.

Figure	3-1	The	internal	representation	of	HALF.

EXERCISE
3.23.	Write	 each	 of	 the	 following	 functions	 in	 Church’s	 lambda	 notation:

DOUBLE,	SQUARE,	ONEMOREP.

3.20	SCOPE	OF	VARIABLES
The	scope	of	a	variable	is	the	region	in	which	it	may	be	referenced.	For	ex‐
ample,	 the	variable	N	that	holds	the	input	to	HALF	has	scope	limited	to	the
body	of	HALF.	Another	way	 to	express	 this	 is	 to	 say	 that	 the	variable	N	 is
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local	 to	HALF.	Global	variables	have	unbounded	scope;	 they	may	be	 refer‐
enced	anywhere.

In	 an	 evaltrace	diagram,	 the	 scope	of	 a	 local	 variable	 is	 delimited	by	 the
thick	arrow	containing	 the	creation	of	 that	variable.	Outside	 the	 thick	arrow
the	variable	cannot	be	referenced.	The	following	program	illustrates	this.

This	program	is	in	error.	PARENT	calls	CHILD	after	creating	a	local	vari‐
able	N.	Let’s	see	where	the	problem	lies:

Thick	arrows	in	evaltrace	diagrams	depict	scope	boundaries.	The	scope	of
PARENT’S	N	is	limited	to	the	body	of	PARENT.	Inside	the	body	of	CHILD
there	 is	 a	 reference	 to	N.	But	 there	 is	 no	N	 local	 to	CHILD,	 and	 since	 the
body	of	CHILD	is	surrounded	by	a	thick	arrow,	we	cannot	refer	to	the	N	in
PARENT	from	there.	So	the	N	appearing	in	the	body	of	CHILD	is	interpreted
as	a	reference	to	the	global	N,	which	has	not	been	assigned	a	value.	Hence	we
get	an	unassigned	variable	error.

EXERCISE
3.24.	Assume	we	have	defined	the	following	functions:

Suppose	 we	 now	 evaluate	 (ALPHA	 3).	 Show	 the	 resulting	 creation
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and	use	of	variables	X,	Y,	and	Z	by	drawing	an	evaltrace	diagram.

3.21	EVAL	AND	APPLY
EVAL	 is	 a	 Lisp	 primitive	 function.	 Each	 use	 of	 EVAL	 gives	 one	 level	 of
evaluation.

We	won’t	 use	EVAL	explicitly	 in	 any	of	 the	 programs	we	write,	 but	we
make	implicit	use	of	it	all	the	time.	You	can	think	of	the	computer	as	a	physi‐
cal	manifestation	of	EVAL.	When	it	runs	Lisp,	everything	you	type	is	evalu‐
ated.

APPLY	is	also	a	Lisp	primitive	function.	APPLY	takes	a	function	and	a	list
of	objects	as	input.	It	invokes	the	specified	function	with	those	objects	as	its
inputs.	The	first	argument	to	APPLY	should	be	quoted	with	#’	rather	than	an
ordinary	quote;	#’	is	the	proper	way	to	quote	functions	supplied	as	inputs	to
other	functions.	This	will	be	explained	in	more	detail	in	Chapter	7.

The	 objects	APPLY	passes	 to	 the	 function	 are	not	 evaluated	 first.	 In	 the
following	example,	the	objects	are	a	symbol	and	a	list.	Evaluating	either	the
symbol	AS	or	the	list	(YOU	LIKE	IT)	would	cause	an	error.
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EVAL	and	APPLY	are	 related	 to	each	other.	A	popular	exercise	 in	more
advanced	Lisp	texts	involves	writing	each	function	in	terms	of	the	other.

EXERCISE
3.25.	What	do	each	of	the	following	expressions	evaluate	to?

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
EVAL-related	function:	APPLY.

EVAL	(used	explicitly).

Special	function:	QUOTE.

*This	use	of	the	term	“variable”	is	peculiar	to	computer	programming.	In	mathematics,	a	variable	is	a
notation	for	an	unknown	quantity,	not	a	physical	place	in	computer	memory.	But	these	two	meanings
are	not	incompatible,	since	the	inputs	to	a	function	are	in	fact	unknown	quantities	at	the	time	the	func‐
tion	is	defined.

**Most	books	call	this	an	unbound	variable	error,	but	this	is	a	historical	artifact	and	is	not	really	appro‐
priate	for	Common	Lisp.	Following	a	suggestion	of	Robert	Wilensky,	we	use	the	term	“unassigned”	in‐
stead.	This	is	discussed	further	in	section	5.10.
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4

Conditionals

4.1	INTRODUCTION
Decision	making	is	a	fundamental	part	of	computing;	all	nontrivial	programs
make	decisions.	 In	 this	chapter	we	will	 study	some	special	decision-making
functions,	called	conditionals,	that	choose	their	result	from	among	a	set	of	al‐
ternatives	based	on	the	value	of	one	or	more	predicate	expressions.(A	predi‐
cate	expression	is	an	expression	whose	value	is	interpreted	as	either	“true”	or
“false.”)

Conditionals	allow	functions	to	vary	their	behavior	for	different	sorts	of	in‐
puts.	Since	we	can	construct	our	own	predicate	expressions	 to	control	 these
conditionals,	we	can	write	functions	that	make	arbitrarily	complex	decisions.

4.2	THE	IF	SPECIAL	FUNCTION
IF	is	the	simplest	Lisp	conditional.	Conditionals	are	always	macros	or	special
functions,*	 so	 their	 arguments	 do	 not	 get	 evaluated	 automatically.	 DEFUN
and	QUOTE	are	 two	other	 function	we’ve	 studied	with	 this	property.	Ordi‐
nary	functions,	like	+	and	CONS,	always	evaluate	their	arguments.

The	 IF	 special	 function	 takes	 three	 arguments:	 a	 test,	 a	 true-part,	 and	 a
false-part.	If	the	test	is	true,	IF	returns	the	value	of	the	true-part.	If	the	test	is
false,	it	skips	the	true-part	and	instead	returns	the	value	of	the	false-part.	Here
are	some	examples.
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Let’s	use	IF	to	construct	a	function	that	takes	the	absolute	value	of	a	num‐
ber.	Absolute	 values	 are	 always	 nonnegative.	 For	 negative	 numbers	 the	 ab‐
solute	value	is	the	negation	of	the	number;	for	positive	numbers	and	zero	the
absolute	value	is	the	number	itself.	This	leads	to	a	simple	definition	for	MY-
ABS,	our	absolute	value	function.	(We	call	the	function	MY-ABS	rather	than
ABS	because	there	is	already	an	ABS	function	built	in	to	Common	Lisp;	we
don’t	want	to	interfere	with	any	of	Lisp’s	built-in	functions.)

The	test	part	of	the	IF	is	the	expression	(<	X	0).	If	the	test	evaluates	to	true,
the	true-part,	(-	X),	will	be	evaluated	and	will	return	the	negation	of	X.	If	the
test	evaluates	to	false,	meaning	X	is	zero	or	positive,	the	false-part	of	the	IF
will	be	evaluated.	The	false-part	is	just	X,	so	the	input	to	MY-ABS	will	be	re‐
turned	unchanged	in	this	case.	Here	is	how	you	should	be	reading	the	defini‐
tion	of	MY-ABS:	“DEFUN	MY-ABS	of	X:	IF	(<	X	0)	then	minus	X	else	X.”
The	words	“then”	and	“else”	don’t	actually	appear	in	the	function,	but	men‐
tally	inserting	them	can	help	to	clarify	the	function	in	your	mind.

Here’s	another	simple	decision-making	function.	SYMBOL-TEST	returns
a	message	telling	whether	or	not	its	input	is	a	symbol.

When	you	read	this	function	definition	to	yourself,	you	should	read	the	IF
part	as	“If	SYMBOLP	of	X	then...else....”
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IF	can	be	given	two	inputs	instead	of	three,	in	which	case	it	behaves	as	if
its	third	input	(the	false-part)	were	the	symbol	NIL.

EXERCISES
4.1.	Write	 a	 function	MAKE-EVEN	 that	 makes	 an	 odd	 number	 even	 by

adding	one	to	it.	If	the	input	to	MAKE-EVEN	is	already	even,	it	should
be	returned	unchanged.

4.2.	Write	 a	 function	 FURTHER	 that	makes	 a	 positive	 number	 larger	 by
adding	 one	 to	 it,	 and	 a	 negative	 number	 smaller	 by	 subtracting	 one
from	it.	What	does	your	function	do	if	given	the	number	0?

4.3.	Recall	the	primitive	function	NOT:	It	returns	NIL	for	a	true	input	and	T
for	a	false	one.	Suppose	Lisp	didn’t	have	a	NOT	primitive.	Show	how
to	write	NOT	using	just	IF	and	constants	(no	other	functions).	Call	your
function	MY-NOT.

4.4.	Write	a	function	ORDERED	that	takes	two	numbers	as	input	and	makes
a	 list	 of	 them	 in	 ascending	order.	 (ORDERED	3	4)	 should	 return	 the
list	(3	4).	(ORDERED	4	3)	should	also	return	(3	4),	in	other	words,	the
first	and	second	inputs	should	appear	in	reverse	order	when	the	first	is
greater	than	the	second.

4.3	THE	COND	MACRO
COND	is	the	classic	Lisp	conditional.	Its	input	consists	of	any	number	of	test-
and-consequent	clauses.	The	general	form	of	a	COND	expression	will	be	de‐
scribed	in	Chapter	5,	but	a	slightly	simplified	form	is:

Here	is	how	COND	works:	It	goes	through	the	clauses	sequentially.	If	the
test	 part	 of	 a	 clause	 evaluates	 to	 true,	COND	evaluates	 the	 consequent	part
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and	returns	its	value;	it	does	not	consider	any	more	clauses.	If	the	test	evalu‐
ates	to	false,	COND	skips	the	consequent	part	and	examines	the	next	clause.
If	it	goes	through	all	the	clauses	without	finding	any	whose	test	is	true,	CONS
returns	NIL.

Let’s	use	COND	to	write	a	function	COMPARE	that	compares	 two	num‐
bers.	If	the	numbers	are	equal,	COMPARE	will	say	“numbers	are	the	same”;
if	the	first	number	is	less	than	the	second,	it	will	say	“first	is	smaller”;	if	the
first	number	is	greater	than	the	second,	it	will	say	“first	is	bigger.”	Each	case
is	handled	by	a	separate	COND	clause.

Take	a	closer	look	at	the	COND.	It	is	a	four-element	list,	where	the	first	el‐
ement	 is	 the	 symbol	COND	 and	 the	 remaining	 three	 elements	 are	 test-and-
consequent	clauses.	The	first	clause	is	a	two-element	list	whose	first	element
is	the	expression	(EQUAL	X	Y).	This	is	the	test	part	of	the	clause.	The	sec‐
ond	 element,	 the	 consequent	 part,	 is	 the	 quoted	 symbol	 ‘NUMBERS-ARE-
THE-SAME.

Here	are	some	examples	of	the	COMPARE	function:

EXERCISE
4.5.	For	each	of	the	following	calls	to	COMPARE,	write	“1,”	“2,”	or	“3”	to

indicate	which	clause	of	the	COND	will	have	a	predicate	that	evaluates
to	true.

COND	 and	 IF	 are	 similar	 functions.	 COND	 may	 appear	 more	 versatile
since	it	accepts	any	number	of	clauses,	but	there	is	a	way	to	do	the	same	thing
with	nested	IFs.	This	is	explained	later	in	the	chapter.
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4.4	USING	T	AS	A	TEST
One	of	the	standard	tricks	for	using	COND	is	to	include	a	clause	of	form

The	test	T	is	always	true,	so	if	COND	ever	reaches	this	clause,	it	 is	guaran‐
teed	to	evaluate	the	consequent.	We	put	this	clause	at	the	very	end	so	that	it
will	be	reached	only	if	all	the	preceding	clauses’	tests	fail.	Example:	The	fol‐
lowing	 function	 returns	 the	country	 in	which	a	given	city	 is.	 If	 the	 function
doesn’t	know	a	particular	city,	it	returns	the	symbol	UNKNOWN.

Note	that	the	last	clause	of	the	COND	begins	with	T.	If	none	of	the	preced‐
ing	clauses	have	tests	that	return	true,	the	last	clause	will	be	reached	and	the
function	will	return	UNKNOWN.

Recall	that	the	general	form	of	an	IF	expression	is

We	 can	 translate	 any	 IF	 expression	 into	 a	 COND	 expression	 using	 two
clauses:

EXERCISE
4.6.	Write	a	version	of	the	absolute	value	function	MY-ABS	using	COND

instead	of	IF.

4.5	TWO	MORE	EXAMPLES	OF	COND
Here	is	another	function,	called	EMPHASIZE,	that	changes	the	first	word	of	a
phrase	 from	 “good”	 to	 “great,”	 or	 from	 “bad”	 to	 “awful,”	 and	 returns	 the
modified	phrase:
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Let’s	 take	as	an	example	 the	phrase	 (GOOD	MYSTERY	STORY).	What
happens	inside	EMPHASIZE?	The	variable	X	is	assigned	the	value	(GOOD
MYSTERY	 STORY),	 and	 COND	 starts	 going	 through	 the	 test-and-conse‐
quent	clauses.	The	first	one	is:

Since	 (FIRST	X)	 evaluates	 to	GOOD,	 the	 test	 part	 of	 this	 clause	 is	 true.
The	consequent	part	then	constructs	a	new	list	from	the	symbol	GREAT	and
the	REST	of	the	input,	and	that	is	what	the	function	returns:

Now	 suppose	 we	 try	 to	 emphasize	 (MEDIOCRE	 MYSTERY	 STORY).
The	first	clause	compares	MEDIOCRE	to	GOOD	and	returns	NIL.	The	next
compares	MEDIOCRE	 to	BAD	and	 also	 returns	NIL.	Now	COND	has	 run
out	of	clauses,	so	it	returns	NIL.	Therefore,	NIL	is	the	result	of	the	EMPHA‐
SIZE	function:

What	if	we	want	EMPHASIZE	to	return	the	original	input	instead	of	NIL
when	 it	 can’t	 figure	 out	 how	 to	 emphasize	 it?	We	 simply	 use	 the	T-as-test
trick,	demonstrated	in	the	function	EMPHASIZE2:

If	the	COND	reaches	the	last	clause,	the	test	T	is	guaranteed	to	evaluate	to
true	and	the	input,	X,	is	returned.

Here	is	a	function	COMPUTE	that	takes	three	inputs.	If	the	first	input	is	the
symbol	SUM-OF,	the	function	returns	the	sum	of	the	second	and	third	inputs.
If	it	is	the	symbol	PRODUCT-OF,	the	function	returns	the	product	of	the	sec‐
ond	and	third	inputs.	Otherwise	it	returns	the	list	(THAT	DOES	NOT	COM‐
PUTE).
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Here	are	some	examples	of	the	COMPUTE	function:

4.6	COND	AND	PARENTHESIS	ERRORS
Parenthesis	 errors	 can	 play	 havoc	 with	 COND	 expressions.	 Most	 COND
clauses	begin	with	exactly	two	parentheses.	The	first	marks	the	beginning	of
the	clause,	and	the	second	marks	the	beginning	of	the	clause’s	test.	For	exam‐
ple,	in	the	WHERE-IS	function,	the	test	part	of	the	first	clause	is	the	expres‐
sion

so	the	clause	itself	looks	like

If	 the	test	part	of	a	clause	is	 just	a	symbol,	not	a	call	 to	a	function,	 then	the
clause	should	begin	with	a	single	parenthesis.	Notice	that	in	WHERE-IS	the
clause	with	T	as	the	test	begins	with	only	one	parenthesis.

Here	 are	 two	 of	 the	more	 common	parenthesis	 errors	made	with	COND.
First,	suppose	we	leave	a	parenthesis	out	of	a	COND	clause.	What	would	hap‐
pen?

The	first	clause	of	the	COND	starts	with	only	one	left	parenthesis	instead
of	 two.	As	 a	 result,	 the	 test	 part	 of	 this	 clause	 is	 just	 the	 symbol	 EQUAL.
When	the	test	is	evaluated,	EQUAL	will	cause	an	unassigned	variable	error.

On	the	other	hand,	consider	what	happens	when	too	many	parentheses	are
used:
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If	X	has	the	value	HACKENSACK,	we	will	reach	the	fourth	COND	clause.
Due	to	the	presence	of	an	extra	pair	of	parentheses	in	this	clause,	the	test	is	(T
‘UNKNOWN)	instead	of	simply	T.	T	is	not	a	function,	so	this	test	will	gener‐
ate	an	undefined	function	error.

EXERCISES
4.7.	For	each	of	the	following	COND	expressions,	tell	whether	the	parenthe‐

sization	is	correct	or	incorrect.	If	incorrect,	explain	where	the	error	lies.

4.8.	Write	EMPHASIZE3,	which	is	like	EMPHASIZE2	but	adds	the	symbol
VERY	onto	the	list	if	it	doesn’t	know	how	to	emphasize	it.	For	exam‐
ple,	EMPHASIZE3	of	 (LONG	DAY)	 should	produce	 (VERY	LONG
DAY).	What	does	EMPHASIZE3	of	(VERY	LONG	DAY)	produce?

4.9.	Type	in	the	following	suspicious	function	definition:

What	is	wrong	with	this	function?	Try	out	the	function	on	the	numbers
3,	4,	and	-2.	Rewrite	it	so	it	works	correctly.

4.10.	Write	a	function	CONSTRAIN	that	takes	three	inputs	called	X,	MAX,
and	MIN.	If	X	is	less	than	MIN,	it	should	return	MIN;	if	X	is	greater
than	MAX,	it	should	return	MAX.	Otherwise,	since	X	is	between	MIN
and	MAX,	it	should	return	X.	(CONSTRAIN	3	-50	50)	should	return
3.	(CONSTRAIN	92	-50	50)	should	return	50.	Write	one	version	using
COND	and	another	using	nested	IFs.

4.11.	Write	 a	 function	 FIRSTZERO	 that	 takes	 a	 list	 of	 three	 numbers	 as
input	and	returns	a	word	(one	of	“first,”	“second,”	“third,”	or	“none”)
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indicating	 where	 the	 first	 zero	 appears	 in	 the	 list.	 Example:
(FIRSTZERO	‘(3	0	4))	should	return	SECOND.	What	happens	if	you
try	to	call	FIRSTZERO	with	three	separate	numbers	instead	of	a	list	of
three	numbers,	as	in	(FIRSTZERO	3	0	4)?

4.12.	Write	a	function	CYCLE	that	cyclically	counts	from	1	to	99.	CYCLE
called	with	an	input	of	1	should	return	2,	with	an	input	of	2	should	re‐
turn	3,	with	an	input	of	3	should	return	4,	and	so	on.	With	an	input	of
99,	 CYCLE	 should	 return	 1.	 That’s	 the	 cyclical	 part.	 Do	 not	 try	 to
solve	this	with	99	COND	clauses!

4.13.	Write	 a	 function	 HOWCOMPUTE	 that	 is	 the	 inverse	 of	 the	 COM‐
PUTE	 function	 described	 previously.	 HOWCOMPUTE	 takes	 three
numbers	 as	 input	 and	 figures	 out	what	 operation	would	 produce	 the
third	from	the	first	two.	(HOWCOMPUTE	3	4	7)	should	return	SUM-
OF.	(HOWCOMPUTE	3	4	12)	should	return	PRODUCT-OF.	HOW‐
COMPUTE	should	return	the	list	(BEATS	ME)	if	it	can’t	find	a	rela‐
tionship	between	the	first	two	inputs	and	the	third.	Suggest	some	ways
to	extend	HOWCOMPUTE.

4.7	THE	AND	AND	OR	MACROS
We	will	 often	 need	 to	 construct	 complex	 predicates	 from	 simple	 ones.	 The
AND	and	OR	macros	make	this	possible.	Before	giving	the	precise	rules	for
evaluating	AND	and	OR,	 let’s	 just	 look	at	 an	example.	Suppose	we	want	 a
predicate	 for	 small	 (no	more	 than	 two	digit)	 positive	odd	numbers.	We	can
use	AND	to	express	this	conjunction	of	simple	conditions:

Or	suppose	we	want	a	function	GTEST	that	takes	two	numbers	as	input	and
returns	T	if	either	the	first	 is	greater	than	the	second	or	one	of	them	is	zero.
These	conditions	form	a	disjunctive	set;	only	one	need	be	true	for	GTEST	to
return	T.	OR	is	used	for	disjunctions.

Like	 COND,	 AND	 and	 OR	 are	 macros:	 they	 can	 accept	 any	 number	 of
clauses,	 and	 they	 do	 not	 evaluate	 their	 arguments	 first.	 For	 AND	 and	OR,
however,	the	clauses	are	simply	tests,	not	test-and-consequent	pairs.
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4.8	EVALUATING	AND	AND	OR
AND	and	OR	have	slightly	different	meanings	in	Lisp	than	they	do	in	logic	or
in	English.	The	precise	rule	for	evaluating	AND	is:	Evaluate	the	clauses	one
at	a	time.	If	a	clause	returns	NIL,	stop	and	return	NIL;	otherwise	go	on	to	the
next	one.	If	all	the	clauses	yield	non-NIL	results,	return	the	value	of	the	last
clause.	Examples:

The	 rule	 for	 evaluating	 OR	 is:	 Evaluate	 the	 clauses	 one	 at	 a	 time.	 If	 a
clause	returns	something	other	than	NIL,	stop	and	return	that	value;	otherwise
go	on	to	the	next	clause,	or	return	NIL	if	none	are	left.

EXERCISE
4.14.	What	results	do	the	following	expressions	produce?	Read	the	evalua‐

tion	rules	for	AND	and	OR	carefully	before	answering.

4.9	BUILDING	COMPLEX	PREDICATES
The	HOW-ALIKE	function	compares	two	numbers	several	different	ways	to
see	in	what	way	they	are	similar.	It	uses	AND	to	construct	complex	predicates
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as	part	of	a	COND	clause:

The	SAME-SIGN	predicate	uses	a	combination	of	AND	and	OR	to	test	if
its	two	inputs	have	the	same	sign:

SAME-SIGN	returns	T	if	any	of	the	inputs	to	OR	returns	T.	Each	of	these
inputs	is	an	AND	expression.	The	first	one	tests	whether	X	is	zero	and	Y	is
zero,	the	second	tests	whether	X	is	negative	and	Y	is	negative,	and	the	third
tests	whether	X	is	positive	and	Y	is	positive.	Examples:

EXERCISES
4.15.	Write	a	predicate	called	GEQ	that	returns	T	if	its	first	input	is	greater

than	or	equal	to	its	second	input.

4.16.	Write	a	function	that	squares	a	number	if	it	 is	odd	and	positive,	dou‐
bles	it	if	it	is	odd	and	negative,	and	otherwise	divides	the	number	by	2.

4.17.	Write	a	predicate	that	returns	T	if	the	first	input	is	either	BOY	or	GIRL
and	 the	 second	 input	 is	 CHILD,	 or	 the	 first	 input	 is	 either	MAN	 or
WOMAN	and	the	second	input	is	ADULT.
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4.18.	Write	a	function	to	act	as	referee	in	the	Rock-Scissors-Paper	game.	In
this	game,	each	player	picks	one	of	Rock,	Scissors,	or	Paper,	and	then
both	players	 tell	what	 they	picked.	Rock	“breaks”	Scissors,	 so	 if	 the
first	player	picks	Rock	and	the	second	picks	Scissors,	 the	first	player
wins.	Scissors	“cuts”	Paper,	and	Paper	“covers”	Rock.	If	both	players
pick	the	same	thing,	it’s	a	tie.	The	function	PLAY	should	take	two	in‐
puts,	each	of	which	 is	either	ROCK,	SCISSORS,	or	PAPER,	and	re‐
turn	one	of	the	symbols	FIRST-WINS,	SECOND-WINS,	or	TIE.	Ex‐
amples:	 (PLAY	 ‘ROCK	 ‘SCISSORS)	 should	 return	 FIRST-WINS.
(PLAY	‘PAPER	‘SCISSORS)	should	return	SECOND-WINS.

4.10	WHY	AND	AND	OR	ARE	CONDITIONALS
Why	are	AND	and	OR	classed	as	conditionals	 instead	of	 regular	 functions?
The	reason	is	that	they	are	not	required	to	evaluate	every	clause.	If	any	clause
of	an	AND	returns	NIL,	or	any	clause	of	an	OR	returns	non-NIL,	none	of	the
succeeding	clauses	get	evaluated.	This	property	can	be	valuable,	because	we
may	need	 to	halt	evaluation	 to	avoid	errors	 that	would	otherwise	occur.	For
example,	consider	the	POSNUMP	predicate:

POSNUMP	returns	T	if	 its	 input	 is	a	number	and	is	positive.	The	built-in
PLUSP	predicate	can	be	used	to	tell	if	a	number	is	positive,	but	if	PLUSP	is
used	on	something	other	than	a	number,	it	signals	a	“wrong	type	input”	error,
so	it	is	important	to	make	sure	that	the	input	to	POSNUMP	is	a	number	before
invoking	PLUSP.	If	the	input	isn’t	a	number,	we	must	not	call	PLUSP.

Here	is	an	incorrect	version	of	POSNUMP:

If	FAULTY-POSNUMP	is	called	on	the	symbol	FRED	instead	of	a	num‐
ber,	the	first	thing	it	does	is	check	if	FRED	is	greater	than	0,	which	causes	a
wrong	type	input	error.	However,	if	the	regular	POSNUMP	function	is	called
with	input	FRED,	the	NUMBERP	predicate	returns	NIL,	so	AND	returns	NIL
without	ever	calling	PLUSP.

4.11	CONDITIONALS	ARE
INTERCHANGEABLE
Functions	that	use	AND	and	OR	can	also	be	implemented	using	COND	or	IF,
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and	vice	versa.	Recall	the	definition	of	POSNUMP:

Here	is	a	version	of	POSNUMP	written	with	IF	instead	of	AND:

This	 version	 of	 POSNUMP	 tests	 for	 a	 number	 first,	 and	 if	 the	 condition
succeeds,	the	true-part	of	the	IF	evaluates	(>	X	0).	If	the	number	test	fails,	the
false-part	of	the	IF	is	NIL.	Trace	the	evaluation	of	the	function	on	paper	with
inputs	like	FRED,	7,	and	-2	to	better	understand	how	it	works.	Here	is	another
version	of	POSNUMP,	this	time	using	COND:

Let’s	 look	 at	 another	 use	 of	 conditionals.	 This	 is	 the	 original	 version	 of
WHERE-IS,	using	COND:

This	COND	has	four	clauses.	We	can	write	WHERE-IS	using	IF	instead	of
COND	by	putting	three	IFs	together.	Such	a	construct	is	called	a	nested	if.

Suppose	we	 call	WHERE-IS-2	with	 the	 input	BEIJING.	As	 the	 evaltrace
shows,	 the	 local	variable	X	 is	assigned	 the	value	BEIJING,	and	 the	body	 is
evaluated.	The	body	of	WHERE-IS-2	is	a	single	IF	whose	test	checks	if	X	is
equal	 to	PARIS.	It	 is	not,	so	 the	IF	evaluates	 its	 false-part.	The	false-part	 is
also	an	IF,	and	this	IF’s	test	checks	whether	X	is	equal	to	LONDON.	It	is	not,
so	the	IF	evaluates	its	own	false-part—yet	another	IF.	This	third	IF	tests	if	X
is	 equal	 to	BEIJING,	which	 it	 is,	 so	 its	 true	 part	 evaluates	 to	CHINA.	The
third	IF	returns	CHINA,	which	is	now	the	value	of	the	false-part	of	the	second
IF	so	it	returns	CHINA,	which	is	now	the	value	of	the	false-part	of	the	first	IF
so	 it	 returns	 CHINA	 as	 well.	 The	 result	 of	 (WHERE-IS-2	 ‘BEIJING)	 is
CHINA.
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We	can	write	another	version	of	WHERE-IS	using	AND	and	OR.	This	ver‐
sion	employs	a	simple	two-level	scheme	rather	than	the	more	complex	nesting
required	for	IF.

Let’s	 evaluate	 (WHERE-IS-3	 ‘LONDON).	X	 is	bound	 to	LONDON,	and
OR	starts	going	 through	 its	clauses	 looking	 for	one	 that	 isn’t	NIL.	The	 first
clause	is	an	AND	expression;	AND	evaluates	(EQUAL	X	‘PARIS)	and	gets	a
NIL	 result,	 so	AND	gives	 up	 and	 returns	NIL.	OR	moves	 on	 to	 its	 second
clause.	This	is	also	an	AND	expression;	(EQUAL	X	‘LONDON)	returns	T,	so
AND	 moves	 on	 to	 its	 next	 clause.	 ‘ENGLAND	 evaluates	 to	 ENGLAND;
AND	has	run	out	of	clauses,	so	it	returns	the	value	of	the	last	one.	Since	OR
has	found	a	non-NIL	clause,	OR	now	returns	ENGLAND.

Since	IF,	COND,	and	AND/OR	are	interchangeable	conditionals,	you	may
wonder	why	Lisp	has	more	 than	one.	 It’s	a	matter	of	convenience.	 IF	 is	 the
easiest	to	use	for	simple	functions	like	absolute	value.	AND	and	OR	are	good
for	 writing	 complex	 predicates	 like	 SMALL-POSITIVE-ODDP.	 COND	 is
easiest	to	use	when	there	are	many	tests,	as	in	WHERE-IS	and	HOW-ALIKE.
Choosing	the	right	conditional	for	the	job	is	part	of	the	art	of	programming.

EXERCISES
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4.19.	Show	how	to	write	the	expression	(AND	X	Y	Z	W)	using	COND	in‐
stead	of	AND.	Then	show	how	to	write	it	using	nested	IFs	instead	of
AND.

4.20.	Write	a	version	of	the	COMPARE	function	using	IF	instead	of	COND.
Also	write	a	version	using	AND	and	OR.

4.21.	Write	versions	of	the	GTEST	function	using	IF	and	COND.

4.22.	 Use	 COND	 to	 write	 a	 predicate	 BOILINGP	 that	 takes	 two	 inputs,
TEMP	and	SCALE,	and	returns	T	if	the	temperature	is	above	the	boil‐
ing	 point	 of	 water	 on	 the	 specified	 scale.	 If	 the	 scale	 is	 FAHREN‐
HEIT,	the	boiling	point	is	212	degrees;	if	CELSIUS,	the	boiling	point
is	100	degrees.	Also	write	versions	using	IF	and	AND/OR	instead	of
COND.

4.23.	 The	WHERE-IS	 function	 has	 four	 COND	 clauses,	 so	WHERE-IS-2
needs	three	nested	IFs.	Suppose	WHERE-IS	had	eight	COND	clauses.
How	 many	 IFs	 would	 WHERE-IS-2	 need?	 How	 many	 ORs	 would
WHERE-IS-3	need?	How	many	ANDs	would	it	need?

SUMMARY
Conditionals	allow	the	computer	to	make	decisions	that	control	its	behavior.
IF	 is	 a	 simple	 conditional;	 its	 syntax	 is	 (IF	 condition	 true-part	 false-part).
COND,	 the	 most	 general	 conditional,	 takes	 a	 set	 of	 test-and-consequent
clauses	as	input	and	evaluates	the	tests	one	at	a	time	until	it	finds	a	true	one.	It
then	returns	the	value	of	the	consequent	of	that	clause.	If	none	of	the	tests	are
true,	COND	returns	NIL.

AND	and	OR	are	also	conditionals.	AND	evaluates	clauses	one	at	a	 time
until	 one	 of	 them	 returns	 NIL,	 which	 AND	 then	 returns.	 If	 all	 the	 clauses
evaluate	to	true,	AND	returns	the	value	of	the	last	one.	OR	evaluates	clauses
until	a	non-NIL	value	is	found,	and	returns	that	value.	If	all	the	clauses	evalu‐
ate	 to	NIL,	OR	 returns	NIL.	AND	and	OR	aren’t	 considered	predicates	be‐
cause	they’re	not	ordinary	functions.

A	useful	programming	trick	when	writing	COND	expressions	is	to	place	a
list	of	form	(T	consequent)	as	the	final	clause	of	the	COND.	Since	the	test	T
is	always	true,	the	clause	serves	as	a	kind	of	catchall	case	that	will	be	evalu‐
ated	when	the	tests	of	all	the	preceding	clauses	are	false.

An	 important	 feature	of	 conditionals	 is	 their	 ability	 to	not	 evaluate	 all	 of
their	 inputs.	This	 lets	 us	 prevent	 errors	 by	 protecting	 a	 sensitive	 expression
with	predicate	expressions	that	can	cause	evaluation	to	stop.	Conditionals	can
do	this	because	they	are	either	macros	or	special	functions,	not	ordinary	func‐
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tions.

REVIEW	EXERCISES
4.24.	Why	are	conditionals	important?

4.25.	What	does	IF	do	if	given	two	inputs	instead	of	three?

4.26.	COND	can	accept	any	number	of	clauses,	but	IF	takes	at	most	three	in‐
puts.	How	is	it	then	that	any	function	involving	COND	can	be	rewrit‐
ten	to	use	IF	instead?

4.27.	What	does	COND	return	if	given	no	clauses,	in	other	words,	what	does
(COND)	evaluate	to?

4.28.	We	can	usually	 rewrite	 an	 IF	as	a	 combination	of	AND	plus	OR	by
following	 this	 simple	 scheme:	 Replace	 (IF	 test	 true-part	 false-part)
with	 the	 equivalent	 expression	 (OR	 (AND	 test	 true-part)	 false-part).
But	 this	 scheme	 fails	 for	 the	 expression	 (IF	 (ODDP	 5)	 (EVENP	 7)
‘FOO).	Why	does	it	fail?	Suggest	a	more	sophisticated	way	to	rewrite
IF	as	a	combination	of	ANDs	and	ORs	that	does	not	fail.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Conditionals:	IF,	COND,	AND,	OR.

Predicate:	PLUSP.

Lisp	Toolkit:	STEP
STEP	is	a	tool	that	lets	you	interactively	step	through	the	evaluation	of	a	Lisp
expression	so	you	can	see	everything	that	takes	place.	It	is	mostly	used	for	de‐
bugging	 (finding	 and	 eliminating	 errors	 in	 programs),**	 but	 it	 can	 also	 be
useful	for	learning	about	new	special	functions	like	conditionals.

Each	 implementation	 of	 Common	 Lisp	 provides	 its	 own	 version	 of	 this
tool;	 only	 the	 name	 has	 been	 standardized.	Most	 steppers	 accept	 one-letter
commands	 telling	 them	what	 to	 do	 at	 each	 iteration,	 such	 as	 continue	 step‐
ping,	proceed	with	the	evaluation	without	stepping,	enter	the	debugger,	and	so
forth.	 Steppers	 are	 supposed	 to	 respond	 to	 a	 “?”	 by	 printing	 a	 list	 of	 com‐
mands	they	understand.	In	this	book	we	will	use	just	one	command,	“n,”	to	go
to	the	next	step	of	the	evaluation.

Because	STEP	is	a	macro,	its	input	should	not	be	quoted.	Here	is	an	exam‐
ple	of	the	use	of	STEP.
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Here	 is	a	more	detailed	example	using	MY-ABS,	our	own	version	of	 the
absolute	 value	 function.	The	BLOCK	 special	 function	 that	 shows	 up	 in	 the
step	output	can	be	 ignored.	Some	Lisp	implementations	put	a	BLOCK	form
around	 the	 body	 of	 every	 function	 definition;	 in	 other	 implementations	 this
form	is	implicit	and	does	not	show	up	in	the	stepper.

The	output	of	STEP	is	similar	to	an	evaltrace	diagram,	without	the	arrows.
Here	is	an	evaltrace	diagram	of	(MY-ABS	-5)	for	comparison.
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4	Advanced	Topics

4.12	BOOLEAN	FUNCTIONS
Boolean	 functions	 are	 functions	whose	 inputs	 and	outputs	 are	 truth	values,
meaning	T	or	NIL.	We	have	already	encountered	boolean	functions	under	the
name	truth	functions	in	previous	chapters.	The	term	“boolean”	comes	from
George	Boole,	a	nineteenth	century	English	mathematician.	Boolean	logic	is
used	today	to	describe	the	behavior	of	most	computer	circuits.

Yet	another	name	for	boolean	functions	is	logical	functions,	since	they	use
the	 logical	 values	 true	 and	 false.	 Let’s	 define	 a	 two-input	 LOGICAL-AND
function:

This	 ordinary	 function	 differs	 from	 the	 AND	macro	 in	 several	 respects.
First,	 as	already	noted,	 it	must	be	given	exactly	 two	 inputs.	This	 is	a	minor
point	because	we	can	always	nest	or	cascade	several	of	them	to	handle	more
inputs.	 Second,	 LOGICAL-AND	 returns	 only	 the	 logical	 values	 T	 or	 NIL,
nothing	else.

Most	 important	 of	 all	 is	 the	 fact	 that	 LOGICAL-AND	 is	 not	 a	macro:	 It
cannot	 control	whether	 or	 not	 its	 arguments	 get	 evaluated.	 In	 the	 following
example,	the	expression	(ODDP	‘FRED)	causes	an	error	for	LOGICAL-AND
but	not	for	AND,	because	AND	never	evaluates	the	second	clause.
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Boolean	functions	are	simpler	than	conditionals.	Boolean	functions	in	Lisp
correspond	 to	 boolean	 circuits	 in	 electronics:	They	 are	 the	 primitive	 logical
operations	from	which	computer	circuitry	is	built.

EXERCISES
4.29.	 Write	 versions	 of	 LOGICAL-AND	 using	 IF	 and	 COND	 instead	 of

AND.

4.30.	Write	LOGICAL-OR.	Make	sure	it	returns	only	T	or	NIL	for	its	result.

4.31.	Is	NOT	a	conditional?	Is	it	a	boolean	function?	Do	you	need	to	write	a
LOGICAL-NOT	function?

4.13	TRUTH	TABLES
Truth	 tables	 are	 a	 convenient	way	of	describing	boolean	 functions.	To	de‐
scribe	a	function	with	a	truth	table,	we	simply	consider	in	turn	every	possible
combination	of	T	and	NIL	as	 inputs,	and	write	down	the	result	 the	 function
should	produce.	Here	is	the	truth	table	for	NOT:

Here	 is	 the	 truth	 table	 for	LOGICAL-AND.	Since	 this	 function	 takes	 two
inputs,	each	of	which	has	two	possible	values,	the	table	has	22	=	4	lines.

EXERCISES
4.32.	Construct	a	truth	table	for	LOGIC	AL-OR.

4.33.	Imagine	a	LOGICAL-IF	function	that	works	like	IF	does,	except	it	al‐
ways	 takes	 exactly	 three	 inputs,	 and	 its	 outputs	 are	 limited	 to	 T	 or
NIL.	How	many	lines	are	in	its	truth	table?
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4.34.	Write	down	the	truth	table	for	LOGICAL-IF.

4.14	DEMORGAN’S	THEOREM
DeMorgan’s	Theorem	 concerns	 the	 interchangeability	 of	AND	and	OR.	 If
you	 have	 one	 of	 these	 functions	 plus	NOT	you	 can	 always	 build	 the	 other.
Here	is	DeMorgan’s	Theorem	stated	two	different	ways:

These	equations	look	pretty	tricky,	so	let	me	also	state	them	in	English.	The
first	equation	says	 that	 if	X	and	Y	are	 true,	 then	neither	 is	X	false	nor	 is	Y
false.	The	 second	 equation	 says	 that	 if	 either	X	or	Y	 is	 true,	 then	X	and	Y
can’t	both	be	false.	The	English	versions	sound	obvious,	but	do	you	believe
the	equations?	Let’s	test	them	out.

That	was	not	a	complete	test	of	the	equations;	you	are	welcome	to	test	out
the	remaining	cases	yourself.

DeMorgan’s	 Theorem	 proved	 the	 interchangeability	 of	 the	 logical	 AND
and	OR	functions.	Does	it	hold	for	Lisp’s	conditional	AND	and	OR	functions
as	well?	Not	exactly.	The	use	of	double	NOTs	means	that	arbitrary	true	inputs
like	FOO	will	be	changed	to	the	canonical	true	value	T	on	output,	so	in	this
sense	DeMorgan’s	Theorem	doesn’t	hold.
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However,	DeMorgan’s	Theorem	does	preserve	the	conditional	property	of
AND	and	OR.	That	is,	clauses	that	(AND	X	Y)	would	evaluate	would	also	be
evaluated	by	(NOT	(OR	(NOT	X)	(NOT	Y))),	and	clauses	 that	AND	would
not	evaluate	would	not	be	evaluated	by	the	other	expression.	Example:

DeMorgan’s	Theorem	is	especial	 ly	useful	for	simplifying	expressions	in‐
volving	complex	combinations	of	predicates.	Consider	this	function:

The	body	can	be	converted	to	an	OR	by	writing:

Since	EVENP	is	the	opposite	of	ODDP,	we	derive:

EXERCISES
4.35.	Write	 down	 the	DeMorgan	 equations	 for	 the	 three-input	 versions	 of

AND	and	OR.

4.36.	The	NAND	function	(NAND	is	short	for	Not	AND)	is	very	commonly
found	 in	 computer	 circuitry.	 Here	 is	 a	 definition	 of	 NAND.	 Write
down	its	truth	table.

4.37.	NAND	 is	 called	 a	 logically	 complete	 function	 because	we	 can	 con‐
struct	 all	 other	 boolean	 functions	 from	 various	 combinations	 of
NAND.	 For	 example,	 here	 is	 a	 version	 of	 NOT	 called	 NOT2	 con‐
tructed	from	NAND:

Construct	versions	of	LOGICAL-AND	and	LOGICAL-OR	by	putting
together	NANDs.	You	will	have	to	use	more	than	one	NAND	in	each
case.
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4.38.	Consider	the	NOR	function	(short	for	Not	OR).	Can	you	write	versions
of	 NOT,	 LOGICAL-AND,	 NAND,	 and	 LOGICAL-OR	 by	 putting
NORs	together?

4.39.	Is	LOGICAL-AND	logically	complete	the	way	NAND	and	NOR	are?

*This	terminology	was	suggested	by	Robert	Wilensky.	The	distinction	between	“macro”	functions	and
“special”	functions	is	explained	in	Chapter	14;	for	now	you	can	think	of	them	as	the	same.

**The	term	“debugging”	arose	from	an	incident	in	the	early	days	of	computing,	when	computers	were
built	from	electromechanical	switches	called	relays.	Erroneous	behavior	 in	one	machine	was	found	to
be	due	to	a	moth	having	gotten	stuck	in	one	of	the	relays,	preventing	it	from	making	a	good	electrical
connection.	Removal	of	the	“bug”	fixed	the	problem.
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5

Variables	and	Side	Effects

5.1	INTRODUCTION
This	 chapter	 will	 give	 you	 a	 better	 understanding	 of	 the	 different	 kinds	 of
variables	 that	may	 appear	 in	Lisp	 programs,	 how	variables	 are	 created,	 and
how	their	values	may	change	over	time.	Common	Lisp	is	more	sophisticated
in	this	regard	than	earlier	Lisp	dialects.	We	will	also	talk	about	side	effects,
which	are	actions	a	function	takes	other	than	returning	a	value.	Changing	the
value	of	a	variable	is	one	kind	of	side	effect.

5.2	LOCAL	AND	GLOBAL	VARIABLES
Every	variable	has	a	scope,	which	is	the	region	in	which	it	can	be	referenced.
So	far	the	only	variables	we’ve	seen	are	the	ones	that	appear	in	a	function’s
argument	list.	Since	their	scope	is	restricted	to	the	body	of	the	function,	they
are	called	local	variables.	Consider	this	example:

Every	time	we	call	 the	DOUBLE	function,	a	new	local	variable	named	N	is
created.	Inside	the	body	of	DOUBLE,	the	name	N	refers	to	that	variable.	Out‐
side	of	DOUBLE,	we	cannot	refer	to	the	variable	at	all	because	we	are	outside
its	 scope.	 In	 other	 words,	 the	 name	 N	 has	 a	 different	 meaning	 outside	 of
DOUBLE	than	inside.

The	unassigned	variable	N	referred	to	in	the	error	message	above	is	not	the
local	N	created	by	DOUBLE.	 It	 is	 another	variable,	one	 that	 is	not	 local	 to
any	 specific	 function.	For	 this	 reason	 it	 is	known	as	a	global	variable.	Be‐
cause	the	global	variable	N	initially	has	no	value	(is	“unbound,”	in	older	ter‐
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minology),	we	get	an	unassigned	variable	error	when	we	 type	N	at	 the	 top-
level	read-eval-print	loop.	If	we	look	at	the	evaltrace	of	(DOUBLE	5),	the	dis‐
tinction	between	the	two	meanings	of	N	becomes	apparent:

There	 can	 be	 only	 one	 global	 variable	 named	N,	 but	 there	 can	 be	many
local	variables	with	this	name	because	each	resides	in	a	different	lexical	con‐
text.

5.3	SETF	ASSIGNS	A	VALUE	TO	A	VARIABLE
The	SETF	macro	function	assigns	a	value	to	a	variable.	If	the	variable	already
has	a	value,	the	new	value	replaces	the	old	one.	Here	is	an	example	of	SETF
assigning	a	value	to	a	global	variable,	and	later	changing	its	value.

The	first	argument	to	SETF	is	the	name	of	a	variable;	SETF	does	not	evalu‐
ate	this	argument.	(It	can	do	this	because	it	is	a	macro	function.)	The	second

137



argument	is	the	value	to	which	the	variable	is	set;	this	argument	is	evaluated.
The	value	 returned	by	SETF	 is	 the	value	 to	which	 it	 set	 the	variable.	Note:
some	Common	Lisp	implementations	complain	if	you	define	a	global	variable
using	SETF	without	first	“declaring”	it.	If	your	implementation	gives	a	warn‐
ing,	you	can	solve	the	problem	using	DEFVAR	to	properly	declare	the	vari‐
able	first,	like	this:

Global	 variables	 are	 useful	 for	 holding	 on	 to	 values	 so	we	 don’t	 have	 to
continually	retype	them.	Example:

HEAD,	TAIL,	and	LONG-LIST	are	all	global	variables.

5.4	SIDE	EFFECTS
Ordinary	functions	like	CAR	and	+	are	useful	only	because	of	the	values	they
return.	 Other	 functions	 are	 useful	 primarily	 because	 of	 their	 side	 effects.
SETF’s	side	effect	is	that	it	changes	the	value	of	a	variable.	This	side	effect	is
much	 more	 important	 than	 the	 value	 SETF	 returns.	 DEFUN	 is	 also	 called
purely	 for	 its	 side	 effect:	 It	 defines	 a	 new	 function.	 The	 value	 returned	 by
DEFUN	is	the	name	of	the	function	it	defined.

Another	function	with	a	side	effect	is	RANDOM,	Common	Lisp’s	random
number	generator.	 (RANDOM	n)	 returns	a	number	chosen	at	 random,	 from
zero	up	to	(but	not	including)	n.	If	n	is	an	integer,	RANDOM	returns	an	inte‐
ger;	if	it	is	a	floating	point	number,	RANDOM	returns	a	floating	point	num‐
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ber.

RANDOM’S	side	effect	 is	hidden	from	the	user.	 It	changes	 the	values	of
some	variables	inside	the	random	number	generator,	allowing	it	to	produce	a
different	random	number	each	time	it	is	called.

The	SETF	function	can	change	the	value	of	any	variable,	local	or	global.	In
this	book	we	will	use	SETF	only	on	global	variables,	because	it	is	good	pro‐
gramming	 style	 to	 avoid	 changing	 the	 values	 of	 local	 variables.	But	 just	 to
show	 that	 it	 can	 be	 done,	 here	 is	 an	 example	where	 a	 function	 changes	 the
value	of	a	local	variable,	P.	Notice	that	this	function	has	two	forms	(expres‐
sions)	in	its	body.	When	a	function	body	contains	more	than	one	form,	it	eval‐
uates	all	of	them	and	returns	the	value	of	the	last	one.

Inside	 POOR-STYLE	 the	 symbol	 P	 refers	 to	 a	 local	 variable,	 so	 SETF
changes	the	value	of	this	local	variable.	The	global	variable	P	is	unaffected	by
the	SETF.	 In	evaltrace	notation,	 the	assignment	 is	 shown	as	a	side	effect	of
the	SETF	 form	nested	within	 the	body	of	POOR-STYLE.	You	can	also	 see
that	the	result	of	this	form	is	not	returned	by	POOR-STYLE,	because	it	is	not
the	last	form	in	the	body.
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5.5	THE	LET	SPECIAL	FUNCTION
So	far,	the	only	local	variables	we’ve	seen	have	been	those	created	by	calling
user-defined	functions,	such	as	DOUBLE	or	AVERAGE.	Another	way	to	cre‐
ate	a	 local	variable	 is	with	the	LET	special	function.	For	example,	since	the
average	of	two	numbers	is	half	their	sum,	we	might	want	to	use	a	local	vari‐
able	called	SUM	inside	our	AVERAGE	function.	We	can	use	LET	to	create
this	local	variable	and	give	it	the	desired	initial	value.	Then,	in	the	body	of	the
LET	form,	we	can	compute	the	average.

The	right	way	to	read	a	LET	form	such	as

is	to	say	“Let	X	be	2,	and	Y	be	AARDVARK;	return	(LIST	X	Y).”	The	gen‐
eral	syntax	of	LET	is:

The	 first	 argument	 to	 LET	 is	 a	 list	 of	 variable-value	 pairs.	 The	 n	 value
forms	are	evaluated,	then	n	local	variables	are	created	to	hold	the	results,	fi‐
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nally	the	forms	in	the	body	of	the	LET	are	evaluated.	Here	is	an	evaltrace	of
the	call	to	AVERAGE.

Let’s	 focus	on	what	goes	on	 inside	 the	body	of	 the	LET.	The	 inner	 thick
arrow	with	the	hollow	shaft,	which	marks	the	LET	body	in	the	evaltrace	dia‐
gram,	indicates	that	the	LET	creates	its	own	lexical	context	within	the	lexical
context	 of	 AVERAGE.	 When	 evaluating	 the	 LET	 body,	 EVAL	 can	 see
through	the	hollow	shaft	to	the	local	variables	X	and	Y	that	AVERAGE	cre‐
ated.	If	the	LET’s	arrow	had	been	solid	like	AVERAGE’S	instead	of	hollow
it	would	be	a	scoping	boundary:	EVAL	would	not	be	able	 to	see	 through	 it
when	 searching	 for	 variables.	 In	 that	 case,	 when	 evaluating	 the	 expression
(LIST	X	Y	etc.)	in	the	LET	body,	EVAL	would	hit	the	boundary	and	immedi‐
ately	jump	to	the	global	lexical	context	to	look	for	a	global	variable	named	X
or	Y.	This	would	obviously	not	produce	the	intended	result;	it	would	probably
cause	an	unassigned	variable	error.

Here	is	an	example	of	using	LET	to	create	two	local	variables	at	once.

Here	 is	an	evaltrace	showing	exactly	how	LET	creates	 the	 local	variables
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STAR	 and	 CO-STAR.	 Note	 that	 the	 two	 value	 forms,	 (FIRST	 X)	 and
(THIRD	X),	are	both	evaluated	before	any	local	variables	are	created.

EXERCISE
5.1.	Rewrite	function	POOR-STYLE	to	create	a	new	local	variable	Q	using

LET,	 instead	 of	 using	 SETF	 to	 change	 P.	 Call	 your	 new	 function
GOOD-STYLE.

5.6	THE	LET*	SPECIAL	FUNCTION
The	LET*	special	function	is	similar	to	LET,	except	it	creates	the	local	vari‐
ables	one	 at	 a	 time	 instead	of	 all	 at	 once.	Therefore,	 the	 first	 local	 variable
forms	part	of	the	lexical	context	in	which	the	value	of	the	second	variable	is
computed,	and	so	on.	This	way	of	creating	local	variables	is	useful	when	one
wants	to	assign	names	to	several	intermediate	steps	in	a	long	computation.

For	example,	suppose	we	want	a	function	that	computes	the	percent	change
in	 the	price	of	widgets	given	 the	old	 and	new	prices	 as	 input.	Our	 function
must	compute	 the	difference	between	the	 two	prices,	 then	divide	 this	differ‐
ence	by	the	old	price	to	get	the	proportional	change	in	price,	and	then	multi‐
ply	that	by	100	to	get	the	percent	change.	We	can	use	local	variables	named
DIFF,	 PROPORTION,	 and	 PERCENTAGE	 to	 hold	 these	 values.	 We	 use
LET*	instead	of	LET	because	these	variables	must	be	created	one	at	a	time,
since	each	depends	on	its	predecessor.
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An	evaltrace	of	PRICE-CHANGE	shows	how	LET*	creates	its	local	vari‐
ables.	Notice	that	the	expression	(-	NEW	OLD)	occurs	in	the	lexical	context
containing	 just	 the	 local	 variables	NEW	and	OLD.	The	 expression	 (/	DIFF
OLD)	occurs	 in	a	nested	 lexical	context	 in	which	 the	 local	variable	DIFF	is
also	defined.	And	the	expression	(*	PROPORTION	100.0)	occurs	in	a	more
deeply	 nested	 context,	 containing	 OLD,	 NEW,	 DIFF,	 and	 PROPORTION.
The	body	of	the	LET*	form	is	evaluated	in	a	context	containing	all	these	vari‐
ables	plus	PERCENTAGE.

A	common	programming	error	is	to	use	LET	when	LET*	is	required.	Con‐
sider	the	following	FAULTY-SIZE-RANGE	function.	It	uses	MAX	and	MIN
to	 find	 the	 largest	 and	 smallest	 of	 a	 group	of	 numbers.	MAX	and	MIN	are
built	in	to	Common	Lisp;	they	both	accept	one	or	more	inputs.	The	extra	1.0
argument	to	/	 is	used	to	force	the	result	 to	be	a	floating	point	number	rather
than	a	ratio.
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The	problem	is	that	the	expression	(/	BIGGEST	SMALLEST	1.0)	is	being
evaluated	in	a	lexical	context	that	does	not	include	these	variables.	Therefore
the	symbol	BIGGEST	is	interpreted	as	a	reference	to	a	global	variable	by	that
name.	This	is	readily	apparent	in	an	evaltrace.

The	problem	is	solved	by	replacing	the	LET	with	a	LET*:

The	 evaltrace	 of	 CORRECT-SIZE-RANGE	 shows	 that	 (/	 BIGGEST
SMALLEST	1.0)	is	evaluated	in	the	lexical	context	containing	local	variables
BIGGEST	and	SMALLEST,	as	we	intended.
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Don’t	be	misled	by	this	example	into	thinking	that	LET*	should	always	be
used	in	place	of	LET.	There	are	some	situations	where	LET	is	the	only	correct
choice,	but	we	won’t	go	into	the	details	here.	Stylistically,	 it	 is	better	 to	use
LET	than	LET*	where	possible,	because	this	indicates	to	anyone	reading	the
program	 that	 there	 are	 no	 dependencies	 among	 the	 local	 variables	 that	 are
being	created.	Programs	with	few	dependencies	are	easier	to	understand.

5.7	SIDE	EFFECTS	CAN	CAUSE	BUGS
It	is	best	to	avoid	side	effects	in	your	programs	wherever	possible.	Here	is	an
example	where	the	side	effects	of	RANDOM	cause	a	bug.	Suppose	we	want	a
function	that	simulates	a	coin	toss.	Most	of	the	time	it	should	return	HEADS
or	TAILS,	but	once	in	a	great	while	it	should	return	EDGE,	indicating	that	the
coin	landed	on	its	edge	instead	of	one	of	its	two	faces.	Here’s	how	we’ll	do	it:
Pick	a	random	number	from	0	up	to	(but	not	including)	101.	If	the	number	is
in	the	range	0	to	49,	we’ll	return	HEADS.	If	it’s	in	the	range	51	to	100,	we’ll
return	tails.	If	it	is	exactly	equal	to	50,	we’ll	return	EDGE.
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Why	did	the	function	return	NIL?	The	bug	is	that	we’re	evaluating	the	ex‐
pression	(RANDOM	101)	as	many	as	three	times	per	function	call.	Suppose
in	the	first	COND	clause	(RANDOM	101)	returns	65;	this	makes	the	first	test
false.	 In	 the	second	COND	clause	we	again	evaluate	(RANDOM	101);	sup‐
pose	 this	 time	 it	 returns	 35,	which	makes	 the	 second	 test	 false.	 In	 the	 third
clause,	suppose	(RANDOM	101)	returns	anything	other	 than	50;	 this	makes
the	third	test	false.	COND	has	run	out	of	clauses,	so	it	returns	NIL.

The	 fix	 for	 this	bug	 is	 simple:	Use	LET	 to	hold	 the	value	of	 (RANDOM
101)	 in	 a	 local	 variable,	 so	 we	 only	 have	 to	 evaluate	 the	 expression	 once.
Also,	we	can	omit	 the	EQUAL	test,	since	if	 the	first	 two	tests	fail	we	know
that	the	result	must	have	been	exactly	equal	to	50.*

SUMMARY
A	variable	is	global	to	a	function	if	it	was	not	created	by	that	function.	Local
variables	have	scope	 limited	 to	 the	form	that	created	 them,	for	example,	 the
variables	in	a	function’s	argument	list	are	local	to	that	function,	and	the	vari‐
ables	created	by	LET	or	LET*	are	local	to	their	bodies.	Global	variables	are
so	named	because	they	have	global	scope;	they	are	not	local	to	any	one	func‐
tion.

SETF	is	a	macro	function	that	assigns	a	value	to	a	variable,	or	changes	the
value	 if	 it	 already	 has	 one.	 This	 side	 effect,	 called	 “assignment,”	 is	 what
makes	SETF	useful.
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When	 multiple	 expressions	 appear	 in	 a	 function	 body	 or	 LET	 or	 LET*
body,	 the	value	of	 the	 last	expression	 is	 returned.	The	other	expressions	are
only	useful	for	their	side	effects.

REVIEW	EXERCISES
5.2.	What	is	a	side	effect?

5.3.	What	is	the	difference	between	a	local	and	global	variable?

5.4.	Why	must	SETF	be	a	macro	function	instead	of	a	regular	function?

5.5.	Are	LET	 and	LET*	 equivalent	when	 you	 are	 only	 creating	 one	 local
variable?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Macro	function	for	assignment:	SETF.

Special	functions	for	creating	local	variables:	LET,	LET*.

Lisp	Toolkit:	DOCUMENTATION	and	APROPOS
Most	Common	Lisp	implementations	include	online	documentation	for	every
built-in	function	and	variable.	One	way	to	access	this	documentation	is	with
the	DOCUMENTATION	function,	which	returns	a	documentation	string.

Programmers	 don’t	 use	 the	 DOCUMENTATION	 function	 very	 often,
though,	because	there	are	faster	ways	to	access	online	documentation	via	the
editor	 your	 Lisp	 provides.	 On	my	machine,	 for	 example,	 when	 I	 point	 the
mouse	 at	 a	 symbol	 and	 press	 Control-Meta-Shift-S,	 the	 documentation	 for
that	function	or	variable	is	displayed	in	a	pop-up	window.

You	 can	 include	 documentation	 strings	 in	 the	 functions	 you	 write,	 too.
They	 should	 be	 placed	 immediately	 after	 the	 argument	 list	 when	 calling
DEFUN.
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Providing	documentation	strings	for	functions	you	write	is	good	program‐
ming	practice.	 It	 also	helps	other	people	 to	use	your	programs,	 since	online
documentation	is	always	available	whenever	they	need	assistance.

Another	way	to	document	a	program	is	by	including	comments	in	the	file.
Comments	 in	Lisp	programs	must	be	prefaced	with	 a	 semicolon.	Whenever
Lisp	 encounters	 a	 semicolon	while	 loading	 a	 program,	 it	 discards	 the	 semi‐
colon	 and	 everything	 to	 the	 right	 of	 it	 until	 the	 next	 carriage	 return.	 Com‐
ments	 benefit	 only	 those	 humans	who	 take	 the	 trouble	 to	 examine	 the	 pro‐
gram;	they	are	ignored	by	Lisp	and	do	not	form	part	of	the	online	documenta‐
tion.	But	they	are	useful	because	they	may	provide	more	lengthy	information
than	a	documentation	string.	They	may	also	be	more	specific,	for	example,	by
explaining	one	or	two	of	the	more	subtle	lines	in	a	function.

By	 convention,	Lisp	 comments	 appear	 in	 one	 of	 three	 places.	Comments
appearing	to	the	right	of	a	line	begin	with	one	semicolon.	Comments	inside	a
function	 that	 occupy	 a	 line	 by	 themselves	 are	 preceded	 by	 two	 semicolons.
Comments	that	begin	at	the	left	margin,	appearing	outside	a	function	defini‐
tion,	are	preceded	by	 three	 semicolons.	Some	Lisp	editors	 indent	comments
automatically	based	on	 the	number	of	semicolons	 they	contain.	An	example
of	all	three	comment	styles	follows.

Another	 useful	 source	 of	 documentation	 is	 APROPOS.	 It	 tells	 you	 the
names	of	all	symbols	containing	a	specified	string.	For	example,	suppose	you
want	 to	 find	all	 the	built-in	 functions	and	variables	containing	“TOTAL”	 in
their	name.	You	can	do	this	with	APROPOS:

We	see	that	there	is	a	built-in	Common	Lisp	function	called	ARRAY-TO‐
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TAL-SIZE,	and	a	built-in	constant	called	ARRAY-TOTAL-SIZE-LIMIT.	(A
constant	is	a	variable	whose	value	you	are	not	allowed	to	change.	PI	is	also	a
constant.)

The	second	argument	to	APROPOS	is	called	a	package	name.	You	should
always	use	the	string	“USER”	(all	uppercase)	for	the	second	argument;	other‐
wise	 APROPOS	may	 show	 you	 lots	 of	 implementation-specific	 Lisp	 func‐
tions	in	other	packages	that	you	don’t	care	to	know	anything	about.	Packages
are	one	of	the	more	obscure	features	of	Common	Lisp	and	will	not	be	covered
in	this	book.

Keyboard	Exercise

EXERCISE
5.6.	This	keyboard	exercise	 is	about	dice.	We	will	 start	with	a	 function	 to

throw	one	die	and	end	up	with	a	program	to	play	craps.	Be	sure	to	in‐
clude	a	documentation	string	for	each	function	you	write.

a.	Write	a	function	THROW-DIE	that	returns	a	random	number	from
1	to	6,	inclusive.	Remember	that	(RANDOM	6)	will	pick	numbers
from	0	to	5.	THROW-DIE	doesn’t	need	any	inputs,	so	its	argument
list	should	be	NIL.

b.	Write	a	function	THROW-DICE	that	throws	two	dice	and	returns	a
list	of	 two	numbers:	 the	value	of	 the	first	die	and	the	value	of	 the
second.	 We’ll	 call	 this	 list	 a	 “throw.”	 For	 example,	 (THROW-
DICE)	might	return	the	throw	(3	5),	indicating	that	the	first	die	was
a	3	and	the	second	a	5.

c.	Throwing	two	ones	is	called	“snake	eyes”;	two	sixes	is	called	“box‐
cars.”	 Write	 predicates	 SNAKE-EYES-P	 and	 BOXCARS-P	 that
take	a	throw	as	input	and	return	T	if	the	throw	is	equal	to	(1	1)	or	(6
6),	respectively.

d.	In	playing	craps,	the	first	throw	of	the	dice	is	crucial.	A	throw	of	7
or	 11	 is	 an	 instant	win.	A	 throw	 of	 2,	 3,	 or	 12	 is	 an	 instant	 loss
(American	 casino	 rules).	 Write	 predicates	 INSTANT-WIN-P	 and
INSTANT-LOSS-P	 to	detect	 these	conditions.	Each	 should	 take	a
throw	as	input.

e.	Write	a	function	SAY-THROW	that	takes	a	throw	as	input	and	re‐
turns	either	the	sum	of	the	two	dice	or	the	symbol	SNAKE-EYES
or	BOXCARS	if	the	sum	is	2	or	12.	(SAY-THROW	‘(3	4))	should
return	7.	(SAY-THROW	‘(6	6))	should	return	BOXCARS.
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f.	If	you	don’t	win	or	lose	on	the	first	throw	of	the	dice,	the	value	you
threw	becomes	your	“point,”	which	will	be	explained	shortly.	Write
a	 function	 (CRAPS)	 that	 produces	 the	 following	 sort	 of	 behavior.
Your	solution	should	make	use	of	the	functions	you	wrote	in	previ‐
ous	steps.

g.	Once	a	point	has	been	established,	you	continue	throwing	the	dice
until	you	either	win	by	making	the	point	again	or	lose	by	throwing
a	7.	Write	the	function	TRY-FOR-POINT	that	simulates	this	part	of
the	game,	as	follows:

5	Advanced	Topics

5.8	SYMBOLS	AND	VALUE	CELLS
Recall	 that	 internally	 a	 symbol	 is	 composed	 of	 five	 components.	 The	 two
we’ve	seen	so	far	are	the	symbol’s	name	and	function	cell.	A	third	component
of	every	symbol	is	the	value	cell.	It	points	to	the	value	of	the	global	variable
named	by	 that	 symbol.	 For	 example,	 if	 the	 global	 variable	TOTAL	has	 the
value	12,	 then	 the	 internal	 structure	of	 the	 symbol	TOTAL	would	 look	 like
this:

150



Similarly,	if	the	global	variable	FISH	has	the	value	TROUT,	the	structure
would	look	like	this:

The	 symbols	T	 and	NIL	 evaluate	 to	 themselves	 because	 their	 value	 cells
point	to	themselves.	In	other	words,	T	is	the	name	of	a	global	variable	whose
value	happens	to	be	the	symbol	T;	NIL’s	value	is	the	symbol	NIL.	The	inter‐
nal	structure	of	these	symbols	involves	a	circularity,	as	shown:

A	symbol	can	be	used	to	name	many	variables,	but	only	one	of	these	can	be
global.	 In	other	words,	only	one	can	exist	 in	 the	global	 lexical	context.	The
value	cell	 is	 reserved	 for	 that	variable.	All	 the	other	variables	must	 exist	 in
local	 contexts,	 and	 their	 values	 reside	 someplace	 other	 than	 the	 symbol’s
value	 cell.	Common	Lisp	 doesn’t	 specify	 exactly	where	 the	 values	 of	 local
variables	are	stored;	the	details	are	left	up	to	the	implementation.

Because	 symbols	 have	 separate	 function	 and	 value	 cells,	 we	 can	 have	 a
variable	and	a	 function	with	 the	same	name.**	For	example,	 if	we	gave	 the
global	variable	CAR	the	value	ROLLS-ROYCE,	the	symbol	CAR	would	look
like	this:
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Common	Lisp	determines	whether	a	symbol	refers	to	a	function	or	a	vari‐
able	based	on	the	context	in	which	it	appears.	If	a	symbol	appears	as	the	first
element	of	 a	 list	 that	 is	 to	be	 evaluated,	 it	 is	 treated	 as	 a	 function	name.	 In
other	contexts	 it	 is	 treated	as	a	variable	name.	So	(CAR	‘(A	B	C))	calls	 the
CAR	 function,	which	 returns	A.	But	 (LIST	 ‘A	 ‘NEW	CAR)	 references	 the
global	variable	CAR	and	produces	the	result	(A	NEW	ROLLS-ROYCE).

5.9	DISTINGUISHING	LOCAL	FROM	GLOBAL
VARIABLES
By	now	it	should	be	clear	that	symbols	are	not	variables;	they	serve	as	names
for	variables	(and	for	functions	too.)	Exactly	which	variable	a	symbol	refers
to	depends	on	the	context	in	which	it	appears.	In	the	example	below,	there	are
two	variables	named	X.	The	global	variable	X	has	the	value	57.	The	variable
X	that	is	local	to	NEWVAR	is	bound	to	whatever	is	the	input	to	NEWVAR.

Inside	 NEWVAR	 the	 name	 X	 refers	 to	 the	 local	 variable	 X,	 which	 the
function	created	and	assigned	the	value	WHOOPIE.	Outside	the	function,	X
refers	to	the	global	variable,	whose	value	is	57.	The	value	cell	of	the	symbol
X	points	to	57	the	whole	time;	NEWVAR’s	local	variable	X	is	stored	some‐
place	 else.	 An	 evaltrace	 diagram	 illustrates	 the	 relationship	 between	 the
twoXs:
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The	rule	for	evaluating	the	symbol	X	in	the	body	of	NEWVAR	is	to	start	in
the	current	lexical	context	and	move	outward,	looking	for	a	variable	with	the
given	 name.	 Since	 there	 is	 a	 variable	 named	 X	 in	 the	 current	 context,	 its
value,	WHOOPIE,	is	used.	EVAL	never	looks	at	the	global	variable	X.

The	rule	is	actually	a	little	more	complex	than	this.	EVAL	moves	outward
from	the	current	lexical	context	only	until	it	finds	a	variable	with	that	name	or
hits	 a	 thick	 line,	 indicating	 the	 end	of	 the	 lexical	 environment.	 In	 the	 latter
case,	 it	cannot	move	outward	any	further;	 it	can	only	check	 the	global	vari‐
able	with	that	name.	This	explains	the	following	example:

In	this	example,	we	create	a	global	variable	named	A	with	value	100.	When
we	call	F,	it	creates	a	local	variable	named	A,	with	value	3,	and	then	calls	the
function	G.	G’s	lexical	context	is	independent	of	F’s.	(Every	function	defined
with	DEFUN	has	 its	own	 independent	 lexical	 context.)	 In	 the	 evaltrace,	 the
thick	 line	denoting	 the	context	of	G	 is	a	barrier:	No	variables	 that	F	creates
are	 visible	 within	 G.	 So	 in	 the	 body	 of	 G,	 since	 there	 is	 no	 local	 variable
named	A,	EVAL	hits	the	barrier.	The	occurrence	of	A	in	the	body	is	therefore
treated	as	a	reference	to	the	global	variable	A.
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5.10	BINDING,	SCOPING,	AND	ASSIGNMENT
Because	Common	Lisp	evolved	from	older,	less	sophisticated	Lisp	dialects,	it
has	 inherited	 terminology	 that	 in	 a	 few	 cases	 doesn’t	 quite	 fit.	 This	 book
strives	to	use	only	correct	and	unambiguous	terminology,	but	for	compatibil‐
ity	with	other	books	and	the	Lisp	community	at	large,	I	will	digress	for	a	sec‐
tion	and	explain	the	various	uses	and	misuses	of	the	term	“binding.”

For	 historical	 reasons,	 variables	 that	 have	 values	 are	 said	 to	 be	 “bound,”
and	variables	with	no	value	are	said	to	be	“unbound.”	While	this	book	talks
about	“unassigned	variable”	errors,	the	error	message	most	Lisp	implementa‐
tions	produce	is	“unbound	variable.”

The	process	of	creating	a	new	variable	and	giving	it	a	value	is	called	“bind‐
ing.”	If	the	variable	appears	in	a	function’s	argument	list,	it	is	said	to	be	cre‐
ated	by	“lambda	binding.”	If	it	appears	in	the	variable	list	of	a	LET	or	LET*
form,	it	is	said	to	be	created	by	“LET-binding.”	These	uses	of	“binding”	are
not	 incorrect	 today.	A	Lisp	 expert	might	well	 say	 that	we	 cured	 the	 bug	 in
COIN-WITH-BUG	“by	LET-binding	 a	 variable	 to	 the	 value	 of	 (RANDOM
101).”

But	old-time	Lispers	get	themselves	into	terminological	trouble	when	they
try	to	talk	about	the	binding	of	variables	in	ways	that	aren’t	true	for	lexically
scoped	Lisps.	While	variables	are	lexically	scoped	by	default,	Common	Lisp
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also	provides	another	 scoping	discipline,	 called	dynamic	 scoping,	which	we
won’t	get	into	until	Chapter	14.	Dynamic	scoping	was	the	default	in	most	ear‐
lier	 Lisp	 dialects,	 except	 for	 Scheme	 and	 T.	 “Bound”	 doesn’t	 necesssarily
mean	“has	a	value”	 for	dynamically	 scoped	variables,	because	 it	 is	possible
for	such	a	variable	to	be	bound	but	have	no	value.

Referring	 to	 the	 functions	 F	 and	 G	 in	 the	 preceding	 section,	 old-time
Lispers	would	say	“the	symbol	A	is	bound	to	3	by	F.”	This	is	not	proper	lan‐
guage	 if	 you	 are	 speaking	 about	 Common	Lisp.	 Symbols	 are	 never	 bound;
only	variables	can	be	bound.	And	there	is	no	unique	variable	named	A;	there
are	two.	Even	while	F’s	local	variable	A	is	in	existence,	the	global	A	can	be
referenced	by	functions	such	as	G	whose	lexical	context	is	outside	the	body	of
F.	To	express	the	offending	phrase	in	correct	Common	Lisp,	one	should	say
“F	binds	a	local	variable	A	to	3.”

*Eliminating	the	EQUAL	test	from	COIN-WITH-BUG	would	not	have	fixed	the	bug,	but	it	would	have
made	the	symptoms	more	subtle:	The	value	EDGE	would	be	returned	roughly	25%	of	the	time	instead
of	only	1%.

**This	is	not	possible	in	the	Scheme	dialect	of	Lisp,	which	stores	functions	and	variable	values	in	the
same	cell.
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6

List	Data	Structures

6.1	INTRODUCTION
This	chapter	presents	more	 list-manipulation	 functions,	and	shows	how	 lists
are	 used	 to	 implement	 such	 other	 data	 structures	 as	 sets,	 tables,	 and	 trees.
Common	 Lisp	 offers	 many	 built-in	 functions	 that	 support	 these	 data	 struc‐
tures.	 This	 is	 one	 of	 the	 strengths	 of	 Lisp	 compared	 to	 other	 languages.	 A
Lisp	 programmer	 can	 immediately	 concentrate	 on	 the	 problem	 he	 or	 she
wants	to	solve.	A	Pascal	or	C	programmer	faced	with	the	same	problem	must
first	 go	 off	 and	 implement	 parts	 of	 a	 Lisp-like	 system,	 such	 as	 linked	 list
primitives,	symbolic	data	structures,	a	storage	allocator,	and	so	on,	before	get‐
ting	to	work	on	the	real	problem.

The	 approach	we	 take	 to	 lists	 in	 this	 chapter	 is	 somewhat	more	 sophisti‐
cated	than	in	Chapter	2.	We	will	discuss	not	only	what	various	Lisp	primitive
functions	do,	but	also	how	they	work	inside.	In	preparation	for	this,	you	may
want	 to	 review	 the	discussion	of	dotted-pair	notation	 in	section	2.17.	 If	you
haven’t	been	reading	the	Advanced	Topics	sections,	that’s	okay;	just	go	back
and	read	section	2.17	now.

6.2	PARENTHESIS	NOTATION	VS.	CONS	CELL
NOTATION
Writing	 lists	 in	parenthesis	notation	 is	convenient,	but	 it	 can	be	misleading.
Lists	in	parenthesis	notation	appear	symmetric:	They	begin	with	a	left	paren‐
thesis	and	 they	end	with	a	 right	one.	One	might	 therefore	expect	 the	CONS
function	to	treat	 its	arguments	symmetrically.	If	CONS	can	add	a	symbol	to
the	front	of	a	list	like	so:

why	can’t	it	add	a	symbol	to	the	end	of	a	list?	Beginners	who	try	this	are	sur‐
prised	by	the	result:
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There	is	no	reason	to	view	the	left	end	of	a	list	as	fundamentally	different
from	the	right	end	if	we	stick	to	parenthesis	notation.	But	switching	to	cons
cell	notation	reveals	the	crucial	difference:	Lists	are	one-way	chains	of	point‐
ers.	It	is	easy	to	add	an	element	to	the	front	of	a	list	because	what	we’re	really
doing	is	creating	a	new	cons	cell	whose	cdr	points	to	the	existing	list.	If	the
inputs	to	CONS	are	W	and	(X	Y	Z),	the	result	will	be	a	new	cell	whose	car
points	to	W	and	whose	cdr	points	to	the	old	chain	(X	Y	Z),	as	shown	below.
Although	we	usually	display	the	result	as	(W	X	Y	Z),	we	can	also	write	it	in
dot	notation	as	(W	.	(X	Y	Z)).

When	we	cons	(A	B	C)	onto	D,	it’s	the	car	of	the	new	cell	that	points	to	the
old	list	(A	B	C);	the	cdr	points	to	the	symbol	D.	The	result	is	normally	written
((A	B	C)	.	D),	which	looks	decidedly	odd	in	parenthesis	notation.	The	dot	is
necessary	because	the	cons	cell	chain	ends	in	an	atom	other	than	NIL.	In	cons
cell	notation	the	structure	looks	like	this:

There	is	no	direct	way	to	add	an	element	to	the	end	of	a	list	simply	by	cre‐
ating	 a	 new	 cons	 cell,	 because	 the	 end	 of	 the	 original	 list	 already	 points	 to
NIL.	More	 sophisticated	 techniques	must	 be	 used.	 One	 of	 these	 is	 demon‐
strated	in	the	next	section.

6.3	THE	APPEND	FUNCTION
APPEND	takes	two	lists	as	input;	it	returns	a	list	containing	all	the	elements
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of	the	first	list	followed	by	all	the	elements	of	the	second.*

If	one	of	the	inputs	to	APPEND	is	the	empty	list,	the	result	will	be	equal	to
the	other	input.	Appending	NIL	to	a	list	is	like	adding	zero	to	a	number.

APPEND	works	on	nested	 lists	 too.	 It	only	 looks	at	 the	 top	 level	of	each
cons	cell	chain,	so	it	doesn’t	notice	if	a	list	is	nested	or	not.

APPEND	does	not	change	the	value	of	any	variable	or	modify	any	existing
cons	cells.	For	this	reason,	it	is	called	a	nondestructive	function.

APPEND	may	appear	to	treat	its	two	inputs	symmetrically,	but	this	is	just
an	illusion	caused	by	the	use	of	parenthesis	notation.	APPEND	treats	its	two
inputs	quite	differently.	When	we	append	 the	 list	 (A	B	C)	 to	 the	 list	 (D	E),
APPEND	copies	the	first	input	but	not	the	second.	It	makes	the	cdr	of	the	last
cell	of	the	copy	point	to	the	second	input,	and	returns	a	pointer	to	the	copy,	as
shown	in	Figure	6-1.

This	description	of	how	APPEND	really	works	also	explains	why	it	 is	an
error	for	the	first	input	to	APPEND	to	be	a	non-list,	but	it’s	okay	if	the	second
input	is	a	non-list.
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APPEND	wants	to	copy	the	cons	cells	that	make	up	its	first	input.	It	can’t
when	 the	 first	 input	 is	A	because	 that	 isn’t	 a	 list,	 so	 it	 signals	an	error.	But
when	we	append	(W	X	Y)	to	Z,	APPEND	can	copy	its	first	input	and	make
the	cdr	of	the	last	cell	point	to	the	second	input,	so	it	doesn’t	have	to	signal	an
error.	In	this	case	the	second	input	is	Z	rather	than	a	list,	so	the	result	 looks
odd	because	the	cons	cell	chain	doesn’t	end	in	NIL.

Let	us	now	return	to	the	problem	of	adding	an	element	to	the	end	of	a	list.
If	we	first	make	a	list	of	the	element,	we	can	solve	this	problem	by	using	AP‐
PEND.

Figure	6-1	Result	of	appending	(A	B	C)	to	(D	E).

6.4	COMPARING	CONS,	LIST,	AND	APPEND
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Beginninng	 Lispers	 often	 have	 trouble	 distinguishing	 among	 CONS,	 LIST,
and	APPEND,	since	all	three	functions	are	used	to	build	list	structures.	Here
is	a	brief	review	of	what	each	function	does	and	when	it	should	be	used:

•	CONS	creates	one	new	cons	cell.	It	is	often	used	to	add	an	element	to
the	front	of	a	list.

•	LIST	makes	new	lists	by	accepting	an	arbitrary	number	of	inputs	and
building	 a	 chain	 of	 cons	 cells	 ending	 in	 NIL.	 The	 car	 of	 each	 cell
points	to	the	corresponding	input.

•	APPEND	appends	lists	together	by	copying	its	first	input	and	making
the	cdr	of	 the	 last	cell	of	 the	copy	point	 to	 the	second	 input.	 It	 is	an
error	for	the	first	input	to	APPEND	to	be	a	non-list.

Now	let’s	try	some	examples	for	comparison.	First,	consider	the	case	where
the	first	input	is	a	symbol	and	the	second	input	a	list:

Next,	let’s	see	what	happens	when	both	inputs	are	lists:

Finally,	let’s	try	making	the	first	input	a	list	and	the	second	input	a	symbol.
This	is	the	trickiest	case	to	understand;	you	must	think	in	terms	of	cons	cells
rather	than	parentheses	and	dots.
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To	further	develop	your	 intuitions	about	CONS,	LIST,	and	APPEND,	 try
the	above	examples	using	the	SDRAW	tool	described	in	the	Lisp	Toolkit	sec‐
tion	of	this	chapter.	SDRAW	draws	cons	cell	diagrams.

6.5	MORE	FUNCTIONS	ON	LISTS
Lisp	 provides	many	 simple	 functions	 for	 operating	 on	 lists.	We’ve	 already
discussed	CONS,	LIST,	APPEND,	 and	LENGTH.	Now	we	will	 cover	RE‐
VERSE,	 NTH,	 NTHCDR,	 LAST,	 and	 REMOVE.	 Some	 of	 these	 functions
must	copy	their	first	 input,	while	others	don’t	have	to.	See	if	you	can	figure
out	the	reason	for	this.

6.5.1	REVERSE
REVERSE	returns	the	reversal	of	a	list.

Notice	that	REVERSE	reverses	only	the	 top	level	of	a	list.	It	does	not	re‐
verse	the	individual	elements	of	a	list	of	lists.	Another	point	about	REVERSE
is	that	it	doesn’t	work	on	symbols.	REVERSE	of	the	list	(LIVE)	gives	the	list
(E	V	I	L),	but	REVERSE	of	the	symbol	LIVE	gives	a	wrong-type	input	error.

Like	APPEND,	REVERSE	is	nondestructive.	It	copies	its	input	rather	than
modifying	it.

We	can	use	REVERSE	to	add	an	element	 to	 the	end	of	a	 list,	as	 follows.
Suppose	we	want	to	add	D	to	the	end	of	the	list	(A	B	C).	The	reverse	of	(A	B
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C)	is	(C	B	A).	If	we	cons	D	onto	that	we	get	(D	C	B	A).	Then,	reversing	the
result	of	CONS	gives	(ABC	D).

Now	you	know	two	ways	to	add	an	element	to	 the	end	of	a	 list.	The	AP‐
PEND	solution	is	considered	better	style	than	the	double	REVERSE	solution
because	the	latter	makes	two	copies	of	the	list.	APPEND	is	more	efficient.	Ef‐
ficiency	issues	are	further	discussed	in	an	Advanced	Topics	section	at	the	end
of	this	chapter.

6.5.2	NTH	and	NTHCDR
The	NTHCDR	function	returns	the	nth	successive	cdr	of	a	list.	Of	course,	if
we	take	zero	cdrs	we	are	left	with	the	list	itself.	If	we	take	one	too	many	cdrs,
we	end	up	with	the	atom	that	terminates	the	cons	cell	chain,	which	usually	is
NIL.

Using	inputs	greater	than	3	does	not	cause	an	error;	we	simply	get	the	same
result	as	for	3.	This	is	one	of	the	consequences	of	making	the	cdr	of	NIL	be
NIL.

However,	 if	 the	 list	 ends	 in	 an	 atom	 other	 than	NIL,	 going	 too	 far	 with
NTHCDR	will	cause	an	error.

The	NTH	function	takes	the	CAR	of	the	NTHCDR	of	a	list.
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Since	(NTHCDR	0	x)	is	the	list	x,	(NTH	0	x)	is	the	first	element.	Therefore,
(NTH	1	x)	is	the	second,	and	so	on.

The	convention	of	numbering	things	from	zero	rather	than	from	one	is	used
throughout	Common	Lisp.	You	will	encounter	 it	 again	when	we	discuss	ar‐
rays	in	Chapter	13.

EXERCISES
6.1.	Why	is	(NTH	4’(ABC))	equal	to	NIL?

6.2.	What	is	the	value	of	(NTH	3	‘(A	B	C	.	D)),	and	why?

6.5.3	LAST
LAST	returns	the	last	cons	cell	of	a	list,	in	other	words,	the	cell	whose	car	is
the	list’s	last	element.	By	definition,	the	cdr	of	this	cell	is	an	atom;	otherwise
it	wouldn’t	be	the	last	cell	of	 the	list.	If	 the	list	 is	empty,	LAST	just	returns
NIL.

EXERCISES
6.3.	What	is	the	value	of	(LAST	‘(ROSEBUD))	?

6.4.	What	is	the	value	of	(LAST	‘((A	B	C))),	and	why?

6.5.4	REMOVE
REMOVE	removes	an	item	from	a	list.	Normally	it	removes	all	occurrences
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of	 the	 item,	although	 there	are	ways	 to	 tell	 it	 to	 remove	only	 some	 (see	 the
Advanced	 Topics	 section).	 The	 result	 returned	 by	 REMOVE	 is	 a	 new	 list,
without	the	deleted	items.

REMOVE	is	a	nondestructive	function.	It	does	not	change	any	variables	or
cons	cells	when	removing	elements	from	a	list.	REMOVE	builds	its	result	out
of	fresh	cons	cells	by	copying	(parts	of)	the	list.

The	following	table	should	help	you	remember	which	functions	copy	their
input	and	which	do	not.	APPEND,	REVERSE,	and	REMOVE	return	a	new
cons	 cell	 chain	 that	 is	 not	 contained	 in	 their	 input,	 so	 they	must	 copy	 their
input	 to	 produce	 the	 new	 chain.	 Functions	 such	 as	 NTHCDR,	 NTH,	 and
LAST	return	a	pointer	to	some	component	of	their	input.	They	do	not	need	to
copy	anything	because,	by	definition,	the	exact	object	they	want	to	return	al‐
ready	exists.

EXERCISES
6.5.	Write	an	expression	to	set	the	global	variable	LINE	to	the	list	(ROSES

ARE	RED).	Then	write	down	what	each	of	 the	following	expressions
evaluates	to:
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6.6.	 Use	 the	 LAST	 function	 to	write	 a	 function	 called	 LAST-ELEMENT
that	returns	the	last	element	of	a	list	instead	of	the	last	cons	cell.	Write
another	 version	 of	 LAST-ELEMENT	 using	 REVERSE	 instead	 of
LAST.	Write	another	version	using	NTH	and	LENGTH.

6.7.	Use	REVERSE	 to	write	 a	NEXT-TO-LAST	 function	 that	 returns	 the
next-to-last	element	of	a	list.	Write	another	version	using	NTH.

6.8.	Write	a	function	MY-BUTLAST	that	returns	a	list	with	the	last	element
removed.	(MY-BUTLAST	‘(ROSES	ARE	RED))	should	return	the	list
(ROSES	ARE).	(MY-BUTLAST	‘(G	A	G	A))	should	return	(G	A	G).

6.9.	What	primitive	function	does	the	following	reduce	to?

6.10.	A	 palindrome	 is	 a	 sequence	 that	 reads	 the	 same	 forwards	 and	 back‐
wards.	The	list	(A	B	C	D	C	B	A)	is	a	palindrome;	(A	B	C	A	B	C)	is
not.	Write	a	function	PALINDROMEP	that	 returns	T	 if	 its	 input	 is	a
palindrome.

6.11.	Write	a	function	MAKE-PALINDROME	that	makes	a	palindrome	out
of	a	list,	for	example,	given	(YOU	AND	ME)	as	input	it	should	return
(YOU	AND	ME	ME	AND	YOU).

6.6	LISTS	AS	SETS
A	set	is	an	unordered	collection	of	items.	Each	item	appears	only	once	in	the
set.	Some	typical	sets	are	the	set	of	days	of	the	week,	the	set	of	integers	(an
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infinite	 set),	 and	 the	 set	 of	 people	 in	 Hackensack,	 New	 Jersey,	 who	 had
spaghetti	for	dinner	last	night.

Sets	are	undoubtedly	one	of	the	more	useful	data	structures	one	can	build
from	lists.	The	basic	set	operations	are	testing	if	an	item	is	a	member	of	a	set;
taking	the	union,	intersection,	and	set	difference	(also	called	set	subtraction)
of	two	sets;	and	testing	if	one	set	 is	a	subset	of	another.	The	Lisp	functions
for	all	these	operations	are	described	in	the	following	subsections.

6.6.1	MEMBER
The	MEMBER	predicate	checks	whether	an	item	is	a	member	of	a	list.	If	the
item	is	found	in	the	list,	the	sublist	beginning	with	that	item	is	returned.	Oth‐
erwise	 NIL	 is	 returned.	 MEMBER	 never	 returns	 T,	 but	 by	 tradition	 it	 is
counted	as	a	predicate	because	the	value	it	returns	is	non-NIL	(hence	true)	if
and	only	if	the	item	is	in	the	list.

In	the	very	first	dialect	of	Lisp,	MEMBER	returned	just	T	or	NIL.	But	peo‐
ple	decided	that	having	MEMBER	return	the	sublist	beginning	with	the	item
sought	made	it	a	much	more	useful	function.	This	extension	is	consistent	with
MEMBER’S	being	a	predicate,	because	the	sublist	with	zero	elements	is	also
the	only	way	to	say	“false.”

Here’s	an	example	of	why	it	is	useful	for	MEMBER	to	return	a	sublist.	The
BEFOREP	predicate	returns	a	true	value	if	x	appears	earlier	than	y	in	the	list	l.
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EXERCISE
6.12.	Does	MEMBER	have	to	copy	its	 input	to	produce	its	result?	Explain

your	reasoning.

6.6.2	INTERSECTION
The	INTERSECTION	function	takes	the	intersection	of	two	sets	and	returns	a
list	of	items	appearing	in	both	sets.	The	exact	order	in	which	elements	appear
in	the	result	is	undefined;	it	may	differ	from	one	Lisp	implementation	to	an‐
other.	Order	 isn’t	 important	 for	 sets	 anyway;	 only	 the	 elements	 themselves
matter.

If	a	list	contains	multiple	occurrence	of	an	item,	it	 is	not	a	true	set.	Com‐
mon	Lisp	set	functions	such	as	INTERSECTION	and	UNION	can	handle	lists
that	are	not	sets,	but	whether	the	result	contains	duplicates	or	not	is	undefined,
and	may	vary	across	implementations.

EXERCISES
6.13.	What	is	the	result	of	intersecting	a	set	with	NIL?

6.14.	What	is	the	result	of	intersecting	a	set	with	itself?

6.15.	We	can	use	MEMBER	to	write	a	predicate	that	returns	a	true	value	if	a
sentence	contains	the	word	“the.”

167



Suppose	 we	 instead	 want	 a	 predicate	 CONTAINS-ARTICLE-P	 that
returns	a	 true	value	 if	 a	 sentence	contains	any	article,	 such	as	“the,”
“a,”	or	“an.”	Write	a	version	of	this	predicate	using	INTERSECTION.
Write	another	version	using	MEMBER	and	OR.	Could	you	solve	this
problem	with	AND	instead	of	OR?

6.6.3	UNION
The	UNION	function	returns	 the	union	of	 two	sets,	 in	other	words,	a	 list	of
items	that	appear	in	either	set.	If	an	item	appears	in	both	sets,	it	will	still	ap‐
pear	only	once	in	the	result.	The	exact	order	in	of	items	in	the	result	is	unde‐
fined	(and	unimportant)	for	sets.

EXERCISES
6.16.	What	is	the	union	of	a	set	with	NIL?

6.17.	What	is	the	union	of	a	set	with	itself?

6.18.	Write	a	function	ADD-VOWELS	that	takes	a	set	of	letters	as	input	and
adds	 the	vowels	 (A	E	 I	O	U)	 to	 the	 set.	For	 example,	 calling	ADD-
VOWELS	on	the	set	(X	A	E	Z)	should	produce	the	set	(X	A	E	Z	I	O
U),	except	that	the	exact	order	of	the	elements	in	the	result	is	unimpor‐
tant.

6.6.4	SET-DIFFERENCE
The	SET-DIFFERENCE	function	performs	set	subtraction.	It	returns	what	is
left	of	 the	first	set	when	 the	elements	 in	 the	second	set	have	been	removed.
Again,	the	order	of	elements	in	the	result	is	undefined.
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Unlike	UNION	and	 INTERSECTION,	SET-DIFFERENCE	 is	 not	 a	 sym‐
metric	function.	Switching	its	first	and	second	inputs	usually	results	in	a	dif‐
ferent	set	being	produced	as	output.

EXERCISES
6.19.	What	are	the	results	of	using	NIL	as	an	input	to	SET-DIFFERENCE?

6.20.	 Which	 of	 its	 two	 inputs	 does	 SET-DIFFERENCE	 need	 to	 copy?
Which	input	never	needs	to	be	copied?	Explain	your	reasoning.

6.6.5	SUBSETP
The	SUBSETP	predicate	returns	T	if	one	set	is	contained	in	another,	in	other
words,	if	every	element	of	the	first	set	is	an	element	of	the	second	set.

EXERCISE
6.21.	If	set	x	is	a	subset	of	set	y,	then	subtracting	y	from	x	should	leave	the

empty	set.	Write	MY-SUBSETP,	a	version	of	the	SUBSETP	predicate
that	returns	T	if	its	first	input	is	a	subset	of	its	second	input.

GENERAL	SET	EXERCISES
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6.22.	Suppose	 the	global	variable	A	 is	bound	 to	 the	 list	 (SOAP	WATER).
What	will	be	the	result	of	each	of	the	following	expressions?

6.23.	The	cardinality	of	a	set	 is	 the	number	of	elements	 it	contains.	What
Lisp	primitive	determines	the	cardinality	of	a	set?

6.24.	 Sets	 are	 said	 to	 be	 equal	 if	 they	 contain	 exactly	 the	 same	 elements.
Order	does	not	matter	in	a	set,	so	the	sets	(RED	BLUE	GREEN)	and
(GREEN	 BLUE	 RED)	 are	 considered	 equal.	 However,	 the	 EQUAL
predicate	does	not	consider	them	equal,	because	it	treats	them	as	lists,
not	as	sets.	Write	a	SET-EQUAL	predicate	that	returns	T	if	two	things
are	equal	as	sets.	{Hint:	If	two	sets	are	equal,	then	each	is	a	subset	of
the	other.)

6.25.	A	 set	X	 is	 a	proper	 subset	 of	 a	 set	Y	 if	X	 is	 a	 subset	of	Y	but	not
equal	 to	Y.	Thus,	 (A	C)	 is	a	proper	subset	of	 (C	A	B).	 (A	B	C)	 is	a
subset	of	(C	A	B),	but	not	a	proper	subset	of	 it.	Write	 the	PROPER-
SUBSETP	predicate,	which	returns	T	if	its	first	input	is	a	proper	sub‐
set	of	its	second	input.

6.7	PROGRAMMING	WITH	SETS
Here	 is	 an	 example	 of	 how	 to	 solve	 a	modest	 programming	 problem	 using
sets.	The	problem	 is	 to	write	 a	 function	 that	 adds	 a	 title	 to	 a	 name,	 turning
“John	Doe”	 into	 “Mr.	 John	Doe”	 or	 “Jane	Doe”	 into	 “Ms.	 Jane	Doe.”	 If	 a
name	already	has	a	title,	 that	 title	should	be	kept,	but	 if	 it	doesn’t	have	one,
we	will	 try	 to	determine	 the	gender	of	 the	first	name	so	 that	 the	appropriate
title	can	be	assigned.

To	 solve	 a	problem	 like	 this,	we	must	break	 it	 down	 into	 smaller	pieces.
Let’s	start	with	the	question	of	whether	a	name	has	a	title	or	not.	Here’s	how
we’d	write	a	function	to	answer	that	question:

170



The	next	step	is	to	write	functions	to	figure	out	whether	a	word	is	a	male	or
female	first	name.	We	will	use	only	a	few	instances	of	each	type	of	name	to
keep	the	example	brief.

Now	we	can	write	the	GIVE-TITLE	function	that	adds	a	title	to	a	name.	Of
course,	we	will	only	add	a	 title	 if	 the	name	doesn’t	already	have	one.	 If	 the
first	name	isn’t	recognized	as	male	or	female,	we’ll	play	it	safe	and	use	“Mr.
or	Ms.”
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The	 important	 features	 in	 this	 example	 are	 (1)	 breaking	 a	 problem	down
into	simple	little	functions,	and	(2)	writing	and	testing	the	functions	one	at	a
time.	Once	we	had	 the	TITLEDP,	MALEP,	and	FEMALEP	predicates	writ‐
ten,	GIVE-TITLE	was	easy	to	write.

Decomposing	 a	 problem	 into	 subproblems	 is	 an	 important	 skill.	 Experi‐
enced	programmers	can	often	see	right	away	how	a	problem	breaks	down	into
logical	subdivisions,	but	beginners	must	build	up	their	intuition	through	prac‐
tice.

Here	are	a	few	more	things	we	can	do	with	these	lists	of	names.	The	func‐
tions	below	take	no	inputs,	so	their	argument	list	is	NIL.

So	far,	all	 the	sets	we’ve	seen	in	this	chapter	contained	only	symbols	and
numbers.	It	is	also	quite	easy	to	work	with	sets	of	lists,	but	a	trick	is	required
to	 use	 functions	 like	MEMBER,	 UNION,	 INTERSECTION,	 and	 so	 on	 on
sets	of	lists.	See	the	discussion	of	the	:TEST	keyword	in	the	Advanced	Topics
section.
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MINI	KEYBOARD	EXERCISE
6.26.	We	are	going	to	write	a	program	that	compares	the	descriptions	of	two

objects	 and	 tells	 how	many	 features	 they	 have	 in	 common.	 The	 de‐
scriptions	will	 be	 represented	 as	 a	 list	 of	 features,	with	 the	 symbol	 -
VS-	 separating	 the	 first	 object	 from	 the	 second.	Thus,	when	 given	 a
list	like

the	program	will	 respond	with	 (2	COMMON	FEATURES).	We	will
compose	this	program	from	several	small	functions	that	you	will	write
and	test	one	at	a	time.

a.	Write	 a	 function	RIGHT-SIDE	 that	 returns	 all	 the	 features	 to	 the
right	 of	 the	 -VS-	 symbol.	 RIGHT-SIDE	 of	 the	 list	 shown	 above
should	 return	 (SMALL	SHINY	RED	FOUR-SIDED	PYRAMID).
Hint:	remember	that	the	MEMBER	function	returns	the	entire	sub‐
list	 starting	with	 the	 item	 for	which	 you	 are	 searching.	 Test	 your
function	to	make	sure	it	works	correctly.

b.	Write	a	function	LEFT-SIDE	that	returns	all	the	features	to	the	left
of	the	-VS-.	You	can’t	use	the	MEMBER	trick	directly	for	this	one,
but	you	can	use	it	if	you	do	something	to	the	list	first.

c.	Write	 a	 function	 COUNT-COMMON	 that	 returns	 the	 number	 of
features	the	left	and	right	sides	of	the	input	have	in	common.

d.	Write	 the	main	 function,	COMPARE,	 that	 takes	 a	 list	 of	 features
describing	two	objects,	with	a	-VS-	between	them,	and	reports	the
number	 of	 features	 they	 have	 in	 common.	COMPARE	 should	 re‐
turn	a	list	of	form	(n	COMMON	FEATURES).

e.	Try	the	expression

You	should	get	(3	COMMON	FEATURES)	as	the	result.

6.8	LISTS	AS	TABLES
Tables	are	another	very	useful	structure	we	can	build	 from	lists.	A	 table,	or
association	list	(a-list	for	short),	is	a	list	of	lists.	Each	list	is	called	an	entry,
and	 the	car	of	each	entry	 is	 its	key.	A	 table	of	 five	English	words	and	 their
French	equivalents	is	shown	below.	The	table	contains	five	entries;	the	keys
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are	the	English	words.

6.8.1	ASSOC
The	ASSOC	 function	 looks	 up	 an	 entry	 in	 a	 table,	 given	 its	 key.	Here	 are
some	examples.

ASSOC	goes	through	the	table	one	entry	at	a	time	until	it	finds	a	key	that
matches	 the	 key	 for	 which	 it	 is	 searching;	 it	 returns	 that	 entry.	 If	 ASSOC
can’t	find	the	key	in	the	table,	it	returns	NIL.

Notice	that	when	ASSOC	does	find	an	entry	with	the	given	key,	the	value	it
returns	is	the	entire	entry.	If	we	want	only	the	French	word	and	not	the	entire
entry,	we	can	take	the	second	element	of	the	result	of	ASSOC.

EXERCISE
6.27.	Should	ASSOC	be	considered	a	predicate	even	though	it	never	returns

T?

6.8.2	RASSOC
RASSOC	 is	 like	ASSOC,	 except	 it	 looks	 at	 the	 cdr	 of	 each	 element	 of	 the
table	 instead	 of	 the	 car.	 (The	 name	 stands	 for	 “Reverse	 ASSOC”)	 To	 use
RASSOC	with	symbols	as	keys,	 the	table	must	be	a	list	of	dotted	pairs,	 like
this:
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Both	ASSOC	and	RASSOC	return	as	soon	as	they	find	the	first	matching
table	entry;	the	rest	of	the	list	is	not	searched.

EXERCISE
6.28.	Set	the	global	variable	PRODUCE	to	this	list:

Now	write	down	the	results	of	the	following	expressions:

6.9	PROGRAMMING	WITH	TABLES
Here	is	another	example	of	the	use	of	ASSOC.	We	will	create	a	table	of	ob‐
jects	and	their	descriptions,	where	the	descriptions	are	similar	to	those	in	the
last	mini	keyboard	exercise.	We’ll	store	the	table	of	descriptions	in	the	global
variable	THINGS.	The	table	looks	like	this:

Now	we’ll	develop	functions	to	tell	us	in	which	qualities	two	objects	differ.
We	start	by	writing	a	function	called	DESCRIPTION	to	retrieve	the	descrip‐
tion	of	an	object:
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The	differences	between	two	objects	are	whatever	properties	appear	in	the
description	of	the	first	but	not	the	second,	or	the	description	of	the	second	but
not	the	first.	The	technical	term	for	this	is	set	exclusive	or.	There	is	a	built-in
Common	Lisp	function	to	compute	it.

OBJECT2	is	metal	but	OBJECT3	is	plastic,	so	METAL	and	PLASTIC	are
properties	not	 common	 to	both.	We	can	classify	properties	 according	 to	 the
type	of	quality	to	which	they	refer.	Here	is	a	table,	represented	as	a	list	of	dot‐
ted	pairs:

We	can	use	this	table	as	part	of	a	function	that	gives	us	the	quality	a	given
property	refers	to:

Using	DIFFERENCES	and	QUALITY,	we	can	write	a	 function	 to	 tell	us
one	quality	that	is	different	between	a	pair	of	objects.

176



What	 if	we	wanted	 a	 list	 of	 all	 the	 quality	 differences	 instead	of	 just	 the
first	one?	We	would	need	some	way	to	go	from	a	list	of	differences	like	(RED
BLUE	 METAL	 PLASTIC)	 to	 a	 list	 of	 corresponding	 qualities	 (COLOR
COLOR	MATERIAL	MATERIAL),	and	 then	we’d	have	 to	eliminate	dupli‐
cate	elements.	The	first	part	can	be	accomplished	with	SUBLIS,	which	is	dis‐
cussed	in	the	Advanced	Topics	section.

Now	all	we	have	 to	do	 is	eliminate	duplicate	entries	 in	 the	 result.	Common
Lisp	provides	a	function	called	REMOVE-DUPLICATES	for	this	purpose.

EXERCISES
6.29.	What	Lisp	primitive	returns	the	number	of	entries	in	a	table?

6.30.	Make	a	table	called	BOOKS	of	five	books	and	their	authors.	The	first
entry	might	be	(WAR-AND-PEACE	LEO-TOLSTOY).

6.31.	Write	 the	 function	WHO-WROTE	 that	 takes	 the	 name	 of	 a	 book	 as
input	and	returns	the	book’s	author.

6.32.	Suppose	we	do	(SETF	BOOKS	(REVERSE	BOOKS)),	which	reverses
the	 order	 in	which	 the	 five	 books	 appear	 in	 the	 table.	What	will	 the
WHO-WROTE	function	do	now?

6.33.	Suppose	we	wanted	a	WHAT-WROTE	function	that	took	an	author’s
name	as	input	and	returned	the	title	of	one	of	his	or	her	books.	Could

177



we	create	such	a	function	using	ASSOC	and	the	current	table?	If	not,
how	would	the	table	have	to	be	different?

6.34.	Here	 is	a	 table	of	states	and	some	of	 their	cities,	stored	 in	 the	global
variable	ATLAS:

Suppose	 we	 wanted	 to	 find	 all	 the	 cities	 a	 given	 state	 contains.
ASSOC	returns	only	the	first	entry	with	a	matching	key,	not	all	such
entries,	so	for	this	table	ASSOC	cannot	solve	our	problem.	Redesign
the	table	so	that	ASSOC	can	be	used	successfully.

MINI	KEYBOARD	EXERCISE
6.35.	In	this	problem	we	will	simulate	the	behavior	of	a	very	simple-minded

creature,	Nerdus	Americanis	 (also	 known	 as	Computerus	Hackerus).
This	 creature	 has	 only	 five	 states:	 Sleeping,	 Eating,	 Waiting-for-a-
Computer,	Programming,	and	Debugging.	Its	behavior	is	cyclic:	After
it	sleeps	it	always	eats,	after	it	eats	it	always	waits	for	a	computer,	and
so	on,	until	after	debugging	it	goes	back	to	sleep	for	a	while.

a.	What	 type	 of	 data	 structure	would	 be	 useful	 for	 representing	 the
connection	 between	 a	 state	 and	 its	 successor?	Write	 such	 a	 data
structure	for	the	five-state	cycle	given	above,	and	store	it	in	a	global
variable	called	NERD-STATES.

b.	Write	a	 function	NERDUS	that	 takes	 the	name	of	a	state	as	 input
and	uses	the	data	structure	you	designed	to	determine	the	next	state
the	 creature	 will	 be	 in.	 (NERDUS	 ‘SLEEPING)	 should	 return
EATING,	 for	 example.	 (NERDUS	 ‘DEBUGGING)	 should	 return
SLEEPING.

c.	What	is	the	result	of	(NERDUS	‘PLAYING-GUITAR)?

d.	 When	 Nerdus	 Americanis	 ingests	 too	 many	 stimulants	 (caffeine
overdose),	it	stops	sleeping.	After	finishing	Debugging,	it	immedi‐
ately	goes	on	to	state	Eating.	Write	a	function	SLEEPLESS-	NERD
that	works	just	like	NERDUS	except	it	never	sleeps.	Your	function
should	 refer	 to	 the	 global	 variable	NERD-STATES,	 as	NERDUS
does.

e.	Exposing	Nerdus	Americanis	to	extreme	amounts	of	chemical	stim‐
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ulants	 produces	 pathological	 behavior.	 Instead	 of	 an	 orderly	 ad‐
vance	to	its	next	state,	the	creature	advances	two	states.	For	exam‐
ple,	it	goes	from	Eating	directly	to	Programming,	and	from	there	to
Sleeping.	 Write	 a	 function	 NERD-ON-CAFFEINE	 that	 exhibits
this	unusual	pathology.	Your	function	should	use	the	same	table	as
NERDUS.

f.	 If	 a	Nerd	 on	 caffeine	 is	 currently	 programming,	 how	many	 states
will	it	have	to	go	through	before	it	is	debugging?

SUMMARY
Lists	are	an	important	data	type	in	their	own	right,	but	in	Lisp	they	are	even
more	important	because	they	are	used	to	implement	other	data	structures	such
as	sets	and	tables.

As	we	saw	in	the	mini	keyboard	exercises,	the	way	to	solve	any	nontrivial
programming	problem	is	to	divide	the	problem	into	smaller,	more	manageable
pieces.	 This	 is	 done	 by	 writing	 and	 testing	 several	 simple	 functions,	 then
combining	them	to	produce	a	solution	to	the	main	problem.

REVIEW	EXERCISES
6.36.	 Write	 a	 function	 to	 swap	 the	 first	 and	 last	 elements	 of	 any	 list.

(SWAP-FIRST-LAST	 ‘(YOU	 CANT	 BUY	 LOVE))	 should	 return
(LOVE	CANT	BUY	YOU).

6.37.	ROTATE-LEFT	and	ROTATE-RIGHT	are	functions	that	rotate	the	el‐
ements	of	a	list.	(ROTATE-LEFT	‘(A	B	C	D	E))	returns	(B	C	D	E	A),
whereas	 ROTATE-RIGHT	 returns	 (E	 A	 B	 C	 D).	Write	 these	 func‐
tions.

6.38.	Give	an	example	of	two	sets	X	and	Y	such	that	(SET-DIFFERENCE
X	 Y)	 equals	 (SET-DIFFERENCE	 Y	 X).	 Also	 give	 an	 example	 in
which	the	set	differences	are	not	equal.

6.39.	Recall	 the	unary	arithmetic	 system	developed	 in	 the	advanced	 topics
section	of	Chapter	2.	What	list	function	performs	unary	addition?

6.40.	 Show	 how	 to	 transform	 the	 list	 (A	 B	 C	D)	 into	 a	 table	 so	 that	 the
ASSOC	 function	 using	 the	 table	 gives	 the	 same	 result	 as	MEMBER
using	the	list.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
List	functions:	APPEND,	REVERSE,	NTH,	NTHCDR,	LAST,	REMOVE.
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Set	 functions:	 UNION,	 INTERSECTION,	 SET-DIFFERENCE,	 SET-EX‐
CLUSIVE-OR,	MEMBER,	SUBSETP,	REMOVE-DUPLICATES.

Table	functions:	ASSOC,	RASSOC.

Lisp	Toolkit:	SDRAW
SDRAW	is	a	tool	for	drawing	cons	cell	representations	of	lists.	It	is	not	part
of	the	Common	Lisp	standard;	it	is	defined	in	Appendix	A.	There	are	several
versions.	The	completely	portable	version	will	run	in	any	Common	Lisp	im‐
plementation;	it	draws	cons	cell	diagrams	using	ordinary	characters,	like	so:

There	are	also	a	number	of	graphic	versions,	available	on	diskette	from	the
publisher,	which	draw	cons	cells	and	arrows	using	graphics	 functions.	They
look	much	nicer	that	way.	One	graphic	version	uses	CLX,	the	Common	Lisp
interface	 to	 the	 X	Windows	 system.	 If	 your	 computer	 doesn’t	 run	 X	Win‐
dows,	you	won’t	be	able	to	use	this	version,	but	 if	your	Lisp	provides	some
other	graphics	facility,	it	should	be	easy	to	adapt	SDRAW	to	use	it.

Another	useful	tool	is	the	function	SDRAW-LOOP,	which	acts	like	a	read-
eval-print	 loop	 except	 it	 draws	 the	 result	 as	 well	 as	 printing	 it.	 SDRAW-
LOOP	prompts	for	input	with	the	string	“S>.”	Here’s	an	example.
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A	third	function	provided	by	the	SDRAW	program	is	called	SCRAWL.	It
is	an	interactive	version	of	SDRAW	that	allows	you	to	“crawl	around”	a	list
by	taking	successive	cars	and	cdrs,	backing	up,	or	returning	to	the	start.

Keyboard	Exercise
In	this	keyboard	exercise	we	will	write	some	routines	for	moving	Robbie	the
robot	around	in	a	house.	The	map	of	the	house	appears	in	Figure	6-2.	Robbie
can	move	in	any	of	four	directions:	north,	south,	east,	or	west.

181



Figure	6-2	Map	of	the	House.

The	layout	of	the	house	is	described	in	a	table	called	ROOMS,	with	one	el‐
ement	for	each	room:

The	entry	for	each	room	is	in	turn	a	table	listing	the	directions	that	Robbie
can	travel	from	that	room	and	where	he	ends	up	for	each	direction.	The	entire
table	is	shown	in	Figure	6-3.	The	first	element	of	the	table	is:

If	Robbie	were	in	the	living	room,	going	north	would	take	him	to	the	front
stairs,	going	south	would	take	him	to	the	dining	room,	and	going	east	would
take	him	to	the	kitchen.	Since	there	is	nothing	listed	for	west,	we	assume	that
there	is	a	wall	there,	so	Robbie	cannot	travel	west	from	the	living	room.

EXERCISE
6.41.	 If	 the	 table	of	 rooms	 is	already	stored	on	 the	computer	 for	you,	 load
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the	file	containing	it.	If	not,	you	will	have	to	type	the	table	in	as	it	ap‐
pears	in	Figure	6-3.	If	you	like,	try	(SDRAW	ROOMS)	or	(SCRAWL
ROOMS)	to	view	the	table	as	a	cons	cell	structure.
a.	Write	a	function	CHOICES	that	takes	the	name	of	a	room	as	input
and	 returns	 the	 table	 of	 permissible	 directions	 Robbie	 may	 take
from	that	room.	For	example,	(CHOICES	‘PANTRY)	should	return
the	 list	 ((NORTH	 KITCHEN)	 (WEST	 DINING-ROOM)).	 Test
your	function	to	make	sure	it	returns	the	correct	result.

b.	Write	 a	 function	 LOOK	 that	 takes	 two	 inputs,	 a	 direction	 and	 a
room,	and	tells	where	Robbie	would	end	up	if	he	moved	in	that	di‐
rection	from	that	room.	For	example,	(LOOK	‘NORTH	‘PANTRY)
should	 return	 KITCHEN.	 (LOOK	 ‘WEST	 ‘PANTRY)	 should	 re‐
turn	DINING-ROOM.	(LOOK	‘SOUTH	‘PANTRY)	should	return
NIL.	Hint:	The	CHOICES	function	will	be	a	useful	building	block.

c.	We	 will	 use	 the	 global	 variable	 LOC	 to	 hold	 Robbie’s	 location.
Type	in	an	expression	to	set	his	location	to	be	the	pantry.	The	fol‐
lowing	 function	should	be	used	whenever	you	want	 to	change	his
location.

d.	 Write	 a	 function	 HOW-MANY-CHOICES	 that	 tells	 how	 many
choices	 Robbie	 has	 for	 where	 to	 move	 to	 next.	 Your	 function
should	refer	to	the	global	variable	LOC	to	find	his	current	location.
If	he	is	in	the	pantry,	(HOW-MANY-CHOICES)	should	return	2.

e.	Write	a	predicate	UPSTAIRSP	that	returns	T	if	 its	 input	 is	an	up‐
stairs	 location.	 (The	 library	and	 the	upstairs	bedroom	are	 the	only
two	locations	upstairs.)	Write	a	predicate	ONSTAIRSP	that	returns
T	if	its	input	is	either	FRONT-STAIRS	or	BACK-STAIRS.

f.	Where’s	Robbie?	Write	a	function	of	no	inputs	called	WHERE	that
tells	where	Robbie	is.	If	he	is	in	the	library,	(WHERE)	should	say
(ROBBIE	 IS	 UPSTAIRS	 IN	 THE	 LIBRARY).	 If	 he	 is	 in	 the
kitchen,	 it	 should	 say	 (ROBBIE	 IS	 DOWNSTAIRS	 IN	 THE
KITCHEN).	If	he	is	on	the	front	stairs,	 it	should	say	(ROBBIE	IS
ON	THE	FRONT-STAIRS).

g.	 Write	 a	 function	 MOVE	 that	 takes	 one	 input,	 a	 direction,	 and
moves	 Robbie	 in	 that	 direction.	 MOVE	 should	 make	 use	 of	 the
LOOK	function	you	wrote	previously,	and	should	call	SET-ROB‐
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BIE-	LOCATION	to	move	him.	If	Robbie	can’t	move	in	the	speci‐
fied	 direction	 an	 appropriate	message	 should	 be	 returned.	For	 ex‐
ample,	if	Robbie	is	in	the	pantry,	(MOVE	‘SOUTH)	should	return
something	 like	 (OUCH!	 ROBBIE	 HIT	 A	 WALL).	 (MOVE
‘NORTH)	should	change	Robbie’s	location	and	return	(ROBBIE	IS
DOWNSTAIRS	IN	THE	KITCHEN).

h.	 Starting	 from	 the	 pantry,	 take	 Robbie	 to	 the	 library	 via	 the	 back
stairs.	Then	take	him	to	the	kitchen,	but	do	not	lead	him	through	the
downstairs	bedroom	on	the	way.

Figure	6-3	Table	of	Rooms.

6	Advanced	Topics

6.10	TREES
Trees	are	nested	lists.	All	the	functions	covered	so	far	operate	on	the	top	level
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of	a	list;	they	do	not	look	at	any	more	of	the	structure	than	that.	Lisp	also	in‐
cludes	a	few	functions	 that	operate	on	 the	entire	 list	structure.	Two	of	 these
are	SUB	ST	and	SUB	LIS.	In	chapter	8	we	will	write	many	more	functions
that	operate	on	trees.

6.10.1	SUBST
The	SUBST	function	substitutes	one	 item	for	another	everywhere	 it	appears
in	a	list.	It	takes	three	inputs	whose	order	is	as	in	the	phrase	“substitute	x	for	y
in	z.”	Here	is	an	example	of	substituting	FRED	for	BILL	in	a	certain	list:

If	the	symbol	being	sought	doesn’t	appear	at	all	in	the	list,	SUBST	returns
the	original	list	unchanged.

SUBST	 looks	 at	 the	 entire	 structure	of	 the	 list,	 not	 just	 the	 top-level	 ele‐
ments.

6.10.2	SUBLIS
SUBLIS	 is	 like	 SUBST,	 except	 it	 can	make	many	 substitutions	 simultane‐
ously.	The	first	input	to	SUBLIS	is	a	table	whose	entries	are	dotted	pairs.	The
second	input	is	the	list	in	which	the	substitutions	are	to	be	made.
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EXERCISE
6.42.	Write	a	function	called	ROYAL-WE	that	changes	every	occurrence	of

the	symbol	I	 in	a	 list	 to	 the	symbol	WE.	Calling	 this	function	on	the
list	(IF	I	LEARN	LISP	I	WILL	BE	PLEASED)	should	return	the	list
(IF	WE	LEARN	LISP	WE	WILL	BE	PLEASED).

6.11	EFFICIENCY	OF	LIST	OPERATIONS
At	the	beginning	of	the	chapter	we	talked	about	how	lists	appear	symmetric	in
parenthesis	 notation,	 but	 they	 really	 aren’t.	 Another	 way	 this	 asymmetry
shows	up	is	 in	 the	relative	speed	or	efficiency	of	certain	operations.	For	ex‐
ample,	it	is	trivial	to	extract	the	first	element	of	a	list,	but	expensive	to	extract
the	last.	When	extracting	the	first	element,	we	start	with	a	pointer	to	the	first
cons	cell;	 the	FIRST	 function	merely	has	 to	get	 the	pointer	 from	 the	 car	of
that	cell	and	return	it.	Finding	the	last	element	of	the	list	involves	much	more
work,	because	the	only	way	to	get	to	it	is	to	follow	the	chain	of	pointers	from
the	 first	 cell	until	we	get	 to	 a	 cell	whose	cdr	 is	 an	atom.	Only	 then	can	we
look	 in	 the	car.	 If	 the	original	 list	 is	very	 long,	 it	may	 take	quite	a	while	 to
find	the	last	cell	by	“cdring	down	the	list,”	as	it	is	called.

Computers	can	follow	chains	of	a	hundred	thousand	cons	cells	or	more	in
well	under	a	 second,	 so	you	won’t	normally	notice	 the	speed	difference	be‐
tween	FIRST	and	LAST	if	you	are	calling	them	from	the	top-level	read-eval-
print	loop.	But	if	you	write	a	large	program	that	involves	many	list	operations,
the	difference	will	become	noticeable.

Another	 factor	 affecting	 the	 speed	 of	 a	 function	 is	 how	much	 consing	 it
does.	Creating	new	cons	cells	 takes	 time,	and	 it	also	fills	up	 the	computer’s
memory.	Eventually	some	of	these	cells	will	be	discarded,	but	they	still	take
up	space.	In	some	Lisp	implementations,	memory	can	become	completely	full
with	useless	cons	cells,	in	which	case	the	machine	must	stop	temporarily	and
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perform	a	garbage	 collection.	The	more	 consing	 a	 function	does,	 the	more
frequent	 the	 garbage	 collections.	 Let’s	 compare	 the	 efficiency	 of	 these	 two
versions	of	ADD-TO-END:

Suppose	the	first	input	to	these	functions	is	a	list	of	n	elements.	ADD-TO-
END-1	copies	 its	 first	 input	using	APPEND,	which	 tacks	 the	 list	containing
the	second	input	onto	the	end.	It	thus	creates	a	total	of	n+1	cons	cells.	ADD-
TO-END-2	begins	by	reversing	its	first	input,	which	creates	n	new	cons	cells;
it	then	conses	the	second	input	onto	that,	which	makes	one	new	cell;	finally	it
reverses	the	result,	which	makes	another	n+1	new	cells.	So	ADD-TO-END-2
creates	a	total	of«+l+(«+l)	cons	cells,	of	which	the	final	n+\	form	the	result.
The	 other	n+\	 are	 thrown	 away	 shortly	 after	 they	 are	 created;	 they	 become
“garbage.”	Clearly,	ADD-TO-END-1	 is	 the	more	 efficient	 function,	 since	 it
creates	fewer	cons	cells.

6.12	SHARED	STRUCTURE
Two	lists	are	said	to	share	structure	if	they	have	cons	cells	in	common.	Lists
that	are	typed	in	from	the	keyboard	will	never	share	structure,	because	READ
builds	 every	 list	 it	 sees	 from	 fresh	 cons	 cells.	 But	 using	 CAR,	 CDR,	 and
CONS	 it	 is	 possible	 to	 create	 lists	 that	 do	 share	 structure.	For	 example,	we
can	make	X	and	Y	point	to	lists	that	share	some	structure	by	doing	the	follow‐
ing:

The	value	of	X	is	(A	B	C)	and	the	value	of	Y	is	(D	B	C).	The	lists	share	the
same	 cons	 cell	 structure	 for	 (B	 C),	 as	 the	 following	 indicates.	 The	 sharing
comes	about	because	we	built	Y	from	(CDR	X).	If	we	had	simply	said	(SETF
Y	‘(D	B	C)),	no	structure	would	be	shared	with	X.
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6.13	EQUALITY	OF	OBJECTS
In	Lisp,	 symbols	 are	 unique,	meaning	 there	 can	 be	 only	 one	 symbol	 in	 the
computer’s	memory	with	a	given	name.**	Every	object	in	the	memory	has	a
numbered	location,	called	its	address.	Since	a	symbol	exists	in	only	one	place
in	 memory,	 symbols	 have	 unique	 addresses.	 So	 in	 the	 list	 (TIME	 AFTER
TIME),	the	two	occurrences	of	the	symbol	TIME	must	refer	to	the	same	ad‐
dress.	There	cannot	be	two	separate	symbols	named	TIME.

Lists,	on	the	other	hand,	are	not	unique.	We	can	easily	have	two	different
lists	(A	B	C)	simply	by	making	two	separate	cons	cell	chains.	The	symbols	to
which	the	two	lists	point	will	be	unique,	but	the	lists	themselves	will	not	be.
This	means	the	EQUAL	function	cannot	compare	lists	by	comparing	their	ad‐
dresses,	because	(A	B	C)	and	(A	B	C)	are	equal	even	if	they	are	distinct	cons
cell	chains.	EQUAL	therefore	compares	lists	element	by	element.	If	the	corre‐
sponding	elements	of	two	lists	are	equal,	then	the	lists	themselves	are	consid‐
ered	equal.
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If	we	want	to	tell	whether	two	pointers	point	to	the	same	object,	we	must
compare	 their	 addresses.	 The	 EQ	 predicate	 (pronounced	 “eek”)	 does	 this.
Lists	are	EQ	to	each	other	only	if	they	have	the	same	address;	no	element	by
element	comparison	is	done.

The	EQ	function	is	faster	than	the	EQUAL	function	because	EQ	only	has
to	compare	an	address	against	another	address,	whereas	EQUAL	has	to	first
test	 if	 its	 inputs	 are	 lists,	 and	 if	 so	 it	 must	 compare	 each	 element	 of	 one
against	the	corresponding	element	of	the	other.	Due	to	its	greater	efficiency,
programmers	often	use	EQ	instead	of	EQUAL	when	symbols	are	being	com‐
pared.	They	don’t	 usually	use	EQ	on	 lists,	 unless	 they	want	 to	 tell	whether
two	cons	cells	are	the	same.

Numbers	have	different	 internal	 representations	 in	different	Lisp	systems.
In	some	implementations	each	number	has	a	unique	address,	whereas	in	oth‐
ers	this	is	not	true.	Therefore	EQ	should	never	be	used	to	compare	numbers.

The	EQL	predicate	 is	 a	 slightly	more	general	 variant	 of	EQ.	 It	 compares
the	 addresses	 of	 objects	 like	 EQ	 does,	 except	 that	 for	 two	 numbers	 of	 the
same	 type	 (for	example,	both	 integers),	 it	will	compare	 their	values	 instead.
Numbers	of	different	types	are	not	EQL,	even	if	their	values	are	the	same.
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EQL	 is	 the	 “standard”	 comparison	 predicate	 in	Common	Lisp.	 Functions
such	 as	MEMBER	and	ASSOC	 that	 contain	 implicit	 equality	 tests	 do	 them
using	EQL	unless	told	to	use	some	other	predicate.

For	 comparing	 numbers	 of	 disparate	 types,	 there	 is	 yet	 another	 equality
predicate	 called	=.	This	 predicate	 is	 the	most	 efficient	way	 to	 compare	 two
numbers.	It	is	an	error	to	give	it	any	other	kind	of	input.

Finally,	 the	EQUALP	predicate	 is	 similar	 to	EQUAL,	 but	 in	 a	 few	ways
more	liberal.	One	example	is	ignoring	case	distinctions	in	strings.

Beginners	 are	 frequently	 confused	 by	 the	 profusion	 of	 equality	 tests	 in
Common	Lisp.	 I	 recommend	 forgetting	 about	 all	 of	 these	 specialized	 func‐
tions;	just	remember	two	bits	of	advice.	First,	use	EQUAL:	It	does	what	you
want.	Second,	remember	that	built-in	functions	like	MEMBER	and	ASSOC,
which	involve	implicit	equality	tests,	use	EQL	by	default,	for	efficiency	rea‐
sons.	That	means	they	will	not	compare	lists	correctly	unless	you	tell	them	to
use	a	different	equality	predicate.	The	next	 section	explains	how	 to	do	 that.
To	summarize:

•	EQ	is	the	fastest	equality	test:	It	compares	addresses.	Experts	use	it	to
compare	symbols	quickly,	and	to	test	whether	two	cons	cells	are	phys‐
ically	the	same	object.	It	should	not	be	used	to	compare	numbers.

•	 EQL	 is	 like	 EQ	 except	 it	 can	 safely	 compare	 numbers	 of	 the	 same
type,	such	as	two	integers	or	two	floating	point	numbers.	It	is	the	de‐
fault	equality	test	in	Common	Lisp.

•	EQUAL	 is	 the	predicate	beginners	 should	use.	 It	 compares	 lists	 ele‐
ment	by	element;	otherwise	it	works	like	EQL.

•	EQUALP	is	more	liberal	than	EQUAL:	It	ignores	case	distinctions	in
strings,	among	other	things.

•	=	is	the	most	efficient	way	to	compare	numbers,	and	the	only	way	to
compare	numbers	of	disparate	types,	such	as	3	and	3.0.	It	only	accepts
numbers.

6.14	KEYWORD	ARGUMENTS
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Many	Common	Lisp	functions	that	work	on	lists	can	take	extra,	optional	ar‐
guments	 called	keyword	 arguments.	 For	 example,	 the	 REMOVE	 function
takes	an	optional	argument	called	:COUNT	that	tells	it	how	many	instances	of
the	item	to	remove.

Remove	also	accepts	a	:FROM-END	keyword.	If	its	value	is	non-NIL,	then
REMOVE	starts	from	the	end	of	the	list	instead	of	from	the	beginning.	So,	to
remove	the	last	two	As	in	the	list,	we	could	write:

A	keyword	is	a	special	type	of	symbol	whose	name	is	always	preceded	by	a
colon.	The	symbols	COUNT	and	:COUNT	are	not	the	same;	they	are	differ‐
ent	objects	and	not	EQ	to	each	other.***	Keywords	always	evaluate	to	them‐
selves,	 so	 they	do	not	need	 to	be	quoted.	 It	 is	 an	 error	 to	 try	 to	 change	 the
value	 of	 a	 keyword.	 The	KEYWORDP	 predicate	 returns	 T	 if	 its	 input	 is	 a
keyword.

Another	 function	 that	 takes	 keyword	 arguments	 is	MEMBER.	Normally,
MEMBER	uses	EQL	to	test	whether	an	item	appears	in	a	set.	EQL	will	work
correctly	for	both	symbols	and	numbers.	But	suppose	our	set	contains	lists?	In
that	case	we	must	use	EQUAL	for	the	equality	test,	or	else	MEMBER	won’t
find	the	item	we’re	looking	for:
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The	 :TEST	 keyword	 can	 be	 used	 with	 MEMBER	 to	 specify	 a	 different
function	for	the	equality	test.	We	write	#’EQUAL	to	specially	quote	the	func‐
tion	for	use	as	an	input	to	MEMBER.

All	list	functions	that	include	equality	tests	accept	a	:TEST	keyword	argu‐
ment.	REMOVE	is	another	example.	We	can’t	remove	(5	DIAMONDS)	from
CARDS	unless	we	tell	REMOVE	to	use	EQUAL	for	its	equality	test.

Other	 functions	 that	 accept	 a	 :TEST	 keyword	 are	 UNION,	 INTERSEC‐
TION,	 SET-DIFFERENCE,	 ASSOC,	 RASSOC,	 SUBST,	 and	 SUBLIS.	 To
find	out	which	keywords	a	function	accepts,	use	the	online	documentation.	It
is	 an	 error	 to	 supply	 a	 keyword	 to	 a	 function	 that	 isn’t	 expecting	 that	 key‐
word.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
Tree	functions:	SUBST,	SUBLIS.

Additional	equality	functions:	EQ,	EQL,	EQUALP,	=.

Keyword	predicate:	KEYWORDP.

*Note	to	 instructors:	To	simplify	 the	upcoming	discussion	of	how	APPEND	works,	we	consider	only
the	two-input	case.	In	Common	Lisp,	APPEND	can	accept	any	number	of	inputs.

**Note	to	instructors:	We	are	assuming	that	only	the	standard	packages	are	present,	and	there	are	no	un‐
interned	symbols.	These	details	will	not	interest	the	beginning	Lisper.

***Even	though	these	symbols	have	the	same	name,	they	exist	in	different	“packages”	and	so	are	dis‐
tinct.
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7

Applicative	Programming

7.1	INTRODUCTION
The	three	programming	styles	we	will	cover	in	this	book	are	applicative	pro‐
gramming,	recursion,	and	 iteration.	Many	instructors	prefer	 to	 teach	recur‐
sion	first,	but	I	believe	applicative	programming	is	the	easiest	for	beginners	to
learn.	To	accomodate	everyone’s	taste,	Chapters	7	and	8	have	been	made	in‐
dependent;	they	can	be	covered	in	either	order.

Applicative	programming	is	based	on	the	idea	that	functions	are	data,	just
like	symbols	and	lists	are	data,	so	one	should	be	able	to	pass	functions	as	in‐
puts	 to	other	 functions,	and	also	 return	 functions	as	values.	The	applicative
operators	we	will	study	in	this	chapter	are	functions	that	take	another	func‐
tion	as	input	and	apply	it	to	the	elements	of	a	list	in	various	ways.	These	oper‐
ators	are	all	built	from	a	primitive	function	known	as	FUNCALL.	In	the	Ad‐
vanced	Topics	 section	we	will	write	 our	 own	applicative	operator,	 and	 also
write	a	function	that	constructs	and	returns	new	functions.

7.2	FUNCALL
FUNCALL	calls	 a	 function	on	 some	 inputs.	We	can	use	FUNCALL	 to	call
the	CONS	function	on	the	inputs	A	and	B	like	this:

The	#’	(or	“sharp	quote”)	notation	is	the	correct	way	to	quote	a	function	in
Common	Lisp.	If	you	want	to	see	what	the	function	CONS	looks	like	in	your
implementation,	try	the	following	example	in	your	Lisp:
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The	value	of	the	variable	FN	is	a	function	object.	TYPE-OF	shows	that	the
object	 is	 of	 type	 COMPILED-FUNCTION.	 So	 you	 see	 that	 functions	 and
symbols	 are	 not	 the	 same.	 The	 symbol	 CONS	 serves	 as	 the	 name	 of	 the
CONS	 function,	 but	 it	 is	 not	 the	 actual	 function.	 The	 relationship	 between
functions	and	 the	symbols	 that	name	 them	is	explained	 in	Advanced	Topics
section	3.18.

Note	 that	only	ordinary	 functions	 can	be	quoted	with	#’.	 It	 is	 an	 error	 to
quote	a	macro	function	or	special	function	this	way,	or	to	quote	a	symbol	with
#’	if	that	symbol	does	not	name	a	function.

7.3	THE	MAPCAR	OPERATOR
MAPCAR	is	the	most	frequently	used	applicative	operator.	It	applies	a	func‐
tion	to	each	element	of	a	 list,	one	at	a	 time,	and	returns	a	 list	of	 the	results.
Suppose	we	have	written	a	function	to	square	a	single	number.	By	itself,	this
function	cannot	square	a	list	of	numbers,	because	*	doesn’t	work	on	lists.

With	MAPCAR	we	can	apply	SQUARE	to	each	element	of	the	list	individ‐
ually.	To	pass	the	SQUARE	function	as	an	input	to	MAPCAR,	we	quote	it	by
writing	#’	SQUARE.
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Here	is	a	graphical	description	of	the	MAPCAR	operator.	As	you	can	see,
each	element	of	the	input	list	is	mapped	independently	to	a	corresponding	ele‐
ment	in	the	output.

When	MAPCAR	is	used	on	a	list	of	length	n,	the	resulting	list	also	has	ex‐
actly	n	elements.	So	 if	MAPCAR	is	used	on	 the	empty	 list,	 the	result	 is	 the
empty	list.

7.4	MANIPULATING	TABLES	WITH	MAPCAR
Suppose	we	set	the	global	variable	WORDS	to	a	table	of	English	and	French
words:

We	can	perform	several	useful	manipulations	on	this	table	with	MAPCAR.
We	can	extract	the	English	words	by	taking	the	first	component	of	each	table
entry:

We	 can	 extract	 the	 French	words	 by	 taking	 the	 second	 component	 of	 each
entry:

We	can	 create	 a	French-English	dictionary	 from	 the	English-French	one	by
reversing	each	table	element:
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Given	 a	 function	 TRANSLATE,	 defined	 using	ASSOC,	we	 can	 translate	 a
string	of	English	digits	into	a	string	of	French	ones:

Besides	MAPCAR,	there	are	several	other	applicative	operators	built	in	to
Common	Lisp.	Many	more	are	defined	by	programmers	as	 they	are	needed,
using	FUNCALL.

EXERCISES
7.1.	Write	an	ADD1	function	that	adds	one	to	 its	 input.	Then	write	an	ex‐

pression	to	add	one	to	each	element	of	the	list	(13	5	7	9).

7.2.	Let	the	global	variable	DAILY-PLANET	contain	the	following	table:

Each	table	entry	consists	of	a	last	name,	a	first	name,	a	social	security
number,	and	a	job	title.	Use	MAPCAR	on	this	table	to	extract	a	list	of
social	security	numbers.

7.3.	Write	an	expression	to	apply	the	ZEROP	predicate	to	each	element	of
the	 list	 (20340-5	 -6).	 The	 answer	 you	 get	 should	 be	 a	 list	 of	 Ts	 and
NILs.

7.4.	Suppose	we	want	to	solve	a	problem	similar	to	the	preceding	one,	but
instead	of	testing	whether	an	element	is	zero,	we	want	to	test	whether	it
is	greater	than	five.	We	can’t	use	>	directly	for	this	because	>	is	a	func‐
tion	 of	 two	 inputs;	MAPCAR	will	 only	 give	 it	 one	 input.	 Show	how
first	 writing	 a	 one-input	 function	 called	 GREATER-THAN-FIVE-P
would	help.

7.5	LAMBDA	EXPRESSIONS
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There	are	two	ways	to	specify	the	function	to	be	used	by	an	applicative	opera‐
tor.	The	first	way	is	to	define	the	function	with	DEFUN	and	then	specify	it	by
#’name,	as	we	have	been	doing.	The	second	way	is	to	pass	the	function	defin‐
ition	directly.	This	is	done	by	writing	a	list	called	a	lambda	expression.	For
example,	the	following	lambda	expression	computes	the	square	of	its	input:

Since	 lambda	 expressions	 are	 functions,	 they	 can	 be	 passed	 directly	 to
MAPCAR	by	quoting	 them	with	#’.	This	saves	you	 the	 trouble	of	writing	a
separate	DEFUN	before	calling	MAPCAR.

Lambda	 expressions	 look	 similar	 to	 DEFUNs,	 except	 that	 the	 function
name	 is	missing	 and	 the	word	LAMBDA	appears	 in	 place	 of	DEFUN.	But
lambda	expressions	are	actually	unnamed	functions.	LAMBDA	is	not	a	macro
or	special	function	that	has	to	be	evaluated,	like	DEFUN.	Rather	it	is	a	marker
that	says	“this	list	represents	a	function.”

Lambda	expressions	are	especially	useful	for	synthesizing	one-input	func‐
tions	from	related	functions	of	two	inputs.	For	example,	suppose	we	wanted
to	multiply	every	element	of	a	list	by	10.	We	might	be	tempted	to	write	some‐
thing	like:

but	where	 is	 the	 10	 supposed	 to	 go?	 The	 *	 function	 needs	 two	 inputs,	 but
MAPCAR	is	only	going	to	give	it	one.	The	correct	way	to	solve	this	problem
is	 to	write	 a	 lambda	expression	of	one	 input	 that	multiplies	 its	 input	by	10.
Then	we	can	feed	the	lambda	expression	to	MAPCAR.

Here	is	another	example	of	the	use	of	MAPCAR	along	with	a	lambda	ex‐
pression.	We	will	turn	each	element	of	a	list	of	names	into	a	list	(HI	THERE
name).

If	you	 type	 in	a	quoted	 lambda	expression	at	 top	 level,	 the	 result	you	get
back	 depends	 on	 the	 particular	 Lisp	 implementation	 you’re	 using.	 It	 might
look	like	any	of	the	following:
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Throughout	 this	 book	 we	 will	 refer	 to	 the	 objects	 you	 get	 back	 from	 a
#’(LAMBDA...)	 expression	 as	 lexical	 closures.	 They	 will	 be	 discussed	 in
more	detail	in	the	Advanced	Topics	section.

EXERCISES
7.5.	Write	a	lambda	expression	to	subtract	seven	from	a	number.

7.6.	Write	a	 lambda	expression	 that	 returns	T	 if	 its	 input	 is	T	or	NIL,	but
NIL	for	any	other	input.

7.7.	 Write	 a	 function	 that	 takes	 a	 list	 such	 as	 (UP	 DOWN	 UP	 UP)	 and
“flips”	 each	 element,	 returning	 (DOWN	 UP	 DOWN	 DOWN).	 Your
function	should	include	a	lambda	expression	that	knows	how	to	flip	an
individual	element,	plus	an	applicative	operator	to	do	this	to	every	ele‐
ment	of	the	list.

7.6	THE	FIND-IF	OPERATOR
FIND-IF	is	another	applicative	operator.	If	you	give	FIND-IF	a	predicate	and
a	list	as	input,	it	will	find	the	first	element	of	the	list	for	which	the	predicate
returns	true	(any	non-NIL	value).	FIND-IF	returns	that	element.

Here	is	a	graphical	description	of	what	FIND-IF	does:
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If	no	elements	satisfy	the	predicate,	FIND-IF	returns	NIL.

7.7	WRITING	ASSOC	WITH	FIND-IF
ASSOC	searches	for	a	table	entry	with	a	specified	key.	We	can	write	a	simple
version	of	ASSOC	that	uses	FIND-IF	to	search	the	table.

The	lambda	expression	(actually	a	lexical	closure)	that	MY-ASSOC	passes
to	FIND-IF	takes	a	table	entry	such	as	(ONE	UN)	as	input.	It	returns	T	if	the
first	 element	of	 the	 entry	matches	 the	key	 that	 is	 the	 first	 input	 to	MY-AS‐
SOC.	FIND-IF	calls	 the	closure	on	each	entry	in	the	table,	until	 it	 finds	one
that	makes	the	closure	return	T.

Notice	that	the	expression	(EQUAL	KEY	(FIRST	ENTRY))	that	appears	in
the	body	of	the	lambda	expression	refers	to	two	variables.	ENTRY	is	local	to
the	lambda	expression,	but	KEY	is	not.	KEY	is	local	to	MY-ASSOC.	This	il‐
lustrates	 an	 important	 point	 about	 lambda	expressions:	 Inside	 the	body	of	 a
lambda	expression	we	can	not	only	reference	its	local	variables,	we	can	also
reference	 any	 local	 variables	 of	 the	 function	 containing	 the	 lambda	 expres‐
sion.

EXERCISES
7.8.	Write	 a	 function	 that	 takes	 two	 inputs,	X	and	K,	 and	 returns	 the	 first

number	in	the	list	X	that	is	roughly	equal	to	K.	Let’s	say	that	“roughly
equal”	means	no	less	than	K-10	and	no	more	than	K+10.

7.9.	Write	a	function	FIND-NESTED	that	returns	the	first	element	of	a	list
that	is	itself	a	non-NIL	list.
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MINI	KEYBOARD	EXERCISE
7.10.	In	this	exercise	we	will	write	a	program	to	transpose	a	song	from	one

key	to	another.	In	order	to	manipulate	notes	more	efficiently,	we	will
translate	them	into	numbers.	Here	is	the	correspondence	between	notes
and	numbers	for	a	one-octave	scale:

a.	Write	a	table	to	represent	this	information.	Store	it	in	a	global	vari‐
able	called	NOTE-TABLE.

b.	Write	 a	 function	 called	 NUMBERS	 that	 takes	 a	 list	 of	 notes	 as
input	 and	 returns	 the	 corresponding	 list	 of	 numbers.	 (NUMBERS
\E	D	C	DEE	E))	 should	 return	 (5313555).	This	 list	 represents	 the
first	seven	notes	of’’Mary	Had	a	Little	Lamb.”

c.	Write	a	function	called	NOTES	that	takes	a	list	of	numbers	as	input
and	 returns	 the	corresponding	 list	of	notes.	 (NOTES	 ‘(531355	5))
should	 return	 (E	 D	 C	 D	 E	 E	 E).	Hint:	 Since	 NOTE-TABLE	 is
keyed	 by	 note,	 ASSOC	 can’t	 look	 up	 numbers	 in	 it;	 neither	 can
RASSOC,	since	the	elements	are	lists,	not	dotted	pairs.	Write	your
own	 table-searching	 function	 to	search	NOTE-TABLE	by	number
instead	of	by	note.

d.	Notice	that	NOTES	and	NUMBERS	are	mutual	inverses:

What	 can	 be	 said	 about	 (NOTES	 (NOTES	 X))	 and	 (NUMBERS
(NUMBERS	X))?

e.	 To	 transpose	 a	 piece	 of	 music	 up	 by	 n	 half	 steps,	 we	 begin	 by
adding	the	value	n	to	each	note	in	the	piece.	Write	a	function	called
RAISE	 that	 takes	 a	 number	n	 and	 a	 list	 of	 numbers	 as	 input	 and
raises	each	number	in	the	list	by	the	value	n.	(RAISE	5	‘(5	3	1	3	5	5
5))	should	return	(10	8	6	8	10	10	10),	which	is	“Mary	Had	a	Little
Lamb”	transposed	five	half	steps	from	the	key	of	C	to	the	key	of	F.

f.	Sometimes	when	we	raise	the	value	of	a	note,	we	may	raise	it	right
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into	the	next	octave.	For	instance,	if	we	raise	the	triad	C-E-G	repre‐
sented	by	 the	 list	 (15	8)	 into	 the	key	of	F	by	 adding	 five	 to	 each
note,	we	get	(6	10	13),	or	F-A-C.	Here	the	C	note,	represented	by
the	number	13,	is	an	octave	above	the	regular	C,	represented	by	1.
Write	a	function	called	NORMALIZE	that	 takes	a	 list	of	numbers
as	input	and	“normalizes”	them	to	make	them	be	between	1	and	12.
A	 number	 greater	 than	 12	 should	 have	 12	 subtracted	 from	 it;	 a
number	less	than	1	should	have	12	added	to	it.	(NORMALIZE	‘(6
10	13))	should	return	(6	10	1).

g.	Write	a	function	TRANSPOSE	that	takes	a	number	n	and	a	song	as
input,	 and	 returns	 the	 song	 transposed	 by	 n	 half	 steps.	 (TRANS‐
POSE	5	‘(E	D	C	D	E	E	E))	should	return	(A	G	F	G	A	A	A).	Your
solution	should	assume	the	availability	of	the	NUMBERS,	NOTES,
RAISE,	and	NORMALIZE	functions.	Try	transposing	“Mary	Had	a
Little	Lamb”	up	by	11	half	steps.	What	happens	if	you	transpose	it
by	12	half	steps?	How	about	-1	half	steps?

7.8	REMOVE-IF	AND	REMOVE-IF-NOT
REMOVE-IF	 is	 another	 applicative	operator	 that	 takes	 a	 predicate	 as	 input.
REMOVE-IF	removes	all	the	items	from	a	list	that	satisfy	the	predicate,	and
returns	a	list	of	what’s	left.

Here	is	a	graphical	description	of	REMOVE-IF:

Suppose	we	want	to	find	all	the	positive	elements	in	a	list	of	numbers.	The
PLUSP	predicate	tests	if	a	number	is	greater	than	zero.	To	invert	the	sense	of
this	predicate	we	wrap	a	NOT	around	it	using	a	lambda	expression,	as	shown
in	the	following.	After	removing	all	 the	elements	that	satisfy	(NOT	(PLUSP
x)),	what	we	have	left	are	the	positive	elements.
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The	REMOVE-IF-NOT	operator	is	used	more	frequently	than	REMOVE-
IF.	It	works	just	like	REMOVE-IF	except	it	automatically	inverts	the	sense	of
the	predicate.	This	means	 the	only	 items	 that	will	be	 removed	are	 those	 for
which	 the	 predicate	 returns	NIL.	So	REMOVE-IF-NOT	 returns	 a	 list	 of	 all
the	 items	 that	satisfy	 the	predicate.	Thus,	 if	we	choose	PLUSP	as	 the	predi‐
cate,	REMOVE-IF-NOT	will	find	all	the	positive	numbers	in	a	list.

Here	are	some	additional	examples	of	REMOVE-IF-NOT:

Here	is	a	function,	COUNT-ZEROS,	that	counts	how	many	zeros	appear	in
a	list	of	numbers.	It	does	this	by	taking	the	subset	of	the	list	elements	that	are
zero,	and	then	taking	the	length	of	the	result.

EXERCISES
7.11.	Write	 a	 function	 to	 pick	 out	 those	 numbers	 in	 a	 list	 that	 are	 greater

than	one	and	less	than	five.
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7.12.	Write	a	function	that	counts	how	many	times	the	word	“the”	appears	in
a	sentence.

7.13.	Write	a	function	that	picks	from	a	list	of	lists	 those	of	exactly	length
two.

7.14.	Here	is	a	version	of	SET-DIFFERENCE	written	with	REMOVE-IF:

Show	how	the	INTERSECTION	and	UNION	functions	can	be	written
using	REMOVE-IF	or	REMOVE-IF-NOT.

MINI	KEYBOARD	EXERCISE
7.15.	 In	 this	 keyboard	 exercise	we	will	manipulate	 playing	 cards	with	 ap‐

plicative	operators.	A	card	will	be	represented	by	a	list	of	form	{rank
suit),	 for	 example,	 (ACE	 SPADES)	 or	 (2	 CLUBS).	 A	 hand	 will	 be
represented	by	a	list	of	cards.

a.	Write	 the	functions	RANK	and	SUIT	that	return	the	rank	and	suit
of	a	card,	 respectively.	 (RANK	‘(2	CLUBS))	should	return	2,	and
(SUIT	‘(2	CLUBS))	should	return	CLUBS.

b.	Set	the	global	variable	MY-HAND	to	the	following	hand	of	cards:

Now	write	 a	 function	COUNT-SUIT	 that	 takes	 two	 inputs,	 a	 suit
and	a	hand	of	cards,	and	returns	the	number	of	cards	belonging	to
that	suit.	(COUNT-SUIT	‘DIAMONDS	MY-HAND)	should	return
2.

c.	Set	the	global	variable	COLORS	to	the	following	table:

Now	write	a	function	COLOR-OF	that	uses	the	table	COLORS	to
retrieve	 the	color	of	a	card.	 (COLOR-OF	‘(2	CLUBS))	should	 re‐
turn	BLACK.	(COLOR-OF	‘(6	HEARTS))	should	return	RED.

d.	Write	a	 function	FIRST-RED	 that	 returns	 the	 first	 card	of	a	hand
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that	is	of	a	red	suit,	or	NIL	if	none	are.

e.	Write	a	function	BLACK-CARDS	that	returns	a	list	of	all	the	black
cards	in	a	hand.

f.	Write	a	function	WHAT-RANKS	that	takes	two	inputs,	a	suit	and	a
hand,	 and	 returns	 the	 ranks	 of	 all	 cards	 belonging	 to	 that	 suit.
(WHAT-RANKS	‘DIAMONDS	MY-HAND)	should	return	the	list
(2	 4).	 (WHAT-RANKS	 ‘SPADES	MY-HAND)	 should	 return	 the
list	(ACE).	Hint:	First	extract	all	the	cards	of	the	specified	suit,	then
use	another	operator	to	get	the	ranks	of	those	cards.

g.	Set	the	global	variable	ALL-RANKS	to	the	list

Then	write	a	predicate	HIGHER-RANK-P	 that	 takes	 two	cards	as
input	and	returns	true	if	the	first	card	has	a	higher	rank	than	the	sec‐
ond.	Hint:	look	at	the	BEFOREP	predicate	on	page	171	of	Chapter
6.

h.	Write	a	function	HIGH-CARD	that	returns	the	highest	ranked	card
in	a	hand.	Hint:	One	way	to	solve	this	is	to	use	FIND-IF	to	search	a
list	of	ranks	(ordered	from	high	to	low)	to	find	the	highest	rank	that
appears	in	the	hand.	Then	use	ASSOC	on	the	hand	to	pick	the	card
with	that	rank.	Another	solution	would	be	to	use	REDUCE	(defined
in	the	next	section)	to	repeatedly	pick	the	highest	card	of	each	pair.

7.9	THE	REDUCE	OPERATOR
REDUCE	is	an	applicative	operator	that	reduces	the	elements	of	a	list	into	a
single	 result.	 REDUCE	 takes	 a	 function	 and	 a	 list	 as	 input,	 but	 unlike	 the
other	operators	we’ve	seen,	REDUCE	must	be	given	a	function	that	accepts
two	inputs.	Example:	To	add	up	a	list	of	numbers	with	REDUCE,	we	use	+	as
the	reducing	function.

Similarly,	to	multiply	a	bunch	of	numbers	together,	we	use	*	as	the	reduc‐
ing	function:
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We	can	also	apply	reduction	to	lists	of	lists.	To	turn	a	table	into	a	one-level
list,	we	use	APPEND	as	the	reducing	function:

Here	is	A	graphical	description	of	REDUCE:

EXERCISES
7.16.	Suppose	we	had	a	list	of	sets	((A	B	C)	(C	D	A)	(F	B	D)	(G))	that	we

wanted	to	collapse	into	one	big	set.	If	we	use	APPEND	for	our	reduc‐
ing	function,	the	result	won’t	be	a	true	set,	because	some	elements	will
appear	 more	 than	 once.	What	 reducing	 function	 should	 be	 used	 in‐
stead?

7.17.	Write	a	function	that,	given	a	list	of	lists,	returns	the	total	length	of	all
the	lists.	This	problem	can	be	solved	two	different	ways.

7.18.	 (REDUCE	#’	 +	NIL)	 returns	 0,	 but	 (REDUCE	#’	 *	NIL)	 returns	 1.
Why	do	you	think	this	is?

7.10	EVERY
EVERY	takes	a	predicate	and	a	list	as	input.	It	returns	T	if	there	is	no	element
that	causes	the	predicate	to	return	false.	Examples:
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If	EVERY	is	called	with	NIL	as	its	second	argument,	 it	simply	returns	T,
since	the	empty	list	has	no	elements	that	could	fail	to	satisfy	the	predicate.

EVERY	can	 also	operate	 on	multiple	 lists,	 given	 a	 predicate	 that	 accepts
multiple	inputs.

Since	10	is	greater	than	1,	20	greater	than	5,	30	greater	than	11,	and	40	greater
than	23,	EVERY	returns	T.

EXERCISES
7.19.	Write	a	function	ALL-ODD	that	returns	T	if	every	element	of	a	list	of

numbers	is	odd.

7.20.	Write	a	function	NONE-ODD	that	returns	T	if	every	element	of	a	list
of	numbers	is	not	odd.

7.21.	Write	a	function	NOT-ALL-ODD	that	returns	T	if	not	every	element
of	a	list	of	numbers	is	odd.

7.22.	Write	a	function	NOT-NONE-ODD	that	returns	T	if	it	is	not	the	case
that	a	list	of	numbers	contains	no	odd	elements.

7.23.	Are	 all	 four	of	 the	 above	 functions	distinct	 from	one	another,	 or	 are
some	 of	 them	 the	 same?	Can	 you	 think	 of	 better	 names	 for	 the	 last
two?

SUMMARY
Applicative	 operators	 are	 functions	 that	 apply	 other	 functions	 to	 data	 struc‐
tures.	There	are	many	possible	applicative	operators,	only	a	few	of	which	are
built	 in	 to	 Lisp.	Advanced	Lisp	 programmers	make	 up	 their	 own	 operators
whenever	they	need	new	ones.

MAPCAR	applies	a	function	to	every	element	of	a	list	and	returns	a	list	of
the	results.	FIND-IF	searches	a	list	and	returns	the	first	element	that	satisfies	a
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predicate.	REMOVE-IF	removes	all	the	elements	of	a	list	that	satisfy	a	predi‐
cate,	 so	 the	 list	 it	 returns	contains	only	 those	elements	 that	 fail	 to	 satisfy	 it.
REMOVE-IF-NOT	is	used	more	frequently	than	REMOVE-IF.	It	returns	all
the	 elements	 that	do	 satisfy	 the	 predicate,	 having	 removed	 those	 that	 don’t
satisfy	 it.	EVERY	returns	T	only	 if	every	element	of	a	 list	satisfies	a	predi‐
cate.	REDUCE	uses	a	reducing	function	to	reduce	a	list	to	a	single	value.

REVIEW	EXERCISES
7.24.	What	is	an	applicative	operator?

7.25.	Why	are	lambda	expressions	useful?	Is	it	possible	to	do	without	them?

7.26.	Show	how	to	write	FIND-IF	given	REMOVE-IF-NOT.

7.27.	Show	how	to	write	EVERY	given	REMOVE-IF.

7.28.	Devise	a	graphical	description	for	the	EVERY	operator.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Applicative	 operators:	 MAPCAR,	 FIND-IF,	 REMOVE-IF,	 REMOVE-IF-
NOT,	REDUCE,	EVERY.

Lisp	Toolkit:	TRACE	and	DTRACE
The	TRACE	macro	 is	 used	 to	watch	 particular	 functions	 as	 they	 are	 called
and	as	they	return.	With	each	call	you	will	see	the	arguments	to	the	function;
when	the	function	returns	you	will	see	the	return	values.	Each	Lisp	implemen‐
tation	has	its	own	style	for	displaying	trace	information.	The	example	below
is	typical:
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If	you	call	TRACE	with	no	arguments,	it	returns	the	list	of	currently	traced
functions.

The	UNTRACE	macro	 turns	off	 tracing	 for	one	or	more	 functions.	Since
UNTRACE	 is	 a	 macro	 function	 like	 TRACE,	 its	 arguments	 should	 not	 be
quoted.

Calling	UNTRACE	with	no	arguments	untraces	all	 currently	 traced	 func‐
tions.

In	 the	 remainder	of	 this	book	we	will	 use	 a	more	detailed	 tracing	 format
that	shows	each	variable	in	the	argument	list	along	with	the	value	to	which	it
is	bound.	For	example:

If	 your	Lisp’s	TRACE	 isn’t	 this	 detailed,	 don’t	 panic,	 you	 can	use	mine.
It’s	called	DTRACE,	and	the	full	program	listing	is	given	in	an	appendix	at
the	 end	 of	 the	 book.	 This	 style	 of	 trace	 is	 especially	 helpful	 when	 tracing
functions	with	several	inputs,	and	even	more	so	when	the	inputs	are	long,	pos‐
sibly	nested,	lists.
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DUNTRACE	undoes	the	effect	of	DTRACE.	Don’t	try	to	trace	a	function
with	both	TRACE	and	DTRACE	at	the	same	time:	You	may	get	very	strange
results.

We	can	use	DTRACE	to	observe	the	behavior	of	applicative	operators	like
FIND-IF.	We	will	trace	the	ODDP	function	and	then	use	ODDP	as	an	input	to
FIND-IF.
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This	brings	up	one	last	point	about	the	use	of	TRACE	and	DTRACE.	Al‐
though	they	may	be	used	to	trace	built-in	functions	such	as	ODDP,	this	some‐
times	turns	out	to	be	dangerous.	Avoid	tracing	the	most	fundamental	built-in
functions	such	as	EVAL,	CONS,	and	+.	Otherwise	your	Lisp	might	end	up	in
an	infinite	loop,	and	you	will	have	to	abandon	it	and	start	over.

Keyboard	Exercise
In	 this	keyboard	exercise	we	will	develop	a	 system	 for	 representing	knowl‐
edge	 about	 “blocks	world”	 scenes	 such	 as	 Figure	 7-1.	Assertions	 about	 the
objects	 in	 a	 scene	are	 represented	as	 triples	of	 form	{block	attribute	 value).
Here	are	some	assertions	about	block	B2’s	attributes:

A	collection	(in	other	words,	a	list)	of	assertions	is	called	a	database.

Figure	7-1	A	typical	blocks	world	scene.

Given	a	database	describing	the	blocks	in	the	figure,	we	can	write	functions	to
answer	questions	such	as,	“What	color	is	block	B2?”	or	“What	blocks	support
block	Bl?”	To	answer	these	questions,	we	will	use	a	function	called	a	pattern
matcher	 to	search	the	database	for	us.	For	example,	to	find	out	the	color	of
block	B2,	we	use	the	pattern	(B2	COLOR	?).

To	find	which	blocks	support	Bl,	we	use	the	pattern	(?	SUPPORTS	Bl):
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FETCH	returns	those	assertions	from	the	database	that	match	a	given	pat‐
tern.	 It	 should	 be	 apparent	 from	 the	 preceding	 examples	 that	 a	 pattern	 is	 a
triple,	like	an	assertion,	with	some	of	its	elements	replaced	by	question	marks.
Figure	7-2	shows	some	patterns	and	their	English	interpretations.

A	question	mark	in	a	pattern	means	any	value	can	match	in	 that	position.
Thus,	 the	 pattern	 (B2	 COLOR	 ?)	 can	 match	 assertions	 like	 (B2	 COLOR
RED),	 (B2	 COLOR	 GREEN),	 (B2	 COLOR	 BLUE),	 and	 so	 on.	 It	 cannot
match	the	assertion	(Bl	COLOR	RED),	because	 the	first	element	of	 the	pat‐
tern	is	the	symbol	B2,	whereas	the	first	element	of	the	assertion	is	Bl.

Figure	7-2	Some	patterns	and	their	interpretations.

EXERCISE
7.29.	If	the	blocks	database	is	already	stored	on	the	computer	for	you,	load

the	file	containing	it.	If	not,	you	will	have	to	type	it	in	as	it	appears	in
Figure	7-3.	Save	the	database	in	the	global	variable	DATABASE.

a.	Write	a	function	MATCH-ELEMENT	that	takes	two	symbols	as	in‐
puts.	 If	 the	 two	 are	 equal,	 or	 if	 the	 second	 is	 a	 question	 mark,
MATCH-ELEMENT	 should	 return	 T.	 Otherwise	 it	 should	 return
NIL.	Thus	(MATCH-ELEMENT	‘RED	‘RED)	and	(MATCH-	EL‐
EMENT	 ‘RED	 ‘?)	 should	 return	 T,	 but	 (MATCH-ELEMENT
‘RED	‘BLUE)	should	return	NIL.	Make	sure	your	function	works
correctly	before	proceeding	further.

b.	Write	 a	 function	MATCH-TRIPLE	 that	 takes	 an	 assertion	 and	 a
pattern	as	input,	and	returns	T	if	the	assertion	matches	the	pattern.
Both	 inputs	 will	 be	 three-element	 lists.	 (MATCH-TRIPLE	 ‘(B2
COLOR	 RED)	 ‘(B2	 COLOR	 ?))	 should	 return	 T.	 (MATCH-

211



TRIPLE	‘(B2	COLOR	RED)	‘(Bl	COLOR	GREEN))	should	return
NIL.	Hint:	Use	MATCH-ELEMENT	as	a	building	block.

c.	Write	the	function	FETCH	that	takes	a	pattern	as	input	and	returns
all	assertions	in	the	database	that	match	the	pattern.	Remember	that
DATABASE	is	a	global	variable.	(FETCH	‘(B2	COLOR	?))	should
return	 ((B2	 COLOR	 RED)),	 and	 (FETCH	 ‘(?	 SUPPORTS	 Bl))
should	return	((B2	SUPPORTS	Bl)	(B3	SUPPORTS	Bl)).

d.	Use	FETCH	with	patterns	you	construct	yourself	to	answer	the	fol‐
lowing	 questions.	 What	 shape	 is	 block	 B4?	 Which	 blocks	 are
bricks?	What	 relation	 is	 block	B2	 to	 block	B3?	 List	 the	 color	 of
every	block.	What	facts	are	known	about	block	B4?

e.	Write	a	function	that	takes	a	block	name	as	input	and	returns	a	pat‐
tern	asking	the	color	of	the	block.	For	example,	given	the	input	B3,
your	function	should	return	the	list	(B3	COLOR	?).

f.	Write	a	function	SUPPORTERS	that	 takes	one	input,	a	block,	and
returns	 a	 list	 of	 the	 blocks	 that	 support	 it.	 (SUPPORTERS	 ‘Bl)
should	return	the	list	(B2	B3).	Your	function	should	work	by	con‐
structing	a	pattern	containing	 the	block’s	name,	using	 that	pattern
as	 input	 to	FETCH,	and	 then	extracting	 the	block	names	from	the
resulting	list	of	assertions.

g.	Write	a	predicate	SUPP-CUBE	that	 takes	a	block	as	input	and	re‐
turns	true	if	that	block	is	supported	by	a	cube.	(SUPP-CUBE	‘B4)
should	 return	 a	 true	value;	 (SUPP-CUBE	 ‘Bl)	 should	not	because
Bl	is	supported	by	bricks	but	not	cubes.	Hint:	Use	the	result	of	the
SUPPORTERS	function	as	a	starting	point.

h.	We	are	going	 to	write	 a	DESCRIPTION	function	 that	 returns	 the
description	of	 a	block.	 (DESCRIPTION	 ‘B2)	will	 return	 (SHAPE
BRICK	 COLOR	 RED	 SIZE	 SMALL	 SUPPORTS	 Bl	 LEFT-OF
B3).	We	will	 do	 this	 in	 steps.	 First,	write	 a	 function	DESC1	 that
takes	 a	 block	 as	 input	 and	 returns	 all	 assertions	 dealing	with	 that
block.	 (DESC1	 ‘B6)	 should	 return	 ((B6	 SHAPE	 BRICK)	 (B6
COLOR	PURPLE)	(B6	SIZE	LARGE)).

i.	Write	a	 function	DESC2	of	one	 input	 that	calls	DESC1	and	strips
the	block	name	off	each	element	of	the	result.	(DESC2	‘B6)	should
return	 the	 list	 ((SHAPE	 BRICK)	 (COLOR	 PURPLE)	 (SIZE
LARGE)).

j.	Write	 the	DESCRIPTION	 function.	 It	 should	 take	 one	 input,	 call
DESC2,	and	merge	the	resulting	list	of	lists	into	a	single	list.	(DE‐
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SCRIPTION	 ‘B6)	 should	 return	 (SHAPE	 BRICK	 COLOR	 PUR‐
PLE	SIZE	LARGE).

k.	What	is	the	description	of	block	Bl?	Of	block	B4?

l.	Block	Bl	 is	made	of	wood,	but	block	B2	 is	made	of	plastic.	How
would	you	add	this	information	to	the	database?

Figure	7-3	The	blocks	database.

7	Advanced	Topics

7.11	OPERATING	ON	MULTIPLE	LISTS
In	the	beginning	of	this	chapter	we	used	MAPCAR	to	apply	a	one-input	func‐
tion	 to	 the	 elements	 of	 a	 list.	MAPCAR	 is	 not	 restricted	 to	 one-input	 func‐
tions,	 however.	Given	 a	 function	of	n	 inputs,	MAPCAR	will	map	 it	 over	n
lists.	For	example,	given	a	list	of	people	and	a	list	of	jobs,	we	can	use	MAP‐
CAR	with	a	two-input	function	to	pair	each	person	with	a	job:
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MAPCAR	goes	 through	the	 two	lists	 in	parallel,	 taking	one	element	from
each	at	each	step.	If	one	list	is	shorter	than	the	other,	MAPCAR	stops	when	it
reaches	the	end	of	the	shortest	list.

Another	 example	 of	 operating	 on	multiple	 lists	 is	 the	 problem	 of	 adding
two	lists	of	numbers	pairwise:

EXERCISE
7.30.	Recall	 the	English-French	dictionary	we	stored	in	 the	global	variable

WORDS	 earlier	 in	 the	 chapter.	Given	 this	 dictionary	 plus	 the	 list	 or
corresponding	Spanish	words	(UNO	DOS	TRES	QUATRO	CINCO),
write	an	expression	to	return	a	trilingual	dictionary.	The	first	entry	of
the	dictionary	should	be	(ONE	UN	UNO).

7.12	THE	FUNCTION	SPECIAL	FUNCTION
Just	as	‘	is	shorthand	for	the	QUOTE	special	function,	#’	is	shorthand	for	the
FUNCTION	 special	 function.	 Writing	 #’	 CONS	 is	 therefore	 equivalent	 to
writing	(FUNCTION	CONS).

QUOTE	always	returns	its	unevaluated	argument,	but	FUNCTION	works	a
little	differently.	It	returns	the	functional	interpretation	of	its	unevaluated	ar‐
gument.	 If	 the	argument	 is	a	symbol,	 it	generally	returns	 the	contents	of	 the
symbol’s	function	cell.	Often	this	is	a	compiled	code	object.

On	the	other	hand,	if	the	argument	to	FUNCTION	is	a	lambda	expression,
the	result	is	usually	a	lexical	closure.
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The	result	returned	by	FUNCTION	is	always	some	kind	of	function	object.
These	objects	are	a	form	of	data,	just	like	symbols	and	lists.	For	example,	we
can	 store	 them	 in	 variables.	 We	 can	 also	 call	 them,	 using	 FUNCALL	 or
APPLY.	(APPLY	was	discussed	in	Advanced	Topics	section	3.21.)

The	value	of	the	variable	G	is	a	lexical	closure,	which	is	a	function.	But	G
itself	is	not	the	name	of	any	function;	if	we	wrote	(G	12)	we	would	get	an	un‐
defined	function	error.

7.13	KEYWORD	ARGUMENTS	TO
APPLICATIVE	OPERATORS
Some	 applicative	 operators,	 such	 as	 FIND-IF,	 REMOVE-IF,	 REMOVE-IF-
NOT,	 and	REDUCE,	 accept	 optional	 keyword	 arguments.	For	 example,	 the
:FROM-END	 keyword,	 if	 given	 a	 non-NIL	 value,	 causes	 the	 list	 to	 be
processed	from	right	to	left.

The	 :FROM-END	 keyword	 is	 particularly	 interesting	 with	 REDUCE;	 it
causes	 elements	 to	 be	 reduced	 from	 right	 to	 left	 instead	of	 the	 usual	 left	 to
right.

REMOVE-IF	and	REMOVE-IF-NOT	also	accept	a	:COUNT	keyword	that
specifies	 the	maximum	 number	 of	 elements	 to	 be	 removed.	 See	 the	 online
documentation	or	your	Common	Lisp	reference	manual	for	the	complete	list
of	 keyword	 arguments	 accepted	 by	 a	 particular	 function.	 MAPCAR	 and
EVERY	do	not	accept	any	keyword	arguments;	they	accept	a	variable	number
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of	lists	instead.

7.14	SCOPING	AND	LEXICAL	CLOSURES
Recall	 the	MY-ASSOC	example	from	section	7.7.	Since	the	lambda	expres‐
sion	is	passed	to	FIND-IF	and	called	from	inside	the	body	of	FIND-IF,	how	is
it	possible	for	it	to	refer	to	the	local	variables	of	MY-ASSOC?	Why	is	it	un‐
able	to	see	the	local	variables,	if	any,	of	FIND-IF	itself?

First,	it	is	important	to	remember	that	what	is	passed	to	FIND-IF	is	not	the
raw	 lambda	 expression,	 but	 rather	 a	 lexical	 closure	 created	 by	FUNCTION
(abbreviated	as	#’).	The	closure	remembers	its	lexical	environment.	In	the	fol‐
lowing	evaltrace	diagram,	 a	hollow	arrow	shows	 the	 scope	boundary	of	 the
body	of	the	closure.	An	arc	links	this	arrow	to	the	scope	boundary	for	its	par‐
ent	context,	the	body	of	MY-ASSOC.
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The	scope	rule	 for	closures	 is	 that	any	variable	not	 local	 to	 the	closure	 is
looked	up	in	the	closure’s	parent	context.	Every	lexical	context	has	a	parent
context.	 The	 thick	 solid	 lines	we’ve	 been	 using	 for	 the	 bodies	 of	 functions
like	MY-ASSOC	 and	 FIND-IF	 denote	 lexical	 contexts	 whose	 parent	 is	 the
global	 context.	 That’s	why	when	EVAL	hits	 one	 of	 these	 thick	 lines	while
looking	 up	 a	 variable,	 it	 immediately	 looks	 for	 a	 global	 variable	 with	 that
name.

Suppose	we	wrote	a	 function	FAULTY-ASSOC	that	 replaced	 the	 lambda
expression	with	an	independent	function	called	HELPER:

Since	HELPER	is	defined	at	top	level,	its	parent	lexical	context	is	the	global
context,	not	FAULTY-ASSOC’s	context.	Therefore	it	will	be	unable	to	refer
to	FAULTY-ASSOC’s	local	variables.	The	evaltrace	below	illustrates	this.
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Inside	FAULTY-ASSOC,	the	expression	#’	HELPER	evaluates	to	a	func‐
tion	 object,	 which	 FIND-IF	 calls	 using	 FUNCALL.	 Inside	 the	 body	 of
HELPER	is	a	reference	to	a	variable	named	KEY.	Since	KEY	is	not	local	to
HELPER,	EVAL	tries	to	find	some	parent	lexical	context	containing	this	vari‐
able.	 But	 HELPER	 has	 the	 global	 lexical	 context	 as	 its	 parent	 context,	 so
EVAL	cannot	see	the	KEY	that	is	local	to	MY-ASSOC.	Instead	it	looks	for	a
global	 variable	 named	 KEY.	 The	 result	 is	 an	 error	 message:	 “KEY	 unas‐
signed	variable.”

7.15	WRITING	AN	APPLICATIVE	OPERATOR
Using	 FUNCALL,	 we	 can	 write	 our	 own	 applicative	 operator	 that	 takes	 a
function	 as	 input.	 Our	 operator	will	 be	 called	 INALIENABLE-RIGHTS.	 It
applies	its	input	to	a	particular	list,	drawn	from	the	American	Declaration	of
Independence.

It	 is	an	error	 to	call	 INALIENABLE-RIGHTS	on	something	 that	 is	not	a
function,	because	FUNCALL	requires	a	function	as	its	first	input.
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The	input	to	INALIENABLE-RIGHTS	must	be	a	function	that	can	take	a
single	 list	as	 its	argument.	We	can’t	use	 the	CONS	function	as	an	 input	be‐
cause	CONS	requires	two	arguments.

However,	we	can	use	CONS	inside	a	lambda	expression	that	takes	one	ar‐
gument,	like	so:

7.16	FUNCTIONS	THAT	MAKE	FUNCTIONS
It	is	possible	to	write	a	function	whose	value	is	another	function.	Suppose	we
want	to	make	a	function	that	returns	true	if	its	input	is	greater	than	a	certain
number	N.	We	can	make	 this	 function	by	constructing	a	 lambda	expression
that	refers	to	N,	and	returning	that	lambda	expression:

The	value	 returned	by	MAKE-GREATER-THAN-PREDICATE	will	be	a
lexical	closure.	We	can	store	this	value	away	somewhere,	or	pass	it	as	an	ar‐
gument	to	FUNCALL	or	any	applicative	operator.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
Special	function	for	quoting	functions:	FUNCTION.
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8

Recursion

8.1	INTRODUCTION
Because	some	 instructors	prefer	 to	 teach	recursion	as	 the	 first	major	control
structure,	 this	 chapter	 and	 the	 preceding	 one	may	 be	 taught	 in	 either	 order.
They	are	independent.

Recursion	is	one	of	the	most	fundamental	and	beautiful	ideas	in	computer
science.	A	function	is	said	to	be	“recursive”	if	it	calls	itself.	Recursive	control
structure	is	the	main	topic	of	this	chapter,	but	we	will	also	take	a	look	at	re‐
cursive	data	structures	in	the	Advanced	Topics	section.	The	insight	necessary
to	recognize	the	recursive	nature	of	many	problems	takes	a	bit	of	practice	to
develop,	but	once	you	“get	it,”	you’ll	be	amazed	at	the	interesting	things	you
can	do	with	just	a	three-	or	four-line	recursive	function.

We	will	use	a	combination	of	three	techniques	to	illustrate	what	recursion
is	all	about:	dragon	stories,	program	traces,	and	recursion	templates.	Dragon
stories	 are	 the	 most	 controversial	 technique:	 Students	 enjoy	 them	 and	 find
them	helpful,	but	computer	science	professors	aren’t	always	as	appreciative.
If	you	don’t	like	dragons,	you	may	skip	Sections	8.2,	8.4,	8.6,	and	8.9.	The	in‐
tervening	sections	will	still	make	sense;	they	just	won’t	be	as	much	fun.

8.2	MARTIN	AND	THE	DRAGON
In	ancient	times,	before	computers	were	invented,	alchemists	studied	the	mys‐
tical	properties	of	numbers.	Lacking	computers,	 they	had	to	rely	on	dragons
to	do	their	work	for	them.	The	dragons	were	clever	beasts,	but	also	lazy	and
bad-tempered.	The	worst	ones	would	sometimes	bum	their	keeper	 to	a	crisp
with	a	single	fiery	belch.	But	most	dragons	were	merely	uncooperative,	as	vi‐
olence	 required	 too	 much	 energy.	 This	 is	 the	 story	 of	 how	Martin,	 an	 al‐
chemist’s	apprentice,	discovered	recursion	by	outsmarting	a	lazy	dragon.

One	day	the	alchemist	gave	Martin	a	list	of	numbers	and	sent	him	down	to
the	dungeon	to	ask	the	dragon	if	any	were	odd.	Martin	had	never	been	to	the
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dungeon	before.	He	took	a	candle	down	with	him,	and	in	the	furthest,	darkest
corner	 found	an	old	dragon,	none	 too	 friendly	 looking.	Timidly,	he	 stepped
forward.	He	did	not	want	to	be	burnt	to	a	crisp.

“What	do	you	want?”	grumped	the	dragon	as	it	eyed	Martin	suspiciously.

“Please,	dragon,	I	have	a	list	of	numbers,	and	I	need	to	know	if	any	of	them
are	odd”	Martin	began.	“Here	it	is.”	He	wrote	the	list	in	the	dirt	with	his	fin‐
ger:

The	dragon	was	in	a	disagreeable	mood	that	day.	Being	a	dragon,	it	always
was.	“Sorry,	boy”	the	dragon	said.	“I	might	be	willing	to	tell	you	if	the	first
number	 in	 that	 list	 is	odd,	but	 that’s	 the	best	 I	 could	possibly	do.	Anything
else	would	be	too	complicated;	probably	not	worth	my	trouble.”

“But	I	need	to	know	if	any	number	in	the	list	is	odd,	not	just	the	first	num‐
ber”	Martin	explained.

“Too	 bad	 for	 you!”	 the	 dragon	 said.	 “I’m	 only	 going	 to	 look	 at	 the	 first
number	of	the	list.	But	I’ll	look	at	as	many	lists	as	you	like	if	you	give	them	to
me	one	at	a	time.”

Martin	 thought	 for	 a	 while.	 There	 had	 to	 be	 a	 way	 around	 the	 dragon’s
omeriness.	“How	about	this	first	 list	 then?”	he	asked,	pointing	to	the	one	he
had	drawn	on	the	ground:

“The	first	number	in	that	list	is	not	odd,”	said	the	dragon.

Martin	then	covered	the	first	part	of	the	list	with	his	hand	and	drew	a	new
left	parenthesis,	leaving

and	said	“How	about	this	list?”

“The	first	number	in	that	list	is	not	odd,”	the	dragon	replied.

Martin	covered	some	more	of	the	list.	“How	about	this	list	then?”

“The	first	number	in	that	list	isn’t	odd	either,”	said	the	dragon.	It	sounded
bored,	but	at	least	it	was	cooperating.

“And	this	one?”	asked	Martin.
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“Not	odd.”

“And	this	one?”

“That’s	the	empty	list!”	the	dragon	snorted.	“There	can’t	be	an	odd	number
in	there,	because	there’s	nothing	in	there.”

“Well,”	said	Martin,	“I	now	know	that	not	one	of	the	numbers	in	the	list	the
alchemist	gave	me	is	odd.	They’re	all	even.”

“I	 NEVER	 said	 that!!!”	 bellowed	 the	 dragon.	 Martin	 smelled	 smoke.	 “I
only	told	you	about	the	first	number	in	each	list	you	showed	me.”

“That’s	true,	Dragon.	Shall	I	write	down	all	of	the	lists	you	looked	at?”

“If	you	wish,”	the	dragon	replied.	Martin	wrote	in	the	dirt:

“Don’t	 you	 see?”	Martin	 asked.	 “By	 telling	me	 that	 the	 first	 element	 of
each	of	 those	 lists	wasn’t	odd,	you	told	me	that	none	of	 the	elements	 in	my
original	list	was	odd.”

“That’s	pretty	tricky,”	the	dragon	said	testily.	“It	looks	liked	you’ve	discov‐
ered	recursion.	But	don’t	ask	me	what	that	means—you’ll	have	to	figure	it	out
for	 yourself.”	 And	 with	 that	 it	 closed	 its	 eyes	 and	 refused	 to	 utter	 another
word.

8.3	A	FUNCTION	TO	SEARCH	FOR	ODD
NUMBERS
Here	is	a	recursive	function	ANYODDP	that	returns	T	if	any	element	of	a	list
of	numbers	is	odd.	It	returns	NIL	if	none	of	them	are.

If	the	list	of	numbers	is	empty,	ANYODDP	should	return	NIL,	since	as	the
dragon	noted,	there	can’t	be	an	odd	number	in	a	list	that	contains	nothing.	If
the	list	is	not	empty,	we	go	to	the	second	COND	clause	and	test	the	first	ele‐
ment.	If	the	first	element	is	odd,	there	is	no	need	to	look	any	further;	ANYO‐
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DDP	can	stop	and	return	T.	When	the	first	element	is	even,	ANYODDP	must
call	itself	on	the	rest	of	the	list	to	keep	looking	for	odd	elements.	That	is	the
recursive	part	of	the	definition.

To	see	better	how	ANYODDP	works,	we	can	use	DTRACE	to	announce
every	 call	 to	 the	 function	 and	 every	 return	 value.	 (The	DTRACE	 tool	 used
here	was	 introduced	 in	 the	 Lisp	 Toolkit	 section	 of	 Chapter	 7.	 If	 your	 Lisp
doesn’t	have	DTRACE,	use	TRACE	instead.)

We’ll	start	with	the	simplest	cases:	an	empty	list,	and	a	list	with	one	odd	num‐
ber.

Now	let’s	consider	the	case	where	the	list	contains	one	even	number.	The
tests	in	the	first	two	COND	clauses	will	be	false,	so	the	function	will	end	up
at	 the	 third	 clause,	where	 it	 calls	 itself	 recursively	 on	 the	REST	of	 the	 list.
Since	the	REST	is	NIL,	this	reduces	to	a	previously	solved	problem:	(ANYO‐
DDP	NIL)	is	NIL	due	to	the	first	COND	clause.

If	the	list	contains	two	elements,	an	even	number	followed	by	an	odd	num‐
ber,	 the	 recursive	 call	 will	 trigger	 the	 second	 COND	 clause	 instead	 of	 the
first:
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Finally,	 let’s	consider	 the	general	case	where	 there	are	multiple	even	and
odd	numbers:

Note	that	 in	this	example	the	function	did	not	have	to	recurse	all	 the	way
down	to	NIL.	Since	the	FIRST	of	(7	8	9)	is	odd,	ANYODDP	could	stop	and
return	T	at	that	point.

EXERCISES
8.1.	Use	a	trace	to	show	how	ANYODDP	would	handle	the	list	(3142	5798

6550	8914).	Which	COND	clause	is	never	true	in	this	case?

8.2.	Show	how	to	write	ANYODDP	using	IF	instead	of	COND.

8.4	MARTIN	VISITS	THE	DRAGON	AGAIN
“Hello	Dragon!”	Martin	called	as	he	made	his	way	down	the	rickety	dungeon
staircase.

“Hmmmph!	You	 again.	 I’m	on	 to	 your	 recursive	 tricks.”	The	dragon	did
not	sound	glad	to	see	him.

“I’m	supposed	to	find	out	what	five	factorial	is,”	Martin	said.	“What’s	fac‐
torial	mean,	anyway?”

At	this	 the	dragon	put	on	a	most	offended	air	and	said,	“I’m	not	going	to
tell	you.	Look	it	up	in	a	book.”
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“All	 right,”	 said	Martin.	 “Just	 tell	me	what	 five	 factorial	 is	 and	 I’ll	 leave
you	alone.”

“You	don’t	know	what	factorial	means,	but	you	want	me	 to	tell	you	what
factorial	of	five	is???	All	right	buster,	I’ll	tell	you,	not	that	it	will	do	you	any
good.	Factorial	of	five	is	five	times	factorial	of	four.	I	hope	you’re	satisfied.
Don’t	forget	to	bolt	the	door	on	your	way	out.”

“But	what’s	 factorial	 of	 four?”	 asked	Martin,	 not	 at	 all	 pleased	with	 the
dragon’s	evasiveness.

“Factorial	of	four?	Why,	it’s	four	times	factorial	of	three,	of	course.”

“And	I	suppose	you’re	going	to	tell	me	that	factorial	of	three	is	three	times
factorial	of	two,”	Martin	said.

“What	a	clever	boy	you	are!”	said	the	dragon.	“Now	go	away.”

“Not	yet,”	Martin	 replied.	“Factorial	of	 two	 is	 two	 times	 factorial	of	one.
Factorial	of	one	is	one	times	factorial	of	zero.	Now	what?”

“Factorial	of	zero	is	one,”	said	the	dragon.	“That’s	really	all	you	ever	need
to	remember	about	factorials.”

“Hmmm,”	said	Martin.	“There’s	a	pattern	to	this	factorial	function.	Perhaps
I	should	write	down	the	steps	I’ve	gone	through.”	Here	is	what	he	wrote:

“Well,”	said	the	dragon,	“you’ve	recursed	all	the	way	down	to	factorial	of
zero,	which	you	know	is	one.	Now	why	don’t	you	try	working	your	way	back
up	to....”	When	it	realized	what	it	was	doing,	the	dragon	stopped	in	mid-sen‐
tence.	Dragons	aren’t	supposed	to	be	helpful.

Martin	started	to	write	again:

“Hey!”	Martin	yelped.	“Factorial	of	5	is	120.	That’s	the	answer!	Thanks!!”

“/	didn’t	tell	you	the	answer,”	the	dragon	said	testily.	“/	only	told	you	that
factorial	of	zero	is	one,	and	factorial	of	n	is	n	times	factorial	of	n-l.	You	did
the	rest	yourself.	Recursively,	I	might	add.”
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“That’s	 true,”	 said	Martin.	“Now	if	 I	only	knew	what	 ‘recursively’	 really
meant.”

8.5	A	LISP	VERSION	OF	THE	FACTORIAL
FUNCTION
The	dragon’s	words	gave	a	very	precise	definition	of	factorial:	n	factorial	is	n
times	n-1	factorial,	and	zero	factorial	is	one.	Here	is	a	function	called	FACT
that	computes	factorials	recursively:

And	here	is	how	Lisp	would	solve	Martin’s	problem:

EXERCISE
8.3.	Why	 does	 (FACT	 20.0)	 produce	 a	 different	 result	 than	 (FACT	 20)?

Why	do	(FACT	0.0)	and	(FACT	0)	both	produce	the	same	result?

8.6	THE	DRAGON’S	DREAM
The	next	 time	Martin	returned	 to	 the	dungeon,	he	found	 the	dragon	rubbing
its	eyes,	as	if	it	had	just	awakened	from	a	long	sleep.
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“I	had	a	most	curious	dream,”	the	dragon	said.	“It	was	a	recursive	dream,	in
fact.	Would	you	like	to	hear	about	it?”

Martin	was	stunned	to	find	the	dragon	in	something	resembling	a	friendly
mood.	He	forgot	all	about	the	alchemist’s	latest	problem.	“Yes,	please	do	tell
me	about	your	dream,”	he	said.

“Very	well,”	began	the	dragon.	“Last	night	I	was	looking	at	a	long	loaf	of
bread,	and	I	wondered	how	many	slices	it	would	make.	To	answer	my	ques‐
tion	I	actually	went	and	cut	one	slice	from	the	loaf.	I	had	one	slice,	and	one
slightly	shorter	loaf	of	bread,	but	no	answer.	I	puzzled	over	the	problem	until
I	fell	asleep.”

“And	that’s	when	you	had	the	dream?”	Martin	asked.

“Yes,	a	very	curious	one.	I	dreamt	about	another	dragon	who	had	a	loaf	of
bread	 just	 like	mine,	 except	 his	 was	 a	 slice	 shorter.	 And	 he	 too	wanted	 to
know	how	many	slices	his	loaf	would	make,	but	he	had	the	same	problem	I
did.	He	cut	off	a	slice,	like	me,	and	stared	at	the	remaining	loaf,	like	me,	and
then	he	fell	asleep	like	me	as	well.”

“So	 neither	 one	 of	 you	 found	 the	 answer,”	 Martin	 said	 disappointedly.
“You	don’t	know	how	long	your	loaf	is,	and	you	don’t	know	how	long	his	is
either,	except	that	it’s	one	slice	shorter	than	yours.”

“But	 I’m	not	done	yet,”	 the	dragon	 said.	 “When	 the	dragon	 in	my	 dream
fell	asleep,	he	had	a	dream	as	well.	He	dreamt	about—if	you	can	imagine	this
—a	dragon	whose	loaf	of	bread	was	one	slice	shorter	than	his	own	loaf.	And
this	dragon	also	wanted	to	find	out	how	many	slices	his	loaf	would	make,	and
he	tried	to	find	out	by	cutting	a	slice,	but	that	didn’t	tell	him	the	answer,	so	he
fell	asleep	thinking	about	it.”

“Dreams	 within	 dreams!!”	 Martin	 exclaimed.	 “You’re	 making	 my	 head
swim.	Did	that	last	dragon	have	a	dream	as	well?”

“Yes,	and	he	wasn’t	the	last	either.	Each	dragon	dreamt	of	a	dragon	with	a
loaf	 one	 slice	 shorter	 than	 his	 own.	 I	 was	 piling	 up	 a	 pretty	 deep	 stack	 of
dreams	there.”

‘	‘How	did	you	manage	to	wake	up	then?’’	Martin	asked.

“Well,”	the	dragon	said,	“eventually	one	of	the	dragons	dreamt	of	a	dragon
whose	 loaf	was	so	small	 it	wasn’t	 there	at	all.	You	might	call	 it	 ‘the	empty
loaf	That	dragon	could	see	his	loaf	contained	no	slices,	so	he	knew	the	answer
to	his	question	was	zero;	he	didn’t	fall	asleep.

“When	the	dragon	who	dreamt	of	that	dragon	woke	up,	he	knew	that	since
his	 own	 loaf	was	one	 slice	 longer,	 it	must	 be	 exactly	 one	 slice	 long.	So	he
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awoke	knowing	the	answer	to	his	question.

“And,	when	the	dragon	who	dreamt	of	that	dragon	woke	up,	he	knew	that
his	loaf	had	to	be	two	slices	long,	since	it	was	one	slice	longer	than	that	of	the
dragon	 he	 dreamt	 about.	 And	 when	 the	 dragon	 who	 dreamt	 of	 him	 woke
up....”

“I	get	it!”	Martin	said.	“He	added	one	to	the	length	of	the	loaf	of	the	dragon
he	dreamed	about,	and	that	answered	his	own	question.	And	when	you	finally
woke	up,	you	had	the	answer	to	yours.	How	many	slices	did	your	loaf	make?”

“Twenty-seven,”	said	the	dragon.	“It	was	a	very	long	dream.”

8.7	A	RECURSIVE	FUNCTION	FOR	COUNTING
SLICES	OF	BREAD
If	we	represent	a	slice	of	bread	by	a	symbol,	then	a	loaf	can	be	represented	as
a	list	of	symbols.	The	problem	of	finding	how	many	slices	a	loaf	contains	is
thus	 the	 problem	 of	 finding	 how	many	 elements	 a	 list	 contains.	 This	 is	 of
course	what	LENGTH	does,	but	 if	we	didn’t	have	LENGTH,	we	could	still
count	the	slices	recursively.

If	the	input	is	the	empty	list,	then	its	length	is	zero,	so	COUNT-SLICES	sim‐
ply	returns	zero.

If	 the	 input	 is	 the	 list	 (X),	 COUNT-SLICES	 calls	 itself	 recursively	 on	 the
REST	of	the	list,	which	is	NIL,	and	then	adds	one	to	the	result.

228



When	the	input	is	a	longer	list,	COUNT-SLICES	has	to	recurse	more	deeply
to	get	 to	 the	empty	list	so	 it	can	return	zero.	Then	as	each	recursive	call	 re‐
turns,	one	is	added	to	the	result.

8.8	THE	THREE	RULES	OF	RECURSION
The	dragon,	beneath	 its	 feigned	distaste	 for	Martin’s	questions,	 actually	en‐
joyed	 teaching	him	about	 recursion.	One	day	 it	 decided	 to	 formally	 explain
what	 recursion	means.	 The	 dragon	 told	Martin	 to	 approach	 every	 recursive
problem	as	 if	 it	were	a	 journey.	 If	he	 followed	 three	 rules	 for	solving	prob‐
lems	 recursively,	 he	 would	 always	 complete	 the	 journey	 successfully.	 The
dragon	explained	the	rules	this	way:

1.	Know	when	to	stop.

2.	Decide	how	to	take	one	step.

3.	Break	the	journey	down	into	that	step	plus	a	smaller	journey.

Let’s	see	how	each	of	 these	 rules	applies	 to	 the	Lisp	 functions	we	wrote.
The	first	rule,	“know	when	to	stop,”	warns	us	that	any	recursive	function	must
check	to	see	if	the	journey	has	been	completed	before	recursing	further.	Usu‐
ally	 this	 is	 done	 in	 the	 first	 COND	 clause.	 In	 ANYODDP	 the	 first	 clause
checks	if	 the	input	 is	 the	empty	list,	and	if	so	the	function	stops	and	returns
NIL,	since	the	empty	list	doesn’t	contain	any	numbers.	The	factorial	function,
FACT,	stops	when	the	input	gets	down	to	zero.	Zero	factorial	is	one,	and,	as
the	dragon	said,	that’s	all	you	ever	need	to	remember	about	factorial.	The	rest

229



is	computed	 recursively.	 In	COUNT-SLICES	 the	 first	COND	clause	checks
for	NIL,	“the	empty	loaf.”	COUNT-SLICES	returns	zero	if	NIL	is	the	input.
Again,	this	is	based	on	the	realization	that	the	empty	loaf	contains	no	slices,
so	we	do	not	have	to	recurse	any	further.

The	second	rule,	“decide	how	to	take	one	step,”	asks	us	to	break	off	from
the	problem	one	tiny	piece	that	we	instantly	know	how	to	solve.	In	ANYO‐
DDP	we	check	whether	the	FIRST	of	a	list	is	an	odd	number;	if	so	we	return
T.	In	the	factorial	function	we	perform	a	single	multiplication,	multiplying	the
input	N	by	 factorial	of	N-1.	 In	COUNT-SLICES	 the	 step	 is	 the	+	 function:
For	each	slice	we	cut	off	the	loaf,	we	add	one	to	whatever	the	length	of	the	re‐
sulting	loaf	turned	out	to	be.

The	third	rule,	“break	the	journey	down	into	that	step	plus	a	smaller	jour‐
ney,”	 means	 find	 a	 way	 for	 the	 function	 to	 call	 itself	 recursively	 on	 the
slightly	 smaller	 problem	 that	 results	 from	 breaking	 a	 tiny	 piece	 off.	 The
ANYODDP	function	calls	itself	on	the	REST	of	the	list,	a	shorter	list	than	the
original,	to	see	if	there	are	any	odd	numbers	there.	The	factorial	function	re‐
cursively	computes	factorial	of	N-l,	a	slightly	simpler	problem	than	factorial
of	N,	and	 then	uses	 the	 result	 to	get	 factorial	of	N.	 In	COUNT-SLICES	we
use	a	recursive	call	to	count	the	number	of	slices	in	the	REST	of	a	loaf,	and
then	add	one	to	the	result	to	get	the	size	of	the	whole	loaf.

Table	8-1	Applying	the	three	rules	of	recursion.

Table	8-1	sums	up	our	understanding	of	how	the	three	rules	apply	to	ANY‐
ODDP,	FACT,	and	COUNT-SLICES.	Now	that	you	know	the	rules,	you	can
write	your	own	recursive	functions.

FIRST	RECURSION	EXERCISE
8.4.	We	are	going	to	write	a	function	called	LAUGH	that	takes	a	number	as

input	 and	 returns	 a	 list	 of	 that	many	HAs.	 (LAUGH	3)	 should	 return
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the	list	(HA	HA	HA).	(LAUGH	0)	should	return	a	list	with	no	HAs	in
it,	or,	as	the	dragon	might	put	it,	“the	empty	laugh.”
Here	is	a	skeleton	for	the	LAUGH	function:

Under	 what	 condition	 should	 the	 LAUGH	 function	 stop	 recursing?
Replace	the	symbol	a	in	the	skeleton	with	that	condition.	What	value
should	LAUGH	return	for	that	case?	Replace	symbol	β	in	the	skeleton
with	 that	value.	Given	 that	a	 single	 step	 for	 this	problem	 is	 to	add	a
HA	onto	the	result	of	a	subproblem,	fill	in	that	subproblem	by	replac‐
ing	the	symbol	γ.

Type	your	LAUGH	function	into	the	computer.	Then	type	(DTRACE
LAUGH)	to	trace	it,	and	(LAUGH	5)	to	test	it.	Do	you	get	the	result
you	 want?	 What	 happens	 for	 (LAUGH	 0)?	 What	 happens	 for
(LAUGH-1)?

Note:	If	the	function	looks	like	it’s	in	an	infinite	loop,	break	out	of	it
and	get	back	to	the	read-eval-print	loop.	(Exactly	how	this	is	done	de‐
pends	on	 the	particular	version	of	Lisp	you	use.	Ask	your	 local	Lisp
expert	 if	you	need	help.)	Then	use	DTRACE	to	help	you	understand
what’s	going	on.

EXERCISES
8.5.	In	this	exercise	we	are	going	to	write	a	function	ADD-UP	to	add	up	all

the	numbers	in	a	list.	(ADD-UP	‘(2	3	7))	should	return	12.	You	already
know	 how	 to	 solve	 this	 problem	 applicatively	 with	 REDUCE;	 now
you’ll	 learn	 to	 solve	 it	 recursively.	Before	writing	ADD-UP	we	must
answer	three	questions	posed	by	our	three	rules	of	recursion.

a.	When	do	we	stop?	Is	there	any	list	for	which	we	immediately	know
what	 the	sum	of	all	 its	elements	 is?	What	 is	 that	 list?	What	value
should	the	function	return	if	it	gets	that	list	as	input?

b.	Do	we	know	how	to	take	a	single	step?	Look	at	the	second	COND
clause	 in	 the	 definition	 of	 COUNT-SLICES	 or	 FACT.	 Does	 this
give	you	any	ideas	about	what	the	single	step	should	be	for	ADD-
UP?

c.	How	should	ADD-UP	call	itself	recursively	to	solve	the	rest	of	the
problem?	Look	at	COUNT-SLICES	or	FACT	again	if	you	need	in‐
spiration.
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Write	down	the	complete	definition	of	ADD-UP.	Type	it	into	the	com‐
puter.	Trace	it,	and	then	try	adding	up	a	list	of	numbers.

8.6.	Write	ALLODDP,	a	recursive	function	that	returns	T	if	all	the	numbers
in	a	list	are	odd.

8.7.	Write	a	recursive	version	of	MEMBER.	Call	it	REC-MEMBER	so	you
don’t	redefine	the	built-in	MEMBER	function.

8.8.	Write	a	recursive	version	of	ASSOC.	Call	it	REC-ASSOC.

8.9.	Write	a	recursive	version	of	NTH.	Call	it	REC-NTH.

8.10.	For	x	a	nonnegative	integer	and	y	a	positive	integer,	x+y	equals	x+1	+
(y-1).	If	y	is	zero	then	x+y	equals	x.	Use	these	equations	to	build	a	re‐
cursive	version	of	+	called	REC-PLUS	out	of	ADD1,	SUB1,	COND
and	ZEROP.	You’ll	have	to	write	ADD1	and	SUB1	too.

8.9	MARTIN	DISCOVERS	INFINITE
RECURSION
On	his	next	trip	down	to	the	dungeon	Martin	brought	with	him	a	parchment
scroll.	“Look	dragon,”	he	called,	“someone	else	must	know	about	recursion.	I
found	this	scroll	in	the	alchemist’s	library.”

The	 dragon	 peered	 suspiciously	 as	 Martin	 unrolled	 the	 scroll,	 placing	 a
candlestick	 at	 each	 end	 to	 hold	 it	 flat.	 “This	 scroll	 makes	 no	 sense,”	 the
dragon	said.	“For	one	thing,	it’s	got	far	too	many	parentheses.”

“The	writing	is	a	little	strange,”	Martin	agreed,	“but	I	think	I’ve	figured	out
the	message.	It’s	an	algorithm	for	computing	Fibonacci	numbers.”

“I	already	know	how	to	compute	Fibonacci	numbers,”	said	the	dragon.

“Oh?	How?”

“Why,	 I	 wouldn’t	 dream	 of	 spoiling	 the	 fun	 by	 telling	 you,”	 the	 dragon
replied.

“I	didn’t	think	you	would,”	Martin	shot	back.	“But	the	scroll	says	that	Fib
of	n	equals	Fib	of	n-1	plus	Fib	of	n-2.	That’s	a	recursive	definition,	and	I	al‐
ready	know	how	to	work	with	recursion.”

“What	else	does	the	scroll	say?”	the	dragon	asked.

“Nothing	else.	Should	it	say	more?”

Suddenly	 the	 dragon	 assumed	 a	most	 ingratiating	 tone.	Martin	 found	 the
change	startling.	“Dearest	boy!	Would	you	do	a	poor	old	dragon	one	tiny	little
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favor?	Compute	a	Fibonacci	number	for	me.	I	promise	to	only	ask	you	for	a
small	one.”

“Well,	 I’m	 supposed	 to	 be	 upstairs	 now,	 cleaning	 the	 cauldrons,”	Martin
began,	but	seeing	the	hurt	look	on	the	dragon’s	face	he	added,	“but	I	guess	I
have	time	for	a	small	one.”

“You	 won’t	 regret	 it,”	 promised	 the	 dragon.	 “Tell	 me:	 What	 is	 Fib	 of
four?”

Martin	traced	his	translation	of	the	Fibonacci	algorithm	in	the	dust:

Then	he	began	to	compute	Fib	of	four:

“Finished?”	the	dragon	asked	innocently.

“No,”	Martin	replied.	“Something	is	wrong.	The	numbers	are	becoming	in‐
creasingly	negative.”

“Well,	will	you	be	finished	soon?”

“It	looks	like	I	won’t	ever	be	finished,”	Martin	said.	“This	recursion	keeps
going	on	forever.”

“Aha!	You	see?	You’re	stuck	in	an	infinite	recursion!”	the	dragon	gloated.
“I	noticed	it	at	once.”

“Then	why	didn’t	you	say	something?”	Martin	demanded.

The	dragon	grimaced	and	gave	a	little	snort;	blue	flame	appeared	briefly	in
its	 nostrils.	 “How	will	 you	 ever	 come	 to	master	 recursion	 if	 you	 rely	 on	 a
dragon	to	do	your	thinking	for	you?”

Martin	wasn’t	 afraid,	 but	 he	 stepped	 back	 a	 bit	 anyway	 to	 let	 the	 smoke
clear.	“Well,	how	did	you	spot	the	problem	so	quickly,	dragon?”

“Elementary,	 boy.	 The	 scroll	 told	 how	 to	 take	 a	 single	 step,	 and	 how	 to
break	the	journey	down	to	a	smaller	one.	It	said	nothing	at	all	about	when	you
get	to	stop.	Ergo,”	the	dragon	grinned,	“you	don’t.”
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8.10	INFINITE	RECURSION	IN	LISP
Lisp	functions	can	be	made	to	recurse	infinitely	by	ignoring	the	dragon’s	first
rule	of	recursion,	which	is	to	know	when	to	stop.	Here	is	the	Lisp	implemen‐
tation	of	Martin’s	algorithm:

Usually	a	good	programmer	can	tell	just	by	looking	at	a	function	whether	it
will	exhibit	infinite	recursion,	but	in	some	cases	this	can	be	quite	difficult	to
determine.	Try	tracing	the	following	function	C,	giving	it	inputs	that	are	small
positive	integers:
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Try	calling	C	on	other	values	between	one	and	ten.	Notice	that	there	is	no
obvious	relationship	between	the	size	of	the	input	and	the	number	of	recursive
calls	 that	 result.	 Number	 theorists	 believe	 the	 function	 returns	 T	 for	 every
positive	integer,	in	other	words,	there	are	no	inputs	which	cause	it	to	recurse
infinitely.	This	 is	 known	as	Collatz’s	 conjecture.	But	 until	 the	 conjecture	 is
proved,	we	can’t	say	for	certain	whether	or	not	C	always	returns.

EXERCISES
8.11.	The	missing	part	of	Martin’s	Fibonacci	algorithm	is	the	rule	for	Fib(l)

and	Fib(0).	Both	of	 these	 are	defined	 to	be	one.	Using	 this	 informa‐
tion,	write	a	correct	version	of	the	FIB	function.	(FIB	4)	should	return
five.	(FIB	5)	should	return	eight.

8.12.	Consider	the	following	version	of	ANY-7-P,	a	recursive	function	that
searches	a	list	for	the	number	seven:
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Give	a	sample	input	for	which	this	function	will	work	correctly.	Give
one	for	which	the	function	will	recurse	infinitely.

8.13.	 Review	 the	 definition	 of	 the	 factorial	 function,	 FACT,	 given	 previ‐
ously.	What	sort	of	input	could	you	give	it	to	cause	an	infinite	recur‐
sion?

8.14.	Write	the	very	shortest	infinite	recursion	function	you	can.

8.15.	 Consider	 the	 circular	 list	 shown	 below.	What	 is	 the	 car	 of	 this	 list?
What	 is	 the	 cdr?	What	 will	 the	 COUNT-SLICES	 function	 do	 when
given	this	list	as	input?

8.11	RECURSION	TEMPLATES
Most	 recursive	Lisp	 functions	 fall	 into	 a	 few	 standard	 forms.	These	 are	de‐
scribed	by	recursion	templates,	which	capture	 the	essence	of	 the	form	in	a
fill-in-the-blanks	 pattern.	You	 can	 create	 new	 functions	 by	 choosing	 a	 tem‐
plate	and	filling	in	the	blanks.	Also,	once	you’ve	mastered	them,	you	can	use
the	templates	to	analyze	existing	functions	to	see	which	pattern	they	fit.

8.11.1	Double-Test	Tail	Recursion
The	first	template	we’ll	study	is	double-test	tail	recursion,	which	is	shown	in
Figure	 8-1.	 “Double-test”	 indicates	 that	 the	 recursive	 function	 has	 two	 end
tests;	if	either	is	true,	the	corresponding	end	value	is	returned	instead	of	pro‐
ceeding	with	 the	 recursion.	When	both	end	 tests	are	 false,	we	end	up	at	 the
last	COND	clause,	where	 the	 function	 reduces	 the	 input	 somehow	and	 then
calls	itself	recursively.	This	template	is	said	to	be	tail-recursive	because	the
action	part	of	the	last	COND	clause	does	not	do	any	work	after	the	recursive
call.	Whatever	result	 the	recursive	call	produces,	 that	 is	what	 the	COND	re‐
turns,	so	that	is	what	each	parent	call	returns.	ANYODDP	is	an	example	of	a
tail-recursive	function.
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Figure	8-1	Template	for	double-test	tail	recursion.

EXERCISES
8.16.	What	would	happen	if	we	switched	the	first	and	second	COND	clauses

in	ANYODDP?

8.17.	Use	double-test	 tail	recursion	to	write	FIND-FIRST-ODD,	a	function
that	 returns	 the	 first	 odd	 number	 in	 a	 list,	 or	NIL	 if	 there	 are	 none.
Start	by	copying	the	recursion	template	values	for	ANYODDP;	only	a
small	change	is	necessary	to	derive	FIND-FIRST-ODD.

8.11.2	Single-Test	Tail	Recursion
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A	simpler	but	less	frequently	used	template	is	single-test	tail	recursion,	which
is	shown	in	Figure	8-2.	Suppose	we	want	to	find	the	first	atom	in	a	list,	where
the	list	may	be	nested	arbitrarily	deeply.	We	can	do	this	by	taking	successive
FIRSTs	of	the	list	until	we	reach	an	atom.	The	function	FIND-FIRST-ATOM
does	this:

In	general,	single-test	recursion	is	used	when	we	know	the	function	will	al‐
ways	 find	what	 it’s	 looking	 for	 eventually;	 FIND-FIRST-ATOM	 is	 guaran‐
teed	to	find	an	atom	if	it	keeps	taking	successive	FIRSTs	of	its	input.	We	use
double-test	recursion	when	there	is	the	possibility	the	function	might	not	find
what	it’s	looking	for.	In	ANYODDP,	for	example,	the	second	test	checked	if
it	had	found	an	odd	number,	but	first	a	test	was	needed	to	see	if	the	function
had	run	off	the	end	of	the	list,	in	which	case	it	should	return	NIL.

EXERCISES
8.18.	 Use	 single-test	 tail	 recursion	 to	 write	 LAST-ELEMENT,	 a	 function

that	returns	the	last	element	of	a	list.	LAST-ELEMENT	should	recur‐
sively	 travel	 down	 the	 list	 until	 it	 reaches	 the	 last	 cons	 cell	 (a	 cell
whose	cdr	is	an	atom);	then	it	should	return	the	car	of	this	cell.
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Figure	8-2	Template	for	single-test	tail	recursion.

8.19.	Suppose	we	decided	to	convert	ANYODDP	to	single-test	tail	recursion
by	 simply	 eliminating	 the	 COND	 clause	 with	 the	 NULL	 test.	 For
which	 inputs	 would	 it	 still	 work	 correctly?	 What	 would	 happen	 in
those	cases	where	it	failed	to	work	correctly?

8.11.3	Augmenting	Recursion
Augmenting	 recursive	 functions	 like	 COUNT-SLICES	 build	 up	 their	 result
bit-by-bit.	We	call	 this	process	augmentation.	 Instead	of	dividing	 the	prob‐
lem	 into	 an	 initial	 step	 plus	 a	 smaller	 journey,	 they	 divide	 it	 into	 a	 smaller
journey	plus	a	final	step.	The	final	step	consists	of	choosing	an	augmentation
value	and	applying	it	to	the	result	of	the	previous	recursive	call.	In	COUNT-
SLICES,	for	example,	we	built	up	the	result	by	first	making	a	recursive	call
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and	then	adding	one	to	the	result.	A	template	for	single-test	augmenting	recur‐
sion	is	shown	in	Figure	8-3.
No	 augmentation	 of	 the	 result	 is	 permitted	 in	 tail-recursive	 functions.

Therefore,	 the	value	 returned	by	a	 tail-recursive	 function	 is	 always	equal	 to
one	of	the	end-values	in	the	function	definition;	it	isn’t	built	up	bit-by-bit	as
each	recursive	call	returns.	Compare	ANYODDP,	which	always	returns	T	or
NIL;	it	never	augments	its	result.

EXERCISES
8.20.	Of	the	three	templates	we’ve	seen	so	far,	which	one	describes	FACT,

the	factorial	function?	Write	down	the	values	of	 the	various	template
components	for	FACT.

8.21.	Write	a	recursive	function	ADD-NUMS	that	adds	up	the	numbers	N,
N-1,	N-2,	and	so	on,	down	 to	0,	and	returns	 the	 result.	For	example,
(ADD-NUMS	5)	should	compute	5+4+3+2+1+0,	which	is	15.

8.22.	Write	a	recursive	function	ALL-EQUAL	that	returns	T	if	the	first	ele‐
ment	of	a	 list	 is	equal	 to	 the	second,	 the	second	is	equal	 to	 the	 third,
the	 third	 is	 equal	 to	 the	 fourth,	 and	 so	 on.	 (ALL-EQUAL	 ‘(III	 I))
should	 return	 T.	 (ALL-EQUAL	 ‘(I	 I	 E	 I))	 should	 return	NIL.	ALL-
EQUAL	 should	 return	T	 for	 lists	with	 less	 than	 two	 elements.	Does
this	 problem	 require	 augmentation?	Which	 template	 will	 you	 use	 to
solve	it?
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Figure	8-3	Template	for	single-test	augmenting	recursion.

8.12	VARIATIONS	ON	THE	BASIC	TEMPLATES
The	 templates	we’ve	 learned	 so	 far	 have	many	uses.	Certain	ways	of	 using
them	are	especially	common	in	Lisp	programming,	and	deserve	special	men‐
tion.	In	this	section	we’ll	cover	four	variations	on	the	basic	templates.

8.12.1	List-Consing	Recursion
List-consing	recursion	is	used	very	frequently	in	Lisp.	It	 is	a	special	case	of
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augmenting	recursion	where	the	augmentation	function	is	CONS.	As	each	re‐
cursive	call	returns,	we	create	one	new	cons	cell.	Thus,	the	depth	of	the	recur‐
sion	is	equal	to	the	length	of	the	resulting	cons	cell	chain,	plus	one	(because
the	last	call	returns	NIL	instead	of	a	cons).	The	LAUGH	function	you	wrote
in	the	first	recursion	exercise	is	an	example	of	list-consing	recursion.	See	Fig‐
ure	8-4	for	the	template.

EXERCISES
8.23.	Suppose	we	evaluate	(LAUGH	5).	Make	a	table	showing,	for	each	call

to	LAUGH,	the	value	of	N	(from	five	down	to	zero),	the	value	of	the
first	 input	 to	CONS,	 the	value	of	 the	second	input	 to	CONS,	and	the
result	returned	by	LAUGH.

8.24.	Write	COUNT-DOWN,	a	function	that	counts	down	from	n	using	list-
consing	 recursion.	 (COUNT-DOWN	 5)	 should	 produce	 the	 list
(54321).

8.25.	How	could	COUNT-DOWN	be	used	to	write	an	applicative	version	of
FACT?	 (You	 may	 skip	 this	 problem	 if	 you	 haven’t	 read	 Chapter	 7
yet.)

8.26.	Suppose	we	wanted	to	modify	COUNT-DOWN	so	that	the	list	it	con‐
structs	ends	in	zero.	For	example,	(COUNT-DOWN	5)	would	produce
(543210).	Show	two	ways	this	can	be	done.

8.27.	Write	SQUARE-LIST,	a	recursive	function	that	takes	a	list	of	numbers
as	input	and	returns	a	list	of	their	squares.	(SQUARE-LIST	‘(345	6))
should	return	(9	16	25	36).
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Figure	8-4	Template	for	list-consing	recursion.

8.12.2	Simultaneous	Recursion	on	Several	Variables
Simultaneous	recursion	on	multiple	variables	is	a	straightforward	extension	to
any	 recursion	 template.	 Instead	 of	 having	 only	 one	 input,	 the	 function	 has
several,	and	one	or	more	of	 them	is	“reduced”	with	each	 recursive	call.	For
example,	suppose	we	want	to	write	a	recursive	version	of	NTH,	called	MY-
NTH.	Recall	that	(NTH	0	x)	is	(FIRST	x);	this	tells	us	which	end	test	to	use.
With	each	 recursive	call	we	 reduce	n	by	one	and	 take	successive	RESTs	of
the	 list	x.	The	 resulting	 function	demonstrates	 single-test	 tail	 recursion	with
simultaneous	recursion	on	two	variables.	The	template	is	shown	in	Figure	8-5.
Here	is	a	trace	in	which	you	can	see	the	two	variables	being	reduced	simulta‐
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neously.

EXERCISES
8.28.	The	 expressions	 (MY-NTH	5	 ‘(A	B	C))	 and	 (MY-NTH	1000	 ‘(A	B

C))	both	 run	off	 the	end	of	 the	 list,	 and	hence	produce	a	NIL	 result.
Yet	the	second	expression	takes	quite	a	bit	longer	to	execute	than	the
first.	Modify	MY-NTH	so	that	the	recursion	stops	as	soon	the	function
runs	off	the	end	of	the	list.

8.29.	Write	MY-MEMBER,	a	recursive	version	of	MEMBER.	This	function
will	 take	 two	 inputs,	 but	 you	will	 only	want	 to	 reduce	 one	 of	 them
with	each	successive	call.	The	other	should	remain	unchanged.
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Figure	8-5	Template	for	simultaneous	recursion	on	several	variables,	using	single-test	tail	recursion.

8.30.	Write	MY-ASSOC,	a	recursive	version	of	ASSOC.

8.31.	 Suppose	 we	 want	 to	 tell	 as	 quickly	 as	 possible	 whether	 one	 list	 is
shorter	 than	another.	If	one	list	has	five	elements	and	the	other	has	a
million,	we	don’t	want	to	have	to	go	through	all	one	million	cons	cells
before	 deciding	 that	 the	 second	 list	 is	 longer.	 So	 we	 must	 not	 call
LENGTH	 on	 the	 two	 lists.	 Write	 a	 recursive	 function	 COMPARE-
LENGTHS	that	takes	two	lists	as	input	and	returns	one	of	the	follow‐
ing	 symbols:	 SAME-LENGTH,	 FIRST-IS-LONGER,	 or	 SECOND-
IS-LONGER.	 Use	 triple-test	 simultaneous	 recursion.	 Hint:	 If	 x	 is
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shorter	 than	y	 and	both	are	nonempty,	 then	 (REST	x)	 is	 shorter	 than
(REST	y).

8.12.3	Conditional	Augmentation
In	some	list-processing	problems	we	want	to	skip	certain	elements	of	the	list
and	use	only	the	remaining	ones	to	build	up	the	result.	This	is	known	as	con‐
ditional	augmentation.	For	example,	in	EXTRACT-SYMBOLS,	defined	on
the	facing	page,	only	elements	that	are	symbols	will	be	included	in	the	result.

The	body	of	EXTRACT-SYMBOLS	contains	two	recursive	calls.	One	call
is	nested	inside	an	augmentation	expression,	which	in	this	case	conses	a	new
element	onto	the	result	list.	The	other	call	is	unaugmented;	instead	its	result	is
simply	returned.	In	the	preceding	trace	output	you’ll	note	that	sometimes	two
successive	calls	return	the	same	value,	such	as	two	lists	(GIRL)	and	two	lists
(BEARS	 AND	 GIRL);	 that’s	 because	 one	 of	 each	 pair	 of	 calls	 chose	 the
unaugmented	COND	clause.	When	the	augmented	clause	was	chosen,	the	re‐
sult	got	 longer,	as	when	we	went	from	NIL	to	(GIRL),	 from	there	 to	(AND
GIRL),	and	from	there	to	(BEARS	AND	GIRL).	See	Figure	8-6	for	the	gen‐
eral	template	for	conditional	augmentation.
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Figure	8-6	Template	for	conditional	augmentation.

EXERCISES
8.32.	Write	 the	function	SUM-NUMERIC-ELEMENTS,	which	adds	up	all

the	numbers	in	a	list	and	ignores	the	non-numbers.	(SUM-NUMERIC-
ELEMENTS	 ‘(3	 BEARS	 3	 BOWLS	 AND	 1	 GIRL))	 should	 return
seven.
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8.33.	Write	MY-REMOVE,	a	recursive	version	of	the	REMOVE	function.

8.34.	Write	MY-INTERSECTION,	a	 recursive	version	of	 the	 INTERSEC‐
TION	function.

8.35.	Write	MY-SET-DIFFERENCE,	 a	 recursive	version	of	 the	SET-DIF‐
FERENCE	function.

8.36.	The	 function	COUNT-ODD	counts	 the	number	of	odd	elements	 in	a
list	of	numbers;	for	example,	(COUNT-ODD	‘(4	5	6	7	8))	should	re‐
turn	 two.	 Show	 how	 to	 write	 COUNT-ODD	 using	 conditional	 aug‐
mentation.	Then	write	another	version	of	COUNT-ODD	using	the	reg‐
ular	augmenting	recursion	template.	(To	do	this	you	will	need	to	write
a	conditional	expression	for	the	augmentation	value.)

8.12.4	Multiple	Recursion
A	function	is	multiple	recursive	if	it	makes	more	than	one	recursive	call	with
each	 invocation.	 (Don’t	 confuse	 simultaneous	 with	 multiple	 recursion.	 The
former	technique	just	reduces	several	variables	simultaneously;	it	does	not	in‐
volve	multiple	recursive	calls	with	each	invocation.)	The	Fibonacci	function
is	a	classic	example	of	multiple	recursion.	Fib(N)	calls	itself	twice:	once	for
Fib(N-1)	 and	 again	 for	Fib(N-2).	The	 results	 of	 the	 two	 calls	 are	 combined
using	+.	A	general	template	for	multiple	recursion	is	shown	in	Figure	8-7.

A	good	way	to	visualize	the	process	of	multiple	recursion	is	to	look	at	the
shape	of	the	nested	calls	in	the	trace	output.	Let’s	define	a	terminal	call	as	a
call	 that	 does	 not	 recurse	 any	 further.	 In	 all	 previous	 functions,	 successive
calls	were	nested	strictly	one	inside	the	other,	and	the	innermost	call	was	the
only	terminal	call.	Then,	 the	return	values	flowed	in	a	straight	 line	from	the
innermost	call	back	to	 the	outermost.	But	with	a	multiple-recursive	function
such	as	FIB,	each	call	produces	two	new	calls.	The	two	are	nested	inside	the
parent	call,	but	they	cannot	nest	inside	each	other.	Instead	they	appear	side	by
side	within	the	parent.	Multiple	recursive	functions	therefore	have	many	ter‐
minal	 calls.	 In	 the	 following	 trace	output,	 there	 are	 three	 terminal	 calls	 and
two	nonterminal	calls.
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Figure	8-7	Template	for	multiple	recursion.
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EXERCISE
8.37.	Define	a	simple	function	COMBINE	that	takes	two	numbers	as	input

and	 returns	 their	 sum.	Now	 replace	 the	 occurence	 of	 +	 in	 FIB	with
COMBINE.	Trace	FIB	and	COMBINE,	and	try	evaluating	(FIB	3)	or
(FIB	4).	What	can	you	say	about	the	relationship	between	COMBINE,
terminal	calls,	and	nonterminal	calls?

8.13	TREES	AND	CAR/CDR	RECURSION
Sometimes	we	want	 to	process	all	 the	elements	of	a	nested	 list,	not	 just	 the
top-level	elements.	If	the	list	is	irregularly	shaped,	such	as	(((GOLDILOCKS
.	AND))	(THE	.	3)	BEARS),	this	might	appear	difficult.	When	we	write	our
function,	we	won’t	know	how	long	or	how	deeply	nested	its	inputs	will	be.
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Figure	8-8	Template	for	CAR/CDR	recursion.
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The	trick	to	solving	this	problem	is	not	 to	think	of	 the	input	as	an	irregu‐
larly	shaped	nested	list,	but	rather	as	a	binary	tree	(see	the	following	illustra‐
tion.)	Binary	trees	are	very	regular:	Each	node	is	either	an	atom	or	a	cons	with
two	 branches,	 the	 car	 and	 the	 cdr.	 Therefore	 all	 our	 function	 has	 to	 do	 is
process	the	atoms,	and	call	itself	recursively	on	the	car	and	cdr	of	each	cons.
This	technique	is	called	CAR/CDR	recursion;	it	is	a	special	case	of	multiple
recursion.

For	example,	suppose	we	want	a	function	FIND-NUMBER	to	search	a	tree
and	return	the	first	number	that	appears	in	it,	or	NIL	if	there	are	none.	Then
we	should	use	NUMBERP	and	ATOM	as	our	end	tests	and	OR	as	the	com‐
biner.	(See	the	template	in	Figure	8-8.)	Note	that	since	OR	is	a	conditional,	as
soon	as	one	clause	of	the	OR	evaluates	to	true,	the	OR	stops	and	returns	that
value.	Thus	we	don’t	have	to	search	the	whole	tree;	the	function	will	stop	re‐
cursing	as	soon	as	any	call	results	in	a	non-NIL	value.

Besides	tree	searching,	another	common	use	for	CAR/CDR	recursion	is	to
build	trees	by	using	CONS	as	the	combiner.	For	example,	here	is	a	function
that	takes	a	tree	as	input	and	returns	a	new	tree	in	which	every	non-NIL	atom
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has	been	replaced	by	the	symbol	Q.

EXERCISES
8.38.	 What	 would	 be	 the	 effect	 of	 deleting	 the	 first	 COND	 clause	 in

ATOMS-TO-Q?

8.39.	Write	a	function	COUNT-ATOMS	that	returns	the	number	of	atoms	in
a	tree.	(COUNT-ATOMS	‘(A	(B)	C))	should	return	five,	since	in	addi‐
tion	to	A,	B,	and	C	there	are	two	NILs	in	the	tree.

8.40.	Write	COUNT-CONS,	a	function	that	returns	the	number	of	cons	cells
in	 a	 tree.	 (COUNT-CONS	 ‘(POO))	 should	 return	 one.	 (COUNT-
CONS	 ‘(FOO	BAR))	 should	 return	 two.	 (COUNT-CONS	 ‘((POO)))
should	also	return	two,	since	the	list	((FOO))	requires	two	cons	cells.
(COUNT-CONS	‘FRED)	should	return	zero.

8.41.	Write	a	function	SUM-TREE	that	returns	the	sum	of	all	 the	numbers
appearing	in	a	tree.	Nonnumbers	should	be	ignored.	(SUM-TREE	‘((3
BEARS)	(3	BOWLS)	(1	GIRL)))	should	return	seven.

8.42.	Write	MY-SUBST,	a	recursive	version	of	the	SUBST	function.

8.43.	Write	FLATTEN,	a	 function	 that	 returns	all	 the	elements	of	an	arbi‐
trarily	nested	list	in	a	single-level	list.	(FLATTEN	‘((A	B	(R))	A	C	(A
D	((A	(B))	R)	A)))	should	return	(ABRACADABRA).

8.44.	Write	a	function	TREE-DEPTH	that	returns	the	maximum	depth	of	a
binary	 tree.	 (TREE-DEPTH	 ‘(A	 .	 B))	 should	 return	 one.	 (TREE-
DEPTH	‘((A	B	C	D)))	should	return	five,	and	(TREE-DEPTH	‘((A	.
B)	.	(C	.	D)))	should	return	two.

8.45.	Write	a	function	PAREN-DEPTH	that	returns	the	maximum	depth	of
nested	parentheses	in	a	list.	(PAREN-DEPTH	‘(A	B	C))	should	return
one,	whereas	TREE-DEPTH	would	return	three.	(PAREN-DEPTH	‘(A
B	((C)	D)	E))	should	return	 three,	since	 there	 is	an	element	C	that	 is
nested	in	three	levels	of	parentheses.	Hint:	This	problem	can	be	solved
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by	CAR/CDR	recursion,	but	the	CAR	and	CDR	cases	will	not	be	ex‐
actly	symmetric.

8.14	USING	HELPING	FUNCTIONS
For	some	problems	it	is	useful	to	structure	the	solution	as	a	helping	function
plus	a	recursive	function.	The	recursive	function	does	most	of	the	work.	The
helping	function	is	the	one	that	you	call	from	top	level;	it	performs	some	spe‐
cial	service	either	at	the	beginning	or	the	end	of	the	recursion.	For	example,
suppose	we	want	to	write	a	function	COUNT-UP	that	counts	from	one	up	to
m

This	problem	is	harder	than	COUNT-DOWN	because	the	innermost	recur‐
sive	call	must	terminate	the	recursion	when	the	input	reaches	five	(in	the	pre‐
ceding	example),	 not	 zero.	 In	general,	 how	will	 the	 function	know	when	 to
stop?	 The	 easiest	way	 is	 to	 supply	 the	 original	 value	 of	N	 to	 the	 recursive
function	so	 it	 can	decide	when	 to	 stop.	We	must	also	 supply	an	extra	argu‐
ment:	a	counter	that	tells	the	function	how	far	along	it	is	in	the	recursion.	The
job	of	the	helping	function	is	to	provide	the	initial	value	for	the	counter.
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EXERCISES
8.46.	Another	way	to	solve	the	problem	of	counting	upward	is	to	to	add	an

element	to	the	end	of	the	list	with	each	recursive	call	instead	of	adding
elements	 to	 the	 beginning.	 This	 approach	 doesn’t	 require	 a	 helping
function.	Write	this	version	of	COUNT-UP.

8.47.	Write	MAKE-LOAF,	a	function	that	returns	a	loaf	of	size	N.	(MAKE-
LOAF	4)	should	return	(XXX	X).	Use	IF	instead	of	COND.

8.48.	Write	a	recursive	function	BURY	that	buries	an	item	under	n	levels	of
parentheses.	(BURY	‘FRED	2)	should	return	((FRED)),	while	(BURY
‘FRED	5)	should	return	(((((FRED))))).	Which	recursion	template	did
you	use?

8.49.	 Write	 PAIRINGS,	 a	 function	 that	 pairs	 the	 elements	 of	 two	 lists.
(PAIRINGS	‘(A	B	C)	‘(1	2	3))	should	return	((A	1)	(B	2)	(C	3)).	You
may	assume	that	the	two	lists	will	be	of	equal	length.

8.50.	Write	SUBLISTS,	a	 function	 that	 returns	 the	successive	sublists	of	a
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list.	(SUBLISTS	‘(FEE	FIE	FOE))	should	return	((FEE	FIE	FOE)	(FIE
FOE)	(FOE)).

8.51.	The	simplest	way	to	write	MY-REVERSE,	a	recursive	version	of	RE‐
VERSE,	is	with	a	helping	function	plus	a	recursive	function	of	two	in‐
puts.	Write	this	version	of	MY-REVERSE.

8.52.	Write	MY-UNION,	a	recursive	version	of	UNION.

8.53.	Write	LARGEST-EVEN,	a	recursive	function	 that	 returns	 the	 largest
even	number	in	a	list	of	nonnegative	integers.	(LARGEST-EVEN	‘(5
2	 4	 3))	 should	 return	 four.	 (LARGEST-EVEN	 NIL)	 should	 return
zero.	Use	 the	built-in	MAX	function,	which	 returns	 the	 largest	of	 its
inputs.

8.54.	 Write	 a	 recursive	 function	 HUGE	 that	 raises	 a	 number	 to	 its	 own
power.	(HUGE	2)	should	return	22,	(HUGE	3)	should	return	33	=	27,
(HUGE	4)	should	return	44	=	256,	and	so	on.	Do	not	use	REDUCE.

8.15	RECURSION	IN	ART	AND	LITERATURE
Recursion	can	be	found	not	only	in	computer	programs,	but	also	in	stories	and
in	paintings.	The	classic	One	Thousand	and	One	Arabian	Nights	contains	sto‐
ries	within	stories	within	stories,	giving	it	a	recursive	flavor.	A	similar	effect
is	expressed	visually	in	some	of	Dr.	Seuss’s	drawings	in	The	Cat	in	the	Hat
Comes	Back.	One	of	these	is	shown	in	Figure	8-9.	The	nesting	of	cats	within
hats	is	like	the	nesting	of	contexts	when	a	recursive	function	calls	itself.	In	the
story,	each	cat’s	taking	off	his	hat	plays	the	role	of	a	recursive	function	call.
Little	cat	B	has	his	hat	on	at	 this	point,	but	 the	recursion	eventually	gets	all
the	way	to	Z,	and	terminates	with	an	explosion.	(If	this	story	has	any	moral,	it
would	appear	to	be,	‘	‘Know	when	to	stop!’’)

Some	of	the	most	imaginative	representations	of	recursion	and	self-referen‐
tiality	in	art	are	the	works	of	the	Dutch	artist	M.	C.	Escher,	whose	lithograph
“Drawing	Hands”	 appears	 in	Figure	 8-10.	Douglas	Hofstadter	 discusses	 the
role	of	 recursion	 in	music,	 art,	 and	mathematics	 in	his	book	Godel,	Escher,
Bach:	An	Eternal	Golden	Braid.	The	dragon	stories	 in	 this	chapter	were	 in‐
spired	by	characters	in	Hofstadter’s	book.
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Figure	8-9	Recursively	nested	cats,	from	The	Cat	in	the	Hat	Comes	Back,	by	Dr.	Seuss.	Copyright	(c)
1958	by	Dr.	Seuss.	Reprinted	by	permission	of	Random	House,	Inc.
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Figure	8-10	“Drawing	Hands”	by	M.	C.	Escher.	Copyright	(c)	1989	M.	C.	Escher	heirs/Cordon	Art-
Baam-Holland.

SUMMARY
Recursion	is	a	very	powerful	control	structure,	and	one	of	the	most	important
ideas	in	computer	science.	A	function	is	said	to	be	“recursive”	if	it	calls	itself.
To	 write	 a	 recursive	 function,	 we	must	 solve	 three	 problems	 posed	 by	 the
Dragon’s	three	rules	of	recursion:

1.	Know	when	to	stop.

2.	Decide	how	to	take	one	step.

3.	Break	the	journey	down	into	that	step	plus	a	smaller	journey.

We’ve	 seen	 a	 number	 of	 recursion	 templates	 in	 this	 chapter.	 Recursion
templates	 capture	 the	 essence	 of	 certain	 stereotypical	 recursive	 solutions.
They	can	be	used	 for	writing	new	functions,	or	 for	analyzing	existing	 func‐
tions.	The	templates	we’ve	seen	so	far	are:

1.	Double-test	tail	recursion.
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2.	Single-test	tail	recursion.

3.	Single-test	augmenting	recursion.

4.	List-consing	recursion.

5.	Simultaneous	recursion	on	several	variables.

6.	Conditional	augmentation.

7.	Multiple	recursive	calls.

8.	CAR/CDR	recursion.

REVIEW	EXERCISES
8.55.	What	distinguishes	a	recursive	function	from	a	nonrecursive	one?

8.56.	Write	EVERY-OTHER,	a	 recursive	 function	 that	 returns	every	other
element	of	 a	 list—the	 first,	 third,	 fifth,	 and	 so	on.	 (EVERY-OTHER
‘(A	 B	 C	 D	 E	 F	 G))	 should	 return	 (ACE	 G).	 (EVERY-OTHER	 ‘(I
CAME	I	SAW	I	CONQUERED))	should	return	(111).

8.57.	Write	LEFT-HALF,	a	recursive	function	in	two	parts	 that	returns	the
first	n/2	elements	of	a	list	of	length	n.	Write	your	function	so	that	the
list	does	not	have	to	be	of	even	length.	(LEFT-HALF	‘(A	B	C	D	E))
should	return	(A	B	C).	(LEFT-HALF	‘(12345678))	should	return	(12	3
4).	You	may	use	LENGTH	but	not	REVERSE	in	your	definition.

8.58.	Write	MERGE-LISTS,	a	function	that	takes	two	lists	of	numbers,	each
in	increasing	order,	as	input.	The	function	should	return	a	list	that	is	a
merger	of	the	elements	in	its	inputs,	in	order.	(MERGE-LISTS	‘(12	6
8	10	12)	‘(2	3	5	9	13))	should	return	(12	2	3	5	6	8	9	10	12	13).

8.59.	Here	is	another	definition	of	the	factorial	function:

Verify	that	these	equations	are	true.	Is	the	definition	recursive?	Write
a	Lisp	function	that	implements	it.	For	which	inputs	will	the	function
return	 the	 correct	 answer?	For	which	 inputs	will	 it	 fail	 to	 return	 the
correct	answer?	Which	of	the	three	rules	of	recursion	does	the	defini‐
tion	violate?

Lisp	Toolkit:	The	Debugger
All	beginning	Lispers	quickly	learn	one	debugger	command,	because	as	soon
as	 they	 type	 something	 wrong,	 that’s	 where	 they	 end	 up:	 in	 the	 debugger.
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They	have	to	learn	how	to	get	out!	Lisp	implementations	differ	substantially
when	it	comes	to	debuggers,	so	there	will	be	no	standard	way	to	recover	from
an	error.	Some	of	you	have	probably	been	typing	Q	for	Quit	or	:	A	for	Abort,
while	 others	may	 be	 typing	Control-C	 or	Control-G.	 In	 any	 case,	 now	 that
you’re	confident	you	can	exit	the	debugger	whenever	you	like,	why	not	stay
around	a	while?

The	debugger	does	not	actually	remove	bugs	from	programs.	What	it	does
is	 let	you	examine	 the	state	of	 the	computation	when	an	error	has	occurred.
This	also	makes	 it	a	good	 tool	 for	 learning	about	 recursion.	We	can	use	 the
BREAK	function	to	enter	the	debugger	at	a	strategic	point	in	the	computation.
The	argument	 to	BREAK	is	a	message,	 in	string	quotes,	 to	be	printed	when
the	 debugger	 is	 entered.	 Here	 is	 a	 modified	 version	 of	 FACT	 that	 demon‐
strates	the	use	of	BREAK:

We	are	now	sitting	 in	 the	debugger;	“Debug>”	 is	 the	debugger’s	prompt.
(Your	debugger	may	use	a	different	prompt.)	One	of	the	things	we	can	do	at
this	point	is	display	a	backtrace	of	the	control	stack,	which	shows	all	the	re‐
cursive	calls	 that	 are	currently	 stacked	up.	 If	you’re	not	 familiar	with	 terms
like	“control	stack”	and	“stack	frame,”	just	play	around	with	the	debugger	for
a	 while	 and	 you’ll	 get	 the	 hang	 of	 what’s	 going	 on.	 (The	 control	 stack	 is
Lisp’s	way	of	keeping	track	of	a	collection	of	nested	function	calls.	A	stack
frame	 is	an	entry	on	 the	stack	 that	describes	one	of	 these	 function	calls.)	 In
my	debugger	the	command	for	displaying	a	backtrace	is	BK.

Variants	of	the	BK	command	allow	different	sorts	of	control	stack	informa‐
tion	 to	 be	 displayed.	 In	 my	 debugger,	 BKFV	 gives	 a	 display	 of	 function
names	and	their	local	variables.
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While	inside	the	debugger	we	can	look	at	the	values	of	variables,	and	type
arbitrary	Lisp	expressions	using	them.

When	we	enter	the	debugger,	we	are	sitting	at	the	top	of	the	stack.	We	can
move	around	the	stack	using	the	commands	called	(in	my	debugger)	UP	and
DOWN.	If	we	move	down	the	stack,	we	can	see	other	local	variables	named
N.
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Finally,	we	 can	 use	 the	 debugger	 to	 return	 from	 any	 one	 of	 the	 function
calls	currently	on	the	stack.	This	causes	 the	computation	to	resume	as	 if	 the
function	had	returned	normally:

When	we	 returned	 10	 from	 the	 current	 stack	 frame,	 the	 computation	 re‐
sumed	at	that	point,	and	the	value	produced	was	5x4x3x10	=	600.

Your	debugger	won’t	look	exactly	like	mine,	and	it	may	provide	somewhat
different	capabilities,	but	the	basic	idea	of	examining	the	control	stack	is	com‐
mon	 to	 all	Lisp	debuggers.	Look	 in	 the	user’s	manual	 for	 your	Lisp	 imple‐
mentation	to	see	which	debugger	commands	are	offered.	Typing	HELP	or	:H
or	“?”	to	your	debugger	may	also	produce	a	list	of	commands.

Keyboard	Exercise
In	this	exercise	we	will	extract	different	sorts	of	information	from	a	genealog‐
ical	database.	The	database	gives	information	for	five	generations	of	a	family,
as	shown	 in	Figure	8-11.	Such	diagrams	are	usually	called	 family	 trees,	but
this	 family’s	 genealogical	 history	 is	 not	 a	 simple	 tree	 structure.	 Marie	 has
married	her	first	cousin	Nigel.	Wanda	has	had	one	child	with	Vincent	and	an‐
other	 with	 Ivan.	 Zelda	 and	 Robert,	 the	 parents	 of	 Yvette,	 have	 two	 great
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grandparents	 in	 common.	 (This	 might	 explain	 why	 Yvette	 turned	 out	 so
weird.)	And	only	Tamara	knows	who	Frederick’s	father	is;	she’s	not	telling.

Figure	8-11	Genealogy	information	for	five	generations	of	a	family.
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Figure	8-12	The	genealogy	database.

Each	person	in	the	database	is	represented	by	an	entry	of	form

(name	father	mother)

When	someone’s	father	or	mother	is	unknown,	a	value	of	NIL	is	used.

The	functions	you	write	in	this	keyboard	exercise	need	not	be	recursive,	ex‐
cept	where	indicated.	For	functions	that	return	lists	of	names,	the	exact	order
in	which	 these	 names	 appear	 is	 unimportant,	 but	 there	 should	 be	 no	 dupli‐
cates.

EXERCISE
8.60.	 If	 the	genealogy	database	 is	 already	stored	on	 the	computer	 for	you,

load	the	file	containing	 it.	 If	not,	you	will	have	 to	 type	 it	 in	as	 it	ap‐
pears	 in	Figure	8-12.	Store	 the	database	 in	 the	global	variable	FAM‐
ILY.
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a.	Write	 the	 functions	FATHER,	MOTHER,	PARENTS,	and	CHIL‐
DREN	 that	 return	 a	 person’s	 father,	 mother,	 a	 list	 of	 his	 or	 her
known	parents,	and	a	list	of	his	or	her	children,	respectively.	(FA‐
THER’SUZANNE)	 should	 return	 COLIN.	 (PAR‐
ENTS’SUZANNE)	 should	 return	 (COLIN	 DEIRDRE).	 (PAR‐
ENTS’FREDERICK)	should	return	(TAMARA),	since	Frederick’s
father	 is	 unknown.	 (CHILDREN’ARTHUR)	 should	 return	 the	 set
(BRUCE	CHARLES	DAVID	ELLEN).	If	any	of	these	functions	is
given	NIL	as	input,	it	should	return	NIL.	This	feature	will	be	useful
later	when	we	write	some	recursive	functions.

b.	Write	 SIBLINGS,	 a	 function	 that	 returns	 a	 list	 of	 a	 person’s	 sib‐
lings,	including	genetic	half-siblings.	(SIBLINGS’BRUCE)	should
return	(CHARLES	DAVID	ELLEN).	(SIBLINGS’ZELDA)	should
return	(JOSHUA).

c.	Write	MAPUNION,	 an	 applicative	 operator	 that	 takes	 a	 function
and	a	list	as	input,	applies	the	function	to	every	element	of	the	list,
and	 computes	 the	 union	 of	 all	 the	 results.	 An	 example	 is	 (MA‐
PUNION	#’REST’((1	A	B	C)	 (2	E	C	 J)	 (3	F	A	B	C	D))),	which
should	return	the	set	(A	B	C	E	J	F	D).	Hint:	MAPUNION	can	be
defined	as	a	combination	of	 two	applicative	operators	you	already
know.

d.	Write	GRANDPARENTS,	a	function	that	returns	the	set	of	a	per‐
son’s	grandparents.	Use	MAPUNION	in	your	solution.

e.	Write	COUSINS,	a	function	that	returns	the	set	of	a	person’s	genet‐
ically	 related	 first	 cousins,	 in	 other	words,	 the	 children	 of	 any	 of
their	 parents’	 siblings.	 (COUSINS’JULIE)	 should	 return	 the	 set
(TAMARA	 VINCENT	 NIGEL).	 Use	 MAPUNION	 in	 your	 solu‐
tion.

f.	Write	the	two-input	recursive	predicate	DESCENDED-FROM	that
returns	a	true	value	if	the	first	person	is	descended	from	the	second.
(DESCENDED-FROM’TAMARA’ARTHUR)	 should	 return	 T.
(DESCENDED-FROM’TAMARA’LINDA)	 should	 return	 NIL.
(Hint:	You	are	descended	 from	someone	 if	he	 is	one	of	your	par‐
ents,	or	if	either	your	father	or	mother	is	descended	from	him.	This
is	a	recursive	definition.)

g.	Write	the	recursive	function	ANCESTORS	that	returns	a	person’s
set	 of	 ancestors.	 (ANCESTORS’MARIE)	 should	 return	 the	 set
(ELLEN	ARTHUR	KATE	GEORGE	FRANK	LINDA).	 (Hint:	 A
person’s	ancestors	are	his	parents	plus	his	parents’	ancestors.	This
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is	a	recursive	definition.)

h.	Write	the	recursive	function	GENERATION-GAP	that	returns	the
number	of	generations	separating	a	person	and	one	of	his	or	her	an‐
cestors.	 (GENERATION-GAP’SUZANNE’COLIN)	 should	 return
one.	 (GENERATION-GAP’FREDERICK’COLIN)	 should	 return
three.	 (GENERATION-GAP’FREDERICK’LINDA)	 should	 return
NIL,	because	Linda	is	not	an	ancestor	of	Frederick.

i.	Use	 the	 functions	you	have	written	 to	 answer	 the	 following	ques‐
tions:

1.	Is	Robert	descended	from	Deirdre?
2.	Who	are	Yvette’s	ancestors?
3.	What	is	the	generation	gap	between	Olivia	and	Frank?
4.	Who	are	Peter’s	cousins?
5.	Who	are	Olivia’s	grandparents?

8	Advanced	Topics

8.16	ADVANTAGES	OF	TAIL	RECURSION
Remember	that	tail-recursive	functions	do	no	work	after	the	recursive	call;	the
function	returns	whatever	 the	 recursive	call	 returns.	ANYODDP	is	a	 tail-re‐
cursive	 function,	 but	 COUNT-SLICES	 is	 not.	 If	 we	 look	 at	 the	 trace	 of
COUNT-SLICES	 again,	 we	 see	 that	 each	 call	 produces	 a	 different	 return
value	(owing	to	augmentation).	In	a	tail-recursive	function,	all	calls	return	the
same	value	as	the	terminal	call.

In	 general,	 it	 is	 better	 to	 write	 recursive	 functions	 in	 tail-recursive	 form
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whenever	possible,	because	Lisp	systems	can	execute	tail-recursive	functions
more	efficiently	than	ordinary	recursive	functions.	They	do	this	by	replacing
the	 recursive	call	with	a	 jump.	Many	Lisp	compilers	perform	 this	optimiza‐
tion	automatically;	some	interpreters	do	as	well.

A	common	technique	for	producing	a	tail-recursive	version	of	an	ordinary
recursive	function	is	to	introduce	an	extra	variable	for	accumulating	augmen‐
tation	 values.	 For	 example,	 here	 is	 a	 tail-recursive	 function	 called	 TR-
COUNT-SLICES	 that	 sets	 up	 the	 initial	 call	 to	 TR-CS1.	 TR-CS1	 uses	 an
extra	variable	N	to	hold	the	count	of	the	number	of	slices	seen	so	far.

In	 the	 trace	of	TR-COUNT-SLICES	you	will	note	 that	 the	value	of	N	in‐
creases	with	each	call.	The	terminal	call	computes	the	return	value,	four;	this
value	is	then	passed	back	unchanged	by	each	level.

Another	example	of	how	augmentation	can	be	eliminated	by	introducing	an
extra	variable	is	the	REVERSE	function.	To	reverse	a	list	of	length	n,	we	can
reverse	the	REST	of	the	list	recursively,	then	tack	the	FIRST	element	onto	the
end,	like	so:

But	 this	definition	 isn’t	 tail	 recursive.	After	 the	 recursive	call	 returns,	 the
result	is	augmented	by	APPEND.	Here	is	a	two-part,	tail-recursive	definition
of	REVERSE	 that	 uses	 an	 extra	 variable	 to	 build	 up	 the	 result	with	 (rather
than	after)	each	recursive	call.
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Not	all	recursive	functions	have	tail-recursive	versions.	Any	function	that	is
multiple	recursive,	such	as	FIB,	cannot	be	made	tail	recursive	simply	by	in‐
troducing	an	extra	variable,	since	after	the	first	recursive	call	returns	there	is
another	one	waiting	to	be	done.

EXERCISES
8.61.	Write	a	tail-recursive	version	of	COUNT-UP.

8.62.	Write	a	tail-recursive	version	of	FACT.

8.63.	Write	tail-recursive	versions	of	UNION,	INTERSECTION,	and	SET-
DIFFERENCE.	 Your	 functions	 need	 not	 return	 results	 in	 the	 same
order	as	the	built-in	functions.

8.17	WRITING	NEW	APPLICATIVE
OPERATORS
We	can	use	FUNCALL	to	 invoke	a	 function	 that	 the	user	supplies.	This	al‐
lows	us	to	write	our	own	applicative	operators.	For	example,	here	is	a	simpli‐
fied	version	of	MAPCAR	that	only	maps	over	a	single	list.
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The	function	we	supply	to	MY-MAPCAR	must	be	a	function	of	one	input,
since	that’s	how	many	inputs	it	will	be	FUNCALLed	with.

EXERCISE
8.64.	Write	a	TREE-FIND-IF	operator	that	returns	the	first	non-NIL	atom	of

a	tree	that	satisfies	a	predicate.	(TREE-FIND-IF	#’	ODDP	’	((2	4)	(5
6)	7))	should	return	5.

8.18	THE	LABELS	SPECIAL	FUNCTION
Up	to	now	we’ve	been	writing	helping	functions	as	separate	DEFUNs.	This	is
a	little	bit	sloppy,	since	if	the	helping	function	is	defined	at	top	level,	some‐
one	might	call	it	accidentally.	A	second,	more	serious	difficulty	is	that	help‐
ing	functions	defined	with	DEFUN	cannot	access	any	of	the	main	function’s
local	variables.	Both	these	problems	can	be	solved	with	LABELS.

The	LABELS	special	function	allows	us	to	establish	local	function	defini‐
tions	inside	the	body	of	the	main	function,	just	as	LET	allows	us	to	establish
local	 variables.	 The	 syntax	 of	 these	 two	 forms	 is	 similar.	 For	 LABELS,	 it
looks	like	this:

The	body	can	call	any	of	 the	 local	 functions.	The	 local	 functions	can	call
each	other,	and	can	also	reference	their	parent’s	variables.

In	the	following	example,	notice	that	COUNT-UP-RECURSIVELY	refer‐
ences	N,	the	input	to	COUNT-UP.

One	disadvantage	of	using	LABELS	is	that	in	most	Lisp	implementations,
there	is	no	way	to	trace	functions	that	are	defined	inside	a	LABELS	expres‐
sion.	But	you	can	still	use	STEP	to	step	 through	the	evaluation	manually,	 if
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necessary.

EXERCISE
8.65.	Use	LABELS	to	write	versions	of	TR-COUNT-SLICES	and	TR-RE‐

VERSE.

8.19	RECURSIVE	DATA	STRUCTURES
This	chapter	has	been	devoted	to	writing	functions	with	recursive	definitions.
Data	 structures	may	 also	 have	 recursive	 definitions.	Consider	 the	 following
definition	of	an	S-expression	(“symbolic	expression”):

An	S-expression	is	either	an	atom,	or	a	cons	cell	whose	CAR	and	CDR
parts	are	S-expressions.

The	 term	 “S-expression”	 is	 used	 inside	 its	 own	 definition.	 That	 is	 what
makes	the	definition	recursive.	S-expressions	are	instances	of	a	very	common
recursive	data	structure,	with	important	applications	in	all	areas	of	computer
science,	called	a	tree.	Here	is	another	example	of	a	tree,	this	time	represent‐
ing	an	arithmetic	expression:

The	bottom	nodes	of	the	tree	are	called	terminal	nodes	because	they	have
no	branches	descending	from	them.	The	remaining	nodes	are	called	nonter‐
minal	nodes.	A	tree	can	be	defined	recursively	just	as	S-expressions	were:

A	 tree	 is	 either	 a	 single	 terminal	 node,	 or	 a	 nonterminal	 node	 whose
branches	are	trees.

Trees	are	naturally	represented	by	lists.	The	tree	above	corresponds	to	the
list	((3	+	5)	-	(8	+	6)).	Let’s	look	at	another	arithmetic	expression	tree:
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This	 tree	 illustrates	 the	 fact	 that	 the	branches	of	a	nonterminal	node	need
not	be	of	the	same	length.	The	list	representation	of	this	tree	is	((2	+	2)	-	(3	*
(4	*	(12	/	6)))).	We	can	define	arithmetic	expressions	recursively	as:

An	 arithmetic	 expression	 is	 either	 a	 number,	 or	 a	 three-element	 list
whose	 first	 and	 third	 elements	 are	 arithmetic	 expressions	 and	 whose
middle	element	is	one	of+,	-,	*,	or	/.

EXERCISES
8.66.	Write	ARITH-EVAL,	a	function	that	evaluates	arithmetic	expressions.

(AR1TH-EVAL	\2	+	(3	*	4)))	should	return	14.

8.67.	Write	a	predicate	LEGALP	that	returns	T	if	 its	 input	 is	a	 legal	arith‐
metic	expression.	For	example,	(LEGALP	4)	and	(LEGALP’((2	*	2)	-
3))	should	return	T.	(LEGALP	NIL)	and	(LEGALP’(A	B	C	D))	should
return	NIL.

8.68.	 A	 “proper	 list”	 is	 a	 cons	 cell	 chain	 ending	 in	NIL.	 Lists	 that	 aren’t
proper	lists	are	called	dotted	lists,	because	they	must	be	written	with	a
dot.	If	we	wanted	to	define	the	concept	of	proper	list	recursively,	we
could	say	“NIL	is	a	proper	list,	and	so	is	any	cons	cell	whose....”	Fill
in	the	rest	of	the	definition.

8.69.	Of	the	positive	integers	greater	than	one,	some	are	primes	while	others
are	not.	Primes	are	numbers	that	are	divisible	only	by	themselves	and
by	1.	A	nonprime,	which	is	known	as	a	composite	number,	can	always
be	factored	into	primes.	Here	is	a	factorization	tree	for	the	number	60
that	was	obtained	by	successive	divisions	by	primes:

The	 number	 60	 has	 factors	 2,	 2,	 3,	 and	 5,	 which	 means	 60	 =
2x2x3x5.	Write	 a	 recursive	 definition	 for	 positive	 integers	 greater
than	one	in	terms	of	prime	numbers.

8.70.	Following	is	a	function	FACTORS	that	returns	the	list	of	prime	factors
of	a	number.	It	uses	the	built-in	REM	function	to	compute	the	remain‐
der	of	dividing	one	number	by	another.	(FACTORS	60)	returns	(2	2	3
5).	Try	tracing	the	helping	function	to	see	how	it	works.	Write	a	simi‐
lar	function,	FACTOR-TREE,	that	returns	a	factorization	tree	instead.
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(FACTOR-TREE	60)	should	return	the	list	(60	2	(30	2	(15	3	5))).

8.71.	The	 trees	 for	arithmetic	expressions	are	called	binary	trees,	because
each	 nonterminal	 node	 has	 exactly	 two	 branches.	 Any	 list	 can	 be
viewed	as	a	binary	tree.	Draw	a	binary	tree	representing	the	cons	cell
structure	of	the	list	(A	B	(C	D)	E).	What	are	the	terminal	nodes	of	the
tree?	What	are	the	nonterminal	nodes?

8.72.	More	general	types	of	trees	are	possible,	in	which	different	nodes	have
different	 numbers	 of	 branches.	 Pick	 some	 concept	 or	 object	 and	 de‐
scribe	it	in	terms	of	a	general	tree	structure.
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9

Input/Output

9.1	INTRODUCTION
Input/output,	or	 “i/o,”	 is	 the	way	a	computer	 communicates	with	 the	world.
Lisp’s	read-eval-print	loop	provides	a	simple	kind	of	i/o,	since	it	reads	expres‐
sions	from	the	keyboard	and	prints	the	results	on	the	display.	Sometimes	we
want	 to	do	more.	Using	 the	 i/o	 functions	described	 in	 this	 chapter,	 you	can
make	your	program	print	any	message	you	like.	You	can	even	make	it	print
out	questions	and	wait	for	the	user	to	type	responses	on	the	keyboard.

Another	use	for	i/o	functions	is	to	read	data	from	a	disk	file,	or	write	data
into	 a	 file	 so	 you	 can	 read	 it	 back	 some	 other	 day.	 It’s	 easier	 to	 do	 this	 in
Common	Lisp	than	in	most	other	languages.

Historically,	 input/output	 has	 been	 one	 of	 the	 areas	 of	 greatest	 disagree‐
ment	among	Lisp	systems.	Even	today	there	is	no	standard	window	system	in‐
terface,	 for	 example,	 and	 no	 standard	 way	 to	 control	 a	 mouse	 or	 produce
graphic	 designs.	 Each	 Lisp	 vendor	 provides	 his	 own	 tools	 for	 doing	 these
things.	Fortunately,	the	most	basic	i/o	routines	have	finally	been	standardized.
We	will	stick	to	the	basics	in	this	book.

9.2	CHARACTER	STRINGS
In	order	to	get	the	computer	to	print	informative	messages	on	the	display,	we
must	first	learn	about	character	strings.	Character	strings	(strings	for	short)
are	a	type	of	sequence;	they	are	similar	in	some	ways	to	lists,	and	are	a	sub‐
type	 of	 vectors	 (discussed	 in	 Chapter	 13),	 but	 they	 have	 a	 different	 set	 of
primitive	operations.

Strings	evaluate	to	themselves,	as	numbers	do.	Notice	in	the	following	ex‐
amples	that	strings	do	not	get	converted	to	all	uppercase	the	way	symbols	do.
Strings	 are	 not	 symbols.	The	STRINGP	predicate	 returns	T	 if	 its	 input	 is	 a
string.
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As	you	can	see,	character	strings	must	be	enclosed	in	double	quote	charac‐
ters	(“,)	which	are	not	the	same	as	the	apostrophe	(‘)	we	use	to	quote	symbols
and	lists.	Two	apostrophes	will	not	work	here;	you	must	use	the	double	quote
key	on	your	keyboard	in	order	to	type	a	string.

9.3	THE	FORMAT	FUNCTION
The	FORMAT	function	normally	 returns	NIL,	but	 as	 a	 side	effect	 it	 causes
things	 to	 be	written	on	 the	display	or	 to	 a	 file.	The	 first	 argument	 to	FOR‐
MAT	should	be	the	symbol	T	when	we	want	to	write	to	the	display.	(Different
values	are	used	when	writing	to	a	disk	file.)	The	second	argument	must	be	a
string,	called	the	format	control	string.	FORMAT	writes	the	string,	without
the	quotes,	and	then	returns	NIL.

The	 format	 control	 string	 can	 also	 contain	 special	 formatting	 directives,
which	begin	with	a	tilde,	“~,”	character.	For	example,	the	~%	directive	causes
FORMAT	to	move	to	a	new	line.	Two	~%	directives	right	next	to	each	other
result	in	a	blank	line	in	the	output.
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The	~&	directive	tells	FORMAT	to	move	to	a	new	line	unless	it	knows	it	is
already	at	the	beginning	of	a	new	line.	So	two	or	three	successive	~&	direc‐
tives	have	the	same	effect	as	a	single	one.	The	~&	directive	is	useful	because
we	don’t	always	know	where	the	cursor	will	have	been	left	when	our	function
gets	 called.	 For	 instance,	 some	 Common	 Lisp	 implementations	 require	 the
user	 to	press	carriage	 return	after	 the	 final	 right	parenthesis	when	 typing	an
expression	to	the	read-eval-print	loop,	while	other	implementations	do	not,	so
at	the	time	that	FORMAT	is	called,	the	cursor	will	be	in	a	different	place	de‐
pending	on	whether	the	user	had	to	hit	the	return	key	or	not.

In	programs	that	produce	several	lines	of	output,	it	is	good	practice	to	begin
each	format	control	string	with	~&	so	that	the	cursor	is	guaranteed	to	be	on	a
fresh	line	before	printing	each	message.

Another	important	formatting	directive	is	~S,	which	inserts	the	printed	rep‐
resentation	 of	 a	 Lisp	 object	 into	 the	message	 that	 FORMAT	prints.	 (The	 S
stands	for	“S-expression,”	or	“symbolic	expression,”	a	somewhat	archaic	term
for	 a	 Lisp	 object.)	 For	 each	 occurrence	 of	 ~S	 in	 the	 format	 control	 string,
FORMAT	requires	one	extra	argument.	In	the	following	example,	the	first	~S
is	 replaced	 by	 the	 symbol	 BOSTON,	 the	 second	 ~S	 is	 replaced	 by	 the	 list
(NEW	YORK),	and	the	third	~S	is	replaced	by	the	number	55.
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Here	is	another	example.	The	function	SQUARE-TALK	takes	a	number	as
input	and	tells	you	the	square	of	that	number.	It	does	not	return	the	square;	it
returns	NIL	because	that	is	the	result	returned	by	FORMAT.

The	result	returned	by	the	MAPCAR	is	a	list	of	NILs	because	each	call	to
SQUARE-TALK	returns	NIL.

The	 ~A	 directive	 prints	 an	 object	 without	 using	 escape	 characters.	 The
easiest	way	to	explain	this	is	to	compare	how	~A	and	~S	print	strings.	~S	in‐
cludes	 the	 quotation	marks,	whereas	~A	does	 not.	A	quotation	mark	 is	 one
kind	of	escape	character.

EXERCISES
9.1.	Write	a	function	to	print	the	following	saying	on	the	display:	“There	are

old	pilots,	and	 there	are	bold	pilots,	but	 there	are	no	old	bold	pilots.”
Your	function	should	break	up	the	quotation	into	several	lines.

9.2.	Write	a	recursive	function	DRAW-LINE	that	draws	a	line	of	a	specified
length	 by	 doing	 (FORMAT	 T	 “*”)	 the	 correct	 number	 of	 times.
(DRAW-LINE	10)	should	produce

9.3.	Write	 a	 recursive	 function	 DRAW-BOX	 that	 calls	 DRAW-LINE	 re‐
peatedly	 to	draw	a	box	of	 specified	dimensions.	 (DRAW-BOX	10	4)
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should	produce

9.4.	 Write	 a	 recursive	 function	 NINETY-NINE-BOTTLES	 that	 sings	 the
well-known	song	“Ninety-nine	Bottles	of	Beer	on	the	Wall.”	The	first
verse	of	this	song	is

NINETY-NINE-BOTTLES	 should	 take	 a	 number	 N	 as	 input	 and
start	 counting	 from	N	down	 to	zero.	 (This	 is	 so	you	can	 run	 it	on
three	bottles	 instead	of	all	ninety	nine.)	Your	 function	should	also
leave	a	blank	line	between	each	verse,	and	say	something	appropri‐
ate	when	it	runs	out	of	beer.

9.5.	 Part	 of	 any	 tic-tac-toe	 playing	 program	 is	 a	 function	 to	 display	 the
board.	Write	 a	 function	PRINT-BOARD	 that	 takes	 a	 list	 of	 nine	 ele‐
ments	 as	 input.	 Each	 element	 will	 be	 an	 X,	 an	 O,	 or	 NIL.	 PRINT-
BOARD	 should	 display	 the	 corresponding	 board.	 For	 example,
(PRINT-BOARD	’	(X	O	O	NIL	X	NIL	O	NIL	X))	should	print:

9.4	THE	READ	FUNCTION
READ	 is	 a	 function	 that	 reads	 one	 Lisp	 object	 (a	 number,	 symbol,	 list,	 or
whatever)	from	the	keyboard	and	returns	 that	object	as	 its	value.	The	object
does	not	have	to	be	quoted	because	it	will	not	be	evaluated.	By	placing	calls
to	READ	 inside	 a	 function,	we	 can	make	 the	 computer	 read	 data	 from	 the
keyboard	under	program	control.	Here	are	some	examples.	User	type-in	in	re‐
sponse	to	READ	is	underlined.
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EXERCISES
9.6.	Write	 a	 function	 to	 compute	 an	 hourly	 worker’s	 gross	 pay	 given	 an

hourly	wage	in	dollars	and	the	number	of	hours	he	or	she	worked.	Your
function	should	prompt	for	each	input	it	needs	by	printing	a	message	in
English.	It	should	display	its	answer	in	English	as	well.

9.7.	The	COOKIE-MONSTER	function	keeps	reading	data	from	the	termi‐
nal	 until	 it	 reads	 the	 symbol	 COOKIE.	Write	 COOKIE-MONSTER.
Here	is	a	sample	interaction:

9.5	THE	YES-OR-NO-P	FUNCTION
The	YES-OR-NO-P	function	 takes	a	 format	control	string	as	 input	and	asks
the	 user	 a	 yes	 or	 no	 question.	 The	 user	 must	 respond	 by	 typing	 “yes,”	 in
which	case	the	function	returns	T,	or	“no,”	in	which	case	it	returns	NIL.

278



There	is	also	a	shorter	form	of	this	function,	called	Y-OR-N-P,	that	only	re‐
quires	the	user	to	type	“y”	or	“n”	in	response.

9.6	READING	FILES	WITH	WITH-OPEN-FILE
The	WITH-OPEN-FILE	macro	provides	a	convenient	way	to	read	data	from	a
file.	Its	syntax	is:

WITH-OPEN-FILE	creates	a	local	variable	(just	like	LET)	and	sets	it	to	a
stream	object	representing	a	connection	to	that	file.	Stream	objects	are	a	spe‐
cial	Lisp	datatype	for	describing	connections	to	files.	If	you	want	to	see	one,
take	a	look	at	the	value	of	the	global	variable	*TERMINAL-IO*.	It	holds	the
stream	object	Lisp	uses	 to	 read	 from	 the	keyboard	and	write	 to	 the	display.
Here’s	what	it	looks	like	on	my	Lisp	system:

Within	the	body	of	WITH-OPEN-FILE	the	stream	object	can	be	passed	as
an	optional	argument	to	READ	to	read	data	from	the	file	instead	of	from	the
keyboard.	On	leaving	the	WITH-OPEN-FILE	form,	the	connection	to	the	file
is	closed	automatically.

Let’s	 try	 an	 example	 of	 reading	 data	 from	 a	 file.	 Suppose	 the	 file	 “tim‐
ber.dat”	in	the	directory	/usr/dst	contains	these	lines:*

We	can	read	this	data	with	the	following	program:
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9.7	WRITING	FILES	WITH	WITH-OPEN-FILE
We	can	also	use	WITH-OPEN-FILE	to	open	files	for	output	by	passing	it	the
special	keyword	argument	:DIRECTION	:OUTPUT.	The	stream	that	WITH-
OPEN-FILE	creates	can	then	be	used	in	place	of	the	usual	T	as	a	first	argu‐
ment	to	FORMAT.

If	we	write	data	to	a	file	using	just	the	~S	directive,	we	are	assured	of	being
able	 to	 read	 it	back	 in	again.	 It	 is	of	course	possible	 to	write	arbitrary	mes‐
sages	 to	 a	 file,	 containing	 strange	 punctuation,	 unbalanced	 parentheses,	 or
what	have	you,	but	we	would	not	be	able	to	read	the	file	back	into	Lisp	using
READ.	Such	a	file	might	still	be	useful,	though,	because	it	could	be	read	by
people.	If	necessary	it	could	be	read	by	Lisp	a	character	at	a	time,	using	tech‐
niques	not	covered	here.

SUMMARY
The	FORMAT	function	 takes	 two	or	more	arguments.	The	first	argument

should	 be	 T	 to	 print	 on	 the	 display;	 the	 second	 must	 be	 a	 format	 control
string.	The	remaining	arguments	are	used	to	fill	in	information	required	by	~S
directives	in	the	format	control	string.	The	~%	directive	causes	FORMAT	to
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begin	a	new	line;	the	~&	directive	begins	a	new	line	only	if	not	already	at	the
beginning	of	a	new	line.

The	READ	 function	 reads	 one	Lisp	 object	 from	 the	 terminal	 and	 returns
that	object.	The	object	does	not	have	to	be	quoted	because	it	will	not	be	eval‐
uated.	YES-OR-NO-P	and	Y-OR-N-P	print	questions	(using	a	format	control
string)	and	then	return	T	or	NIL	depending	on	the	answer	the	user	gives.

W1TH-OPEN-FILE	 opens	 a	 file	 for	 either	 input	 or	 output,	 and	 binds	 a
local	 variable	 to	 a	 stream	 object	 that	 represents	 the	 connection	 to	 that	 file.
This	stream	object	can	be	passed	to	READ	or	FORMAT	to	do	file	i/o.

REVIEW	EXERCISES
9.8.	How	are	strings	different	from	symbols?

9.9.	What	is	printed	by	each	of	the	following?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
String	predicate:	STR1NGP.

Input/output	functions:	FORMAT,	READ,	YES-OR-NO-P,	Y-OR-N-P.

Macro	for	simple	file	i/o:	WITH-OPEN-FILE.

Keyboard	Exercise
In	this	exercise	we	will	write	a	program	for	producing	a	graph	of	an	arbitrary
function.	The	program	will	prompt	 for	a	 function	name	F	and	 then	plot	y	=
F(x)	for	a	specified	range	of	x	values.	Here	is	an	example	of	how	the	program
works:
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EXERCISE
9.10.	As	you	write	each	of	the	following	functions,	test	it	by	calling	it	from

top	 level	 with	 appropriate	 inputs	 before	 proceeding	 on	 to	 the	 next
function.

a.	Write	a	recursive	function	SPACE-OVER	that	takes	a	number	N	as
input	and	moves	the	cursor	to	the	right	by	printing	N	spaces,	one	at
a	 time.	 SPACE	 should	 print	 “Error!”	 if	 N	 is	 negative.	 Test	 it	 by
using	the	function	TEST.	Try	(TEST	5)	and	(TEST	-	5).

b.	Write	a	function	PLOT-ONE-POINT	that	takes	two	inputs,	PLOT‐
TING-STRING	and	Y-VAL,	prints	PLOTTING-STRING	(without
the	quotes)	in	column	Y-VAL,	and	then	moves	to	a	new	line.	The
leftmost	column	is	numbered	zero.

c.	Write	a	 function	PLOT-POINTS	that	 takes	a	string	and	a	 list	of	y
values	as	input	and	plots	them.	(PLOT-POINTS	“<	>“	‘(4	6	8	10	8
6	4))	should	print
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d.	Write	a	function	GENERATE	that	takes	two	numbers	M	and	N	as
input	and	returns	a	list	of	the	integers	from	M	to	N.	(GENERATE
-3	3)	should	return	(-3-2-10	12	3).

e.	 Write	 the	 MAKE-GRAPH	 function.	 MAKE-GRAPH	 should
prompt	 for	 the	values	of	FUNC,	START,	END,	and	PLOTTING-
STRING,	and	then	graph	the	function.	Note:	You	can	pass	FUNC
as	 an	 input	 to	MAPCAR	 to	 generate	 the	 list	 of	 y	 values	 for	 the
function.	What	will	the	second	input	to	MAPCAR	be?

f.	Define	 the	SQUARE	function	and	graph	 it	over	 the	range	-7	 to	7.
Use	your	first	name	as	the	plotting	symbol.

Lisp	Toolkit:	DRIBBLE
The	DRIBBLE	function	records	part	of	a	Lisp	session	in	a	file.	This	is	useful
if	you	want	to	make	a	printout	of	an	interactive	session	to	show	to	someone
else.	Given	a	file	name	as	an	argument,	DRIBBLE	opens	that	file	for	output
and	starts	recording.	If	called	with	no	arguments,	it	closes	the	file	in	which	it
was	recording.	Here	is	an	example:

The	file	“sessionl.log”	now	contains	the	following:
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9	Advanced	Topics

9.8	PARAMETERS	TO	FORMAT	DIRECTIVES
Some	format	directives	accept	prefix	parameters	that	further	specify	their	be‐
havior.	Prefix	parameters	appear	between	the	~	and	the	directive.	For	exam‐
ple,	 the	~S	directive	 accepts	 a	width	 parameter.	By	using	an	explicit	width,
like	~10S,	we	can	produce	columnar	output.

9.9	ADDITIONAL	FORMAT	DIRECTIVES
The	~D	directive	prints	an	integer	in	decimal	notation	(that	is,	base	10).	It	is
also	possible	to	print	numbers	in	other	bases,	and	even	in	roman	numerals,	but
we	won’t	get	into	that	here.	The	~F	directive	prints	floating	point	numbers	in
a	fixed-format	notation	that	always	includes	a	decimal	point.	All	of	these	di‐
rectives	take	prefix	parameters.	The	first	prefix	parameter	is	used	to	specify	a
fixed	width	for	the	output:	how	many	characters	it	should	take	up.	(Lisp	will
pad	the	output	with	blanks	if	necessary.)	We	will	consider	just	one	other	pre‐
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fix	 parameter.	With	 the	 ~F	 directive,	 the	 second	 prefix	 parameter	 specifies
how	many	 digits	 are	 to	 appear	 after	 the	 decimal	 point.	 For	 example,	 ~7,5F
specifies	a	seven	character	field,	with	five	digits	appearing	after	the	decimal
point:

9.10	THE	LISP	1.5	OUTPUT	PRIMITIVES
The	primitive	i/o	functions	TERPRI,	PRIM,	PRINC,	and	PRINT	were	defined
in	Lisp	 1.5	 (the	 ancestor	 of	 all	modem	Lisp	 systems)	 and	 are	 still	 found	 in
Common	Lisp	today.	They	are	included	in	the	Advanced	Topics	section	as	a
historical	note;	you	can	get	 the	same	effect	with	FORMAT.	TERPRI	stands
for	terminate	print.	It	moves	the	cursor	to	a	new	line.	PRIN1	and	PRINC	take
a	Lisp	 object	 as	 input	 and	 print	 it	 on	 the	 terminal.	 PRIN1	 prints	 the	 object
with	whatever	 escape	 characters	 are	 necessary	 to	 assure	 that	 it	 can	 be	 read
back	in	with	READ;	PRINC	prints	the	object	without	escape	characters.	Basi‐
cally,	the	~S	format	directive	works	like	PRIN1,	and	the	~A	directive	works
like	PRINC.	Both	PRIN1	and	PRINC	return	their	first	argument.

The	PRINT	function	 is	a	combination	of	 the	preceding	 three	 functions.	 It
goes	 to	 a	 newline	with	 TERPRI,	 prints	 its	 argument	with	 PRIN1,	 and	 then
prints	a	space	with	PRINC.	A	simple	version	of	PRINT	could	be	defined	as
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follows:

TERPRI,	PRIN1,	and	PRTNC	accept	an	optional	stream	argument	just	like
READ;	this	allows	them	to	be	used	for	file	i/o.

9.11	HANDLING	END-OF-FILE	CONDITIONS
Sometimes	 it’s	 necessary	 to	 read	 a	 file	 without	 knowing	 in	 advance	 how
many	objects	it	contains.	When	your	program	gets	to	the	end	of	the	file,	the
next	READ	will	generate	an	end-of-file	error,	and	you’ll	end	up	 in	 the	de‐
bugger.	It	is	possible	to	tell	READ	to	return	a	special	value,	called	an	eof	in‐
dicator,	instead	of	generating	an	error	on	end	of	file.	We	do	this	by	supplying
two	extra	arguments	to	READ:	a	NIL	(meaning	don’t	generate	an	error),	and
the	value	we	want	to	use	as	the	eof	indicator.	We	must	be	careful	what	value
we	choose	for	this.	If	we	used	something	common,	like	the	symbol	FOO,	then
if	the	file	actually	contains	a	FOO,	our	program	will	be	fooled	into	thinking	it
has	reached	the	end.	Therefore,	a	good	choice	for	an	eof	indicator	is	a	freshly
generated	cons	cell.	We	will	use	EQ	rather	than	EQUAL	to	make	sure	that	ex‐
actly	that	cons	cell	is	returned.

Here	is	an	example	of	a	program	that	reads	an	arbitrary	file	of	Lisp	objects,
tells	how	many	objects	were	read,	and	returns	a	list	of	them.	It	uses	the	cons
cell	 ($EOF$)	as	 its	 special	end-of-file	value,	but	any	 freshly	generated	cons
cell	will	do,	since	only	the	cell’s	address	is	important,	not	its	contents.
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Suppose	our	sample	file	contains	the	following	lines:

The	program	would	produce	the	following	result:

9.12	PRINTING	IN	DOT	NOTATION
Dot	notation	is	a	variant	of	cons	cell	notation.	In	dot	notation	each	cons	cell	is
displayed	 as	 a	 left	 parenthesis,	 the	 car	 part,	 a	 dot,	 the	 cdr	 part,	 and	 a	 right
parenthesis.	The	car	and	cdr	parts,	if	lists,	are	themselves	displayed	in	dot	no‐
tation,	making	 this	a	 recursive	definition.	For	example,	 the	 list	 (A)	 is	 repre‐
sented	by	a	single	cons	cell	whose	car	is	the	symbol	A	and	whose	cdr	is	NIL.
In	dot	notation	this	list	is	written	(A	.	NIL).	Here	are	some	more	examples	of
dot	notation:
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EXERCISES
9.11.	Write	a	function	DOT-PRIN1	that	takes	a	list	as	input	and	prints	it	in

dot	notation.	DOT-PRIN1	will	print	parentheses	by	(FORMAT	T	“(“)
and	(FORMAT	T	“)”),	and	dots	by	(FORMAT	T	“	.	”),	and	will	call	it‐
self	 recursively	 to	 print	 lists	 within	 lists.	 DOT-PRIN1	 should	 return
NIL	as	its	result.	Try	(DOT-PRIN1’(A	(B)	C))	and	see	if	your	output
matches	 the	 result	 in	 the	 table	 above.	 Then	 try	 (DOT-
PRIN1’((((A))))).

9.12.	Lisp	can	also	read	 lists	 in	dot	notation.	Try	 (DOT-PRIN1	 ’(A	 .	 (B	 .
C))).	Be	sure	to	type	a	space	before	and	after	each	dot.

9.13.	 If	you	type	in	 the	quoted	list	’	(A	.	NIL),	Lisp	types	back	(A).	What
happens	when	you	type	’(A	.	B)?

9.14.	Consider	the	following	two	circular	list	structures,	each	composed	of	a
single	 cons	 cell.	 What	 will	 be	 the	 behavior	 of	 DOT-PRIN1	 if	 it	 is
given	the	first	structure	as	 input?	What	will	 it	do	 if	given	the	second
structure	as	input?

9.13	HYBRID	NOTATION
Lisp	normally	prints	things	in	list	notation,	not	dot	notation.	But	as	we	have
seen,	some	cons	cell	structures	such	as	(A	.	B)	cannot	be	written	without	dots.
Lisp’s	policy	is	to	print	dots	only	when	necessary.	It	never	prints	a	dot	unless
the	cons	cell	chain	ends	in	a	non-NIL	atom.	Its	output	is	thus	a	hybrid	of	pure
list	and	pure	dot	notations,	called	hybrid	notation.	Here	are	some	examples
of	the	differences	between	pure	dot	notation	and	hybrid	notation:
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EXERCISE
9.15.	 Write	 HYBRID-PRIN1.	 Here	 is	 how	 the	 function	 should	 decide

whether	 to	print	a	dot	or	not.	 If	 the	cdr	part	of	 the	cons	cell	 is	a	 list,
HYBRID-PRIN1	continues	 to	print	 in	 list	 notation.	 If	 the	 cdr	 part	 is
NIL,	HYBRID-PRIN1	should	print	a	right	parenthesis.	If	the	cdr	part
is	something	else,	such	as	a	symbol,	HYBRTD-PRTN1	should	print	a
dot,	the	symbol,	and	a	right	parenthesis.	You	will	probably	find	it	use‐
ful	to	define	a	subfunction	to	print	cdrs	of	lists,	as	these	always	begin
with	 a	 space,	whereas	 the	 cars	 always	 begin	with	 a	 left	 parenthesis.
Test	your	function	on	the	examples	in	the	preceding	table.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
Lisp	1.5	output	primitives:	TERPR1,	PR1N1,	PR1NC,	PRINT.

*Common	Lisp	understands	file	names	using	whatever	syntax	is	appropriate	to	the	machine	on	which
the	Lisp	is	running.	On	Unix	machines,	the	pathname	/usr/dst/timber.dat	is	interpreted	as	file	timber.dat
in	directory	/usr/dst.

289



10

Assignment

10.1	INTRODUCTION
We	saw	 in	Chapter	5	 that	 the	SETF	macro	changes	 the	value	of	a	variable;
this	is	called	assignment.	We	have	avoided	assignment	as	much	as	possible	in
this	book,	using	 it	only	at	 the	 top-level	 read-eval-print	 loop	 to	set	up	global
variables.	We	have	not	yet	learned	to	use	SETF	inside	of	functions.

There	are	good	reasons	to	avoid	assignment	when	first	learning	to	program.
Assignment	is	easily	misused,	leading	to	functions	that	are	hard	to	understand
and	debug.	If	your	first	programming	language	was	BASIC,	Pascal,	Modula,
or	C,	 all	 of	which	 are	 heavily	 dependent	 on	 assignment,	 you	might	 be	 sur‐
prised	to	see	how	many	interesting	Lisp	programs	don’t	use	assignment	at	all.
Lisp	provides	a	richer	set	of	control	structures	than	those	languages	(such	as
LET,	and	the	applicative	operators),	which	often	makes	assignment	unneces‐
sary.

There	are,	however,	occasions	where	it	is	appropriate	to	use	assignment	in
Lisp.	This	chapter	introduces	some	standard	techniques	for	programming	with
assignment,	and	some	useful	built-in	assignment	forms	in	addition	to	SETF.
Assignment	 is	 frequently	 used	 in	 combination	 with	 iterative	 control	 struc‐
tures,	which	are	discussed	in	the	following	chapter.

10.2	UPDATING	A	GLOBAL	VARIABLE
Suppose	we	 are	 operating	 a	 lemonade	 stand,	 and	we	want	 to	 keep	 track	 of
how	many	glasses	have	been	sold	so	far.	We	keep	the	number	of	glasses	sold
in	 a	 global	 variable,	 *TOTAL-GLASSES*,	which	we	will	 initialize	 to	 zero
this	way:

There	 is	 a	 convention	 in	Common	Lisp	 that	global	variables	 should	have
names	that	begin	and	end	with	an	asterisk.*	It’s	permissible	to	ignore	the	as‐
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terisk	convention	when	performing	some	quick	calculations	with	global	vari‐
ables	at	 top	 level,	but	when	you	write	a	program	 to	manipulate	global	vari‐
ables,	you	should	adhere	to	it.	Therefore,	we’ll	call	our	global	variable	*TO‐
TAL-GLASSES*.

Now,	every	time	we	sell	some	lemonade,	we	have	to	update	this	variable.
We	also	want	to	report	back	how	many	glasses	have	been	sold	so	far.	Here	is
a	function	to	do	that:

Notice	 that	 the	 SELL	 function	 contains	 two	 forms	 in	 its	 body.	 The	 first
form	 updates	 the	 variable	 *TOTAL-GLASSES*.	 The	 second	 form	 prints	 a
message	 about	how	many	glasses	have	been	 sold	 so	 far.	SELL	 returns	NIL
because	that	is	the	result	returned	by	FORMAT.

EXERCISE
10.1.	Suppose	we	had	forgotten	to	set	*TOTAL-GLASSES*	to	zero	before

calling	SELL	for	the	first	time.	What	would	happen?	Suppose	we	had
initialized	 *TOTAL-GLASSES*	 to	 the	 symbol	 FOO	 instead	 of	 to
zero.	When	would	the	error	become	apparent?

10.3	STEREOTYPICAL	UPDATING	METHODS
SETF	can	 assign	 any	value	 to	 any	variable.	A	very	 common	use	of	 assign‐
ment	is	to	update	a	variable,	in	other	words,	the	variable’s	old	value	is	used	to
compute	what	its	new	value	should	be.	The	lemonade	stand	is	a	typical	exam‐
ple	of	updating	a	variable.	Many,	perhaps	most	uses	of	assignment	are	of	this
form.	Common	Lisp	provides	built-in	macros	 for	 expressing	 the	most	 com‐
mon	update	cases	more	concisely	 than	with	SETF.	We	will	consider	 two	of
these:	updating	a	counter	by	incrementing	or	decrementing	it,	and	updating	a
list	by	adding	or	deleting	an	element	at	the	front.
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10.3.1	The	INCF	and	DECF	Macros
Instead	of	incrementing	a	numeric	variable	by	writing,	say,	(SETF	A	(+	A	5)),
you	can	write	 (INCF	A	5).	 INCF	and	DECF	are	 special	 assignment	macros
for	 incrementing	 and	 decrementing	 variables.	 If	 the	 increment/decrement
value	is	omitted,	it	defaults	to	one.

EXERCISE
10.2.	 Rewrite	 the	 lemonade	 stand	 SELL	 function	 to	 use	 INCF	 instead	 of

SETF.

10.3.2	The	PUSH	and	POP	Macros
When	adding	an	element	to	a	list	by	consing	it	onto	the	front,	such	as	(SETF
X	 (CONS’FOO	X)),	 you	can	express	your	 intent	more	 elegantly	by	writing
(PUSH’FOO	X).	 The	 name	 “push”	 comes	 from	 classical	 computer	 science
terminology	for	pushdown	stacks,	or	“stacks”	for	short.	A	stack	is	analogous
to	a	spring-loaded	stack	of	dishes	in	a	cafeteria.	When	you	push	a	dish	onto
the	 stack,	 it	 becomes	 the	new	 topmost	 element.	When	you	pop	 the	 topmost
dish	off	of	the	stack,	the	dish	below	becomes	the	new	topmost	element.	Let’s
try	using	PUSH	to	build	a	stack	of	dishes:

DISH3	is	now	at	 the	 top	of	 the	stack.	 (Reading	a	 list	 from	left	 to	 right	 is
like	reading	a	stack	from	top	to	bottom.)	Since	each	call	to	PUSH	results	in	an
assignment,	 the	variable	MYSTACK	will	 always	be	updated	 to	point	 to	 the
newest	cons	cell,	at	the	head	of	the	list.	When	we	start	popping	dishes	off	the
stack,	the	first	dish	to	come	off	will	be	DISH3.	Lisp	provides	a	POP	macro	to
update	a	variable	by	setting	 it	 to	 the	REST	of	 the	 list	 to	which	 it	was	origi‐
nally	pointing.
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Notice	that	the	result	POP	returns	is	the	element	that	was	formerly	the	top
of	the	stack.	That	element	is	popped	off	the	stack	as	a	side	effect.	The	follow‐
ing	two	forms	are	equivalent:

The	LET	expression	first	remembers	the	top	of	the	stack	in	the	local	vari‐
able	TOP-ELEMENT.	Then	 in	 the	 body	 it	 pops	 the	 stack	 by	 setting	MYS‐
TACK	 to	 (REST	 MYSTACK).	 Finally	 it	 returns	 the	 value	 of	 TOP-ELE‐
MENT,	which	is	the	element	it	just	popped.

PUSH	and	POP	should	really	be	called	PUSHF	and	POPF	for	consistency
with	the	other	assignment	forms.	Their	names	don’t	end	in	“F”	for	historical
reasons:	 They	were	 invented	 before	 SETF,	 and	 hence,	 before	 there	was	 an
“F”	convention.	By	the	way,	the	name	SETF	stands	for	“set	field.”

Here	is	an	example	of	programming	with	PUSH:
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EXERCISES
10.3.	Modify	the	MEET	function	to	keep	a	count	of	how	many	people	have

been	met	more	than	once.	Store	this	count	in	a	global	variable.

10.4.	 Write	 a	 function	 FORGET	 that	 removes	 a	 person	 from	 the	 *FR‐
TENDS*	 list.	 If	 the	 person	 wasn’t	 on	 the	 list	 in	 the	 first	 place,	 the
function	should	complain.

10.3.3	Updating	Local	Variables
Assignment	 should	 not	 be	 used	 indiscriminately.	 For	 example,	 it	 is	 usually
considered	inelegant	 to	change	the	value	of	a	 local	variable;	one	should	just
bind	a	new	local	variable	with	LET	instead.	(There	are	exceptions,	of	course.)
It	is	even	less	elegant	to	modify	a	variable	that	appears	in	a	function’s	argu‐
ment	list;	doing	this	makes	the	function	hard	to	understand.	Consider	the	fol‐
lowing	code	written	in	very	bad	style:
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This	code	can	be	cleaned	up	by	introducing	some	extra	variables	and	replac‐
ing	the	DECF	expressions	with	a	LET*	form,	which	binds	variables	sequen‐
tially	(page	144).	When	all	assignments	have	been	eliminated,	we	are	assured
that	 the	 value	 of	 a	 variable	will	 never	 change	 once	 it	 is	 created.	 Programs
written	in	this	assignment-free	style	are	easy	to	understand,	and	very	elegant.

There	are	some	occasions	when	 it	 is	more	convenient	 to	assign	 to	a	 local
variable	 instead	 of	 LET-binding	 it.	 The	 following	 is	 an	 example.	Note	 that
each	variable	is	bound	to	NIL	initially,	and	then	is	assigned	a	new	value	just
once.	This	form	of	“disciplined”	assignment	is	not	bad	style;	it	is	quite	differ‐
ent	from	the	assignment	occurring	in	the	BAD-STYLE	function.

295



10.4	WHEN	AND	UNLESS
WHEN	and	UNLESS	are	conditional	forms	that	are	useful	when	you	need	to
evaluate	more	than	one	expression	when	a	test	is	true.	Their	syntax	is:

WHEN	first	evaluates	the	test	form.	If	the	result	is	NIL,	WHEN	just	returns
NIL.	If	the	result	is	non-NIL,	WHEN	evaluates	the	forms	in	its	body	and	re‐
turns	 the	 value	 of	 the	 last	 one.	 UNLESS	 is	 similar,	 except	 it	 evaluates	 the
forms	in	its	body	only	if	the	test	is	false.	For	both	of	these	conditionals,	when
the	 forms	 in	 the	 body	 are	 evaluated,	 the	 value	 of	 the	 last	 one	 is	 returned.
Forms	prior	to	the	last	one	are	only	useful	for	side	effects,	such	as	i/o	or	as‐
signment.

The	 only	 advantages	 of	WHEN	 and	 UNLESS	 over	 COND	 are	 stylistic.
They	have	a	simpler	and	somewhat	more	pleasant	syntax,	and	they	need	less
indentation	because	their	bodies	are	indented	only	two	spaces.	Here	is	an	ex‐
ample	of	how	WHEN	and	UNLESS	can	be	useful.	Suppose	we	want	to	write
a	function	that	takes	two	numbers	as	input	and	multiplies	them.	Suppose	this
function	 requires	 that	 its	 first	 input	 be	 odd	 and	 its	 second	 input	 even.	 If	 an
input	 is	of	 the	wrong	sort,	 the	function	can	“fix”	it	by	adding	or	subtracting
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one	and	printing	a	suitable	warning	message.

10.5	GENERALIZED	VARIABLES
A	generalized	 variable	 is	 any	 place	 a	 pointer	may	 be	 stored.	An	 ordinary
variable	 like	 X	 or	 N	 contains	 a	 pointer	 to	 the	 object	 that	 is	 its	 value.	 But
pointers	can	also	be	stored	in	other	sorts	of	places,	such	as	the	car	or	cdr	half
of	 a	 cons	 cell.	 Assignment	 means	 replacing	 one	 pointer	 with	 another.	 So
when	we	say	the	value	of	N	is	three,	what	we	mean	is	that	the	variable	named
N	holds	a	pointer	to	the	number	three.	An	expression	like	(INCF	N)	replaces
that	pointer	with	a	pointer	to	the	number	four.

The	assignment	macros	we	covered	 in	 this	chapter	can	assign	 to	general‐
ized	variables,	meaning	they	can	store	pointers	in	many	different	places.	The
first	argument	to	SETF,	INCF,	DECF,	PUSH,	or	POP	is	treated	as	a	place	de‐
scription.	Consider	this	example:
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As	you	can	see,	SETF	and	related	forms	can	accept	place	descriptions	like
(FOURTH	X),	 and	 store	new	pointers	 in	 those	places.	For	 instance,	 the	ex‐
pression	 (FOURTH	X)	 specifies	 a	pointer	 that	 lives	 in	 the	car	of	 the	 fourth
cons	cell	in	the	chain	pointed	to	by	X.	This	place	can	also	be	called	the	CAR
of	the	CDDDR	of	X,	as	shown	below:

10.6	CASE	STUDY:	A	TIC-TAC-TOE	PLAYER
In	this	section	we	will	write	our	first	large	program:	a	program	that	not	only
plays	tic-tac-toe,	but	also	explains	the	strategy	behind	each	move.	When	writ‐
ing	a	program	this	complex,	it	pays	to	take	a	few	minutes	at	the	outset	to	think
about	 the	 overall	 design,	 particularly	 the	 data	 structures	 that	 will	 be	 used.
Let’s	start	by	developing	a	representation	for	the	board.	We	will	number	the
squares	on	the	tic-tac-toe	board	this	way:

We	will	 represent	a	board	as	a	 list	consisting	of	 the	symbol	BOARD	fol‐
lowed	 by	 nine	 numbers	 that	 describe	 the	 contents	 of	 each	 position.	A	 zero
means	the	position	is	empty;	a	one	means	it	is	filled	by	an	O;	a	ten	means	it	is
filled	by	an	X.	The	function	MAKE-BOARD	creates	a	new	tic-tac-toe	board:
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Notice	that	if	B	is	a	variable	holding	a	tic-tac-toe	board,	position	one	of	the
board	can	be	accessed	by	writing	(NTH	1	B),	position	two	by	(NTH	2	B),	and
so	on.	(NTH	0	B)	returns	the	symbol	BOARD.

Now	let’s	write	functions	to	print	out	the	board.	CONVERT-TO-LETTER
converts	a	zero,	one,	or	ten	to	a	space,	an	O,	or	an	X,	respectively.	It	is	called
by	PRINT-ROW,	which	prints	out	one	row	of	the	board.	PRINT-ROW	is	in
turn	called	by	PRINT-BOARD.

We	can	make	a	move	by	destructively	changing	one	of	the	board	positions
from	 a	 zero	 to	 a	 one	 (for	 O)	 or	 a	 ten	 (for	 X).	 The	 variable	 PLAYER	 in
MAKE-MOVE	will	be	either	one	or	ten,	depending	on	who’s	moving.
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Let’s	make	 a	 sample	 board	 to	 test	 out	 these	 functions	 before	 proceeding
further.	We’ll	 define	 variables	 *COMPUTER*	 and	 *OPPONENT*	 to	 hold
the	values	ten	and	one	(X	and	O),	respectively,	because	this	will	make	the	ex‐
ample	clearer.

For	the	program	to	select	the	best	move,	it	must	have	some	way	of	analyz‐
ing	the	board	configuration.	This	is	easy	for	tic-tac-toe.	There	are	only	eight
ways	to	make	three-in-a-row:	three	horizontally,	three	vertically,	and	two	di‐
agonally.	We’ll	call	each	of	these	combinations	a	“triplet.”	We’ll	store	a	list
of	all	eight	triplets	in	a	global	variable	*	TRIPLETS*.

Now	we	can	write	a	SUM-TRIPLET	function	to	return	the	sum	of	the	num‐
bers	in	the	board	positions	specified	by	that	triplet.	For	example,	the	right	di‐
agonal	triplet	is	(3	5	7).	The	sum	of	elements	three,	five,	and	seven	of	board	B
is	eleven,	 indicating	 that	 there	 is	one	O,	one	X,	and	one	blank	(in	some	un‐
specified	 order)	 on	 that	 diagonal.	 If	 the	 sum	 had	 been	 twenty-one,	 there
would	be	two	Xs	and	one	O;	a	sum	of	twelve	would	indicate	one	X	and	two
Os,	and	so	on.
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To	 fully	 analyze	 a	 board	 we	 have	 to	 look	 at	 all	 the	 sums.	 The	 function
COMPUTE-SUMS	returns	a	list	of	all	eight	sums.

Notice	that	if	player	O	ever	gets	three	in	a	row,	one	of	the	eight	sums	will
be	three.	Similarly,	if	player	X	manages	to	get	three	in	a	row,	one	of	the	eight
sums	will	be	30.	We	can	write	a	predicate	to	check	for	this	condition:

We’ll	 return	 to	 the	 subject	 of	 board	 analysis	 later.	 Let’s	 look	 now	 at	 the
basic	framework	for	playing	the	game.	The	function	PLAY-ONE-GAME	of‐
fers	the	user	the	choice	to	go	first,	and	then	calls	either	COMPUTER-MOVE
or	OPPONENT-MOVE	as	appropriate,	passing	a	new,	empty	board	as	input.

The	OPPONENT-MOVE	function	asks	the	opponent	to	type	in	a	move	and
checks	 that	 the	 move	 is	 legal.	 It	 then	 updates	 the	 board	 and	 calls	 COM‐
PUTER-MOVE.	 But	 there	 are	 two	 special	 cases	 where	 we	 should	 not	 call
COMPUTER-MOVE.	First,	 if	 the	opponent’s	move	makes	a	 three-in-a-row,
the	 opponent	 has	won	 and	 the	 game	 is	 over.	 Second,	 if	 there	 are	 no	 empty
spaces	left	on	the	board,	the	game	has	ended	in	a	tie.	We	assume	that	the	op‐
ponent	is	O	and	the	computer	is	X.
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A	legal	move	is	an	integer	between	one	and	nine	such	that	the	correspond‐
ing	 board	 position	 is	 empty.	 READ-A-LEGAL-MOVE	 reads	 a	 Lisp	 object
and	checks	whether	it’s	a	legal	move	using	the	<=	(less	than	or	equal)	com‐
parison	predicate.	If	not,	the	function	calls	itself	to	read	another	move.	Notice
that	 the	first	 two	COND	clauses	each	contain	a	 test	and	two	consequents.	 If
the	test	is	true,	both	consequents	are	evaluated,	and	the	value	of	the	last	one
(the	recursive	call)	is	returned.

The	BOARD-FULL-P	predicate	is	called	by	OPPONENT-MOVE	to	test	if
there	are	no	more	empty	spaces	left	on	the	board:

The	COMPUTER-MOVE	function	 is	 similar	 to	OPPONENT-MOVE,	ex‐
cept	the	player	is	X	instead	of	O,	and	instead	of	reading	a	move	from	the	key‐
board,	we	will	 call	 CHOOSE-BEST-MOVE.	 This	 function	 returns	 a	 list	 of
two	elements.	The	 first	 element	 is	 the	position	 in	which	 to	place	an	X.	The
second	element	is	a	string	explaining	the	strategy	behind	the	move.
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Now	 we’re	 almost	 ready	 to	 play	 our	 first	 game.	 Our	 first	 version	 of
CHOOSE-BEST-MOVE	will	 have	 only	 one	 strategy:	 Pick	 a	 legal	move	 at
random.	 The	 function	 RANDOM-MOVE-STRATEGY	 returns	 a	 list	 whose
first	element	is	the	move,	and	whose	second	element	is	a	string	explaining	the
strategy	 behind	 the	 move.	 The	 function	 PICK-RANDOM-EMPTY-	 POSI‐
TION	 picks	 a	 random	 number	 from	 one	 to	 nine.	 If	 that	 board	 position	 is
empty,	it	returns	that	move.	Otherwise,	it	calls	itself	recursively	to	try	another
random	number.

You	 can	 try	 playing	 a	 few	 games	 with	 the	 program	 to	 see	 how	 it	 feels.
Pretty	soon	you’ll	notice	that	the	random	move	strategy	isn’t	very	good	near
the	end	of	the	game;	sometimes	it	causes	the	program	to	make	moves	that	are
downwright	stupid.	Consider	this	example:
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The	computer	already	had	two	in	a	row;	it	could	have	won	by	putting	an	X
in	position	three.	But	instead	it	picked	a	move	at	random	and	ended	up	putting
an	X	 in	 position	 four,	which	did	 no	good	 at	 all	 because	 that	 vertical	 triplet
was	already	blocked	by	the	O	at	position	seven.

To	make	our	program	smarter,	we	can	program	it	to	look	for	two-in-a-row
situations.	If	there	are	two	Xs	in	a	row,	it	should	fill	in	the	third	X	to	win	the
game.	Otherwise,	 if	 there	 are	 two	Os	 in	 a	 row,	 it	 should	 put	 an	X	 there	 to
block	the	opponent	from	winning.
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Both	MAKE-THREE-IN-A-ROW	and	BLOCK-OPPONENT	return	NIL	if
they	cannot	find	a	move	that	fits	their	respective	strategies.	Now	we	need	to
revise	CHOOSE-BEST-MOVE	to	prefer	 these	 two	more	clever	strategies	 to
the	random	move	strategy.	We	introduce	an	OR	into	the	body	of	CHOOSE-
BEST-MOVE	so	that	it	will	try	its	strategies	one	at	a	time	until	one	of	them
returns	a	non-NIL	move.

This	new	strategy	makes	 for	 a	more	 interesting	game.	The	computer	will
defend	itself	when	it	is	obvious	the	opponent	is	about	to	win,	and	it	will	take
advantage	of	the	opportunity	to	win	when	it	has	two	in	a	row.
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SUMMARY
The	SETF	macro	can	assign	any	value	to	any	variable.	“Updating”	a	variable
means	 computing	 its	 new	 value	 based	 on	 its	 old	 value.	 Two	 stereotypical
forms	of	updating	are	 incrementing	or	decrementing	a	numeric	variable	(for
which	 INCF	 and	DECF	may	 be	 used),	 and	 adding	 or	 removing	 an	 element
from	the	front	of	a	list	(for	which	PUSH	and	POP	may	be	used.)	Most	updates
are	performed	on	global	variables.	Changing	 the	value	of	a	 local	variable	 is
usually	considered	bad	programming	style;	it	is	better	to	bind	a	new	variable
with	LET	instead.

A	generalized	variable	is	any	place	a	pointer	may	be	stored.	All	of	the	as‐
signment	macros	 discussed	 in	 this	 chapter	 operate	 on	generalized	variables,
not	just	ordinary	variables.

Assignment	is	used	only	sparingly	in	Lisp	programs.	LET,	applicative	op‐
erators,	 and	 efficient	 tail-recursive	 functions,	 which	 most	 other	 languages
lack,	make	assignment	unnecessary	in	many	cases.	Assignment-free	programs
are	considered	very	elegant.
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REVIEW	EXERCISES
10.5.	Rewrite	the	following	ugly	function	to	use	good	Lisp	style.

10.6.	Suppose	the	variable	X	is	NIL.	What	will	its	value	be	after	evaluating
(PUSH	X	X)	three	times?

10.7.	What	is	wrong	with	the	expression	(SETF	(LENGTH	X)	3)?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Generalized	assignment	macros:	SETF,	INCF,	DECF,	PUSH,	POP.

Conditionals:	WHEN,	UNLESS.

Lisp	Toolkit:	BREAK	and	ERROR
The	BREAK	and	ERROR	functions	are	useful	for	debugging,	and	for	making
programs	more	 resistant	 to	 bugs.	 BREAK	was	 introduced	 in	 the	Chapter	 8
toolkit	section,	but	its	full	capabilities	were	not	presented	there.	Both	BREAK
and	ERROR	take	a	format	control	string	as	their	first	argument.	Additional	ar‐
guments,	if	any,	are	used	as	arguments	to	the	format	directives	such	as	~S	that
appear	in	the	control	string.

BREAK	prints	out	the	message	generated	by	the	format	control	string,	and
then	causes	Lisp	to	enter	the	debugger.	After	you	are	done	using	the	debug‐
ger,	you	can	continue	executing	your	program	where	 it	 left	off	by	 issuing	a
debugger	 command	 called	 something	 like	 GO,	 PROCEED,	 or	 RESTART.
(Debuggers	 are	 notoriously	 implementation	 dependent,	 so	 the	 precise	 com‐
mand	to	use	depends	on	which	brand	of	Lisp	you’re	running.)	The	BREAK
function	returns	NIL,	and	evaluation	proceeds	with	the	next	form.

Here’s	an	example	of	using	BREAK	to	debug	a	function.	This	function	is
supposed	 to	 take	 a	 selling	 price	 and	 a	 commission	 rate	 as	 input,	 figure	 the
commission	on	the	sale,	print	out	a	message,	and	then	return	either	RICH	or
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POOR	depending	on	whether	 the	 commission	was	greater	 than	100	dollars.
Sometimes,	though,	it	returns	NIL.	This	is	a	bug.

To	debug	the	function,	we	begin	by	inserting	a	call	to	BREAK	in	the	body.
Then	we	can	use	the	debugger	to	examine	the	control	stack	and	check	the	val‐
ues	of	local	variables.

Now	 the	 cause	 of	 the	 error	 is	 apparent:	When	 the	 commission	 is	 exactly
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equal	to	100,	neither	COND	clause	has	a	true	test,	so	COND	returns	NIL.	The
solution	is	to	replace	the	second	test	expression	with	T.

The	ERROR	function	takes	the	same	arguments	as	BREAK:	a	format	con‐
trol	string	followed	by	some	optional	arguments	whose	values	will	be	printed
by	the	format	directives.	One	difference	between	ERROR	and	BREAK	is	that
ERROR	 never	 returns:	 You	 can	 never	 continue	 from	 an	 ERROR.	 Second,
ERROR	merely	reports	the	error	and	stops	the	program,	it	doesn’t	necessarily
put	you	into	the	debugger,	although	in	most	implementations	it	will.

Programs	can	be	made	more	resistant	to	bugs	by	inserting	“sanity	checks”:
expressions	that	check	to	make	sure	everything	is	normal,	and	call	ERROR	if
something	 is	 wrong.	 For	 example,	 this	 version	 of	 the	 AVERAGE	 function
checks	to	make	sure	its	inputs	are	both	numbers:

Common	Lisp	provides	several	other	functions	for	reporting	errors.	WARN
prints	a	warning	message	but	does	not	stop	the	program	from	running.	CER‐
ROR	signals	a	“continuable	error.”	The	user	is	told	of	the	error	and	given	the
option	 to	 continue	 execution.	 These	 functions,	 and	 the	 new	 Common	 Lisp
“condition	 system”	 that	 allows	 you	 to	 signal	 and	 trap	 arbitrary	 error	 condi‐
tions,	will	not	be	covered	in	this	book.	Check	your	reference	manual	for	de‐
tails.

Keyboard	Exercise
This	keyboard	exercise	requires	you	to	add	some	additional	strategies	 to	 the
tic-tac-toe	playing	program	discussed	earlier.	The	first	strategy	we’ll	consider
is	called	the	squeeze	play,	which	can	be	made	using	either	of	the	two	diagonal
triplets.	Suppose	the	opponent,	O,	goes	first,	and	after	three	moves	the	board
looks	like	this:

At	this	point,	O	has	initiated	a	squeeze	play.	If	X	responds	by	choosing	a
corner,	O	can	force	a	win	by	taking	the	remaining	corner.	Suppose,	for	exam‐
ple,	that	X	chooses	three	(the	upper-right	comer),	and	O	then	takes	seven	(the
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lower-left	corner.)	The	board	looks	like	this:

Now	X	is	doomed	because	O	can	make	three-in-a-row	two	different	ways:
either	vertically	or	horizontally.	No	matter	what	move	X	chooses	next,	O	 is
going	to	win.

The	proper	defense	against	a	squeeze	play	is	for	X	to	choose	a	side	square
(two,	four,	six,	or	eight)	instead	of	a	comer.	This	forces	0	to	take	the	opposite
side	square	to	block	X,	and	the	danger	is	past.	Here’s	an	example:

After	two	more	moves,	the	game	ends	in	a	tie.
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A	 second	 offensive	 strategy	 we	 want	 to	 guard	 against	 is	 called	 “two	 on
one.”	Like	the	squeeze	play,	it	can	be	set	up	using	either	diagonal	triplet.	In	a
two-on-one	strategy,	the	opponent	takes	the	center	square,	the	computer	takes
a	corner,	and	the	opponent	takes	the	opposite	corner,	like	this:

Now	a	it’s	X’s	turn	to	move.	If	X	takes	a	side	square,	O	can	force	a	win	by
taking	corner,	like	this:

The	only	defense	against	a	two-on-one	attack	is	for	X	to	take	a	comer	in‐
stead	of	a	side	square.

EXERCISE
10.8.	Type	in	the	tic-tac-toe	program	as	it	appears	in	this	book,	with	the	sec‐

ond	version	of	CHOOSE-BEST-MOVE.	Try	out	the	program	by	play‐
ing	a	few	games	before	proceeding	further.
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a.	Set	up	a	global	variable	named	*CORNERS*	 to	hold	a	 list	of	 the
four	comer	positions.	Set	up	a	global	variable	named	*SIDES*	 to
hold	a	list	of	the	four	side	squares.	Note	that	(FIND-EMPTY-	PO‐
SITION	 BOARD	 *SIDES*)	 will	 return	 an	 empty	 side	 square,	 if
there	are	any.

b.	Write	a	function	BLOCK-SQUEEZE-PLAY	that	checks	the	diago‐
nals	for	an	O-X-O	pattern	and	defends	by	suggesting	a	side	square
as	 the	 best	move.	Your	 function	 should	 return	NIL	 if	 there	 is	 no
squeeze	play	in	progress.	Otherwise,	it	should	return	a	list	contain‐
ing	a	move	number	and	a	string	explaining	the	strategy	behind	the
move.	Test	your	function	by	calling	it	on	a	sample	board.

c.	Write	a	function	BLOCK-TWO-ON-ONE	that	checks	the	diagonals
for	an	O-O-X	or	X-O-O	pattern	and	defends	by	suggesting	a	comer
as	 the	 best	move.	Your	 function	 should	 return	NIL	 if	 there	 is	 no
two-on-one	threat	to	which	to	respond.	Otherwise,	it	should	return	a
list	containing	a	move	and	a	strategy	description.

d.	Modify	 the	CHOOSE-BEST-MOVE	function	so	 it	 that	 tries	 these
two	defensive	strategies	before	choosing	a	move	at	random.

e.	If	the	computer	goes	first,	then	after	the	opponent’s	first	move	there
may	be	an	opportunity	for	the	computer	to	set	up	a	squeeze	play	or
two-on-one	situation	to	trap	the	opponent.	Write	functions	to	check
the	diagonals	 and	 suggest	 an	 appropriate	 attack	 if	 the	opportunity
exists.	 Modify	 the	 CHOOSE-BEST-MOVE	 function	 to	 include
these	offensive	strategies	in	its	list	of	things	to	try.

10	Advanced	Topics

10.7	DO-IT-YOURSELF	LIST	SURGERY
You	can	use	SETF	on	generalized	variables	 to	manipulate	pointers	directly.
For	example,	suppose	we	want	to	turn	a	chain	of	three	cons	cells	into	a	chain
of	two	cons	cells	by	“snipping	out”	the	middle	cell.	In	other	words,	we	want
to	change	the	cdr	of	the	first	cell	so	it	points	directly	to	the	third	cell.	Here’s
how	to	do	it:
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Notice	that	the	value	of	B	was	unchanged	by	SNIP.	Only	the	cdr	of	the	first
cell	in	the	chain	has	changed,	as	shown	in	Figure	10-1.

Figure	10-1	Effects	of	list	surgery	on	the	list	(NO	DOWN	PAYMENT).

We	can	use	SETF	to	create	the	following	circular	structure.
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Here	is	what	the	circular	list	CIRC	really	looks	like:

Modifying	 lists	 by	 directly	 changing	 the	 pointers	 in	 their	 cons	 cells	 is
known	as	list	surgery.	List	surgery	is	useful	in	large,	complex	programs	be‐
cause	 it	 can	be	much	 faster	 to	 change	 a	 few	pointers	 than	 to	build	 a	whole
new	list.	This	also	reduces	the	program’s	memory	requirements	(or	causes	it
to	garbage	collect	less	frequently).	Advanced	Common	Lisp	programming	in‐
cludes	lots	of	list	surgery,	but	for	beginners	this	isn’t	necessary.	Many	of	the
most	common	list	surgery	operations	are	already	built	in	to	Common	Lisp,	as
we’ll	see	in	the	next	section.

10.8	DESTRUCTIVE	OPERATIONS	ON	LISTS
Destructive	 list	operations	are	 those	 that	 change	 the	contents	of	a	cons	cell.
These	operations	are	“dangerous”	because	they	can	create	circular	structures
that	may	be	hard	to	print,	and	because	their	effect	on	shared	structures	may	be
hard	to	predict.	But	destructive	functions	are	also	powerful	and	efficient	tools.
By	 convention,	 most	 of	 them	 have	 names	 that	 begin	 with	 N.	 (Like	 the
CAR/CDR	convention	and	the	“F”	convention,	this	arose	essentially	by	acci‐
dent	but	remains	by	virtue	of	brevity	and	usefulness.)

10.8.1	NCONC
NCONC	(pronounced	“en-konk,”	derived	from	“concatenate”)	is	a	destructive
version	 of	 APPEND.	 While	 APPEND	 creates	 a	 new	 list	 for	 its	 result,
NCONC	physically	changes	the	last	cons	cell	of	its	first	input	to	point	to	its
second	input.	Example:
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If	the	first	input	to	NCONC	is	NIL,	it	just	returns	its	second	input.	For	that
reason,	one	shouldn’t	assume	that	(NCONC	X	Y)	will	alter	the	value	of	X.	If
X	 is	 NIL,	 its	 value	 will	 be	 unchanged.	 Therefore,	 one	 should	 always	 use
SETF	to	store	the	result	of	NCONC	into	X,	just	in	case.

The	NCONC	function	actually	accepts	any	number	of	inputs,	and	destruc‐
tively	concatenates	all	of	them	to	form	one	long	cons	cell	chain.	We	can	write
our	own	version	of	NCONC	that	 takes	exactly	 two	 lists	as	 input	and	makes
the	cdr	of	the	last	cell	of	the	first	list	point	to	the	second	list.	It	then	returns	a
pointer	 to	 the	 beginning	 of	 the	 first	 list.	One	 tricky	point:	 If	 the	 first	 list	 is
NIL,	MY-NCONC	should	return	the	second	list	just	as	APPEND	would	do.
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10.8.2	NSUBST
NSUBST	is	a	destructive	version	of	SUB	ST.	It	modifies	a	 list	by	changing
the	pointers	in	the	cars	of	some	cells.

In	the	last	example,	since	we	were	searching	the	tree	for	the	list	(A	I),	we
had	 to	 tell	 NSUBST	 to	 use	 EQUAL	 as	 the	 equality	 test.	 The	 default	 test,
EQL,	would	not	have	worked.

10.8.3	Other	Destructive	Functions
Many	other	Common	Lisp	functions	have	destructive	counterparts.	There	are
NREVERSE,	NUNION,	NINTERSECTION,	 and	NSET-DIFFERENCE,	 for
example.	There	are	only	two	exceptions	to	the	“N”	naming	convention.

APPEND	was	the	very	first	Lisp	function	to	have	a	destructive	counterpart.
Its	 destructive	 version	 was	 called	 NCONC,	 for	 “concatenate.”	 (There	 was
also	a	CONC	function,	but	its	use	was	obscure	and	it	disappeared	in	later	di‐
alects.)	It	was	many	years	later	that	NCONC	gave	rise	to	the	“N”	convention
for	 indicating	destructive	functions.	That’s	why	 there	 is	no	NAPPEND.	The
only	other	exception	to	the	“N”	convention	is	REMOVE.	Its	destructive	coun‐
terpart	 is	 called	 DELETE,	 again	 for	 historical	 reasons.	 (DELETE	 was	 in‐
vented	after	NCONC,	but	before	 the	“N”	convention	was	established,	so	no
one	 thought	of	 the	name	NREMOVE.)	The	“N”	 is	 commonly	held	 to	 stand
for	“noncopying”	or	“nonconsing.”

10.9	PROGRAMMING	WITH	DESTRUCTIVE
OPERATIONS
One	 place	 where	 destructive	 operations	 are	 especially	 useful	 is	 in	 making
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small	changes	to	complex	list	structures,	such	as	the	MAKE-MOVE	function
in	the	tic-tac-toe	program.	Here’s	another	example.	Suppose	we	have	the	fol‐
lowing	table	stored	in	the	global	variable	*THINGS*:

How	might	we	change	 the	 symbol	OBJECT	1	 to	FROB?	The	 expression
(ASSOC’OBJECT1	 *THINGS*)	 will	 return	 the	 list	 (OBJECT1	 LARGE
GREEN	SHINY	CUBE).	We	can	use	SETF	on	this	list	to	physically	change	it
by	storing	into	the	car	half	of	the	first	cons	cell.	Since	this	is	a	destructive	op‐
eration	 on	 the	 list,	 the	 value	 of	 *THINGS*	 will	 change	 as	 well.	 Let’s	 go
ahead	and	write	a	general	function	for	renaming	objects:

We	can	use	NCONC,	another	destructive	operation,	to	add	a	new	property
to	an	object	already	in	*	THINGS*.

EXERCISES
10.9.	Write	a	destructive	function	CHOP	that	shortens	any	non-NIL	list	to	a

list	 of	 one	 element.	 (CHOP’(FEE	 FIE	 FOE	 FUM))	 should	 return
(FEE).

10.10.	Write	a	function	NTACK	that	destructively	tacks	a	symbol	onto	a	list.
(NTACK’(FEE	FIE	FOE)’FUM)	should	return	(FEE	FIE	FOE	FUM).
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10.11.	Draw	the	cons	cell	structure	 that	 results	 from	the	following	sequence
of	operations:

10.12.	Suppose	the	variable	H	is	set	 to	the	list	(HI	HO).	What	is	 the	critical
difference	between	the	results	of	(APPEND	H	H)	and	(NCONC	H	H)?

10.10	SETQ	AND	SET
In	earlier	Lisp	dialects,	where	SETF	and	generalized	variables	were	not	avail‐
able,	the	assignment	function	was	called	SETQ.	The	SETQ	special	function	is
still	 around	 today.	 Its	 syntax	 is	 the	 same	as	 the	SETF	macro,	 and	 it	 can	be
used	to	assign	values	to	ordinary	(but	not	generalized)	variables.

If	you	read	older	Lisp	books	you	will	notice	that	assignment	is	done	with
SETQ	rather	 than	SETF.	Modem	Common	Lisp	programmers	use	SETF	for
all	 forms	 of	 assignment,	whether	 they	 are	 storing	 into	 an	 ordinary	 variable
such	 as	X	 or	 a	 generalized	 variable	 such	 as	 (SECOND	X).	 SETQ	 is	 today
considered	 archaic.	 Internally,	 though,	 most	 Lisp	 implementations	 turn	 a
SETF	into	a	SETQ	if	 the	assignment	 is	 to	an	ordinary	variable,	so	you	may
see	some	references	to	SETQ	in	debugger	output.

The	SET	 function,	 like	SETQ,	 comes	 from	 the	 earliest	Lisp	dialect,	Lisp
1.5.	SET	evaluates	both	its	arguments;	 the	first	argument	must	evaluate	 to	a
symbol.	Because	Common	Lisp	uses	 lexical	scoping	while	Lisp	1.5	did	not,
the	meaning	of	SET	has	changed	somewhat.	In	Common	Lisp,	SET	stores	a
value	in	the	value	cell	of	a	symbol,	meaning	it	assigns	to	the	global	variable
named	by	the	symbol,	even	if	a	 local	variable	exists	with	the	same	name.**
The	 SYMBOL-VALUE	 function	 returns	 the	 contents	 of	 a	 symbol’s	 value
cell.	Here	is	an	example	of	the	use	of	SET	and	SYMBOL-VALUE:
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*Note	to	instructors:	In	ANSI	Common	Lisp	one	should	also	declare	globals	with	DEFVAR,	which	pro‐
claims	them	special,	but	many	implementations	do	not	strictly	enforce	this.	We	omit	discussion	of	DEF‐
VAR	here	to	avoid	introducing	the	concept	of	dynamic	scoping	until	Chapter	14.

**For	dynamically	scoped	variables,	discussed	 in	Chapter	14,	SET	assigns	 to	 the	currently	accessible
dynamic	variable	with	that	name.
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11

Iteration	and	Block	Structure

11.1	INTRODUCTION
The	word	“iterate”	means	to	repeat,	or	to	do	something	over	and	over.	Recur‐
sion	 and	 applicative	 operators	 are	 repetitive,	 but	 iteration	 (also	 known	 as
“looping”)	 is	 the	simplest	 repetitive	control	structure.	Virtually	all	program‐
ming	languages	include	some	way	to	write	iterative	expressions.

Iteration	 in	Lisp	 is	more	sophisticated	 than	 in	most	other	 languages.	Lisp
provides	powerful	iteration	constructs	called	DO	and	DO*,	as	well	as	simple
ones	called	DOTIMES	and	DOLIST.

In	 this	 chapter	we	will	 also	 learn	 about	 “block	 structure,”	 a	 concept	 bor‐
rowed	 from	 the	Algol	 family	 of	 languages,	which	 includes	Pascal,	Modula,
and	Ada.	We	will	see	how	to	group	Lisp	expressions	into	blocks,	how	to	give
names	to	the	blocks,	and	why	this	is	useful.

11.2	DOTIMES	AND	DOLIST
The	 simplest	 iterative	 forms	 are	 DOTIMES	 and	 DOLIST.	 Both	 are	 macro
functions,	 meaning	 they	 don’t	 evaluate	 all	 their	 arguments.	 They	 have	 the
same	syntax:

DOTIMES	evaluates	the	forms	in	its	body	n	times,	while	stepping	an	index
variable	from	zero	through	n-1.	It	then	returns	the	value	of	result-form,	which
defaults	 to	NIL	 if	omitted.	 (The	result-form	 is	 shown	 in	brackets	 above	be‐
cause	it’s	optional.)	Here	is	an	example	of	DOTIMES	counting	from	zero	up
to	 three.	 The	 index	 variable	 is	 named	 I.	 Notice	 that	 the	 result	 returned	 by
DOTIMES	is	NIL.
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DOLIST	 has	 the	 same	 syntax	 as	 DOTIMES,	 but	 instead	 of	 counting,	 it
steps	the	index	variable	through	the	elements	of	a	list.	In	the	following	exam‐
ple	the	value	returned	by	DOLIST	is	the	symbol	FLOWERS.

11.3	EXITING	THE	BODY	OF	A	LOOP
The	RETURN	function	can	be	used	to	exit	the	body	of	an	iteration	form	im‐
mediately,	without	 looping	any	further.	RETURN	takes	one	input:	 the	value
to	return	as	the	result	of	the	iteration	form.	When	RETURN	is	used	to	force
an	exit	from	an	iteration	form,	the	result-form	expression,	if	any,	is	ignored.

Here	is	an	iterative	function	called	FIND-FIRST-ODD	that	returns	the	first
odd	number	in	a	list.	It	uses	DOLIST	to	loop	through	the	elements	of	the	list,
and	RETURN	to	exit	the	loop	as	soon	as	an	odd	number	is	found.	If	the	list
contains	no	odd	numbers,	then	when	the	loop	is	finished,	DOLIST	will	return
NIL.	An	 interesting	 point	 about	 FIND-FIRST-ODD	 is	 that	 the	 body	 of	 the
loop	contains	two	forms	instead	of	one.	Loop	bodies	may	contain	any	number
of	forms.
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The	following	is	an	example	where	specifying	an	explicit	result-form	with
DOLIST	is	useful.	The	function	CHECK-ALL-ODD	uses	DOLIST	to	verify
that	all	elements	are	odd.	If	so,	DOLIST	returns	the	symbol	T	at	the	comple‐
tion	of	the	loop.	If	any	nonodd	element	is	found,	the	function	immediately	re‐
turns	from	the	loop	with	a	value	of	NIL.

EXERCISES
11.1.	Write	an	iterative	version	of	the	MEMBER	function,	called	IT-MEM‐

BER.	It	should	return	T	if	its	first	input	appears	in	its	second	input;	it
need	not	return	a	sublist	of	its	second	input.

11.2.	Write	an	iterative	version	of	ASSOC,	called	IT-ASSOC.
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11.3.	Write	 a	 recursive	 version	 of	 CHECK-ALL-ODD.	 It	 should	 produce
the	same	messages	and	the	same	result	as	the	preceding	iterative	ver‐
sion.

11.4	COMPARING	RECURSIVE	AND
ITERATIVE	SEARCH
For	searching	a	flat	list,	iteration	is	simpler	to	use	than	recursion.	It	may	also
be	more	efficient,	depending	on	the	implementation.	Compare	these	two	ver‐
sions	 of	 FIND-FIRST-ODD,	 which	 have	 been	 simplified	 by	 omitting	 the
FORMAT	expression:

There	 are	 a	 couple	of	 small	 advantages	 to	 the	 iterative	version.	First,	 the
termination	test	is	implicit:	DOLIST	always	stops	when	it	gets	to	the	end	of
the	list.	In	the	recursive	version	we	have	to	write	a	COND	clause	to	explicitly
check	for	 this.	Second,	 in	 the	 iterative	version	 the	variable	E	names	succes‐
sive	elements	of	the	list,	which	is	most	convenient.	In	the	recursive	version,	X
names	successive	RESTs	of	the	list,	so	we	have	to	remember	to	write	(FIRST
X)	 to	 refer	 to	 the	 elements	 themselves,	 and	we	 have	 to	 explicitly	 compute
(REST	X)	with	each	recursive	call.

In	other	situations	recursion	can	be	simpler	and	more	natural	than	iteration.
For	example,	you	can	easily	search	a	tree	with	CAR/CDR	recursion.	There	is
no	equally	elegant	way	to	do	this	iteratively.	Iterative	solutions	exist,	but	they
are	ugly.

11.5	BUILDING	UP	RESULTS	WITH
ASSIGNMENT
In	Chapter	8	we	saw	various	ways	to	repetitively	build	up	a	result,	such	as	a
list,	via	recursive	calls.	In	iterative	programs	results	are	built	up	via	repetitive
assignment.	We’ll	 first	 see	 how	 to	 do	 this	 in	 the	 body	 of	 a	 DOTIMES	 or
DOLIST	using	explicit	assignments	such	as	SETF.	Later	in	the	chapter	you’ll
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see	how	assignments	can	be	made	implicitly,	with	DO.

Let’s	start	by	using	DOTIMES	to	compute	the	factorial	function.	First	we
create	an	auxiliary	variable	PROD	with	initial	value	one.	We	will	repetitively
update	this	value	in	the	body	of	the	DOTIMES,	and	then	return	the	final	value
of	 PROD	 as	 the	 result	 of	 the	DOTIMES.	 Since	 the	 index	 variable	 I	 varies
from	zero	to	N-1	rather	than	from	one	to	N,	we	must	add	one	to	I	each	time
we	reference	its	value	in	the	body.	Thus,	(IT-FACT	5)	counts	from	zero	up	to
four,	but	it	multiples	PROD	by	the	numbers	one	through	five.

Here	is	another	use	of	explicit	assignment:	to	write	an	iterative	set	intersec‐
tion	function.	The	variable	ELEMENT	is	bound	to	successive	elements	of	the
set	X.	If	ELEMENT	is	a	member	of	the	set	Y,	it	gets	pushed	onto	RESULT-
SET;	otherwise	it	doesn’t.	When	all	the	elements	of	X	have	been	processed,
DOLIST	returns	the	value	of	RESULT-SET.

EXERCISES
11.4.	Write	an	iterative	version	of	LENGTH,	called	IT-LENGTH.

11.5.	Write	an	iterative	version	of	NTH,	called	IT-NTH.

11.6.	Write	 an	 iterative	version	of	UNION,	 called	 IT-UNION.	Your	 func‐
tion	need	not	return	its	result	in	the	same	order	as	the	built-in	UNION
function.

11.6	COMPARING	DOLIST	WITH	MAPCAR
AND	RECURSION
MAPCAR	is	the	simplest	way	to	apply	a	function	to	every	element	of	a	list.
Consider	the	problem	of	squaring	a	list	of	numbers.	The	applicative	version	is
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clearly	simpler	than	the	recursive	version:

The	MAPCAR	operator	not	only	takes	care	of	traveling	down	the	input	list
and	stopping	when	it	gets	to	the	end,	but	also	takes	care	of	consing	the	result
list.	All	of	this	must	be	handled	explicitly	in	the	recursive	version.	If	we	use
DOLIST	to	write	an	iterative	solution,	the	termination	test	will	be	handled	au‐
tomatically,	 but	we	 still	 have	 to	 build	 up	 the	 result	with	 an	 explicit	 assign‐
ment.	Here	is	a	first	attempt	at	a	solution:

The	function’s	result	is	faulty:	It’s	backwards.	This	is	typical	for	an	itera‐
tive	 solution.	Since	 the	 function	proceeds	 through	 the	 input	 list	 from	 left	 to
right,	and	pushes	each	result	onto	the	front	of	the	result	list,	the	result	list	ends
up	backwards.	The	square	of	the	first	number	in	the	input	list	is	the	last	num‐
ber	 in	 the	result	 list,	and	so	on.	We	can	fix	 this	by	writing	(REVERSE	RE‐
SULT)	as	the	result-form	of	the	DOLIST.

If	 you’ve	 been	 reading	 the	 Advanced	 Topics	 sections,	 you’ll	 understand
why	 experienced	 Lisp	 programmers	 prefer	 to	 use	 the	 destructive	 function
NREVERSE	at	the	end	of	an	iteration	instead	of	using	REVERSE.	If	you’ve
been	skipping	these	sections,	don’t	worry	about	it.

EXERCISES
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11.7.	Why	did	the	IT-INTERSECTION	function	return	elements	in	reverse
order	from	the	order	they	appeared	in	its	first	input?	How	can	you	cor‐
rect	this?

11.8.	Write	an	iterative	version	of	REVERSE,	called	IT-REVERSE.

11.7	THE	DO	MACRO
DO	 is	 the	most	 powerful	 iteration	 form	 in	Lisp.	 It	 can	bind	 any	number	 of
variables,	 like	LET;	 it	can	step	any	number	of	 index	variables	any	way	you
like;	 and	 it	 allows	 you	 to	 specify	 your	 own	 test	 to	 decide	when	 to	 exit	 the
loop.	Because	it	is	so	powerful,	the	syntax	of	DO	is	rather	complicated:

First,	 each	 variable	 in	 the	DO’s	 variable	 list	 is	 assigned	 its	 initial	 value.
Then	the	test	form	is	evaluated.	If	the	result	is	true,	DO	evaluates	the	termina‐
tion	actions	and	returns	the	value	of	the	last	one.	Otherwise	DO	evaluates	the
forms	in	its	body	in	order.	The	body	may	contain	RETURNS	which	force	the
DO	 to	 return	 immediately	 rather	 than	 iterate	 further.	When	DO	 reaches	 the
end	of	the	body,	it	begins	the	next	iteration	of	the	loop.	First,	each	variable	in
the	variable	list	is	updated	by	setting	it	to	the	value	of	its	update	expression.
(The	update	expression	may	be	omitted,	in	which	case	the	variable	is	left	un‐
changed.)	When	 all	 the	 variables	 have	been	updated,	 the	 termination	 test	 is
tried	again,	and	if	it	is	true,	DO	evaluates	the	termination	actions.	Otherwise	it
goes	on	to	evaluate	the	body	again.

Here	 is	 a	 function	 called	LAUNCH	written	with	DO.	Notice	 that	 it	 uses
only	one	index	variable,	CNT,	which	it	decrements	from	N	down	to	zero.	It	is
possible	to	write	LAUNCH	using	DOTIMES	instead,	but	it	would	be	a	little
bit	awkward	because	DOTIMES	steps	 the	 index	variable	 in	 the	“wrong”	di‐
rection.
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EXERCISES
11.9.	Show	how	to	write	CHECK-ALL-ODD	using	DO.

11.10.	Show	how	to	write	LAUNCH	using	DOTIMES.

Here	 is	 an	 implementation	 of	 COUNT-SLICES	 using	 DO.	 (COUNT-
SLICES	was	 introduced	 in	Chapter	 8.)	 This	 loop	 uses	 two	 index	 variables.
CNT	starts	at	zero	and	is	used	to	build	up	the	result.	Z	steps	through	succes‐
sive	RESTs	of	the	loaf.

This	DO	has	an	empty	body:	All	the	computation	is	done	by	expressions	in
the	 variable	 list.	 Suppose	we	 evaluate	 (COUNT-SLICES’(X	X)).	When	we
enter	 the	DO,	CNT	 is	 initialized	 to	zero	and	Z	 is	 initialized	 to	 (X	X).	Now
comes	the	 termination	test:	Since	Z	is	not	NIL,	 the	 loop	does	not	 terminate.
The	body	is	empty,	so	DO	goes	to	update	its	variables.	CNT	is	set	to	the	value
of	(+	CNT	1),	which	is	one.	Z	is	set	to	(REST	Z),	which	is	the	list	(X).	Now
DO	tries	the	termination	test	again.	Z	is	still	not	NIL,	so	we	iterate	once	more.
This	time	CNT	is	set	to	two,	and	Z	is	set	to	NIL.	Now	the	termination	test	is
true.	The	expression	to	be	evaluated	and	returned	when	the	loop	terminates	is
CNT,	so	DO	returns	two.

11.8	ADVANTAGES	OF	IMPLICIT
ASSIGNMENT
DO	 has	 several	 advantages	 over	 DOTIMES	 and	 DOLIST.	 It	 can	 step	 the
index	variables	any	way	you	like,	so	it	can	count	down	instead	of	up,	for	ex‐
ample.	DO	can	also	bind	multiple	variables.	This	makes	it	easy	to	build	up	a
result	 in	 the	variable	list	of	 the	DO;	there	is	no	need	for	a	surrounding	LET
and	 an	 explicit	 SETF,	 as	 with	 the	 simpler	 iteration	 forms	 DOTIMES	 and
DOLIST.	Here	is	a	version	of	the	factorial	function	written	with	DO.

This	version	of	FACT	counts	down	rather	than	up,	and	it	makes	use	of	the
parallel	binding	property	of	DO.	When	we	compute	 (FACT	5),	 initially	 I	 is
set	to	five	and	RESULT	to	one.	When	it’s	time	to	update	the	variables,	the	ex‐
pression	(-	I	1)	evaluates	to	four,	and	(*	RESULT	I)	evaluates	to	five.	Only
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after	 both	 update	 expressions	 have	 been	 evaluated	 are	 the	 variables	 them‐
selves	 changed:	 I	 is	 set	 to	 four	 and	 RESULT	 is	 set	 to	 five.	 The	 next	 time
through	 the	 loop,	 (-	 I	 1)	 evaluates	 to	 three,	 and	 (*	RESULT	 I)	 evaluates	 to
5x4	or	20.	And	so	on.	See	the	following	table	for	the	rest.

Both	 COUNT-SLICES	 and	 FACT	 have	 empty	 bodies.	 This	 is	 often	 the
most	compelling	reason	to	use	DO.	You	can	make	the	assignments	implicit	by
doing	all	the	work	in	update	expressions	in	the	variable	list,	so	you	never	have
to	write	a	PUSH	or	SETF.	Functions	written	in	this	style	are	considered	very
elegant.

Sometimes,	 though,	 it	 is	better	not	 to	 try	 to	do	all	 the	work	 in	 the	update
expressions.	This	is	especially	true	when	the	update	is	conditional.	Consider
this	version	of	IT-INTERSECTION,	which	has	a	null	body:

This	 version	 is	 complicated	 because	 the	 DO	 wants	 to	 update	 RESULT
every	 time	 through	 the	 loop,	 but	 we	 only	 want	 the	 value	 to	 change	 when
(FIRST	X)	 is	a	member	of	Y.	A	simpler	version	can	be	written	by	omitting
the	update	expression	for	RESULT	in	the	variable	list.	Instead	we	perform	the
update	with	a	conditional	PUSH	in	the	body:

If	all	you	need	to	do	is	iterate	over	the	elements	of	a	list,	DOLIST	is	more
concise	than	DO.	But	DO	is	more	general.	For	example,	we	can	use	DO	to	it‐
erate	 over	 several	 lists	 at	 the	 same	 time,	 as	 in	 FIND-MATCHING-ELE‐
MENTS.	This	function	compares	corresponding	elements	from	two	lists	until
it	 finds	 two	 that	 are	 equal,	 such	 as	 the	 third	 element	 of	 the	 lists	 (BIRD)
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and(CARPET).

11.9	THE	DO*	MACRO
Here	is	FIND-FIRST-ODD	written	with	DO.	It	follows	the	usual	convention:
A	variable	X	 is	 stepped	 through	 successive	RESTs	of	 the	 input.	Within	 the
body,	we	write	(FIRST	X)	to	refer	to	elements	of	the	input.

The	DO*	macro	has	the	same	syntax	as	DO,	but	it	creates	and	updates	the
variables	sequentially	like	LET*,	rather	than	all	at	once	like	LET.	One	advan‐
tage	of	DO*	in	a	function	like	FIND-FIRST-ODD	is	that	it	allows	us	to	de‐
fine	a	second	 index	variable	 to	hold	 the	successive	elements	of	a	 list,	while
the	first	index	variable	holds	the	successive	cdrs:

Notice	that	the	index	variable	E	uses	the	expression	(FIRST	X)	for	both	its
initial	 value	 and	 its	 update	 value.	 This	 is	 necessary	 because	 if	 the	 update
value	 were	 omitted,	 the	 value	 of	 E	 would	 not	 change	 each	 time	 we	 went
through	the	loop.	It’s	also	important	that	E	appears	after	X	in	the	variable	list
of	the	DO*,	because	E’s	value	depends	on	X’s	value.

EXERCISES
11.11.	Rewrite	the	following	function	to	use	DO*	instead	of	DOLIST.
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11.12.	Rewrite	the	following	function	to	use	DO	instead	of	DOTIMES.

11.13.	Rewrite	the	following	function	using	DOLIST	instead	of	DO*.

11.14.	 Suppose	 we	 modified	 the	 function	 FFO-WITH-DO*	 above	 by	 just
changing	the	DO*	to	a	DO.	What	bug	would	this	introduce?

11.15.	The	following	version	of	the	FFO-WITH-DO	function	has	a	much	sub‐
tler	 bug	 in	 it.	What	 is	 the	 bug?	 If	 you	 need	 a	 hint,	 try	 it	 on	 the	 list
(24678),	and	then	on	the	list	(2467).

11.10	INFINITE	LOOPS	WITH	DO
You	 can	make	DO	 loop	 forever	 by	 specifying	NIL	 as	 the	 termination	 test.
One	place	where	this	is	useful	is	a	function	that	tries	to	read	something	spe‐
cific	from	the	keyboard,	like	a	number.	If	the	user	types	something	other	than
a	number,	 the	 function	prints	an	error	message	and	again	waits	 for	 input.	 If
the	user	does	type	a	number,	the	function	exits	the	loop	using	RETURN	to	re‐
turn	the	number.	Here’s	an	example:
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11.11	IMPLICIT	BLOCKS
In	 Common	 Lisp	 function	 bodies	 are	 contained	 in	 implicit	blocks,	 and	 the
function	name	also	serves	as	 the	block	name.	A	block	 is	a	sequence	of	ex‐
pressions	 that	 can	 be	 exited	 at	 any	 point	 via	 the	 RETURN-FROM	 special
function.	In	the	following	example	the	body	of	FIND-FIRST-ODD	is	a	block
named	FIND-FIRST-ODD.	The	 arguments	 to	RETURN-FROM	are	 a	 block
name	and	a	result	expression;	the	block	name	is	not	evaluated,	so	it	should	not
be	quoted.

In	 this	 example	 we	 used	 RETURN-FROM	 to	 exit	 the	 body	 of	 FIND-
FIRST-ODD,	 not	 just	 the	 body	 of	 the	 DOLIST.	 RETURN-FROM	 returns
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from	the	closest	enclosing	block	with	the	specified	name.	The	bodies	of	loop‐
ing	 forms	 such	 as	DOTIMES,	DOLIST,	DO,	 and	DO*	 are	 enclosed	 in	 im‐
plicit	blocks	named	NIL.	The	expression	(RETURN	x)	is	actually	just	an	ab‐
breviation	 for	 (RETURN-FROM	NIL	 x).	 So	 in	 the	 body	 of	 FIND-FIRST-
ODD,	the	RETURN-FROM	is	nested	inside	a	block	named	NIL,	which	is	in
turn	contained	in	a	block	named	FIND-FIRST-ODD.

Here’s	 an	 example	 where	 RETURN-FROM	 is	 needed,	 that	 does	 not	 in‐
volve	iteration.	The	function	SQUARE-LIST	uses	MAPCAR	to	square	a	list
of	 numbers.	However,	 if	 any	of	 the	 elements	 turns	out	 not	 to	be	 a	 number,
SQUARE-LIST	 returns	 the	 symbol	 NOPE	 instead	 of	 getting	 an	 error.	 The
RETURN-FROM	inside	the	lambda	expression	exits	not	only	the	lambda	ex‐
pression,	but	also	the	MAPCAR,	and	the	body	of	SQUARE-LIST	itself.

Besides	the	implicit	blocks	containing	function	bodies,	blocks	may	also	be
defined	explicitly	via	the	BLOCK	special	function.	This	is	only	useful	in	ad‐
vanced	applications;	we	won’t	go	into	the	details	here.

SUMMARY
DOLIST	 and	DOTIMES	are	 the	 simplest	 iteration	 forms.	DO	and	DO*	 are
more	powerful	because	they	can	step	several	variables	at	once	using	arbitrary
update	expressions	and	termination	tests.	But	for	simple	problems	like	search‐
ing	the	elements	of	a	list,	DOLIST	is	more	concise.

All	 the	iteration	forms	make	 implicit	assignments	to	their	 index	variables.
This	 is	 the	 cleanest	 type	 of	 assignment	 to	 use;	 you	 never	 actually	 have	 to
write	 a	 SETF	 because	 the	 loop	 does	 the	 assignment	 for	 you.	 Sometimes,
though,	it	is	better	to	build	up	the	result	using	explicit	assignment	in	the	loop
body.	This	is	especially	true	when	we	are	using	conditional	assignment,	as	in
the	IT-INTERSECTION	function.

Function	names	serve	as	 implicit	block	names.	We	can	 therefore	use	RE‐
TURN-FROM	to	exit	a	function	from	anywhere	in	its	body.
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REVIEW	EXERCISES
11.16.	How	do	the	variable	lists	of	LET	and	DO	differ?

11.17.	What	 value	 is	 returned	 by	 the	 following	 expression?	 (This	 is	 a	 trick
question.)

11.18.	Rewrite	the	DOTIMES	expression	in	the	preceding	problem	using	DO.
Does	this	help	explain	the	value	DOTIMES	returns?

11.19.	Does	switching	the	order	of	entries	in	the	variable	list	of	a	DO	expres‐
sion	make	a	difference?	Why?

11.20.	If	a	loop	uses	only	one	index	variable,	can	DO	and	DO*	be	used	inter‐
changeably?

11.21.	One	way	to	compute	Fib(5)	is	to	start	with	Fib(0)	and	Fib(l),	which	we
know	to	be	one,	and	add	them	together,	giving	Fib(2).	Then	add	Fib(l)
and	 Fib(2)	 to	 get	 Fib(3).	 Add	 Fib(2)	 and	 Fib(3)	 to	 get	 Fib(4).	 Add
Fib(3)	and	Fib(4)	 to	get	Fib(5).	This	 is	an	 iterative	method	 involving
no	recursion;	we	merely	have	to	keep	around	the	last	two	values	of	Fib
to	compute	 the	next	one.	Write	an	 iterative	version	of	FIB	using	 this
technique.

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Iteration	macros:	DOTIMES,	DOLIST,	DO,	DO*.

Special	functions	for	block	structure:	BLOCK,	RETURN-FROM.

Ordinary	function	for	exiting	a	block	named	NIL:	RETURN.

Keyboard	Exercise
In	 this	 keyboard	 exercise	we	will	 explore	 some	 properties	 of	 single-	 and

double-stranded	DNA,	or	deoxyribonucleic	acid.	DNA,	and	the	related	mole‐
cule	RNA,	make	up	 the	genetic	material	 found	 in	viruses	and	every	 type	of
cell,	from	bacteria	to	people.	A	strand	of	DNA	is	very	much	like	a	chain	of
cons	cells;	 the	elements	of	 the	chain	are	of	 four	 types,	corresponding	 to	 the
four	 bases	 adenine,	 thymine,	 guanine,	 and	 cytosine.	 We	 will	 represent	 a
strand	of	DNA	by	a	list	of	bases.	The	list	(A	G	G	T	C	A	T	T	G)	corresponds
to	a	strand	 that	 is	nine	bases	 long;	 the	 first	base	being	adenine	and	 the	next
two	guanine.	Here	is	a	schematic	diagram	of	the	strand:
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Each	 of	 the	 four	 bases	 has	 a	 complement	with	which	 it	 can	 form	 a	 pair.
Adenine	 pairs	with	 thymine,	while	 guanine	 pairs	with	 cytosine.	Two	 single
strands	of	DNA	can	combine	to	form	double-stranded	DNA	(whose	shape	is
the	famous	“double	helix”)	when	each	of	their	corresponding	bases	are	com‐
plementary.	The	strand	(A	G	G	T	C	A	T	T	G)	and	the	strand	(T	C	C	A	G	T	A
A	C)	are	complementary,	for	example.	Double-stranded	DNA	looks	like	this:

EXERCISE
11.22.	Write	iterative	solutions	to	all	parts	of	this	exercise	that	require	repeti‐

tive	actions.

a.	Write	a	function	COMPLEMENT-BASE	that	takes	a	base	as	input
and	 returns	 the	matching	 complementary	 base.	 (COMPLEMENT-
BASE	 ’A)	 should	 return	 T;	 (COMPLEMENT-BASE	 ’	 T)	 should
return	A;	and	so	on.

b.	Write	a	function	COMPLEMENT-STRAND	that	returns	the	com‐
plementary	 strand	 of	 a	 sequence	 of	 single-stranded	DNA.	 (COM‐
PLEMENT-STRAND	’(A	G	G	T))	should	return	(T	C	C	A).

c.	 Write	 a	 function	 MAKE-DOUBLE	 that	 takes	 a	 single	 strand	 of
DNA	as	input	and	returns	a	double-stranded	version.	We	will	repre‐
sent	 double-stranded	 DNA	 by	making	 a	 list	 of	 each	 base	 and	 its
complement.	 (MAKE-DOUBLE	’(G	G	A	C	T))	should	 return	 ((G
C)	(G	C)	(A	T)	(C	G)	(T	A)).

d.	One	of	 the	 important	 clues	 to	DNA’s	double-stranded	nature	was
the	observation	that	in	naturally	occurring	DNA,	whether	from	peo‐
ple,	 animals,	 or	 plants,	 the	 observed	 percentage	 of	 adenine	 is	 al‐
ways	very	close	to	that	of	thymine,	while	the	observed	percentage
of	 guanine	 is	 very	 close	 to	 that	 of	 cytosine.	 Write	 a	 function
COUNT-	BASES	that	counts	the	number	of	bases	of	each	type	in	a
DNA	strand,	and	returns	the	result	as	a	table.	Your	function	should
work	 for	 both	 single-	 and	 double-stranded	 DNA.	 Example:
(COUNT-	BASES’((G	C)	(A	T)	(T	A)	(T	A)	(C	G)))	should	return
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((A	 3)	 (T	 3)	 (G	 2)	 (C	 2)),	 whereas	 (COUNT-BASES’(AG‐
TACTCT))	should	return	((A	2)	(T	3)	(G	1)	(C	2)).	In	the	latter	case
the	percentages	are	not	equal	because	we	are	working	with	only	a
single	 strand.	 What	 answer	 do	 you	 get	 if	 you	 apply	 COUNT-
BASES	to	the	corresponding	double-stranded	sequence?

e.	Write	a	predicate	PREFIXP	that	returns	T	if	one	strand	of	DNA	is	a
prefix	 of	 another.	 To	 be	 a	 prefix,	 the	 elements	 of	 the	 first	 strand
must	 exactly	 match	 the	 corresponding	 elements	 of	 the	 second,
which	may	be	longer.	Example:	(G	T	C)	is	a	prefix	of	(G	T	C	A	T),
but	not	of(AGGTC).

f.	Write	a	predicate	APPEARSP	that	returns	T	if	one	DNA	strand	ap‐
pears	anywhere	within	another.	For	example,	(C	A	T)	appears	in	(T
C	A	T	G)	but	not	in	(T	C	C	G	T	A).	Hint:	If	x	appears	in	y,	then	x	is
a	either	a	prefix	of	y,	or	of	(REST	y\	or	of	(REST	(REST	y)\	and	so
on.

g.	Write	a	predicate	COVERP	that	returns	T	if	its	first	input,	repeated
some	number	of	times,	matches	all	of	its	second	input.	Example:	(A
G	C)	covers	(A	G	C	A	G	C	A	G	C)	but	not	(A	G	C	T	T	G).	You
may	assume	that	neither	strand	will	be	NIL.

h.	Write	 a	 function	 PREFIX	 that	 returns	 the	 leftmost	 N	 bases	 of	 a
DNA	strand.	 (PREFIX	4’(CGATTAG))	 should	 return	 (C	G	A	T).
Do	not	confuse	the	function	PREFIX	with	the	predicate	PREFIXP.

i.	 Biologists	 have	 found	 that	 portions	 of	 some	 naturally	 occurring
DNA	 strands	 consist	 of	 many	 repetitions	 of	 a	 short	 “kernel”	 se‐
quence.	Write	a	 function	KERNEL	that	 returns	 the	shortest	prefix
of	 a	DNA	 strand	 that	 can	 be	 repeated	 to	 cover	 the	 strand.	 (KER‐
NEL	’	 (AGCAGCAGC))	should	 return	 (A	G	C).	 (KERNEL’(A	A
A	A	A))	should	return	(A).	(KERNEL’(A	G	G	T	C))	should	return
(A	G	G	T	C),	because	in	this	case	only	a	single	repetition	of	the	en‐
tire	 strand	will	 cover	 the	 strand.	Hint:	To	 find	 the	kernel,	 look	 at
prefixes	of	increasing	length	until	you	find	one	that	can	be	repeated
to	cover	the	strand.

j.	Write	a	function	DRAW-DNA	that	takes	a	single-stranded	DNA	se‐
quence	as	input	and	draws	it	along	with	its	complementary	strand,
as	in	the	diagram	at	the	beginning	of	this	exercise.

Lisp	Toolkit:	TIME
The	TIME	macro	function	 tells	you	how	long	 it	 took	 to	evaluate	an	expres‐

336



sion.	It	may	also	tell	you	how	much	memory	was	used	during	the	evaluation,
and	other	useful	 things.	The	exact	details	of	what	TIME	measures	and	how
the	 information	 is	 displayed	 are	 implementation	 dependent.	 TIME	 is	 useful
for	gauging	the	efficiency	of	programs,	for	example,	to	compare	two	solutions
to	a	problem	to	see	which	is	faster,	or	to	see	how	much	slower	a	function	runs
when	given	a	larger	input.	Here	is	an	example:

As	 you	 can	 see,	when	 the	 input	 to	ADDUP	was	 increased	 from	 1000	 to
10,000,	the	user	run	time	and	total	bytes	consed	also	increased	by	a	factor	of
ten.	But	the	number	of	page	faults	increased	by	a	factor	of	just	2.6.

11	Advanced	Topics

11.12	PROG1,	PROG2,	AND	PROGN
PROG1,	PROG2,	and	PROGN	are	three	very	simple	functions.	They	all	take
an	arbitrary	number	of	expressions	as	input	and	evaluate	the	expressions	one
at	a	time.	PROG1	returns	the	value	of	the	first	expression;	PROG2	returns	the
value	of	the	second;	PROGN	returns	the	value	of	the	last	expression.
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These	 forms	 are	 used	 infrequently	 today.	 They	were	 important	 in	 earlier
versions	of	Lisp,	 in	which	 the	body	of	a	function	could	contain	at	most	one
expression	and	a	COND	clause	could	contain	at	most	one	consequent.

One	place	where	PROGN	is	still	useful	is	in	the	true-part	and	false-part	of
an	IF.	If	you	want	to	evaluate	several	expressions	in	the	true-part	or	false-part,
you	must	group	 them	 together	using	something	 like	PROGN,	BLOCK,	or	a
LET.

The	effects	of	PROG	1	and	PROG2	can	easily	be	achieved	with	LET.	For
example,	(POP	X)	is	equivalent	to	both	of	the	following	expressions:

Today,	the	second	is	generally	considered	easier	to	read	and	understand.

11.13	OPTIONAL	ARGUMENTS
Common	 Lisp	 functions	 can	 be	 written	 to	 accept	 optional	 arguments,	 key‐
word	 arguments	 or	 any	 number	 of	 arguments,	 by	 putting	 special	 symbols
called	lambda-list	keywords	in	the	argument	list.	For	example,	variables	fol‐
lowing	an	&OPTIONAL	lambda-list	keyword	name	optional	arguments.	The
following	 function	accepts	one	 required	argument	X	and	one	optional	 argu‐
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ment	Y.	If	an	optional	argument	is	unsupplied,	it	defaults	to	NIL.

We	don’t	have	to	use	NIL	as	the	default	value	for	unsupplied	arguments.	It
is	possible	to	specify	what	default	value	to	use	by	replacing	the	optional	argu‐
ment	name	in	the	lambda	list	with	a	list	of	form	(name	default).	In	the	follow‐
ing	function	DIVIDE-CHECK,	the	default	value	for	the	divisor	is	two.	(REM,
called	by	DIVIDE-CHECK,	is	a	built-in	function	that	returns	the	remainder	of
dividing	one	number	by	another.)

11.14	REST	ARGUMENTS
The	variable	following	an	&REST	lambda-list	keyword	will	be	bound	to	a	list
of	the	remaining	arguments	to	a	function.	This	allows	the	function	to	accept
an	unlimited	number	of	arguments,	as	+	and	FORMAT	do.	Here’s	a	function
that	takes	an	unlimited	number	of	arguments	and	returns	their	average.	It	in‐
cludes	a	division	by	1.0	to	ensure	that	the	result	is	in	floating	point	form.
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One	place	where	you	must	be	careful	about	using	an	&REST	argument	is
in	a	recursive	function.	With	 the	first	call,	 the	function’s	arguments	are	col‐
lected	into	a	list.	If	the	function	then	calls	itself	recursively	on	the	cdr	of	that
list,	it	will	be	processing	a	list	of	a	list,	rather	than	the	original	list.	Here	is	an
example:	a	function	FAULTY-SQUARE-ALL	that	is	supposed	to	return	a	list
of	the	squares	of	all	its	arguments:

We	can	correct	 the	problem	by	using	APPLY	 to	make	 the	 recursive	call.
With	APPLY,	the	value	of	(CDR	ARGS)	is	treated	as	a	list	of	arguments	to
the	recursive	call,	not	as	a	single	argument.

The	 PROG1,	 PROG2,	 and	 PROGN	 functions	 can	 be	 defined	 using	 the
&REST	lambda-list	keyword	as	follows:
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The	built-in	versions	of	PROG1,	PROG2,	and	PROGN	don’t	bother	to	cre‐
ate	a	list	of	their	arguments,	because	they	only	need	to	return	one	value.

11.15	KEYWORD	ARGUMENTS
In	previous	Advanced	Topics	 sections	we’ve	seen	several	 functions	 that	ac‐
cept	 keyword	 arguments,	 such	 as	 MEMBER	 and	 FIND-IF.	 For	 example,
when	you	want	MEMBER	to	use	EQUAL	as	the	equality	test,	you	write:

Keyword	arguments	are	useful	when	a	function	accepts	a	large	number	of
optional	 arguments.	 By	 using	 keywords,	 we	 avoid	 having	 to	 memorize	 an
order	for	these	optional	arguments;	all	we	have	to	remember	are	their	names.
You	can	create	your	own	functions	that	accept	keyword	arguments	by	using
the	&KEY	 lambda-list	 keyword.	As	with	&OPTIONAL,	 default	 values	 can
be	supplied	if	desired.	Here	is	a	function	MAKE-SUNDAE	that	accepts	up	to
five	keyword	arguments:
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Keywords	such	as	:CHERRIES	always	evaluate	to	themselves;	that’s	why
they	don’t	need	 to	be	quoted.	Notice	 that	we	use	 the	keyword	 :CHERRTES
when	calling	MAKE-SUNDAE,	but	in	the	argument	list	and	body	of	MAKE-
SUNDAE	we	use	the	ordinary	symbol	CHERRIES.	This	is	an	important	dis‐
tinction.	 Inside	MAKE-SUNDAE,	CHERRIES	 is	 just	 another	 variable.	The
only	thing	special	about	it	is	the	way	it	gets	its	value.	Just	as	an	&REST	vari‐
able	 is	 treated	 specially,	 variables	defined	with	&KEY	get	 their	 values	 in	 a
special	way:	When	calling	MAKE-SUNDAE,	we	specify	a	value	for	CHER‐
RIES	by	preceding	the	value	with	the	:CHERRIES	keyword.

11.16	AUXILIARY	VARIABLES
The	&AUX	 lambda-list	 keyword	 is	 used	 to	define	 auxiliary	 local	 variables.
You	can	specify	just	the	variable	name,	in	which	case	the	variable	is	created
with	an	initial	value	of	NIL,	or	you	can	use	a	list	of	form	(var	expression).	In
the	latter	case	expression	is	evaluated,	and	the	result	serves	as	the	initial	value
for	the	variable.	Here	is	an	example	of	the	use	of	an	auxiliary	variable	LEN	to
hold	the	length	of	a	list:

The	 &AUX	 keyword	 accomplishes	 the	 same	 thing	 as	 the	 LET*	 special
function:	Both	create	new	local	variables	using	sequential	binding.	The	choice
of	which	to	use	is	purely	a	matter	of	taste.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
PROG1,	PROG2,	PROGN.

Lambda-list	keywords:	&OPTIONAL,	&REST,	&KEY,	&AUX.
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12

Structures	and	The	Type	System

12.1	INTRODUCTION
Common	Lisp	includes	many	built-in	datatypes,	which	together	form	a	type
system.	 The	 types	we’ve	 covered	 so	 far	 are	 numbers	 (of	 several	 varieties),
symbols,	conses,	strings,	 function	objects,	and	stream	objects.	These	are	 the
basic	datatypes,	but	there	are	quite	a	few	more.

The	Common	Lisp	 type	 system	has	 two	 important	properties.	First,	 types
are	visible:	They	are	described	by	Lisp	data	structures	(symbols	or	lists),	and
there	are	built-in	functions	for	testing	the	type	of	an	object	and	for	returning	a
type	description	of	an	object.	Second,	the	type	system	is	extensible:	Program‐
mers	can	create	new	types	at	any	time.

Structures	are	an	example	of	a	programmer-defined	datatype.	After	cover‐
ing	 the	 basics	 of	 the	 type	 system,	 this	 chapter	 explains	 how	 new	 structure
types	are	defined	and	how	structures	may	be	created	and	modified.

The	Common	Lisp	Object	System	(CLOS)	provides	an	advanced	program‐
mer-defined	 datatype	 facility	 that	 supports	 “object-oriented	 programming.”
We	will	not	cover	CLOS	in	this	book.	For	our	purposes,	structures	will	suf‐
fice.

12.2	TYPEP	AND	TYPE-OF
The	TYPEP	predicate	returns	true	if	an	object	 is	of	 the	specified	type.	Type
specifiers	 may	 be	 complex	 expressions,	 but	 we	 will	 only	 deal	 with	 simple
cases	here.
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Figure	12-1	shows	a	portion	of	the	Common	Lisp	type	hierarchy.	This	dia‐
gram	has	many	interesting	features.	T	appears	at	the	top	of	the	hierarchy,	be‐
cause	all	objects	are	instances	of	type	T,	and	all	types	are	subtypes	of	T.	Type
COMMON	 includes	 all	 the	 types	 that	 are	 built	 in	 to	 Common	 Lisp.	 Type
NULL	includes	only	the	symbol	NIL.	Type	LIST	subsumes	the	types	CONS
and	 NULL.	 NULL	 is	 therefore	 a	 subtype	 of	 both	 SYMBOL	 and	 LIST.
STRING	is	a	subtype	of	VECTOR,	which	is	a	subtype	of	ARRAY.	Arrays	are
discussed	in	Chapter	13.

The	TYPE-OF	function	returns	a	type	specifier	for	an	object.	Since	objects
can	be	of	more	than	one	type	(for	example,	3	is	a	number,	an	integer,	and	a
fixnum;	NIL	is	both	a	symbol	and	a	list),	the	exact	result	returned	by	TYPE-
OF	is	implementation	dependent.	Here	are	some	typical	examples:

The	type	specifier	(SIMPLE-STRING	6)	describes	a	fixed-length	character
string	with	six	elements.	Some	Lisp	implementations	might	return	just	SIM‐
PLE-STRING,	or	STRING,	or	(VECTOR	STRING-CHAR).	The	relationship
between	strings	and	vectors	will	be	explained	in	Chapter	13.

Figure	12-1	A	portion	of	the	Common	Lisp	type	hierarchy.
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12.3	DEFINING	STRUCTURES
Structures	are	programmer-defined	Lisp	objects	with	an	arbitrary	number	of
named	 components.	 Structure	 types	 automatically	 become	 part	 of	 the	 Lisp
type	hierarchy.	The	DEFSTRUCT	macro	defines	new	structures	and	specifies
the	names	and	default	values	of	 their	components.	For	example,	we	can	de‐
fine	a	structure	called	STARSHIP	like	this:

This	DEFSTRUCT	form	defines	a	new	type	of	object	called	a	STARSHIP
whose	components	are	called	NAME,	SPEED,	CONDITION,	and	SHIELDS.
STARSHIP	becomes	part	of	the	system	type	hierarchy	and	can	be	referenced
by	such	functions	as	TYPEP	and	TYPE-OF.

The	DEFSTRUCT	macro	function	also	does	several	other	things.	It	defines
a	constructor	function	MAKE-STARSHIP	for	creating	new	structures	of	this
type.	When	 a	 new	 star	 ship	 is	 created,	 the	 name	 component	will	 default	 to
NIL,	the	speed	to	zero,	the	condition	to	GREEN,	and	the	shields	to	DOWN.

The	#S	notation	is	the	standard	way	to	display	structures	in	Common	Lisp.
The	list	following	the	#S	contains	the	type	of	the	structure	followed	by	an	al‐
ternating	sequence	of	component	names	and	values.	Do	not	be	misled	by	the
use	of	parentheses	in	#S	notation:	Structures	are	not	lists.	Ordinary	list	opera‐
tions	like	CAR	and	CDR	will	not	work	on	structures.

Although	new	instances	are	usually	created	by	calling	the	constructor	func‐
tion	MAKE-STARSHIP,	it	is	also	possible	to	type	in	STARSHIP	objects	di‐
rectly	to	the	read-eval-print	loop,	using	#S	notation.	Notice	that	the	structure
must	be	quoted	to	prevent	its	evaluation.
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12.4	TYPE	PREDICATES	FOR	STRUCTURES
Another	side	effect	of	DEFSTRUCT	is	that	it	creates	a	type	predicate	for	the
structure	 based	 on	 the	 structure	 name.	 In	 this	 case	 the	 predicate	 is	 called
STARSHIP-P.

Since	the	type	name	STARSHIP	is	fully	integrated	into	the	type	system,	it
can	be	used	with	TYPEP	and	will	be	returned	by	TYPE-OF.

12.5	ACCESSING	AND	MODIFYING
STRUCTURES
When	 a	 new	 structure	 is	 defined,	DEFSTRUCT	 creates	accessor	 functions
for	each	of	its	components.	For	example,	it	creates	a	STARSHIP-SPEED	ac‐
cessor	for	retrieving	the	SPEED	component	of	a	starship.

These	accessor	functions	can	also	serve	as	place	descriptions	to	SETF	and
the	other	generalized	assignment	operators.

346



Using	 these	 accessor	 functions,	we	can	easily	write	our	own	 functions	 to
manipulate	structures	in	interesting	ways.	For	example,	the	ALERT	function
below	causes	a	starship	to	raise	its	shields,	and	in	addition	raises	the	condition
level	to	be	at	least	YELLOW.

An	experienced	Lisp	programmer	would	prefer	 to	use	 a	more	descriptive
name	than	X	for	the	argument	to	ALERT.	Since	ALERT	expects	its	argument
to	be	a	starship,	why	not	use	that	name	in	the	argument	list?	The	result	would
look	like	this:

On	the	other	hand,	a	few	programmers	find	this	writing	style	confusing,	be‐
cause	 it	uses	 the	symbol	STARSHIP	as	both	a	 local	variable	name	and	as	a
type	name.	If	you	fall	into	this	category,	you	might	prefer	to	use	an	abbrevi‐
ated	form	for	the	variable	name,	such	as	STRSHIP.

12.6	KEYWORD	ARGUMENTS	TO
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CONSTRUCTOR	FUNCTIONS
When	a	new	structure	instance	is	created,	we	aren’t	required	to	use	the	default
values	 for	 the	 components.	 We	 can	 specify	 different	 values	 by	 supplying
them	 as	 keyword	 arguments	 in	 the	 call	 to	 the	 constructor.	 (See	 Advanced
Topics	section	6.14	for	an	explanation	of	keywords	and	keyword	arguments.)
Here’s	an	example	using	the	MAKE-STARSHIP	constructor:

12.7	CHANGING	STRUCTURE	DEFINITIONS
If	you	redefine	a	structure	 type	using	DEFSTRUCT	to	change	 the	names	or
orderings	of	components,	you	should	throw	away	all	the	old	structures	of	that
type;	the	accessor	functions	may	no	longer	work	properly	on	them,	and	there
may	be	other	problems	as	well.	For	example,	having	stored	a	starship	named
Reliant	 in	 S3,	 if	 we	 redefine	 STARSHIP,	 the	 value	 of	 S3	 will	 become	 a
strange	object	and	the	fields	will	be	all	mixed	up.

To	correct	 the	problem,	we	simply	need	 to	rebuild	 the	structure	using	 the
redefined	constructor	function	MAKE-STARSHIP.
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SUMMARY
Common	Lisp	contains	many	built-in	datatypes;	only	the	basic	ones	are	dis‐
cussed	in	this	book.	The	Common	Lisp	type	system	is	both	visible	and	exten‐
sible.	Users	can	extend	the	type	system	by	defining	new	structure	types.

DEFSTRUCT	defines	structure	types.	The	structure	definition	includes	the
names	of	all	the	components,	and	optionally	specifies	default	values	for	them.
If	no	default	is	given	for	a	component,	NIL	is	used.	DEFSTRUCT	also	auto‐
matically	defines	a	constructor	function	for	the	type	(such	as	MAKE-STAR‐
SHIP)	and	a	type	predicate	(such	as	STARSHIP-P).

REVIEW	EXERCISES
12.1.	Describe	the	roles	of	the	symbols	CAPTAIN,	:CAPTAIN,	and	STAR‐

SHIP-CAPTAIN	in	the	starship	example.

12.2.	Is	(STARSHIP-P’STARSHIP)	true?

12.3.	What	are	the	values	of	(TYPE-OF’MAKE-STARSHIP),	(TYPE-OF	#’
MAKE-STARSHIP),	and	(TYPE-OF	(MAKE-STARSHIP))?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Structure-defining	macro:	DEFSTRUCT.

Type	system	functions:	TYPEP	and	TYPE-OF.

Lisp	Toolkit:	DESCRIBE	and	INSPECT
DESCRIBE	is	a	function	that	takes	any	kind	of	Lisp	object	as	input	and	prints
an	informative	description	of	it.	Many	Lisp	systems	come	with	online	docu‐
mentation	 that	can	be	conveniently	accessed	 this	way.	DESCRIBE	 is	also	a
good	way	 to	 see	 how	Lisp	 systems	work	 internally,	 since	 you	 can	 describe
symbols	like	CONS,	NIL,	and	DEFUN	and	learn	interesting	things.
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The	exact	output	produced	by	DESCRIBE	depends	on	which	implementa‐
tion	of	Common	Lisp	you	are	using.	Here	are	 some	 typical	 examples.	As	a
beginning	Lisper	you	probably	won’t	understand	all	 the	details	of	what	DE‐
SCRIBE	is	telling	you,	but	puzzling	them	out	with	the	help	of	a	manual	(and
DESCRIBE	too)	can	be	fun.

DESCRIBE	is	particularly	useful	for	displaying	structures.	In	most	imple‐
mentations	of	Common	Lisp,	DESCRIBE	shows	the	fields	of	the	structure	in
a	more	readable	format	than	the	#S	notation	Lisp	uses	by	default.

Another	tool	that	can	be	fun	to	experiment	with	is	called	INSPECT.	If	your
computer	has	a	mouse	and	a	window	system,	INSPECT	may	let	you	inspect
the	components	of	an	object	by	pointing	to	them	with	the	mouse.	Try	defining
a	simple	function	like	HALF,	then	do	(INSPECT’HALF)	to	see	how	function
definitions	are	stored	internally.

Different	Lisp	 implementations	 provide	different	 sorts	 of	 inspectors.	You
will	need	to	look	in	the	manual	for	the	particular	Lisp	you	are	using	to	learn
how	to	use	its	inspector	effectively.

Keyboard	Exercise
In	this	keyboard	exercise	we	will	implement	a	discrimination	net.	Discrimi‐
nation	 nets	 are	 networks	 of	 yes	 and	 no	 questions	 used	 for	 problem-solving
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tasks,	such	as	diagnosing	automotive	engine	trouble.	Here	are	two	examples
of	dialogs	with	a	car	diagnosis	net:

Figure	12-2	shows	a	portion	of	the	discrimination	net	that	generated	this	di‐
alog.	The	net	consists	of	a	series	of	nodes.	Each	node	has	a	name	(a	symbol),
an	associated	question	(a	string),	a	“yes”	action,	and	a	“no”	action.	The	yes
and	no	actions	may	either	be	the	names	of	other	nodes	to	go	to,	or	they	may
be	strings	that	give	the	program’s	diagnosis.	Since	in	the	latter	case	there	is	no
new	node	to	which	to	go,	the	program	stops	after	displaying	the	string.

Figure	12-3	shows	how	the	net	will	be	created.	Note	that	the	tree	of	ques‐
tions	is	incomplete.	If	we	follow	certain	paths,	we	may	end	up	trying	to	go	to
a	node	that	hasn’t	been	defined	yet,	as	shown	in	the	following.	In	that	case	the
program	just	prints	a	message	and	stops.
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Figure	12-2	A	portion	of	a	discrimination	net	for	solving	automotive	diagnosis	problems.

EXERCISE
12.4.	In	this	exercise	you	will	create	a	discrimination	net	for	automotive	di‐

agnosis	that	mimics	the	behavior	of	the	system	shown	in	the	preceding
pages.

a.	Write	a	DEFSTRUCT	for	a	structure	called	NODE,	with	four	com‐
ponents	called	NAME,	QUESTION,	YES-CASE,	and	NO-	CASE.

b.	Define	a	global	variable	*NODE-LIST*	that	will	hold	all	the	nodes
in	the	discrimination	net.	Write	a	function	INIT	that	initializes	the
network	by	setting	*NODE-LIST*	to	NIL.

c.	Write	ADD-NODE.	It	should	return	the	name	of	the	node	it	added.

d.	Write	FIND-NODE,	which	takes	a	node	name	as	input	and	returns
the	node	if	it	appears	in	*NODE-LIST*,	or	NIL	if	it	doesn’t.
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Figure	12-3	Lisp	code	to	create	the	automotive	diagnosis	network.

e.	Write	PROCESS-NODE.	It	 takes	a	node	name	as	input.	If	 it	can’t
find	the	node,	it	prints	a	message	that	the	node	hasn’t	been	defined
yet,	and	returns	NIL.	Otherwise	it	asks	the	user	the	question	associ‐
ated	with	that	node,	and	then	returns	the	node’s	yes	action	or	no	ac‐
tion	depending	on	how	the	user	responds.

f.	Write	the	function	RUN.	It	maintains	a	local	variable	named	CUR‐
RENT-NODE,	 whose	 initial	 value	 is	 START.	 It	 loops,	 calling
PROCESS-NODE	 to	 process	 the	 current	 node,	 and	 storing	 the
value	returned	by	PROCESS-NODE	back	into	CURRENT-NODE.
If	 the	value	 returned	 is	 a	 string,	 the	 function	prints	 the	 string	 and
stops.	If	the	value	returned	is	NIL,	it	also	stops.

g.	Write	an	interactive	function	to	add	a	new	node.	It	should	prompt
the	 user	 for	 the	 node	 name,	 the	 question,	 and	 the	 yes	 and	 no	 ac‐
tions.	 Remember	 that	 the	 question	 must	 be	 a	 string,	 enclosed	 in
double	quotes.	Your	function	should	add	the	new	node	to	the	net.

h.	If	the	engine	will	run	briefly	but	then	stalls	when	it’s	cold,	it	is	pos‐
sible	that	the	idle	rpm	is	set	too	low.	Write	a	new	node	called	EN‐
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GINE-WILL-RUN-BRIEFLY	 to	 inquire	whether	 the	 engine	 stalls
when	 cold	 but	 not	when	warm.	 If	 so,	 have	 the	 net	 go	 to	 another
node	where	the	user	is	asked	whether	the	cold	idle	speed	is	at	least
700	rpm.	If	it’s	not,	tell	the	user	to	adjust	the	idle	speed.

12	Advanced	Topics

12.8	PRINT	FUNCTIONS	FOR	STRUCTURES
It	 is	 often	 convenient	 to	 invent	 specialized	 notations	 for	 printing	 structures.
For	example,	we	may	not	want	to	see	all	the	fields	of	a	starship	object	when‐
ever	it	is	printed;	we	may	be	satisfied	to	just	see	the	name.	The	convention	for
printing	abbreviated	structure	descriptions	 in	Common	Lisp	 is	 to	make	up	a
notation	beginning	with	“#<“	and	ending	with	“>“	 that	 includes	 the	 type	of
the	 structure	plus	whatever	 identifying	 information	 is	 desired.	For	 example,
we	might	choose	to	print	starships	this	way:

The	first	step	in	customizing	the	way	starship	objects	print	is	 to	write	our
own	 print	 function.	 It	 must	 take	 three	 inputs:	 the	 object	 being	 printed,	 the
stream	on	which	 to	print	 it,	and	a	number	 (called	depth)	 that	Common	Lisp
uses	to	limit	the	depth	of	nesting	when	printing	complex	structures.	We	will
ignore	 the	 depth	 argument	 in	 this	 book,	 but	 our	 function	 must	 still	 accept
three	arguments	to	work	correctly.	Here	it	is:

We	can	test	 this	function	by	calling	it	with	a	starship	as	first	 input.	We’ll
use	T	for	the	second	input	(T	refers	to	the	default	output	stream,	which	is	the
console),	and	a	depth	of	zero.

Now	to	make	Lisp	call	this	function	whenever	it	tries	to	print	a	starship,	we
must	include	the	print	function	as	an	option	to	the	DEFSTRUCT:
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Print	functions	are	especially	useful	when	a	structure	contains	other	struc‐
tures	as	components	and	we	want	to	suppress	most	of	the	detail.	They	are	al‐
most	 essential	 when	 there	 are	 circular	 pointers	 between	 structures.	 For	 in‐
stance,	every	captain	has	a	ship,	and	every	ship	a	captain.	If	the	structures	for
Kirk	and	the	Enterprise	point	 to	each	other,	 then	when	either	one	is	printed,
Lisp	 could	 enter	 an	 infinite	 loop,	 or	 else	 be	 forced	 to	 use	 the	 rather	 unaes‐
thetic	#1#	notation	 to	correctly	express	 the	circularity.	 If	 the	print	 functions
for	the	STARSHIP	and	CAPTAIN	structures	display	only	the	NAME	fields,
we	will	have	a	concise	notation	for	these	objects	in	which	the	circularities	are
not	evident.

EXERCISE
12.5.	Create	a	defstruct	for	CAPTAIN	with	fields	NAME,	AGE,	and	SHIP.

Make	a	structure	describing	James	T.	Kirk,	captain	of	the	Enterprise,
age	35.	Make	the	Enterprise	point	back	to	Kirk	through	its	CAPTAIN
component.	Notice	that	when	you	print	Kirk,	you	see	his	ship	as	well.
Now	 define	 a	 print	 function	 for	 CAPTAIN	 that	 displays	 only	 the
name,	such	as	#<CAPTAIN	“James	T.	Kirk”>.

12.9	EQUALITY	OF	STRUCTURES
The	EQUAL	function	does	not	 treat	 two	distinct	 structures	as	equal	 even	 if
they	have	the	same	components.	For	example:
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However,	 the	EQUALP	function	will	 treat	 two	structures	as	equal	 if	 they
are	of	the	same	type	and	all	their	components	are	equal.

EQUALP	 also	 differs	 from	 EQUAL	 in	 ignoring	 case	 distinctions	 when
comparing	characters.

12.10	INHERITANCE	FROM	OTHER
STRUCTURES
Structure	types	can	be	organized	into	a	hierarchy	using	the	:INCLUDE	option
to	DEFSTRUCT.	For	example,	we	could	define	a	structure	type	SHIP	whose
components	are	NAME,	CAPTAIN,	and	CREW-SIZE.	Then	we	could	define
STARSHIP	 as	 a	 type	of	SHIP	with	 additional	 components	WEAPONS	and
SHIELDS,	and	SUPPLY-SHIP	as	a	type	of	SHIP	with	an	additional	compo‐
nent	called	CARGO.
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The	fields	of	a	STARSHIP	structure	 include	all	 the	components	of	SHIP.
Thus,	when	we	make	 a	 starship,	 its	 first	 three	 components	will	 be	NAME,
CAPTAIN,	and	CREW-SIZE.	The	same	holds	for	supply	ships.

The	Enterprise	is	both	a	ship	and	a	starship,	so	both	type	predicates	will	re‐
turn	true.

Finally,	note	that	the	accessor	functions	for	ships	also	apply	to	all	subtypes
of	ship,	which	include	starships	and	supply	ships.	Thus	we	can	access	the	cap‐
tain	 of	 the	 Enterprise	 using	 either	 SHIP-CAPTAIN	 or	 STARSHIP-CAP‐
TAIN,	but	not	SUPPLY-SHIP-CAPTAIN.
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13

Arrays,	Hash	Tables,	and	Property
Lists

13.1	INTRODUCTION
This	 chapter	 briefly	 covers	 three	 distinct	 datatypes:	 arrays,	 hash	 tables,	 and
property	 lists.	 Arrays	 are	 used	 very	 frequently	 in	 other	 programming	 lan‐
guages,	but	not	so	often	in	Lisp.	The	reason	is	that	most	languages	have	such
an	impoverished	set	of	datatypes	that	arrays	must	be	used	for	many	applica‐
tions	where	lists,	structures,	or	hash	tables	would	be	preferable.

Property	lists	are	the	oldest	of	the	three	datatypes	discussed	in	this	chapter;
they	were	part	of	the	original	Lisp	dialect,	Lisp	1.5.	In	modem	Lisp	program‐
ming	 they	have	 largely	been	 replaced	by	hash	 tables,	but	 they’re	still	worth
understanding.

13.2	CREATING	AN	ARRAY
An	array	is	a	contiguous	block	of	storage	whose	elements	are	named	by	nu‐
meric	subscripts.	In	this	book	we	will	consider	only	one-dimensional	arrays,
which	are	called	vectors.	(It’s	only	a	minor	step	from	vectors	to	matrices	and
higher	dimensional	arrays;	see	your	reference	manual	for	details.)	The	com‐
ponents	of	a	vector	of	 length	n	are	numbered	zero	 through	n-1.	Let’s	create
our	first	vector	and	store	it	in	the	variable	MY-VEC:

Do	not	let	the	#()	notation	confuse	you	into	thinking	that	arrays	are	lists.	A
list	is	a	chain	of	cons	cells.	An	array	is	not	a	chain;	it	is	a	contiguous	block	of
storage.	 The	 vector	 #(TUNING	VIOLIN	 440	A)	 is	 represented	 this	way	 in
memory:
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The	shaded	portion	of	the	array	is	called	an	array	header.	It	contains	use‐
ful	information	about	the	array,	such	as	its	length	and	number	of	dimensions,
which	Lisp	uses	whenever	you	access	the	array’s	elements.	As	you	might	ex‐
pect,	basic	list	operations	such	as	CAR	and	CDR	do	not	work	on	arrays,	since
arrays	are	not	cons	cells.

Because	storage	in	arrays	is	contiguous,	we	can	access	each	element	of	an
array	as	 fast	 as	 any	other	 element.	With	 lists,	we	have	 to	 follow	a	 chain	of
pointers	to	get	from	one	cons	cell	to	the	next,	so	depending	on	the	length	of
the	list,	it	can	take	much,	much	longer	to	access	the	last	element	than	the	first.
Efficient	access	is	the	prime	advantage	arrays	have	over	lists.	Another	advan‐
tage	is	that	in	most	implementations,	an	array	uses	only	half	as	much	memory
as	a	list	of	equal	length.	But	lists	also	have	some	advantages	over	arrays.	Lists
of	arbitrary	length	are	easily	built	up	element	by	element,	either	recursively	or
iteratively.	It	is	not	as	easy	to	grow	an	array	one	element	at	a	time.*	Another
advantage	of	lists	is	that	they	can	share	structure	in	ways	that	are	impossible
for	arrays,	but	we	won’t	get	into	the	details	of	that	in	this	book.

13.3	PRINTING	ARRAYS
To	be	 able	 to	 see	 the	 elements	of	 an	 array,	we	must	 set	 the	global	variable
*PRINT-	ARRAY*	to	T.	This	assures	that	vectors	will	be	printed	in	the	same
#(thing1	thing2...)	notation	we	use	to	type	them	in.	If	*PRINT-	ARRAY*	is
NIL,	vectors	and	arrays	will	print	 in	a	more	concise	 implementation-depen‐
dent	 form	 using	 #<	 >	 notation,	 in	which	 their	 individual	 elements	 are	 sup‐
pressed.
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13.4	ACCESSING	AND	MODIFYING	ARRAY
ELEMENTS
The	 vector	 we	 stored	 in	MY-VEC	 has	 four	 elements,	 numbered	 zero,	 one,
two,	and	three.	The	AREF	function	is	used	to	access	the	elements	of	an	array
by	number,	just	as	NTH	is	used	to	access	the	elements	of	lists.

AREF	is	also	understood	as	a	place	name	by	SETF;	this	is	how	one	stores
new	values	in	an	array.	Let’s	make	a	fresh	array	and	store	some	items	in	it.

Many	functions	we	originally	learned	to	use	on	lists	are	actually	designed
to	work	on	sequences,	which	include	both	lists	and	vectors.	Some	examples
of	sequence	functions	are	LENGTH,	REVERSE,	and	FIND-IF.
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On	the	other	hand,	some	functions	work	only	on	lists.	Besides	the	obvious
CAR	and	CDR,	there	are	MEMBER	and	the	other	set	functions,	plus	SUBST
and	 SUBLIS,	 and	 destructive	 list	 functions	 like	NCONC	 (described	 in	Ad‐
vanced	Topics	 section	10.8.)	But	destructive	 sequence	 functions,	 like	NRE‐
VERSE,	work	on	either	lists	or	vectors.

13.5	CREATING	ARRAYS	WITH	MAKE-ARRAY
The	 Lisp	 function	 MAKE-ARRAY	 creates	 and	 returns	 a	 new	 array.	 The
length	of	 the	array	 is	specified	by	 the	 first	argument.	The	 initial	contents	of
the	array	are	undefined.	Some	Common	Lisp	implementations	initialize	array
elements	to	zero;	others	use	NIL.	To	be	safe,	you	should	not	rely	on	array	ele‐
ments	having	any	particular	initial	value	unless	you	have	specified	one	explic‐
itly.

MAKE-ARRAY	accepts	several	keyword	arguments.	The	:INITIAL-ELE‐
MENT	keyword	specifies	one	 initial	value	 to	use	for	all	 the	elements	of	 the
array.

The	:INITIAL-CONTENTS	keyword	specifies	a	list	of	values	for	initializ‐
ing	the	respective	elements	of	an	array.	The	list	must	be	exactly	as	long	as	the
array.

If	you	do	not	use	one	of	these	keywords	when	calling	MAKE-ARRAY,	the
initial	contents	of	the	array	will	be	unpredictable.

13.6	STRINGS	AS	VECTORS
Strings	 are	 actually	 a	 special	 type	 of	 vector.	 Thus,	 such	 functions	 as
LENGTH,	 REVERSE,	 and	 AREF,	 which	 work	 on	 vectors,	 also	 work	 on
strings.	Remember	that	vectors	are	indexed	starting	from	0,	not	1.
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The	elements	of	a	string	are	called	character	objects.	For	example,	#\k	de‐
notes	the	character	object	known	as	lowercase	“k.”	Characters	are	yet	another
datatype,	distinct	 from	symbols	and	numbers.	Character	objects	do	not	need
to	be	quoted	because	they	evaluate	to	themselves,	just	as	numbers	do.

Since	 SETF	 understands	 AREF	 as	 a	 place	 name,	 you	 can	 destructively
modify	strings	with	SETF.	You	must	only	store	character	objects	in	the	string,
though,	or	an	error	will	result.

13.7	HASH	TABLES
A	hash	table	offers	essentially	 the	same	functionality	as	an	association	 list.
You	supply	a	key,	which	may	be	any	sort	of	object,	and	Lisp	gives	you	back
the	item	associated	with	that	key.	The	advantage	of	hash	tables	is	that	they	are
implemented	using	special	hashing	algorithms	that	allow	Lisp	to	look	things
up	much	faster	than	it	can	look	them	up	in	an	association	list.	Hashing	is	fast
in	 part	 because	 hash	 tables	 are	 implemented	 using	 vectors	 rather	 than	 cons
cell	chains.

Association	lists	still	have	some	advantages	over	hash	tables.	They	are	eas‐
ier	to	create	and	manipulate	because	they	are	ordinary	list	structures.	Hash	ta‐
bles	use	 implementation-dependent	 representations	 that	are	not	directly	visi‐
ble	 to	 the	 user.	 So	 if	 you	 want	 utter	 simplicity,	 use	 an	 association	 list.	 If
you’re	willing	to	trade	some	simplicity	for	efficiency,	use	a	hash	table.

Hash	 tables	 cannot	 be	 typed	 in	 from	 the	 keyboard	 the	 way	 vectors	 can.
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They	can	only	be	created	by	the	MAKE-HASH-TABLE	function.	In	the	de‐
fault	kind	of	hash	 table,	EQL	 is	used	 to	compare	 the	keys	of	 items	 that	 are
stored.	It	is	also	possible	to	create	hash	tables	that	use	EQ	or	EQUAL.	Hash
table	objects	are	printed	in	an	implementation-dependent	manner	that	usually
does	not	show	you	the	elements.	The	following	example	is	typical:

The	GETHASH	 function	 looks	up	a	key	 in	 a	hash	 table.	The	key	can	be
any	sort	of	object.	GETHASH	is	understood	as	a	place	specification	by	SETF,
so	it	can	also	be	used	to	store	into	the	hash	table.

GETHASH	returns	two	values	instead	of	one.	The	first	value	is	the	item	as‐
sociated	with	the	key,	or	NIL	if	the	key	was	not	found	in	the	hash	table.	The
second	value	is	T	if	the	key	was	found	in	the	hash	table,	or	NIL	if	it	was	not
found.	The	reason	for	this	second	value	is	to	distinguish	a	key	that	appears	in
the	table	with	an	associated	item	of	NIL	from	a	key	that	does	not	appear	at	all.
You	can	safely	ignore	the	second	return	value;	we	will	not	make	use	of	multi‐
ple	return	values	in	this	book.

DESCRIBE	will	tell	you	useful	things	about	a	hash	table,	such	as	the	num‐
ber	of	buckets	it	has.	A	bucket	is	a	group	of	entries.	The	more	buckets	there
are,	the	fewer	entries	will	be	assigned	to	the	same	bucket,	so	retrievals	will	be
faster.	But	the	price	of	this	speed	is	an	increase	in	the	amount	of	memory	the
hash	table	uses.	INSPECT	can	be	used	to	look	at	the	entries	of	a	hash	table.
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13.8	PROPERTY	LISTS
In	Lisp,	every	symbol	has	a	property	list.	Property	lists	provide	basically	the
same	facilities	as	association	lists	and	hash	tables:	You	can	store	a	value	in	a
property	list	under	a	given	key	(called	an	indicator),	and	later	look	things	up
in	the	property	list	by	supplying	the	indicator.	Property	lists	are	organized	as
lists	of	alternating	indicators	and	values,	like	this:

Property	lists	are	very	old;	they	were	part	of	the	original	Lisp	1.5.	They	are
included	here	for	the	sake	of	completeness;	for	most	applications	it	is	better	to
use	an	association	list	or	hash	table.	Many	Lisp	implementations	use	the	prop‐
erty	lists	of	symbols	for	their	own	purposes.	For	example,	if	you	look	on	the
property	list	of	CONS	or	COND	you	may	see	some	system-specific	informa‐
tion.	Users	are	free	to	put	their	own	properties	on	the	property	list,	but	it	is	a
very	bad	idea	to	tamper	with	the	properties	your	Lisp	puts	there.

The	 GET	 function	 retrieves	 a	 property	 of	 a	 symbol	 given	 the	 indicator.
SETF	understands	GET	as	a	place	description;	that	is	how	new	properties	are
stored	 on	 the	 property	 list.	 Let’s	 give	 the	 symbol	 FRED	 a	 property	 called
SEX	with	value	MALE,	a	property	called	AGE	with	value	23,	and	a	property
called	SIBLINGS	with	value	(GEORGE	WANDA).

The	actual	property	list	of	FRED	looks	like	this:

Retrieving	one	of	FRED’s	properties	 is	 easy:	We	 just	use	GET	 to	 search
the	property	 list.	Note:	GET	uses	 the	EQ	 function	 to	 check	 for	 equality,	 so
property	indicators	must	not	be	numbers.	Normally	they	are	symbols.
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As	you	can	see,	when	a	symbol	does	not	have	the	specified	property,	GET
normally	 returns	NIL.	 However,	 GET	 also	 accepts	 a	 third	 argument	 that	 it
will	return	instead	of	NIL	if	it	can’t	find	the	property	it	was	asked	to	look	up.
This	 is	one	way	 to	distinguish	a	 symbol	having	a	property	FOO	with	value
NIL	from	a	symbol	that	does	not	have	a	FOO	property	at	all.	For	example,	we
may	know	that	Mabel	is	an	only	child	(her	SIBLINGS	property	is	NIL),	but
Clara’s	siblings	may	not	be	recorded.

The	value	of	a	property	can	be	changed	at	any	time.	Suppose	FRED	has	a
birthday:

The	SYMBOL-PLIST	 function	 returns	 a	 symbol’s	 property	 list.	 It	 is	 dis‐
cussed	in	more	detail	in	Advanced	Topics	section	13.10.

We	can	remove	a	property	entirely	using	a	function	called	REMPROP.	The
value	 returned	 by	REMPROP	 is	 implementation	 dependent.	 It	will	 be	 non-
NIL	if	the	property	was	found	on	the	property	list,	or	NIL	if	the	property	was
not	found.	As	a	side	effect,	both	the	property	name	and	the	associated	value
are	removed	from	the	property	list.

13.9	PROGRAMMING	WITH	PROPERTY	LISTS
Suppose	we	are	building	a	database	about	the	characters	in	a	story,	and	one	of
the	facts	we	want	to	record	is	meetings	between	the	characters.	We	can	store	a
list	 of	 names	 under	 the	 HAS-MET	 property	 of	 each	 individual.	 A	 name
should	not	appear	on	the	list	more	than	once,	in	other	words,	the	list	should	be
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a	set.	The	easiest	way	 to	do	 this	 is	 to	write	a	 function	called	ADDPROP	to
add	an	element	to	a	set	stored	under	a	property	name.	Here	is	the	definition	of
ADDPROP:

PUSHNEW	 is	 a	 generalized	 assignment	 operator	 like	 PUSH,	 but	 it	 first
checks	to	make	sure	the	element	is	not	a	member	of	the	list,	so	it	is	useful	for
adding	an	element	to	a	set.

Using	 our	 ADDPROP	 function	 we	 can	 easily	 write	 a	 function	 to	 record
meetings:

This	function	makes	use	of	the	fact	that	“has-met”	is	a	symmetric	relation,
in	other	words,	if	x	has	met	y,	then	y	has	also	met	x.

EXERCISES
13.1.	Write	a	function	called	SUBPROP	that	deletes	an	element	from	a	set

stored	under	a	property	name.	For	example,	if	the	symbol	ALPHA	has
the	 list	 (A	B	C	D	E)	 as	 the	 value	 of	 its	 FOOPROP	 property,	 doing
(SUBPROP	’ALPHA	’D	’FOOPROP)	should	leave	(A	B	C	E)	as	the
value	of	ALPHA’S	FOOPROP	property.

13.2.	Write	a	function	called	FORGET-MEETING	that	forgets	that	two	par‐
ticular	persons	have	ever	met	each	other.	Use	SUBPROP	in	your	solu‐
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tion.

13.3.	Using	SYMBOL-PLIST,	write	your	own	version	of	the	GET	function.

13.4.	Write	a	predicate	HASPROP	that	returns	T	or	NIL	to	indicate	whether
a	 symbol	 has	 a	 particular	 property,	 independent	 of	 the	 value	 of	 that
property.	 Note:	 If	 symbol	 A	 has	 a	 property	 FOO	 with	 value	 NIL,
(HASPROP’A’FOO)	should	still	return	T.

SUMMARY
Arrays	 are	 a	 kind	 of	 sequence,	 as	 are	 lists.	 One-dimensional	 arrays	 are

called	vectors.	Strings	 are	vectors	of	 characters.	Arrays	 can	be	created	with
MAKE-ARRAY,	and	their	elements	accessed	with	the	AREF	function.	Many
functions	 that	 work	 on	 lists	 also	 work	 on	 arrays,	 such	 as	 LENGTH,	 RE‐
VERSE,	and	FIND-IF.

Hash	 tables	 offer	 essentially	 the	 same	 functionality	 as	 association	 lists.
Hash	 tables	 provide	 for	 very	 efficient	 lookup	 of	 items,	 because	 they	 don’t
search	the	table	sequentially	the	way	ASSOC	does.	Instead	they	use	a	hashing
algorithm	to	compute	a	subscript,	which	is	used	to	access	a	vector.

Property	lists	are	attached	to	symbols,	and	are	used	by	some	Lisp	systems
to	store	implementation	dependent	information.	They	are	used	infrequently	in
modem	Lisp	programming.	Hash	tables	are	preferred	over	both	property	lists
and	association	lists	when	efficient	access	is	important.

REVIEW	EXERCISES
13.5.	Give	one	advantage	of	arrays	over	lists.

13.6.	Give	one	advantage	of	lists	over	arrays.

13.7.	Which	requires	more	cons	cells:	a	property	list,	or	an	association	list	of
dotted	pairs?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Array	functions:	MAKE-ARRAY,	AREF.

Printer	switch:	*PRINT-ARRAY*.

Hash	table	functions:	MAKE-HASH-TABLE,	GETHASH.

Property	list	functions:	GET,	SYMBOL-PLIST,	REMPROP.

Array	Keyboard	Exercise

368



Let’s	 find	out	how	random	your	Lisp’s	 random	number	generator	 is.	 In	 this
exercise	we	will	produce	a	histogram	plot	of	200	random	values	between	zero
and	ten.	We	will	use	an	array	to	keep	track	of	how	many	times	we	encounter
each	value.	Here	is	an	example	of	how	the	program	will	work:

The	RANDOM	function	returns	a	random	integer	from	zero	up	to,	but	not
including,	its	argument.	Thus	(RANDOM	11)	returns	a	number	from	zero	to
ten.	In	the	histogram	display,	the	first	number	on	each	line	is	the	value	we’re
counting.	The	next	number,	in	brackets,	is	how	many	instances	of	that	value
have	been	seen.	The	remainder	of	 the	 line	contains	one	asterisk	for	each	in‐
stance.	The	last	line	gives	the	total	number	of	points	recorded	so	far.

EXERCISE
13.8.	Follow	the	steps	below	to	create	a	histogram-drawing	program.	Your

functions	 should	 not	 assume	 that	 the	 histogram	 will	 have	 exactly
eleven	bins.	In	other	words,	don’t	use	eleven	as	a	constant	in	your	pro‐
gram;	use	 (LENGTH	*HIST-ARRAY*)	 instead.	That	way	your	 pro‐
gram	will	be	able	to	generate	histograms	of	any	size.

a.	Write	expressions	to	set	up	a	global	variable	*HIST-ARRAY*	that
holds	the	array	of	counts,	and	a	global	variable	*TOTAL-POINTS*
that	holds	the	number	of	points	recorded	so	far.

b.	Write	 a	 function	NEW-HISTOGRAM	 to	 initialize	 these	variables
appropriately.	It	should	take	one	input:	the	number	of	bins	the	his‐
togram	is	to	have.
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c.	Write	the	function	RECORD-VALUE	that	takes	a	number	as	input.
If	the	number	is	between	zero	and	ten,	it	should	increment	the	ap‐
propriate	 element	 of	 the	 array,	 and	 also	 update	 *TOTAL-
POINTS*.	 If	 the	 input	 is	 out	 of	 range,	RECORD-VALUE	 should
issue	an	appropriate	error	message.

d.	Write	a	function	PRINT-HIST-LINE	that	takes	a	value	from	zero	to
ten	as	 input,	 looks	up	that	value	in	the	array,	and	prints	 the	corre‐
sponding	 line	 of	 the	 histogram.	 To	 get	 the	 numbers	 to	 line	 up	 in
columns	properly,	you	will	need	to	use	the	format	directives	~2S	to
display	 the	 value	 and	 ~3S	 to	 display	 the	 count.	 You	 can	 use	 a
DOTIMES	to	print	the	asterisks.

e.	Write	the	function	PRINT-HISTOGRAM.

Hash	Table	Keyboard	Exercise
A	cryptogram	 is	a	 type	of	puzzle	 that	 requires	 the	solver	 to	decode	a	mes‐
sage.	The	code	is	known	as	a	substitution	cipher	because	it	consists	of	sub‐
stituting	 one	 letter	 for	 another	 throughout	 the	message.	 For	 example,	 if	we
substitute	J	for	F,	T	for	A,	and	W	for	L,	the	word	“fall”	would	be	encoded	as
JTWW.	Here	is	an	actual	cryptogram	for	you	to	solve:

The	purpose	of	this	keyboard	exercise	is	not	to	solve	cryptograms	by	hand,
but	to	write	a	program	to	help	you	solve	them.	Here	is	how	our	cryptogram-
solving	 program	 will	 start	 out.	 The	 cryptogram	 is	 represented	 as	 a	 list	 of
strings.	All	letters	should	be	lowercase.

When	 tackling	 a	 new	 cryptogram,	 it	 helps	 to	 look	 at	 the	 shortest	 words
first.	In	English	there	are	only	two	one-letter	words,	“I”	and	“a,”	so	the	tenth
word	of	the	cryptogram,	P,	must	be	one	of	those.	Suppose	we	guess	that	P	de‐
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ciphers	to	A.	Beneath	each	P	in	the	text	we	write	an	A.

Next	we	might	look	at	all	the	two-letter	words	and	guess	that	Z	deciphers
to	I.	Beneath	each	Z	in	the	message	we	write	an	I.

An	important	constraint	on	cryptograms	that	helps	to	make	them	solvable	is
that	no	letter	can	decipher	to	more	than	one	thing,	and	no	two	letters	can	deci‐
pher	to	the	same	thing.	Our	program	must	check	to	ensure	that	this	constraint
is	obeyed	by	any	solution	we	generate.
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At	some	point	we	may	want	to	take	back	a	substitution.	Suppose	that	after
deciphering	P	and	Z	we	decide	that	P	shouldn’t	really	decipher	to	A	after	all.
The	program	must	allow	for	this:

The	process	continues	until	we	have	solved	the	cryptogram.

EXERCISE
13.9.	Set	up	the	global	variable	CRYPTO-TEXT	as	shown.	Then	build	the

cryptogram-solving	tool	by	following	these	instructions:

a.	Each	letter	in	the	alphabet	has	a	corresponding	letter	to	which	it	de‐
ciphers,	for	example,	P	deciphers	to	A.	As	we	solve	the	cryptogram
we	 will	 store	 this	 information	 in	 two	 hash	 tables	 called	 *ENCI‐
PHER-TABLE*	and	*DECIPHER-TABLE*.	We	will	use	*DECI‐
PHER-	TABLE*	to	print	out	the	deciphered	cryptogram.	We	need
^ENCIPHER-TABLE*	to	check	for	two	letters	being	deciphered	to
the	 same	 thing,	 for	 example,	 if	P	 is	 deciphered	 to	A	and	 then	we
tried	 to	 decipher	K	 to	A,	 a	 look	 at	 *ENCIPHER-TABLE*	would
reveal	that	A	had	already	been	assigned	to	P.	Similarly,	if	P	is	deci‐
phered	to	A	and	then	we	tried	deciphering	P	to	E,	a	look	at	*DECI‐
PHER-TABLE*	would	 tell	us	 that	P	had	already	been	deciphered
to	A.	Write	expressions	to	initialize	these	global	variables.

b.	Write	a	function	MAKE-SUBSTITUTION	that	takes	two	character
objects	as	input	and	stores	the	appropriate	entries	in	*DECIPHER-
TABLE*	 and	 *ENCIPHER-TABLE*	 so	 that	 the	 first	 letter	 deci‐
phers	to	the	second	and	the	second	letter	enciphers	to	the	first.	This
function	does	not	need	to	check	if	either	letter	already	has	an	entry
in	these	hash	tables.

c.	Write	a	 function	UNDO-SUBSTITUTION	 that	 takes	one	 letter	as
input.	 It	 should	set	 the	*DECIPHER-TABLE*	entry	of	 that	 letter,
and	the	*	ENCIPHER-	TABLE*	entry	of	the	letter	it	deciphered	to,
to	NIL.
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d.	Look	up	the	documentation	for	the	CLRHASH	function,	and	write
a	function	CLEAR	that	clears	the	two	hash	tables	used	in	this	prob‐
lem.

e.	Write	a	function	DECIPHER-STRING	that	takes	a	single	encoded
string	as	input	and	returns	a	new,	partially	decoded	string.	It	should
begin	by	making	a	new	string	the	same	length	as	the	input,	contain‐
ing	all	spaces.	Here	is	how	to	do	that,	assuming	the	variable	LEN
holds	the	length:

Next	 the	 function	should	 iterate	 through	 the	elements	of	 the	 input
string,	 which	 are	 character	 objects.	 For	 each	 character	 that	 deci‐
phers	to	something	non-NIL,	that	value	should	be	inserted	into	the
corresponding	 position	 in	 the	 new	 string.	 Finally,	 the	 function
should	return	the	new	string.	When	testing	this	function,	make	sure
its	inputs	are	all	lowercase.

f.	Write	a	function	SHOW-LINE	that	displays	one	line	of	cryptogram
text,	with	the	deciphered	text	displayed	beneath	it.

g.	 Write	 a	 function	 SHOW-TEXT	 that	 takes	 a	 cryptogram	 (list	 of
strings)	as	input	and	displays	the	lines	as	in	the	examples	at	the	be‐
ginning	of	this	exercise.

h.	 Type	 in	 the	 definition	 of	 GET-FIRST-CHAR,	 which	 returns	 the
first	character	in	the	lowercase	printed	representation	of	an	object.

i.	Write	a	function	READ-LETTER	that	reads	an	object	from	the	key‐
board.	If	the	object	is	the	symbol	END	or	UNDO,	it	should	be	re‐
turned	 as	 the	 value	 of	 READ-LETTER.	 Otherwise	 READ-LET‐
TER	 should	 use	 GET-FIRST-CHAR	 on	 the	 object	 to	 extract	 the
first	 character	 of	 its	 printed	 representation;	 it	 should	 return	 that
character	as	its	result.

j.	 Write	 a	 function	 SUB-LETTER	 that	 takes	 a	 character	 object	 as
input.	If	that	character	has	been	deciphered	already,	SUB-LETTER
should	print	an	error	message	that	 tells	 to	what	the	letter	has	been
deciphered.	Otherwise	SUB-LETTER	should	ask	“What	does	(let‐
ter)	decipher	to?”	and	read	a	letter.	If	the	result	is	a	character	and	it
has	 not	 yet	 been	 enciphered,	 SUB-LETTER	 should	 call	 MAKE-
SUBSTITUTION	to	record	the	substitution.	Otherwise	an	appropri‐
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ate	error	message	should	be	printed.

k.	Write	a	 function	UNDO-LETTER	 that	asks	“Undo	which	 letter?”
and	 reads	 in	 a	 character.	 If	 that	 character	 has	 been	 deciphered,
UNDO-LETTER	 should	 call	UNDO-SUBSTITUTION	on	 the	 let‐
ter.	Otherwise	an	appropriate	error	message	should	be	printed.

l.	Write	 the	main	 function	SOLVE	that	 takes	a	cryptogram	as	 input.
SOLVE	should	perform	the	following	loop.	First	 it	should	display
the	cryptogram.	Then	 it	 should	ask	“Substitute	which	 letter?”	and
call	 READ-LETTER.	 If	 the	 result	 is	 a	 character,	 SOLVE	 should
call	SUB-LETTER;	if	the	result	is	the	symbol	UNDO,	it	should	call
UNDO-LETTER;	if	the	result	is	the	symbol	END,	it	should	return
T;	 otherwise	 it	 should	 issue	 an	 error	message.	 Then	 it	 should	 go
back	 to	 the	 beginning	 of	 the	 loop,	 unless	 the	 value	 returned	 by
READ-LETTER	was	END.

m.	P	deciphers	to	A,	and	Z	deciphers	to	I.	Solve	the	cryptogram.

Lisp	Toolkit:	ROOM
Lisp	systems	tend	to	use	a	lot	of	memory.	When	they	run	out,	they	try	to	get
more.	There	are	several	ways	Lisp	might	get	more	memory.	First,	it	can	try	to
reclaim	any	previously	allocated	storage	that	is	no	longer	in	use,	such	as	cons
cells	to	which	nothing	points	anymore.	This	process	is	called	garbage	collec‐
tion.	 Some	Lisps	 garbage	 collect	 continuously,	 but	most	 have	 to	 stop	what
they’re	doing,	garbage	collect,	and	then	resume.	The	pause	for	a	garbage	col‐
lection	 is	usually	only	a	 few	seconds,	but	 if	your	Lisp	 is	garbage	collecting
frequently,	these	pauses	can	be	annoying.

Although	all	Lisp	implementations	include	a	garbage	collector,	it	is	not	part
of	 the	 Common	 Lisp	 standard,	 so	 there	 is	 no	 standard	 way	 to	 modify	 a
garbage	collector’s	parameters	or	otherwise	 interact	with	 it.	 In	many	 imple‐
mentations,	though,	there	is	a	built-in	function	called	GC	that	causes	Lisp	to
garbage	collect	 immediately.	 It	usually	prints	some	sort	of	 informative	mes‐
sage	afterwards.

Another	way	Lisp	tries	to	obtain	memory	is	by	asking	the	operating	system
for	more	when	 it	 runs	 out.	 If	 you	 install	more	memory	 chips	 in	 your	 com‐
puter,	your	Lisp	may	not	have	to	garbage	collect	as	frequently,	and	may	there‐
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fore	run	faster.	The	ROOM	function	prints	a	summary	of	Lisp’s	current	mem‐
ory	usage,	so	you	can	tell	how	much	memory	has	been	allocated.	Since	each
Lisp	 implementation	manages	 its	memory	differently,	 the	details	of	 the	dis‐
play	 ROOM	 produces	 will	 differ.	 A	 typical	 example	 follows.	 This	 Lisp	 is
using	a	total	of	6.7	megabytes	of	memory.

If	you’re	using	a	workstation	with	virtual	memory,	when	Lisp	needs	more
memory,	 it	will	 start	using	up	more	of	your	disk	 for	 swap	space.	But	 if	 the
disk	 is	 full,	Lisp	will	 run	out	of	swap	space.	 If	 there	 is	a	danger	of	 the	disk
filling	up,	it	is	better	to	garbage	collect	more	frequently	than	to	increase	vir‐
tual	memory	 size.	You	 can	 set	 limits	 on	 the	maximum	 amount	 of	memory
your	Lisp	is	allowed	to	use,	but	each	implementation	handles	this	a	different
way.	See	your	user’s	manual	for	details.

13	Advanced	Topics

13.10	PROPERTY	LIST	CELLS
Recall	that	a	symbol	is	composed	of	five	pointers.	So	far	we’ve	seen	three	of
them:	the	symbol	name,	the	value	cell,	and	the	function	cell.	The	property	list
cell	 is	 another	 of	 these	 components.	 Every	 symbol	 has	 a	 property	 list,	 al‐
though	it	may	be	NIL.	In	contrast,	not	every	symbol	has	a	function	definition
in	its	function	cell,	or	a	value	in	its	value	cell.

Suppose	 we	 establish	 a	 property	 list	 for	 the	 symbol	 CAT-IN-HAT.	 The
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SYMBOL-PLIST	 function	 can	 be	 used	 to	 access	 the	 property	 list	 we	 have
created.

SETF	understands	SYMBOL-PLIST	as	 a	 place	name,	 so	 it	 is	 possible	 to
give	 a	 symbol	 a	 new	property	 list	 using	SETF.	Replacing	 the	 contents	 of	 a
symbol’s	property	list	cell	is	dangerous,	though,	because	it	could	wipe	out	im‐
portant	properties	that	Lisp	itself	had	stored	on	the	property	list.

One	 reason	 property	 lists	 are	 today	 considered	 archaic	 is	 that	 they	 are
global	data	structures:	A	symbol	has	only	one	property	list,	and	it	is	accessi‐
ble	everywhere.	If	we	use	hash	tables	 to	store	our	 information,	we	can	keep
several	of	them	around	at	 the	same	time,	representing	different	sets	of	facts.
Each	 hash	 table	 is	 independent,	 so	 changes	made	 to	 one	will	 not	 affect	 the
others.

13.11	MORE	ON	SEQUENCES
The	COERCE	function	can	be	used	 to	convert	a	sequence	 from	one	 type	 to
another.	If	we	coerce	a	string	to	a	list,	we	can	see	the	individual	character	ob‐
jects.	 Conversely,	 we	 can	 use	 COERCE	 to	 turn	 a	 list	 of	 characters	 into	 a
string.
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Yet	 another	way	 to	make	 a	 string	 is	 to	make	 a	 vector	with	MAKE-AR‐
RAY,	using	the	:ELEMENT-TYPE	keyword	to	specify	that	this	vector	holds
only	 objects	 of	 type	 STRING-CHAR.	 (STRING-CHAR	 is	 a	 subtype	 of
CHARACTER.)	Vectors	of	STRTNG-CHARs	are	strings.

Most	of	the	applicative	operators,	such	as	FIND-IF	and	REDUCE,	work	on
any	type	of	sequence,	not	just	lists.	MAPCAR	is	specific	to	lists,	but	there	is
also	a	general	mapping	function,	MAP,	that	works	on	sequences	of	any	type.
The	first	input	to	MAP	specifies	the	type	of	the	result,	the	second	input	is	the
mapping	function,	and	the	remaining	inputs	are	sequences	to	be	mapped	over.
MAP	stops	when	it	reaches	the	end	of	any	of	the	input	sequences.

If	MAP	 is	 given	NIL	 as	 a	 first	 argument,	 it	 returns	NIL	 instead	 of	 con‐
structing	 a	 sequence	 from	 the	 results	 of	 the	mapping.	 This	 is	 useful	 if	 you
want	to	apply	a	function	to	every	element	of	a	sequence	only	for	its	side	ef‐
fect.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
Sequence	functions:	MAP,	COERCE.

*	Note	to	instructors:	You	can	of	course	use	arrays	with	fill	pointers,	but	you	can	only	add	elements	at
one	end,	and	the	maximum	length	must	be	fixed	in	advance.	Or	you	can	use	adjustable	arrays,	but	re‐
peated	calls	to	AD	JUST-ARRAY	are	very	expensive.
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14

Macros	and	Compilation

14.1	INTRODUCTION
Macro	functions,	or	macros	for	short,	are	a	way	to	extend	the	syntax	of	Lisp.
In	this	chapter	we	will	use	evaltrace	diagrams	and	a	little	 tool	called	PPMX
(defined	in	the	Lisp	Toolkit	section)	to	see	how	macros	work.	There	will	be	a
few	references	 to	material	 in	previous	Advanced	Topics	sections,	but	you’ll
be	told	where	to	look	if	you	haven’t	read	those	sections	before.

In	the	second	half	of	the	chapter	we’ll	take	a	look	at	compilation.	If	you	de‐
cide	 one	 of	 your	 programs	 runs	 too	 slowly,	 compiling	 it	 is	 an	 easy	way	 to
make	it	faster.	The	compiler	translates	Lisp	programs	into	machine	language
programs,	which	can	result	in	a	10	to	100	times	speedup.

14.2	MACROS	AS	SHORTHAND
Think	of	macros	as	the	computer	equivalent	of	shorthand.	Anything	you	write
in	 shorthand	can	also	be	written	 in	plain	English;	 it	 just	 takes	 longer.	Simi‐
larly,	Common	Lisp	macros	don’t	let	you	say	anything	that	can’t	be	expressed
with	ordinary	functions,	but	they	do	help	you	to	say	things	more	concisely.	A
good	example	is	INCF.	It	is	quicker	to	write	(INCF	A)	than	(SETFA(+A1)).

Some	macros	are	very	clever,	especially	the	generalized	assignment	macros
like	SETF	and	INCF.	They	are	able	to	interpret	arbitrarily	complex	place	de‐
scriptions	as	generalized	variable	 references.	When	you	write	 an	expression
like

you’re	relying	on	the	cleverness	of	INCF	to	figure	out	what	this	place	descrip‐
tion	means.

Macros	can	generate	complicated	programs	from	simple	 instructions.	The
DEFSTRUCT	 macro,	 for	 example,	 turns	 a	 structure	 definition	 for	 STAR‐
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SHIPs	 into	 a	 long	 stream	 of	 instructions	 for	 supporting	 the	 STARSHIP
datatype.	 These	 include	 function	 definitions	 for	 MAKE-STARSHIP	 and
STARSHIP-P,	 and	 accessor	 functions	 for	 all	 the	STARSHIP’s	 components,
such	as	STARSHIP-NAME.	Not	only	would	it	be	a	lot	of	work	to	type	in	all
these	definitions	by	hand,	but	some	of	what	DEFSTRUCT	produces	is	imple‐
mentation	dependent.	For	 example,	 the	 instructions	 for	 entering	STARSHIP
as	a	part	of	the	Common	Lisp	type	hierarchy	differ	from	one	Common	Lisp
implementation	 to	 the	next.	They	involve	functions	and	variables	 that	aren’t
part	of	the	Common	Lisp	standard,	and	probably	aren’t	even	documented	by
the	Lisp	vendor.	The	DEFSTRUCT	macro	allows	Lisp	vendors	to	hide	these
messy	 details	 from	 their	 customers	 by	 providing	 an	 agreed-upon,	 standard
way	to	define	structures	that	works	in	every	Common	Lisp	implementation.

14.3	MACRO	EXPANSION
If	you	write	something	in	shorthand,	eventually	it	will	have	to	be	“expanded”
into	 plain	 English	 to	 understand	 and	 act	 on	 it.	 Lisp	 automatically	 expands
macro	calls	for	the	same	reason.	A	macro	is	actually	a	special	shorthand-ex‐
panding	function	that	does	not	evaluate	its	arguments.	Its	job	is	to	look	at	its
arguments	 and	produce	an	expression	 that	Lisp	can	 evaluate.	 In	 the	case	of
(INCF	A),	the	INCF	macro	is	called	on	the	(unevaluated)	argument	A.	It	con‐
structs	an	expression	such	as	(SETQ	A	(+	A	1)),	which	it	returns.	The	exact
expression	 INCF	 constructs	 is	 implementation	 dependent,	 but	 it	 will	 look
something	like	this	SETQ.	Lisp	then	evaluates	the	expression,	and	increments
the	value	of	A.

Recall	from	Section	10.10	that	the	SETQ	special	function	performs	assign‐
ment	on	ordinary	variables.	When	you	use	SETF	to	assign	to	an	ordinary	vari‐
able,	the	SETF	macro	actually	expands	into	a	call	to	SETQ.

In	evaltrace	notation,	macro	expansion	is	shown	by	a	dotted	line.	The	ex‐
pression	the	macro	returns	is	evaluated	normally,	shown	by	a	thin	solid	line	in
the	following	diagram:

If	you	want	to	look	at	macro	expansions	on	the	computer,	you	can	use	a	lit‐
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tle	tool	called	PPMX,	defined	in	the	Lisp	Toolkit	section	of	this	chapter.	The
name	PPMX	 stands	 for	 “Pretty	 Print	Macro	 expansion.”	 Some	Lisp	 editors
also	 provide	 commands	 for	 displaying	 macro	 expansions;	 see	 your	 user’s
manual.

In	 some	Lisp	 implementations	 INCF	expands	differently.	For	 example,	 it
might	expand	into	a	LET	expression	that	creates	a	local	variable	to	hold	the
value	 of	 (+	A	1),	 and	 then	 stores	 that	 value	 back	 into	A.	This	may	 seem	a
rather	 indirect	 approach	 to	 incrementing	A,	 but	 remember	 that	 INCF	 is	 de‐
signed	to	handle	much	more	complex	cases	involving	generalized	assignment.
In	those	cases	a	LET	may	really	be	necessary.

In	the	example	above,	#:G0144	is	an	internal	symbol,	called	a	gensym.	It
was	automatically	generated	by	INCF	to	serve	as	a	local	variable	name.	Gen‐
syms	are	guaranteed	not	to	conflict	with	the	names	of	any	of	your	variables.
For	reasons	we	won’t	go	into	here,	#:G0144	is	a	different	symbol	than	G0144.
You	cannot	type	this	symbol	from	the	keyboard,	so	it	will	never	conflict	with
any	variable	in	your	program,	even	if	you	happen	to	choose	the	name	G0144.

EXERCISES
14.1.	Use	PPMX	to	find	the	expression	to	which	(POP	X)	expands.

14.2.	Use	PPMX	to	see	to	what	expression	the	following	DEFSTRUCT	ex‐
pands.	(The	results	will	be	highly	implementation	dependent.)

14.4	DEFINING	A	MACRO
Macros	are	defined	with	DEFMACRO.	Its	syntax	is	similar	to	DEFUN.	Let’s
define	 a	 simplified	 version	 of	 INCF	 to	 increment	 ordinary	 variables.	 Our
macro	will	take	a	variable	name	as	input	and	construct	an	expression	to	incre‐
ment	that	variable	by	one.
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Another	way	to	see	how	SIMPLE-INCF	works	is	to	trace	it	with	DTRACE.
(If	you’re	using	the	standard	TRACE	supplied	with	your	Lisp	implementation
instead	of	DTRACE,	you	may	be	unable	to	trace	macros.)

It’s	fine	 to	use	DTRACE	on	macros	you	write	yourself,	but	 in	some	Lisp
implementations	it	may	be	inadvisable	to	trace	important	built-in	macros,	like
SETF.	If	 tracing	these	macros	causes	problems,	use	PPMX	instead.	One	ad‐
vantage	of	PPMX	over	tracing	is	that	the	result	of	the	macroexpansion	is	only
printed,	not	evaluated.	PPMX	allows	you	to	experiment	with	macro-expand‐
ing	arbitrary	expressions	without	worrying	about	their	causing	an	evaluation
error.

Now	 let’s	modify	 SIMPLE-INCF	 to	 accept	 an	 optional	 second	 argument
specifying	 the	 amount	by	which	 to	 increment	 the	variable.	We	do	 this	with
the	&OPTIONAL	lambda-list	keyword.	(Optional	arguments	were	explained
in	Advanced	Topics	section	11.13.)	The	default	amount	to	increment	the	vari‐
able	will	be	one.
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Macros	do	not	evaluate	their	arguments,	so	the	inputs	to	SIMPLE-INCF	are
the	symbol	B	and	the	list	(*	3	A),	not	the	numbers	2	and	15.	An	evaltrace	dia‐
gram	shows	how	SIMPLE-INCF	computes	the	macro	expansion,	which	Lisp
then	evaluates.

Let’s	 now	 consider	why	 INCF	 has	 to	 be	 a	macro	 rather	 than	 a	 function.
Suppose	 we	 try	 to	 make	 an	 INCF	 function,	 using	 DEFUN.	 We’ll	 call	 it
FAULTY-INCF.

Since	FAULTY-INCF	is	a	function,	it	evaluates	its	arguments,	and	it	is	not
expected	to	return	an	expression	for	Lisp	to	evaluate.	It	can	just	go	ahead	and
do	 the	 incrementing	 itself.	But	 since	 its	 arguments	 are	 evaluated,	 there	 is	 a
problem.	Let’s	see	what	happens:

The	input	to	FAULTY-INCF	is	the	number	seven.	FAULTY-INCF	creates
a	local	variable	named	VAR	to	hold	its	input,	and	then	it	increments	VAR	by
one.	It	doesn’t	know	anything	about	the	variable	A,	because	its	argument	was
evaluated	before	 the	 function	was	entered.	An	evaltrace	diagram	makes	 this
clear.
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We	might	try	quoting	the	variable	A	when	passing	it	to	the	FAULTY-INCF
function.	Of	course	we’ll	have	to	modify	the	definition	of	FAULTY-	INCF,
because	its	input	will	no	longer	be	a	number.	But	for	reasons	that	will	be	ex‐
plained	 in	 the	 Advanced	 Topics	 section,	 this	 won’t	 work	 either.	 SIMPLE-
INCF	must	be	written	as	a	macro.	This	doesn’t	invalidate	what	was	said	ear‐
lier	about	macros	being	no	more	 than	shorthand;	we	are	still	 free	 to	write	a
SETQ	expression	instead	of	using	SIMPLE-INCF.	SETQ	is	not	a	macro:	It	is
a	special	function.	The	difference	is	explained	in	the	next	section.

EXERCISE
14.3.	Write	a	SET-NIL	macro	that	sets	a	variable	to	NIL.

14.5	MACROS	AS	SYNTACTIC	EXTENSIONS
Since	the	purpose	of	macros	is	to	extend	the	syntax	of	the	language,	Lisp	does
not	treat	a	macro	call	like	an	ordinary	function	call.	There	are	three	important
differences	between	ordinary	functions	and	macro	functions:

1.		The	arguments	to	ordinary	functions	are	always	evaluated;	the	arguments
to	macro	functions	are	not	evaluated.

2.	 	 The	 result	 of	 an	 ordinary	 function	 can	 be	 anything	 at	 all;	 the	 result	 re‐
turned	by	a	macro	function	must	be	a	valid	Lisp	expression.

3.	 	After	a	macro	function	returns	an	expression,	 that	expression	 is	 immedi‐
ately	 evaluated.	 The	 results	 returned	 by	 ordinary	 functions	 do	 not	 get
evaluated.

In	addition	to	macros,	Common	Lisp	also	includes	a	small	number	of	spe‐
cial	 functions.	 Some	 examples	 are	 SETQ,	 IF,	 LET,	 and	 BLOCK.	 Special
functions	are	the	lowest	level	building	blocks	of	Common	Lisp;	they	are	re‐
sponsible	for	things	like	assignment,	scoping,	and	basic	control	structure	such
as	blocks	and	loops.	Like	macros,	special	functions	do	not	evaluate	their	argu‐
ments,	but	they	also	don’t	return	expressions	to	be	evaluated.	They	are	primi‐
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tives	that	do	very	special	things.	You	cannot	write	new	special	functions;	only
a	Lisp	implementor	can	do	that.

Returning	 to	 our	 discussion	 of	 macros	 as	 shorthand,	 we	 should	 say	 that
anything	that	can	be	done	with	a	macro	can	also	be	done	without	macros,	by
using	a	 combination	of	ordinary	Common	Lisp	 functions,	 special	 functions,
and	in	some	cases,	implementation	dependent	functions.

14.6	THE	BACKQUOTE	CHARACTER
SIMPLE-INCF	 constructed	 a	 Lisp	 expression	 by	 combining	 two	 calls	 to
LIST,	 some	 quoted	 symbols,	 and	 the	 values	 of	 the	 variables	 VAR	 and
AMOUNT.	This	approach	works	well	enough	when	the	expression	is	small,
but	when	macros	must	produce	large,	complicated	expressions,	it	is	awkward
to	construct	them	bit	by	bit.	What	we	need	instead	is	a	way	to	write	a	template
for	the	expression	the	macro	is	to	return.	Then	all	the	macro	has	to	do	is	fill	in
the	blanks.	The	backquote	character	provides	such	a	facility.

The	backquote	character	(‘)	is	analogous	to	quote,	in	that	both	are	used	to
quote	lists.	However,	inside	a	backquoted	list,	any	expression	that	is	preceded
by	a	comma	is	considered	to	be	“unquoted,”	meaning	the	value	of	the	expres‐
sion	rather	than	the	expression	itself	is	used.

We	 can	 use	 backquote	 to	 write	 a	 more	 concise	 version	 of	 the	 SIM‐
PLEINCF	macro:

EXERCISE
14.4.	Write	a	macro	called	SIMPLE-ROTATEF	 that	 switches	 the	value	of

two	variables.	For	example,	if	A	is	two	and	B	is	seven,	then	(SIMPLE-
ROTATEF	A	B)	should	make	A	seven	and	B	two.	Obviously,	setting
A	to	B	first,	and	then	setting	B	to	A	won’t	work.	Your	macro	should
expand	 into	a	LET	expression	 that	holds	on	 to	 the	original	values	of
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the	two	variables	and	then	assigns	them	their	new	values	in	its	body.

A	very	common	use	of	macros	is	to	avoid	having	to	quote	arguments.	The
macro	expands	into	an	ordinary	function	call	with	quoted	versions	of	the	ar‐
guments	 filled	 in	where	needed.	You	can	use	backquote	 to	generate	expres‐
sions	with	quotes	in	them	by	including	the	quotes	as	part	of	the	template,	like
this:

In	the	example	below,	TWO-FROM-ONE	is	a	macro	that	takes	a	function
name	and	another	object	as	arguments;	 it	expands	into	a	call	 to	 the	function
with	two	arguments,	both	of	which	are	the	quoted	object.

We	place	a	comma	before	OBJECT	because	we	want	the	value	of	that	vari‐
able	to	be	inserted	into	the	list	that	backquote	constructs;	the	quote	before	the
comma	also	becomes	part	of	the	list.	If	we	leave	out	the	quote,	the	macro	will
expand	 to	 (CONS	AARDVARK	AARDVARK),	which	will	 cause	 an	 unas‐
signed	 variable	 error	 unless	AARDVARK	 has	 a	 value.	 If	we	 leave	 out	 the
comma	instead	of	the	quote,	the	macro	will	expand	to	(CONS’OBJECT’OB‐
JECT).

EXERCISE
14.5.	Write	a	macro	SET-MUTUAL	that	takes	two	variable	names	as	input

and	expands	into	an	expression	that	sets	each	variable	to	the	name	of
the	other.	(SET-MUTUAL	A	B)	should	set	A	to’B,	and	B	to’A.

Let’s	 try	 a	 more	 complex	 example	 of	 backquote.	 We’ll	 write	 a	 macro
SHOWVAR	that	displays	the	value	of	a	variable,	like	this:
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SHOWVAR	must	 be	 a	macro	 because	 it	 needs	 to	 know	 the	 name	 of	 the
variable	it’s	displaying,	not	just	the	value.	Let’s	break	the	problem	down	a	lit‐
tle.	The	message	about	X’s	value	could	be	printed	by	 the	 following	expres‐
sion.	Notice	that	only	the	first	instance	of	X	is	quoted.

We	 can	 now	 easily	 abstract	 the	 template	 needed	 for	 the	 SHOWVAR
macro.	The	combination	of	a	quote	followed	by	a	comma	may	look	strange,
but	you	can	see	from	the	preceding	example	where	the	quote	comes	from.

14.7	SPLICING	WITH	BACKQUOTE
Another	 feature	of	backquote	 is	 that	 if	 a	 template	 element	 is	 preceded	by	 a
comma	and	an	at	sign	(,	@),	the	value	of	that	element	is	spliced	into	the	result
that	 backquote	 constructs	 rather	 than	 being	 inserted.	 (The	 value	 of	 the	 ele‐
ment	must	be	a	list.)	If	only	a	comma	is	used,	the	element	would	be	inserted
as	a	single	object,	resulting	in	an	extra	level	of	parentheses.

Here	is	an	example	of	where	splicing	is	useful.	The	SET-ZERO	macro,	to
be	defined	later,	takes	any	number	of	variables	as	input.	It	expands	into	an	ex‐
pression	to	set	each	of	them	to	zero	and	also	to	return	a	message	to	that	effect.
Because	 the	 macro	 must	 generate	 several	 actions	 but	 can	 return	 only	 one
value,	it	combines	the	actions	into	a	single	expression	with	PROGN.
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Here	is	the	definition	of	SET-ZERO.	It	uses	MAPCAR	to	construct	a	SETF
expression	for	each	variable	 in	 the	argument	 list.	The	SETF	expressions	are
then	 spliced	 into	 the	body	of	 the	PROGN.	Also,	 the	 final	 expression	 in	 the
PROGN’s	body	is	a	quoted	list	constructed	by	splicing.	If	there	were	a	plain
comma	there	instead	of	a	comma	and	at	sign	combination,	the	result	would	be
(ZEROED	(A	B	C)).

EXERCISE
14.6.	Write	a	macro	called	VARIABLE-CHAIN	that	accepts	any	number	of

inputs.	The	expression	(VARIABLE-CHAIN	A	B	C	D)	should	expand
into	an	expression	that	sets	A	to’B,	B	to’C,	and	C	to’D.

14.8	THE	COMPILER
The	 compiler	 translates	 Lisp	 programs	 into	 machine	 language.	 This	 makes
programs	run	faster:	the	typical	speedup	is	a	factor	of	10	to	100.	As	a	begin‐
ning	Lisp	programmer	you	are	probably	not	writing	very	large	programs,	so
speed	may	not	 be	 a	 concern.	However,	 as	 you	 tackle	more	 ambitious	prob‐
lems,	 you	 will	 eventually	 find	 yourself	 concerned	 with	 performance	 issues
such	as	how	fast	a	program	runs	and	how	much	memory	it	uses.	Compilation
can	reduce	both	figures.

There	are	two	ways	to	use	the	compiler.	You	can	compile	a	single	function
using	 COMPILE,	 or	 an	 entire	 file	 using	 COMPILE-FILE.	 Many	 Lisp-ori‐
ented	 editors	 provide	ways	 for	 you	 to	 invoke	 the	 compiler	with	 just	 a	 key‐
stroke	or	two,	so	you	may	never	need	to	call	these	functions	explicitly.

Let’s	take	a	look	at	the	effect	of	COMPILE	on	the	running	time	of	a	simple
function.	This	function	returns	the	smallest	integer	larger	than	the	square	root
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of	its	input.	It	computes	the	result	in	a	very	tedious	way,	but	that	will	help	us
measure	the	speedup	achieved	by	compilation.

We	see	that	the	square	root	of	five	million	is	between	2236	and	2237.	We
also	see	 that	 the	 interpreted	version	of	TEDIOUS-SQRT	takes	 roughly	0.95
seconds	of	user	run	time	on	this	example.	You	might	want	to	choose	a	smaller
argument	if	your	machine	is	a	 lot	slower	than	this.	Now,	let’s	 try	compiling
TEDIOUS-SQRT	and	see	how	fast	the	compiled	version	runs.

The	compiled	version	took	only	.03125	seconds	of	user	run	time,	making	it
30	 times	 faster	 than	 the	 interpreted	 version.	 It	 also	 consed	 only	 32	 bytes,
while	the	interpreted	version	consed	over	50K	bytes.	In	this	particular	imple‐
mentation,	the	consing	is	due	to	the	*	function’s	use	of	&REST	to	collect	its
arguments.	This	conses	a	 list	each	 time	 the	 function	 is	called.	The	compiler
turns	calls	to	*	into	machine	language	multiply	instructions,	which	eliminates
both	the	cost	of	a	function	call	and	the	accompanying	consing.

14.9	COMPILATION	AND	MACRO	EXPANSION
The	Common	Lisp	 standard	permits	macro	calls	 to	be	 replaced	by	 their	 ex‐
pansions	at	any	time.	In	some	Lisp	implementations	DEFUN	does	the	macro
expansion	right	away.	In	others	the	macro	call	gets	replaced	the	first	time	the
function	is	evaluated.	In	very	simple	implementations	a	macro	call	may	never
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be	replaced	with	the	resulting	expansion;	instead	the	macro	is	expanded	anew
each	time	the	expression	is	evaluated.

Since	 macro	 expansion	 can	 happen	 at	 any	 time,	 you	 should	 not	 write
macros	that	produce	side	effects,	such	as	assignments	or	i/o.	But	it’s	fine	for
the	macro	to	expand	into	an	expression	that	produces	side	effects.

In	 the	 above	 example	 the	macro	was	 expanded	 as	 part	 of	 the	 process	 of
compiling	SAY-HI.	So	the	compiler	said	“Hi,	mom!”	The	result	of	the	macro
was	NIL,	so	that’s	what	got	compiled	into	the	body	of	SAY-HI.	When	we	call
the	compiled	SAY-HI	 function,	 it	 says	nothing	because	 the	macro	has	been
replaced	 with	 its	 expansion.	 The	 problem	 can	 be	 resolved	 by	 making	 the
macro	return	the	FORMAT	expression	instead	of	executing	it.

14.10	COMPILING	ENTIRE	PROGRAMS
When	you	compile	an	entire	program,	it	will	generally	be	stored	in	a	file.	You
can	 use	 the	 COMPILE-FILE	 function	 on	 the	 file.	 Some	 Lisp	 editors	 allow
you	to	do	this	with	an	editor	command.	They	may	also	allow	you	to	compile
the	 contents	 of	 an	 editor	 buffer	without	writing	 it	 to	 a	 file.	 See	 your	 user’s
manual	for	details.

Because	of	the	way	compilers	work,	you	will	need	to	follow	a	few	simple
rules	for	organizing	your	program.	If	you	don’t	follow	these	rules,	 the	com‐
piler	may	produce	error	messages	and	not	compile	your	program	correctly.

First,	if	your	program	uses	any	global	variables,	the	compiler	may	issue	a
warning	 message	 saying	 that	 the	 variable	 was	 “assumed	 to	 be	 SPECIAL.”
Special	variables	are	explained	in	the	Advanced	Topics	section.	You	can	get
rid	of	these	warnings	by	declaring	the	variables	with	DEFVAR,	DEFPARA‐
METER,	or	DEFCONSTANT.	The	declaration	should	occur	early	in	the	file,
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prior	to	any	function	that	references	those	variables.	You	can	also	ignore	the
warnings	if	you	choose.

Second,	 if	 your	 program	 contains	macros,	 the	macro	 definitions	must	 be
placed	earlier	in	the	file	than	any	functions	that	reference	them.	Otherwise,	if
function	FOO	calls	a	macro	BAR,	Lisp	may	not	realize	when	compiling	FOO
that	it	needs	to	treat	the	call	to	BAR	as	a	macro	call	to	be	expanded.	If	FOO
has	been	compiled	incorrectly,	most	compilers	will	issue	a	warning	when	they
find	out	that	BAR	is	a	macro.

Third,	 if	your	program	redefines	any	built-in	 functions,	 the	compiler	may
not	handle	it	correctly.	Be	sure	to	use	names	that	don’t	conflict	with	built-in
functions.	Online	documentation	can	help	you	check	for	this.

14.11	CASE	STUDY:	FINITE	STATE	MACHINES
Finite	state	machines	(FSMs)	are	a	technique	from	theoretical	computer	sci‐
ence	for	describing	how	simple	devices	like	vending	machines	or	traffic	lights
work.	In	this	section	we	will	write	a	general	purpose	simulator	for	finite	state
machines	to	demonstrate	how	real	Lisp	programs	are	developed.	To	make	the
discussion	more	concrete	we	will	 focus	on	a	particular	machine	 to	simulate,
but	our	simulator	will	work	for	any	finite	state	machine.

Consider	a	vending	machine	with	two	products:	gum	and	mints.	Gum	costs
15	cents,	and	mints	cost	20	cents.	Any	combination	of	nickels	and	dimes	may
be	used	to	operate	the	machine;	it	will	issue	appropriate	change	automatically.
If	enough	money	has	been	put	in,	pressing	the	gum	button	or	the	mint	button
will	deliver	the	desired	product.	Pressing	the	coin	return	lever	at	any	time	will
return	an	amount	equal	to	what	has	been	put	in	so	far.

The	behavior	of	our	vending	machine	can	be	formally	described	by	the	fi‐
nite	 state	machine	 shown	 in	Figure	14-1.	The	machine	 is	 initially	 in	 a	 state
called	START.	If	it	gets	the	symbol	NICKEL	as	input,	it	goes	“Clunk!”	and
moves	to	a	state	named	HAVE-5.	If	it’s	in	state	HAVE-5	and	it	gets	the	sym‐
bol	DIME	as	 input,	 it	 goes	 “Clink!”	 and	moves	 to	 state	HAVE-15.	 In	 state
HAVE-15,	 if	 it	 gets	 the	 input	GUM-BUTTON,	 it	 delivers	 a	 packet	 of	 gum
and	goes	to	state	END.
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Figure	14-1	Finite	state	diagram	for	a	vending	machine.

The	 machine	 has	 a	 total	 of	 six	 states:	 START,	 HAVE-5,	 HAVE-10,
HAVE-15,	HAVE-20,	and	END.	(It’s	called	a	finite	state	machine	precisely
because	the	number	of	states	is	finite.)	Each	state	is	represented	by	a	node	in
Figure	14-1,	and	each	possible	transition	from	one	state	to	the	next	is	repre‐
sented	by	an	arc	(an	arrow).	The	arc	is	labeled	with	the	input	needed	to	make
the	 transition	 and	 the	 action	 the	 machine	 should	 take	 when	 it	 follows	 that
transition.	 For	 example,	 the	 arc	 from	 HAVE-10	 to	 HAVE-15	 is	 labeled
NICKEL	/	“Clunk!”.
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Figure	14-2	Node	and	are	definitions	for	the	vending	machine.

The	complete	definition	of	 the	vending	machine	 is	shown	in	Figure	14-2.
The	macros	DEFNODE	and	DEFARC	provide	a	convenient	syntax	for	defin‐
ing	 the	 finite	 state	machine	 one	 part	 at	 a	 time.	Here	 is	 a	 sample	 run	 of	 the
FSM	simulator	so	you	can	see	the	goal	toward	which	we’ll	be	working.

We	begin	constructing	our	 simulator	by	creating	 structures	 for	nodes	and
arcs,	using	DEFSTRUCT.	Each	node	has	a	name,	a	 list	of	 input	arcs,	and	a
list	of	output	arcs.	Each	arc	has	a	“from”	node,	a	“to”	node,	a	label,	and	an	ac‐
tion.	We	also	define	print	functions	for	these	structures.
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Now	we	need	a	global	variable	*NODES*	 to	hold	 the	 list	of	nodes	com‐
prising	 the	machine,	 and	a	global	variable	*ARCS*	 to	hold	 the	 list	 of	 arcs.
Another	 variable,	 *CURRENT-NODE*,	 keeps	 track	 of	 the	machine’s	 state.
We	declare	these	global	variables	with	DEFVAR,	explained	in	the	Advanced
Topics	section.	The	INITIALIZE	function	sets	these	variables	to	NIL.

The	DEFNODE	macro	is	a	bit	of	“syntactic	sugar”	for	defining	new	nodes.
It	simply	puts	a	quote	in	front	of	its	argument	and	calls	the	ADD-NODE	func‐
tion.

ADD-NODE	constructs	a	new	node	with	the	given	name	and	adds	it	to	the
list	 kept	 in	 the	 global	 variable	 *NODES*.	 It	 uses	NCONC	 (the	 destructive
version	of	APPEND)	so	it	can	add	the	node	to	the	end	of	the	list.	This	assures
that	the	nodes	in	*NODES*	will	appear	in	the	order	in	which	they	were	de‐
fined	with	DEFNODE,	rather	than	in	reverse	order.	ADD-NODE	also	returns
the	newly	created	node.
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FIND-NODE	 takes	 a	 node	 name	 as	 input	 and	 returns	 the	 corresponding
node.	If	no	node	exists	with	that	name,	FIND-NODE	signals	an	error.

The	DEFARC	macro	provides	 a	 convenient	 syntax	 for	defining	arcs,	 and
the	 ADD-ARC	 function	 does	 the	 real	 work.	 When	 an	 arc	 is	 created,	 it	 is
added	to	the	NODE-OUTPUTS	list	of	the	from	node	and	the	NODE-INPUTS
list	 of	 the	 to	 node.	 It	 is	 also	 added	 to	 the	 list	 kept	 in	 the	 global	 variable
*ARCS*.
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Now	we	 can	write	 the	 top-level	 function	FSM.	 It	 takes	 an	optional	 input
specifying	the	initial	state	of	the	machine.	The	default	initial	state	is	START.
FSM	repeatedly	 calls	 the	 function	ONE-TRANSITION	 to	move	 to	 the	next
state.	When	the	machine	reaches	a	state	with	no	output	arcs	(such	as	END),	it
stops.	Notice	that	the	DO	has	an	empty	variable	list.

Finally,	we	write	ONE-TRANSITION.	It	prompts	for	an	input	and	makes
the	 appropriate	 state	 transition	 by	 changing	 the	 value	 of	 *CURRENT-
NODE*.	If	there	is	no	legal	transition	from	the	current	state	given	that	input,
it	prints	an	error	message	and	prompts	for	input	again.
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Our	 simulator	 is	not	 limited	 to	 simulating	vending	machines.	Any	device
that	can	be	described	in	a	finite	number	of	states	and	state	transitions	can	be
simulated	by	this	program.

EXERCISE
14.7.	 Extend	 the	 vending	 machine	 example	 to	 sell	 chocolate	 bars	 for	 25

cents.	Make	it	accept	quarters	as	well	as	nickels	and	dimes.	When	you
put	in	a	quarter	it	should	go	“Ker-chunk!”

SUMMARY
Macros	 are	Lisp’s	 version	of	 shorthand,	with	 several	 uses.	They	 allow	pro‐
grammers	to	define	syntactic	extensions	to	Lisp	and	to	say	things	more	con‐
cisely.	They	also	help	Lisp	implementors	hide	messy	implementation-specific
details	from	their	customers.	Macros	do	not	evaluate	their	arguments;	they	re‐
turn	 Lisp	 expressions	 that	 are	 evaluated.	 New	macros	 can	 be	 defined	 with
DEFMACRO.

Like	 macros,	 special	 functions	 do	 not	 evaluate	 their	 inputs.	 But	 unlike
macros,	they	do	not	return	Lisp	expressions	that	are	to	be	evaluated.	Special
functions	provide	 the	primitives	on	which	Lisp	 is	built,	 such	as	assignment,
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conditionals,	and	block	structure.

The	backquote	character	constructs	a	list	from	a	template.	If	a	template	ele‐
ment	is	preceded	by	a	comma	it	will	be	evaluated;	the	value	is	then	inserted
into	 the	 list	 being	 constructed.	 Elements	 preceded	 by	 a	 comma	 and	 at	 sign
combination	are	spliced	into	the	list	rather	than	inserted.	Backquote	is	particu‐
larly	 useful	 in	 macros	 that	 construct	 complex	 expressions	 by	 filling	 in	 the
blanks	of	a	template.

REVIEW	EXERCISES
14.8.	Why	is	it	unwise	to	write	macros	that	have	side	effects?

14.9.	Common	Lisp	contains	exactly	24	built-in	special	functions.	What	are
they?	(Hint:	Look	in	Chapter	5	of	Common	Lisp:	The	Language.)

14.10.	How	much	faster	do	typical	programs	run	after	being	compiled?

FUNCTIONS	COVERED	IN	THIS	CHAPTER
Macro	definition:	DEFMACRO.

Compiler:	COMPILE,	COMPILE-FILE.

Lisp	Toolkit:	PPMX
PPMX	stands	 for	 “Pretty	Print	Macro	eXpansion.”	 It	macroexpands	 its	 first
argument	 (unevaluated)	 and	 prints	 the	 result.	 PPMX	 is	 not	 only	 useful	 for
learning	about	built-in	macros	like	SETF,	it	is	also	quite	handy	for	debugging
macros	you	write	yourself	if	there	is	a	problem	with	their	expansion.

If	a	macro	expands	into	another	macro	call,	PPMX	shows	both	the	result	of
the	 first	 expansion	 and	 the	 final	 expression	 derived	 when	 all	 macros	 have
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been	 expanded.	 For	 example,	 the	 LENGTHY-INCF	 macro	 below	 expands
into	a	call	to	the	SETF	macro.	SETF	in	turn	expands	into	a	call	to	the	SETQ
special	function.

In	some	implementations,	the	DOTIMES	macro	expands	into	a	call	to	the
DO	macro.	In	the	example	below,	DO	in	turn	expands	into	a	more	complex
expression	involving	BLOCK,	LET,	TAGBODY,	and	GO.	We	will	not	cover
tagbodies	and	GO	in	this	book.

Keyboard	Exercise
Our	finite	state	machine	simulator	is	called	an	“interpreter”:	It	operates	by	in‐
terpreting	the	node	and	arc	data	structures	as	a	machine	description.	A	faster
way	 to	 simulate	 a	 finite	 state	machine	 is	 to	write	 a	 specialized	 function	 for
each	node.	The	function	takes	as	its	argument	a	list	of	input	symbols	for	the
machine.	It	 looks	at	 the	first	symbol,	decides	on	the	appropriate	state	transi‐
tion	to	make,	and	then	calls	the	function	corresponding	to	that	state,	passing	it
the	REST	of	the	input	list.

This	 approach	 is	 faster	 because	we	 don’t	 have	 to	 call	ASSOC	 or	 FIND-
NODE.	In	fact,	we	don’t	reference	the	node	and	arc	data	structures	as	all.	The
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speedup	may	be	important	if	we	are	simulating	a	complex	machine	with	many
states,	such	as	a	piece	of	computer	circuitry.

Since	all	the	inputs	must	be	supplied	at	once	as	a	list,	instead	of	prompting
for	them	interactively,	 it	 is	possible	for	the	machine	to	run	out	of	inputs	be‐
fore	reaching	an	end	state.	In	that	case	we	simply	return	the	name	of	the	last
state	reached	by	the	machine.	Following	is	a	function	for	simulating	the	ma‐
chine	when	it	is	in	state	START.

Assuming	all	the	other	states	had	similar	functions	defined,	we	could	write
(START’(NICKEL	 DIME	 GUM-BUTTON))	 to	 get	 some	 gum.	 The	 result
would	look	like	this:

Writing	a	function	for	each	state	is	 tedious.	It’s	much	more	convenient	 to
define	a	machine	with	DEFNODE	and	DEFARC	expressions.	To	get	speed,
though,	we	 need	 to	 convert	 the	 nodes	 to	 functions.	 It	would	 be	 good	 if	we
could	get	the	computer	to	do	this	work	for	us.

EXERCISE
14.11.	In	this	keyboard	exercise	we	will	write	a	compiler	for	finite	state	ma‐

chines	that	turns	each	node	into	a	function.	The	definition	of	the	vend‐
ing	machine’s	nodes	and	arcs	should	already	be	loaded	into	your	Lisp
before	beginning	the	exercise.

a.	Write	a	function	COMPILE-ARC	that	takes	an	arc	as	input	and	re‐
turns	 a	 COND	 clause,	 following	 the	 example	 shown	 previously.
Test	 your	 function	 on	 some	 of	 the	 elements	 in	 the	 list	 *ARCS*.
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(COMPILE-ARC	(FIRST	*ARCS*))	should	return	this	list:

b.	Write	a	function	COMPILE-NODE	that	takes	a	node	as	input	and
returns	 a	 DEFUN	 expression	 for	 that	 node.	 (COMPILE-NODE
(FIND-NODE’START))	 should	 return	 the	 DEFUN	 shown	 previ‐
ously.

c.	Write	a	macro	COMPILE-MACHINE	that	expands	into	a	PROGN
containing	a	DEFUN	for	each	node	in	*NODES*.

d.	 Compile	 the	 vending	 machine.	 What	 does	 the	 expression
(START’(DIME	DIME	DIME	GUM-BUTTON))	produce?

14	Advanced	Topics

14.12	THE	&BODY	LAMBDA-LIST	KEYWORD
One	reason	people	write	macros	is	so	they	can	add	new	bits	of	syntax	to	Lisp.
For	example,	we	can	write	a	WHILE	macro	to	provide	the	same	control	struc‐
ture	as	WHILE	loops	in	other	languages.

The	WHILE	macro	 takes	a	 test	 expression	as	 its	 first	 argument,	 followed
by	zero	or	more	body	expressions	to	be	evaluated	if	the	test	is	true.	The	body
expressions	 could	 be	 collected	 with	&REST,	 but	 Common	 Lisp	 includes	 a
special	keyword,	&BODY,	to	use	when	the	remaining	arguments	to	a	macro
form	the	body	of	some	control	structure.	Some	Lisp	editors	pay	special	atten‐
tion	 to	 the	 &BODY	 keyword	 when	 indenting	 calls	 to	 macros.	 The	 use	 of
&BODY	also	signifies	 to	human	readers	of	 the	macro	definition	that	 the	re‐
maining	arguments	are	a	body	of	Lisp	code.

The	NEXT-POWER-OF-TWO	function	below	uses	a	WHILE	 loop	 to	 re‐
peatedly	double	the	value	of	 the	variable	I,	starting	from	one,	up	to	the	first
power	of	two	that	is	greater	than	the	input	N.
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For	best	style,	this	particular	problem	should	be	solved	with	DO	instead	of
WHILE,	to	avoid	explicit	SETFs.

14.13	DESTRUCTURING	LAMBDA	LISTS
The	MIX-AND-MATCH	macro	 takes	 two	pairs	 as	 input	 and	 returns	 an	 ex‐
pression	that	produces	four	pairs:

In	this	example	we	took	apart	the	two	inputs	(FRED	WILMA)	and	(BAR‐
NEY	 BETTY)	 manually,	 using	 a	 LET	 expression.	 But	 since	 macros	 don’t
evaluate	their	inputs,	they	are	able	to	treat	input	expressions	as	list	structures
to	 be	 taken	 apart	 automatically.	 This	 is	 known	 as	 destructuring.	 You	 can
specify	how	to	destructure	an	input	expression	by	replacing	a	variable	in	the
macro’s	argument	list	with	another	whole	argument	list.	For	example,	we	can
replace	the	variable	P	in	MIX-AND-MATCH	with	the	argument	list	(XI	Yl),
and	 the	 variable	 Q	 with	 (X2	 Y2).	 Here	 then	 is	 a	 version	 of	 MIX-AND-
MATCH	using	destructuring:
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Destructuring	is	only	available	for	macros,	not	ordinary	functions.	It	is	par‐
ticularly	 useful	 for	 macros	 that	 define	 new	 bits	 of	 control	 structure	 with	 a
complex	 syntax.	 The	 DOVECTOR	 macro	 that	 follows	 is	 modeled	 after
DOTIMES	 and	DOLIST.	 It	 steps	 an	 index	 variable	 through	 successive	 ele‐
ments	of	a	vector.	The	macro	uses	destructuring	to	pick	apart	the	index	vari‐
able	name,	the	vector	expression,	and	the	result	form.

You	can	see	from	the	expansion	of	DOVECTOR	why	this	macro	is	useful
as	a	form	of	shorthand:
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The	 DOVECTOR	 expands	 into	 a	 DO*	 expression	 with	 local	 variables
VEC-DOV	 (to	 hold	 the	 vector)	 and	LEN-DOV	 (to	 hold	 its	 length),	 and	 an
index	variable	called	I-DOV.	These	names	were	chosen	because	they	are	un‐
likely	 to	 conflict	with	 any	user	variable	names.	 If	we	had	used	VEC,	LEN,
and	I	instead,	they	might	prevent	users	from	accessing	some	local	variables	of
their	own	with	those	names.*	The	expansion	also	contains	an	explicit	assign‐
ment	to	the	variable	X	in	the	body	of	the	DO*.	After	the	DOVECTOR	macro
returns	the	DO*	expression,	it	is	further	macro	expanded	by	Lisp	into	a	com‐
bination	of	BLOCK,	LET,	TAGBODY,	and	GO.	The	DOVECTOR	expres‐
sion	is	much	nicer	for	humans	to	read	than	the	macro	expansion.

14.14	MACROS	AND	LEXICAL	SCOPING
Let’s	return	to	our	consideration	of	FAULTY-INCF,	an	attempt	to	implement
INCF	as	a	function	rather	than	a	macro.	Suppose	we	quote	the	variable	before
passing	 it	 to	 the	 function,	 by	writing	 (FAULTY-INCF’A).	 FAULTY-INCF
needs	to	do	two	things:	It	must	find	out	the	current	value	of	the	variable,	and
it	must	replace	that	value	with	a	new	one.

In	the	case	of	global	variables	this	is	possible.	Recall	that	a	global	lives	in
the	value	cell	of	 the	 symbol	 that	names	 it.	We	can	use	 the	built-in	 function
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SYMBOL-VALUE	 to	 access	 the	 value	 cell.	We	 can	 store	 into	 this	 cell	 by
using	SETF	or	by	using	the	built-in	SET	function	discussed	in	Section	10.10.
Here	is	our	new	version	of	FAULTY-INCF:

The	 function	 appears	 to	 work	 correctly,	 but	 it	 will	 only	work	 for	 global
variables.	 If	we	 try	 to	use	 it	 on	 a	 local	variable,	 it	will	 fail.	SIMPLE-INCF
works	correctly	for	either	local	or	global	variables.

In	 TEST-SIMPLE	 the	 SIMPLE-INCF	macro	 expands	 into	 an	 expression
that	 is	 then	 evaluated	 in	 the	 lexical	 context	 of	TEST-SIMPLE.	So	 the	 local
variable	TURNIP	is	lexically	apparent,	and	there	is	no	problem.
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We	can	see	 the	bug	 in	FAULTY-INCF	with	an	evaltrace	diagram.	 Inside
the	 body	 of	 the	 FAULTY-INCF	 function	 the	 only	 local	 variable	 visible	 is
VAR.	The	heavy	solid	line	surrounding	the	body	indicates	that	the	parent	lex‐
ical	 context	 of	 FAULTY-INCF	 is	 the	 global	 context,	 so	 TEST-FAULTY’s
local	variable	TURNIP	is	not	lexically	accessible.	There	is	no	value	assigned
to	 the	 global	 variable	 TURNIP,	 so	 when	 SYMBOL-VALUE	 looks	 in	 the
value	cell	it	gets	an	unassigned	variable	error.

14.15	HISTORICAL	SIGNIFICANCE	OF
MACROS
One	of	the	nice	features	of	macros	is	that	their	syntax	is	identical	to	that	of	or‐
dinary	 and	 special	 functions.	 This	makes	 it	 easy	 for	 programmers	 to	make
syntactic	 extensions	 to	Lisp	 in	 an	 invisible	way:	 people	who	use	 the	 exten‐
sions	can’t	tell	that	they	are	programmer	defined	rather	than	built	in.	In	con‐
trast,	 in	 languages	 like	Pascal	 it	 is	not	possible	 to	add	new	statement	 types,
only	 new	 procedures.	 The	 only	ways	 to	 extend	 the	 syntax	 of	 Pascal	 are	 to
write	a	preprocessor	or	modify	the	compiler.	Both	approaches	are	impractical
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if	you	want	to	be	able	to	combine	extensions	contributed	by	several	program‐
mers.

Many	features	of	Common	Lisp	originated	in	earlier	dialects	as	some	pro‐
grammer’s	 private	 macro	 package.	 Examples	 include	 the	 SETF,	 DEF‐
STRUCT,	 and	 WITH-OPEN-FILE	 macros.	 Even	 DEFMACRO	 was	 origi‐
nally	an	extension.	(Although	Lisp	has	had	macros	from	the	very	beginning,
before	DEFMACRO	came	along	 they	had	 to	be	defined	 in	 a	more	 cumber‐
some	way.)

Lisp	has	evolved	continuously	over	 its	30-year	history,	with	many	people
contributing	good	 ideas	 for	 extensions.	This	 evolution	would	not	have	been
possible	without	macros.	Besides	extending	Lisp,	macros	can	also	be	used	to
define	entirely	new	languages.	Specialized	high-level	languages	for	artificial
intelligence	programming	are	often	built	on	top	of	Lisp	this	way.	The	figures
in	this	book	were	created	using	a	specialized	graphics	language	implemented
as	Common	Lisp	macros.

14.16	DYNAMIC	SCOPING
Throughout	this	book	we	have	used	lexical	scoping	for	all	variables.	Lexical
scoping	means	that	in	order	for	a	function	FOO	to	access	a	variable	X,	the	de‐
finition	of	FOO	must	appear	within	the	context	where	X	is	defined.	If	FOO	is
defined	 at	 top	 level	 with	 DEFUN,	 then	 it	 can	 only	 access	 global	 variables
(plus	 whatever	 locals	 it	 defines	 itself.)	 But	 if	 a	 function	 is	 defined	 by	 a
lambda	expression	appearing	inside	the	body	of	another	function	BAR,	then	it
can	access	BAR’s	 local	variables	as	well	as	 its	own.	Functions	defined	out‐
side	of	BAR	cannot	access	any	of	BAR’s	variables.

The	alternative	to	lexical	scoping	is	called	dynamic	scoping.	Prior	to	Com‐
mon	Lisp,	dynamic	scoping	was	the	norm	in	Lisp.	Lexical	scoping	was	found
only	in	two	offshoot	dialects	called	Scheme	and	T.

Dynamically	 scoped	 variables	 are	 also	 called	 special	 variables.	 When	 a
variable	name	is	declared	to	be	special,	that	variable	will	not	be	local	to	any
function;	 its	value	will	be	accessible	anywhere.	 In	contrast,	 lexically	scoped
variables	are	accessible	only	within	 the	body	of	 the	 form	 that	defines	 them.
One	way	to	declare	a	variable	name	special	is	with	the	DEFVAR	macro.

Let’s	 compare	 the	 effects	of	 lexical	versus	dynamic	 scoping	of	variables.
We’ve	declared	BIRDS	to	be	dynamically	scoped.	We’ll	use	FISH	as	a	lexi‐
cally	scoped	variable,	so	it	should	not	be	DEFVARed.	Each	variable	will	be
assigned	an	appropriate	initial	value	below;	then	we’ll	write	a	function	to	ref‐
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erence	the	value	of	each	variable.

Now	to	see	the	difference	between	the	two	scoping	disciplines,	we’ll	write
functions	that	name	their	inputs	FISH	and	BIRDS.	First,	we’ll	consider	the	fa‐
miliar,	lexically	scoped	case	using	FISH.

In	TEST-LEXICAL	the	expression	FISH	refers	to	the	local	variable	FISH.
This	local	variable	is	not	visible	to	REF-FISH.	The	symbol	FISH	in	the	body
of	REF-FISH	continues	to	refer	to	the	global	variable	FISH.	In	the	evaltrace
diagram	you	can	see	that	the	body	of	REF-FISH	is	enclosed	in	a	solid	line,	in‐
dicating	that	its	parent	lexical	context	is	the	global	context.	Since	REF-FISH
doesn’t	 create	 a	 local	 variable	 of	 its	 own	 named	 FISH,	 any	 occurrence	 of
FISH	in	its	body	is	taken	as	a	reference	to	the	global	variable.

the	global	variable	FISH	has	value	(SALMON	TUNA)

In	 the	 dynamically	 scoped	 case,	 using	BIRDS,	 the	 testing	 function	 looks
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identical	to	the	previous	one,	but	it	behaves	differently.	This	difference	is	due
to	the	effect	of	the	DEFVAR’s	declaring	BIRDS	to	be	special.

When	 we	 enter	 the	 body	 of	 TEST-DYNAMIC,	 a	 new	 dynamic	 variable
named	BIRDS	 is	 created.	 From	 now	 until	we	 leave	 the	 body,	 every	 use	 of
BIRDS	anywhere	in	the	program	will	refer	to	this	variable,	even	if	it	occurs	in
some	other	function	outside	of	TEST-DYNAMIC.	The	global	variable	named
BIRDS	 is	 inaccessible	as	 long	as	 this	new	dynamic	variable	 is	 in	existence.
When	TEST-DYNAMIC	returns,	the	dynamic	variable	BIRDS	that	it	created
will	 cease	 to	 exist,	 and	 the	 name	BIRDS	will	 again	 be	 associated	with	 the
global	variable	BIRDS.

There	 is	 no	 special	 evaltrace	 notation	 for	 dynamic	 variables;	 you	 simply
have	to	note	whether	a	given	name	has	been	DEFVARED	or	not.	Once	it	has,
all	variables	with	that	name	will	be	dynamically	scoped.

the	global	variable	BIRDS	has	value	(EAGLE	VULTURE)

The	rule	for	evaluating	dynamically	scoped	variables	is	that	when	we	hit	a
thick	solid	line,	instead	of	jumping	to	the	global	lexical	context,	we	just	pass
right	 on	 through,	 continuing	 to	 look	 for	 the	 creation	of	 a	 variable	with	 that
name.	We	only	use	the	global	value	if	we	make	it	all	the	way	out	to	the	global
context,	meaning	no	function	presently	has	a	variable	with	the	same	name	as
the	global	variable.

The	term	“dynamic	binding”	refers	to	the	property	that	the	name	BIRDS	in
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REF-BIRDS	 is	 not	 permanently	 associated	 with	 any	 one	 variable,	 the	 way
FISH	is	associated	with	a	global	variable	in	REF-FISH.	Instead,	the	connec‐
tion	 between	 the	 name	 and	 the	 actual	 variable	 is	made	 dynamically.	When
REF-BIRDS	is	called	inside	TEST-DYNAMIC,	the	symbol	BIRDS	refers	to
the	dynamic	variable	BIRDS	established	by	TEST-DYNAMIC.	When	REF-
BIRDS	is	called	at	top	level,	the	same	symbol	BIRDS	is	interpreted	as	a	refer‐
ence	to	the	global	variable	BIRDS.

Dynamic	scoping	should	be	used	sparingly.	In	earlier	Lisp	dialects	where	it
was	the	default,	its	use	caused	quite	a	few	program	bugs	where	one	function
would	 accidentally	 modify	 a	 dynamic	 variable	 created	 by	 another.	 Lexical
scoping	protects	a	function’s	local	variables	from	modification	by	other,	unre‐
lated	functions.	But	there	are	some	contexts	where	dynamic	scoping	is	exactly
the	right	thing	to	use.	An	example	is	given	in	Section	14.18.

14.17	DEFVAR,	DEFPARAMETER,
DEFCONSTANT
DEFVAR,	DEFPARAMETER,	and	DEFCONSTANT	all	declare	names	to	be
special.	DEFVAR	 is	 used	 for	 declaring	 variables	whose	 values	will	 change
during	the	normal	operation	of	the	program.	It	accepts	an	optional	initial	vari‐
able	value	and	a	documentation	string.

A	curious	 fact	about	DEFVAR	is	 that	 if	 the	variable	already	has	a	value,
DEFVAR	will	not	change	it.	It	only	assigns	the	initial	value	if	the	variable	has
none.

DEFPARAMETER	has	the	same	syntax	as	DEFVAR,	but	it	is	used	to	de‐
clare	 variables	whose	 values	will	 not	 change	while	 the	 program	 runs.	They
hold	“parameter	settings”	that	tell	the	program	how	to	behave.	Another	differ‐
ence	 between	DEFPARAMETER	 and	DEFVAR	 is	 that	DEFPARAMETER
will	assign	a	value	to	a	variable	even	if	it	already	has	one.
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DEFCONSTANT	is	used	 to	define	constants,	which	are	guaranteed	never
to	change.	The	convention	 in	Lisp	 is	 to	 surround	 the	names	of	 special	vari‐
ables	with	an	asterisk,	but	this	does	not	apply	to	constants.	It	is	an	error	to	try
to	change	the	value	of	a	constant,	or	 to	create	a	new	variable	with	the	same
name	as	a	constant.	PI	is	a	built-in	constant	in	Common	Lisp.

Declaring	a	quantity	to	be	constant	sometimes	allows	the	compiler	to	gen‐
erate	more	efficient	machine	language	than	if	 it	were	a	variable.	It	also	pre‐
vents	 someone	 from	changing	 the	value	accidentally.	Most	 implementations
still	permit	you	to	change	the	value	deliberately,	though,	by	going	through	the
debugger.

14.18	REBINDING	SPECIAL	VARIABLES
Much	of	Lisp’s	 terminology	for	variables	 is	a	holdover	 from	the	days	when
dynamic	scoping	was	the	norm.	For	historical	reasons	some	writers	talk	about
“binding	a	variable”	when	 they	mean	“creating	a	new	variable.”	But	people
also	say	“unbound	variable”	when	they	mean	“unassigned	variable.”	Binding
does	not	refer	strictly	to	assignment;	that	is	one	of	the	major	sources	of	termi‐
nological	confusion	in	Lisp.	Nonglobal	lexical	variables	always	have	values,
but	it	 is	possible	for	global	or	special	variables	to	exist	without	a	value.	We
won’t	get	into	the	arcane	details	of	that	in	this	book.

We	have	avoided	confusion	so	far	by	declining	to	use	the	term	“binding”	at

410



all.	In	this	final	section	we	introduce	the	term	“rebinding’	to	refer	to	the	cre‐
ation	of	a	new	special	variable	with	the	same	name	as	the	old	one.	While	the
new	variable	 is	 in	existence,	all	uses	of	 that	name	anywhere	 in	 the	program
will	refer	to	it	(unless	the	name	is	rebound	yet	again),	and	the	previous	vari‐
able	with	that	name	will	be	inaccessible.	Strictly	speaking,	we	aren’t	rebind‐
ing	any	variable:	We’re	dynamically	rebinding	the	name,	making	it	refer	tem‐
porarily	to	a	different	variable.

Common	Lisp	contains	quite	a	few	built-in	special	variables.	Some	of	these
control	the	way	input/output	is	handled.	For	example,	the	variable	*PRTNT-
BASE*	 is	 used	 by	 FORMAT	 and	 other	 functions	 to	 determine	 the	 base	 in
which	numbers	are	 to	be	printed.	Normally	they	are	printed	in	base	ten.	We
can	 dynamically	 rebind	 *PRINT-BASE*	 to	 print	 numbers	 in	 other	 bases.
Since	it	is	already	declared	special,	we	don’t	have	to	DEFVAR	it.	To	rebind
it,	we	merely	include	it	in	the	argument	list	of	our	function.

We	 can	 also	 rebind	 special	 variables	 using	 LET,	 as	 PPMX	 rebound	 the
variable	*PRTNT-CIRCLE*.	When	a	special	variable	is	rebound,	any	assign‐
ments,	no	matter	where	 they	occur	 in	 the	program,	will	affect	 the	new	vari‐
able,	not	the	old	one.	In	the	following	example,	when	BUMP-FOO	is	called
in	the	body	of	the	LET	inside	REBIND-FOO,	it	increments	the	dynamic	vari‐
able	named	*FOO*	that	was	established	by	the	LET.	When	it	is	called	outside
of	the	LET,	it	increments	the	global	variable	*FOO*.	If	*FOO*	had	not	been
declared	special,	BUMP-VAR	would	always	access	the	global	*FOO*.
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Rebinding	of	special	variables	is	most	useful	when	different	parts	of	a	large
program	need	 to	communicate	with	each	other,	 and	passing	 information	via
extra	arguments	to	functions	is	impractical.	Writing	really	large	programs	re‐
quires	 a	 different	 set	 of	 skills	 than	what	 this	 book	 emphasizes;	 it	 is	 a	 good
topic	for	an	advanced	Lisp	course.

FUNCTIONS	COVERED	IN	ADVANCED	TOPICS
DEFMACRO:	the	&BODY	lambda	list	keyword.

Declarations:	DEFVAR,	DEFPARAMETER,	DEFCONSTANT.

*Note	to	instructors:	Of	course	there	are	better	ways	to	prevent	such	name	conflicts.	We	could	use	the
package	system,	or	gensyms.	But	those	are	outside	the	scope	of	an	introductory	book.
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Appendix	A	The	SDRAW	Tool

The	 SDRAW	 tool	 provides	 three	 user-level	 functions:	 SDRAW,	 SDRAW-
LOOP,	 and	 SCRAWL.	 SDRAW	 takes	 a	 list	 as	 input	 and	 draws	 the	 corre‐
sponding	 cons	 cell	 diagram	 on	 the	 display.	 SDRAW-LOOP	 implements	 a
read-eval-draw	loop	similar	 to	 the	normal	read-eval-print	 loop.	SCRAWL	is
used	 to	 interactively	 “crawl	 around”	 in	 list	 structure	 by	 taking	 successive
CARs	and	CDRs.	It	uses	SDRAW	to	display	the	current	position	in	the	list.
See	page	186	for	examples.

The	generic	version	of	SDRAW	shown	here	will	work	in	any	legal	Com‐
mon	Lisp	implementation.	It	“draws”	cons	cells	by	outputting	an	appropriate
character	sequence.	More	sophisticated	versions	of	SDRAW	for	a	variety	of
Common	Lisp	 implementations	are	available	on	diskette	from	the	publisher.
Some	of	these	versions	draw	cons	cells	using	the	IBM	PC	graphic	character
set.	Others,	designed	for	the	X	Windows	system,	use	CLX	functions	to	pro‐
duce	bitmapped	graphics.

Two	notes	 about	 the	 implementation:	First,	 the	 software	 lives	 in	package
SDRAW	and	uses	SHADOWING-IMPORT	 to	 inject	 the	 symbols	SDRAW,
SDRAW-LOOP,	and	SCRAWL	into	the	USER	package.	This	can	be	disabled
by	deleting	the	first	four	forms	in	the	file.	Second,	the	function	SDL1	(part	of
SDRAW-LOOP)	 uses	 HANDLER-CASE	 to	 trap	 evaluation	 errors.	 HAN‐
DLER-CASE	is	part	of	the	new	condition	system	recently	added	to	the	Com‐
mon	Lisp	standard.	Not	all	 implementations	support	HANDLER-CASE	yet.
If	 necessary	 you	 can	 replace	 it	 with	 IGNORE-ERRORS,	 or	 whatever	 the
equivalent	function	is	called	in	your	implementation.
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Appendix	B	The	DTRACE	Tool

DTRACE	provides	a	more	detailed	trace	display	than	most	manufacturer-sup‐
plied	 implementations	 of	 TRACE.	 The	 program	 exports	 two	 functions,
DTRACE	and	DUNTRACE,	whose	syntax	is	 the	same	as	TRACE	and	UN‐
TRACE,	respectively.	See	page	217	and	all	of	Chapter	8	for	examples.

The	generic	version	of	DTRACE	shown	here	contains	only	one	implemen‐
tation-dependent	 function:	 FETCH-ARGLIST.	 FETCH-ARGLIST	 takes	 a
symbol	as	 input	and	returns	 the	argument	 list	of	 the	function	named	by	 that
symbol.	Versions	of	DTRACE	for	various	Lisp	implementations,	with	appro‐
priate	 FETCH-ARGLIST	 functions,	 are	 available	 on	 diskette	 from	 the	 pub‐
lisher.	Some	of	these	versions	also	produce	nicer	output	than	the	generic	ver‐
sion,	for	example,	by	using	the	IBM	PC	graphic	character	set	to	draw	arrows.

To	produce	a	version	of	DTRACE	for	a	new	Lisp	implementation,	you	will
have	to	find	out	how	to	extract	argument	list	information	from	function	cells
and/or	 property	 lists.	 See	 the	 examples	 at	 the	 end	of	 the	 program.	You	 can
also	define	FETCH-ARGLIST	to	simply	return	NIL,	in	which	case	arguments
will	be	displayed	as	Arg-1,	Arg-2,	and	so	on.

One	other	note	about	the	DTRACE	software:	it	lives	in	package	DTRACE,
and	uses	SHADOWING-IMPORT	to	inject	the	symbols	DTRACE	and	DUN‐
TRACE	 into	 the	USER	 package.	 This	 can	 be	 disabled	 by	 deleting	 the	 first
four	forms	in	the	file.
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Appendix	C	Answers	to	Exercises

CHAPTER	1	ANSWERS
1.1.
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1.2.	 Symbols:	 AARDVARK,	 PLUMBING,	 1-2-3-GO,	 ZEROP,	 ZERO,
SEVENTEEN.	Numbers:	87,	1492,	3.14159265358979,	22/7,	0,	-	12.

1.3.
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1.4.
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1.5.

1.6.

1.7.
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1.8.	 The	 function	 computes	 the	 negation	 of	 a	 number,	 in	 other	 words,	 it
switches	the	sign	from	positive	to	negative	and	vice	versa.

1.9.

1.10.

1.11.
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1.12.

1.13.	The	function	always	returns	T,	since	the	output	of	NUMBERP	(either
T	or	NIL)	is	always	a	symbol.

1.14.

1.15.
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1.16.

1.17.

1.18.	The	predicate	returns	T	only	when	its	input	is	–2.

1.19.	The	function	outputs	NIL	when	its	 input	is	NIL.	All	other	inputs,	 in‐
cluding	T	and	RUTABAGA,	result	in	an	output	of	T.

1.20.

1.21.	(a)	The	output	of	ZEROP	will	be	either	T	or	NIL,	which	is	the	wrong
type	 input	 for	ADD1.	 (b)	EQUAL	 requires	 two	 inputs,	 (c)	NOT	can

437



only	accept	one	input.

1.22.	All	predicates	are	functions.	Not	all	functions	are	predicates,	since	not
all	functions	answer	yes	or	no	questions.

1.23.	EQUAL,	NOT,	<	and	>	are	predicates	whose	names	don’t	end	in	“P”.

1.24.	NUMBER	and	SYMBOL	are	both	symbols.	Neither	is	a	number.

1.25.	The	symbol	FALSE	is	true	in	Lisp	because	it	is	non-NIL.

1.26.	(a)	False:	ZEROP	does	not	accept	T	or	NIL	as	input,	(b)	True:	all	the
predicates	studied	so	far	produce	either	T	or	NIL	as	output.	Lisp	has
only	a	few	exceptions	to	this	rule.

1.27.

CHAPTER	2	ANSWERS
2.1.

2.2.	Well-formed:	 the	second	 list,	 ((A)	(B)),	 the	 fifth,	 (A	(B	(C))),	and	 the
sixth,	(((A)(B))(C)).

2.3.

2.4.	((BOWS	ARROWS)	(FLOWERS	CHOCOLATES)).
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2.5.	Six,	three,	four,	four,	five,	six.

2.6.

2.7.	 Inside	 MY-SECOND,	 the	 input	 to	 REST	 is	 (HONK	 IF	 YOU	 LIKE
GEESE).	 The	 output,	 (IF	 YOU	 LIKE	 GEESE),	 forms	 the	 input	 to
FIRST,	which	outputs	the	symbol	IF.

2.8.

2.9.

2.10.	The	CAR	of	(((PHONE	HOME)))	is	((PHONE	HOME)),	and	the	CDR
is	NIL.
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2.11.

2.12.	CADDDR	 returns	 the	 fourth	 element	 of	 a	 list.	 It	 is	 pronounced’’ka-
dih-dih-def’.

2.13.	FUN	is	the	CAAAR;	IN	is	the	CAADR;	THE	is	the	CADADR;	SUN
is	the	CAADDR.

2.14.	 CAADR	 of	 ((BLUE	CUBE)	 (RED	 PYRAMID))	 is	 RED.	But	 if	we
read	 the	 As	 and	 Ds	 in	 the	 wrong	 direction	 (from	 left	 to	 right),	 we
would	 take	 the	CAR	of	 the	 list,	 then	 take	 the	CAR	of	 that,	 and	 then
take	the	CDR	of	that.	The	first	CAR	would	return	(BLUE	CUBE),	the
CAR	of	 that	would	 be	BLUE,	 and	 the	CDR	of	 that	would	 cause	 an
error.

2.15.

2.16.	 CAAR	 takes	 the	 CAR	 of	 the	 CAR.	 The	 CAR	 of	 (FRED	 NIL)	 is
FRED,	and	the	CAR	of	that	causes	an	error.

2.17.
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2.18.
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2.19.

2.20.
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2.21.
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2.22.

2.23.

444



2.24.	The	CAAADR	function.

2.25.	CONS	stands	for	“construct.”	It	constructs	and	returns	a	new	cons	cell.

2.26.	The	first	function	returns	the	length	of	the	CDR	of	its	input.	The	sec‐
ond	function	causes	an	error	because	it	tries	to	take	the	CDR	of	a	num‐
ber	(the	output	of	LENGTH).

2.27.	 Nested	 lists	 require	 more	 cons	 cells	 than	 the	 list	 has	 top-level	 ele‐
ments.	Flat	lists	always	have	exactly	as	many	cons	cells	as	elements.

2.28.	It’s	not	possible	to	write	a	function	to	extract	the	last	element	of	a	list
of	unknown	length	using	just	CAR	and	CDR,	because	we	don’t	know
how	many	CDRs	to	use.	The	function	needs	to	keep	taking	successive
CDRs	until	it	reaches	a	cell	whose	CDR	is	NIL;	then	it	should	return
the	CAR	of	that	cell.	We’ll	learn	how	to	do	this	in	Chapter	8.

2.29.
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2.30.	CDDR	subtracts	two	from	a	unary	number.

2.31.	NULL	is	the	unary	ZEROP	predicate.

2.32.

2.33.	CAR	returns	a	true	value	for	any	unary	number	greater	than	zero,	so	it
is	the	unary	equivalent	of	PLUSP.

2.34.

2.35.
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2.36.	Label	 the	cells	a,	b,	and	c.	Since	cell	a	points	 to	cell	b,	 it	must	have
been	consed	after	cell	b,	because	b	would	have	had	to	be	one	of	the	in‐
puts	 to	CONS	when	 cell	a	was	 created.	By	 similar	 reasoning,	 cell	b
must	have	been	consed	after	cell	c.	Therefore,	cell	a	must	have	been
consed	after	cell	c.	But	cell	c	points	to	cell	a,	so	a	would	have	to	have
been	 consed	 before	 c,	 not	 after	 it.	 This	 contradiction	 proves	 that	 the
list	could	not	have	been	constructed	using	just	CONS.

CHAPTER	3	ANSWERS
3.1.

3.2.

3.3.

3.4.
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3.5.

3.6.

3.7.
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3.8.

3.9.

3.10.

3.11.
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3.12.

3.13.	The	CALL-UP	function	requires	two	arguments,	named	CALLER	and
CALLEE.	 (CALL-UP’FRED’WANDA)	 returns	 (HELLO	 WANDA
THIS	IS	FRED	CALLING).

3.14.	The	CRANK-CALL	function	makes	no	use	of	 its	 inputs,	because	 its
entire	body	is	quoted.	It	returns	(HELLO	CALLEE	THIS	IS	CALLER
CALLING).

3.15.	The	symbol	WORD	is	used	both	as	a	piece	of	data,	when	quoted,	and
as	a	variable	name,	when	not	quoted.	(SCRABBLE’AARDVARK)	re‐
turns	 (AARDVARK	 IS	 A	 WORD).	 (SCRABBLE’WORD)	 returns
(WORD	IS	A	WORD).

3.16.	The	result	is	(MOE	(MOE	LARRY)	LARRY	LARRY).

3.17.	T	and	NIL	are	 the	names	of	 constants	 that	 always	evaluate	 to	 them‐
selves.	Therefore	they	can’t	be	used	to	name	variables	that	hold	the	in‐
puts	to	a	function.

3.18.	EVAL	notation	 is	concise,	and	 it	 is	easy	 to	 type	on	a	computer	key‐
board.	 It	 allows	 us	 to	 use	 the	 same	 notation	 for	 both	 functions	 and
data.	 Some	 ideas	 that	 can	 be	 expressed	 in	 EVAL	 notation	 have	 no
equivalent	in	box	notation.

3.19.

3.20.
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3.21.

3.22.	Part	a.	On	my	computer,	I	type	lisp	and	hit	return.
Part	b.
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Part	 g.	 The	 function	 tries	 to	 add	 one	 to	 the	 truth	 value	 output	 by
ZEROP	(either	T	or	NIL).	This	causes	a	wrong	type	input	error.

3.23.

3.24.
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3.25.

CHAPTER	4	ANSWERS
4.1.

4.2.
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4.3.

4.4.

4.5.	The	third	clause;	the	second	clause;	the	first	clause.

4.6.

4.7.	 The	 second	 COND	 expression	 is	 correct.	 The	 rest	 have	 a	 variety	 of
parenthesis	errors.

4.8.

4.9.	 The	 function	 always	 returns	 its	 input	 unchanged,	 because	 the	 first
COND	clause	is	always	true.	The	second	clause	is	never	tried.	To	fix
the	problem,	swap	the	two	clauses.

4.10.
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4.11.

Calling	FIRSTZERO	with	three	separate	numbers	as	input,	instead
of	one	list	of	three	numbers,	would	cause	a	wrong	number	of	inputs
error.

4.12.

4.13.

4.14.

4.15.	There	is	a	built-in	predicate	called	>	=	that	has	this	behavior,	but	we
can	build	our	own	predicate	using	OR.
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4.16.

4.17.

4.18.

4.19.

4.20.
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4.21.

4.22.

4.23.	 If	WHERE-IS	had	eight	COND	clauses,	WHERE-IS-2	would	need	7
IFs.	WHERE-IS-3	would	need	one	OR	and	seven	ANDs.

4.24.	Conditionals	 are	 important	 because	 they	 allow	 a	 function	 to	 vary	 its
behavior	in	response	to	different	input	conditions.

4.25.	When	IF	is	given	only	two	inputs,	it	uses	NIL	for	its	third	input.

4.26.	A	COND	with	any	number	of	clauses	can	be	 rewritten	 to	use	 IF	be‐
cause	we	can	write	nested	IFs.

4.27.	(COND)	evaluates	to	NIL,	since	it	has	no	true	clauses.

4.28.	Once	IF	determines	that	test	is	true,	it	always	returns	the	value	of	true-
part,	 even	 if	 that	 value	 is	 NIL.	 The	 translation	 using	AND	 and	OR
does	not	have	this	property:	since	(EVENP	7)	is	NIL,	the	AND	returns
NIL,	so	the	OR	goes	on	to	the	next	clause,	which	is’FOO.	We	can	cor‐
rect	this	by	writing:

4.29.

4.30.
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4.31.	 NOT	 is	 not	 a	 conditional:	 It	 always	 evaluates	 its	 input.	 NOT	 is	 a
boolean	 function	 because	 it	 returns	 T	 or	NIL,	 so	we	 do	 not	 need	 to
write	a	LOGICAL-NOT	function.

4.32.

4.33.	There	would	be	23	or	eight	lines	in	the	truth	table.

4.34.

4.35.

4.36.

4.37.
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4.38.

4.39.	 LOGICAL-AND	 is	 not	 logically	 complete:	 there	 is	 no	 way	 to	 con‐
struct	 the	 NOT	 function	 from	 combinations	 of	 LOGICAL-ANDs.
Therefore	we	also	can’t	construct	OR,	NAND,	and	NOR.

CHAPTER	5	ANSWERS
5.1.

5.2.	A	side	effect	is	something	a	function	does	besides	returning	a	value.	As‐
signment	is	an	example	of	a	side	effect.

5.3.	A	local	variable	is	only	accessible	within	the	body	of	the	form	that	de‐
fines	it,	such	as	DEFUN,	LET,	or	LET*.	A	global	variable	is	defined
at	 top-level,	 not	 inside	 one	 of	 these	 forms,	 so	 it	 is	 accessible	 every‐
where.

5.4.	 SETF	 cannot	 be	 an	 ordinary	 function	 because	 it	 does	 not	 evaluate	 its
first	argument.

5.5.	Yes.	The	difference	between	LET	and	LET*	is	only	apparent	when	they
are	used	to	create	more	than	one	local	variable.

5.6.
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THROW-VALUE	is	a	helping	function	used	by	several	of	the	func‐
tions	that	follow.
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CHAPTER	6	ANSWERS
6.1.	 (NTH	4	 ’(A	B	C))	 involves	 four	 successive	CDRs	of	 a	 three-element

list.	 The	 fourth	CDR	produces	 a	NIL	 result,	 and	 the	CAR	of	 that	 is
NIL.

6.2.	(NTH	3	’(A	B	C	.	D))	produces	an	error.	It	takes	three	successive	CDRs
of	 its	 input,	which	 yields	 the	 symbol	D.	Taking	 the	CAR	of	D	 then
causes	an	error	because	D	is	not	a	list.

6.3.	(LAST	’(ROSEBUD))	returns	(ROSEBUD).

6.4.	(LAST	’((A	B	C)))	returns	((A	B	C)).	This	is	a	list	of	one	element,	so
the	last	cell	in	the	top-level	chain	is	the	first	cell.
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6.5.

6.6.

6.7.

6.8.

6.9.	MYSTERY	is	the	same	as	FRIST.
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6.10.

6.11.

6.12.	MEMBER	never	has	 to	copy	 its	 input.	 It	 simply	 returns	a	pointer	 to
one	of	the	cons	cells	that	make	up	its	input,	or	NIL.

6.13.	The	result	of	intersecting	a	set	with	NIL	is	NIL.

6.14.	The	result	of	intersecting	a	set	with	itself	is	the	set.

6.15.

6.16.	The	union	of	a	set	with	NIL	is	the	set.

6.17.	The	union	of	a	set	with	itself	is	the	set.

6.18.

6.19.	 If	NIL	 is	 the	 first	 input	 to	 SET-DIFFERENCE,	 the	 result	 is	NIL.	 If
NIL	is	the	second	input,	the	result	is	the	first	input.

6.20.	 SET-DIFFERENCE	 copies	 (parts	 of)	 its	 first	 input.	 It	 never	 has	 to
copy	its	second	input	because	none	of	the	elements	of	the	second	input
appear	in	its	result.

6.21.

6.22.
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6.23.	LENGTH	returns	the	cardinality	of	a	set.

6.24.

6.25.

6.26.

6.27.	ASSOC	may	be	considered	a	predicate	on	the	same	grounds	as	MEM‐
BER.	ASSOC	returns	a	true	value	if	a	given	input	appears	in	a	table.

6.28.
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6.29.	LENGTH	returns	the	number	of	entries	in	a	table.

6.30.

6.31.

6.32.	 The	WHO-WROTE	 function	will	 behave	 exactly	 the	 same,	 because
the	 order	 of	 entries	 in	 a	 table	 is	 unimportant	when	 the	 keys	 (in	 this
case	the	book	titles)	are	unique.

6.33.	We	can’t	create	WHAT-WROTE	using	the	current	table.	However,	if
we	 rewrote	 the	 table	 to	 use	 dotted	 pairs,	 we	 could	 create	 WHAT-
WROTE	by	using	RASSOC.

6.34.

6.35.	This	problem	can	be	solved	using	either	a	flat	list	(with	MEMBER)	or
a	table	(with	ASSOC).
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Starting	 in	 state	 PROGRAMMING,	 the	 nerd	 would	 go	 to	 state
SLEEPING,	then	to	WAITING,	and	then	to	DEBUGGING.

6.36.

6.37.

6.38.	Equal	results:	X	and	Y	can	be	any	two	identical	sets,	 including	NIL.
The	order	of	elements	need	not	be	the	same	in	the	two	sets.	Unequal
results:	X	and	Y	must	not	be	equal	sets,	for	example,	X	could	be	(A)
and	Y	could	be	(A	B).

6.39.	APPEND	performs	unary	addition.

6.40.
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6.41.

6.42.

CHAPTER	7	ANSWERS
7.1.
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7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.
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(NOTES	(NOTES	X))	and	(NUMBERS	(NUMBERS	X))	both	 re‐
turn	a	list	of	NILs	the	same	length	as	the	input	list.

7.11.

7.12.

A	shorter	solution	is	possible	using	COUNT,	which	is	not	covered
in	this	book.

7.13.
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7.14.

7.15.

A	shorter	solution	 is	possible	using	COUNT-IF,	which	is	not	cov‐
ered	in	this	book.
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7.16.	UNION.

7.17.

7.18.	Suppose	x	and	y	are	lists.	(REDUCE	#’	+	(APPEND	x	y))	should	pro‐
duce	the	same	value	as	the	sum	of	(REDUCE	#’	+	x)	and	(REDUCE
#’	+	y).	If	y	is	NIL,	then	(APPEND	x	y)	equals	x,	so	(REDUCE	#’+y)
has	to	return	zero.	Zero	is	the	identity	value	for	addition.	That’s	why
calling	+	with	no	arguments	returns	zero.	Similarly,	calling	*	with	no
arguments	returns	one	because	one	is	the	multiplicative	identity.

7.19.

7.20.
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7.21.

7.22.

7.23.	 All	 four	 functions	 are	 distinct.	 NOT-ALL-ODD	 should	 be	 called
FIND-EVEN,	and	NOT-NONE-ODD	should	be	called	FIND-ODD.

7.24.	 An	 applicative	 operator	 is	 a	 function	 that	 takes	 another	 function	 as
input,	and	applies	it	to	some	data.

7.25.	Lambda	expressions	allow	us	to	define	nameless	functions	that	can	be
passed	 to	 applicative	 operators.	 We	 can	 also	 define	 functions	 sepa‐
rately	with	DEFUN,	but	in	that	case	they	would	not	be	able	to	refer	to
any	of	 the	 local	variables	of	 the	parent	 function,	 the	way	 the	 lambda
expression	in	MY-ASSOC	refers	to	the	local	variable	KEY.

7.26.

7.27.

7.28.	The	triangle	shape	below	indicates	a	truth	value	(T	or	NIL).

7.29.
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Add	to	the	database	the	lists	(Bl	COMPOSITION	WOOD)	and	(B2
COMPOSITION	PLASTIC).

7.30.

CHAPTER	8	ANSWERS

473



8.1.	The	 second	COND	clause	 is	never	 true,	 since	none	of	 the	numbers	 is
odd.

8.2.

8.3.	 In	(FACT	20.0)	 the	result	 is	computed	using	floating	point	arithmetic,
which	has	limited	precision.	(FACT	20)	uses	integers	called	bignums
instead.	Bignums	have	unlimited	precision.	(FACT	0)	and	(FACT	0.0)
both	satisfy	the	first	COND	clause,	which	always	returns	the	integer	0.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.
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8.10.

8.11.

8.12.	ANY-7-P	doesn’t	know	to	stop	when	its	input	is	NIL.	It	will	work	cor‐
rectly	 as	 long	 as	 its	 input	 contains	 at	 least	 one	 seven;	 in	 that	 case	 it
stops	and	returns	T.	Otherwise	it	will	recurse	infinitely.

8.13.	Calling	FACT	with	a	negative	number	causes	an	infinite	recursion.

8.14.

8.15.	 The	 car	 of	 the	 list	 is	 the	 symbol	 X,	 and	 the	 cdr	 is	 the	 list	 itself.
COUNT-SLICES	will	recurse	infinitely	when	given	this	 list	as	 input,
since	it	can	never	reach	the	“end”	of	the	cons	cell	chain.

8.16.	Switching	 the	 first	 and	 second	COND	clauses	would	cause	 an	error:
ODDP	would	signal	“wrong	type	input”	when	X	is	NIL.

8.17.

8.18.

8.19.	ANYODDP	will	work	 correctly	 as	 long	 as	 there	 is	 at	 least	 one	 odd
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number	 in	 the	 list.	 If	 there	 are	 no	 odd	 numbers,	 it	 will	 get	 an	 error
when	it	tries	to	compute	ODDP	of	NIL.

8.20.	FACT	uses	single-test	augmenting	recursion.	The	template	values	are:

End	test: (ZEROP	N)
End-value: 1
Aug-fun: *
Aug-val: N
Reduced-x: (-	N	1)

8.21.

8.22.

This	problem	does	not	require	augmentation,	since	the	return	value
is	always	just	T	or	NIL.	It	is	solved	with	double-test	tail	recursion.

8.23.	 The	 table	 has	 six	 entries,	 one	 for	 each	 invocation	 of	 LAUGH	 in
(LAUGH	5).

8.24.
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8.25.

8.26.

8.27.

8.28.

8.29.

8.30.

8.31.
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8.32.

8.33.

8.34.

8.35.

8.36.
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8.37.

Every	 nonterminal	 call	 to	 FIB	makes	 one	 call	 to	COMBINE,	 and
every	call	to	COMBINE	combines	the	results	of	two	more	calls	to
FIB.	Since	 terminal	 calls	 to	FIB	 always	 return	 one,	we	 can	prove
that	 the	 total	number	of	calls	 to	COMBINE	 is	equal	 to	Fib(N)	 -1.
The	proof	 is	based	on	 the	 realization	 that	every	binary	 tree	with	k
terminal	nodes	has	exactly	k-1	nonterminal	nodes.

8.38.	 If	 the	first	COND	clause	 is	omitted,	 the	NILs	at	 the	end	of	cons	cell
chains	will	 also	 be	 converted	 to	Qs.	 So	 (ATOMS-TO-Q’(A	 (B)	 C))
will	return	(A	(B	.	Q)	C	.	Q).

8.39.

8.40.

8.41.
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8.42.

8.43.

8.44.

8.45.

8.46.

8.47.
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8.48.

This	 solution	 uses	 single-test	 augmenting	 recursion,	 with	 no	 aug‐
mentation	value.	The	augmentation	function	is	LIST.

8.49.

8.50.

8.51.

8.52.

This	 solution	 returns	 all	 the	 elements	 of	X	 in	 their	 original	 order,
followed	by	those	elements	of	Y	(in	original	order)	that	do	not	ap‐
pear	in	X.

8.53.
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8.54.

8.55.	A	recursive	function	calls	itself,	or	calls	another	function	which	in	turn
calls	it.

8.56.

8.57.

8.58.

8.59.
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The	 equations	 are	 correct,	 and	 the	 function	will	 return	 the	 correct
value	 for	an	 input	of	zero.	For	 inputs	greater	 than	zero	 it	 recurses
infinitely,	because	each	recursive	call	generates	a	larger	value	of	N.
It	 thus	violates	the	third	rule	of	recursion:	The	journey	gets	bigger
with	each	step	instead	of	smaller.

8.60.
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8.61.
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8.62.

8.63.
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8.64.

8.65.

8.66.

8.67.

8.68.	NIL	is	a	proper	list,	and	so	is	any	cons	cell	whose	cdr	is	a	proper	list.

8.69.	A	positive	integer	greater	than	one	is	either	a	prime,	or	the	product	of	a
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prime	and	a	positive	integer	greater	than	one.

8.70.

8.71.	To	view	this	diagram	as	a	binary	tree	instead	of	a	list,	turn	the	page	45
degrees	clockwise.	The	terminal	nodes	of	the	tree	are	the	atoms	A,	B,
C,	D,	E,	and	NIL.	The	nonterminal	nodes	are	the	cons	cells.

8.72.	A	book	can	be	described	as	a	tree	whose	nodes	have	varying	numbers
of	 branches.	 The	 nonterminal	 nodes	 are	 chapters,	 sections,	 subsec‐
tions,	paragraphs,	sentences,	and	words.	The	terminal	nodes	are	char‐
acters.

CHAPTER	9	ANSWERS
9.1.

9.2.

9.3.
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9.4.

9.5.

9.6.

9.7.
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9.8.	A	symbol	is	a	block	of	five	pointers.	Strings	are	not	symbols,	they	are
vectors.	Strings	 evaluate	 to	 themselves.	They	are	written	enclosed	 in
double	quotes,	and	often	contain	mixed	upper	and	lower	case	charac‐
ters,	whereas	symbol	names	are	usually	all	upper	case.

9.9.

9.10.
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9.11.

9.12.	(DOT-PRTN1	’(A	.	(B	.	C)))	should	print	(A	.	(B	.	C)).

9.13.	Lisp	prefers	to	write	(A	.	NIL)	in	list	notation,	as	(A).	But	(A	.	B)	must
be	 written	 in	 dot	 notation,	 because	 the	 cdr	 of	 the	 cons	 cell	 doesn’t
point	to	NIL	or	another	cons	cell.	Lisp	prints	(A	.	B).
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9.14.	 Both	 these	 structures	 cause	 infinite	 loops.	 For	 the	 first	 one,	 DOT-
PRIN1	prints	“(FOO	.	(FOO	.	(FOO	.	...”	until	you	stop	it	or	some	sort
of	stack	overflow	error	occurs.	For	 the	second	one,	DOT-PRIN1	tries
to	print	an	infinite	series	of	left	parentheses.

9.15.

CHAPTER	10	ANSWERS
10.1.	 If	 *TOTAL-GLASSES*	was	 not	 initialized,	 we	would	 get	 an	 unas‐

signed	variable	error	when	we	called	SELL.	If	it	was	initialized	to	the
symbol	FOO	instead	of	to	zero,	we	would	get	a	wrong	type	input	error
when	SELL	tried	to	increment	the	total.

10.2.

10.3.
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10.4.

10.5.

10.6.

10.7.	(LENGTH	X)	is	not	a	valid	place	description:	It	does	not	name	a	place
where	 a	 pointer	 is	 stored.	 SETF	 will	 complain	 that	 it	 has	 no	 SETF
method	for	LENGTH.

10.8.
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10.9.
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10.10.

10.11.	The	SETF	operation	constructs	a	circular	list	by	making	the	cdr	of	the
last	cons	cell	point	back	to	the	first	cell.

10.12.	 (APPEND	 H	 H)	 returns	 the	 list	 (HI	 HO	 HI	 HO).	 It	 copies	 its	 first
input,	and	the	result	shares	structure	with	H.	(NCONC	H	H)	turns	the
list	H	into	a	circular	list	by	destructively	setting	the	cdr	of	the	last	cell
of	its	first	argument	to	point	to	its	second	argument.

CHAPTER	11	ANSWERS
11.1.

11.2.

11.3.

11.4.
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11.5.

11.6.

11.7.	 IT-INTERSECTION	 went	 throught	 the	 elements	 of	 X	 from	 left	 to
right,	and	PUSHed	selected	ones	onto	RESULT-SET.	Because	PUSH
adds	elements	 to	 the	front	of	a	 list,	 the	result	was	built	up	 in	 reverse
order.	We	can	correct	this	by	making	IT-INTERSECTION	reverse	the
result	before	returning	it.

11.8.

11.9.

11.10.

11.11.

11.12.
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11.13.

11.14.	The	function	would	not	work	if	we	changed	the	DO*	to	a	DO.	When
evaluating	the	expression	(FIRST	X)	to	get	the	initial	value	for	E,	Lisp
would	try	to	reference	the	global	variable	X,	because	the	expression	is
not	within	 the	 lexical	scope	of	any	 local	variable	named	X.	This	will
probably	result	in	an	unassigned	variable	error.

11.15.	 If	only	the	last	number	in	 the	list	 is	odd,	 this	version	of	FFO-WITH-
DO	will	 return	NIL	instead	of	 the	number.	Due	to	 the	use	of	parallel
assignment,	E	is	assigned	the	last	number	in	the	list	at	 the	same	time
that	Z	becomes	NIL.	When	Z	is	NIL	the	DO’s	termination	test	is	true,
so	the	body	is	never	evaluated	and	the	last	element	of	the	list	is	never
tested	for	being	odd.

11.16.	The	variable	list	of	a	LET	contains	pairs	of	form	(variable	value).	The
variable	list	of	a	DO	contains	triples	of	form	(variable	initial-value	up‐
date-expression).	If	the	third	element	is	omitted,	the	variable	is	not	up‐
dated	each	 time	 through	 the	 loop.	 In	 this	 case	DO	 treats	 the	variable
just	as	LET	would.

11.17.	The	value	of	the	expression	is	5.

11.18.

The	DO	goes	through	its	body	five	times,	with	the	index	variable	I
equal	to	zero	through	four.	The	loop	terminates	when	I	reaches	five.
Since	the	expression	to	be	returned	is	I,	the	DO	returns	five.	Many
Lisp	 implementations	 automatically	 translate	 DOTIMES	 expres‐
sions	into	a	DO	expression	such	as	this	one.

11.19.	The	entries	in	a	DO’s	variable	list	may	appear	in	any	order.	They	are
completely	 independent	 due	 to	 the	 use	 of	 parallel	 assignment.	With
DO*,	though,	the	order	of	entries	is	important,	because	sequential	as‐
signment	permits	dependencies	to	exist	among	the	variables.
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11.20.	If	a	loop	uses	only	one	index	variable,	DO	and	DO*	are	equivalent.

11.21.

11.22.
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The	 LABELS	 special	 function	 used	 in	 COUNT-BASES	 was	 de‐
scribed	in	Advanced	Topics	section	8.18	on	page	282.	This	problem
can	 be	 solved—somewhat	 less	 elegantly—without	 LABELS,	 for
example,	by	making	COUNT-ONE-BASE	a	separate	 function	and
keeping	the	counts	in	global	variables.
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CHAPTER	12	ANSWERS
12.1.	 The	 symbol	 CAPTAIN	 is	 used	 in	 the	 DEFSTRUCT	 expression	 to

name	one	of	the	fields	of	a	star	ship.	The	keyword	:	CAPTAIN	is	used
as	an	argument	to	MAKE-STARSHIP	to	specify	a	value	for	this	field.
The	 symbol	STARSHIP-CAPTAIN	names	 the	 accessor	 function	 that
extracts	this	field	from	a	starship	object.

12.2.	(STARSHIP-P’STARSHIP)	returns	NIL,	because	STARSHIP	is	just	a
symbol,	not	a	structure	of	type	STARSHIP.

12.3.
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(TYPE-OF	#’	MAKE-STARSHIP)	returns	a	value	that	depends	on
the	representation	of	functions	in	your	particular	Lisp	implementa‐
tion.	 Some	 possible	 values	 are	 LEXICAL-CLOSURE,	 COM‐
PILED-FUNCTION,	or	even	CONS.

12.4.
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12.5.
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CHAPTER	13	ANSWERS
13.1.

13.2.

13.3.

13.4.

13.5.	You	can	access	any	element	of	an	array	in	constant	time.	For	lists,	the
amount	of	time	it	takes	to	access	an	element	is	proportional	to	its	dis‐
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tance	 from	 the	 beginning	 of	 the	 list.	 Another	 advantage	 of	 arrays	 is
that	they	generally	use	only	about	half	as	much	storage	as	lists.

13.6.	Lists	are	easy	 to	create	one	element	at	a	 time,	using	CONS.	And	we
can	splice	new	items	into	a	list	at	any	position,	or	snip	them	out,	using
destructive	operations.	Arrays	 can	not	be	 constructed	or	manipulated
this	easily.	Also,	lists	can	share	structure	in	ways	that	are	not	possible
for	arrays.

13.7.	Both	structures	require	the	same	number	of	cons	cells.	However,	if	the
association	 list	were	not	 dotted,	 for	 example,	 ((CAT	MEOW)	 (DOG
WOOF))	instead	of	((CAT	.	MEOW)	(DOG	.	WOOF)),	then	it	would
require	one	more	cons	cell	per	entry	 than	 the	corresponding	property
list	representation.

13.8.

13.9.	Text	of	the	cryptogram:
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Solution	 to	 the	 cryptogram:	 It	 is	 better	 to	 remain	 silent	 and	 be
thought	a	fool	than	to	speak	and	remove	all	doubt.
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CHAPTER	14	ANSWERS
14.1.	 (POP	 X)	 typically	 expands	 to	 something	 like	 (PROG1	 (CAR	 X)

(SETQ	X	 (CDR	X))),	 but	 the	 exact	 expansion	 varies	 from	 one	Lisp
implementation	to	the	next.

14.2.	The	expansion	of	a	DEFSTRUCT	is	long	and	complicated,	since	there
are	so	many	details	to	be	handled.	You	will	see	definitions	for	acces‐
sor	functions,	SETF	methods,	a	constructor	function,	a	type	predicate,
and	other	things.

14.3.

14.4.

14.5.

14.6.

14.7.	To	solve	this	problem	we	must	create	a	new	state,	HAVE-25,	and	then
define	all	the	legal	transitions	into	and	out	of	this	state.	Besides	putting
in	quarters,	we	can	also	reach	this	state	with	an	appropriate	combina‐
tion	of	nickels	and	dimes.
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14.8.	 It’s	unwise	 to	write	macros	 that	have	 side	 effects	because	you	don’t
necessarily	 know	 when	 or	 how	 often	 the	 macro	 will	 be	 expanded.
Some	 implementations	 expand	 macros	 once	 and	 save	 the	 result	 for
reuse;	others	reexpand	the	macro	at	each	macro	call.	Some	implemen‐
tations	 even	 attempt	 to	 expand	macro	 calls	 in	 function	 bodies	 at	 the
time	the	function	is	DEFUNed.

14.9.	As	of	mid-1989,	 the	24	built-in	Common	Lisp	 special	 functions	are:
BLOCK,	 CATCH,	 COMPILER-LET,	 DECLARE,	 EVAL-WHEN,
FLET,	 FUNCTION,	 GO,	 IF,	 LABELS,	 LET,	 LET*,	 MACROLET,
MULTIPLE-VALUE-CALL,	MULTIPLE-VALUE-PROG1,	PROGN,
PROGV,	 QUOTE,	 RETURN-FROM,	 SETQ,	 TAGBODY,	 THE,
THROW,	and	UNWIND-PROTECT.	This	list	may	change	with	future
revisions	of	the	Common	Lisp	standard.

14.10.	Lisp	programs	typically	run	10	to	100	times	faster	after	compilation.

14.11.
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Glossary

a-list
See	association	list.

accessor	function
A	function	such	as	STARSHIP-SPEED,	defined	automatically	by	DEFSTRUCT,	that	allows	you	to
access	a	particular	field	of	a	structure.

address
A	number	describing	the	location	of	an	object	in	memory.

applicative	operator
A	function	that	takes	another	function	as	input,	and	applies	it	to	some	data.	Examples	include	MAP‐
CAR	and	FIND-IF.

applicative	programming
A	style	of	programming	in	which	functions	are	frequently	passed	as	data	to	other	functions,	and	ex‐
plicit	assignment	is	avoided.	Repetitive	operations	are	performed	by	passing	functions	to	applicative
operators.

APPLY
The	Lisp	primitive	that	applies	a	function	to	a	set	of	arguments.	EVAL	and	APPLY	are	the	two	basic
functions	from	which	Lisp	interpreters	are	constructed.	Applicative	operators	are	all	constructed	from
APPLY	(or	from	FUNCALL.)

argument
A	piece	of	data	serving	as	input	to	a	function,	or	an	expression	which,	when	evaluated,	will	produce
that	piece	of	data.	The	term	is	also	used	to	refer	to	the	names	a	function	uses	for	its	inputs,	as	in	“AV‐
ERAGE	is	a	function	of	two	arguments:	X	and	Y.”

argument	list
A	list	that	specifies	the	names	a	function	gives	to	each	of	its	inputs,	and	how	many	inputs	it	requires.
When	defining	a	new	function,	the	second	input	to	DEFUN	is	the	new	function’s	argument	list.

array
A	contiguous	block	of	storage	whose	elements	are	accessed	by	numeric	subscripts.	One-dimensional
arrays	are	called	vectors,	and	are	a	type	of	sequence.

array	header
A	small	amount	of	storage	at	the	beginning	of	an	array	where	Lisp	keeps	information	about	the	orga‐
nization	of	the	array,	such	as	its	length,	and	the	number	of	dimensions	it	has.

assignment-free	style
A	style	of	programming	that	avoids	explicit	assignment	to	variables.	Once	a	variable	is	given	a	value,
such	as	by	a	function	call	or	by	LET,	that	value	never	changes.	Assignment-free	programs	are	consid‐
ered	very	elegant	and	easy	to	read.

association	list
A	list	of	pairs,	or,	more	generally,	of	lists,	called	entries.	The	car	of	each	entry	is	the	key	searched
for	by	ASSOC.
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atom
Any	Lisp	object	that	is	not	a	cons	cell.	All	non-lists	are	atoms.	So	is	the	empty	list,	NIL.

augmentation
The	process	of	adding	something	on	to	a	result	to	derive	a	new	result.

augmenting	recursion
A	type	of	recursion	in	which	the	final	result	is	built	up	bit	by	bit,	by	adding	something	to	the	result	of
each	recursive	call.

backtrace
A	display	 of	 the	 execution	 stack	 showing	 the	 function	 currently	 being	 evaluated,	 the	 function	 that
called	it,	the	function	that	called	that	function,	and	so	on.	Backtraces	are	displayed	by	the	debugger
upon	command.

bignum
An	integer	with	an	arbitrary	number	of	digits.	Internally,	bignums	are	usually	represented	as	a	spe‐
cial	type	of	sequence.	Compare	fixnum.

binary	tree
A	tree	in	which	each	nonterminal	node	has	exactly	two	children.	Lists	may	be	viewed	as	binary	trees
whose	nonterminal	nodes	are	cons	cells	and	whose	terminal	nodes	are	atoms.

binding
An	archaic	term	with	conflicting	uses.	Essentially,	binding	means	creating	a	variable	and	assigning	it
a	value.	See	also	rebinding.

block
A	named	sequence	of	Lisp	expressions,	forming	the	body	of	a	BLOCK	expression.	Blocks	may	be
exited	using	RETURN-FROM.

block	name
A	symbol	serving	as	the	name	of	a	block.	DO,	DO*,	DOTIMES,	and	DOLIST	create	implicit	blocks
named	NIL.	Functions	defined	by	DEFUN	or	LABELS	 surround	 their	 bodies	with	 implicit	 blocks
whose	name	is	the	same	as	the	function.

body
The	body	of	a	form,	such	as	a	function	definition	or	a	LET,	LABELS,	or	DO	expression,	contains	ex‐
pressions	to	be	evaluated	sequentially	within	the	lexical	context	of	the	form.	Normally,	the	value	of
the	last	expression	in	the	body	is	returned	by	the	form.

Boolean	function
A	function	whose	inputs	and	outputs	are	truth	values.	Boolean	functions	are	truth	functions.

bucket
One	of	the	slots	of	a	hash	table,	in	which	a	chain	of	items	is	stored.	The	more	buckets	a	hash	table
has,	the	fewer	items	each	bucket	must	hold,	and	the	faster	the	access	time	for	an	item	will	be.

call
To	call	or	invoke	a	function	means	to	pass	it	some	inputs	and	ask	it	to	produce	an	output	or	side	ef‐
fect.

CAR
The	left	half	of	a	cons	cell.	Also,	a	function	that	returns	the	contents	of	the	left	half	of	a	cons	cell.	The
name	stands	for	Contents	of	Address	portion	of	Register.

cardinality
The	cardinality	of	a	set	is	the	number	of	elements	it	contains.
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CDR
The	right	half	of	a	cons	cell.	Also,	a	function	that	returns	the	contents	of	the	right	half	of	a	cons	cell.
The	name	stands	for	Contents	of	Decrement	portion	of	Register.	See	also	CAR,	cons.

character	object
A	Lisp	object	such	as	#\A	that	denotes	a	character.

character	string
See	string.

circular	list
A	cons	cell	structure	in	which	there	is	a	path	from	some	cons	cell	back	to	itself,	possibly	via	interven‐
ing	cons	cells.	If	a	list	is	circular,	it	is	not	a	tree.

clause
An	element	of	a	COND,	AND,	or	OR	conditional	expression.	A	conditional	can	decide	which	of	its
clauses	will	be	evaluated.

comment
A	remark	included	in	a	program	to	make	it	more	understandable	to	humans.	Lisp	comments	are	pre‐
ceded	by	at	least	one	semicolon.

composite	number
An	integer	that	is	the	product	of	a	prime	and	some	other	integer.	The	opposite	of	a	prime	number.

conditional
A	special	function	or	macro	function	that	makes	decisions	about	which	parts	of	its	input	to	evaluate.
Examples	include	IF,	COND,	AND,	and	OR.

conditional	augmentation
A	style	of	recursion	in	which	the	results	of	each	recursive	call	are	sometimes	augmented	and	some‐
times	not,	under	the	control	of	a	conditional.

cons	cell
The	unit	of	computer	memory	from	which	lists	are	composed.	Each	cons	cell	holds	two	pointers,	one
in	the	car	half,	and	one	in	the	cdr	half.

constructor	function
A	function	such	as	MAKE-STARSHIP	that	constructs	new	instances	of	a	structure	type.

cryptogram
A	puzzle	in	which	a	piece	of	text	is	encoded	by	a	substitution	cipher.	Cryptograms	can	be	solved	by
applying	knowledge	of	letter	frequencies,	and	the	limited	number	of	words	with	three	or	fewer	letters,
to	arrive	at	a	partial	decoding.

data
Data	means	information.	Lisp	data	comes	in	several	forms,	including	numbers,	symbols,	and	lists.

database
A	data	structure	that	holds	a	collection	of	facts.	For	example,	a	“blocks	world”	database	would	con‐
tain	facts	about	the	properties	of	individual	blocks	and	their	relationships	to	each	other.

debugger
A	tool	for	examining	the	state	of	Lisp	programs	after	an	error	occurs.	It	is	used	to	find	and	eliminate
the	“bug”	responsible	for	the	error.

DeMorgan’s	Theorem
A	theorem	showing	the	interchangeability	of	AND	and	OR	when	combined	with	NOT.
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destructive	operation
An	operation	that	replaces	one	pointer	with	another,	thereby	changing	the	value	of	a	variable	or	alter‐
ing	the	contents	of	a	cons	cell.

destructuring
A	macro	 function’s	breaking	up	one	of	 its	unevaluated	 inputs	 (a	 list)	 into	 its	 component	 elements.
Destructuring	may	be	requested	by	writing	a	list	in	place	of	a	symbol	in	the	macro’s	argument	list.

discrimination	net
A	network	of	nodes,	each	containing	a	question,	that	may	be	used	to	solve	diagnostic	problems.	The
user’s	response	 to	 the	current	node’s	question	determines	which	of	 the	node’s	descendants	will	be‐
come	the	new	current	node.

documentation	string
A	 character	 string	 serving	 as	 the	 online	 documentation	 for	 a	 function	 or	 variable.	 Documentation
strings	may	be	established	using	DEFUN	or	DEFVAR.

dot	notation
A	notation	for	writing	lists	in	which	cons	cells	are	written	as	dotted	pairs,	that	is,	each	cons	cell	is	dis‐
played	as	a	car	and	cdr	separated	by	a	dot,	enclosed	in	parentheses.	The	list	(A	(B)	C)	is	written	(A	.
((B	.	NIL)	.	(C	.	NIL)))	in	dot	notation.	See	also	hybrid	notation.

dotted	list
A	cons	cell	chain	ending	in	an	atom	other	than	NIL.	For	example,	(A	B	C	.	D)	is	a	chain	of	three	cons
cells	ending	in	the	symbol	D.	This	list	must	be	written	with	a	dot	to	show	that	the	D	is	the	cdr	of	the
third	cell,	not	the	car	of	a	fourth	cell.

dotted	pair
A	single	cons	cell	written	in	do	notation.	Usually	the	cdr	is	a	non-NIL	atom.	A	typical	dotted	pair	is
(A	.	B).

double-test	recursion
A	style	of	recursion	in	which	there	are	two	end	tests.	Often,	one	test	is	for	success,	such	as	finding	a
particular	element	when	searching	a	list,	and	the	other	is	for	failure,	such	as	running	off	the	end	of	the
list.

dynamic	scoping
A	scoping	discipline	in	which	a	symbol	is	dynamically	associated	with	the	most	recently-created	vari‐
able	with	 that	name	still	 in	existence,	 independent	of	 the	 lexical	context	 in	which	 the	variable	was
created.	Special	variables	are	dynamically	scoped.	Compare	lexical	scoping.

element
The	elements	of	a	list	are	the	cars	of	its	top-level	cons	cells,	that	is,	the	things	that	appear	within	only
one	level	of	parentheses.

empty	list
The	list	with	no	elements.	It	is	written	()	or	NIL.

end-of-file	error
When	READ	tries	to	read	an	object	beyond	the	last	object	in	the	file,	an	end-of-file	error	is	signalled.
This	error	can	be	disabled	by	supplying	an	optional	argument	to	READ.

entry
An	element	of	an	association	list	(such	as	a	dotted	pair),	or	of	a	hash	table.

escape	character
Characters	such	as	the	double	quote	used	to	enclose	strings.	Escape	characters	are	necessary	to	print
objects	 containing	 special	 characters;	 otherwise	 it	will	 not	 be	 possible	 to	 read	 the	 objects	 back	 in
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again	using	READ.

EVAL
The	heart	of	Lisp:	EVAL	is	a	function	that	evaluates	a	Lisp	expression	according	to	a	set	of	evalua‐
tion	rules,	and	returns	the	result.

EVAL	notation
A	way	to	write	Lisp	expressions	as	lists.	The	first	element	of	a	list	specifies	a	function,	and	the	re‐
maining	elements	specify	arguments	to	be	evaluated	before	the	function	is	called.

evaltrace	diagram
A	graphical	notation	unique	to	this	book.	Evaltrace	diagrams	illustrate	the	evaluation	of	expressions,
and	are	particularly	useful	for	explaining	lexical	and	dynamic	scoping.

evaluation
The	process	of	deriving	a	result	from	an	expression.

expression
Expressions	are	the	Lisp	equivalent	of	sentences	in	English.	Every	Lisp	object	(number,	symbol,	list)
is	an	expression.	Lisp	interpreters	read	expressions	from	the	keyboard,	evaluate	them,	and	print	the
results.

finite	state	machine
A	theoretical	machine	consisting	of	a	 finite	number	of	nodes,	 representing	 states,	 connected	by	 la‐
beled	arcs.	The	machine	moves	from	one	state	to	the	next	depending	on	which	arc	label	matches	its
input.	Finite	state	machines	are	useful	as	abstract	descriptions	of	the	mechanisms	governing	devices
such	as	traffic	lights,	vending	machines,	and	bits	of	computer	circuitry.

fixnum
An	integer	small	enough	to	be	represented	more	efficiently	than	a	bignum.	In	most	implementations,
fixnums	are	represented	as	binary	integers	24	to	32	bits	long.	Larger	integers	must	be	represented	as
bignums.

flat	list
A	list	of	atoms.	Since	it	contains	no	lists	as	elements,	it	is	called	flat	rather	than	nested.

floating	point	number
A	number	containing	a	decimal	point,	such	as	5.0	or	3.14159.

form
An	expression.	Forms	are	evaluated	to	yield	results.	The	term	is	also	used	to	refer	to	macros	and	spe‐
cial	functions	themselves,	as	in	“LET*	is	a	form	for	sequentially	binding	variables.”

format	control	string
A	string	given	as	a	second	argument	to	format	containing	text	to	be	printed,	interspersed	with	format
directives	 such	as	~S.	Several	other	 functions	also	accept	 format	 control	 string	arguments,	 such	as
YES-OR-NO-P,	BREAK,	and	ERROR.

function
Functions	transform	inputs	to	outputs.	Lisp	functions	are	defined	with	DEFUN.	Lisp	programs	are	or‐
ganized	as	collections	of	functions.

function	cell
One	of	the	five	components	of	a	symbol.	The	function	cell	holds	a	pointer	to	the	function	object	rep‐
resenting	the	global	function	named	by	that	symbol.	(Local	functions	created	by	LABELS	do	not	re‐
side	in	the	function	cell.)

function	object

513



A	piece	of	Lisp	data	that	is	a	function,	and	can	be	applied	to	arguments.	The	representation	of	func‐
tion	objects	is	implementation	dependent.

garbage	collection
The	process	of	reclaiming	storage	that	is	no	longer	in	use,	so	that	it	may	be	reused.

generalized	variable
Any	place	a	pointer	may	reside,	such	as	an	ordinary	variable,	the	car	or	cdr	half	of	a	cons	cell,	an	ele‐
ment	of	an	array,	a	slot	in	a	structure,	or	one	of	the	five	cells	making	up	a	symbol.

gensym
A	symbol	created	automatically,	with	a	name	such	as	#:	G0037,	that	is	not	registered	in	any	package.
Gensyms	are	often	found	in	the	expansions	of	complex	macros	such	as	SETF.

global	variable
A	variable	that	exists	in	the	global	lexical	context	rather	than	being	local	to	some	particular	function
or	LET	expression.

hash	table
A	Lisp	data	structure	that	efficiently	associates	keys	with	entries.	Hash	tables	serve	the	same	purpose
as	association	lists,	but	they	provide	faster	lookups	of	items	when	the	number	of	entries	is	large.

hashing	algorithm
The	method	by	which	a	hash	table	assigns	an	entry	to	a	bucket.	When	looking	up	a	key	in	the	table,
the	hashing	algorithm	determines	which	of	the	table’s	buckets	to	look	in.

hybrid	notation
A	notation	for	writing	lists	in	which	dots	are	used	only	when	necessary,	that	is,	only	when	a	cons	cell
chain	ends	in	an	atom	other	than	NIL.	The	dot	notation	list	((A	.	NIL)	.	(C	.	(D	.	E)))	is	written	in	hy‐
brid	notation	as	((A)	C	D	.	E).

i/o
Input/output.	The	process	of	 transferring	information	between	the	computer	and	an	external	device,
such	as	the	keyboard,	the	display,	or	a	disk	file.

indicator
An	atom	(normally	a	symbol)	that	serves	as	the	name	of	a	property	on	a	property	list.

input
The	 inputs	 to	a	 function	are	 the	pieces	of	data	 it	 receives.	The	 term	 input	 also	 refers	 to	 the	act	of
reading	an	object	or	character	string	from	the	keyboard,	or	from	a	file.

integer
A	whole	 number,	 such	 as	 two.	 Integers	 are	 divided	 into	 fixnums	 and	bignums.	 See	 also	 floating
point	number	and	ratio.

intersection
The	intersection	of	two	sets	contains	only	those	elements	that	appear	in	both	sets.	See	union.

invoke
To	invoke	a	function	means	to	call	it,	in	other	words,	to	give	it	some	inputs	and	ask	it	to	produce	an
output.

iteration
To	 iterate	 means	 to	 repeat.	 Iteration	 in	 Lisp	 is	 accomplished	 by	 macros	 such	 as	 DO,	 DO*,
DOTIMES,	and	DOLIST,	which	ultimately	rely	on	the	LOOP	special	function.

key
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The	item	that	names	an	entry	in	an	association	list	or	hash	table.	Entries	can	be	retrieved	(by	ASSOC
or	GETHASH)	given	the	associated	key.

keyword
A	special	kind	of	symbol	that	is	written	with	a	preceding	colon,	such	as	:TEST.	Keywords	evaluate	to
themselves.

keyword	argument
An	optional	argument	named	by	a	keyword.	For	example,	the	MEMBER	function	takes	an	optional
:TEST	argument.

lambda
A	marker	 indicating	 that	a	 list	 is	a	 lambda	expression	and	 is	 to	be	 interpreted	as	a	description	of	a
function.

lambda-list	keyword
A	special	symbol	such	as	&OPTIONAL	or	&REST	that	has	a	special	meaning	when	it	appears	in	the
argument	list	of	a	function.

lambda	calculus
A	 logical	 formalism	defined	 by	 the	mathematician	Alonzo	Church.	 John	McCarthy,	 the	 creator	 of
Lisp	(and	a	former	student	of	Church),	borrowed	lambda	notation	from	the	lambda	calculus	and	used
it	for	describing	functions	in	Lisp.

lambda	expression
A	list	that	describes	a	function.	Its	first	element	must	be	the	symbol	LAMBDA,	its	second	element
must	be	an	argument	list,	and	its	remaining	elements	constitute	the	body	of	the	function.	Lambda	ex‐
pressions	must	be	quoted	with	#’.	For	example,	#’	(LAMBDA	(N)	(*	N	2)).

lexical	closure
A	type	of	function.	Lexical	closures	are	created	automatically	by	Lisp	when	functions	passed	as	argu‐
ments	to	other	functions	need	to	remember	their	lexical	context.

lexical	scoping
A	scoping	discipline	 in	which	 the	only	variables	a	 function	can	see	are	 those	 it	defined	 itself,	plus
those	defined	by	forms	that	contain	the	function,	as	when	a	function	defined	with	DEFUN	contains	a
lambda	expression	inside	it.	Compare	dynamic	scoping.

list
A	chain	of	cons	cells.	One	of	the	fundamental	data	structures	of	Lisp.

list	surgery
Destructive	modification	of	a	list	by	changing	the	pointers	stored	in	its	cons	cells.	Used	to	efficiently
insert	or	delete	elements	because	it	avoids	copying	the	list.

local	variable
A	lexically	scoped	variable	whose	scope	is	limited	to	the	body	of	a	function	or	LET	expression.	Com‐
pare	global	variable.

logically	complete
A	truth	function	is	 logically	complete	 if	all	other	 truth	functions	can	be	constructed	from	combina‐
tions	of	it.	NAND	is	logically	complete;	AND	is	not	because	you	cannot	construct	the	NOT	function
by	putting	ANDs	together.

macro	function
A	special	kind	of	function	whose	arguments	are	not	evaluated.	Macro	functions	must	return	Lisp	ex‐
pressions,	which	are	then	evaluated.
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macro	expansion
The	act	of	invoking	a	macro	on	some	inputs	to	obtain	a	Lisp	expression.	For	example,	the	macro	call
(INCF	A)	may	expand	to	the	expression	(SETQ	A	(+	A	1)).

member
An	item	is	a	member	of	a	set	if	it	appears	in	(is	an	element	of)	the	set.

multiple	recursion
A	style	of	recursion	in	which	each	call	to	a	function	results	in	several	recursive	calls,	for	example,	to
examine	both	the	car	and	cdr	halves	of	a	tree.

nested	IF
An	IF	appearing	as	the	true-part	or	false-part	of	an	enclosing	IF.	Nested	IFs	may	be	used	to	duplicate
the	multiple-clause	capabilities	of	COND.

nested	list
A	list	that	contains	other	lists	as	elements.

NIL
The	only	way	to	say	false	in	Lisp.	NIL	is	also	the	empty	list.	It	is	both	a	symbol	and	a	list,	and	it	eval‐
uates	to	itself.

nondestructive	function
A	function	that	does	not	change	the	value	of	any	variable	or	modify	pointers	stored	in	any	existing
Lisp	object,	such	as	cons	cells.	APPEND	is	nondestructive;	NCONC	is	the	destructive	version.

nonterminal	node
A	node	of	a	tree	with	at	least	one	descendant.

output
The	output	of	a	function	is	the	result	it	returns.	The	term	may	also	refer	to	a	program’s	outputting	in‐
formation	to	the	display,	or	to	a	file.

package
Packages	are	the	name	spaces	in	which	symbols	are	registered.	The	default	package	is	called	USER.
Lisp	functions	and	variables	are	named	by	symbols	in	package	LISP.

package	name
A	character	string	giving	the	name	of	a	package,	such	as	“USER”.	APROPOS	takes	a	package	name
as	an	optional	second	argument.

pattern	matcher
A	function	that	matches	an	input	list	against	a	pattern	that	may	contain	wildcards.	For	example,	the
input	(Bl	COLOR	GREEN)	matches	the	pattern	(Bl	COLOR	?).

pointer
A	pointer	 to	an	object	gives	 the	address	of	 that	object	 in	memory.	Pointers	are	drawn	as	arrows	 in
cons	cell	diagrams.

predicate
A	function	that	answers	a	question	by	returning	T	(or	some	other	non-NIL	value)	for	true,	or	NIL	for
false.

predicate	expression
An	expression	whose	value	is	interpreted	as	true	ox	false.	Used	with	conditionals.

prime	number
An	integer	that	is	not	divisible	by	any	other	integers	except	one	and	itself.	Every	composite	number
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is	a	product	of	two	or	more	primes.

primitive
An	elementary	function	that	is	built	in	to	Lisp,	not	defined	by	the	user.	CONS	and	+	are	primitives.

proper	list
A	cons	cell	chain	ending	in	NIL.	NIL	itself	is	also	a	proper	list	(a	chain	of	zero	cons	cells.)

proper	subset
A	proper	subset	is	a	subset	that	is	not	equal	to	the	whole	set.	Set	x	is	a	proper	subset	of	set	y	if	x	is	a
subset	of	y	but	j	is	not	a	subset	of	x.

property	list
A	 list	 composed	 of	 alternating	 property	 indicators	 and	 values,	 such	 as	 (SIBLINGS	 (GEORGE
WANDA)	AGE	23	SEX	MALE).	Every	symbol	contain	a	plist	cell	that	points	to	its	associated	prop‐
erty	list.	Properties	can	be	retrieved	using	the	GET	function.

pushdown	stack
A	data	structure	where	new	elements	are	pushed	on	or	popped	off	only	at	one	end,	usually	called	the
“top”	of	the	stack.	Named	after	spring	loaded	stacks	of	dishes	in	cafeterias.	Also	called	a	LIFO	(Last
In,	First	Out)	stack.	Stacks	are	implemented	as	lists	or	vectors	in	Lisp.

ratio
A	fractional	number	composed	of	a	numerator	and	denominator,	both	of	which	are	integers.	For	ex‐
ample:	3/4.	The	denominator	cannot	be	zero.	In	Common	Lisp,	the	denominator	also	cannot	be	one,
or	the	number	would	be	an	integer,	not	a	ratio.

rational
A	number	expressible	as	the	ratio	of	two	integers.	In	Common	Lisp,	rationals	are	either	integers	or
ratios.

read-eval-print	loop
The	part	of	a	Lisp	interpreter	that	reads	expressions	from	the	keyboard,	evaluates	them,	and	prints	the
result.

rebinding
Rebinding	a	special	variable	means	creating	a	new	dynamic	variable	with	 the	same	name,	such	as
with	LET.	The	name	is	then	dynamically	associated	with	the	new	variable	when	it	appears	anywhere
in	the	program,	and	the	old	variable	is	inaccessible	until	the	form	that	bound	the	new	variable	returns.

reciprocal
The	reciprocal	of	a	number	is	one	divided	by	that	number.	For	example,	the	reciprocal	of	two	is	one-
half.

recursion
A	thing	is	recursive	if	it	contains	a	reference	to	itself	in	its	definition.	Recursive	functions	call	them‐
selves.

recursion	template
A	fill-in-the-blanks	description	of	a	class	of	recursive	functions.	For	example,	CAR/CDR	recursion
describes	a	class	of	functions	for	searching	binary	trees.

result
The	output	of	(or	value	returned	by)	a	function	or	expression.

return
When	a	function	“returns	a	value,”	it	is	outputting	a	piece	of	data.
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root	node
The	topmost	node	of	a	tree.	The	only	node	with	no	parent.

S-expression
Lisp	objects	in	printed	form	used	to	be	called	S-expressions,	meaning	symbolic	expressions.

scope
The	scope	of	an	object	is	the	region	of	the	program	in	which	the	object	can	be	referenced.	For	exam‐
ple,	if	a	variable	names	the	input	to	some	function,	the	scope	of	the	variable	is	limited	to	the	body	of
that	function.	See	also	lexical	scoping	and	dynamic	scoping.

sequence
A	linear	collection	of	elements.	Sequences	in	Lisp	include	lists	and	vectors,	and	hence	strings,	which
are	a	type	of	vector.	Many	functions	that	worked	only	lists	in	previous	Lisp	dialects	work	on	all	types
of	sequences	in	Common	Lisp.	Examples	include	LENGTH	and	REVERSE.

set
An	unordered	collection	of	elements,	each	of	which	appears	only	once	in	the	set.	In	Lisp,	sets	are	im‐
plemented	as	lists.

set	difference
The	set	difference	(or	set	subtraction)	of	sets	x	and	y	is	the	set	of	elements	that	appear	in	x	and	do	not
appear	in	y.

set	exclusive	or
The	exclusive	or	of	two	sets	is	the	set	of	elements	that	appear	in	one	set	but	not	the	other.

side	effect
Any	action	a	function	takes	other	 than	returning	a	value.	Assignment	 to	variables,	and	input/output
operations	are	examples	of	side	effects.

single-test	recursion
A	style	of	recursive	function	in	which	there	is	only	one	end	test.	Single-test	recursion	is	used	when
the	function	 is	guaranteed	 to	eventually	find	what	 it’s	 looking	for,	so	 there	 is	no	need	 to	check	for
failure.	An	example	would	be	the	recursive	definition	of	FACT,	where	the	end	test	is	ZEROP.

special	form
See	special	function.

special	function
A	built-in	function	that	does	not	evaluate	its	arguments.	Special	functions	provide	the	primitive	con‐
structs,	 such	 as	 assignment,	 block	 structure,	 looping,	 and	 variable	 binding,	 from	which	 the	 rest	 of
Lisp	is	built.	They	do	not	return	Lisp	expressions	to	be	evaluated,	as	macros	do.	Lisp	programmers
can	create	new	macros,	but	they	cannot	create	new	special	functions.

special	variable
A	dynamically	scoped	variable.	When	a	name	is	declared	special,	all	variables	with	that	name	will	be
dynamically	scoped.

stream	object
A	Lisp	object	describing	a	connection	to	a	file.	Lisp	programs	read	and	write	files	by	supplying	an
appropriate	stream	object	as	optional	input	to	READ	or	FORMAT.

string
A	sequence	of	characters	enclosed	in	double	quotes,	such	as	the	string	“Foo	Bar”.	Strings	are	vectors
of	character	objects.

structure
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A	user-defined	datatype	composed	of	named	slots.	An	example	 is	 the	STARSHIP	structure,	whose
slots	are	NAME,	CAPTAIN,	SPEED,	SHIELDS,	and	CONDITION.

subset
A	set	x	is	a	subset	of	a	set	y	if	every	element	of	x	is	an	element	of	y.	See	also	proper	subset.

substitution	cipher
A	method	of	secret	writing	in	which	one	letter	is	substituted	for	another	throughout	the	message.	Sub‐
stitution	ciphers	are	easy	to	crack	using	letter	frequency	information.	For	example,	E	is	the	most	fre‐
quently	occurring	letter	in	English	text,	so	if	a	coded	message	contains	more	Qs	than	any	other	letter,
Q	probably	deciphers	to	E.

symbol
One	 of	 the	 fundamental	Lisp	 datatypes.	 Internally,	 symbols	 are	 composed	 of	 five	 cells:	 the	 name,
value,	 function,	 plist,	 and	package	 cells.	Besides	 serving	 as	 data,	 symbols	 also	 serve	 as	names	 for
things,	such	as	functions,	variables,	types,	and	blocks.

symbol	name
Symbols	are	named	by	character	strings.	Each	symbol	contains	a	name	cell	that	holds	a	pointer	to	the
character	string	that	is	the	symbol’s	name.

T
The	standard	way	to	say	true	in	Lisp.	T	is	a	symbol.	It	evaluates	to	itself.

tail	recursive
A	function	is	tail	recursive	if	it	does	all	its	work	before	making	the	recursive	call.	Tail	recursive	func‐
tions	return	the	result	of	the	recursive	call	without	augmenting	(modifying)	it,	or	doing	any	other	ad‐
ditional	work.	Clever	Lisp	compilers	turn	tail	recursive	calls	 into	jump	instructions,	eliminating	the
need	for	a	call	stack.

terminal	call
A	call	to	a	function	that	results	in	no	further	recursive	calls.	The	function	simply	returns	a	value.

terminal	node
A	node	of	a	tree	with	no	descendants,	 in	other	words,	a	bottommost	node.	Terminal	nodes	are	also
called	leaves.

top-level	prompt
A	prompt	character	such	as	“	>“	or	“*”	that	indicates	to	the	user	that	he	or	she	is	typing	to	the	top-
level	read-eval-print	loop.

TRACE
A	tool	for	displaying	function	entries	and	exits.

tree
A	structure	composed	of	nodes	and	links,	where	each	node	has	zero	or	more	children	and	exactly	one
parent.	An	exception	is	the	topmost	node,	or	root,	which	has	no	parent.	Trees	may	be	represented	as
lists	in	Lisp.

truth	function
A	function	whose	inputs	and	output	are	truth	values,	that	is,	true	or	false.

type	predicate
A	predicate	such	as	NUMBERP	or	CONSP	that	returns	true	if	its	input	is	a	particular	type	of	data.

type	system
The	 set	of	datatypes	a	 language	offers,	 and	 their	organization.	The	Lisp	 type	 system	 includes	 type
predicates,	 a	 TYPE-OF	 function	 for	 generating	 type	 descriptions,	 and	 a	 facility	 for	 creating	 new
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datatypes	with	DEFSTRUCT.

unassigned	variable
A	variable	that	has	no	value.

unbound	variable
“Unbound”	is	an	archaic	 term	for	“unassigned,”	and	is	avoided	in	 this	book.	See	unassigned	vari‐
able.

union
The	union	of	 two	sets	contains	all	 the	elements	of	each	set.	Each	element	appears	only	once	in	 the
union.	See	also	intersection.

value	cell
A	cell	in	the	internal	representation	of	a	symbol	where	Lisp	keeps	the	value	of	the	global	lexical	vari‐
able	(or	the	currently	accessible	dynamic	variable)	named	by	that	symbol.

variable
A	place	where	a	value	is	stored.	Ordinary	variables	are	named	by	symbols.	Generalized	variables	are
named	by	place	descriptions,	which	may	be	Lisp	expressions.

vector
A	one-dimensional	array.
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destructive	operations	on	334,	335,	336
graphical	notation	for	160
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CONS	function
and	NIL	55
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examples	52
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Cryptogram	exercise	395
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parameters	439
special	variables	436

DEFMACRO	macro	408
DEFPARAMETER	macro	439
DEFSTRUCT	macro	367,	378,	380,	406
DEFUN	macro	82,	95,	205
DEFVAR	macro	139,	308,	436,	439
DELETE	337
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Destructive	operations
on	lists	332,	334,	335,	336
on	sequences	386
on	strings	387

Destructuring	430
Deviant	list	structures	74
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Lexical	scoping	156,	435
Lisp
acronym	31
compiler	415
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McCarthy,	John	27,	107
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destructuring	430
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meaning	false	7
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NULL	67
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NUMBERP	8
Numbers
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factorization	285
Fibonacci	244,	246,	262,	355
floating	point	3
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Online	documentation	149
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DeMorgan’s	theorem	134
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interchangeability	with	other	conditionals	126
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Pattern	matcher	219
Patterns	and	their	interpretations	220
PI	150
Place	descriptions	315
Playing	cards	212
Plotting	program	296
PLUSP	125
Pointers	32
POP	macro	310
PPMXtool	407,	426
Predicates
and	applicatives	207,	210,	214
complex	123
defined	8
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PRIN1	301
PRINC	301
PRINT	301
*PRINT-ARRRAY*	385
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*PRINT-CIRCLE*	441
:PRINT-FUNCTION	keyword	378
PROG1	359,	362
PROG2	359,	362
PROGN	359,	362
Prompt	string	97,	272
Proper	lists	72
Proper	subsets	175
Property	lists	389,	401
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PUSHNEW	macro	391

Query	functions	293
QUOTE	special	function	104,	225
Quotient	2
Quoting	of	objects	88,	89

RANDOM	140,	147,	151,	394
RASSOC	180,	200
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READ	98,	292,	294
Read-eval-print	loop	98,	368,	126
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Recording	interactive	sessions	298
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art	and	literature	examples	268
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Fibonacci	example	244
helping	functions	266
infinite	244,	246
significance	of	231
tail	279
three	rules	of	241,	243
two-part	280
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double-test	tail	250
list	consing	254
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REMOVE	168,	169,	199
REMOVE-DUPLICATES	183
REMOVE-IF	operator	210,	226
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REMPROP	391
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RETURN	342
RETURN-FROM	353
REVERSE	165,	169,	280,	386
Robbie	the	Robot	188
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ROOM	400
Rules	of	recursion	241,	243

S-expressions	283
Scheme	xi
Scheme	dialect	435
Scope	of	variables	109
Scoping	226
SCRAWL	187
SDRAWtool	186
SDRAW-LOOP	187
SECOND	39,	46
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SET	338
SET-DIFFERENCE	173,	200,	211
SETF	macro
assigning	to	globals	138
assignment	with	307
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macroexpansion	406
of	AREF	385
of	SYMBOL-PLIST	402

SETQ	special	function
history	338
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Sets
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examples	170
functions	on	170,	172,	173,	174,	183
intersection	172
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set	difference	173,	211
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subsets	174,	210
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test	for	membership	in	170
union	173

Shared	structure	195
SHOWVAR	example	413
Side	effects	140,	147,	310
SIMPLE-STRING	type	366
Simultaneous	recursion	256
Single-test	tail	recursion	250
Special	forms	see	Special	functions
Special	functions
BLOCK	354
FUNCTION	225
IF	113
LET	141
LET*	144
QUOTE	104
SETQ	338
vs.	macro	functions	411
vs.	ordinary	functions	113

Special	variables	436,	440
Splicing	with	backquote	414
SQRT	2
Square	roots	2,	416
Stacks	310
Starship	example	367
State	transitions	419
STEP	tool	130
Stream	objects	294
STRING-CHAR	type	366,	403
STRINGP	288
Strings	288,	366,	387,	402
Structures
accessing	369
as	datatypes	365
creating	368
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defining	367
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modifying	369
print	function	378
redefining	371

SUBLIS	193,	200
Subscripts	in	arrays	383
SUBSETP	174
Subsets
of	a	set	174,	210
proper	subset	175

SUBST	192,	200,	336
Substitution	ciphers	395
Subtraction	2
Suess,	Dr.	268
SYMBOL-PLIST	391,	401
SYMBOL-VALUE	339
SYMBOLPZ	8
Symbols
definition	of	a	symbol	7
examples	6
function	cell	154
internal	structure	105
property	list	389,	401
type	predicate	for	8
value	cell	153,	339

Symmetric	set	difference	181
Symmetry	of	CONS	and	CAR/CDR	57

T
as	argument	to	FORMAT	289
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as	output	of	predicates	8
evaluation	rule	for	80
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internal	representation	154
special	meaning	7

Tables
and	applicative	operators	203
ASSOC	function	179
examples	179
extracting	portions	with	MAPCAR	204
functions	on	193
RASSOC	function	180
searching	with	FIND-IF	207
use	with	SUBLIS	193

TAGBODY	special	function	427
Tail	recursion	279
Terminal	nodes	of	trees	283
*TERMINAL-IO*	294
TERPRI	301
:TEST	keyword	200,	336
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THIRD	39,	46
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Three	rules	of	recursion	241,	243
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TIME	macro	358
Tools
debugger	272
DESCRIBE	372,	389
DRIBBLE	298
DTRACE	218,	234,	408
DUNTRACE	218
INSPECT	373,	389
PPMX	407,	426
ROOM	400
SCRAWL	187
SDRAW	186
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STEP	130
TIME	358
TRACE	216,	234
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Top-level	prompt	97
TRACE	tool	216,	234
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as	nested	lists	192
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nonterminal	nodes	283
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terminal	nodes	283
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Truth	7
Truth	functions
LOGICAL-AND	example	132
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Truth	tables	133
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Type	predicates
ATOM	67
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for	structures	368,	381
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LISTP	66
NULL	67
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Unassigned	variable	error	120,	137
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Variables
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binding	157
generalized	315
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in	LET	141
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local	137,	141,	208,	312
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reading	files	294
writing	files	295
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Wrong-type	input	error	24,	88
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540



www.doverpublications.com

541

http://www.doverpublications.com


Indice

Title	Page 3
Copyright	Page 4
Dedication 5
Preface 6
Note	to	Instructors 8
Acknowledgements 12
Contents 14
1.	Functions	and	Data 22
1.1.	Introduction 22
1.2.	Functions	On	Numbers 22
1.3.	Three	Kinds	of	Numbers 23
1.4.	Order	Of	Inputs	Is	Important 24
1.5.	Symbols 26
1.6.	The	Special	Symbols	T	and	NIL 27
1.7.	Some	Simple	Predicates 27
1.8.	The	EQUAL	Predicate 29
1.9.	Putting	Functions	Together 31

1.9.1.	Defining	ADD1 31
1.9.2.	Defining	ADD2 32
1.9.3.	Defining	TWOP 33
1.9.4.	Defining	ONEMOREP 34

1.10.	The	NOT	Predicate 36
1.11.	Negating	A	Predicate 37
1.12.	Number	of	Inputs	to	a	Function 39
1.13.	Errors 40
Advanced	Topics 43
1.14.	The	History	of	Lisp 43

2.	Lists 46
2.1.	Lists	Are	The	Most	Versatile	Data	Type 46
2.2.	What	Do	Lists	Look	Like? 46
2.3.	Lists	of	One	Element 47

542



2.4.	Nested	Lists 47
2.5.	Length	of	Lists 49
2.6.	NIL:	The	Empty	List 51
2.7.	Equality	of	Lists 52
2.8.	FIRST,	SECOND,	THIRD,	and	REST 53
2.9.	Functions	Operate	On	Pointers 54
2.10.	AR	and	CDR 55

2.10.1.	The	CDR	of	a	Single-Element	List 56
2.10.2.	Combinations	of	CAR	and	CDR 58
2.10.3.	CAR	and	CDR	of	Nested	Lists 59
2.10.4.	CAR	and	CDR	of	NIL 61

2.11.	CONS 63
2.11.1.	CONS	and	the	Empty	List 65
2.11.2.	Building	Nested	Lists	With	CONS 66
2.11.3.	CONS	Can	Build	Lists	From	Scratch 66
2.12.	Symmetry	of	CONS	and	CAR/CDR 67
2.13.	LIST 68
2.14.	Replacing	the	First	Element	of	a	List 72
2.15.	List	Predicates 75
Advanced	Topics 78
2.16.	Unary	Arithmetic	with	Lists 78
2.17.	Nonlist	Cons	Structures 79
2.18.	Circular	Lists 81
2.19.	Length	of	Nonlist	Cons	Structures 82

3.	EVAL	Notation 83
3.1.	Introduction 83
3.2.	The	EVAL	Function 83
3.3.	EVAL	Notation	Can	Do	Anything	Box	Notation	Can	Do 84
3.4.	Evaluation	Rules	Define	the	Behavior	of	EVAL 85
3.5.	Defining	Functions	in	EVAL	Notation 87
3.6.	Variables 88
3.7.	Evaluating	Symbols 90
3.8.	Using	Symbols	and	Lists	as	Data 91
3.9.	The	Problem	of	Misquoting 93
3.10.	Three	Ways	to	Make	Lists 93

543



3.11.	Four	Ways	to	Misdefine	a	Function 95
3.12.	More	About	Variables 96
Lisp	on	the	Computer 100
3.13.	Running	Lisp 100
3.14.	The	Read-Eval-Print	Loop 101
3.15.	Recovering	From	Errors 102
Lisp	Toolkit:	ED 103
Keyboard	Exercise 104
Advanced	Topics 106
3.16.	Functions	of	No	Arguments 106
3.17.	The	QUOTE	Special	Function 106
3.18.	Internal	Structure	of	Symbols 107
3.19.	Lambda	Notation 109
3.20.	Scope	of	Variables 110
3.21.	EVAL	and	APPLY 112

4.	Conditionals 114
4.1.	Introduction 114
4.2.	The	IF	Special	Function 114
4.3.	The	COND	Macro 116
4.4.	Using	T	as	a	Test 118
4.5.	Two	More	Examples	of	COND 118
4.6.	COND	and	Parenthesis	Errors 120
4.7.	The	AND	and	OR	Macros 122
4.8.	Evaluating	AND	and	OR 123
4.9.	Building	Complex	Predicates 123
4.10.	Why	AND	and	OR	are	Conditionals 125
4.11.	Conditionals	are	Interchangeable 125
Lisp	Toolkit:	STEP 129
Advanced	Topics 131
4.12.	Boolean	Functions 131
4.13.	Truth	Tables 132
4.14.	DeMorgan’s	Theorem 133

5.	Variables	and	Side	Effects 136
5.1.	Introduction 136
5.2.	Local	and	Global	Variables 136

544



5.3.	SETF	Assigns	a	Value	to	a	Variable 137
5.4.	Side	Effects 138
5.5.	The	LET	Special	Function 140
5.6.	The	LET*	Special	Function 142
5.7.	Side	Effects	Can	Cause	Bugs 145
Lisp	Toolkit:	DOCUMENTATION	and	APROPOS 147
Keyboard	Exercise 149
Advanced	Topics 150
5.8.	Symbols	and	Value	Cells 150
5.9.	Distinguishing	Local	from	Global	Variables 152
5.10.	Binding,	Scoping,	and	Assignment 154

6.	List	Data	Structures 156
6.1.	Introduction 156
6.2.	Parenthesis	Notation	vs.	Cons	Cell	Notation 156
6.3.	The	APPEND	Function 157
6.4.	Comparing	CONS,	LIST,	and	APPEND 159
6.5.	More	Functions	on	Lists 161

6.5.1.	REVERSE 161
6.5.2.	NTH	and	NTHCDR 162
6.5.3.	LAST 163
6.5.4.	REMOVE 163

6.6.	Lists	as	Sets 165
6.6.1.	MEMBER 166
6.6.2.	INTERSECTION 167
6.6.3.	UNION 168
6.6.4.	SET-DIFFERENCE 168
6.6.5.	SUBSETP 169

6.7.	Programming	With	Sets 170
6.8.	Lists	As	Tables 173

6.8.1.	ASSOC 174
6.8.2.	RASSOC 174

6.9.	Programming	With	Tables 175
Lisp	Toolkit:	SDRAW 180
Keyboard	Exercise 181
Advanced	Topics 184

545



6.10.	Trees 184
6.10.1.	SUBST 185
6.10.2.	SUBLIS 185

6.11.	Efficiency	of	List	Operations 186
6.12.	Shared	Structure 187
6.13.	Equality	of	Objects 188
6.14.	Keyword	Arguments 190

7.	Applicative	Programming 193
7.1.	Introduction 193
7.2.	FUNCALL 193
7.3.	The	MAPCAR	Operator 194
7.4.	Manipulating	Tables	With	MAPCAR 195
7.5.	Lambda	Expressions 196
7.6.	The	FIND-IF	Operator 198
7.7.	Writing	ASSOC	With	FIND-IF 199
7.8.	REMOVE-IF	and	REMOVE-IF-NOT 201
7.9.	The	REDUCE	Operator 204
7.10.	EVERY 205
Lisp	Toolkit:	TRACE	and	DTRACE 207
Keyboard	Exercise 210
Advanced	Topics 213
7.11.	Operating	on	Multiple	Lists 213
7.12.	The	FUNCTION	Special	Function 214
7.13.	Keyword	Arguments	to	Applicative	Operators 215
7.14.	Scoping	and	Lexical	Closures 216
7.15.	Writing	An	Applicative	Operator 218
7.16.	Functions	That	Make	Functions 219

8.	Recursion 220
8.1.	Introduction 220
8.2.	Martin	and	the	Dragon 220
8.3.	A	Function	to	Search	for	Odd	Numbers 222
8.4.	Martin	Visits	The	Dragon	Again 224
8.5.	A	Lisp	Version	of	the	Factorial	Function 226
8.6.	The	Dragon’s	Dream 226
8.7.	A	Recursive	Function	for	Counting	Slices	of	Bread 228

546



8.8.	The	Three	Rules	of	Recursion 229
8.9.	Martin	Discovers	Infinite	Recursion 232
8.10.	Infinite	Recursion	in	Lisp 234
8.11.	Recursion	Templates 236

8.11.1.	Double-Test	Tail	Recursion 236
8.11.2.	Single-Test	Tail	Recursion 237
8.11.3.	Augmenting	Recursion 239

8.12.	Variations	on	the	Basic	Templates 241
8.12.1.	List-Consing	Recursion 241
8.12.2.	Simultaneous	Recursion	on	Several	Variables 243
8.12.3.	Conditional	Augmentation 246
8.12.4.	Multiple	Recursion 248

8.13.	Trees	and	CAR/CDR	Recursion 250
8.14.	Using	Helping	Functions 254
8.15.	Recursion	in	Art	and	Literature 256
Lisp	Toolkit:	The	Debugger 259
Keyboard	Exercise 262
Advanced	Topics 266
8.16.	Advantages	of	Tail	Recursion 266
8.17.	Writing	New	Applicative	Operators 268
8.18.	The	LABELS	Special	Function 269
8.19.	Recursive	Data	Structures 270

9.	Input/Output 273
9.1.	Introduction 273
9.2.	Character	Strings 273
9.3.	The	FORMAT	Function 274
9.4.	The	READ	Function 277
9.5.	The	YES-OR-NO-P	Function 278
9.6.	Reading	Files	with	WITH-OPEN-FILE 279
9.7.	Writing	Files	with	WITH-OPEN-FILE 280
Keyboard	Exercise 281
Lisp	Toolkit:	DRIBBLE 283
Advanced	Topics 284
9.8.	Parameters	to	Format	Directives 284
9.9.	Additional	Format	Directives 284

547



9.10.	The	Lisp	1.5	Output	Primitives 285
9.11.	Handling	End-of-File	Conditions 286
9.12.	Printing	in	Dot	Notation 287
9.13.	Hybrid	Notation 288

10.	Assignment 290
10.1.	Introduction 290
10.2.	Updating	a	Global	Variable 290
10.3.	Stereotypical	Updating	Methods 291

10.3.1.	The	INCF	and	DECF	Macros 292
10.3.2.	The	PUSH	and	POP	Macros 292
10.3.3.	Updating	Local	Variables 294

10.4.	WHEN	and	UNLESS 296
10.5.	Generalized	Variables 297
10.6.	Case	Study:	A	Tic-Tac-Toe	Player 298
Lisp	Toolkit:	BREAK	and	ERROR 308
Keyboard	Exercise 310
Advanced	Topics 313
10.7.	Do-lt-Yourself	List	Surgery 313
10.8.	Destructive	Operations	on	Lists 315

10.8.1.	NCONC 315
10.8.2.	NSUBST 317
10.8.3.	Other	Destructive	Functions 317

10.9.	Programming	With	Destructive	Operations 317
10.10.	SETQ	and	SET 319

11.	Iteration	and	Block	Structure 321
11.1.	Introduction 321
11.2.	DOTIMES	and	DOLIST 321
11.3.	Exiting	the	Body	of	a	Loop 322
11.4.	Comparing	Recursive	and	Iterative	Search 324
11.5.	Building	Up	Results	With	Assignment 324
11.6.	Comparing	DOLIST	with	MAPCAR	and	Recursion 325
11.7.	The	DO	Macro 327
11.8.	Advantages	of	Implicit	Assignment 328
11.9.	The	DO*	Macro 330
11.10.	Infinite	Loops	with	DO 331

548



11.11.	Implicit	Blocks 332
Keyboard	Exercise 334
Lisp	Toolkit:	TIME 336
Advanced	Topics 337
11.12.	ROG1,	PROG2,	and	PROGN 337
11.13.	Optional	Arguments 338
11.14.	Rest	Arguments 339
11.15.	Keyword	Arguments 341
11.16.	Auxiliary	Variables 342

12.	Structures	and	The	Type	System 343
12.1.	Introduction 343
12.2.	TYPEP	and	TYPE-OF 343
12.3.	Defining	Structures 345
12.4.	Type	Predicates	for	Structures 346
12.5.	Accessing	and	Modifying	Structures 346
12.6.	Keyword	Arguments	to	Constructor	Functions 347
12.7.	Changing	Structure	Definitions 348
Lisp	Toolkit:	DESCRIBE	and	INSPECT 349
Keyboard	Exercise 350
Advanced	Topics 354
12.8.	Print	Functions	for	Structures 354
12.9.	Equality	of	Structures 355
12.10.	Inheritance	from	Other	Structures 356

13.	Arrays,	Hash	Tables,	And	Property	Lists 359
13.1.	Introduction 359
13.2.	Creating	an	Array 359
13.3.	Printing	Arrays 360
13.4.	Accessing	and	Modifying	Array	Elements 361
13.5.	Creating	Arrays	With	MAKE-ARRAY 362
13.6.	Strings	as	Vectors 362
13.7.	Hash	Tables 363
13.8.	Property	Lists 365
13.9.	Programming	With	Property	Lists 366
Array	Keyboard	Exercise 368
Hash	Table	Keyboard	Exercise 370

549



Lisp	Toolkit:	ROOM 374
Advanced	Topics 375
13.10.	Property	List	Cells 375
13.11.	More	On	Sequences 376

14.	Macros	and	Compilation 378
14.1.	Introduction 378
14.2.	Macros	as	Shorthand 378
14.3.	Macro	Expansion 379
14.4.	Defining	a	Macro 380
14.5.	Macros	as	Syntactic	Extensions 383
14.6.	The	Backquote	Character 384
14.7.	Splicing	With	Backquote 386
14.8.	The	Compiler 387
14.9.	Compilation	and	Macro	Expansion 388
14.10.	Compiling	Entire	Programs 389
14.11.	Case	Study:	Finite	State	Machines 390
Lisp	Toolkit:	PPMX 397
Keyboard	Exercise 398
Advanced	Topics 400
14.12.	The	&BODY	Lambda-List	Keyword 400
14.13.	Destructuring	Lambda	Lists 401
14.14.	Macros	and	Lexical	Scoping 403
14.15.	Historical	Significance	of	Macros 405
14.16.	Dynamic	Scoping 406
14.17.	DEFVAR,	DEFPARAMETER,	DEFCONSTANT 409
14.18.	Rebinding	Special	Variables 410

Appendix	A.	The	SDRAW	Tool 413
Appendix	B.	The	DTRACE	Tool 423
Appendix	C.	Answers	to	Exercises 431
Glossary 509
Further	Reading 521
Index 523

550


	Title Page
	Copyright Page
	Dedication
	Preface
	Note to Instructors
	Acknowledgements
	Contents
	1. Functions and Data
	1.1. Introduction
	1.2. Functions On Numbers
	1.3. Three Kinds of Numbers
	1.4. Order Of Inputs Is Important
	1.5. Symbols
	1.6. The Special Symbols T and NIL
	1.7. Some Simple Predicates
	1.8. The EQUAL Predicate
	1.9. Putting Functions Together
	1.9.1. Defining ADD1
	1.9.2. Defining ADD2
	1.9.3. Defining TWOP
	1.9.4. Defining ONEMOREP

	1.10. The NOT Predicate
	1.11. Negating A Predicate
	1.12. Number of Inputs to a Function
	1.13. Errors
	Advanced Topics
	1.14. The History of Lisp

	2. Lists
	2.1. Lists Are The Most Versatile Data Type
	2.2. What Do Lists Look Like?
	2.3. Lists of One Element
	2.4. Nested Lists
	2.5. Length of Lists
	2.6. NIL: The Empty List
	2.7. Equality of Lists
	2.8. FIRST, SECOND, THIRD, and REST
	2.9. Functions Operate On Pointers
	2.10. AR and CDR
	2.10.1. The CDR of a Single-Element List
	2.10.2. Combinations of CAR and CDR
	2.10.3. CAR and CDR of Nested Lists
	2.10.4. CAR and CDR of NIL

	2.11. CONS
	2.11.1. CONS and the Empty List
	2.11.2. Building Nested Lists With CONS
	2.11.3. CONS Can Build Lists From Scratch
	2.12. Symmetry of CONS and CAR/CDR
	2.13. LIST
	2.14. Replacing the First Element of a List
	2.15. List Predicates
	Advanced Topics
	2.16. Unary Arithmetic with Lists
	2.17. Nonlist Cons Structures
	2.18. Circular Lists
	2.19. Length of Nonlist Cons Structures

	3. EVAL Notation
	3.1. Introduction
	3.2. The EVAL Function
	3.3. EVAL Notation Can Do Anything Box Notation Can Do
	3.4. Evaluation Rules Define the Behavior of EVAL
	3.5. Defining Functions in EVAL Notation
	3.6. Variables
	3.7. Evaluating Symbols
	3.8. Using Symbols and Lists as Data
	3.9. The Problem of Misquoting
	3.10. Three Ways to Make Lists
	3.11. Four Ways to Misdefine a Function
	3.12. More About Variables
	Lisp on the Computer
	3.13. Running Lisp
	3.14. The Read-Eval-Print Loop
	3.15. Recovering From Errors
	Lisp Toolkit: ED
	Keyboard Exercise
	Advanced Topics
	3.16. Functions of No Arguments
	3.17. The QUOTE Special Function
	3.18. Internal Structure of Symbols
	3.19. Lambda Notation
	3.20. Scope of Variables
	3.21. EVAL and APPLY

	4. Conditionals
	4.1. Introduction
	4.2. The IF Special Function
	4.3. The COND Macro
	4.4. Using T as a Test
	4.5. Two More Examples of COND
	4.6. COND and Parenthesis Errors
	4.7. The AND and OR Macros
	4.8. Evaluating AND and OR
	4.9. Building Complex Predicates
	4.10. Why AND and OR are Conditionals
	4.11. Conditionals are Interchangeable
	Lisp Toolkit: STEP
	Advanced Topics
	4.12. Boolean Functions
	4.13. Truth Tables
	4.14. DeMorgan’s Theorem

	5. Variables and Side Effects
	5.1. Introduction
	5.2. Local and Global Variables
	5.3. SETF Assigns a Value to a Variable
	5.4. Side Effects
	5.5. The LET Special Function
	5.6. The LET* Special Function
	5.7. Side Effects Can Cause Bugs
	Lisp Toolkit: DOCUMENTATION and APROPOS
	Keyboard Exercise
	Advanced Topics
	5.8. Symbols and Value Cells
	5.9. Distinguishing Local from Global Variables
	5.10. Binding, Scoping, and Assignment

	6. List Data Structures
	6.1. Introduction
	6.2. Parenthesis Notation vs. Cons Cell Notation
	6.3. The APPEND Function
	6.4. Comparing CONS, LIST, and APPEND
	6.5. More Functions on Lists
	6.5.1. REVERSE
	6.5.2. NTH and NTHCDR
	6.5.3. LAST
	6.5.4. REMOVE

	6.6. Lists as Sets
	6.6.1. MEMBER
	6.6.2. INTERSECTION
	6.6.3. UNION
	6.6.4. SET-DIFFERENCE
	6.6.5. SUBSETP

	6.7. Programming With Sets
	6.8. Lists As Tables
	6.8.1. ASSOC
	6.8.2. RASSOC

	6.9. Programming With Tables
	Lisp Toolkit: SDRAW
	Keyboard Exercise
	Advanced Topics
	6.10. Trees
	6.10.1. SUBST
	6.10.2. SUBLIS

	6.11. Efficiency of List Operations
	6.12. Shared Structure
	6.13. Equality of Objects
	6.14. Keyword Arguments

	7. Applicative Programming
	7.1. Introduction
	7.2. FUNCALL
	7.3. The MAPCAR Operator
	7.4. Manipulating Tables With MAPCAR
	7.5. Lambda Expressions
	7.6. The FIND-IF Operator
	7.7. Writing ASSOC With FIND-IF
	7.8. REMOVE-IF and REMOVE-IF-NOT
	7.9. The REDUCE Operator
	7.10. EVERY
	Lisp Toolkit: TRACE and DTRACE
	Keyboard Exercise
	Advanced Topics
	7.11. Operating on Multiple Lists
	7.12. The FUNCTION Special Function
	7.13. Keyword Arguments to Applicative Operators
	7.14. Scoping and Lexical Closures
	7.15. Writing An Applicative Operator
	7.16. Functions That Make Functions

	8. Recursion
	8.1. Introduction
	8.2. Martin and the Dragon
	8.3. A Function to Search for Odd Numbers
	8.4. Martin Visits The Dragon Again
	8.5. A Lisp Version of the Factorial Function
	8.6. The Dragon’s Dream
	8.7. A Recursive Function for Counting Slices of Bread
	8.8. The Three Rules of Recursion
	8.9. Martin Discovers Infinite Recursion
	8.10. Infinite Recursion in Lisp
	8.11. Recursion Templates
	8.11.1. Double-Test Tail Recursion
	8.11.2. Single-Test Tail Recursion
	8.11.3. Augmenting Recursion

	8.12. Variations on the Basic Templates
	8.12.1. List-Consing Recursion
	8.12.2. Simultaneous Recursion on Several Variables
	8.12.3. Conditional Augmentation
	8.12.4. Multiple Recursion

	8.13. Trees and CAR/CDR Recursion
	8.14. Using Helping Functions
	8.15. Recursion in Art and Literature
	Lisp Toolkit: The Debugger
	Keyboard Exercise
	Advanced Topics
	8.16. Advantages of Tail Recursion
	8.17. Writing New Applicative Operators
	8.18. The LABELS Special Function
	8.19. Recursive Data Structures

	9. Input/Output
	9.1. Introduction
	9.2. Character Strings
	9.3. The FORMAT Function
	9.4. The READ Function
	9.5. The YES-OR-NO-P Function
	9.6. Reading Files with WITH-OPEN-FILE
	9.7. Writing Files with WITH-OPEN-FILE
	Keyboard Exercise
	Lisp Toolkit: DRIBBLE
	Advanced Topics
	9.8. Parameters to Format Directives
	9.9. Additional Format Directives
	9.10. The Lisp 1.5 Output Primitives
	9.11. Handling End-of-File Conditions
	9.12. Printing in Dot Notation
	9.13. Hybrid Notation

	10. Assignment
	10.1. Introduction
	10.2. Updating a Global Variable
	10.3. Stereotypical Updating Methods
	10.3.1. The INCF and DECF Macros
	10.3.2. The PUSH and POP Macros
	10.3.3. Updating Local Variables

	10.4. WHEN and UNLESS
	10.5. Generalized Variables
	10.6. Case Study: A Tic-Tac-Toe Player
	Lisp Toolkit: BREAK and ERROR
	Keyboard Exercise
	Advanced Topics
	10.7. Do-lt-Yourself List Surgery
	10.8. Destructive Operations on Lists
	10.8.1. NCONC
	10.8.2. NSUBST
	10.8.3. Other Destructive Functions

	10.9. Programming With Destructive Operations
	10.10. SETQ and SET

	11. Iteration and Block Structure
	11.1. Introduction
	11.2. DOTIMES and DOLIST
	11.3. Exiting the Body of a Loop
	11.4. Comparing Recursive and Iterative Search
	11.5. Building Up Results With Assignment
	11.6. Comparing DOLIST with MAPCAR and Recursion
	11.7. The DO Macro
	11.8. Advantages of Implicit Assignment
	11.9. The DO* Macro
	11.10. Infinite Loops with DO
	11.11. Implicit Blocks
	Keyboard Exercise
	Lisp Toolkit: TIME
	Advanced Topics
	11.12. ROG1, PROG2, and PROGN
	11.13. Optional Arguments
	11.14. Rest Arguments
	11.15. Keyword Arguments
	11.16. Auxiliary Variables

	12. Structures and The Type System
	12.1. Introduction
	12.2. TYPEP and TYPE-OF
	12.3. Defining Structures
	12.4. Type Predicates for Structures
	12.5. Accessing and Modifying Structures
	12.6. Keyword Arguments to Constructor Functions
	12.7. Changing Structure Definitions
	Lisp Toolkit: DESCRIBE and INSPECT
	Keyboard Exercise
	Advanced Topics
	12.8. Print Functions for Structures
	12.9. Equality of Structures
	12.10. Inheritance from Other Structures

	13. Arrays, Hash Tables, And Property Lists
	13.1. Introduction
	13.2. Creating an Array
	13.3. Printing Arrays
	13.4. Accessing and Modifying Array Elements
	13.5. Creating Arrays With MAKE-ARRAY
	13.6. Strings as Vectors
	13.7. Hash Tables
	13.8. Property Lists
	13.9. Programming With Property Lists
	Array Keyboard Exercise
	Hash Table Keyboard Exercise
	Lisp Toolkit: ROOM
	Advanced Topics
	13.10. Property List Cells
	13.11. More On Sequences

	14. Macros and Compilation
	14.1. Introduction
	14.2. Macros as Shorthand
	14.3. Macro Expansion
	14.4. Defining a Macro
	14.5. Macros as Syntactic Extensions
	14.6. The Backquote Character
	14.7. Splicing With Backquote
	14.8. The Compiler
	14.9. Compilation and Macro Expansion
	14.10. Compiling Entire Programs
	14.11. Case Study: Finite State Machines
	Lisp Toolkit: PPMX
	Keyboard Exercise
	Advanced Topics
	14.12. The &BODY Lambda-List Keyword
	14.13. Destructuring Lambda Lists
	14.14. Macros and Lexical Scoping
	14.15. Historical Significance of Macros
	14.16. Dynamic Scoping
	14.17. DEFVAR, DEFPARAMETER, DEFCONSTANT
	14.18. Rebinding Special Variables

	Appendix A. The SDRAW Tool
	Appendix B. The DTRACE Tool
	Appendix C. Answers to Exercises
	Glossary
	Further Reading
	Index

